Influences of species, latitudes and methodologies on es to global warming

Global Change Biology 13, 1860-1872 DOI: 10.1111/j.1365-2486.2007.01404.x

Citation Report

#	Article	IF	CITATIONS
1	Growth pattern of Bidens cernua L.: relationships between relative growth rate and its physiological and morphological components. Photosynthetica, 2008, 46, .	0.9	10
2	INTERPRETING VARIATION IN BIRD MIGRATION TIMES AS OBSERVED BY VOLUNTEERS. Auk, 2008, 125, 565-573.	0.7	34
3	Physiology–phenology interactions in a productive semiâ€arid pine forest. New Phytologist, 2008, 178, 603-616.	3.5	123
4	A model for predicting the emergence of dragonflies in a changing climate. Freshwater Biology, 2008, 53, 1868-1880.	1.2	43
5	Voltinism flexibility of a riverine dragonfly along thermal gradients. Global Change Biology, 2008, 14, 470-482.	4.2	68
6	Bird migration times, climate change, and changing population sizes. Global Change Biology, 2008, 14, 1959-1972.	4.2	202
7	How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. Journal of Ecology, 2008, 96, 1289-1296.	1.9	217
8	Putting the Heat on Tropical Animals. Science, 2008, 320, 1296-1297.	6.0	788
9	MODELING THE RESPONSE OF POPULATIONS OF COMPETING SPECIES TO CLIMATE CHANGE. Ecology, 2008, 89, 3138-3149.	1.5	210
10	Plant Phenology And Distribution In Relation To Recent Climate Change. Journal of the Torrey Botanical Society, 2008, 135, 126-146.	0.1	236
11	The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. Journal of Sea Research, 2008, 60, 32-43.	0.6	61
12	The effects of environmental warming on Odonata: a review. International Journal of Odonatology, 2008, 11, 131-153.	0.5	170
13	CLIMATE MODELS AND ORNITHOLOGY. Auk, 2008, 125, 1-10.	0.7	36
14	Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proceedings of the United States of America, 2008, 105, 17029-17033.	3.3	515
15	Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara?. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2185-2193.	1.2	171
16	Timing is everything? Phenological synchrony and population variability in leafâ€chewing herbivores of <i>Quercus</i> . Ecological Entomology, 2008, 33, 276-285.	1.1	78
17	Changes in Coral Reef Ecosystems as an Indicator of Climate and Global Change. , 2009, , 253-261.		1
18	Seasons and Life Cycles. Science, 2009, 324, 886-887.	6.0	117

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Climate Change and Temporal and Spatial Mismatches in Insect Communities. , 2009,	, 215-231.		17
20	Tracking the rhythm of the seasons in the face of global change: phenological research century. Frontiers in Ecology and the Environment, 2009, 7, 253-260.	in the 21st	1.9	429
22	Temperature has a causal effect on avian timing of reproduction. Proceedings of the Re Biological Sciences, 2009, 276, 2323-2331.	oyal Society B:	1.2	232
23	Why Climate Change Makes Riparian Restoration More Important than Ever: Recomme Practice and Research. Ecological Restoration, 2009, 27, 330-338.	endations for	0.6	166
24	Long-term changes in the composition and diversity of deep-slope megabenthos and the Catalonia (western Mediterranean): Are trends related to climatic oscillations?. Progress Oceanography, 2009, 82, 32-46.	rophic webs off ss in	1.5	57
25	Temperatureâ€Dependent Growth and Life Cycle of <i>Nemoura sichuanensis</i> (Ple	coptera:) Tj ETQq1 1 0.784:	314_rgBT /0.5	Gyerlock 1
26	Biodiversity monitoring: some proposals to adequately study species $\hat{a} \in \mathbb{M}$ responses to Biodiversity and Conservation, 2009, 18, 3185-3203.	o climate change.	1.2	75
27	Effects of recent climate change on phytoplankton phenology in a temperate lake. Free 2009, 54, 1888-1898.	shwater Biology,	1.2	68
28	Looking for answers to questions about heat stress: researchers are getting warmer. Fi Ecology, 2009, 23, 231-232.	unctional	1.7	46
29	Beyond gradual warming: extreme weather events alter flower phenology of European heath species. Global Change Biology, 2009, 15, 837-849.	grassland and	4.2	190
30	Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Glob Biology, 2009, 15, 1534-1543.	bal Change	4.2	86
31	Differential responses to warming and increased precipitation among three contrasting species. Global Change Biology, 2009, 15, 2539-2548.	g grasshopper	4.2	75
32	Climate warming effects on the <i>Olea europaea</i> – <i>Bactrocera oleae</i> syste Mediterranean islands: Sardinia as an example. Global Change Biology, 2009, 15, 2874	em in -2884.	4.2	33
33	Longâ€ŧerm drivers of change in <i>Polylepis</i> woodland distribution in the central ⁄ Vegetation Science, 2009, 20, 1041-1052.	Andes. Journal of	1.1	63
34	Some like it hot! Rapid climate change promotes changes in distribution ranges of <i> viridula</i> and <i> Nezara antennata</i> in Japan. Entomologia Experimentalis Et Appl 249-258.	Nezara icata, 2009, 130,	0.7	63
35	Predicting insect pest status under climate change scenarios: combining experimental population dynamics modelling. Journal of Applied Entomology, 2009, 133, 491-499.	data and	0.8	102
36	Contrasted impacts of climate change on stream fish assemblages along an environme Diversity and Distributions, 2009, 15, 613-626.	ental gradient.	1.9	103
37	Collapse of an avifauna: climate change appears to exacerbate habitat loss and degrad and Distributions, 2009, 15, 720-730.	ation. Diversity	1.9	151

	СПАНО	N REPORT	
#	Article	IF	CITATIONS
38	The role of botanical gardens in climate change research. New Phytologist, 2009, 182, 303-313.	3.5	141
39	Three centuries of insect outbreaks across the European Alps. New Phytologist, 2009, 182, 929-941.	3.5	97
40	Weeds of agricultural importance: bridging the gap between evolutionary ecology and crop and weed science. New Phytologist, 2009, 184, 741-743.	3.5	42
43	The Wellâ€Temperatured Biologist. American Naturalist, 2009, 174, 755-768.	1.0	353
44	Bird Ecology as an Indicator of Climate and Global Change. , 2009, , 181-195.		7
45	The impact of climate change on cherry trees and other species in Japan. Biological Conservation, 2009, 142, 1943-1949.	1.9	103
46	Spatial and interspecific variability in phenological responses to warming temperatures. Biological Conservation, 2009, 142, 2569-2577.	1.9	196
47	Phenology of Ecosystem Processes. , 2009, , .		50
48	Integrative Wildlife Nutrition. , 2009, , .		156
49	Nearâ€surface remote sensing of spatial and temporal variation in canopy phenology. Ecological Applications, 2009, 19, 1417-1428.	1.8	400
50	Chapter 2 Vulnerability of Marine Turtles to Climate Change. Advances in Marine Biology, 2009, 56, 151-211.	0.7	149
51	Climate change and seasonal reproduction in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 3331-3340.	1.8	265
52	Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1939-1948.	1.2	700
53	Travelling through a warming world: climate change and migratory species. Endangered Species Research, 2009, 7, 87-99.	1.2	297
54	Does Nest-Guarding in Female Tuatara (Sphenodon punctatus) Reduce Nest Destruction by Conspecific Females?. Journal of Herpetology, 2009, 43, 294-299.	0.2	10
55	Energy mitigation, adaptation and biodiversity: Synergies and antagonisms. IOP Conference Series: Earth and Environmental Science, 2009, 8, 012023.	0.2	2
56	Biological indicators of climate change: evidence from long-term flowering records of plants along the Victorian coast, Australia. Australian Journal of Botany, 2010, 58, 428.	0.3	20
57	Phenology and climate - early Australian botanical records. Australian Journal of Botany, 2010, 58, 473.	0.3	10

#	Article	IF	CITATIONS
58	Insects at not so low temperature: Climate change in the temperate zone and its biotic consequences. , 0, , 242-275.		35
59	Meta-Analysis and Its Application in Phenological Research: a Review and New Statistical Approaches. , 2010, , 463-509.		6
61	Wavelet Analysis of Flowering and Climatic Niche Identification. , 2010, , 361-391.		6
62	The Influence of Sampling Method, Sample Size, and Frequency of Observations on Plant Phenological Patterns and Interpretation in Tropical Forest Trees. , 2010, , 99-121.		108
63	Modelling the Flowering of Four Eucalypt Species Using New Mixture Transition Distribution Models. , 2010, , 299-320.		7
64	Herbarium Collections and Photographic Images: Alternative Data Sources for Phenological Research. , 2010, , 425-461.		24
65	Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia). Theoretical and Applied Climatology, 2010, 102, 265-273.	1.3	13
66	Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. International Journal of Biometeorology, 2010, 54, 563-581.	1.3	72
67	Interdisciplinary approaches: towards new statistical methods for phenological studies. Climatic Change, 2010, 100, 143-171.	1.7	35
68	Trait means and reaction norms: the consequences of climate change/invasion interactions at the organism level. Evolutionary Ecology, 2010, 24, 1365-1380.	0.5	29
69	Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 2010, 99, 125-161.	4.0	3,380
70	Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 2010, 52, 296-306.	1.4	332
71	Direct impacts of recent climate warming on insect populations. Integrative Zoology, 2010, 5, 132-142.	1.3	318
73	Predicted impact of climate change on threatened terrestrial vertebrates in central Spain highlights differences between endotherms and ectotherms. Animal Conservation, 2010, 13, 363-373.	1.5	42
74	Climate warming and biomass accumulation of terrestrial plants: a metaâ€analysis. New Phytologist, 2010, 188, 187-198.	3.5	298
75	Integrating ancient patterns and current dynamics of insect–plant interactions: Taxonomic and geographic variation in herbivore specialization. Insect Science, 2010, 17, 471-507.	1.5	58
76	Rising temperature and development in dragonfly populations at different latitudes. Freshwater Biology, 2010, 55, 397-410.	1.2	48
77	Too hot to handle? Phenological and lifeâ€history responses to simulated climate change of the southern green stink bug <i>Nezara viridula</i> (Heteroptera: Pentatomidae). Global Change Biology, 2010, 16, 73-87.	4.2	80

