Differential Extracellular Signal-Regulated Kinases 1 an Type 1 Receptor Supports Distinct Phenotypes of Cardia

Basic and Clinical Pharmacology and Toxicology 100, 296-301 DOI: 10.1111/j.1742-7843.2007.00064.x

Citation Report

#	Article	IF	CITATIONS
1	S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes. Cardiovascular Research, 2007, 75, 40-50.	1.8	141
2	The Angiotensin Type 1 Receptor Activates Extracellular Signal-Regulated Kinases 1 and 2 by G Protein-Dependent and -Independent Pathways in Cardiac Myocytes and Langendorff-Perfused Hearts. Basic and Clinical Pharmacology and Toxicology, 2007, 100, 289-295.	1.2	66
3	The human angiotensin AT1 receptor supports G protein-independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation. European Journal of Pharmacology, 2008, 590, 255-263.	1.7	25
4	Pharmacologic Perspectives of Functional Selectivity by the Angiotensin II Type 1 Receptor. Trends in Cardiovascular Medicine, 2008, 18, 305-312.	2.3	22
5	Lack of Evidence for AT1R/B2R Heterodimerization in COS-7, HEK293, and NIH3T3 Cells. Journal of Biological Chemistry, 2009, 284, 1831-1839.	1.6	49
6	Diversity in arrestin function. Cellular and Molecular Life Sciences, 2009, 66, 2953-2973.	2.4	55
7	DOPAMINE D2 RECEPTOR STIMULATION INHIBITS ANGIOTENSIN IIâ€INDUCED HYPERTROPHY IN CULTURED NEONATAL RAT VENTRICULAR MYOCYTES. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 312-318.	0.9	15
8	Molecular determinants of angiotensin II type 1 receptor functional selectivity. Journal of Molecular and Cellular Cardiology, 2009, 46, 15-24.	0.9	51
9	Physiologic and cardiac roles of β-arrestins. Journal of Molecular and Cellular Cardiology, 2009, 46, 300-308.	0.9	50
10	Functional interactions between 7TM receptors in the Renin-Angiotensin System—Dimerization or crosstalk?. Molecular and Cellular Endocrinology, 2009, 302, 203-212.	1.6	35
11	Therapeutic Potential of Functional Selectivity in the Treatment of Heart Failure. Trends in Cardiovascular Medicine, 2010, 20, 221-227.	2.3	5
12	Biased Signaling of the Angiotensin II Type 1 Receptor Can Be Mediated through Distinct Mechanisms. PLoS ONE, 2010, 5, e14135.	1.1	34
13	Quantitative Phosphoproteomics Dissection of Seven-transmembrane Receptor Signaling Using Full and Biased Agonists. Molecular and Cellular Proteomics, 2010, 9, 1540-1553.	2.5	135
14	Beyond Desensitization: Physiological Relevance of Arrestin-Dependent Signaling. Pharmacological Reviews, 2010, 62, 305-330.	7.1	355
15	The impact of ANG II and IV on INS-1 cells and on blood glucose and plasma insulin. Journal of Receptor and Signal Transduction Research, 2010, 30, 234-245.	1.3	7
16	Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends in Molecular Medicine, 2011, 17, 126-139.	3.5	469
17	AT1 receptor Gαq protein-independent signalling transcriptionally activates only a few genes directly, but robustly potentiates gene regulation from the β2-adrenergic receptor. Molecular and Cellular Endocrinology, 2011, 331, 49-56.	1.6	18
18	Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes. British Journal of Pharmacology, 2011, 164, 394-404.	2.7	56

