Multiple loss-of-function of Arabidopsis gibberellin reco down a gibberellin signal

Plant Journal

50, 958-966

DOI: 10.1111/j.1365-313x.2007.03098.x

Citation Report

#	Article	IF	CITATIONS
1	Molecular Interactions of a Soluble Gibberellin Receptor, GID1, with a Rice DELLA Protein, SLR1, and Gibberellin. Plant Cell, 2007, 19, 2140-2155.	6.6	362
2	GA Perception and Signal Transduction: Molecular Interactions of the GA Receptor GID1 with GA and the DELLA Protein SLR1 in Rice. Plant Cell, 2007, 19, 2095-2097.	6.6	17
3	The gibberellin biosynthetic genes <i>AtGA20ox1</i> and <i>AtGA20ox2</i> act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant Journal, 2008, 53, 488-504.	5.7	333
4	Ubiquitin ligases mediate growth and development by promoting protein death. Current Opinion in Plant Biology, 2007, 10, 624-632.	7.1	150
5	Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1. Plant Molecular Biology, 2008, 68, 1-16.	3.9	58
6	Evolutionarily Conserved DELLAâ€mediated Gibberellin Signaling in Plants. Journal of Integrative Plant Biology, 2008, 50, 825-834.	8.5	23
7	Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 2008, 456, 459-463.	27.8	594
8	Understanding gibberellic acid signaling—are we there yet?. Current Opinion in Plant Biology, 2008, 11, 9-15.	7.1	151
9	Chapter 6 Molecular Biology of Gibberellins Signaling in Higher Plants. International Review of Cell and Molecular Biology, 2008, 268, 191-221.	3.2	51
10	GID1-mediated gibberellin signaling in plants. Trends in Plant Science, 2008, 13, 192-199.	8.8	184
11	Transcriptional factor interaction: a central step in DELLA function. Current Opinion in Genetics and Development, 2008, 18, 295-303.	3.3	94
12	Molecular Aspects of Seed Dormancy. Annual Review of Plant Biology, 2008, 59, 387-415.	18.7	1,143
13	Elucidating the Germination Transcriptional Program Using Small Molecules Â. Plant Physiology, 2008, 147, 143-155.	4.8	104
14	Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. Journal of Experimental Botany, 2008, 59, 2057-2070.	4.8	37
15	Characterization of Gibberellin Receptor Mutants of Barley (Hordeum vulgare L.). Molecular Plant, 2008, 1, 285-294.	8.3	47
16	SOMNUS, a CCCH-Type Zinc Finger Protein in <i>Arabidopsis</i> , Negatively Regulates Light-Dependent Seed Germination Downstream of PIL5. Plant Cell, 2008, 20, 1260-1277.	6.6	282
17	Proteolysis-Independent Downregulation of DELLA Repression in <i>Arabidopsis</i> by the Gibberellin Receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell, 2008, 20, 2447-2459.	6.6	144
18	Release of the Repressive Activity of Rice DELLA Protein SLR1 by Gibberellin Does Not Require SLR1 Degradation in the <i>gid2</i> Mutant. Plant Cell, 2008, 20, 2437-2446.	6.6	100

