Seismic images under 60 hotspots: Search for mantle pl

Gondwana Research 12, 335-355 DOI: 10.1016/j.gr.2007.03.001

Citation Report

#	Article	IF	CITATIONS
1	Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Science in China Series D: Earth Sciences, 2008, 51, 550-566.	0.9	101
2	Nature, source and composition of volcanic ash in surficial sediments around the Zhongsha Islands. Journal of Ocean University of China, 2008, 7, 154-160.	0.6	5
3	The Grenvillian and Pan-African orogens: World's largest orogenies through geologic time, and their implications on the origin of superplume. Gondwana Research, 2008, 14, 51-72.	3.0	377
4	Rise and deflection of mantle plume tails. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	8
5	Multiscale seismic tomography and mantle dynamics. Gondwana Research, 2009, 15, 297-323.	3.0	179
6	A Kaapvaal craton debate: Nucleus of an early small supercontinent or affected by an enhanced accretion event?. Condwana Research, 2009, 15, 354-372.	3.0	60
7	The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere. Gondwana Research, 2009, 15, 324-341.	3.0	383
8	Seismic imaging of the upper mantle under the Erebus hotspot in Antarctica. Gondwana Research, 2009, 16, 109-118.	3.0	43
9	Deep slab subduction and dehydration and their geodynamic consequences: Evidence from seismology and mineral physics. Gondwana Research, 2009, 16, 401-413.	3.0	148
10	Geodynamic setting of recent volcanism in North Eurasia. Geotectonics, 2009, 43, 337-357.	0.2	10
11	Geologic features of Wudalianchi volcanic field, northeastern China: Implications for Martian volcanology. Planetary and Space Science, 2009, 57, 685-698.	0.9	27
12	Regularities of spatial distribution of mantle hot spots of the modern Earth. Doklady Earth Sciences, 2009, 427, 924-928.	0.2	5
13	Evidence for recycled plate material in Pacific upper mantle unrelated to plumes. Geochimica Et Cosmochimica Acta, 2009, 73, 3028-3037.	1.6	59
14	Upwellings from a deep mantle reservoir filtered at the 660km phase transition in thermo-chemical convection models and implications for intra-plate volcanism. Physics of the Earth and Planetary Interiors, 2009, 172, 210-224.	0.7	18
15	Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 2009, 173, 197-206.	0.7	348
16	Perpectives on Integrated Solid Earth Sciences. , 2009, , 1-37.		2
17	Absolute plate motions constrained by shear wave splitting orientations with implications for hot spot motions and mantle flow. Journal of Geophysical Research, 2009, 114, .	3.3	86
18	Modern volcanism in the Earth's northern hemisphere and its relations with the evolution of the North Pangaea modern supercontinent and with the spatial distribution of hotspots on the Earth: The hypothesis of relations between mantle plumes and deep subduction. Petrology, 2010, 18, 657-676.	0.2	2

#	Article	IF	CITATIONS
19	Seed Plant Endemism on Hainan Island: A Framework for Conservation Actions. Botanical Review, The, 2010, 76, 346-376.	1.7	52
20	Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U–Th and field constraints. Journal of Volcanology and Geothermal Research, 2010, 196, 219-235.	0.8	67
21	U–Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos, 2010, 116, 145-152.	0.6	114
22	Phanerozoic hot spot traces and paleogeographic reconstructions of the Siberian continent based on interaction with the African large low shear velocity province. Earth-Science Reviews, 2010, 102, 29-59.	4.0	154
23	Proto-Tethyan remnants in northwest Iran: Geochemistry of the gneisses and metapelitic rocks. Gondwana Research, 2010, 17, 704-714.	3.0	67
24	The contemporary North Pangea supercontinent and the geodynamic causes of its formation. Geotectonics, 2010, 44, 448-461.	0.2	9
25	Geochemical constraints on depth of origin of oceanic carbonatites: The Cape Verde case. Geochimica Et Cosmochimica Acta, 2010, 74, 7261-7282.	1.6	40
26	Deep structure and origin of active volcanoes in China. Geoscience Frontiers, 2010, 1, 31-44.	4.3	67
27	Noble gas and carbon isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance. Earth and Planetary Science Letters, 2010, 291, 70-83.	1.8	41
28	Reconciling Pacific 410 and 660km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions. Earth and Planetary Science Letters, 2010, 296, 255-266.	1.8	57
29	Recent volcanism in relation to plate interaction and deep-level geodynamics. Russian Geology and Geophysics, 2010, 51, 939-951.	0.3	7
30	Hot spot activity and tectonic settings near Amsterdam–St. Paul plateau (Indian Ocean). Journal of Geophysical Research, 2011, 116, .	3.3	12
31	On predicting mantle mushroom plumes. Geoscience Frontiers, 2011, 2, 223-235.	4.3	8
32	East Asia: Seismotectonics, magmatism and mantle dynamics. Journal of Asian Earth Sciences, 2011, 40, 689-709.	1.0	151
34	Phanerozoic within-plate magmatism of North Asia: Absolute paleogeographic reconstructions of the African large low-shear-velocity province. Geotectonics, 2011, 45, 415-438.	0.2	26
35	Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: a Consequence of a Young Thermal Mantle Plume close to Subduction Zones?. Journal of Petrology, 2012, 53, 177-233.	1.1	207
36	The Petrology and Geochemistry of Lavas from the Western Azores Islands of Flores and Corvo. Journal of Petrology, 2012, 53, 1673-1708.	1.1	35
37	Geochemical temporal evolution of Brava Island magmatism: Constraints on the variability of Cape Verde mantle sources and on carbonatite–silicate magma link. Chemical Geology, 2012, 334, 44-61.	1.4	34