		CITATION REPORT	
#	Article	IF	CITATIONS
19	Cell-specific detection of microRNA expression during cardiomyogenesis by combined in situ hybridization and immunohistochemistry. Journal of Molecular Histology, 2011, 42, 289-299.	1.0	37
20	G Protein–Dependent and G Protein–Independent Signaling Pathways and Their Impact on Card Function. Circulation Research, 2011, 109, 217-230.	diac 2.0	126
21	Biased Ligands for Better Cardiovascular Drugs. Circulation Research, 2011, 109, 205-216.	2.0	122
22	Refining Efficacy: Exploiting Functional Selectivity for Drug Discovery. Advances in Pharmacology, 2011, 62, 79-107.	1.2	25
23	Structure and reorientational dynamics of angiotensin I and II: a microscopic physical insight. Journa of Biomolecular Structure and Dynamics, 2012, 29, 1175-1194.	al 2.0	8
24	Beta-arrestin Biased Agonism/Antagonism at Cardiovascular Seven Transmembrane-spanning Recep Current Pharmaceutical Design, 2012, 18, 192-198.	otors. 0.9	28
25	Functional monoclonal antibody acts as a biased agonist by inducing internalization of metabotrop glutamate receptor 7. British Journal of Pharmacology, 2012, 167, 1448-1466.	ic 2.7	24
26	Cardiomyocyte-Specific Expression of Lamin A Improves Cardiac Function in Lmnaâ^'/â^' Mice. PLoS 2012, 7, e42918.	ONE, 1.1	23
27	βArrestins in Cardiac G Protein-Coupled Receptor Signaling and Function: Partners in Crime or " Cop, Bad Cop�. International Journal of Molecular Sciences, 2013, 14, 24726-24741.	Good 1.8	26
28	GPCR biased ligands as novel heart failure therapeutics. Trends in Cardiovascular Medicine, 2013, 2 242-249.	3, 2.3	38
29	Emergent biological properties of arrestin pathway-selective biased agonism. Journal of Receptor an Signal Transduction Research, 2013, 33, 153-161.	id 1.3	11
30	Arrestins in the Cardiovascular System. Progress in Molecular Biology and Translational Science, 2013, 118, 297-334.	0.9	44
31	Arrestin Pathways as Drug Targets. Progress in Molecular Biology and Translational Science, 2013, 1 469-497.	118, 0.9	21
32	Current and future G protein-coupled receptor signaling targets for heart failure therapy. Drug Design, Development and Therapy, 2013, 7, 1209.	2.0	27
33	Quantifying Biased β-Arrestin Signaling. Handbook of Experimental Pharmacology, 2014, 219, 57-8	3. 0.9	13
34	Arrestin-Dependent Activation of ERK and Src Family Kinases. Handbook of Experimental Pharmacology, 2014, 219, 225-257.	0.9	31
35	Modifying matrix remodeling to prevent heart failure. , 2014, , 41-60.		2
36	Arrestin-dependent Angiotensin AT1 Receptor Signaling Regulates Akt and mTor-mediated Protein Synthesis. Journal of Biological Chemistry, 2014, 289, 26155-26166.	1.6	39

CITATION REPORT

#	Article	IF	CITATIONS
37	Minireview: More Than Just a Hammer: Ligand "Bias―and Pharmaceutical Discovery. Molecular Endocrinology, 2014, 28, 281-294.	3.7	108
38	Steroidogenesis—Adrenal Cell Signal Transduction. , 2014, 4, 889-964.		53
39	Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, 2014, , .	0.9	12
40	Apelin receptor: its responsiveness to stretch mechanisms and its potential for cardiovascular therapy. Expert Review of Cardiovascular Therapy, 2014, 12, 733-741.	0.6	13
41	Biased Ligand Modulation of Seven Transmembrane Receptors (7TMRs): Functional Implications for Drug Discovery. Journal of Medicinal Chemistry, 2014, 57, 6887-6896.	2.9	40
42	Biased ligands: pathway validation for novel GPCR therapeutics. Current Opinion in Pharmacology, 2014, 16, 108-115.	1.7	23
43	Fulfilling the Promise of "Biased" G Protein–Coupled Receptor Agonism. Molecular Pharmacology, 2015, 88, 579-588.	1.0	178
44	International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli. Pharmacological Reviews, 2015, 67, 754-819.	7.1	245
45	Biased Agonism of G Protein-Coupled Receptors: A Potential Therapeutic Strategy of Cardiovascular Diseases. Cardiovascular Pharmacology: Open Access, 2016, 5, .	0.1	0
46	Overexpression of SerpinE2/protease nexin-1 Contribute to Pathological Cardiac Fibrosis via increasing Collagen Deposition. Scientific Reports, 2016, 6, 37635.	1.6	37
47	Purinergic P2Y ₆ receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin II–induced hypertension. Science Signaling, 2016, 9, ra7.	1.6	63
48	β-Arrestin-biased AT1R stimulation promotes extracellular matrix synthesis in renal fibrosis. American Journal of Physiology - Renal Physiology, 2017, 313, F1-F8.	1.3	19
49	The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling. Pharmacological Reviews, 2017, 69, 256-297.	7.1	332
51	Is β-Arrestin 2 a Magic Bullet for Heart Failure Treatment?. Hypertension, 2017, 70, 887-889.	1.3	7
52	Molecular mechanisms in cardiomyopathy. Clinical Science, 2017, 131, 1375-1392.	1.8	49
53	Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 69-82.	2.2	43
54	[Sar1, Ile4, Ile8]â€angiotensin II Potentiates Insulin Receptor Signalling and Glycogen Synthesis in Hepatocytes. Basic and Clinical Pharmacology and Toxicology, 2018, 122, 460-469.	1.2	2
55	Signaling in Cardiac Physiology and Disease. , 2018, , 377-387.		0