#	Article	IF	CITATIONS
78	Adapt or disperse: understanding species persistence in a changing world. Global Change Biology, 2010, 16, 587-598.	4.2	438
79	Contemporary climate change in the Sonoran Desert favors coldâ€∎dapted species. Global Change Biology, 2010, 16, 1555-1565.	4.2	130
80	Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 2010, 16, 3304-3313.	4.2	690
81	From climate change predictions to actions – conserving vulnerable animal groups in hotspots at a regional scale. Global Change Biology, 2010, 16, 3257-3270.	4.2	119
82	The population biology of the early spider orchid <i>Ophrys sphegodes</i> Mill. III. Demography over three decades. Journal of Ecology, 2010, 98, 867-878.	1.9	81
83	The phenology mismatch hypothesis: are declines of migrant birds linked to uneven global climate change?. Journal of Animal Ecology, 2010, 79, 98-108.	1.3	192
84	Global metabolic impacts of recent climate warming. Nature, 2010, 467, 704-706.	13.7	729
85	Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences, 2010, 1206, 35-55.	1.8	341
86	Measuring evolutionary responses to global warming: cautionary lessons from <i>Drosophila</i> . Insect Conservation and Diversity, 2010, 3, 44-50.	1.4	14
87	Implications of climate change for the reproductive capacity and survival of New World silversides (family Atherinopsidae). Journal of Fish Biology, 2010, 77, 1818-1834.	0.7	69
88	Global warming affects phenology and voltinism of <i>Lobesia botrana</i> in Spain. Agricultural and Forest Entomology, 2010, 12, 169-176.	0.7	74
89	The contribution of contemporary climate to ectothermic and endothermic vertebrate distributions in a glacial refuge. Global Ecology and Biogeography, 2010, 19, 40-49.	2.7	63
90	East versus West: contrasts in phenological patterns?. Global Ecology and Biogeography, 2010, 19, 783-793.	2.7	27
91	Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants. PLoS ONE, 2010, 5, e11500.	1.1	36
92	The importance of phylogeny to the study of phenological response to global climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3201-3213.	1.8	154
93	Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3161-3176.	1.8	243
94	Local Temperature Fine-Tunes the Timing of Spring Migration in Birds. Integrative and Comparative Biology, 2010, 50, 293-304.	0.9	94
95	Dragonfly and Damselfly (Insecta, Odonata) Distributions in Ontario, Canada: Investigating the Influence of Climate Change. BioRisk, 0, 5, 225-241.	0.2	3

#	Article	IF	CITATIONS
96	Flowering Phenology: Trends Over 32 Years in a Common Garden. Southeastern Naturalist, 2010, 9, 837-846.	0.2	2
97	A 250-year index of first flowering dates and its response to temperature changes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2451-2457.	1.2	142
98	Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the United States of America, 2010, 107, 22151-22156.	3.3	694
99	Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3227-3246.	1.8	751
100	Effects of Climate Change on Spring Arrival Times of Birds in Thoreau's Concord From 1851 TO 2007. Condor, 2010, 112, 754-762.	0.7	26
101	Dissecting insect responses to climate warming: overwintering and post-diapause performance in the southern green stink bug, Nezara viridula, under simulated climate-change conditions. Physiological Entomology, 2010, 35, 343-353.	0.6	44
102	A review of the ecological consequences and management implications of climate change for the Everglades. Journal of the North American Benthological Society, 2010, 29, 1510-1526.	3.0	39
103	Insect overwintering in a changing climate. Journal of Experimental Biology, 2010, 213, 980-994.	0.8	621
104	Conservation of Prairie-Oak Butterflies in Oregon, Washington, and British Columbia. Northwest Science, 2011, 85, 361-388.	0.1	40
105	Southern Populations of European Shag <i>Phalacrocorax A. Aristotelis</i> Advance Their Laying Date in Response to Local Weather Conditions but Not to Large-Scale Climate. Ardeola, 2011, 58, 239-250.	0.4	5
106	Season length influences breeding range dynamics of trumpeter swans Cygnus buccinator. Wildlife Biology, 2011, 17, 364-372.	0.6	3
107	is part of the virtual symposium "Flagship Species – Flagship Problems―that deals with ecology, biodiversity and management issues, and climate impacts on species at risk and of Canadian importance, including the polar bear (<i>Ursus maritimus</i>), Atlantic cod (<i>Gadus morhua</i>), Piping Plover (<i>Charadrius melodus</i>) and caribou (<i>Rangifer tarandus</i>). Canadian lournal of Zoology	0.4	34
108	2011, 89, 435-451. Relationships Between Flowering Time and Rainfall Gradients Across Mediterranean-Desert Transects. Israel Journal of Ecology and Evolution, 2011, 57, 91-109.	0.2	41
109	Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2191-2197.	1.2	151
110	Climate Change and Biosphere Response: Unlocking the Collections Vault. BioScience, 2011, 61, 147-153.	2.2	111
111	Contribution of climate change to degradation and loss of critical fish habitats in Australian marine and freshwater Research, 2011, 62, 1062.	0.7	67
112	Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973–2009. Agricultural and Forest Meteorology, 2011, 151, 406-413.	1.9	95
113	Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2011, 151, 1711-1722.	1.9	345

#	Article	IF	CITATIONS
114	Forest responses to climate change in the northwestern United States: Ecophysiological foundations for adaptive management. Forest Ecology and Management, 2011, 261, 1121-1142.	1.4	210
115	Late-arriving barn swallows linked to population declines. Biological Conservation, 2011, 144, 2182-2187.	1.9	21
116	Experimental environmental change and mutualistic vs. antagonistic plant flower–visitor interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 27-35.	1.1	38
117	The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science, 2011, 334, 652-655.	6.0	1,062
118	Assisted migration: Introduction to a multifaceted concept. Forestry Chronicle, 2011, 87, 724-730.	0.5	77
119	Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees. PLoS ONE, 2011, 6, e20155.	1.1	267
120	Contrasted demographic responses facing future climate change in Southern Ocean seabirds. Journal of Animal Ecology, 2011, 80, 89-100.	1.3	77
121	Demographic consequences of increased winter births in a large aseasonally breeding mammal (Bos) Tj ETQq1 1	0.784314 1.3	rgßT /Overlo
122	Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Global Change Biology, 2011, 17, 1-16.	4.2	88
123	Advancing breeding phenology in response to environmental change in a wild red deer population. Global Change Biology, 2011, 17, 2455-2469.	4.2	132
124	Temperature cues phenological synchrony in ant-mediated seed dispersal. Global Change Biology, 2011, 17, 2444-2454.	4.2	49
125	Temperature effects on forest herbs assessed by warming and transplant experiments along a latitudinal gradient. Global Change Biology, 2011, 17, 3240-3253.	4.2	112
126	Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 2011, 17, 3633-3643.	4.2	314
127	Response of individual components of reproductive phenology to growing season length in a monocarpic herb. Journal of Ecology, 2011, 99, 242-253.	1.9	66
128	Contrasting impacts of climateâ€driven flowering phenology on changes in alien and native plant species distributions. New Phytologist, 2011, 189, 272-281.	3.5	48
129	Onset of summer flowering in a â€~Sky Island' is driven by monsoon moisture. New Phytologist, 2011, 191, 468-479.	3.5	82
130	Broadening the study of phenology and climate change. New Phytologist, 2011, 191, 307-309.	3.5	26
131	Leafâ€out phenology of temperate woody plants: from trees to ecosystems. New Phytologist, 2011, 191, 926-941.	3.5	439

