icaand beyond: biofilm mechanisms and regulation inStepidermidisandStaphylococcus aureus

FEMS Microbiology Letters 270, 179-188 DOI: 10.1111/j.1574-6968.2007.00688.x

Citation Report

#	Article	IF	CITATIONS
1	Poly- <i>N</i> -Acetylglucosamine Is Not a Major Component of the Extracellular Matrix in Biofilms Formed by <i>icaADBC</i> -Positive <i>Staphylococcus lugdunensis</i> Isolates. Infection and Immunity, 2007, 75, 4728-4742.	1.0	113
2	Staphylococcus lugdunensis — Not the Average Coagulase-Negative Staphylococcus Species. Clinical Microbiology Newsletter, 2008, 30, 55-62.	0.4	9
3	Staphylococcus aureus surface protein SasG contributes to intercellular autoaggregation of Staphylococcus aureus. Biochemical and Biophysical Research Communications, 2008, 377, 1102-1106.	1.0	27
4	From Clinical Microbiology to Infection Pathogenesis: How Daring To Be Different Works for <i>Staphylococcus lugdunensis</i> . Clinical Microbiology Reviews, 2008, 21, 111-133.	5.7	284
5	Identification of <i>Streptococcus sanguinis</i> Genes Required for Biofilm Formation and Examination of Their Role in Endocarditis Virulence. Infection and Immunity, 2008, 76, 2551-2559.	1.0	105
6	A Novel <i>Staphylococcus aureus</i> Biofilm Phenotype Mediated by the Fibronectin-Binding Proteins, FnBPA and FnBPB. Journal of Bacteriology, 2008, 190, 3835-3850.	1.0	425
7	Differential Roles of Poly- <i>N</i> -Acetylglucosamine Surface Polysaccharide and Extracellular DNA in <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i> Biofilms. Applied and Environmental Microbiology, 2008, 74, 470-476.	1.4	479
8	Genetic Evidence for an Alternative Citrate-Dependent Biofilm Formation Pathway in <i>Staphylococcus aureus</i> That Is Dependent on Fibronectin Binding Proteins and the GraRS Two-Component Regulatory System. Infection and Immunity, 2008, 76, 2469-2477.	1.0	70
9	Iron-Regulated Biofilm Formation in <i>Staphylococcus aureus</i> Newman Requires <i>ica</i> and the Secreted Protein Emp. Infection and Immunity, 2008, 76, 1756-1765.	1.0	117
10	agr-Mediated Dispersal of Staphylococcus aureus Biofilms. PLoS Pathogens, 2008, 4, e1000052.	2.1	749
11	Regulation of the Intercellular Adhesin Locus Regulator (<i>icaR</i>) by SarA, σ ^B , and IcaR in <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2008, 190, 6530-6533.	1.0	58
12	A Staphylococcal GGDEF Domain Protein Regulates Biofilm Formation Independently of Cyclic Dimeric GMP. Journal of Bacteriology, 2008, 190, 5178-5189.	1.0	95
13	<i>Staphylococcus aureus</i> CcpA Affects Biofilm Formation. Infection and Immunity, 2008, 76, 2044-2050.	1.0	153
14	The role of σ B in persistence of Staphylococcus epidermidis foreign body infection. Microbiology (United Kingdom), 2008, 154, 2827-2836.	0.7	31
15	<i>Staphylococcus aureus</i> CodY Negatively Regulates Virulence Gene Expression. Journal of Bacteriology, 2008, 190, 2257-2265.	1.0	168
16	Staphylococcus epidermidis Biofilms: Functional Molecules, Relation to Virulence, and Vaccine Potential. Topics in Current Chemistry, 2008, 288, 157-182.	4.0	29
17	Vancomycin heteroresistance and biofilm formation in Staphylococcus epidermidis from food. Microbiology (United Kingdom), 2008, 154, 3224-3231.	0.7	30
18	Detection of Virulence Genes of Staphyloccus aureus and Staphylococcus epidermidis Isolated from Suprapubic Urine from Infants with Fever. Journal of Bacteriology and Virology, 2008, 38, 189.	0.0	7

#	Article	IF	CITATIONS
19	Impact of <i>sarA</i> on Antibiotic Susceptibility of <i>Staphylococcus aureus</i> in a Catheter-Associated In Vitro Model of Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2009, 53, 2475-2482.	1.4	43
20	Interconnections between Sigma B, <i>agr</i> , and Proteolytic Activity in <i>Staphylococcus aureus</i> Biofilm Maturation. Infection and Immunity, 2009, 77, 1623-1635.	1.0	249
21	Impact of <i>sarA</i> on Daptomycin Susceptibility of <i>Staphylococcus aureus</i> Biofilms In Vivo. Antimicrobial Agents and Chemotherapy, 2009, 53, 4096-4102.	1.4	66
22	Biofilm formation by Gram-positive bacteria including Staphylococcus aureus, Mycobacterium avium and Enterococcus spp. in food processing environments. , 2009, , 250-269.		0
23	Rbf Promotes Biofilm Formation by <i>Staphylococcus aureus</i> via Repression of <i>icaR</i> , a Negative Regulator of <i>icaADBC</i> . Journal of Bacteriology, 2009, 191, 6363-6373.	1.0	78
24	Distribution of meticillin-resistant Staphylococcus aureus spa types isolated from health-care workers and patients in a Scottish university teaching hospital. Journal of Medical Microbiology, 2009, 58, 1190-1195.	0.7	9
25	Carriage of both the fnbA and fnbB genes and growth at 37â€Â°C promote FnBP-mediated biofilm development in meticillin-resistant Staphylococcus aureus clinical isolates. Journal of Medical Microbiology, 2009, 58, 399-402.	0.7	42
26	<i>Staphylococcus aureus</i> Rbf Activates Biofilm Formation In Vitro and Promotes Virulence in a Murine Foreign Body Infection Model. Infection and Immunity, 2009, 77, 335-340.	1.0	30
27	Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiology, 2009, 9, 229.	1.3	124
28	Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: Evidence for lack of penicillin-resistance in Agr-type II strains. Veterinary Microbiology, 2009, 137, 83-89.	0.8	55
29	Hydrogen peroxide induced repression of <i>icaADBC</i> transcription and biofilm development in <i>Staphylococcus epidermidis</i> . Journal of Orthopaedic Research, 2009, 27, 627-630.	1.2	29
30	Rapid depletion of dissolved oxygen in 96â€well microtiter plate <i>Staphylococcus epidermidis</i> biofilm assays promotes biofilm development and is influenced by inoculum cell concentration. Biotechnology and Bioengineering, 2009, 103, 1042-1047.	1.7	21
31	Quantitative analysis of Staphylococcus epidermidis biofilm on the surface of biomaterial. Journal of Orthopaedic Science, 2009, 14, 769-775.	0.5	31
32	Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms. Annals of Clinical Microbiology and Antimicrobials, 2009, 8, 28.	1.7	66
33	CymR, the master regulator of cysteine metabolism in <i>Staphylococcus aureus</i> , controls host sulphur source utilization and plays a role in biofilm formation. Molecular Microbiology, 2009, 73, 194-211.	1.2	76
34	Staphylococcus epidermidis — the 'accidental' pathogen. Nature Reviews Microbiology, 2009, 7, 555-567.	13.6	1,353
35	Biofilm formation and prevalence of lukF-pv, seb, sec and tst genes among hospital- and community-acquired isolates of some international methicillin-resistant Staphylococcus aureus lineages. Clinical Microbiology and Infection, 2009, 15, 203-207.	2.8	11
36	Biofilm formation by Propionibacterium acnes is a characteristic of invasive isolates. Clinical Microbiology and Infection, 2009, 15, 787-795.	2.8	165

#	Article	IF	CITATIONS
37	Development of a novel fluorescent substrate for Autolysin E, a bacterial type II amidase. Biochemical and Biophysical Research Communications, 2009, 380, 554-558.	1.0	20
38	Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. International Journal of Antimicrobial Agents, 2009, 33, 525-531.	1.1	56
39	Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms. Microbiology and Molecular Biology Reviews, 2009, 73, 310-347.	2.9	809
41	Biofilm formation by <i>ica</i> -positive and <i>ica</i> -negative strains of <i>Staphylococcus epidermidis in vitro</i> . Biofouling, 2009, 25, 367-375.	0.8	25
42	Effect of Cinnamon Oil on icaA Expression and Biofilm Formation by Staphylococcus epidermidis. Applied and Environmental Microbiology, 2009, 75, 6850-6855.	1.4	126
45	Understanding the significance of Staphylococcus epidermidis bacteremia in babies and children. Current Opinion in Infectious Diseases, 2010, 23, 208-216.	1.3	94
46	<i>Staphylococcus epidermidis</i> device-related infections: pathogenesis and clinical management. Journal of Pharmacy and Pharmacology, 2010, 60, 1551-1571.	1.2	137
47	Slime Production by Staphylococcus aureus and Staphylococcus epidermidis Strains Isolated from Patients with Diabetic Foot Ulcers. Archivum Immunologiae Et Therapiae Experimentalis, 2010, 58, 321-324.	1.0	28
48	AlgK Is a TPR-Containing Protein and the Periplasmic Component of a Novel Exopolysaccharide Secretin. Structure, 2010, 18, 265-273.	1.6	98
49	Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N- oxide. BMC Microbiology, 2010, 10, 33.	1.3	128
50	Antiâ€biofilm activity of subâ€inhibitory povidoneâ€iodine concentrations against <i>Staphylococcus epidermidis</i> and <i>Staphylococcus aureus</i> . Journal of Orthopaedic Research, 2010, 28, 1252-1256.	1.2	95
51	The potential of Raman spectroscopy for the identification of biofilm formation by <i>Staphylococcus epidermidis</i> . Laser Physics Letters, 2010, 7, 378-383.	0.6	76
52	A comparative analysis of phenotypic and genotypic methods for the determination of the biofilm-forming abilities of Staphylococcus epidermidis. FEMS Microbiology Letters, 2010, 310, 97-103.	0.7	30
53	Quantification of biofilm production on polystyrene by Listeria, Escherichia coli and Staphylococcus aureus isolated from a poultry slaughterhouse. Brazilian Journal of Microbiology, 2010, 41, 1082-1085.	0.8	41
54	Enhanced production of exopolysaccharide matrix and biofilm by a menadione-auxotrophic Staphylococcus aureus small-colony variant. Journal of Medical Microbiology, 2010, 59, 521-527.	0.7	53
55	Analysis of HmsH and its role in plague biofilm formation. Microbiology (United Kingdom), 2010, 156, 1424-1438.	0.7	40
56	Enhancement of Biofilm Formation by Subinhibitory Concentrations of Macrolides in <i>icaADBC-</i> Positive and -Negative Clinical Isolates of <i>Staphylococcus epidermidis</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 2707-2711.	1.4	79
57	Hypervariability of Biofilm Formation and Oxacillin Resistance in a <i>Staphylococcus epidermidis</i> Strain Causing Persistent Severe Infection in an Immunocompromised Patient. Journal of Clinical Microbiology, 2010, 48, 2407-2412.	1.8	15