#	Article	IF	CITATIONS
38	A review of Australia's Large Igneous Provinces and associated mineral systems: Implications for mantle dynamics through geological time. Ore Geology Reviews, 2012, 48, 2-54.	1.1	82
39	Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30-40°S), Chile. Geophysical Journal International, 2012, 191, 317-324.	1.0	83
40	Late Paleozoic and Early Mesozoic rare-metal magmatism of Central Asia: Stages, provinces, and formation settings. Geology of Ore Deposits, 2012, 54, 313-333.	0.2	39
41	P-wave tomography of the western United States: Insight into the Yellowstone hotspot and the Juan de Fuca slab. Physics of the Earth and Planetary Interiors, 2012, 200-201, 72-84.	0.7	45
42	Lithospheric structure and crust–mantle decoupling in the southeast edge of the Tibetan Plateau. Gondwana Research, 2012, 22, 1060-1067.	3.0	51
43	Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design. Science Bulletin, 2012, 57, 3150-3164.	1.7	116
44	Imprints of volcanism in the upper mantle beneath the NW Deccan volcanic province. Lithosphere, 2012, 4, 150-159.	0.6	17
45	Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume. Contributions To Mineralogy and Petrology, 2012, 163, 995-1009.	1.2	18
46	Spatial distribution of seismic layer, crustal thickness, and Vp/Vs ratio in the Permian Emeishan Mantle Plume region. Gondwana Research, 2012, 22, 127-139.	3.0	38
47	Constraints on the structure of Maio Island (Cape Verde) by a three-dimensional gravity model: imaging partially exhumed magma chambers. Geophysical Journal International, 2012, 190, 931-940.	1.0	16
48	Seismic structure of the Tengchong volcanic area southwest China from local earthquake tomography. Journal of Volcanology and Geothermal Research, 2012, 239-240, 83-91.	0.8	28
49	The plate contact geometry investigation based on earthquake source parameters at the Burma arc subduction zone. Science China Earth Sciences, 2013, 56, 806-817.	2.3	4
50	Geochemistry and petrogenesis of Quaternary volcanism from the islets in the eastern Beibu Gulf: evidence for Hainan plume. Acta Oceanologica Sinica, 2013, 32, 40-49.	0.4	25
51	Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Research, 2013, 23, 595-616.	3.0	120
52	Crust and upper mantle structure and its tectonic implications in the South China Sea and adjacent regions. Journal of Asian Earth Sciences, 2013, 62, 510-525.	1.0	61
53	Implications for the origin of Hawaiian volcanism from a converted wave analysis of the mantle transition zone. Earth and Planetary Science Letters, 2013, 373, 194-204.	1.8	18
54	Seismic imaging of the deep structure under the Chinese volcanoes: An overview. Physics of the Earth and Planetary Interiors, 2013, 224, 104-123.	0.7	90
55	Collision-induced basalt eruptions at Pleiku and Buôn Mê Thuột, south-central Viet Nam. Journal of Geodynamics, 2013, 69, 65-83.	0.7	54

