Sensing of 5â€² monophosphate by <i>Escherichia coli< association with RNA and stimulate the decay of function vivo</i>

Molecular Microbiology 67, 102-115 DOI: 10.1111/j.1365-2958.2007.06028.x

Citation Report

#	Article	IF	CITATIONS
1	Involvement of the Escherichia coli endoribonucleases G and E in the secondary processing of RegB-cleaved transcripts of bacteriophage T4. Virology, 2008, 375, 342-353.	2.4	8
2	The Crystal Structure of the Escherichia coli RNase E Apoprotein and a Mechanism for RNA Degradation. Structure, 2008, 16, 1238-1244.	3.3	74
3	Chapter 12 Identifying and Characterizing Substrates of the RNase E/G Family of Enzymes. Methods in Enzymology, 2008, 447, 215-241.	1.0	18
4	Substrate Binding and Active Site Residues in RNases E and G. Journal of Biological Chemistry, 2009, 284, 31843-31850.	3.4	54
5	Ribosomes initiating translation of the <i>hbs</i> mRNA protect it from 5′â€ŧoâ€3′ exoribonucleolytic degradation by RNase J1. Molecular Microbiology, 2009, 71, 1538-1550.	2.5	59
6	RNase E autoregulates its synthesis in <i>Escherichia coli</i> by binding directly to a stemâ€loop in the <i>rne</i> 5′ untranslated region. Molecular Microbiology, 2009, 72, 470-478.	2.5	53
7	Rapid cleavage of RNA by RNase E in the absence of 5′ monophosphate stimulation. Molecular Microbiology, 2010, 76, 590-604.	2.5	70
8	Chapter 1 A Phylogenetic View of Bacterial Ribonucleases. Progress in Molecular Biology and Translational Science, 2009, 85, 1-41.	1.7	29
9	Chapter 3 Endonucleolytic Initiation of mRNA Decay in Escherichia coli. Progress in Molecular Biology and Translational Science, 2009, 85, 91-135.	1.7	137
10	Mechanisms of RNA Degradation by the Eukaryotic Exosome. ChemBioChem, 2010, 11, 938-945.	2.6	35
11	The Novel Two-Component Regulatory System BfiSR Regulates Biofilm Development by Controlling the Small RNA <i>rsmZ</i> through CafA. Journal of Bacteriology, 2010, 192, 5275-5288.	2.2	114
12	Euryarchaeal β-CASP Proteins with Homology to Bacterial RNase J Have 5′- to 3′-Exoribonuclease Activity. Journal of Biological Chemistry, 2010, 285, 17574-17583.	3.4	45
13	The sequence of sites recognised by a member of the RNase E/G family can control the maximal rate of cleavage, while a 5′-monophosphorylated end appears to function cooperatively in mediating RNA binding. Biochemical and Biophysical Research Communications, 2010, 391, 879-883.	2.1	11
14	mRNA degradation and maturation in prokaryotes: the global players. Biomolecular Concepts, 2011, 2, 491-506.	2.2	28
15	Roles of the 5′â€phosphate sensor domain in RNase E. Molecular Microbiology, 2011, 80, 1613-1624.	2.5	51
16	Composition and conservation of the mRNA-degrading machinery in bacteria. Journal of Biomedical Science, 2011, 18, 23.	7.0	47
17	From conformational chaos to robust regulation: the structure and function of the multi-enzyme RNA degradosome. Quarterly Reviews of Biophysics, 2012, 45, 105-145.	5.7	71
18	The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E. Molecular Cell, 2012, 47, 943-953.	9.7	192