#	Article	IF	CITATIONS
58	Secreted virulence factor comparison between methicillin-resistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis. Journal of Allergy and Clinical Immunology, 2010, 125, 39-49.	1.5	163
59	Pyrrolomycins as potential anti-staphylococcal biofilms agents. Biofouling, 2010, 26, 433-438.	0.8	35
60	Modality of bacterial growth presents unique targets: how do we treat biofilm-mediated infections?. Current Opinion in Microbiology, 2010, 13, 610-615.	2.3	99
61	A role for sigma factor B in the emergence of Staphylococcus aureus small-colony variants and elevated biofilm production resulting from an exposure to aminoglycosides. Microbial Pathogenesis, 2010, 48, 18-27.	1.3	63
62	Global gene expression in Staphylococcus aureus following exposure to alcohol. Microbial Pathogenesis, 2010, 48, 74-84.	1.3	27
63	Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microbial Pathogenesis, 2010, 49, 14-22.	1.3	101
64	Success through diversity – How Staphylococcus epidermidis establishes as a nosocomial pathogen. International Journal of Medical Microbiology, 2010, 300, 380-386.	1.5	120
65	Biofilms. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000398-a000398.	2.3	672
66	Biofilm development by clinical isolates of <i>Staphylococcus</i> spp. from retrieved orthopedic prostheses. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 81, 674-679.	1.2	54
67	Virulence Gene Expression byStaphylococcus epidermidisBiofilm Cells Exposed to Antibiotics. Microbial Drug Resistance, 2011, 17, 191-196.	0.9	18
68	Scenery of <i>Staphylococcus</i> implant infections in orthopedics. Future Microbiology, 2011, 6, 1329-1349.	1.0	322
69	Does <i>Staphylococcus aureus</i> nasal colonization involve biofilm formation?. Future Microbiology, 2011, 6, 489-493.	1.0	39
70	Study of the formation of a biofilm by clinical strains of <i>Staphylococcus aureus</i> . Biofouling, 2011, 27, 811-821.	0.8	20
71	Peptide Signaling in the Staphylococci. Chemical Reviews, 2011, 111, 117-151.	23.0	341
72	Staphylococcal biofilm disassembly. Trends in Microbiology, 2011, 19, 449-455.	3.5	220
73	Extended biofilm susceptibility assay for Staphylococcus aureus bovine mastitis isolates: Evidence for association between genetic makeup and biofilm susceptibility. Journal of Dairy Science, 2011, 94, 5926-5937.	1.4	29
74	Staphylococcal Infections. , 2011, , 489-515.		1
75	Quantitative analysis of biofilm formation of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) strains from patients with orthopaedic device-related infections. FEMS Immunology and Medical Microbiology, 2011, 63, 10-15.	2.7	37

.

#	Article	IF	CITATIONS
76	New approaches for treating staphylococcal biofilm infections. Annals of the New York Academy of Sciences, 2011, 1241, 104-121.	1.8	236
77	Antibiotics as Signal Molecules. Chemical Reviews, 2011, 111, 5492-5505.	23.0	348
78	The staphylococcal nuclease prevents biofilm formation in Staphylococcus aureus and other biofilm-forming bacteria. Science China Life Sciences, 2011, 54, 863-869.	2.3	22
79	Role of the SaeRS two-component regulatory system in Staphylococcus epidermidisautolysis and biofilm formation. BMC Microbiology, 2011, 11, 146.	1.3	56
80	The cell surface proteome of <i>Staphylococcus aureus</i> . Proteomics, 2011, 11, 3154-3168.	1.3	71
81	<i>Ica</i> â€expression and gentamicin susceptibility of <i>Staphylococcus epidermidis</i> biofilm on orthopedic implant biomaterials. Journal of Biomedical Materials Research - Part A, 2011, 96A, 365-371.	2.1	29
82	Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology, 2011, 22, 172-179.	3.3	240
83	Bovine Mastitis and Biofilms. Springer Series on Biofilms, 2011, , 205-221.	0.0	6
84	A novel role for SarX in Staphylococcus epidermidis biofilm regulation. Microbiology (United) Tj ETQq0 0 0 rgBT	Overlock	10 ₂₂ 50 422
85	Rsp Inhibits Attachment and Biofilm Formation by Repressing <i>fnbA</i> in Staphylococcus aureus MW2. Journal of Bacteriology, 2011, 193, 5231-5241.	1.0	54
86	Essential Role for the Major Autolysin in the Fibronectin-Binding Protein-Mediated <i>Staphylococcus aureus</i> Biofilm Phenotype. Infection and Immunity, 2011, 79, 1153-1165.	1.0	216
87	Community-Associated Methicillin-Resistant Staphylococcus aureus Survival on Artificial Turf Substrates. Medicine and Science in Sports and Exercise, 2011, 43, 779-784.	0.2	9
88	Methicillin Resistance Alters the Biofilm Phenotype and Attenuates Virulence in Staphylococcus aureus Device-Associated Infections. PLoS Pathogens, 2012, 8, e1002626.	2.1	237
89	Impact of Extracellular Nuclease Production on the Biofilm Phenotype of Staphylococcus aureus under <i>In Vitro</i> and <i>In Vivo</i> Conditions. Infection and Immunity, 2012, 80, 1634-1638.	1.0	82
90	Streptomycin-Induced Expression in Bacillus subtilis of YtnP, a Lactonase-Homologous Protein That Inhibits Development and Streptomycin Production in Streptomyces griseus. Applied and Environmental Microbiology, 2012, 78, 599-603.	1.4	29
91	BpsR Modulates Bordetella Biofilm Formation by Negatively Regulating the Expression of the Bps Polysaccharide. Journal of Bacteriology, 2012, 194, 233-242.	1.0	24
92	Staphylococcal biofilm-forming protein has a contiguous rod-like structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1011-8.	3.3	73

93Single-cell Analysis of Bacillus subtilis Biofilms Using Fluorescence Microscopy
and Flow Cytometry. Journal of Visualized Experiments, 2012, , .0.226

#	Article	IF	CITATIONS
94	Resolving Biofilm Infections: Current Therapy and Drug Discovery Strategies. Current Drug Targets, 2012, 13, 1375-1385.	1.0	21
95	Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein–protein interaction. EMBO Journal, 2012, 32, 354-368.	3.5	123
96	Characterization of coagulase-negative staphylococci isolated from hospital indoor air and a comparative analysis between airborne and inpatient isolates of Staphylococcus epidermidis. Journal of Medical Microbiology, 2012, 61, 1136-1145.	0.7	25
97	Novel Approaches to the Diagnosis, Prevention, and Treatment of Medical Device-Associated Infections. Infectious Disease Clinics of North America, 2012, 26, 173-186.	1.9	78
98	Evaluation of Protein Adsorption on Atmospheric Plasma Deposited Coatings Exhibiting Superhydrophilic to Superhydrophobic Properties. Biointerphases, 2012, 7, 31.	0.6	134
99	Incidence of Staphylococcus aureus and Analysis of Associated Bacterial Communities on Food Industry Surfaces. Applied and Environmental Microbiology, 2012, 78, 8547-8554.	1.4	170
100	Alcohol treatment enhances <i>Staphylococcus aureus</i> biofilm development. FEMS Immunology and Medical Microbiology, 2012, 66, 411-418.	2.7	36
101	Novel Inhibitors of Staphylococcus aureus Virulence Gene Expression and Biofilm Formation. PLoS ONE, 2012, 7, e47255.	1.1	80
102	The Two-Component Signal Transduction System ArlRS Regulates Staphylococcus epidermidis Biofilm Formation in an ica-Dependent Manner. PLoS ONE, 2012, 7, e40041.	1.1	52
103	Staphylococcus Lugdunensis, An Aggressive Coagulase-Negative Pathogen not to be Underestimated. International Journal of Artificial Organs, 2012, 35, 742-753.	0.7	30
104	Genetic regulation of the intercellular adhesion locus in staphylococci. Frontiers in Cellular and Infection Microbiology, 2012, 2, 38.	1.8	131
105	Evaluation of Antibacterial and Anti-biofilm Activities of Cinchona Alkaloid Derivatives against Staphylococcus aureus. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	10
106	Caracterização fenotÃpica, produção de biofilme e resistência aos antimicrobianos em isolados de Staphylococcus spp. obtidos de casos de mastite em bovinos e bubalinos. Pesquisa Veterinaria Brasileira, 2012, 32, 1219-1224.	0.5	5
107	Synthesis of short cationic antimicrobial peptidomimetics containing arginine analogues. Journal of Peptide Science, 2012, 18, 567-578.	0.8	13
108	Immunoprophylaxis and immunotherapy of <i>Staphylococcus epidermidis</i> infections: challenges and prospects. Expert Review of Vaccines, 2012, 11, 319-334.	2.0	31
109	Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012, 33, 5967-5982.	5.7	874
110	EFFECTS OF DIFFERENT CULTIVATION CONDITIONS ON <i>STAPHYLOCOCCUS AUREUS</i> BIOFILM FORMATION AND DIVERSITY OF ADHESIN GENES. Journal of Food Safety, 2012, 32, 210-218.	1.1	12
111	Direct analysis of bacterial viability in endotracheal tube biofilm from a pig model of methicillin-resistant <i>Staphylococcus aureus</i> pneumonia following antimicrobial therapy. FEMS Immunology and Medical Microbiology, 2012, 65, 309-317.	2.7	28