#	Article	IF	CITATIONS
132	Community ecology in a warming world: The influence of temperature on interspecific interactions in marine systems. Journal of Experimental Marine Biology and Ecology, 2011, 400, 218-226.	0.7	361
133	Impact of biodiversity-climate futures on primary production and metabolism in a model benthic estuarine system. BMC Ecology, 2011, 11, 7.	3.0	50
134	What is soundscape ecology? An introduction and overview of an emerging new science. Landscape Ecology, 2011, 26, 1213-1232.	1.9	459
135	A meta-analysis of responses of soil biota to global change. Oecologia, 2011, 165, 553-565.	0.9	378
136	A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. International Journal of Biometeorology, 2011, 55, 805-817.	1.3	108
137	Plant phenological variation related to temperature in Norway during the period 1928–1977. International Journal of Biometeorology, 2011, 55, 819-830.	1.3	12
138	Vulnerability of wild American ginseng to an extreme early spring temperature fluctuation. Population Ecology, 2011, 53, 119-129.	0.7	12
139	Bird migration on Helgoland: the yield from 100Âyears of research. Journal of Ornithology, 2011, 152, 25-40.	0.5	31
140	Climate change and tree genetic resource management: maintaining and enhancing the productivity and value of smallholder tropical agroforestry landscapes. A review. Agroforestry Systems, 2011, 81, 67-78.	0.9	49
141	Ecological differentiation among key plant mutualists from a cryptic ant guild. Insectes Sociaux, 2011, 58, 505-512.	0.7	14
142	Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sensing of Environment, 2011, 115, 1102-1114.	4.6	222
143	An examination of synchrony between insect emergence and flowering in Rocky Mountain meadows. Ecological Monographs, 2011, 81, 469-491.	2.4	215
144	Overstretching attribution. Nature Climate Change, 2011, 1, 2-4.	8.1	137
145	Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961–1990 baseline relationships. Irish Geography, 2011, 44, 27-60.	0.2	3
146	Actual or Perceived Abundance? Interpreting Annual Survey Data in the Face of Changing Phenologies. Condor, 2011, 113, 490-500.	0.7	14
147	Evaluation of Temporal Resolution Effect in Remote Sensing Based Crop Phenology Detection Studies. International Federation for Information Processing, 2012, , 135-150.	0.4	8
148	From Caprio's lilacs to the USA National Phenology Network. Frontiers in Ecology and the Environment, 2012, 10, 324-327.	1.9	114
149	Asynchronous changes in phenology of migrating Broadâ€ŧailed Hummingbirds and their earlyâ€season nectar resources. Ecology, 2012, 93, 1987-1993.	1.5	149

#	Article	IF	CITATIONS
150	Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards. Journal of Experimental Biology, 2012, 215, 1117-1127.	0.8	43
151	Model-based assessment of ecological adaptations of three forest tree species growing in Italy and impact on carbon and water balance at national scale under current and future climate scenarios. IForest, 2012, 5, 235-246.	0.5	28
152	Divergent responses to spring and winter warming drive community level flowering trends. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9000-9005.	3.3	318
153	Ensemble-based analysis of regional climate change effects on the cabbage stem weevil (<i>Ceutorhynchus pallidactylus</i> (Mrsh.)) in winter oilseed rape (<i>Brassica napus</i> L.). Journal of Agricultural Science, 2012, 150, 191-202.	0.6	25
154	Responses of insects to the current climate changes: from physiology and behavior to range shifts. Entomological Review, 2012, 92, 715-740.	0.1	44
155	Effects of temperature change on mussel, <i>Mytilus</i> . Integrative Zoology, 2012, 7, 312-327.	1.3	80
156	Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology, 2012, 26, 1324-1338.	1.7	66
157	Caatinga Revisited: Ecology and Conservation of an Important Seasonal Dry Forest. Scientific World Journal, The, 2012, 2012, 1-18.	0.8	170
158	Temporal patterns of populations in a warming world: a modelling framework. Marine Biology, 2012, 159, 2605-2620.	0.7	8
159	Climate change and freshwater zooplankton: what does it boil down to?. Aquatic Ecology, 2012, 46, 501-519.	0.7	65
160	Mountain Pine Beetle Develops an Unprecedented Summer Generation in Response to Climate Warming. American Naturalist, 2012, 179, E163-E171.	1.0	156
161	Ecological Effects of Climate Change on Salt Marsh Wildlife: A Case Study from a Highly Urbanized Estuary. Journal of Coastal Research, 2012, 285, 1477-1487.	0.1	41
162	Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment, 2012, 117, 307-321.	4.6	230
163	Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 2012, 123, 400-417.	4.6	385
164	Northward Shifts of the Distributions of Spanish Reptiles in Association with Climate Change. Conservation Biology, 2012, 26, 278-283.	2.4	60
165	Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1607-1614.	1.8	184
166	Females first? Past, present and future variability in offspring sex ratio at a temperate sea turtle breeding area. Animal Conservation, 2012, 15, 508-518.	1.5	62
167	Factors influencing the timing of spring migration in common toads (<i><scp>B</scp>ufo bufo</i>). Journal of Zoology, 2012, 288, 112-118.	0.8	25

#	Article	IF	CITATIONS
169	Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2012, 2, 121-124.	8.1	594
170	Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas). PLoS ONE, 2012, 7, e46920.	1.1	32
171	An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences, 2012, 9, 3185-3204.	1.3	258
172	commentary: The geographic consequences of climate change for migratory birds. Frontiers of Biogeography, 2012, 1, .	0.8	0
173	Leafminer agromyzid pest distribution over Limpopo province under changing climate. African Journal of Agricultural Research Vol Pp, 2012, 7, 6515-6522.	0.2	11
174	Warming experiments underpredict plant phenological responses to climate change. Nature, 2012, 485, 494-497.	13.7	772
175	Disentangling the paradox of insect phenology: are temporal trends reflecting the response to warming?. Oecologia, 2012, 168, 1161-1171.	0.9	55
176	Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. International Journal of Biometeorology, 2012, 56, 695-706.	1.3	79
177	How emergence and death assumptions affect countâ€based estimates of butterfly abundance and lifespan. Population Ecology, 2012, 54, 431-442.	0.7	11
178	Responses of trees to elevated carbon dioxide and climate change. Biodiversity and Conservation, 2012, 21, 1327-1342.	1.2	28
179	Climate change and the ecology and evolution of Arctic vertebrates. Annals of the New York Academy of Sciences, 2012, 1249, 166-190.	1.8	162
180	Detecting change in an Australian flowering record: Comparisons of linear regression and cumulative sum analysis change point analysis. Austral Ecology, 2012, 37, 825-835.	0.7	8
181	Eight decades of phenological change for a freshwater cladoceran: what are the consequences of our definition of seasonal timing?. Freshwater Biology, 2012, 57, 345-359.	1.2	24
182	Terrestrial biosphere models need better representation of vegetation phenology: results from the <scp>N</scp> orth <scp>A</scp> merican <scp>C</scp> arbon <scp>P</scp> rogram <scp>S</scp> ite <scp>S</scp> ynthesis. Global Change Biology, 2012, 18, 566-584.	4.2	583
183	Vulnerability of riparian ecosystems to elevated <scp><scp>CO₂</scp></scp> and climate change in arid and semiarid western <scp>N</scp> orth <scp>A</scp> merica. Global Change Biology, 2012, 18, 821-842.	4.2	145
184	Ecology: Pollinator–Plant Synchrony Tested by Climate Change. Current Biology, 2012, 22, R131-R132.	1.8	38
185	Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Global Change Biology, 2012, 18, 2335-2348.	4.2	111
186	Comprehensive methodological analysis of longâ€ŧerm changes in phenological extremes in Germany. Global Change Biology, 2012, 18, 2349-2364.	4.2	6

#	Article	IF	CITATIONS
187	Migrate or stay: terrestrial primary productivity and climate drive anadromy in Arctic char. Global Change Biology, 2012, 18, 2487-2497.	4.2	77
188	Tracking climate impacts on the migratory monarch butterfly. Global Change Biology, 2012, 18, 3039-3049.	4.2	80
189	Artificial selection on flowering time: influence on reproductive phenology across natural light environments. Journal of Ecology, 2012, 100, 852-861.	1.9	39
190	Evolution of plant–pollinator mutualisms in response to climate change. Evolutionary Applications, 2012, 5, 2-16.	1.5	53
191	Large spatial scale effects of rising temperatures: modelling a dragonfly's life cycle and range throughout Europe. Insect Conservation and Diversity, 2012, 5, 461-469.	1.4	7
192	Impact of increasing temperatures and exposure duration on egg hatch in the hemlock looper, <i>Lambdina fiscellaria</i> . Entomologia Experimentalis Et Applicata, 2012, 144, 231-243.	0.7	7
193	Flexibility in phenology and habitat use act as buffers to longâ€ŧerm population declines in UK passerines. Ecography, 2012, 35, 604-613.	2.1	24
194	A perspective on match/mismatch of phenology in community contexts. Oikos, 2012, 121, 489-495.	1.2	81
195	Distribution of cryptic blue oat mite species in Australia: current and future climate conditions. Agricultural and Forest Entomology, 2012, 14, 127-137.	0.7	26
196	The effects of climate change on the phenology of winter birds in Yokohama, Japan. Ecological Research, 2012, 27, 173-180.	0.7	13
197	Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy). Theoretical and Applied Climatology, 2012, 107, 531-540.	1.3	28
198	Global imprint of climate change on marine life. Nature Climate Change, 2013, 3, 919-925.	8.1	1,602
199	Differential responses of trees to temperature variation during the chilling and forcing phases. Agricultural and Forest Meteorology, 2013, 181, 33-42.	1.9	118
200	Clinal variation for only some phenological traits across a species range. Oecologia, 2013, 173, 421-430.	0.9	27
201	Phase difference analysis of temperature and vegetation phenology for beech forest: a wavelet approach. Stochastic Environmental Research and Risk Assessment, 2013, 27, 1221-1230.	1.9	11
202	Multiple phenological responses to climate change among 42 plant species in Xi'an, China. International Journal of Biometeorology, 2013, 57, 749-758.	1.3	55
203	Recurring weather extremes alter the flowering phenology of two common temperate shrubs. International Journal of Biometeorology, 2013, 57, 579-588.	1.3	38
204	ENSEMBLES-based assessment of regional climate effects in Luxembourg and their impact on vegetation. Climatic Change, 2013, 119, 761-773.	1.7	19