	CITATION	Report	
#	Article	IF	CITATIONS
56	Modern movement and deformation in the South China Sea shown by GPS measurements and numerical simulation. Chinese Journal of Oceanology and Limnology, 2013, 31, 159-168.	0.7	3
57	New <i>Amynthas</i> species (Oligochaeta: Megascolecidae) from south and central Hainan Island, China and estimates of evolutionary divergence among some <i>corticis</i> -group species. Journal of Natural History, 2013, 47, 1143-1160.	0.2	8
58	Lithological structure of the Galápagos Plume. Geochemistry, Geophysics, Geosystems, 2013, 14, 4214-4240.	1.0	33
59	A double seismic zone in the subducting Juan Fernandez Ridge of the Nazca Plate (32°S), central Chile. Journal of Geophysical Research: Solid Earth, 2013, 118, 3462-3475.	1.4	26
60	Internal structure of Erebus volcano, Antarctica imaged by highâ€resolution activeâ€source seismic tomography and coda interferometry. Journal of Geophysical Research: Solid Earth, 2013, 118, 1067-1078.	1.4	30
61	The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers. Geophysical Research Letters, 2013, 40, 5387-5392.	1.5	12
62	Analyses on the tectonic thermal evolution and influence factors in the deep-water Qiongdongnan Basin. Acta Oceanologica Sinica, 2014, 33, 107-117.	0.4	14
63	Seismic evidence for a mantle plume beneath the Cape Verde hotspot. International Geology Review, 2014, 56, 1213-1225.	1.1	20
64	Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10468-10472.	3.3	69
65	Geochronological, geochemical, and Sr–Nd–Hf isotopic studies of the Baiyanghe A-type granite porphyry in the Western Junggar: Implications for its petrogenesis and tectonic setting. Gondwana Research, 2014, 25, 1554-1569.	3.0	39
66	Mantle origin of the Emeishan large igneous province (South China) from the analysis of residual gravity anomalies. Lithos, 2014, 204, 4-13.	0.6	38
67	Mantle plumes of Central Asia (Northeast Asia) and their role in forming endogenous deposits. Russian Geology and Geophysics, 2014, 55, 120-143.	0.3	78
68	Ascent modes of jets and plumes in a stationary fluid of contrasting viscosity. International Journal of Multiphase Flow, 2014, 63, 1-10.	1.6	5
69	The late Mesozoic–Cenozoic tectonic evolution of the South China Sea: A petrologic perspective. Journal of Asian Earth Sciences, 2014, 85, 178-201.	1.0	181
70	Rifting, intraplate magmatism, mineral systems and mantle dynamics in central-east Eurasia: An overview. Ore Geology Reviews, 2014, 63, 265-295.	1.1	57
71	Elastic properties of stishovite and the CaCl2-type silica at the mantle temperature and pressure: An ab initio investigation. Earth and Planetary Science Letters, 2014, 404, 14-21.	1.8	62
72	Tectonic Framework and Magmatism. Developments in Marine Geology, 2014, 6, 73-182.	0.4	1
73	A review of reflection seismic investigations in three major metallogenic regions: The Kevitsa Ni–Cu–PGE district (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geology Reviews, 2014, 56, 423-441.	1.1	39

#	Article	IF	Citations
" 74	A new conceptual model for whole mantle convection and the origin of hotspot plumes. Journal of Geodynamics, 2014, 78, 32-41.	0.7	13
75	Three-dimensional lithospheric density distribution of China and surrounding regions. Geoscience Frontiers, 2014, 5, 95-102.	4.3	4
76	Crustal and upper mantle structure beneath southâ€western margin of the Arabian Peninsula from teleseismic tomography. Geochemistry, Geophysics, Geosystems, 2014, 15, 2850-2864.	1.0	20
77	Iron-spin transition controls structure and stability of LLSVPs in the lower mantle. Earth and Planetary Science Letters, 2015, 423, 173-181.	1.8	24
78	Hotspots and Mantle Plumes. , 2015, , 139-184.		1
79	East Asia Structure and Tectonics. , 2015, , 185-213.		0
80	Global Tomography and Deep Earth Dynamics. , 2015, , 215-268.		0
81	Multiscale Seismic Tomography. , 2015, , .		76
82	Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions. Geoscience Frontiers, 2015, 6, 3-22.	4.3	12
83	Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Research, 2015, 27, 1181-1216.	3.0	104
84	Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications. Lithos, 2015, 218-219, 117-126.	0.6	62
85	Mantle plume–subduction zone interactions over the past 60 Ma. Lithos, 2015, 233, 162-173.	0.6	22
86	Hotspots, Large Igneous Provinces, and Melting Anomalies. , 2015, , 393-459.		13
87	Miocene–Pleistocene magmas in the Monbetsu area, Northeast Hokkaido, tap N-MORB-like sources contaminated by slab-derived fluids. Journal of Geodynamics, 2015, 86, 10-25.	0.7	2
88	Upper mantle and transition zone structure beneath Leizhou–Hainan region: Seismic evidence for a lower-mantle origin of the Hainan plume. Journal of Asian Earth Sciences, 2015, 111, 580-588.	1.0	10
89	Topography of upper mantle seismic discontinuities beneath the North Atlantic: The Azores, Canary and Cape Verde plumes. Earth and Planetary Science Letters, 2015, 409, 193-202.	1.8	52
90	The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia — Plume vs. the geological record. Gondwana Research, 2015, 27, 1419-1429.	3.0	52
91	Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Research, 2015, 28, 1391-1414.	3.0	62

