Fenoxaprop resistance in sterile wild oat (Avena sterilis

Crop Protection 26, 930-935 DOI: 10.1016/j.cropro.2006.08.012

Citation Report

#	Article	IF	CITATIONS
1	Multiple herbicide resistance in littleseed canarygrass (<i>Phalaris minor</i>): A threat to wheat production in India. Weed Biology and Management, 2008, 8, 112-123.	1.4	74
2	Distribution and frequency of herbicide-resistant wild oat (Avena spp.) across the Western Australian grain belt. Crop and Pasture Science, 2009, 60, 25.	1.5	59
3	Persistence and behavior of pesticides in cotton production in Turkish soils. Environmental Monitoring and Assessment, 2010, 162, 201-208.	2.7	5
4	Confirmed resistance to aryloxyphenoxypropionate herbicides in <i>Phalaris minor</i> populations in Iran. Weed Biology and Management, 2011, 11, 29-37.	1.4	31
5	Diclofop resistance in sterile wild oat (Avena sterilis L.) in wheat fields in Greece and its management by other post-emergence herbicides. Crop Protection, 2011, 30, 1449-1454.	2.1	21
6	ACCase-Inhibiting Herbicide-Resistant <i>Avena</i> spp. Populations from the Western Australian Grain Belt. Weed Technology, 2012, 26, 130-136.	0.9	23
7	Sterile oat (Avena sterilis L.) cross-resistance profile to ACCase-inhibiting herbicides in Greece. Crop Protection, 2012, 35, 118-126.	2.1	12
8	Littleseed canarygrass (<i>Phalaris minor</i>) resistance to clodinafopâ€propargyl in wheat fields in northâ€western India: Appraisal and management. Weed Biology and Management, 2014, 14, 11-20.	1.4	22
9	ACCase mutations in Avena sterilis populations and their impact on plant fitness. Pesticide Biochemistry and Physiology, 2015, 123, 40-48.	3.6	23
10	Molecular basis of multiple resistance to ACCase- and ALS-inhibiting herbicides in Alopecurus japonicus from China. Pesticide Biochemistry and Physiology, 2016, 126, 22-27.	3.6	28
11	Pesticides in Ichkeul Lake–Bizerta Lagoon Watershed in Tunisia: use, occurrence, and effects on bacteria and free-living marine nematodes. Environmental Science and Pollution Research, 2016, 23, 36-48.	5.3	24
12	Cross-resistance patterns of winter wild oat (Avena ludoviciana) populations to ACCase inhibitor herbicides. Phytoparasitica, 2017, 45, 419-428.	1.2	10
13	Biology and management of Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems. Environmental Science and Pollution Research, 2017, 24, 19465-19479.	5.3	27
14	A quantitative genetic examination of nonâ€ŧargetâ€site resistance applied to <i>Avena</i> species. Weed Research, 2018, 58, 69-75.	1.7	5
15	Decrease in biodiversity in wheat fields due to changing agricultural practices in five decades. Biodiversity and Conservation, 2018, 27, 3267-3286.	2.6	12
16	The First Case of Short-Spiked Canarygrass (Phalaris brachystachys) with Cross-Resistance to ACCase-Inhibiting Herbicides in Iran. Agronomy, 2019, 9, 377.	3.0	5
17	Resistance levels and chemical control options of sterile oat (Avena sterilis L.) in Northern Greece. International Journal of Pest Management, 2020, 66, 106-115.	1.8	4
18	Investigation of the Effects of the Fenoxaprop-p-Ethyl Herbicide and Salicylic Acid on the Ascorbic Acid and Vitamin B6 Vitamers in Wheat Leaves. Journal of Plant Growth Regulation, 2020, 39, 729-737.	5.1	6

#ARTICLEIFCITATIONS19Mechanism and pattern of resistance to some ACCase inhibitors in winter wild oat (Avena sterilis) Tj ETQq0 0 gBT /Over lock 10 Tf 50
2.12.1420Dilkanatanın (Galium aparine L.) ćimlenme Biyolojisi ve Bazı Herbisitlere Tepkisi. Turkish Journal of
Agricultural and Natural Sciences, 0, 477-488.0.60

Herbicide resistant Phalaris minor in India—history of evolution, present status and its management. 1.2 3 Phytoparasitica, 2023, 51, 353-378.