TATION REPO

#	Article	IF	CITATIONS
19	Bacteriophage T4 polynucleotide kinase triggers degradation of mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7073-7078.	7.1	15
20	Partial deletion of rng (RNase G)-enhanced homoethanol fermentation of xylose by the non-transgenic Escherichia coli RM10. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 977-985.	3.0	8
21	The social fabric of the RNA degradosome. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 514-522.	1.9	76
22	Determinants in the <scp><i>rpsT</i> mRNAs</scp> recognized by the 5′â€sensor domain of <scp>RNase E</scp> . Molecular Microbiology, 2013, 89, 388-402.	2.5	12
23	RNase E: at the interface of bacterial RNA processing and decay. Nature Reviews Microbiology, 2013, 11, 45-57.	28.6	290
24	Regulatory RNAs and target mRNA decay in prokaryotes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 742-747.	1.9	120
25	Industrial Robustness: Understanding the Mechanism of Tolerance for the Populus Hydrolysate-Tolerant Mutant Strain of Clostridium thermocellum. PLoS ONE, 2013, 8, e78829.	2.5	21
26	Adjacent single-stranded regions mediate processing of tRNA precursors by RNase E direct entry. Nucleic Acids Research, 2014, 42, 4577-4589.	14.5	32
27	Direct entry by RNase E is a major pathway for the degradation and processing of RNA in <i>Escherichia coli</i> . Nucleic Acids Research, 2014, 42, 11733-11751.	14.5	89
28	Initiation of mRNA decay in bacteria. Cellular and Molecular Life Sciences, 2014, 71, 1799-1828.	5.4	130
29	A comparison of key aspects of gene regulation inStreptomyces coelicolorandEscherichia coliusing nucleotideâ€resolution transcription maps produced in parallel by global and differentialRNAsequencing. Molecular Microbiology, 2014, 94, 963-987.	2.5	48
30	<scp>RNA</scp> degradosomes in bacteria and chloroplasts: classification, distribution and evolution of <scp>RN</scp> ase <scp>E</scp> homologs. Molecular Microbiology, 2015, 97, 1021-1135.	2.5	112
31	The First Small-Molecule Inhibitors of Members of the Ribonuclease E Family. Scientific Reports, 2015, 5, 8028.	3.3	25
32	Cross talk between <scp>ABC</scp> transporter m <scp>RNA</scp> s via a target m <scp>RNA</scp> â€derived sponge of the <scp>G</scp> cv <scp>B</scp> small <scp>RNA</scp> . EMBO Journal, 2015, 34, 1478-1492.	7.8	162
33	Oligoribonuclease is the primary degradative enzyme for pGpG in <i>Pseudomonas aeruginosa</i> that is required for cyclic-di-GMP turnover. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5048-57.	7.1	117
34	Distinct Requirements for 5â€2-Monophosphate-assisted RNA Cleavage by Escherichia coli RNase E and RNase G. Journal of Biological Chemistry, 2016, 291, 5038-5048.	3.4	19
35	Decreased Expression of Stable RNA Can Alleviate the Lethality Associated with RNase E Deficiency in Escherichia coli. Journal of Bacteriology, 2017, 199, .	2.2	4
36	Substrate Recognition and Autoinhibition in the Central Ribonuclease RNase E. Molecular Cell, 2018, 72, 275-285.e4.	9.7	40

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Bacterial ribonucleases and their roles in RNA metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 242-300.	5.2	121
38	Functional expansion of a TCA cycle operon mRNA by a 3′ end-derived small RNA. Nucleic Acids Research, 2019, 47, 2075-2088.	14.5	42
39	Cross-subunit catalysis and a new phenomenon of recessive resurrection in Escherichia coli RNase E. Nucleic Acids Research, 2020, 48, 847-861.	14.5	15
40	Evolution of an Escherichia coli PTSâ^' strain: a study of reproducibility and dynamics of an adaptive evolutive process. Applied Microbiology and Biotechnology, 2020, 104, 9309-9325.	3.6	5
41	Regulation of mRNA Stability During Bacterial Stress Responses. Frontiers in Microbiology, 2020, 11, 2111.	3.5	50
42	Impact of RNase E and RNase J on Global mRNA Metabolism in the Cyanobacterium Synechocystis PCC6803. Frontiers in Microbiology, 2020, 11, 1055.	3.5	21
43	Systematic Quantification of Sequence and Structural Determinants Controlling mRNA stability in Bacterial Operons. ACS Synthetic Biology, 2021, 10, 318-332.	3.8	52
45	The N-Terminus of GalE Induces tmRNA Activity in Escherichia coli. PLoS ONE, 2010, 5, e15207.	2.5	9
52	The recognition of structured elements by a conserved groove distant from domains associated with catalysis is an essential determinant of RNase E. Nucleic Acids Research, 2023, 51, 365-379.	14.5	3
54	The role of the 5' sensing function of ribonuclease E in cyanobacteria. RNA Biology, 2024, 21, 1-18.	3.1	0