	CITATION	Report	
#	Article	IF	CITATIONS
112	Strong biofilm production but not adhesion virulence factors can discriminate between invasive and commensal <i><scp>S</scp>taphylococcus epidermidis</i> strains. Apmis, 2012, 120, 605-611.	0.9	31
113	Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnology Letters, 2012, 34, 655-661.	1.1	35
114	Holo and apo-transferrins interfere with adherence to abiotic surfaces and with adhesion/invasion to HeLa cells in Staphylococcus spp BioMetals, 2012, 25, 413-421.	1.8	8
115	CcpA and three newly identified proteins are involved in biofilm development in <i>Lactobacillus plantarum</i> . Journal of Basic Microbiology, 2013, 53, 62-71.	1.8	27
116	Antibiofilm polysaccharides. Environmental Microbiology, 2013, 15, 334-346.	1.8	217
117	A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Microbial Pathogenesis, 2013, 63, 44-53.	1.3	39
118	Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Review of Anti-Infective Therapy, 2013, 11, 669-693.	2.0	140
119	Analysis of S. Epidermidis icaA and icaD genes by polymerase chain reaction and slime production: a case control study. BMC Infectious Diseases, 2013, 13, 242.	1.3	22
120	Impact of Food-Related Environmental Factors on the Adherence and Biofilm Formation of Natural Staphylococcus aureus Isolates. Current Microbiology, 2013, 66, 110-121.	1.0	58
121	Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Current Opinion in Pharmacology, 2013, 13, 731-762.	1.7	210
122	Comparison of the action of different proteases on virulence properties related to the staphylococcal surface. Journal of Applied Microbiology, 2013, 114, 266-277.	1.4	42
123	Staphylococcus epidermidis in Biomaterial-Associated Infections. , 2013, , 25-56.		29
124	Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiology, 2013, 8, 509-524.	1.0	82
125	Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K. Journal of Antibiotics, 2013, 66, 55-60.	1.0	101
126	Anti-biofilm activities of quercetin and tannic acid against <i>Staphylococcus aureus</i> . Biofouling, 2013, 29, 491-499.	0.8	198
127	Characterization of coagulase-negative staphylococci isolated from Spanish dry cured meat products. Meat Science, 2013, 93, 387-396.	2.7	58
128	The Role of Staphylothrombin-Mediated Fibrin Deposition in Catheter-Related Staphylococcus aureus Infections. Journal of Infectious Diseases, 2013, 208, 92-100.	1.9	59
129	Activation of <i>sarX</i> by Rbf Is Required for Biofilm Formation and <i>icaADBC</i> Expression in Staphylococcus aureus. Journal of Bacteriology, 2013, 195, 1515-1524.	1.0	23

~			~		
C1	ΤΑΤΙ	ON	NE	DO	DT
\sim				. F O	

#	Article	IF	CITATIONS
130	Staphopains Modulate Staphylococcus aureus Biofilm Integrity. Infection and Immunity, 2013, 81, 3227-3238.	1.0	104
131	Enterococcus faecium Biofilm Formation: Identification of Major Autolysin AtlA _{Efm} , Associated Acm Surface Localization, and AtlA _{Efm} -Independent Extracellular DNA Release. MBio, 2013, 4, e00154.	1.8	49
132	Staphylococcus epidermidis Esp Degrades Specific Proteins Associated with Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction. Journal of Bacteriology, 2013, 195, 1645-1655.	1.0	184
133	Quantitative Analysis of Biofilm Formed on Vascular Prostheses by <i>Staphylococcus Epidermidis</i> with Different <i>ica</i> and <i>aap</i> Genetic Status. International Journal of Artificial Organs, 2013, 36, 105-112.	0.7	6
134	Antimicrobial Agent against Staphylococcus Epidermidis. Malaysian Orthopaedic Journal, 2013, 7, 10-14.	0.2	3
135	Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) Isolates of Swine Origin Form Robust Biofilms. PLoS ONE, 2013, 8, e73376.	1.1	20
136	Adherence ability of Staphylococcus epidermidis on prosthetic biomaterials: an in vitro study. International Journal of Nanomedicine, 2013, 8, 3955.	3.3	27
137	Current and Future Approaches to the Prevention and Treatment of Staphylococcal Medical Device-Related Infections. Current Pharmaceutical Design, 2014, 21, 100-113.	0.9	60
138	Early Staphylococcal Biofilm Formation on Solid Orthopaedic Implant Materials: In Vitro Study. PLoS ONE, 2014, 9, e107588.	1.1	74
139	Lysostaphin-Coated Titan-Implants Preventing Localized Osteitis by Staphylococcus aureus in a Mouse Model. PLoS ONE, 2014, 9, e115940.	1.1	44
140	Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Frontiers in Cellular and Infection Microbiology, 2014, 4, 178.	1.8	485
141	Detection of exopolysaccharide production and biofilm-related genes in Staphylococcus spp. isolated from a poultry processing plant. Food Science and Technology, 2014, 34, 710-716.	0.8	16
142	Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion. BMC Microbiology, 2014, 14, 234.	1.3	171
144	Cyclic di-GMP-dependent Signaling Pathways in the Pathogenic Firmicute Listeria monocytogenes. PLoS Pathogens, 2014, 10, e1004301.	2.1	80
145	Inhibition by <scp>EGTA</scp> of the formation of a biofilm by clinical strains of <i>Staphylococcus aureus</i> . Journal of Basic Microbiology, 2014, 54, 700-710.	1.8	3
146	Staphylococcus aureus glucose-induced biofilm accessory proteins, GbaAB, influence biofilm formation in a PIA-dependent manner. International Journal of Medical Microbiology, 2014, 304, 603-612.	1.5	68
147	Staphylococcus aureus Biofilm Formation and Inhibition. Springer Series on Biofilms, 2014, , 233-255.	0.0	4
148	Antibiofilm Agents. Springer Series on Biofilms, 2014, , .	0.0	10

#	Article	IF	CITATIONS
149	Synergistic Interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an <i>In Vitro</i> Wound Model. Infection and Immunity, 2014, 82, 4718-4728.	1.0	306
150	Coagulase-negative staphylococcal bloodstream and prosthetic-device-associated infections: the role of biofilm formation and distribution of adhesin and toxin genes. Journal of Medical Microbiology, 2014, 63, 1500-1508.	0.7	41
151	Evolution of Resistance to a Last-Resort Antibiotic in Staphylococcus aureus via Bacterial Competition. Cell, 2014, 158, 1060-1071.	13.5	178
152	Alternative Strategies for Proof-of-Principle Studies of Antibacterial Agents. Antimicrobial Agents and Chemotherapy, 2014, 58, 4257-4263.	1.4	4
153	Mechanistic insights into response of Staphylococcus aureus to bioelectric effect on polypyrrole/chitosan film. Biomaterials, 2014, 35, 7690-7698.	5.7	39
154	Inactivation of Propionibacterium acnes and its biofilm by non-thermal plasma. Current Applied Physics, 2014, 14, S142-S148.	1.1	26
155	Short communication: Biofilm production characterization of mecA and mecC methicillin-resistant Staphylococcus aureus isolated from bovine milk in Great Britain. Journal of Dairy Science, 2014, 97, 4838-4841.	1.4	16
156	Biofilms. , 2014, , 365-373.		1
157	Effects of human β-defensin-3 on biofilm formation-regulating genes dltB and icaA in Staphylococcus aureus. Molecular Medicine Reports, 2014, 10, 825-831.	1.1	17
158	A Compound Inhibits Biofilm Formation of <i>Staphylococcus aureus</i> from <i>Streptomyces</i> . Biological and Pharmaceutical Bulletin, 2015, 38, 889-892.	0.6	28
160	Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly. Scientific Reports, 2015, 5, 13081.	1.6	57
161	The influence of surface roughness and surface dynamics on the attachment of Methicillin-Resistant <i>Staphylococcus aureus</i> onto orthodontic retainer materials. Dental Materials Journal, 2015, 34, 585-594.	0.8	13
162	Staphylococcus aureus: Immunopathogenesis and Human Immunity. Acta Facultatis Medicae Naissensis, 2015, 32, 243-257.	0.1	2
163	Optimization of the RNeasy Mini Kit to obtain high-quality total RNA from sessile cells of Staphylococcus aureus. Brazilian Journal of Medical and Biological Research, 2015, 48, 1071-1076.	0.7	9
164	Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in Microbiology, 2015, 6, 841.	1.5	232
166	Proteome Analyses of Staphylococcus aureus Biofilm at Elevated Levels of NaCl. Clinical Microbiology (Los Angeles, Calif), 2015, 04, .	0.2	20
167	Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 2015, 5, 7.	1.8	312
168	Envelope Structures of Gram-Positive Bacteria. Current Topics in Microbiology and Immunology, 2015, 404, 1-44.	0.7	152

#	Article	IF	Citations
169	The influence of different factors including fnbA and mecA expression on biofilm formed by MRSA clinical isolates with different genetic backgrounds. International Journal of Medical Microbiology, 2015, 305, 140-147.	1.5	19
170	Pathogenicity Island-Directed Transfer of Unlinked Chromosomal Virulence Genes. Molecular Cell, 2015, 57, 138-149.	4.5	52
171	<scp><i>L</i></scp> <i>isteria monocytogenes</i> exopolysaccharide: origin, structure, biosynthetic machinery and câ€diâ€ <scp>GMP</scp> â€dependent regulation. Molecular Microbiology, 2015, 96, 728-743.	1.2	80
172	<scp>R</scp> ot is a key regulator of <scp><i>S</i></scp> <i>taphylococcus aureus</i> biofilm formation. Molecular Microbiology, 2015, 96, 388-404.	1.2	64
173	A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microbial Biotechnology, 2015, 8, 392-403.	2.0	106
174	Electron microscopy of Staphylococcus epidermidis fibril and biofilm formation using image-enhancing ionic liquid. Analytical and Bioanalytical Chemistry, 2015, 407, 1607-1613.	1.9	18
175	Phenotypic and genotypic characterization of Staphylococci causing breast peri-implant infections in oncologic patients. BMC Microbiology, 2015, 15, 26.	1.3	27
176	Autoinducer-2 increases biofilm formation via an ica- and bhp-dependent manner in Staphylococcus epidermidis RP62A. Microbes and Infection, 2015, 17, 345-352.	1.0	39
177	Antibiosis interaction of Staphylococccus aureus on Aspergillus fumigatus assessed in vitro by mixed biofilm formation. BMC Microbiology, 2015, 15, 33.	1.3	50
178	The herbal-derived honokiol and magnolol enhances immune response to infection with methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Applied Microbiology and Biotechnology, 2015, 99, 4387-4396.	1.7	22
179	Relevance of biofilm formation and virulence of different species of coagulase-negative staphylococci to public health. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 2009-2016.	1.3	21
180	An Essential Role for Coagulase in <i>Staphylococcus aureus</i> Biofilm Development Reveals New Therapeutic Possibilities for Device-Related Infections. Journal of Infectious Diseases, 2015, 212, 1883-1893.	1.9	92
181	Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 2015, 5, 1.	1.8	359
182	In vitro effect of temperature on the conformational structure and collagen binding of SdrF, a Staphylococcus epidermidis adhesin. Applied Microbiology and Biotechnology, 2015, 99, 5593-5603.	1.7	4
183	SaeRS-Dependent Inhibition of Biofilm Formation in Staphylococcus aureus Newman. PLoS ONE, 2015, 10, e0123027.	1.1	55
184	Biofilm-Based Central Line-Associated Bloodstream Infections. Advances in Experimental Medicine and Biology, 2015, 830, 157-179.	0.8	71
185	Phenotypic and Genotypic Characterization of Biofilm Formation in Staphylococcus haemolyticus. Current Microbiology, 2015, 70, 829-834.	1.0	23
186	Which are important targets in development of S. aureus mastitis vaccine?. Research in Veterinary Science, 2015, 100, 88-99.	0.9	45