#	Article	IF	CITATIONS
92	Neoproterozoic–Early Cambrian tectono-magmatic evolution of the Central Iranian terrane, northern margin of Gondwana: Constraints from detrital zircon U–Pb and Hf–O isotope studies. Gondwana Research, 2016, 37, 285-300.	3.0	39
93	On the possibility of phase transitions with the formation of SiO2 peroxide forms in the earth mantle and their effect on mantle convection. Journal of Structural Chemistry, 2016, 57, 417-421.	0.3	3
94	New data on the composition of products of quaternary volcanism at the northwestern margin of the South China Sea shelf zone and the problem of asthenospheric diapirism. Russian Journal of Pacific Geology, 2016, 10, 79-104.	0.1	3
95	Dynamics of the Tengchong volcanic region in the southeastern Tibetan plateau: A numerical study. Tectonophysics, 2016, 683, 272-285.	0.9	10
96	Metasomatized Mantle Xenoliths as a Record of the Lithospheric Mantle Evolution of the Northern Edge of the Ahaggar Swell, In Teria (Algeria). Journal of Petrology, 2016, 57, 345-382.	1.1	21
97	First-principles calculations of elasticity of minerals at high temperature and pressure. Science China Earth Sciences, 2016, 59, 1107-1137.	2.3	15
98	Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Research, 2016, 36, 46-56.	3.0	105
99	Mantle plumes in the vicinity of subduction zones. Earth and Planetary Science Letters, 2016, 454, 166-177.	1.8	24
100	Structural Characteristics and Formation Dynamics: A Review of the Main Sedimentary Basins in the Continent of China. Acta Geologica Sinica, 2016, 90, 1156-1194.	0.8	9
101	Seismic evidence of the Hainan mantle plume by receiver function analysis in southern China. Geophysical Research Letters, 2016, 43, 8978-8985.	1.5	49
102	Velocity structure and composition of the lower mantle with spin crossover in ferropericlase. Journal of Geophysical Research: Solid Earth, 2016, 121, 2304-2314.	1.4	18
103	Waveform inversion of SS precursors: An investigation of the northwestern Pacific subduction zones and intraplate volcanoes in China. Gondwana Research, 2016, 40, 77-90.	3.0	17
104	Lithospheric stress and uppermantle dynamics in mainland China due to mantle flow based on combination of global- and regional-scale seismic tomography. Journal of Asian Earth Sciences, 2016, 132, 103-117.	1.0	4
105	Initiation and evolution of the South China Sea: an overview. Acta Geochimica, 2016, 35, 215-225.	0.7	88
106	Plate tectonics and mantle plumes as a basis of deep-seated Earth's tectonic activity for the last 2 Ga. Russian Geology and Geophysics, 2016, 57, 8-21.	0.3	24
107	The Mantle. , 2016, , 89-133.		1
109	Origin of enriched components in the South Atlantic: Evidence from 40 Ma geochemical zonation of the Discovery Seamounts. Earth and Planetary Science Letters, 2016, 441, 167-177.	1.8	34
110	Models of the rapid postâ€rift subsidence in the eastern Qiongdongnan Basin, South China Sea: implications for the development of the deep thermal anomaly. Basin Research, 2017, 29, 340-362.	1.3	34

