Genetic quality of individuals impacts population dynamics

Animal Conservation 10, 275-283

DOI: 10.1111/j.1469-1795.2007.00120.x

Citation Report

#	Article	IF	CITATIONS
1	The Environmental Dependence of Inbreeding Depression in a Wild Bird Population. PLoS ONE, 2007, 2, e1027.	1.1	38
2	Inbreeding and population dynamics: implications for conservation strategies. Animal Conservation, 2007, 10, 284-285.	1.5	0
3	The need for a better understanding of inbreeding effects on population growth. Animal Conservation, 2007, 10, 286-287.	1.5	8
4	Population size is not genetic quality. Animal Conservation, 2007, 10, 288-290.	1.5	6
5	Genetic stochasticity, mean fitness of individuals and population dynamics. Animal Conservation, 2007, 10, 291-292.	1.5	1
6	Evolutionary Aspects of Functional and Pseudogene Members of the Phytochrome Gene Family in Scots Pine. Journal of Molecular Evolution, 2008, 67, 222-232.	0.8	16
7	Longâ€term survival despite low genetic diversity in the critically endangered Madagascar fishâ€eagle. Molecular Ecology, 2009, 18, 54-63.	2.0	63
8	Spatioâ€ŧemporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (⟨i⟩Arvicola terrestris⟨li⟩) metapopulations. Molecular Ecology, 2009, 18, 80-92.	2.0	59
9	Spatial and temporal variation in a suite of lifeâ€history traits in two species of wolf spider. Ecological Entomology, 2008, 33, 488-496.	1.1	23
10	Genetic Evaluation of Isolated Populations for Use in Reintroductions Reveals Significant Genetic Bottlenecks in Potential Stocks of Sacramento Perch. Transactions of the American Fisheries Society, 2008, 137, 1764-1777.	0.6	7
11	Genetics in conservation and wildlife management: a revolution since Caughley. Wildlife Research, 2009, 36, 70.	0.7	24
12	Genetic diversity and population differentiation in the endangered Siberian flying squirrel (Pteromys) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
13	When it comes to inbreeding: slower is better. Molecular Ecology, 2009, 18, 4521-4522.	2.0	11
14	Inbreeding–environment interactions increase extinction risk. Animal Conservation, 2009, 12, 54-61.	1.5	55
15	Improving the viability of large-mammal populations by using habitat and landscape models to focus conservation planning. Wildlife Research, 2010, 37, 401.	0.7	23
16	Albatrosses, eagles and newts, Oh My!: exceptions to the prevailing paradigm concerning genetic diversity and population viability?. Animal Conservation, 2010, 13, 448-457.	1.5	56
18	Reproductive allocation in female wolf and nursery-web spiders. Journal of Arachnology, 2011, 39, 22-29.	0.3	6
19	Determinants of differential reproductive allocation in wolf and nursery-web spiders. Journal of Arachnology, 2011, 39, 139-146.	0.3	2

#	Article	IF	CITATIONS
20	Genetic consequences of low local tree densities $\hat{a}\in$ Implications for the management of naturally rare, insect pollinated species in temperate forests. Forest Ecology and Management, 2011, 262, 1047-1053.	1.4	27
21	Analysis of the effects of early nutritional environmenton inbreeding depression in Drosophila melanogaster. Journal of Evolutionary Biology, 2011, 24, 196-205.	0.8	12
22	Population dynamics of Walia ibex (<i>Capra walie</i>) at Simien Mountains National Park, Ethiopia. African Journal of Ecology, 2011, 49, 292-300.	0.4	6
23	Reduced genetic diversity and isolation of remnant ocelot populations occupying a severely fragmented landscape in southern Texas. Animal Conservation, 2011, 14, 608-619.	1.5	36
24	Environmentâ€dependent inbreeding depression: its ecological and evolutionary significance. New Phytologist, 2011, 189, 395-407.	3.5	135
25	INBREEDING DEPRESSION INCREASES WITH ENVIRONMENTAL STRESS: AN EXPERIMENTAL STUDY AND META-ANALYSIS. Evolution; International Journal of Organic Evolution, 2011, 65, 246-258.	1.1	302
26	Inbreeding-environment interactions for fitness: complex relationships between inbreeding depression and temperature stress in a seed-feeding beetle. Evolutionary Ecology, 2011, 25, 25-43.	0.5	41
27	Analysis of the effects of inbreeding on lifespan and starvation resistance in Drosophila melanogaster. Genetica, 2011, 139, 525-533.	0.5	11
28	Levels of gene flow among populations of a wolf spider in a recently fragmented habitat: current versus historical rates. Conservation Genetics, 2011, 12, 331-335.	0.8	20
29	Inbreeding and caste-specific variation in immune defence in the ant Formica exsecta. Behavioral Ecology and Sociobiology, 2011, 65, 899-907.	0.6	13
30	Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1195-1202.	1.2	135
31	Intraspecific Variation in the Thermal Biology of <l>Rabidosa rabida</l> (Araneae: Lycosidae) (Walckenaer) From the Mountains of Arkansas. Environmental Entomology, 2012, 41, 1631-1637.	0.7	13
32	Genetic diversity, structure, and size of an endangered brown bear population threatened by highway construction in the Pindos Mountains, Greece. European Journal of Wildlife Research, 2012, 58, 511-522.	0.7	58
34	Inbreeding–stress interactions: evolutionary and conservation consequences. Annals of the New York Academy of Sciences, 2012, 1256, 33-48.	1.8	82
35	Applications and techniques for non-invasive faecal genetics research in felid conservation. European Journal of Wildlife Research, 2013, 59, 1-16.	0.7	68
36	Evaluating the effectiveness of road mitigation measures. Biodiversity and Conservation, 2013, 22, 425-448.	1.2	140
37	A cat's tale: the impact of genetic restoration on Florida panther population dynamics and persistence. Journal of Animal Ecology, 2013, 82, 608-620.	1.3	54
38	A multiscale analysis of gene flow for the <scp>N</scp> ew <scp>E</scp> ngland cottontail, an imperiled habitat specialist in a fragmented landscape. Ecology and Evolution, 2014, 4, 1853-1875.	0.8	33