#	ARTICLE	IF	CITATIONS
205	Vulnerability of Pollination Ecosystem Services. , 2013, , 117-128.		3
206	Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Science Bulletin, 2013, 58, 396-405.	1.7	132
207	Drought, Deluge and Declines: The Impact of Precipitation Extremes on Amphibians in a Changing Climate. Biology, 2013, 2, 399-418.	1.3	130
208	Clouds and temperature drive dynamic changes in tropical flower production. Nature Climate Change, 2013, 3, 838-842.	8.1	63
209	Spring onset variations and trends in the continental United States: past and regional assessment using temperature-based indices. International Journal of Climatology, 2013, 33, 2917-2922.	1.5	100
210	Effects of global warming on fish reproductive endocrine axis, with special emphasis in pejerrey Odontesthes bonariensis. General and Comparative Endocrinology, 2013, 192, 45-54.	0.8	73
211	From the sprouting to the senescence: an analysis of developmental chronology in the alpine herb Inula royleana (Asteraceae). Revista Brasileira De Botanica, 2013, 36, 285-290.	0.5	0
212	The influence of environmental variables on larval growth of stoneflies (Plecoptera) in natural and deforested streams. Biologia (Poland), 2013, 68, 950-960.	0.8	5
213	Can terrestrial ectotherms escape the heat of climate change by moving?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131149.	1.2	45
214	Review and synthesis of the effects of climate change on amphibians. Integrative Zoology, 2013, 8, 145-161.	1.3	156
215	Biotic Interactions in the Face of Climate Change. Progress in Botany Fortschritte Der Botanik, 2013, , 321-349.	0.1	7
216	Ecological impacts of climate change in Japan: The importance of integrating local and international publications. Biological Conservation, 2013, 157, 361-371.	1.9	27
217	Behind the scenes of population viability modeling: Predicting butterfly metapopulation dynamics under climate change. Ecological Modelling, 2013, 259, 62-73.	1.2	13
218	Response of chestnut phenology in China to climate variation and change. Agricultural and Forest Meteorology, 2013, 180, 164-172.	1.9	73
219	Fall synchrony between leaf color change and brook trout spawning in the Laurentides Wildlife Reserve (Québec, Canada) as potential environmental integrators. Ecological Indicators, 2013, 30, 16-20.	2.6	8
220	Climate change and the optimal flowering time of annual plants in seasonal environments. Global Change Biology, 2013, 19, 197-207.	4.2	35
221	The climate velocity of the contiguous <scp>U</scp> nited <scp>S</scp> tates during the 20th century. Global Change Biology, 2013, 19, 241-251.	4.2	267
222	Accounting for incomplete detection: What are we estimating and how might it affect long-term passerine monitoring programs?. Biological Conservation, 2013, 160, 130-139.	1.9	61

#	Article	IF	CITATIONS
223	Influence of spatial temperature estimation method in ecohydrologic modeling in the Western Oregon Cascades. Water Resources Research, 2013, 49, 1611-1624.	1.7	18
224	Phenological response of sea turtles to environmental variation across a species' northern range. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122397.	1.2	55
225	One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates. International Journal of Biometeorology, 2013, 57, 367-375.	1.3	30
226	Multiple effects of temperature, photoperiod and food quality on the performance of a pine sawfly. Ecological Entomology, 2013, 38, 201-208.	1.1	23
227	Projected latitudinal and regional changes in vascular plant diversity through climate change: short-term gains and longer-term losses. Biodiversity and Conservation, 2013, 22, 1467-1483.	1.2	6
228	Plant phenological modeling and its application in global climate change research: overview and future challenges. Environmental Reviews, 2013, 21, 1-14.	2.1	77
229	Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate. Global Change Biology, 2013, 19, 2348-2359.	4.2	100
230	The impact of climate change measured at relevant spatial scales: new hope for tropical lizards. Global Change Biology, 2013, 19, 3093-3102.	4.2	92
231	Phenological Shifts in Animals Under Contemporary Climate Change. , 2013, , 716-727.		7
232	Predicting potential distribution of Quercus suber in Italy based on ecological niche models: Conservation insights and reforestation involvements. Forest Ecology and Management, 2013, 304, 150-161.	1.4	53
233	Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013, 169, 156-173.	1.9	1,526
234	Effects of experimental warming on fungal disease progress in oilseed rape. Global Change Biology, 2013, 19, 1736-1747.	4.2	28
235	Effect of climate change on the occurrence of overwintered moths of orchards in <scp>S</scp> outh <scp>K</scp> orea. Entomological Research, 2013, 43, 177-182.	0.6	6
236	Identification and conservation of remnant genetic resources of brown trout in relict populations from Western Mediterranean streams. Hydrobiologia, 2013, 707, 29-45.	1.0	19
237	Adaptive strategies and life history characteristics in a warming climate: Salmon in the Arctic?. Environmental Biology of Fishes, 2013, 96, 1187-1226.	0.4	61
238	Reviewing evidence of marine ecosystem change off South Africa. African Journal of Marine Science, 2013, 35, 427-448.	0.4	36
239	En route to improved phenological models: can space-for-time substitution give guidance?. Tree Physiology, 2013, 33, 1253-1255.	1.4	10
240	Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology, 2013, 94, 2311-2320.	1.5	279

#	Article	IF	Citations
241	Nonlinear flowering responses to climate: are species approaching their limits of phenological change?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120489.	1.8	125
242	Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology, 2013, 6, 437-447.	1.2	116
243	Longâ€ŧerm trends mask variation in the direction and magnitude of shortâ€ŧerm phenological shifts. American Journal of Botany, 2013, 100, 1398-1406.	0.8	50
244	Tent caterpillars are robust to variation in leaf phenology and quality in two thermal environments. Bulletin of Entomological Research, 2013, 103, 522-529.	0.5	8
245	Phenological Changes in the Southern Hemisphere. PLoS ONE, 2013, 8, e75514.	1.1	161
246	The impact of global warming on seasonality of ocean primary production. Biogeosciences, 2013, 10, 4357-4369.	1.3	61
247	Synergistic effects of the invasive Chinese tallow (<i>Triadica sebifera</i>) and climate change on aquatic amphibian survival. Ecology and Evolution, 2013, 3, 4828-4840.	0.8	8
248	Model systems for a noâ€analog future: species associations and climates during the last deglaciation. Annals of the New York Academy of Sciences, 2013, 1297, 29-43.	1.8	42
249	Possible directions in the protection of the neglected invertebrate biodiversity. Animal Conservation, 2013, 16, 383-385.	1.5	4
250	Thermal adaptation affects interactions between a rangeâ€expanding and a native odonate species. Freshwater Biology, 2013, 58, 705-714.	1.2	24
251	Impacts of climate change on upland birds: complex interactions, compensatory mechanisms and the need for long-term data. Ibis, 2013, 155, 451-455.	1.0	13
252	Sensitivity of large-scale vegetation greenup and dormancy dates to climate change in the northâ^'south transect of eastern China. International Journal of Remote Sensing, 2013, 34, 7312-7328.	1.3	7
253	Preparing for Climate Change: Forestry and Assisted Migration. Journal of Forestry, 2013, 111, 287-297.	0.5	213
255	Phenological overlap of interacting species in a changing climate: an assessment of available approaches. Ecology and Evolution, 2013, 3, 3183-3193.	0.8	70
256	Changes in breeding phenology of eastern Ontario frogs over four decades. Ecology and Evolution, 2013, 3, 835-845.	0.8	40
257	- Feeding Biology: Advances from Field-Based Observations, Physiological Studies, and Molecular Techniques. , 2013, , 230-267.		33
258	Climatic change and reptiles. , 0, , 279-294.		2
259	Assessing insect responses to climate change: What are we testing for? Where should we be heading?. PeerJ, 2013, 1, e11.	0.9	114