#	Article	IF	CITATIONS
19	Seed Dormancy and Germination. The Arabidopsis Book, 2008, 6, e0119.	0.5	279
20	Gibberellin Metabolism, Perception and Signaling Pathways in Arabidopsis. The Arabidopsis Book, 2008, 6, e0103.	0.5	207
21	Global Identification of DELLA Target Genes during Arabidopsis Flower Development Â. Plant Physiology, 2008, 147, 1126-1142.	4.8	102
22	The Angiosperm Gibberellin-GID1-DELLA Growth Regulatory Mechanism: How an "Inhibitor of an Inhibitor―Enables Flexible Response to Fluctuating Environments. Plant Cell, 2009, 21, 1328-1339.	6.6	297
23	Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 2009, 60, 1979-1989.	4.8	355
24	Triple Loss of Function of Protein Phosphatases Type 2C Leads to Partial Constitutive Response to Endogenous Abscisic Acid Â. Plant Physiology, 2009, 150, 1345-1355.	4.8	252
25	Shedding light on gibberellic acid signalling. Current Opinion in Plant Biology, 2009, 12, 57-62.	7.1	112
26	Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology, 2009, 69, 463-472.	3.9	290
27	Analyses of <i>GA20ox</i> ―and <i>GID1</i> â€overâ€expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant Journal, 2009, 58, 989-1003.	5.7	161
28	Differential expression and affinities of Arabidopsis gibberellin receptors can explain variation in phenotypes of multiple knockâ€out mutants. Plant Journal, 2009, 60, 48-55.	5.7	52
29	Cloning and Expression Profile of Gibberellin Insensitive Dwarf GID1 Homologous Genes from Cotton. Acta Agronomica Sinica, 2009, 35, 1822-1830.	0.3	3
30	è₱æ•°ā;ā,‹ā,,ãf™ãf¬ãfªãf³å⊷å®1体ã®å^†æ‹å^¶å¾j機構 ã,•ã,°ãfŠãf«ã,'ä¼ã•ã,‹ç›,手ã•ã®â€œç›,性á	à€ã,¢¢è¦∙l	Kagaku To S
31	Loss-of-function of DELLA protein SLN1 activates GA signaling in barley aleurone. Acta Physiologiae Plantarum, 2010, 32, 789-800.	2.1	7
32	Molecular cloning and expression analysis of an F-box protein gene responsive to plant hormones in Brassica napus. Molecular Biology Reports, 2010, 37, 1037-1044.	2.3	18
33	Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Molecular Biology, 2010, 73, 67-87.	3.9	130
34	The perception of gibberellins: clues from receptor structure. Current Opinion in Plant Biology, 2010, 13, 503-508.	7.1	51
35	Gibberellin-induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-4. Plant Breeding, 2010, 129, 87-91.	1.9	26
36	The APETALA-2-Like Transcription Factor OsAP2-39 Controls Key Interactions between Abscisic Acid and Gibberellin in Rice. PLoS Genetics, 2010, <u>6, e1001098.</u>	3.5	161

		15	0
#	ARTICLE	IF	CHATIONS
37	Flower Development. The Arabidopsis Book, 2010, 8, e0127.	0.5	227
38	Plant Hormones. , 2010, , 9-125.		6
39	Dormancy in Plant Seeds. Topics in Current Genetics, 2010, , 43-67.	0.7	30
40	Seed Germination. , 2010, , 383-404.		3
41	Plant Nuclear Hormone Receptors: A Role for Small Molecules in Protein-Protein Interactions. Annual Review of Cell and Developmental Biology, 2010, 26, 445-469.	9.4	93
42	Gibberellin control of stamen development: a fertile field. Trends in Plant Science, 2011, 16, 568-578.	8.8	195
43	An Updated GA Signaling â€~Relief of Repression' Regulatory Model. Molecular Plant, 2011, 4, 601-606.	8.3	61
44	The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 2011, 21, R338-R345.	3.9	464
45	Hormone Signalling Crosstalk in Plant Growth Regulation. Current Biology, 2011, 21, R365-R373.	3.9	408
46	A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Molecular Biology Reports, 2011, 38, 191-197.	2.3	33
47	Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. Journal of Experimental Botany, 2011, 62, 5131-5147.	4.8	109
48	<i>SPINDLY</i> , a Negative Regulator of Gibberellic Acid Signaling, Is Involved in the Plant Abiotic Stress Response Â. Plant Physiology, 2011, 157, 1900-1913.	4.8	93
49	Gibberellin Signaling: A Theme and Variations on DELLA Repression. Plant Physiology, 2012, 160, 83-92.	4.8	219
50	Evaluating the potential of SHI expression as a compacting tool for ornamental plants. Plant Science, 2012, 187, 19-30.	3.6	7
51	The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Science Research, 2012, 22, 1-25.	1.7	192
52	Similarity and distinction between organ-specific gibberellin-modulated genome expression between Arabidopsis and rice. Environmental and Experimental Botany, 2012, 78, 127-137.	4.2	0
53	Molecular cloning and expression analysis of a RGA-like gene responsive to plant hormones in Brassica napus. Molecular Biology Reports, 2012, 39, 1957-1962.	2.3	11
54	DELLA-Interacting SWI3C Core Subunit of Switch/Sucrose Nonfermenting Chromatin Remodeling Complex Modulates Gibberellin Responses and Hormonal Cross Talk in Arabidopsis. Plant Physiology, 2013, 163, 305-317.	4.8	98