#	ARTICLE	IF	CITATIONS
39	Distribution and genetic status of brown bears in FYR Macedonia: implications for conservation. Acta Theriologica, 2014, 59, 119-128.	1.1	12
40	Genetic diversity and parasite prevalence in two species of bumblebee. Journal of Insect Conservation, 2014, 18, 667-673.	0.8	11
41	Grey squirrels in central Italy: a new threat for endemic red squirrel subspecies. Biological Invasions, 2014, 16, 2339-2350.	1.2	16
42	Do founder size, genetic diversity and structure influence rates of expansion of North American grey squirrels in Europe?. Diversity and Distributions, 2014, 20, 918-930.	1.9	39
43	Rapid genetic restoration of a keystone species exhibiting delayed demographic response. Molecular Ecology, 2015, 24, 6120-6133.	2.0	3
44	Generation-based life table analysis reveals manifold effects of inbreeding on the population fitness in Plutella xylostella. Scientific Reports, 2015, 5, 12749.	1.6	11
45	Carry-over effects of food supplementation on recruitment and breeding performance of long-lived seabirds. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150762.	1.2	8
46	Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns. PLoS ONE, 2016, 11, e0151500.	1.1	45
47	The strength of the association between heterozygosity and probability of interannual local recruitment increases with environmental harshness in blue tits. Ecology and Evolution, 2016, 6, 8857-8869.	0.8	16
48	Spatial patterns of road mortality of medium–large mammals in Mato Grosso do Sul, Brazil. Wildlife Research, 2017, 44, 135.	0.7	52
49	Impact of Climate Change on Biodiversity. , 2017, , 595-620.		0
50	Stronger effects of heterozygosity on survival in harsher environments. Journal of Fish Biology, 2018, 93, 1102-1106.	0.7	4
51	Predicting wildlife road-crossing probability from roadkill data using occupancy-detection models. Science of the Total Environment, 2018, 642, 629-637.	3.9	25
52	Demographic and genetic collapses in spatially structured populations: insights from a longâ€ŧerm survey in wild fish metapopulations. Oikos, 2019, 128, 196-207.	1.2	15
53	The Richness and Diversity of Plant Pollinator (Ordo: Lepidoptera) in Cigeulis District, Banten, Indonesia. Journal of Physics: Conference Series, 2019, 1175, 012008.	0.3	0
54	Cryptic Lineages and a Population Dammed to Incipient Extinction? Insights into the Genetic Structure of a Mekong River Catfish. Journal of Heredity, 2019, 110, 535-547.	1.0	6
55	Do roads act as a barrier to gene flow of subterranean small mammals? A case study with Ctenomys minutus. Conservation Genetics, 2019, 20, 385-393.	0.8	7
56	Road effects on bat activity depend on surrounding habitat type. Science of the Total Environment, 2019, 660, 340-347.	3.9	28

#	Article	IF	CITATIONS
57	Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera) Tj ETQq0 0 0 rg Russian population. Conservation Genetics, 2021, 22, 397-410.	gBT /Overl 0.8	ock 10 Tf 50 7 8
59	Impact of Climate Change on Biodiversity. , 2012, , 505-530.		7
60	Mammalian Collection on Noah's Ark: The Effects of Beauty, Brain and Body Size. PLoS ONE, 2013, 8, e63110.	1.1	58
61	Individual variability and environmental conditions: effects on zooplankton cohort dynamics. Marine Ecology - Progress Series, 2013, 486, 59-78.	0.9	3
62	Food abundance, kittiwake life histories, and colony dynamics in the Northeastern Pacific: implications of climate change and regime shifts. Marine Ecology - Progress Series, 2014, 515, 251-263.	0.9	3
63	Effects of variability among individuals on zooplankton population dynamics under environmental conditions. Marine Ecology - Progress Series, 2017, 564, 9-28.	0.9	10
64	Conservation genetics of American crocodile, Crocodylus acutus, populations in Pacific Costa Rica. Nature Conservation, 0, 17, 1-17.	0.0	7
65	Assessing the genetic integrity of captive and wild populations for reintroduction programs: the case of Cabot's Tragopan in China. Chinese Birds: the International Journal of Ornithology, 2011, 2, 65-71.	0.6	O
66	Impact of Climate Change on Biodiversity. , 2015, , 1-21.		1
68	The Genetic Differentiation of Common Toads on UK Farmland: The Effect of Straight-Line (Euclidean) Distance and Isolation by Barriers in a Heterogeneous Environment. Journal of Herpetology, 2020, 54, 118.	0.2	1
69	Fine scale genetics reveals the subtle negative effects of roads on an endangered bat. Science of the Total Environment, 2023, 869, 161705.	3.9	1