#	Article	IF	CITATIONS
260	Assessing Performance of NDVI and NDVI3g in Monitoring Leaf Unfolding Dates of the Deciduous Broadleaf Forest in Northern China. Remote Sensing, 2013, 5, 845-861.	1.8	32
261	Elevated Temperature and Drought Interact to Reduce Parasitoid Effectiveness in Suppressing Hosts. PLoS ONE, 2013, 8, e58136.	1.1	99
262	Trends in the Start of the Growing Season in Fennoscandia 1982–2011. Remote Sensing, 2013, 5, 4304-4318.	1.8	61
263	Phenology of Some Phanerogams (Trees and Shrubs) of Northwestern Punjab, India. Journal of Botany, 2013, 2013, 1-10.	1.2	11
264	Potential Impacts of Climate Change on Insect Communities: A Transplant Experiment. PLoS ONE, 2014, 9, e85987.	1.1	52
265	Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE, 2014, 9, e88178.	1.1	98
266	Identification of the Key Weather Factors Affecting Overwintering Success of Apolygus lucorum Eggs in Dead Host Tree Branches. PLoS ONE, 2014, 9, e94190.	1.1	10
267	Changes in Spring Phenology in the Three-Rivers Headwater Region from 1999 to 2013. Remote Sensing, 2014, 6, 9130-9144.	1.8	23
268	Climate change and plankton phenology in freshwater: current trends and future commitments. Journal of Limnology, 2014, 73, .	0.3	17
269	Hypothesizing if responses to climate change affect herbicide exposure risk for amphibians. Environmental Sciences Europe, 2014, 26, .	2.6	9
271	Tree phenology responses to winter chilling, spring warming, at north and south range limits. Functional Ecology, 2014, 28, 1344-1355.	1.7	71
272	Facultative nocturnal behaviour in snakes: experimental examination of why and how with Ratsnakes (<i>Elaphe obsoleta</i>) and Racers (<i>Coluber constrictor</i>). Canadian Journal of Zoology, 2014, 92, 229-237.	0.4	10
273	Mismatch Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer. PLoS Biology, 2014, 12, e1001828.	2.6	161
274	Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey. Clobal Change Biology, 2014, 20, 3508-3519.	4.2	90
275	The seasonal timing of warming that controls onset of the growing season. Global Change Biology, 2014, 20, 1136-1145.	4.2	63
276	Phenological responses and a comparative phylogenetic insight of <i>Anarsia lineatella</i> and <i>Grapholita molesta</i> between distinct geographical regions within the Mediterranean basin. Journal of Applied Entomology, 2014, 138, 528-538.	0.8	8
277	Basinâ€scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (<i>Salmo salar</i>). Global Change Biology, 2014, 20, 61-75.	4.2	160
278	Linking phenological shifts to species interactions through sizeâ€mediated priority effects. Journal of Animal Ecology, 2014, 83, 1206-1215.	1.3	73

ARTICLE IF CITATIONS # Predicting the sensitivity of butterfly phenology to temperature over the past century. Global Change 279 4.2 56 Biology, 2014, 20, 504-514. Local adaptations to frost in marginal and central populations of the dominant forest tree <i><scp>F</scp>agus sylvatica </i><scp>L</scp> as affected by temperature and extreme drought in 280 0.8 common garden experiments. Ecology and Evolution, 2014, 4, 594-605. 281 Hybridization in a warmer world. Ecology and Evolution, 2014, 4, 2019-2031. 0.8 160 Do spiders respond to global change? A study on the phenology of ballooning spiders in Switzerland. Ecoscience, 2014, 21, 79-95. Patterns of parasitoid host utilization and development across a range of temperatures: implications 283 0.9 27 for biological control of an invasive forest pest. BioControl, 2014, 59, 659-669. Contrasting patterns of macroptery in Roeselâ∈™s bush cricket<i>Metrioptera roeselii</i> (Orthoptera,) Tj ETQq1 1,0,784314 rgBT /C 284 Introduction to the Fisheries and the Surveys., 2014, , 1-11. 285 0 Scales of Variability Relevant to Fisheries in the Southern California Current System., 2014, , 77-138. 286 Ciclos de vida de insectos dulceacuÃeolas y cambio climático global en la ecorregión subantártica de 287 Magallanes: investigaciones ecolÃ³gicas a largo plazo en el Parque EtnobotÃ₁nico Omora, Reserva de 0.1 9 Biosfera Cabo de Hornos (55° S). Bosque, 2Ŏ14, 35, 429-437. Is climate warming more consequential towards poles? The phenology of Lepidoptera in Finland. 4.2 Global Change Biology, 2014, 20, 16-27. Organizing phenological data resources to inform natural resource conservation. Biological 289 1.9 62 Conservation, 2014, 173, 90-97. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. 290 4.2 120 Global Change Biology, 2014, 20, 203-215. The spatial pattern of leaf phenology and its response to climate change in China. International Journal of Biometeorology, 2014, 58, 521-528. 291 1.3 83 A phylogenetic comparative study of flowering phenology along an elevational gradient in the 1.3 Canadian subarctic. International Journal of Biometeorology, 2014, 58, 455-462 293 Extended season for northern butterflies. International Journal of Biometeorology, 2014, 58, 691-701. 1.3 52 Fifteen-year phenological plant species and meteorological trends in central Italy. International 294 Journal of Biometeorology, 2014, 58, 661-667. (A bit) Earlier or later is always better: Phenological shifts in consumer–resource interactions. 295 0.4 25 Theoretical Ecology, 2014, 7, 149-162. Vulnerability of phenological synchrony between plants and pollinators in an alpine ecosystem. 296 58 Ecological Research, 2014, 29, 571-581.

ARTICLE IF CITATIONS # Ensemble empirical mode decomposition for analyzing phenological responses to warming. 297 1.9 25 Agricultural and Forest Meteorology, 2014, 194, 1-7. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. 298 1.5 193 Evolutionary Applications, 2014, 7, 88-103. Shifts in flowering phenology reshape a subalpine plant community. Proceedings of the National 299 3.3 437 Academy of Sciences of the United States of America, 2014, 111, 4916-4921. Changes in breeding phenology and population size of birds. Journal of Animal Ecology, 2014, 83, 300 128 729-739. Accelerated climate change and its potential impact on Yak herding livelihoods in the eastern Tibetan 301 1.7 32 plateau. Climatic Change, 2014, 123, 147-160. Phenologically explicit models for studying plant–pollinator interactions under climate change. Theoretical Ecology, 2014, 7, 289-297. 0.4 Lessons from the past in weather variability: sowing to ripening dynamics and yield penalties for 303 1.4 39 northern agriculture from 1970 to 2012. Regional Environmental Change, 2014, 14, 1505-1516. Standardized phenology monitoring methods to track plant and animal activity for science and 304 1.3 166 resource management applications. International Journal of Biometeorology, 2014, 58, 591-601. 305 Oceanography of the Southern California Current System Relevant to Fisheries., 2014, , 13-60. 17 Regional Fisheries Oceanography of the California Current System., 2014, , . Quo vadis amphibia? Global warming and breeding phenology in frogs, toads and salamanders. 307 2.1 54 Ecography, 2014, 37, 921-929. Deriving Vegetation Phenological Time and Trajectory Information Over Africa Using SEVIRI Daily LAI. 308 2.7 39 IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 1113-1130. Links between plant species' spatial and temporal responses to a warming climate. Proceedings of the 309 1.2 55 Royal Society B: Biological Sciences, 2014, 281, 20133017. Time and size at seaward migration influence the sea survival of <i>Salmo salar</i>. Journal of Fish Biology, 2014, 84, 1457-1473. Seasonality of North Atlantic phytoplankton from space: impact of environmental forcing on a 311 4.2 46 changing phenology (1998–2012). Global Change Biology, 2014, 20, 698-712. Field evidence for earlier leaf-out dates in alpine grassland on the eastern Tibetan Plateau from 1990 to 2006. Biology Letters, 2014, 10, 20140291. Linking satellite-based spring phenology to temperate deciduous broadleaf forest photosynthesis 313 1.6 8 activity. International Journal of Digital Earth, 2014, 7, 881-896. El Niño, Host Plant Growth, and Migratory Butterfly Abundance in a Changing Climate. Biotropica, 314

CITATION REPORT

2014, 46, 90-97.

#	Article	IF	CITATIONS
315	Comparison of vegetation phenology in the western USA determined from reflected GPS microwave signals and NDVI. International Journal of Remote Sensing, 2014, 35, 2996-3017.	1.3	15
316	Spatio-temporal variation in phenological response of citrus to climate change in Iran: 1960–2010. Agricultural and Forest Meteorology, 2014, 198-199, 285-293.	1.9	21
317	Simulated climate warming alters phenological synchrony between an outbreak insect herbivore and host trees. Oecologia, 2014, 175, 1041-1049.	0.9	92
318	Extreme weather event in spring 2013 delayed breeding time of Great Tit and Blue Tit. International Journal of Biometeorology, 2014, 58, 2169-2173.	1.3	30
319	Winter climate change in plant–soil systems: summary of recent findings and future perspectives. Ecological Research, 2014, 29, 593-606.	0.7	46
320	Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology, 2014, 95, 2613-2621.	1.5	65
322	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
323	Effect of winter cold duration on spring phenology of the orange tip butterfly, <i>Anthocharis cardamines</i> . Ecology and Evolution, 2015, 5, 5509-5520.	0.8	48
324	Predicting a change in the order of spring phenology in temperate forests. Global Change Biology, 2015, 21, 2603-2611.	4.2	95
325	Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Global Change Biology, 2015, 21, 3313-3322.	4.2	53
326	How Oviposition Behavior Determines Persistence in Small Patches and Changing Climates. American Naturalist, 2015, 186, 237-251.	1.0	0
327	Egg Losses Caused by Cold Snap in the Black-Headed Gull,Chroicocephalus ridibundusL Polish Journal of Ecology, 2015, 63, 460-466.	0.2	8
328	Continental drift and climate change drive instability in insect assemblages. Scientific Reports, 2015, 5, 11343.	1.6	11
329	Parameterization of temperature sensitivity of spring phenology and its application in explaining diverse phenological responses to temperature change. Scientific Reports, 2015, 5, 8833.	1.6	39
330	Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere, 2015, 6, 1-8.	1.0	29
331	Sand lizard (Lacerta agilis) phenology in a warming world. BMC Evolutionary Biology, 2015, 15, 206.	3.2	21
332	Phenological responses of prairie plants vary among species and year in a threeâ€year experimental warming study. Ecosphere, 2015, 6, 1-15.	1.0	23
333	Interactive effects of elevation, species richness and extreme climatic events on plant–pollinator networks. Global Change Biology, 2015, 21, 4086-4097.	4.2	49