#	Article	IF	CITATIONS
111	Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. Journal of Asian Earth Sciences, 2017, 145, 233-259.	1.0	51
112	On the deep-mantle origin of the Deccan Traps. Science, 2017, 355, 613-616.	6.0	35
113	Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems. Physics of the Earth and Planetary Interiors, 2017, 268, 35-53.	0.7	29
114	A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. Tectonophysics, 2017, 695, 27-52.	0.9	94
115	Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia. Geophysical Journal International, 0, , ggw491.	1.0	17
116	Petrogenesis of Late Cenozoic basaltic rocks from southern Vietnam. Lithos, 2017, 272-273, 192-204.	0.6	61
117	Twoâ€Branch Breakâ€up Systems by a Single Mantle Plume: Insights from Numerical Modeling. Geophysical Research Letters, 2017, 44, 9589-9597.	1.5	28
118	Paleogene igneous intrusion and its effect on thermal maturity of organic-rich mudstones in the Beibuwan Basin, South China Sea. Marine and Petroleum Geology, 2017, 86, 733-750.	1.5	26
119	Composition versus temperature induced velocity heterogeneities in a pyrolitic lower mantle. Earth and Planetary Science Letters, 2017, 457, 359-365.	1.8	15
120	Hadean Earth and primordial continents: The cradle of prebiotic life. Geoscience Frontiers, 2017, 8, 309-327.	4.3	60
121	Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Scientific Reports, 2018, 8, 2640.	1.6	71
122	Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and Sr-Nd-Pb isotopes from late Neoproterozoic basement in the Mahneshan area, NW Iran: Implications for Ediacaran active continental margin along the northern Condwana and constraints on the late Oligocene crustal anatexis. Gondwana Research, 2018, 57, 48-76.	3.0	34
123	Initiation of plate tectonics in the Hadean: Eclogitization triggered by the ABEL Bombardment. Geoscience Frontiers, 2018, 9, 1033-1048.	4.3	58
124	Seismic Imprints of Plumeâ€Lithosphere Interaction Beneath the Northwestern Deccan Volcanic Province. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,831.	1.4	27
125	Thermal conductivity anomaly in spin-crossover ferropericlase under lower mantle conditions and implications for heat flow across the core-mantle boundary. American Mineralogist, 2018, 103, 1953-1958.	0.9	3
126	LA-ICP-MS Analysis of Clinopyroxenes in Basaltic Pyroclastic Rocks from the Xisha Islands, Northwestern South China Sea. Minerals (Basel, Switzerland), 2018, 8, 575.	0.8	10
127	Indication from finite-frequency tomography beneath the North China Craton: The heterogeneity of craton destruction. Science China Earth Sciences, 2018, 61, 1238-1260.	2.3	24
128	Relationships between structural lineaments and Cenozoic volcanism, Tibesti swell, Saharan metacraton. Journal of African Earth Sciences, 2018, 145, 274-283.	0.9	8

#	Article	IF	Citations
129	A common deep source for upper-mantle upwellings below the Ibero-western Maghreb region from teleseismic P-wave travel-time tomography. Earth and Planetary Science Letters, 2018, 499, 157-172.	1.8	32
130	Application of Geoid Anomalies to the Tectonic Research in the East Asian Continental Margin. Journal of Ocean University of China, 2018, 17, 811-822.	0.6	1
131	The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas. Earth and Planetary Science Letters, 2018, 498, 38-53.	1.8	42
132	Crustal plumbing system of post-rift magmatism in the northern margin of South China Sea: New insights from integrated seismology. Tectonophysics, 2018, 744, 227-238.	0.9	38
133	Buoyant Asthenosphere Beneath Cascadia Influences Megathrust Segmentation. Geophysical Research Letters, 2018, 45, 6954-6962.	1.5	51
134	The historical basanite - alkali basalt - tholeiite suite at Lanzarote, Canary Islands: Carbonated melts of heterogeneous mantle source?. Chemical Geology, 2018, 494, 56-68.	1.4	14
135	Hafnium isotopic constraints on the origin of late Miocene to Pliocene seamount basalts from the South China Sea and its tectonic implications. Journal of Asian Earth Sciences, 2019, 171, 162-168.	1.0	22
136	In Situ LA-ICP-MS Analysis of Minerals Hosted by Late Cenozoic Basaltic Rocks from Thailand. Minerals (Basel, Switzerland), 2019, 9, 446.	0.8	7
137	Variable Crustal Production Originating From Mantle Source Heterogeneity Beneath the South East Indian Ridge and Amsterdamâ€5t. Paul Plateau. Geochemistry, Geophysics, Geosystems, 2019, 20, 4635-4653.	1.0	3
138	Mantle plumes are oxidised. Earth and Planetary Science Letters, 2019, 527, 115798.	1.8	85
139	Deep mantle plumes and an increasing Earth radius. Geodesy and Geodynamics, 2019, 10, 173-178.	1.0	3
140	A trace of recycled continental crust in the Réunion hotspot. Chemical Geology, 2019, 524, 67-76.	1.4	12
141	Long-term evolution of the West African transform margin: estimates of denudation from Benin using apatite thermochronology. Journal of the Geological Society, 2019, 176, 97-114.	0.9	9
142	New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin. Geochimica Et Cosmochimica Acta, 2019, 245, 16-34.	1.6	40
143	Plume-ridge interaction in the South China Sea: Thermometric evidence from Hole U1431E of IODP Expedition 349. Lithos, 2019, 324-325, 466-478.	0.6	35
144	3D magnetotelluric imaging of the middle-upper crustal conduit system beneath the Lei-Hu-Ling volcanic area of northern Hainan Island, China. Journal of Volcanology and Geothermal Research, 2019, 371, 220-228.	0.8	11
145	Intraplate volcanism and mantle dynamics of Mainland China: New constraints from shear-wave tomography. Journal of Asian Earth Sciences, 2020, 188, 104103.	1.0	23
146	Seismic Structure of the Antarctic Upper Mantle Imaged with Adjoint Tomography. Journal of Geophysical Research: Solid Earth, 2020, 125, .	1.4	59