#	Article	IF	CITATIONS
55	Overexpression of the Galega orientalis gibberellin receptor improves biomass production in transgenic tobacco. Plant Physiology and Biochemistry, 2013, 73, 1-6.	5.8	14
56	Molecular characterization of three GIBBERELLIN-INSENSITIVE DWARF1 homologous genes in hexaploid wheat. Journal of Plant Physiology, 2013, 170, 432-443.	3.5	19
57	Chemical screening of an inhibitor for gibberellin receptors based on a yeast two-hybrid system. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1096-1098.	2.2	14
58	A <scp>GAL</scp> 4â€based targeted activation tagging system in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2013, 73, 357-367.	5.7	35
59	Computational insight into novel molecular recognition mechanism of different bioactive GAs and the Arabidopsis receptor GID1A. Journal of Molecular Modeling, 2013, 19, 4613-4624.	1.8	2
60	Lifting DELLA Repression of Arabidopsis Seed Germination by Nonproteolytic Gibberellin Signaling. Plant Physiology, 2013, 162, 2125-2139.	4.8	78
61	HONSU, a Protein Phosphatase 2C, Regulates Seed Dormancy by Inhibiting ABA Signaling in Arabidopsis. Plant and Cell Physiology, 2013, 54, 555-572.	3.1	74
62	BRAHMA ATPase of the SWI/SNF Chromatin Remodeling Complex Acts as a Positive Regulator of Gibberellin-Mediated Responses in Arabidopsis. PLoS ONE, 2013, 8, e58588.	2.5	69
63	The roles of the GA receptors <i>GID1a</i> , <i>GID1b</i> , and <i>GID1c</i> in <i>sly1</i> -independent GA signaling. Plant Signaling and Behavior, 2014, 9, e28030.	2.4	47
64	Cytosolic Activity of the Cibberellin Receptor GIBBERELLIN INSENSITIVE DWARF1A. Plant and Cell Physiology, 2014, 55, 1727-1733.	3.1	16
66	Regulatory Networks Acted Upon by the GID1–DELLA System After Perceiving Gibberellin. The Enzymes, 2014, 35, 1-25.	1.7	6
67	Gibberellin Implication in Plant Growth and Stress Responses. , 2014, , 119-161.		5
68	Role of the gibberellin receptors <scp>GID</scp> 1 during fruitâ€set in Arabidopsis. Plant Journal, 2014, 79, 1020-1032.	5.7	68
69	Regulation of Flowering by Endogenous Signals. Advances in Botanical Research, 2014, , 63-102.	1.1	11
70	Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends in Plant Science, 2015, 20, 515-524.	8.8	95
71	Loss ofArabidopsis thalianaSeed Dormancy is Associated with Increased Accumulation of the GID1 GA Hormone Receptors. Plant and Cell Physiology, 2015, 56, 1773-1785.	3.1	54
72	The Arabidopsis MYB96 transcription factor plays a role in seed dormancy. Plant Molecular Biology, 2015, 87, 371-381.	3.9	63
73	Gibberellin Signaling in Plant Innate Immunity. Signaling and Communication in Plants, 2015, , 383-401.	0.7	2