#	Article	IF	CITATIONS
334	Who flies first? 〓 habitatâ€specific phenological shifts of butterflies and orthopterans in the light of climate change: a case study from the southâ€east M editerranean. Ecological Entomology, 2015, 40, 562-574.	1.1	12
335	Incorporating climate change projections into riparian restoration planning and design. Ecohydrology, 2015, 8, 863-879.	1.1	47
336	Temperature sensitivity as an explanation of the latitudinal pattern of green-up date trend in Northern Hemisphere vegetation during 1982-2008. International Journal of Climatology, 2015, 35, 3707-3712.	1.5	44
337	Using satellite data to improve the leaf phenology of a global terrestrial biosphere model. Biogeosciences, 2015, 12, 7185-7208.	1.3	85
338	Seasonal Changes in Central England Temperatures. SSRN Electronic Journal, 0, , .	0.4	1
339	Climate Change, Range Shifts and Multitrophic Interactions. , 0, , .		4
340	Application of High Resolution Satellite Imagery to Characterize Individual-Based Environmental Heterogeneity in a Wild Blue Tit Population. Remote Sensing, 2015, 7, 13319-13336.	1.8	8
341	Selective Reporting and the Social Cost of Carbon. SSRN Electronic Journal, 0, , .	0.4	1
342	Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore. Oecologia, 2015, 179, 377-391.	0.9	18
343	Five years of phenological monitoring in a mountain grassland: inter-annual patterns and evaluation of the sampling protocol. International Journal of Biometeorology, 2015, 59, 1927-1937.	1.3	31
344	Marine migration and habitat use of anadromous brown trout (<i>Salmo trutta</i>). Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1366-1378.	0.7	56
345	Ecosystem and Biodiversity Conservation Issues. , 2015, , 69-83.		0
346	Conserving host–parasitoid interactions in a warming world. Current Opinion in Insect Science, 2015, 12, 79-85.	2.2	30
347	The effects of experimental warming on the timing of a plant–insect herbivore interaction. Journal of Animal Ecology, 2015, 84, 785-796.	1.3	26
348	A composite indicator for assessing habitat quality of riparian forests derived from Earth observation data. International Journal of Applied Earth Observation and Geoinformation, 2015, 37, 114-123.	1.4	29
349	Climate change, phenology, and butterfly host plant utilization. Ambio, 2015, 44, 78-88.	2.8	29
350	Climateâ€induced changes in host tree–insect phenology may drive ecological stateâ€shift in boreal forests. Ecology, 2015, 96, 1480-1491.	1.5	138
351	Impacts of global climate change on the floras of oceanic islands – Projections, implications and current knowledge. Perspectives in Plant Ecology, Evolution and Systematics, 2015, 17, 160-183.	1.1	147

#	Article	IF	CITATIONS
352	Cascading effects of climate extremes on vertebrate fauna through changes to lowâ€latitude tree flowering and fruiting phenology. Global Change Biology, 2015, 21, 3267-3277.	4.2	108
353	Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Chinese Geography, 2015, 25, 131-148.	1.5	46
354	Change in spring arrival of migratory birds under anÂera of climateÂchange, Swedish data from the last 140Ayears. Ambio, 2015, 44, 69-77.	2.8	40
355	Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China. International Journal of Biometeorology, 2015, 59, 961-969.	1.3	39
356	Effects of climate change on overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). International Journal of Biometeorology, 2015, 59, 863-876.	1.3	14
357	Topographical variation reduces phenological mismatch between a butterfly and its nectar source. Journal of Insect Conservation, 2015, 19, 227-236.	0.8	21
358	Effects of Spring Temperatures on the Strength of Selection on Timing of Reproduction in a Long-Distance Migratory Bird. PLoS Biology, 2015, 13, e1002120.	2.6	106
359	Winners and losers of climate change for the genus Merodon (Diptera: Syrphidae) across the Balkan Peninsula. Ecological Modelling, 2015, 313, 201-211.	1.2	22
360	Temperature-induced shifts in hibernation behavior in experimental amphibian populations. Scientific Reports, 2015, 5, 11580.	1.6	18
361	Climate Change and Flowering Phenology in Worcester County, Massachusetts. International Journal of Plant Sciences, 2015, 176, 107-119.	0.6	31
362	Indirect effect of climate change: Shifts in ratsnake behavior alter intensity and timing of avian nest predation. Ecological Modelling, 2015, 312, 239-246.	1.2	34
363	A cross-taxon analysis of the impact of climate change on abundance trends in central Europe. Biological Conservation, 2015, 187, 41-50.	1.9	44
364	Consequences of phenology variation and oxidative defenses in Quercus. Chemoecology, 2015, 25, 261-270.	0.6	5
365	Lagged effects of early-season herbivores on valley oak fecundity. Oecologia, 2015, 178, 361-368.	0.9	19
366	Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species. Estuarine, Coastal and Shelf Science, 2015, 162, 98-109.	0.9	201
367	Detecting mismatches of bird migration stopover and tree phenology in response to changing climate. Oecologia, 2015, 178, 1227-1238.	0.9	25
368	Phenological synchronization drives demographic rates of populations. Ecology, 2015, 96, 1754-1760.	1.5	23
369	Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight. Journal of Animal Ecology, 2015, 84, 1311-1321.	1.3	47

#	Article	IF	CITATIONS
370	Spring greening in a warming world. Nature, 2015, 526, 48-49.	13.7	18
371	Metabolic theory explains latitudinal variation in common carp populations and predicts responses to climate change. Ecosphere, 2015, 6, 1-16.	1.0	26
372	Resilience to climate change: complex relationships among wetland hydroperiod, larval amphibians and aquatic predators in temporary wetlands. Marine and Freshwater Research, 2015, 66, 886.	0.7	17
373	Warming affects hatching time and early season survival of eastern tent caterpillars. Oecologia, 2015, 179, 901-912.	0.9	23
374	Plant phenology and climate change. Progress in Physical Geography, 2015, 39, 460-482.	1.4	86
375	Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4065-74.	3.3	171
376	Temporal patterns in adult salmon migration timing across southeast Alaska. Global Change Biology, 2015, 21, 1821-1833.	4.2	65
377	Longâ€ŧerm shifts in the phenology of rare and endemic Rocky Mountain plants. American Journal of Botany, 2015, 102, 1268-1276.	0.8	40
378	Responses of two understory herbs, <i>Maianthemum canadense</i> and <i>Eurybia macrophylla</i> , to experimental forest warming: Early emergence is the key to enhanced reproductive output. American Journal of Botany, 2015, 102, 1610-1624.	0.8	31
379	Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms. American Journal of Botany, 2015, 102, 1599-1609.	0.8	199
380	Selective reporting and the social cost of carbon. Energy Economics, 2015, 51, 394-406.	5.6	57
381	Three centuries of dual pressure from land use and climate change on the biosphere. Environmental Research Letters, 2015, 10, 044011.	2.2	50
382	Benefitting from geoinformatics: Estimating floristic diversity of Warwan Valley in Northwestern Himalaya, India. Journal of Mountain Science, 2015, 12, 854-863.	0.8	12
383	Plants and climate change: complexities and surprises. Annals of Botany, 2015, 116, 849-864.	1.4	381
384	Responses of spring phenology in temperate zone trees to climate warming: A case study of apricot flowering in China. Agricultural and Forest Meteorology, 2015, 201, 1-7.	1.9	138
385	The lost generation hypothesis: could climate change drive ectotherms into a developmental trap?. Oikos, 2015, 124, 54-61.	1.2	160
386	Beyond species: why ecological interaction networks vary through space and time. Oikos, 2015, 124, 243-251.	1.2	347
387	Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos, 2015, 124, 41-53.	1.2	52