#	Article	IF	CITATIONS
187	Temperatureâ€dependent control of <i>Staphylococcus aureus</i> biofilms and virulence by thermoresponsive oligo(Nâ€vinylcaprolactam). Biotechnology and Bioengineering, 2015, 112, 716-724.	1.7	14
188	Effects of erythromycin on the phenotypic and genotypic biofilm expression in two clinical Staphylococcus capitis subspecies and a functional analysis of Ica proteins in S. capitis. Journal of Medical Microbiology, 2015, 64, 591-604.	0.7	11
189	Prevalence of Panton-Valentine leucocidin and phenotypic and genotypic characterization of biofilm formation among Staphylococcus aureus strains isolated from children with adenoid hypertrophy. Microbial Pathogenesis, 2015, 89, 150-153.	1.3	8
190	Microbial Biofilms in Endodontics. , 2015, , 1-14.		0
191	Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ica-dependent manner. Journal of Dairy Science, 2015, 98, 8486-8491.	1.4	41
192	Comparison of virulence factors and biofilm formation among Staphylococcus aureus strains isolated from human and bovine infections. Microbial Pathogenesis, 2015, 88, 73-77.	1.3	49
193	Adhesive behaviour and virulence of coagulase negative staphylococci isolated from Italian cheeses. International Journal of Immunopathology and Pharmacology, 2015, 28, 341-350.	1.0	4
194	Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation. Archives of Microbiology, 2015, 197, 1027-1032.	1.0	26
195	Effect of incubation atmosphere on the production and composition of staphylococcal biofilms. Journal of Infection and Chemotherapy, 2015, 21, 55-61.	0.8	19
196	Methicillin-resistant Staphylococcus aureus biofilm formation on dacryocystorhinostomy silicone tubes depends on the genetic lineage. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 77-82.	1.0	7
197	Antibiotic susceptibility of ica-positive and ica-negative MRSA in different phases of biofilm growth. Journal of Antibiotics, 2015, 68, 15-22.	1.0	28
198	RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Scientific Reports, 2014, 4, 5467.	1.6	134
199	The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. , 0, , 529-566.		25
200	Staphylococcal Biofilms: Pathogenicity, Mechanism and Regulation of Biofilm Formation by Quorum-Sensing System and Antibiotic Resistance Mechanisms of Biofilm-Embedded Microorganisms. , 0, , .		26
201	The SaeRS Two omponent System of Staphylococcus aureus. Genes, 2016, 7, 81.	1.0	170
202	Effect of non-steroidal anti-inflammatory drugs and dexamethazone on the biofilm formation and expression of some adhesion-related genes of Candida albicans and Staphylococcus aureus. African Journal of Microbiology Research, 2016, 10, 694-707.	0.4	6
203	The Possible Role of Staphylococcus epidermidis LPxTG Surface Protein SesC in Biofilm Formation. PLoS ONE, 2016, 11, e0146704.	1.1	22
204	Untangling the Diverse and Redundant Mechanisms of Staphylococcus aureus Biofilm Formation. PLoS Pathogens, 2016, 12, e1005671.	2.1	98

#	Article	IF	CITATIONS
205	Compounds from Natural Sources for New Diagnostics and Drugs against Biofilm Infections. , 0, , .		3
206	The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. Microbiology Spectrum, 2016, 4,	1.2	314
207	Staphylococcus aureus isolated from handmade sweets: Biofilm formation, enterotoxigenicity and antimicrobial resistance. Food Microbiology, 2016, 58, 105-111.	2.1	31
208	Emerging interactions between matrix components during biofilm development. Current Genetics, 2016, 62, 137-141.	0.8	70
209	Early application of negative pressure wound therapy to acute wounds contaminated with Staphylococcus aureus: An effective approach to preventing biofilm formation. Experimental and Therapeutic Medicine, 2016, 11, 769-776.	0.8	26
210	Complete Genome Sequence of Biofilm-Forming Strain Staphylococcus haemolyticus S167. Genome Announcements, 2016, 4, .	0.8	5
212	Comparison of Staphylococcal Flora in Denture Plaque and the Surface of the Pharyngeal Mucous Membrane in Kidney Transplant Recipients. Transplantation Proceedings, 2016, 48, 1590-1597.	0.3	6
213	Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: InÂvitro and inÂvivo evaluations. Biomaterials, 2016, 106, 250-263.	5.7	194
214	Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa. BMC Microbiology, 2016, 16, 250.	1.3	59
215	Sae regulator factor impairs the response to photodynamic inactivation mediated by Toluidine blue in Staphylococcus aureus. Photodiagnosis and Photodynamic Therapy, 2016, 16, 136-141.	1.3	14
216	Biomaterial Functionalized Surfaces for Reducing Bacterial Adhesion and Infection. , 2016, , 757-784.		0
217	Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver. Scientific Reports, 2016, 6, 32699.	1.6	90
218	Biofilms in ventilator-associated pneumonia. Future Microbiology, 2016, 11, 1599-1610.	1.0	37
219	The antifungal caspofungin increases fluoroquinolone activity against Staphylococcus aureus biofilms by inhibiting N-acetylglucosamine transferase. Nature Communications, 2016, 7, 13286.	5.8	41
220	In vitro antimicrobial activity of honokiol against Staphylococcus aureus in biofilm mode. Journal of Asian Natural Products Research, 2016, 18, 1178-1185.	0.7	13
221	Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation. MBio, 2016, 7, e00252-16.	1.8	91
222	<i>Streptomyces</i> -derived actinomycin D inhibits biofilm formation by <i>Staphylococcus aureus</i> and its hemolytic activity. Biofouling, 2016, 32, 45-56.	0.8	39
223	Teichoic acid is the major polysaccharide present in the <i>Listeria monocytogenes</i> biofilm matrix. FEMS Microbiology Letters, 2016, 363, fnv229.	0.7	35

#	Article	IF	CITATIONS
224	Sticky Matrix: Adhesion Mechanism of the Staphylococcal Polysaccharide Intercellular Adhesin. ACS Nano, 2016, 10, 3443-3452.	7.3	80
225	The exceptionally broad-based potential of active and passive vaccination targeting the conserved microbial surface polysaccharide PNAG. Expert Review of Vaccines, 2016, 15, 1041-1053.	2.0	44
226	Zinc-dependent mechanical properties of <i>Staphylococcus aureus</i> biofilm-forming surface protein SasG. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 410-415.	3.3	144
227	<i>Bordetella</i> biofilms: a lifestyle leading to persistent infections. Pathogens and Disease, 2016, 74, ftv108.	0.8	48
228	Number of positive blood cultures, biofilm formation, and adhesin genes in differentiating true coagulase-negative staphylococci bacteremia from contamination. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 57-66.	1.3	11
229	Predominance of SCC mec types IV and V among biofilm producing device-associated Staphylococcus aureus strains isolated from tertiary care hospitals in Mysuru, India. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2017, 35, 229-235.	0.3	7
230	<i>Staphylococcus aureus</i> biofilm: a complex developmental organism. Molecular Microbiology, 2017, 104, 365-376.	1.2	343
231	Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. Journal of Hospital Infection, 2017, 96, 177-182.	1.4	49
232	Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of Infection and Public Health, 2017, 10, 809-813.	1.9	32
233	Tunable Nitric Oxide Release from <i>S</i> -Nitroso- <i>N</i> -acetylpenicillamine via Catalytic Copper Nanoparticles for Biomedical Applications. ACS Applied Materials & Interfaces, 2017, 9, 15254-15264.	4.0	110
233 234		4.0 0.2	110 0
	Nanoparticles for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 15254-15264. Predominance of SCC mec types IV and V among biofilm producing device-associated Staphylococcus aureus strains isolated from tertiary care hospitals in Mysuru, India. Enfermedades Infecciosas Y		
234	Nanoparticles for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 15254-15264. Predominance of SCC mec types IV and V among biofilm producing device-associated Staphylococcus aureus strains isolated from tertiary care hospitals in Mysuru, India. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2017, 35, 229-235.		0
234 235	 Nanoparticles for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 15254-15264. Predominance of SCC mec types IV and V among biofilm producing device-associated Staphylococcus aureus strains isolated from tertiary care hospitals in Mysuru, India. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2017, 35, 229-235. Microbial Biofilm: Role in Crop Productivity. , 2017, , 107-118. <i>Into the storm</i>: Chasing the opportunistic pathogen <i>Staphylococcus aureus</i> from skin 	0.2	0 8
234 235 236	 Nanoparticles for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 15254-15264. Predominance of SCC mec types IV and V among biofilm producing device-associated Staphylococcus aureus strains isolated from tertiary care hospitals in Mysuru, India. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2017, 35, 229-235. Microbial Biofilm: Role in Crop Productivity. , 2017, , 107-118. (i>Into the storm (i>: Chasing the opportunistic pathogen <i>: Staphylococcus aureus</i> from skin colonisation to lifeâ€threatening infections. Environmental Microbiology, 2017, 19, 3823-3833. (i>Staphylococcus aureus (i> pathogenesis in diverse host environments. Pathogens and Disease, 2017, 	0.2	0 8 53
234 235 236 237	Nanoparticles for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 15254-15264. Predominance of SCC mec types IV and V among biofilm producing device-associated Staphylococcus aureus strains isolated from tertiary care hospitals in Mysuru, India. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2017, 35, 229-235. Microbial Biofilm: Role in Crop Productivity. , 2017, , 107-118. <i>Into the storm <i>Into the storm Into the storm Into the storm Into the storm Nanoparticles for Biopile Microbiologia Clinica (English the opportunistic pathogen <i>Staphylococcus aureus <i>Into the storm <i>Into the storm <i>Interfaces <i>Into the storm <i>Interfaces <i>Into the storm <i>Interfaces <i>Interfaces <i>Into the storm <i>Interfaces <i>Interfaces <t< td=""><td>0.2</td><td>0 8 53 168</td></t<></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	0.2	0 8 53 168
234 235 236 237 238	 Nanoparticles for Biomedical Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 15254-15264. Predominance of SCC mec types IV and V among biofilm producing device-associated Staphylococcus aureus strains isolated from tertiary care hospitals in Mysuru, India. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed), 2017, 35, 229-235. Microbial Biofilm: Role in Crop Productivity. , 2017, , 107-118. <a href="mailto:<i><i>> Interfaces: Aureus</i> from skin colonisation to lifeâ€threatening infections. Environmental Microbiology, 2017, 19, 3823-3833. Staphylococcus aureus from skin colonisation to lifeâ€threatening infections. Environmental Microbiology, 2017, 19, 3823-3833. Staphylococcus aureus pathogenesis in diverse host environments. Pathogens and Disease, 2017, 75, ftx005. Nucleotide Sequence Variations in Autolysis Genes of ST59 Methicillin-Resistant Staphylococcus aureus Staphylococcus aureus staphylococcus aureus aureus staphylococcus au	0.2 1.8 0.8 0.9	0 8 53 168 0