CITATION REPORT

#	Article	IF	CITATIONS
56	Arrestins in the Cardiovascular System: An Update. Progress in Molecular Biology and Translational Science, 2018, 159, 27-57.	0.9	40
57	BRET-based assay to monitor EGFR transactivation by the AT1R reveals Gq/11 protein-independent activation and AT1R-EGFR complexes. Biochemical Pharmacology, 2018, 158, 232-242.	2.0	19
58	Biased Agonism/Antagonism of Cardiovascular GPCRs for Heart Failure Therapy. International Review of Cell and Molecular Biology, 2018, 339, 41-61.	1.6	34
59	Label-free cell signaling pathway deconvolution of angiotensin type 1 receptor reveals time-resolved G-protein activity and distinct AngII and AngIIIIV responses. Pharmacological Research, 2018, 136, 108-120.	3.1	5
60	The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Frontiers in Endocrinology, 2019, 10, 519.	1.5	34
61	Not all arrestins are created equal: Therapeutic implications of the functional diversity of the β arrestins in the heart. World Journal of Cardiology, 2019, 11, 47-56.	0.5	20
62	Hot topics in opioid pharmacology: mixed and biased opioids. British Journal of Anaesthesia, 2019, 122, e136-e145.	1.5	92
63	Betaâ€∎rrestin 2 mediates cardiac hypertrophy induced by thyroid hormones via AT1R. Journal of Cellular Physiology, 2021, 236, 4640-4654.	2.0	2
64	The (pro)renin receptor ((P)RR) and soluble (pro)renin receptor (s(P)RR) in pregnancy. Placenta, 2021, 116, 43-50.	0.7	4
65	Beta-Arrestins in the Treatment of Heart Failure Related to Hypertension: A Comprehensive Review. Pharmaceutics, 2021, 13, 838.	2.0	2
66	Extracellular Matrix Biomarkers of Adverse Remodeling After Myocardial Infarction. , 2013, , 383-412.		2
67	Arrestin-Dependent ERK Activation and Its Disruption. , 2017, , 199-217.		1
68	Predicting Kinase Activity in Angiotensin Receptor Phosphoproteomes Based on Sequence-Motifs and Interactions. PLoS ONE, 2014, 9, e94672.	1.1	7
69	Angiotensin II Type 1 Receptor-Mediated Electrical Remodeling in Mouse Cardiac Myocytes. PLoS ONE, 2015, 10, e0138711.	1.1	6
70	Functional Selectivity at Non-Opioid Peptide Receptors. , 2009, , 267-281.		0
71	OBSOLETE: Signaling in Cardiac Physiology and Disease. , 2018, , .		0
72	GRK2 and Î ² -arrestins in cardiovascular disease: Something old, something new. American Journal of Cardiovascular Disease, 2011, 1, 126-37.	0.5	12
73	Arrestins in cardiac function. , 2022, , 87-104.		0