~			-		
$C1^{-}$	ΓΔΤΙ	ON	୍ବାହ	FD	OPT

#	Article	IF	CITATIONS
74	A brachytic dwarfism trait (<i>dw</i>) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor <i>PpeGID1c</i> . New Phytologist, 2016, 210, 227-239.	7.3	55
75	Cloning and characterization of CaGID1s and CaGAI in Capsicum annuum L Journal of Integrative Agriculture, 2016, 15, 775-784.	3.5	4
76	The <scp>E3 SUMO</scp> ligase <scp>AtSIZ1</scp> functions in seed germination in <i>Arabidopsis</i> . Physiologia Plantarum, 2016, 158, 256-271.	5.2	12
79	Single nucleotide polymorphisms in two GID1 orthologs associate with growth and wood property traits in Populus tomentosa. Tree Genetics and Genomes, 2016, 12, 1.	1.6	1
80	Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 2016, 57, 660-674.	3.1	260
81	Trails to the gibberellin receptor, GIBBERELLIN INSENSITIVE DWARF1. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1029-1036.	1.3	1
82	Functional characterization of a gibberellin receptor and its application in alfalfa biomass improvement. Scientific Reports, 2017, 7, 41296.	3.3	15
83	Substituted Phthalimide AC94377 Is a Selective Agonist of the Gibberellin Receptor GID1. Plant Physiology, 2017, 173, 825-835.	4.8	13
84	Plant hormone signaling in flowering: An epigenetic point of view. Journal of Plant Physiology, 2017, 214, 16-27.	3.5	88
85	Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop Journal, 2017, 5, 459-477.	5.2	78
86	Biology in the Dry Seed: Transcriptome Changes Associated with Dry Seed Dormancy and Dormancy Loss in the Arabidopsis GA-Insensitive sleepy1-2 Mutant. Frontiers in Plant Science, 2017, 8, 2158.	3.6	27
87	Gibberellins. , 2017, , 107-160.		20
88	Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana. PLoS ONE, 2017, 12, e0179143.	2.5	16
89	Differentially expressed genes during the imbibition of dormant and after-ripened seeds – a reverse genetics approach. BMC Plant Biology, 2017, 17, 151.	3.6	26
90	Comparative transcriptomic analyses of normal and malformed flowers in sugar apple (Annona) Tj ETQq0 0 0 rgBT BMC Plant Biology, 2017, 17, 170.	/Overlock 3.6	10 Tf 50 1 13
91	The early inflorescence of Arabidopsis thaliana demonstrates positional effects in floral organ growth and meristem patterning. Plant Reproduction, 2018, 31, 171-191.	2.2	16
94	Positive and negative regulation of seed germination by the Arabidopsis <scp>GA</scp> hormone receptors, <i><scp>GID</scp>1a</i> , <i> b</i> , and <i><</i> . Plant Direct, 2018, 2, e00083.	1.9	20
96	Expansion and diversification of the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1) family in land plants. Plant Molecular Biology, 2018, 97, 435-449.	3.9	22

#	Article	IF	CITATIONS
97	Evolution and diversification of the plant gibberellin receptor GID1. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7844-E7853.	7.1	51
98	Gibberellin. , 2018, , 83-95.		1
99	Genome-wide transcript analysis of inflorescence development in wheat. Genome, 2019, 62, 623-633.	2.0	3
100	Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments. Plant Cell, 2019, 31, 1506-1519.	6.6	42
101	Identification and expression analysis of StGRAS gene family in potato (Solanum tuberosum L.). Computational Biology and Chemistry, 2019, 80, 195-205.	2.3	11
102	Systematic Analysis of Gibberellin Pathway Components in Medicago truncatula Reveals the Potential Application of Gibberellin in Biomass Improvement. International Journal of Molecular Sciences, 2020, 21, 7180.	4.1	10
103	Basal stomatal aperture is regulated by GA-DELLAs in Arabidopsis. Journal of Plant Physiology, 2020, 250, 153182.	3.5	9
104	The Control of Seed Dormancy and Germination by Temperature, Light and Nitrate. Botanical Review, The, 2020, 86, 39-75.	3.9	83
105	GA signaling is essential for the embryo-to-seedling transition during Arabidopsis seed germination, a ghost story. Plant Signaling and Behavior, 2020, 15, 1705028.	2.4	25
106	Transcriptome and co-expression network analysis reveal molecular mechanisms of mucilage formation during seed development in Artemisia sphaerocephala. Carbohydrate Polymers, 2021, 251, 117044.	10.2	9
107	Cloning and characterization of two gibberellin receptor genes in yam (Dioscorea opposita). Pakistan Journal of Botany, 2021, 53, .	0.5	0
108	Expression of a maize SOC1 gene enhances soybean yield potential through modulating plant growth and flowering. Scientific Reports, 2021, 11, 12758.	3.3	15
110	Evolution of Plant Hormone Response Pathways. Annual Review of Plant Biology, 2020, 71, 327-353.	18.7	169
111	Cloning and Expression Profiling of Gibberellin Insensitive Dwarf <i>GID1</i> Ho-mologous Genes from Cotton. Acta Agronomica Sinica(China), 2009, 35, 1822-1830.	0.3	3
112	Integument-Specific Transcriptional Regulation in the Mid-Stage of Flax Seed Development Influences the Release of Mucilage and the Seed Oil Content. Cells, 2021, 10, 2677.	4.1	2
113	Plant Height Recovery Caused by <i>BnGID1</i> Over-expression in a Dwarf Mutant NDF-1 of <i>Brassica napus</i> L.*. Ying Yong Yu Huan Jing Sheng Wu Xue Bao = Chinese Journal of Applied and Environmental Biology, 2010, 16, 192-196.	0.1	0
116	The Opposite Roles of White Light in Regulating Germination of Fresh and Aged Seed in Tobacco. Plants, 2021, 10, 2457.	3.5	2
117	Role of plant hormones in flowering and exogenous hormone application in fruit/nut trees: a review of pecans. Fruit Research, 2021, 1, 1-9.	2.0	2