#	Article	IF	CITATIONS
242	Detection of <i>icaA</i> and <i>icaD</i> genes of <i>Staphylococcus aureus</i> isolated in cases of bovine mastitis in the Republic of Serbia. Acta Veterinaria, 2017, 67, 168-177.	0.2	8
243	Penicillin-resistant characterization of Staphylococcus aureus isolated from bovine mastitis in Gansu, China. Journal of Integrative Agriculture, 2017, 16, 1874-1878.	1.7	4
244	Biofilm Formation and Its Relationship with the Molecular Characteristics of Foodâ€Related Methicillinâ€Resistant <i>Staphylococcus aureus</i> (MRSA). Journal of Food Science, 2017, 82, 2364-2370.	1.5	38
248	Quantitative Expression Analysis of SpA, FnbA and Rsp Genes in Staphylococcus aureus: Actively Associated in the Formation of Biofilms. Current Microbiology, 2017, 74, 1394-1403.	1.0	13
249	Antibiofilm activity of Vetiveria zizanioides root extract against methicillin-resistant Staphylococcus aureus. Microbial Pathogenesis, 2017, 110, 313-324.	1.3	70
250	Ica-status of clinical Staphylococcus epidermidis strains affects adhesion and aggregation: a thermodynamic analysis. Antonie Van Leeuwenhoek, 2017, 110, 1467-1474.	0.7	8
251	<i>In Vitro</i> Antimicrobial Efficacy of Tobramycin Against <i>Staphylococcus aureus</i> Biofilms in Combination With or Without DNase I and/or Dispersin B: A Preliminary Investigation. Microbial Drug Resistance, 2017, 23, 384-390.	0.9	35
252	Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Research in Microbiology, 2017, 168, 1-15.	1.0	87
253	The Active Component of Aspirin, Salicylic Acid, Promotes Staphylococcus aureus Biofilm Formation in a PIA-dependent Manner. Frontiers in Microbiology, 2017, 8, 4.	1.5	32
254	Identification of Genes Controlled by the Essential YycFG Two-Component System Reveals a Role for Biofilm Modulation in Staphylococcus epidermidis. Frontiers in Microbiology, 2017, 8, 724.	1.5	34
255	Mammary Gland Pathology Subsequent to Acute Infection with Strong versus Weak Biofilm Forming Staphylococcus aureus Bovine Mastitis Isolates: A Pilot Study Using Non-Invasive Mouse Mastitis Model. PLoS ONE, 2017, 12, e0170668.	1.1	30
256	Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host. PLoS Genetics, 2017, 13, e1006816.	1.5	16
257	Multiresistant ST59-SCCmec IV-t437 clone with strong biofilm-forming capacity was identified predominantly in MRSA isolated from Chinese children. BMC Infectious Diseases, 2017, 17, 733.	1.3	41
258	Comparative analysis between biofilm formation and gene expression in <i>Staphylococcus epidermidis</i> isolates. Future Microbiology, 2018, 13, 415-427.	1.0	23
259	Salt-Induced Stress Stimulates a Lipoteichoic Acid-Specific Three-Component Glycosylation System in Staphylococcus aureus. Journal of Bacteriology, 2018, 200, .	1.0	36
260	Sodium hypochlorite is more effective than 70% ethanol against biofilms of clinical isolates of Staphylococcus aureus. American Journal of Infection Control, 2018, 46, e37-e42.	1.1	14
261	Staphylococcus epidermidis and Other Coagulase-Negative Staphylococci. , 2018, , 706-712.e4.		5
262	Iron enhances the peptidyl deformylase activity and biofilm formation in Staphylococcus aureus. 3 Biotech, 2018, 8, 32.	1.1	14

		Citation Ri	EPORT	
#	Article		IF	Citations
263	Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofili <i>Staphylococcus aureus</i> . Future Medicinal Chemistry, 2018, 10, 283-296.	n of	1.1	46
264	Assessment of different methods for the detection of biofilm production in coagulase- staphylococci isolated from blood cultures of newborns. Revista Da Sociedade Brasileir Tropical, 2018, 51, 761-767.	negative ra De Medicina	0.4	9
265	Biofilm Producing Clinical Staphylococcus aureus Isolates Augmented Prevalence of Ar Resistant Cases in Tertiary Care Hospitals of Nepal. Frontiers in Microbiology, 2018, 9,		1.5	45
266	Phenotypic and molecular characterisation of Staphylococcus aureus with reduced var susceptibility derivated in vitro. Open Medicine (Poland), 2018, 13, 475-486.	ncomycin	0.6	6
267	Biofilm Formation by ica-Negative Ocular Isolates of Staphylococcus haemolyticus. Fro Microbiology, 2018, 9, 2687.	ntiers in	1.5	35
268	Enzymes Catalyzing the TCA- and Urea Cycle Influence the Matrix Composition of Biofi Methicillin-Resistant Staphylococcus aureus USA300. Microorganisms, 2018, 6, 113.	ilms Formed by	1.6	21
269	Evaluation of methods to detect in vitro biofilm formation by staphylococcal clinical iso Research Notes, 2018, 11, 714.	olates. BMC	0.6	39
270	Distinct phenotypic traits of Staphylococcus aureus are associated with persistent, con bovine intramammary infections. Scientific Reports, 2018, 8, 15968.	ntagious	1.6	36
271	Functional Characterization of c-di-GMP Signaling-Related Genes in the Probiotic Lacto acidophilus. Frontiers in Microbiology, 2018, 9, 1935.	bacillus	1.5	8
272	Preliminary study on the effect of brazilin on biofilms of Staphylococcus aureus. Experi Therapeutic Medicine, 2018, 16, 2108-2118.	mental and	0.8	4
273	Slime-producing staphylococci as causal agents of subclinical mastitis in sheep. Veterir Microbiology, 2018, 224, 93-99.	ıary	0.8	28
274	Interaction of nanodiamonds with bacteria. Nanoscale, 2018, 10, 17117-17124.		2.8	42
275	Virulence determinants, biofilm production and antimicrobial susceptibility in Staphylo causing device-associated infections in a Tunisian hospital. International Journal of Ant Agents, 2018, 52, 922-929.		1.1	10
276	Vision for medicine: Staphylococcus aureus biofilm war and unlocking key's for anti-bio development. Microbial Pathogenesis, 2018, 123, 339-347.	ofilm drug	1.3	69
277	Biofilm Formation of Staphylococcus aureus. , 2018, , 87-103.			2
278	Staphylococcus epidermidis small basic protein (Sbp) forms amyloid fibrils, consistent function as a scaffolding protein in biofilms. Journal of Biological Chemistry, 2018, 293	with its , 14296-14311.	1.6	23
279	The Staphylococcus aureus Extracellular Adherence Protein Eap Is a DNA Binding Prote Blocking Neutrophil Extracellular Trap Formation. Frontiers in Cellular and Infection Mic 2018, 8, 235.	in Capable of crobiology,	1.8	40
280	The Composition and Structure of Biofilms Developed by Propionibacterium acnes Isol Cardiac Pacemaker Devices. Frontiers in Microbiology, 2018, 9, 182.	ated from	1.5	51

#	Article	IF	CITATIONS
281	Lipoteichoic Acid Inhibits Staphylococcus aureus Biofilm Formation. Frontiers in Microbiology, 2018, 9, 327.	1.5	44
282	A Systematic Evaluation of the Two-Component Systems Network Reveals That ArlRS Is a Key Regulator of Catheter Colonization by Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 342.	1.5	34
283	Use of MALDI-TOF MS to Discriminate between Biofilm-Producer and Non-Producer Strains of Staphylococcus epidermidis. International Journal of Environmental Research and Public Health, 2018, 15, 1695.	1.2	17
284	Biofilm Formation by <i>Staphylococcus aureus</i> Isolated from Food Contact Surfaces in the Dairy Industry of Jalisco, Mexico. Journal of Food Quality, 2018, 2018, 1-8.	1.4	40
285	Synergistic Removal of Static and Dynamic Staphylococcus aureus Biofilms by Combined Treatment with a Bacteriophage Endolysin and a Polysaccharide Depolymerase. Viruses, 2018, 10, 438.	1.5	59
286	Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of <i>Staphylococcus aureus</i> . Future Medicinal Chemistry, 2018, 10, 1319-1331.	1.1	13
287	Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections. PLoS ONE, 2019, 14, e0221012.	1.1	54
288	The Pathogenicity and Transcriptome Analysis of Methicillin-Resistant <i> Staphylococcus aureus</i> in Response to Water Extract of <i> Galla chinensis</i> . Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-10.	0.5	20
289	Antimicrobial characteristics of Berberine against prosthetic joint infection-related Staphylococcus aureus of different multi-locus sequence types. BMC Complementary and Alternative Medicine, 2019, 19, 218.	3.7	31
290	The Therapeutic Effect of 1,8-Cineol on Pathogenic Bacteria Species Present in Chronic Rhinosinusitis. Frontiers in Microbiology, 2019, 10, 2325.	1.5	14
291	An overview on anti-biofilm properties of quercetin against bacterial pathogens. World Journal of Microbiology and Biotechnology, 2019, 35, 143.	1.7	57
292	Nano-graphene oxide improved the antibacterial property of antisense yycG RNA on Staphylococcus aureus. Journal of Orthopaedic Surgery and Research, 2019, 14, 305.	0.9	10
293	Within-host evolution of bovine Staphylococcus aureus selects for a SigB-deficient pathotype characterized by reduced virulence but enhanced proteolytic activity and biofilm formation. Scientific Reports, 2019, 9, 13479.	1.6	20
294	Resistencia a la meticilina y producción de biopelÃcula en aislamientos clÃnicos de Staphylococcus aureus y Staphylococcus coagulasa negativa en México. Biomedica, 2019, 39, 513-523.	0.3	7
295	The peptidoglycan and biofilm matrix of Staphylococcus epidermidis undergo structural changes when exposed to human platelets. PLoS ONE, 2019, 14, e0211132.	1.1	14
296	Redundant and Distinct Roles of Secreted Protein Eap and Cell Wall-Anchored Protein SasG in Biofilm Formation and Pathogenicity of Staphylococcus aureus. Infection and Immunity, 2019, 87, .	1.0	22
297	Prevalence and distribution of adhesins and the expression of fibronectin-binding protein (FnbA and) Tj ETQq0 0 0 12, 49.	rgBT /Ove 0.6	erlock 10 Tf 10
298	D-Tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. Journal of Biosciences, 2019, 44, 1.	0.5	21