#	Article	IF	CITATIONS
388	Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community. Ecology, 2015, 96, 355-361.	1.5	55
389	Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region. Marine Biology, 2015, 162, 235-243.	0.7	36
390	Multiple sources of uncertainty affect metrics for ranking conservation risk under climate change. Diversity and Distributions, 2015, 21, 111-122.	1.9	39
391	Climate change and lizards: changing species' geographic ranges in Patagonia. Regional Environmental Change, 2015, 15, 1121-1132.	1.4	27
392	Phenological response to climate change in China: a metaâ€analysis. Global Change Biology, 2015, 21, 265-274.	4.2	303
393	Influence of climate variations on Chascomús shallow lake thermal conditions and its consequences on the reproductive ecology of the Argentinian Silverside (Odontesthes bonariensis—Actinopterygii,) Tj ETQq1	1	.4 1g BT /Over
394	Determining trends and environmental drivers from long-term marine mammal and seabird data: examples from Southern Australia. Regional Environmental Change, 2015, 15, 197-209.	1.4	29
395	Reviews and syntheses: Australian vegetation phenology: new insights from satellite remote sensing and digital repeat photography. Biogeosciences, 2016, 13, 5085-5102.	1.3	75
396	Bird Ecology. , 2016, , 121-134.		2
397	Insect Communities. , 2016, , 153-166.		0
397 398	Insect Communities. , 2016, , 153-166. Changes in Coral Reef Ecosystems. , 2016, , 183-193.		0
397 398 399	Insect Communities. , 2016, , 153-166. Changes in Coral Reef Ecosystems. , 2016, , 183-193. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 2016, 3,	1.2	0 1 624
397 398 399 400	Insect Communities., 2016,, 153-166. Changes in Coral Reef Ecosystems., 2016,, 183-193. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 2016, 3, . Prey-Mediated Effects of Drought on the Consumption Rates of Coccinellid Predators of Elatobium abietinum. Insects, 2016, 7, 49.	1.2	0 1 624 30
397 398 399 400	Insect Communities., 2016,, 153-166. Changes in Coral Reef Ecosystems., 2016,, 183-193. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 2016, 3, 4. Prey-Mediated Effects of Drought on the Consumption Rates of Coccinellid Predators of Elatobium abietinum. Insects, 2016, 7, 49. Spatiotemporal Variability in Start and End of Growing Season in China Related to Climate Variability. Remote Sensing, 2016, 8, 433.	1.2 1.0 1.8	0 1 624 30 30
 397 398 399 400 401 402 	Insect Communities., 2016,, 153-166. Changes in Coral Reef Ecosystems., 2016,, 183-193. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 2016, 3, . Prey-Mediated Effects of Drought on the Consumption Rates of Coccinellid Predators of Elatobium abietinum. Insects, 2016, 7, 49. Spatiotemporal Variability in Start and End of Growing Season in China Related to Climate Variability. Remote Sensing, 2016, 8, 433. Changes in spring arrival date and timing of breeding of Ring-billed Gulls in southern QuÃ@bec over four decades. Avian Conservation and Ecology, 2016, 11, .	1.2 1.0 1.8 0.3	0 1 624 30 30 2
 397 398 399 400 401 402 404 	Insect Communities., 2016, , 153-166. Changes in Coral Reef Ecosystems., 2016, , 183-193. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 2016, 3, . Prey-Mediated Effects of Drought on the Consumption Rates of Coccinellid Predators of Elatobium abietinum. Insects, 2016, 7, 49. Spatiotemporal Variability in Start and End of Crowing Season in China Related to Climate Variability. Remote Sensing, 2016, 8, 433. Changes in spring arrival date and timing of breeding of Ring-billed Gulls in southern QuÃ@bec over four decades. Avian Conservation and Ecology, 2016, 11, . Elevation and moths in a central eastern Queensland rainforest. Austral Ecology, 2016, 41, 133-144.	1.2 1.0 1.8 0.3	0 1 624 30 30 2 2
 397 398 399 400 401 402 404 405 	Insect Communities., 2016, , 153-166. Changes in Coral Reef Ecosystems., 2016, , 183-193. Responses of Marine Organisms to Climate Change across Oceans. Frontiers in Marine Science, 2016, 3,	1.2 1.0 1.8 0.3 0.7 4.2	0 1 624 30 30 2 2 7

#	Article	IF	CITATIONS
407	Strong impacts of daily minimum temperature on the greenâ€up date and summer greenness of the Tibetan Plateau. Global Change Biology, 2016, 22, 3057-3066.	4.2	223
408	Will changes in phenology track climate change? A study of growth initiation timing in coast Douglasâ€fir. Global Change Biology, 2016, 22, 3712-3723.	4.2	77
409	Tickâ€; mosquitoâ€; and rodentâ€borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere, 2016, 7, e01271.	1.0	31
410	Ontogeny constrains phenology: opportunities for activity and reproduction interact to dictate potential phenologies in a changing climate. Ecology Letters, 2016, 19, 620-628.	3.0	51
411	The response of migratory populations to phenological change: a Migratory Flow Network modelling approach. Journal of Animal Ecology, 2016, 85, 648-659.	1.3	32
412	Calling phenology and detectability of a threatened amphibian (<i>Litoria olongburensis</i>) in ephemeral wetlands varies along a latitudinal cline: Implications for management. Austral Ecology, 2016, 41, 938-951.	0.7	7
413	Longâ€ŧerm changes in the migration phenology of <scp>UK</scp> breeding birds detected by largeâ€scale citizen science recording schemes. Ibis, 2016, 158, 481-495.	1.0	75
414	Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications. Scientific Reports, 2016, 6, 22344.	1.6	17
415	Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow. Scientific Reports, 2016, 6, 23356.	1.6	44
416	Experimental evidence for beneficial effects of projected climate change on hibernating amphibians. Scientific Reports, 2016, 6, 26754.	1.6	20
417	Reproductive performance of the hemlock looper, <i><scp>L</scp>ambdina fiscellaria</i> , as a function of temperature and population origin. Entomologia Experimentalis Et Applicata, 2016, 161, 219-231.	0.7	4
420	Landscape Structure of Flowering Phenology in Alpine Ecosystems: Significance of Plant–Pollinator Interactions and Evolutionary Aspects. Structure and Function of Mountain Ecosystems in Japan, 2016, , 41-62.	0.1	15
421	Plant size and leaf area influence phenological and reproductive responses to warming in semiarid Mediterranean species. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 21, 31-40.	1.1	29
422	Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands. Ecological Indicators, 2016, 69, 205-212.	2.6	10
423	The life histories of <i>Meridialaris chiloeensis</i> (Demoulin, 1955) (Ephemeroptera: Leptophlebiidae) and <i>Gigantodax rufescens</i> (Edwards, 1931) (Diptera: Simuliidae) on a Magellanic sub-Antarctic island (55ŰS). Aquatic Insects, 2016, 37, 145-158.	0.6	2
424	Longer growing seasons shift grassland vegetation towards more-productive species. Nature Climate Change, 2016, 6, 865-868.	8.1	71
425	Ocean acidification affects competition for space: projections of community structure using cellular automata. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152561.	1.2	8
426	Disciplinary reporting affects the interpretation of climate change impacts in global oceans. Global Change Biology, 2016, 22, 25-43.	4.2	30

#	Article	IF	Citations
427	Simulation of forest tree species' bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement. International Journal of Biometeorology, 2016, 60, 1711-1726.	1.3	13
428	The indirect effects of climate variability on the reproductive dynamics and productivity of an avian predator in the arid Southwest. Oecologia, 2016, 180, 279-291.	0.9	17
429	Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 223, 194-202.	1.9	60
430	Airborne laser scanning and spectral remote sensing give a bird's eye perspective on arctic tundra breeding habitat at multiple spatial scales. Remote Sensing of Environment, 2016, 184, 337-349.	4.6	18
431	Low precipitation aggravates the impact of extreme high temperatures on lizard reproduction. Oecologia, 2016, 182, 961-971.	0.9	35
432	Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. Journal of Plant Ecology, 0, , rtw084.	1.2	33
433	Effect of geographic population and host cultivar on demographic parameters of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 2016, 19, 743-751.	0.4	5
434	The effect of extreme spring weather on body condition and stress physiology in Lapland longspurs and white-crowned sparrows breeding in the Arctic. General and Comparative Endocrinology, 2016, 237, 10-18.	0.8	46
435	Explicit modeling of abiotic and landscape factors reveals precipitation and forests associated with aphid abundance. Ecological Applications, 2016, 26, 2600-2610.	1.8	21
436	Environmental drivers of anuran calling phenology in a seasonal Neotropical ecosystem. Austral Ecology, 2016, 41, 16-27.	0.7	41
437	Hybridization and extinction. Evolutionary Applications, 2016, 9, 892-908.	1.5	517
438	Individual and combined effects of two types of phenological shifts on predator–prey interactions. Ecology, 2016, 97, 3414-3421.	1.5	20
439	Problems and Prospects of Crops with Changing Temperature. , 2016, , 7-30.		0
440	Climate change and global cycling of persistent organic pollutants: A critical review. Science China Earth Sciences, 2016, 59, 1899-1911.	2.3	77
441	Artificial Selection Reveals High Genetic Variation in Phenology at the Trailing Edge of a Species Range. American Naturalist, 2016, 187, 182-193.	1.0	41
442	Warming Accelerates Carbohydrate Consumption in the Diapausing Overwintering Peach Fruit Moth <i>Carposina sasakii</i> (Lepidoptera: Carposinidae). Environmental Entomology, 2016, 45, 1287-1293.	0.7	25
443	The broad footprint of climate change from genes to biomes to people. Science, 2016, 354, .	6.0	883
444_	Climate change impacts on pollination. Nature Plants, 2016, 2, 16092.	4.7	100