#	Article	IF	CITATIONS
147	Plume â€Tree Structure Induced by Lowâ€Viscosity Layers in the Upper Mantle. Geophysical Research Letters, 2020, 47, e2019GL086508.	1.5	12
148	Trial by fire: Testing the paleolongitude of Pangea of competing reference frames with the African LLSVP. Geoscience Frontiers, 2020, 11, 1253-1256.	4.3	7
149	Komatiites From Mantle Transition Zone Plumes. Frontiers in Earth Science, 2020, 8, .	0.8	12
150	Diffusion-driven Ca-Fe isotope fractionations in the upper mantle: Implications for mantle cooling and melt infiltration. Geochimica Et Cosmochimica Acta, 2020, 290, 41-58.	1.6	17
151	The Probability of Mantle Plumes in Global Tomographic Models. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009276.	1.0	10
152	Geochemistry and Petrogenesis of Volcanic Rocks from the Continent-Ocean Transition Zone in Northern South China Sea and Their Tectonic Implications. Journal of Ocean University of China, 2020, 19, 1051-1061.	0.6	4
153	Geodetic evidence for a buoyant mantle plume beneath the Eifel volcanic area, NW Europe. Geophysical Journal International, 2020, 222, 1316-1332.	1.0	38
154	Various Ages of Recycled Material in the Source of Cenozoic Basalts in SE China: Implications for the Role of the Hainan Plume. Journal of Petrology, 2020, 61, .	1.1	8
155	Plume interaction and mantle heterogeneity: A geochemical perspective. Geoscience Frontiers, 2020, 11, 1571-1579.	4.3	8
156	Genesis and evolution of the South Atlantic volcanic islands offshore Brazil. Geo-Marine Letters, 2020, 40, 1-33.	0.5	36
157	Dynamics of the Earth System: Evolution, Processes and Interactions. Society of Earth Scientists Series, 2020, , .	0.2	0
158	Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea. Geophysical Journal International, 2021, 225, 572-588.	1.0	34
159	Chapter 7.2 Mount Erebus. Geological Society Memoir, 2021, 55, 695-739.	0.9	15
160	An Overview of the Geochemical Characteristics of Oceanic Carbonatites: New Insights from Fuerteventura Carbonatites (Canary Islands). Minerals (Basel, Switzerland), 2021, 11, 203.	0.8	11
161	Crustal Footprint of Mantle Upwelling and Plate Amalgamation Revealed by Ambient Noise Tomography in Northern Vietnam and the Northern South China Sea. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020593.	1.4	7
162	The role of island-arc oceanic, collisional and intraplate magmatism in the formation of continental crust in the Mongolia-Trasnbaikalia region: geostructural, geochronological and Sm-Nd isotope data. Geodinamika I Tektonofizika, 2021, 12, 1-47.	0.3	8
163	Subslab heterogeneity and giant megathrust earthquakes. Nature Geoscience, 2021, 14, 349-353.	5.4	24
164	Coexistence of Hainan Plume and Stagnant Slab in the Mantle Transition Zone beneath the South China Sea Spreading Ridge: Constraints from Volcanic Glasses and Seismic Tomography. Lithosphere, 2021, 2021, .	0.6	7