#	Article	IF	CITATIONS
299	The effect of antimicrobial photodynamic therapy on the expression of biofilm associated genes in Staphylococcus aureus strains isolated from wound infections in burn patients. Photodiagnosis and Photodynamic Therapy, 2019, 25, 406-413.	1.3	23
300	Identification of Extracellular DNA-Binding Proteins in the Biofilm Matrix. MBio, 2019, 10, .	1.8	108
301	Classification of Clinical Isolates of Klebsiella pneumoniae Based on Their in vitro Biofilm Forming Capabilities and Elucidation of the Biofilm Matrix Chemistry With Special Reference to the Protein Content. Frontiers in Microbiology, 2019, 10, 669.	1.5	34
302	<p>Nanoporous solid-state membranes modified with multi-wall carbon nanotubes with anti-biofouling property</p> . International Journal of Nanomedicine, 2019, Volume 14, 1669-1685.	3.3	19
303	Determinants of Phage Host Range in <i>Staphylococcus</i> Species. Applied and Environmental Microbiology, 2019, 85, .	1.4	59
304	Effects of stigmata maydis on the methicillin resistant <i>Staphylococus aureus</i> biofilm formation. PeerJ, 2019, 7, e6461.	0.9	2
305	Comprehensive Virulence Gene Profiling of Bovine Non- <i>aureus</i> Staphylococci Based on Whole-Genome Sequencing Data. MSystems, 2019, 4, .	1.7	32
306	Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complementary and Alternative Medicine, 2019, 19, 82.	3.7	73
307	Neutrophil Extracellular Traps Enhance Staphylococcus Aureus Vegetation Formation through Interaction with Platelets in Infective Endocarditis. Thrombosis and Haemostasis, 2019, 119, 786-796.	1.8	24
308	Investigation on Antibiotic-Resistance, Biofilm Formation and Virulence Factors in Multi Drug Resistant and Non Multi Drug Resistant Staphylococcus pseudintermedius. Microorganisms, 2019, 7, 702.	1.6	43
309	Virulence of methicillin-resistant Staphylococcus aureus modulated by the YycFG two-component pathway in a rat model of osteomyelitis. Journal of Orthopaedic Surgery and Research, 2019, 14, 433.	0.9	7
310	Transcriptional Regulation of <i>icaADBC</i> by both IcaR and TcaR in <i>Staphylococcus epidermidis</i> . Journal of Bacteriology, 2019, 201, .	1.0	20
311	Effect of fluorination/oxidation level of nano-structured titanium on the behaviors of bacteria and osteoblasts. Applied Surface Science, 2020, 502, 144077.	3.1	10
312	Biofilm formation and prevalence of adhesion genes among <i>Staphylococcus aureus</i> isolates from different food sources. MicrobiologyOpen, 2020, 9, e00946.	1.2	63
313	IgY Targeting Bacterial Quorum-Sensing Molecules in Implant-Associated Infections. Molecules, 2020, 25, 4027.	1.7	7
314	Small Alarmone Synthetases RelP and RelQ of Staphylococcus aureus Are Involved in Biofilm Formation and Maintenance Under Cell Wall Stress Conditions. Frontiers in Microbiology, 2020, 11, 575882.	1.5	10
315	Extracellular <scp>DNA</scp> builds and interacts with vibrio polysaccharide in the biofilm matrix formed by <i>Vibrio cholerae</i> . Environmental Microbiology Reports, 2020, 12, 594-606.	1.0	11
316	Benzyl isocyanate isolated from the leaves of <i>Psidium guajava</i> inhibits <i>Staphylococcus aureus</i> biofilm formation. Biofouling, 2020, 36, 1000-1017.	0.8	8

#	Article	IF	CITATIONS
317	Characterization of Clinical MRSA Isolates from Northern Spain and Assessment of Their Susceptibility to Phage-Derived Antimicrobials. Antibiotics, 2020, 9, 447.	1.5	12
318	<p>Tailoring Nanoparticle-Biofilm Interactions to Increase the Efficacy of Antimicrobial Agents Against Staphylococcus aureus</p> . International Journal of Nanomedicine, 2020, Volume 15, 4779-4791.	3.3	36
319	Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	307
320	A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microbial Pathogenesis, 2020, 148, 104431.	1.3	42
321	Surface Proteins of Staphylococcus epidermidis. Frontiers in Microbiology, 2020, 11, 1829.	1.5	46
322	Antibiofilm Activity of Acidic Phospholipase Isoform Isolated from Bothrops erythromelas Snake Venom. Toxins, 2020, 12, 606.	1.5	6
323	sarA-Dependent Antibiofilm Activity of Thymol Enhances the Antibacterial Efficacy of Rifampicin Against Staphylococcus aureus. Frontiers in Microbiology, 2020, 11, 1744.	1.5	30
324	Isolation, Characterization, and Comparison of Efficiencies of Bacteriophages to Reduce Planktonic and Biofilm-Associated Staphylococcus aureus. Journal of Health and Allied Sciences NU, 2020, 10, 102-108.	0.1	4
325	A Trimeric Autotransporter Enhances Biofilm Cohesiveness in Yersinia pseudotuberculosis but Not in Yersinia pestis. Journal of Bacteriology, 2020, 202, .	1.0	4
326	Evaluate the Effect of Zinc Oxide and Silver Nanoparticles on Biofilm and <i>icaA</i> Gene Expression in Methicillin-Resistant <i>Staphylococcus aureus</i> Isolated From Burn Wound Infection. Journal of Burn Care and Research, 2020, 41, 1253-1259.	0.2	16
327	2-Hydroxy-4-methoxybenzaldehyde from <i>Hemidesmus indicus</i> is antagonistic to <i>Staphylococcus epidermidis</i> biofilm formation. Biofouling, 2020, 36, 549-563.	0.8	13
328	Relationship between virulence factors and antimicrobial resistance in Staphylococcus aureus from bovine mastitis. Journal of Global Antimicrobial Resistance, 2020, 22, 792-802.	0.9	40
329	Genomic Analysis of Bovine Staphylococcus aureus Isolates from Milk To Elucidate Diversity and Determine the Distributions of Antimicrobial and Virulence Genes and Their Association with Mastitis. MSystems, 2020, 5, .	1.7	35
330	Subinhibitory Concentrations of Mupirocin Stimulate Staphylococcus aureus Biofilm Formation by Upregulating <i>cidA</i> . Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	33
331	Ability of biofilm production and molecular analysis of spa and ica genes among clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Research Notes, 2020, 13, 19.	0.6	26
332	Prevalence and characterisation of methicillin-resistant staphylococci from bovine bulk tank milk in England and Wales. Journal of Global Antimicrobial Resistance, 2020, 22, 139-144.	0.9	19
333	Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control, 2020, 112, 107154.	2.8	46
334	Genetic and Biochemical Analysis of CodY-Mediated Cell Aggregation in Staphylococcus aureus Reveals an Interaction between Extracellular DNA and Polysaccharide in the Extracellular Matrix. Journal of Bacteriology, 2020, 202, .	1.0	26

#	Article	IF	CITATIONS
335	Pathogenic characteristics of <i>Staphylococcus aureus</i> isolates from arthroplasty infections. International Journal of Artificial Organs, 2021, 44, 208-214.	0.7	0
336	Multidrug resistant staphylococci isolated from pigs with exudative epidermitis in North eastern Region of India. Letters in Applied Microbiology, 2021, 72, 535-541.	1.0	5
337	Persistence and environmental geochemistry transformation of antibiotic-resistance bacteria/genes in water at the interface of natural minerals with light irradiation. Critical Reviews in Environmental Science and Technology, 2022, 52, 2270-2301.	6.6	9
338	Therapeutic implications of <i>C. albicans-S. aureus</i> mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence, 2021, 12, 835-851.	1.8	37
339	The Correlation between icaA and icaD Genes with Biofilm Formation Staphylococcus epidermidis In Vitro. Folia Medica Indonesiana, 2021, 55, 251.	0.1	1
340	Characterization of Biofilm Producing Staphylococcus epidermidis Strains Isolated from Patients and Healthy People. Infection, Epidemiology and Microbiology, 2021, 7, 1-15.	0.0	0
341	Concerted dispersion of <i>Staphylococcus aureus</i> biofilm by bacteriophage and â€~green synthesized' silver nanoparticles. RSC Advances, 2021, 11, 1420-1429.	1.7	12
342	Genome-wide comparison of four MRSA clinical isolates from Germany and Hungary. PeerJ, 2021, 9, e10185.	0.9	6
343	A Rat Model of Orthopedic Implant-Associated Infection for Identification of Staphylococcal Biofilm Proteins. Methods in Molecular Biology, 2021, 2341, 117-125.	0.4	1
344	Quantification of Staphylococcus aureus Biofilm Formation by Crystal Violet and Confocal Microscopy. Methods in Molecular Biology, 2021, 2341, 69-78.	0.4	12
345	Tailoring nitric oxide release with additive manufacturing to create antimicrobial surfaces. Biomaterials Science, 2021, 9, 3100-3111.	2.6	16
346	Crosstalk Between Staphylococcus aureus and Innate Immunity: Focus on Immunometabolism. Frontiers in Immunology, 2020, 11, 621750.	2.2	22
347	Antibiofilm Activity of Small-Molecule ZY-214-4 Against Staphylococcus aureus. Frontiers in Microbiology, 2021, 12, 618922.	1.5	4
348	Salicylic acid stabilizes Staphylococcus aureus biofilm by impairing the agr quorum-sensing system. Scientific Reports, 2021, 11, 2953.	1.6	28
349	Identification of Eltrombopag as a Repurposing Drug Against Staphylococcus epidermidis and its Biofilms. Current Microbiology, 2021, 78, 1159-1167.	1.0	3
350	<i>In Vitro</i> Study of the Synergistic Effect of an Enzyme Cocktail and Antibiotics against Biofilms in a Prosthetic Joint Infection Model. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	7
351	Enzyme-Functionalized Mesoporous Silica Nanoparticles to Target Staphylococcus aureus and Disperse Biofilms. International Journal of Nanomedicine, 2021, Volume 16, 1929-1942.	3.3	27
352	Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature. Infection and Drug Resistance, 2021, Volume 14, 1155-1168.	1.1	57