		CITATION RE	on Report	
#	Article		IF	CITATIONS
118	Cloning and Characterization of EuGID1 in Eucommia ulmoides Oliver. Phyton, 2022, 9	1, 999-1013.	0.7	0
119	Network Analysis of Different Exogenous Hormones on the Regulation of Deep Sowing Maize Seedlings. Frontiers in Plant Science, 2021, 12, 739101.	; Tolerance in	3.6	6
120	Role of gibberellin and its three GID1 receptors in Jasminum sambac stem elongation a Planta, 2022, 255, 17.	nd flowering.	3.2	13
124	Plant growth promotion by the interaction of a novel synthetic small molecule with GA function. Plant Direct, 2022, 6, e398.	â€ÐELLA	1.9	5

Genome-Wide Analysis of Genes Involved in the GA Signal Transduction Pathway in $\hat{a} \in \mathbb{C}^{2}$ duli $\hat{a} \in \mathbb{M}$ Pear (Pyrus) Tj ETQ40 0 rgB7 /Overlock

126	Physiological and proteomic analyses of γ-aminobutyric acid (GABA)-treated tubers reveals that StPOD42 promotes sprouting in potato. Journal of Plant Physiology, 2022, 278, 153826.	3.5	5
127	Transcriptome Analysis Reveals Endogenous Hormone Changes during Spike Development in Phalaenopsis. International Journal of Molecular Sciences, 2022, 23, 10461.	4.1	2
128	GA signaling expands: The plant UBX domain-containing protein 1 is a binding partner for the GA receptor. Plant Physiology, 2022, 190, 2651-2670.	4.8	4
129	Uncovering the involvement of DoDELLA1-interacting proteins in development by characterizing the DoDELLA gene family in Dendrobium officinale. BMC Plant Biology, 2023, 23, .	3.6	1
130	Exogenous abscisic acid prolongs the dormancy of recalcitrant seed of Panax notoginseng. Frontiers in Plant Science, 0, 14, .	3.6	3
131	Brcd1 Is Associated with Plant Height through the Gibberellin Pathway in Brassica rapa L Horticulturae, 2023, 9, 282.	2.8	1
132	A rice seed-specific glycine-rich protein OsDOR1 interacts with GID1 to repress GA signaling and regulates seed dormancy. Plant Molecular Biology, 2023, 111, 523-539.	3.9	0
133	Molecular GA pathways as conserved integrators for adaptive responses. Plant Biology, 2023, 25, 649-660.	3.8	2
134	Gibberellin metabolism and signaling. Bioscience, Biotechnology and Biochemistry, 0, , .	1.3	1
135	MicroRNA482/2118 is lineageâ€specifically involved in gibberellin signalling via the regulation of <i>GID1</i> expression by targeting noncoding <i>PHAS</i> genes and subsequently instigated phasiRNAs. Plant Biotechnology Journal, 2024, 22, 819-832.	8.3	0
136	Time-Course Transcriptomic Analysis Reveals Molecular Insights into the Inflorescence and Flower Development of CardiocrinumÂgiganteum. Plants, 2024, 13, 649.	3.5	0