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
165	West Antarctic mantle deduced from mafic magmatism. Geological Society Memoir, 2023, 56, 133-149.	0.9	8
166	Physicogeochemical Evolution of Melts of Superplumes Uplift from the Lower Mantle to the Transition Zone: Experiment at 26 and 20 GPa. Geochemistry International, 2021, 59, 661-682.	0.2	0
167	The Role of the Seismically Slow Centralâ€East Atlantic Anomaly in the Genesis of the Canary and Madeira Volcanic Provinces. Geophysical Research Letters, 2021, 48, e2021GL092874.	1.5	14
168	Quantifying Periodic Variations in Hotspot Melt Production. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021726.	1.4	2
169	The deep mantle upwelling beneath the northwestern South China Sea: Insights from the time-varying residual subsidence in the Qiongdongnan Basin. Geoscience Frontiers, 2021, 12, 101246.	4.3	13
170	Crustal magma plumbing system beneath the Quaternary volcanic area (northern Hainan Island, China) revealed by magnetotelluric data. Journal of Volcanology and Geothermal Research, 2021, 419, 107362.	0.8	4
172	The mantle. , 2022, , 81-125.		2
173	Magma plumbing system and origin of the intraplate volcanoes in Mainland China: an overview of constraints from geophysical imaging. Geological Society Special Publication, 2021, 510, 197-214.	0.8	3
174	TECTONIC EVOLUTION MODES OF SOUTH CHINA SEA: PASSIVE SPREADING UNDER COMPLEX ACTIONS. Marine Geology & Quaternary Geology, 2010, 29, 59-74.	0.1	9
175	GEOCHEMISTRY OF CENOZOIC MAGMATISM IN THE SOUTH CHINA SEA AND ITS TECTONIC IMPLICATIONS. Marine Geology & Quaternary Geology, 2011, 31, 59-72.	0.1	21
176	Indications from space geodesy, gravimetry and seismology for slow Earth expansion at present – comment on "The Earth expansion theory and its transition from scientific hypothesis to pseudoscientific belief―by SudiroÂ(2014). History of Geo- and Space Sciences, 2016, 7, 125-133.	0.1	2
177	RELATIONSHIP BETWEEN SUBDUCTIONâ€RELATED AND PLUME MAGMATISM AT THE ACTIVE BOUNDARIES OF LITHOSPHERIC PLATES IN THE INTERACTION ZONE OF THE SIBERIAN CONTINENT AND PALEOASIAN OCEAN IN THE NEOPROTEROZOIC AND PALEOZOIC. Geodinamika I Tektonofizika, 2019, 10, 405-457.	0.3	14
178	GEODYNAMIC PROCESSES DURING ASCENT OF A PLUME WITH INTERMEDIATE THERMAL POWER THROUGH THE CONTINENTAL LITHOSPHERE AND DURING ITS ERUPTION ON THE SURFACE. Geodinamika I Tektonofizika, 2020, 11, 397-416.	0.3	1
179	Scientific ocean drilling in the Australasian region: a review. Australian Journal of Earth Sciences, 2022, 69, 305-382.	0.4	0
180	Structure and Geological Processes of the Earth: Seismic Evidences from the Indian Shield. Springer Natural Hazards, 2021, , 49-73.	0.1	0
181	A Summary of the South China Sea Evolution. Society of Earth Scientists Series, 2020, , 265-276.	0.2	0
182	Mantle sources and magma genesis of Late Cenozoic basalts in Weizhou Island, Guangxi, China. Acta Petrologica Sinica, 2020, 36, 2092-2110.	0.3	6
183	Pattern of Global Crustal Stresses of the Earth. Geotectonics, 2020, 54, 723-740.	0.2	3