ARTICLE IF CITATIONS # Characterization of biofilms and antimicrobial resistance of coagulase-negative <i>Staphylococcus</i> species involved with subclinical mastitis. Journal of Dairy Research, 2021, 88, 354 0.7 3 179-184. Novel carbazole-oxadiazoles as potential Staphylococcus aureus germicides. Pesticide Biochemistry 1.6 and Physiology, 2021, 175, 104849. Investigation of biofilm formation in methicillin-resistant Staphylococcus aureus associated with 356 1.1 1 bacteraemia in a tertiary hospital. Folia Microbiologica, 2021, 66, 741-749. Down-regulation of biofilm-associated genes in mecA-positive methicillin-resistant S. aureus treated 1.4 with M. communis extract and its antibacterial activity. AMB Express, 2021, 11, 85. Staphylococcus saprophyticus From Clinical and Environmental Origins Have Distinct Biofilm 358 12 1.5Composition. Frontiers in Microbiology, 2021, 12, 663768. Influence of Nutrient Media Compared to Human Synovial Fluid on the Antibiotic Susceptibility and Biofilm Gene Expression of Coagulase-Negative Staphylococci In Vitro. Antibiotics, 2021, 10, 790. 1.5 Bone biomaterials for overcoming antimicrobial resistance: Advances in non-antibiotic antimicrobial 360 8.3 53 approaches for regeneration of infected osseous tissue. Materials Today, 2021, 46, 136-154. Staphylococcus aureus: Biofilm Formation and Strategies Against it. Current Pharmaceutical Biotechnology, 2022, 23, 664-678. Biofilm formation and molecular analysis of intercellular adhesion gene cluster (icaABCD) among 362 Staphylococcus aureus strains isolated from children with adenoiditis. Iranian Journal of 0.8 5 Microbiology, 2021, 13, 458-463. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiology, 2021, 16, 1.0 1003-1021. Bovine Mastitis: Part I., O,, . 7 364 Biomaterial Functionalized Surfaces for Reducing Bacterial Adhesion and Infection., 2015, , 1-28. 365 Biofilm-Based Implant Infections in Orthopaedics. Advances in Experimental Medicine and Biology, 2015, 366 0.8 134 830, 29-46. Promising treatment strategies to combat biofilm infections: an updated review. Biofouling, 2020, 36, 367 0.8 1159-1181. Biofilm formation of Brazilian meticillin-resistant Staphylococcus aureus strains: prevalence of 368 0.7 18 biofilm determinants and clonal profiles. Journal of Medical Microbiology, 2016, 65, 286-297. Major components of orange oil inhibit Staphylococcus aureus growth and biofilm formation, and 24 alter its virulence factors. Journal of Medical Microbiology, 2016, 65, 688-695. Recombination-mediated remodelling of hostâ€"pathogen interactions during Staphylococcus aureus 370 1.0 39 niche adaptation. Microbial Genomics, 2015, 1, e000036. Staphylococcal Protein A (<i>spa</i>) Locus Is a Hot Spot for Recombination and Horizontal Gene 372 1.3 Transfer in Staphylococcus pseudintermedius. MSphere, 2020, 5, .

#	Article	IF	CITATIONS
373	Targeting fundamental pathways to disrupt Staphylococcus aureus survival: clinical implications of recent discoveries. JCI Insight, 2018, 3, .	2.3	19
374	<i>Staphylococcus epidermidis</i> device-related infections: pathogenesis and clinical management. Journal of Pharmacy and Pharmacology, 2008, 60, 1551-1571.	1.2	111
375	Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation. PLoS ONE, 2010, 5, e10790.	1.1	149
376	Structural Characterization of the Extracellular Polysaccharide from Vibrio cholerae O1 El-Tor. PLoS ONE, 2014, 9, e86751.	1.1	66
377	Characterisation of Pellicles Formed by Acinetobacter baumannii at the Air-Liquid Interface. PLoS ONE, 2014, 9, e111660.	1.1	75
378	Evaluation of Approaches to Monitor Staphylococcus aureus Virulence Factor Expression during Human Disease. PLoS ONE, 2015, 10, e0116945.	1.1	41
379	Effects of Subinhibitory Concentrations of Ceftaroline on Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms. PLoS ONE, 2016, 11, e0147569.	1.1	39
380	Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS ONE, 2017, 12, e0184172.	1.1	64
381	Staphylococcal Bap Proteins Build Amyloid Scaffold Biofilm Matrices in Response to Environmental Signals. PLoS Pathogens, 2016, 12, e1005711.	2.1	135
382	Convergence of Staphylococcus aureus Persister and Biofilm Research: Can Biofilms Be Defined as Communities of Adherent Persister Cells?. PLoS Pathogens, 2016, 12, e1006012.	2.1	121
383	The Comparison of Staphylococcus aureus Isolated From Blood and Wound Specimens for Genes Encoding Polysaccharide Intercellular Adhesion (PIA). Avicenna Journal of Clinical Microbiology and Infection, 2015, 2, 25171-25171.	0.2	2
384	The combined effect of surface chemistry and flow conditions on Staphylococcus epidermidis adhesion and ica operon expression. , 2012, 24, 386-402.		22
385	In Vitro Inhibition of Biofilm Formation by Staphylococcus Aureus Under the Action of Selected Plant Extracts. Folia Veterinaria, 2019, 63, 48-53.	0.2	7
386	Detection of the intercellular adhesion gene cluster (ica) in clinical Staphylococcus aureus isolates. GMS Hygiene and Infection Control, 2013, 8, Doc03.	0.2	27
387	Slime layer formation and the prevalence of mecA and aap genes in Staphylococcus epidermidis isolates. Journal of Infection in Developing Countries, 2011, 5, 034-040.	0.5	22
388	Study of biofilm formation in bacterial isolates from contact lens wearers. Indian Journal of Ophthalmology, 2020, 68, 23.	0.5	12
389	Characteristic profiles of biofilm, enterotoxins and virulence of <i>Staphylococcus aureus</i> isolates from dairy cows in Xinjiang Province, China. Journal of Veterinary Science, 2019, 20, e74.	0.5	10
390	Effects of Baseplates of Orthodontic Appliances with in situ generated Silver Nanoparticles on Cariogenic Bacteria: A Randomized, Doubleblind Cross-over Clinical Trial. Journal of Contemporary Dental Practice, 2015, 16, 291-298.	0.2	28

#	Article	IF	CITATIONS
391	Synthesis and 3D-QSAR of p-Hydroxybenzohydrazide Derivatives With Antimicrobial Activity Against Multidrug-Resistant Staphylococcus aureus. Journal of the Korean Chemical Society, 2010, 54, 77-87.	0.2	1
392	Biofilm Producing Staphylococcus epidermidis Strains Isolated From Clinical Samples in Tehran, Iran. Archives of Clinical Infectious Diseases, 2016, 11, .	0.1	3
393	Sub-Inhibitory Concentrations of Sodium Houttuyfonate in Combination with Erythromycin Inhibit Biofilm Formation and Expression of IcaA in Staphylococcus epidermidis. Jundishapur Journal of Microbiology, 2019, 12, .	0.2	2
394	High Prevalence of Icaadbc Genes Responsible for Biofilm Formation in Clinical Isolates of Staphylococcus aureus From Hospitalized Children. Archives of Pediatric Infectious Diseases, 2015, 3, .	0.1	9
395	Comparison of Biofilm Formation between Methicillin-Resistant and Methicillin-Susceptible Isolates of Staphylococcus aureus. Iranian Biomedical Journal, 2016, 20, 175-81.	0.4	39
396	Selection and Identification of Novel Antibacterial Agents against Planktonic Growth and Biofilm Formation of <i>Enterococcus faecalis</i> . Journal of Medicinal Chemistry, 2021, 64, 15037-15052.	2.9	8
398	Molecular Diagnosis of Prosthetic Joint Infection. , 2012, , 193-211.		1
399	Staphylococcus epidermidis and Other Coagulase-Negative Staphylococci. , 2012, , 689-695.e6.		0
400	Biofilm: The Haven for Staphylococcus epidermidis in Post-operative Endophthalmitis. Journal of Clinical & Experimental Ophthalmology, 2014, 05, .	0.1	1
401	Genome Structure and Variability in Coagulase-Negative Staphylococci. , 0, , 44-57.		0
402	Preliminary study of biofilm formation properties and antibiotic susceptibility pattern of MRSA and MSSA isolates obtained in Yogyakarta, Indonesia. Malaysian Journal of Microbiology, 2015, , .	0.1	0
403	Detection of Intracellular Adhesion (ica) and Biofilm Formation Genes in Staphylococcus aureus Isolates from Clinical Samples. Research in Molecular Medicine, 2017, 5, 40-43.	0.1	1
404	Inhibición de la expresión del sistema agr de Staphylococcus aureus resistente a meticilina mediante el uso de polifenoles totales de hojas de aguacate mexicano (Persea americana var. drymifolia). Nova Scientia, 2017, 9, 200.	0.0	1
405	Molecular Characteristics of Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Isolates Causing Urinary Tract Infections. Archives of Clinical Infectious Diseases, 2018, 13, .	0.1	2
406	Biofilm Formation in Staphylococcus epidermidis Isolated from Hospitalized Patients. Archives of Clinical Infectious Diseases, 2019, 14, .	0.1	1
408	Assessing efficiency of synthetic peptide-containing spray in combination therapy of chronic generalized periodontitis. Russian Journal of Infection and Immunity, 2019, 9, 549-558.	0.2	5
409	Aplicación de microorganismos asociados a biopelÃculas. Logos Ciencia & TecnologÃa, 2019, 12, .	0.0	0
411	Structural characterization, antioxidant, and antibiofilm activities of <i>Coffea canephora</i> green seeds. Journal of Complementary and Integrative Medicine, 2021, 18, 107-112.	0.4	2