#	Article	IF	CITATIONS
184	Seismogenic crustal structure affected by the Hainan mantle plume. Gondwana Research, 2022, 103, 23-36.	3.0	7
185	Detection and modelling of strong topography of mid-mantle structures beneath the North Atlantic. Geophysical Journal International, 0, , .	1.0	4
186	Role of the Kerguelen mantle plume in breakup of eastern Gondwana: Evidence from early cretaceous volcanic rocks in the eastern Tethyan Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 588, 110823.	1.0	8
187	Origin of ULVZs near the African LLSVP: Implications from their distribution and characteristics. Earthquake Science, 2021, 34, 229-239.	0.4	0
188	Water Enhancement of Si Selfâ€Diffusion in Wadsleyite. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	0
189	ç¼ä,œå⊷ç>†åœ°è¶ä¼,展地壳结构åŠåŽæœŸæµ·å⊷地å1"柱影哕 SCIENTIA SINICA Terrae, 2022, , .	0.1	0
190	Hyperextended crustal structure of the Qiongdongnan Basin and subsequent magmatic influence from the Hainan mantle plume. Science China Earth Sciences, 2022, 65, 845-862.	2.3	9
191	Petrogenesis of Cenozoic Basaltic Rocks from the Leiqiong Area, South China: Evidence from Geochemical Constraints. Geochemistry International, 2021, 59, 1199-1234.	0.2	2
192	Geochemistry of mantle source during the initial expansion and its implications for the opening of the South China Sea. Marine Geology, 2022, 447, 106798.	0.9	3
194	The mechanism of phreatomagmatic maar-diatreme eruption in the Lei-Hu-Ling volcanic area of northern Hainan Island, China: Insights from magnetotelluric and magnetic data. Journal of Volcanology and Geothermal Research, 2022, 427, 107566.	0.8	1
195	Pn Anisotropic Tomography of Hainan Island and Surrounding Areas: New Insights Into the Hainan Mantle Plume. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
196	The spatial-temporal variations in dynamic uplift and deep mantle upwelling in the northwest South China Sea margin: Insights into continental rifting and magmatism. Gondwana Research, 2023, 120, 145-161.	3.0	2
197	Syn-eruptive normal faults in tephra rings and formation mechanisms. Journal of Structural Geology, 2022, , 104685.	1.0	0
198	Noble gases in shallow aquifers preserve signatures of boiling events beneath Weishan volcano of Wudalianchi volcanic field, northeast China. Journal of Hydrology, 2022, 612, 128246.	2.3	Ο
199	Quaternary monogenetic volcanoes in southern China: eruption styles and controlling factors. Bulletin of Volcanology, 2022, 84, .	1.1	0
200	Volcaniclastic sedimentation associated with trachytic volcanism in an oceanic intraplate volcano (Dokdo volcano, Republic of Korea). Bulletin of Volcanology, 2022, 84, .	1.1	1
201	The Origin of the Lowâ€Velocity Anomalies Beneath the Rootless Atlas Mountains: Insights Gained From Modeling of Anisotropy Developed by the Travel of Canary Plume. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	2
202	Cold and Wet Mantle Transition Zone Beneath the Mediterranean Sea Revealed by the Electrical Image. Applied Sciences (Switzerland), 2023, 13, 689.	1.3	0

#	Article	IF	CITATIONS
203	地幔柱数值模型的ç"ç©¶èį›å±•. SCIENTIA SINICA Terrae, 2022, , .	0.1	0
204	A Mantle Plume Beneath South China Revealed by Electrical Conductivity Obtained from Three-Dimensional Inversion of Geomagnetic Data. Sensors, 2023, 23, 1249.	2.1	0

Mantle structure beneath the Macaronesian volcanic islands (Cape Verde, Canaries, Madeira and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

206	Structure and evolution of the Australian plate and underlying upper mantle from waveform tomography with massive data sets. Geophysical Journal International, 2023, 234, 153-189.	1.0	5
207	Formation and geophysical character of transitional crust at the passive continental margin around Walvis Ridge, Namibia. Solid Earth, 2023, 14, 237-259.	1.2	1
208	The Mechanical Nature of the Lithosphere Beneath the Eastern Central Atlantic Hotspots. Geochemistry, Geophysics, Geosystems, 2023, 24, .	1.0	0
209	Quaternary Intrusions from the Zhongjiannan Basin, South China Sea: Their Relationship with the Hainan Mantle Plume and Influence on Hydrocarbon Reservoirs. Acta Geologica Sinica, 2023, 97, 376-392.	0.8	1
210	Carbon Enrichment in the Lithospheric Mantle: Evidence from the Melt Inclusions in Mantle Xenoliths from the Hainan Basalts. Acta Geologica Sinica, 2023, 97, 358-375.	0.8	Ο
211	Progress in the numerical modeling of mantle plumes. Science China Earth Sciences, 2023, 66, 685-702.	2.3	1