	Сітатіо	n Report	
#	Article	IF	CITATIONS
412	Correlation between mazEF Toxin-Antitoxin System Expression and Methicillin Susceptibility in Staphylococcus aureus and Its Relation to Biofilm-Formation. Microorganisms, 2021, 9, 2274.	1.6	4
413	The High Impact of Staphylococcus aureus Biofilm Culture Medium on In Vitro Outcomes of Antimicrobial Activity of Wound Antiseptics and Antibiotic. Pathogens, 2021, 10, 1385.	1.2	15
415	Essential Oils as an Innovative Approach against Biofilm of Multidrug-ResistantStaphylococcus aureus. , 0, , .		4
416	Marine Algae Polysaccharides - a Promising Means of Pathogenetic Therapy of Infectious Diarrhea. Antibiotiki I Khimioterapiya, 2020, 65, 42-51.	0.1	1
417	Quantification of biofilm production on polystyrene by Listeria, Escherichia coli and Staphylococcus aureus isolated from a poultry slaughterhouse. Brazilian Journal of Microbiology, 2010, 41, 1082-5.	0.8	12
418	Glucose & sodium chloride induced biofilm production & ica operon in clinical isolates of staphylococci. Indian Journal of Medical Research, 2013, 138, 262-6.	0.4	14
419	Phenotypic and Genotypic Characteristics and Resistance Profile of Staphylococcus spp. from Bovine Mastitis. Acta Scientiae Veterinariae, 0, 48, .	0.2	2
420	<i>Staphylococcus pseudintermedius</i> : Is it a real threat to human health?. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 980-986.	0.1	0
421	Fascaplysin derivatives binding to DNA via unique cationic five-ring coplanar backbone showed potent antimicrobial/antibiofilm activity against MRSA inÂvitro and inÂvivo. European Journal of Medicinal Chemistry, 2022, 230, 114099.	2.6	10
422	Potential Mechanisms of Quercetin Influence the ClfB Protein During Biofilm Formation of Staphylococcus aureus. Frontiers in Pharmacology, 2022, 13, 825489.	1.6	8
424	Molecular Mechanisms of Antimicrobial Resistance in Staphylococcus aureus Biofilms. , 2022, , 291-314.		6
425	Staphylococcus aureus surface protein G (sasG) allelic variants: correlation between biofilm formation and their prevalence in methicillin-resistant S.Âaureus (MRSA) clones. Research in Microbiology, 2022, 173, 103921.	1.0	6
426	From the Physicochemical Characteristic of Novel Hesperetin Hydrazone to Its In Vitro Antimicrobial Aspects. Molecules, 2022, 27, 845.	1.7	1
427	D-Tryptophan governs biofilm formation rates and bacterial interaction in and. Journal of Biosciences, 2019, 44, .	0.5	4
428	Antimicrobial and anti-biofilm activity of manuka essential oil against Listeria monocytogenes and Staphylococcus aureus of food origin. Italian Journal of Food Safety, 2022, 11, 10039.	0.5	0
429	Anti-Biofilm Effects of <i>Torilis japonica</i> Ethanol Extracts against <i>Staphylococcus aureus</i> . Journal of Microbiology and Biotechnology, 2022, 32, 220-227.	0.9	3
430	A critical review of marine biofilms on metallic materials. Npj Materials Degradation, 2022, 6, .	2.6	31
431	The Transcription Factor SpoVG Is of Major Importance for Biofilm Formation of Staphylococcus epidermidis under In Vitro Conditions, but Dispensable for In Vivo Biofilm Formation. International Journal of Molecular Sciences, 2022, 23, 3255.	1.8	3

#	Article	IF	CITATIONS
432	Experimental Polymorphism Survey in Intergenic Regions of the icaADBCR Locus in Staphylococcus aureus Isolates from Periprosthetic Joint Infections. Microorganisms, 2022, 10, 600.	1.6	7
433	Staphylococcus aureus utilizes environmental RNA as a building material in specific polysaccharide-dependent biofilms. Npj Biofilms and Microbiomes, 2022, 8, 17.	2.9	10
434	Insights on catheter-related bloodstream infections: a prospective observational study on the catheter colonization and multidrug resistance. Journal of Hospital Infection, 2022, 123, 43-51.	1.4	3
435	Activity of Moxifloxacin Against Biofilms Formed by Clinical Isolates of Staphylococcus aureus Differing by Their Resistant or Persister Character to Fluoroquinolones. Frontiers in Microbiology, 2021, 12, 785573.	1.5	5
436	Interactions between the foreign body reaction and <i>Staphylococcus aureus</i> biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Critical Reviews in Microbiology, 2022, 48, 624-640.	2.7	10
437	Deinococcus radiodurans Exopolysaccharide Inhibits Staphylococcus aureus Biofilm Formation. Frontiers in Microbiology, 2021, 12, 712086.	1.5	5
438	Influence of Nisin-Biogel at Subinhibitory Concentrations on Virulence Expression in Staphylococcus aureus Isolates from Diabetic Foot Infections. Antibiotics, 2021, 10, 1501.	1.5	2
439	The <i>de novo</i> Purine Biosynthesis Pathway Is the Only Commonly Regulated Cellular Pathway during Biofilm Formation in TSB-Based Medium in Staphylococcus aureus and Enterococcus faecalis. Microbiology Spectrum, 2021, 9, e0080421.	1.2	10
440	No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens, 2022, 11, 471.	1.2	12
459	Incidence of biofilm formation among MRSA and MSSA clinical isolates from hospitalized patients in Israel. Journal of Applied Microbiology, 2022, 133, 922-929.	1.4	15
460	Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. International Journal of Molecular Sciences, 2022, 23, 5958.	1.8	30
461	Proteome of Staphylococcus aureus Biofilm Changes Significantly with Aging. International Journal of Molecular Sciences, 2022, 23, 6415.	1.8	8
462	Whole-Genome Sequencing of <i>Staphylococcus aureus</i> and <i>Staphylococcus haemolyticus</i> Clinical Isolates from Egypt. Microbiology Spectrum, 2022, 10, .	1.2	7
463	Phenotypic and Genotypic Detection of Biofilm-Forming Staphylococcus aureus from Different Food Sources in Bangladesh. Biology, 2022, 11, 949.	1.3	13
464	Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a â€~green approach'. Biofouling, 2022, 38, 455-481.	0.8	2
465	<i>Staphylococcus aureus</i> cell wall maintenance – the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiology Reviews, 2022, 46, .	3.9	15
466	Targeting hydrophobicity in biofilm-associated protein (Bap) as a novel antibiofilm strategy against Staphylococcus aureus biofilm. Biophysical Chemistry, 2022, 289, 106860.	1.5	2
467	Cuprous Oxide Nanoparticles Decorated Fabric Materials with Anti-biofilm Properties. ACS Applied Bio Materials, 2022, 5, 4310-4320.	2.3	13

#	Article	IF	CITATIONS
468	Molecular Targets for Antibody-Based Anti-Biofilm Therapy in Infective Endocarditis. Polymers, 2022, 14, 3198.	2.0	3
469	Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. Journal of Biological Chemistry, 2022, 298, 102352.	1.6	18
470	Characterization of the phenotypes of methicillin- and vancomycin-susceptible Staphylococcus argenteus after vancomycin passages. Journal of Global Antimicrobial Resistance, 2022, , .	0.9	0
471	Tachyplesin I Analogue Peptide as an Effective Antimicrobial Agent against <i>Candida albicans</i> – <i>Staphylococcus aureus</i> Poly-Biofilm Formation and Mixed Infection. ACS Infectious Diseases, 2022, 8, 1839-1850.	1.8	4
472	Teg58, a small regulatory RNA, is involved in regulating arginine biosynthesis and biofilm formation in Staphylococcus aureus. Scientific Reports, 2022, 12, .	1.6	8
473	Inhibition of Staphylococcus aureus biofilm formation by gurmarin, a plant-derived cyclic peptide. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	4
474	Coagulase-Negative Staphylococci and Micrococcaceae. , 2023, , 724-729.e5.		0
475	The staphylococcal biofilm protein Aap mediates cell–cell adhesion through mechanically distinct homophilic and lectin interactions. , 2022, 1, .		4
476	A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics, 2023, 12, 12.	1.5	31
477	Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Frontiers in Microbiology, 0, 13, .	1.5	2
478	Regulation of Staphylococcus aureus Virulence and Application of Nanotherapeutics to Eradicate S. aureus Infection. Pharmaceutics, 2023, 15, 310.	2.0	6
479	The Effect of Nisin and Chloramphenicol Combinationon Staphylococcus aureus ATCC 6538 Biofilm Structure. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 0, , .	0.1	0
480	Virulent potential of methicillin-resistant and methicillin-susceptible Staphylococcus pseudintermedius in dogs. Acta Tropica, 2023, 242, 106911.	0.9	2
482	Characterization of chicken eggs associated <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> for biofilm production and antimicrobial resistance traits. Animal Biotechnology, 0, , 1-12.	0.7	1
484	Disruption of Staphylococcus aureus Biofilms with Purified Moringa oleifera Leaf Extract Protein. Protein and Peptide Letters, 2023, 30, 116-125.	0.4	0
485	In Vitro Inhibition of Growth, Biofilm Formation, and Persisters of <i>Staphylococcus aureus</i> by Pinaverium Bromide. ACS Omega, 2023, 8, 9652-9661.	1.6	0
486	Anti-infective characteristics of a new Carbothane ventricular assist device driveline. Biofilm, 2023, 5, 100124.	1.5	2
487	Disruption of Established Bacterial and Fungal Biofilms by a Blend of Enzymes and Botanical Extracts. Journal of Microbiology and Biotechnology, 2023, 33, 715-723.	0.9	Ο

		Сітатіоі	CITATION REPORT		
#	Article		IF	CITATIONS	
502	The biofilm proteome of Staphylococcus aureus and its implications for therapeutic int biofilm-associated infections. Advances in Protein Chemistry and Structural Biology, 20	cerventions to 023, , .	1.0	1	
504	Antibiofilm activity of marine microbial natural products: potential peptide- and polyke molecules from marine microbes toward targeting biofilm-forming pathogens. Journal Medicines, 0, , .	tide-derived of Natural	1.1	1	
508	The glycobiology of microbial infectious disease. , 2024, , 285-322.			0	
509	Coagulase negative staphylococci. , 2024, , 681-704.			1	