#	Article	IF	CITATIONS
445	On the performance of remote sensing time series reconstruction methods – A spatial comparison. Remote Sensing of Environment, 2016, 187, 367-384.	4.6	62
446	Rising temperatures and changing rainfall patterns in South Africa's national parks. International Journal of Climatology, 2016, 36, 706-721.	1.5	102
447	Phenological asynchrony in plant–butterfly interactions associated with climate: a communityâ€wide perspective. Oikos, 2016, 125, 1434-1444.	1.2	35
448	Temperature-Mediated Growth Thresholds ofAcrobasis vaccinii(Lepidoptera: Pyralidae). Environmental Entomology, 2016, 45, 732-736.	0.7	4
449	Caribou, water, and ice – fine-scale movements of a migratory arctic ungulate in the context of climate change. Movement Ecology, 2016, 4, 14.	1.3	52
450	Springtime Emergence of Overwintering Toads, <i>Anaxyrus fowleri</i> , in Relation to Environmental Factors. Copeia, 2016, 104, 393-401.	1.4	11
451	Constrained growth flips the direction of optimal phenological responses among annual plants. New Phytologist, 2016, 209, 1591-1599.	3.5	7
452	Responses of Mediterranean Forest Phytophagous Insects to Climate Change. , 2016, , 801-858.		5
453	Grassland Carbon Sequestration Ability in China: A New Perspective from Terrestrial Aridity Zones. Rangeland Ecology and Management, 2016, 69, 84-94.	1.1	37
454	How Resource Phenology Affects Consumer Population Dynamics. American Naturalist, 2016, 187, 151-166.	1.0	39
455	Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia, 2016, 181, 683-693.	0.9	77
456	High fitness costs of climate changeâ€induced camouflage mismatch. Ecology Letters, 2016, 19, 299-307.	3.0	149
457	The influence of the soil on spring and autumn phenology in European beech. Tree Physiology, 2016, 36, 78-85.	1.4	30
458	Reconsidering the Loss of Evolutionary History: How Does Non-random Extinction Prune the Tree-of-Life?. Topics in Biodiversity and Conservation, 2016, , 57-80.	0.3	13
459	Effects of mild wintering conditions on body mass and corticosterone levels in a temperate reptile, the aspic viper (Vipera aspis). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 192, 52-56.	0.8	22
460	Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees. Forest Ecology and Management, 2016, 362, 241-250.	1.4	50
461	Functional leaf and size traits determine the photosynthetic response of 10 dryland species to warming. Journal of Plant Ecology, 2016, 9, 773-783.	1.2	25
462	An observation-based progression modeling approach to spring and autumn deciduous tree phenology. International Journal of Biometeorology, 2016, 60, 335-349.	1.3	41

		CITATION REPORT	
#	Article	IF	Citations
463	A comprehensive review of the phenology of Pygoscelis penguins. Polar Biology, 2016, 39, 405-432	. 0.5	36
464	Estimating the onset of spring from a complex phenology database: trade-offs across geographic scales. International Journal of Biometeorology, 2016, 60, 391-400.	1.3	18
465	Effects of soil warming and nitrogen foliar applications on bud burst of black spruce. Trees - Structure and Function, 2016, 30, 87-97.	0.9	40
466	Susceptibility of silver birch (<i>Betula pendula</i>) to herbivorous insects is associated with the si and phenology of birch – implications for climate warming. Scandinavian Journal of Forest Resear 2017, 32, 95-104.	ze ch, 0.5	15
467	Influence of climate and abundance on migration timing of adult Atlantic salmon (<i><scp>S</scp>almo salar</i>) among rivers in <scp>N</scp> ewfoundland and <scp>L</scp> abr Ecology of Freshwater Fish, 2017, 26, 247-259.	ador. 0.7	20
468	Amphibian breeding phenology trends under climate change: predicting the past to forecast the future. Global Change Biology, 2017, 23, 646-656.	4.2	45
469	Neglected issues in using weather and climate information in ecology and biogeography. Diversity a Distributions, 2017, 23, 329-340.	ınd 1.9	25
470	Spring phenology of cotton bollworm affects wheat yield. Ecology and Evolution, 2017, 7, 1078-10	90. 0.8	6
471	Implications of earlier sea ice melt for phenological cascades in arctic marine food webs. Food Web 2017, 13, 60-66.	^{3,} 0.5	37
472	Circumpolar analysis of the Adélie Penguin reveals the importance of environmental variability in phenological mismatch. Ecology, 2017, 98, 940-951.	1.5	28
473	Prediction of Arctic plant phenological sensitivity to climate change from historical records. Ecology and Evolution, 2017, 7, 1325-1338.	0.8	37
474	Changes in spring arrival dates and temperature sensitivity of migratory birds over two centuries. International Journal of Biometeorology, 2017, 61, 1279-1289.	1.3	9
475	Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 2017, 23, 2660-2671.	4.2	171
476	Delayed response of spring phenology to global warming in subtropics and tropics. Agricultural and Forest Meteorology, 2017, 234-235, 222-235.	1.9	53
477	Geographic Origin and Host Cultivar Influence on Digestive Physiology of <i>Spodoptera exigua</i> (Lepidoptera: Noctuidae) Larvae. Journal of Insect Science, 2017, 17, 12.	0.6	4
478	Climatic effects on population declines of a rare wetland species and the role of spatial and tempor isolation as barriers to hybridization. Functional Ecology, 2017, 31, 1262-1274.	al 1.7	5
479	Delayed chilling appears to counteract flowering advances of apricot in southern UK. Agricultural and Forest Meteorology, 2017, 237-238, 209-218.	1.9	34
480	Positive adaptation of Salix eriostachya to warming in the treeline ecotone, East Tibetan Plateau. Journal of Mountain Science, 2017, 14, 346-355.	0.8	2

#	Article	IF	CITATIONS
481	Where are they? Where will they be? In pursuit of current and future whereabouts of endangered Himalayan musk deer. Mammalian Biology, 2017, 85, 30-36.	0.8	10
482	How are arthopod communities structured and why are they so diverse? Answers from Mediterranean mountains using hierarchical additive partitioning. Biodiversity and Conservation, 2017, 26, 1333-1351.	1.2	8
483	Linking river flow regimes to riparian plant guilds: a communityâ€wide modeling approach. Ecological Applications, 2017, 27, 1338-1350.	1.8	51
484	Interaction webs in arctic ecosystems: Determinants of arctic change?. Ambio, 2017, 46, 12-25.	2.8	59
485	Climate change and flowering phenology in Franklin County, Massachusetts. Journal of the Torrey Botanical Society, 2017, 144, 153-169.	0.1	6
486	Reproductive timing as a constraint on invasion success in the Ring-necked parakeet (Psittacula) Tj ETQq1 1 0.78	4314 rgBT 1.2	Overlock 20
487	How birds cope physiologically and behaviourally with extreme climatic events. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160140.	1.8	91
488	Modeling and mapping the current and future climatic-niche of endangered Himalayan musk deer. Ecological Informatics, 2017, 40, 1-7.	2.3	20
489	Characterizing opportunistic breeding at a continental scale using all available sources of phenological data: An assessment of 337 species across the Australian continent. Auk, 2017, 134, 509-519.	0.7	30
490	Ecological differences influence the thermal sensitivity of swimming performance in two co-occurring mysid shrimp species with climate change implications. Journal of Thermal Biology, 2017, 64, 26-34.	1.1	6
491	Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160046.	1.8	90
492	The rise of phenology with climate change: an evaluation of IJB publications. International Journal of Biometeorology, 2017, 61, 29-50.	1.3	31
493	Diversity of spiders and orthopterans respond to intra-seasonal and spatial environmental changes. Journal of Insect Conservation, 2017, 21, 531-543.	0.8	18
494	Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Global Change Biology, 2017, 23, 5189-5202.	4.2	90
495	Interspecific and interannual variation in the duration of spring phenophases in a northern mixed forest. Agricultural and Forest Meteorology, 2017, 243, 55-67.	1.9	29
496	Phenological evidence from China to address rapid shifts in global flowering times with recent climate change. Agricultural and Forest Meteorology, 2017, 246, 22-30.	1.9	22
497	Phenotypic variation between high and low elevation populations of Rumex nepalensis in the Himalayas is driven by genetic differentiation. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	0
498	Diminishing returns limit energetic costs of climate change. Ecology, 2017, 98, 1217-1228.	1.5	22

#	Article	IF	CITATIONS
499	Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3463-3468.	3.3	108
500	Responses of spring phenology in a fruit tree species (<i>Pyrus</i> sp. cv. Pingguoli) to the changes in surface air temperature in Northeast China. International Journal of Climatology, 2017, 37, 2757-2764.	1.5	0
501	Response of <i>Callosobruchus maculatus</i> (F.) to varying temperature and relative humidity under laboratory conditions. Archives of Phytopathology and Plant Protection, 2017, 50, 13-23.	0.6	7
502	Continental-scale patterns and climatic drivers of fruiting phenology: A quantitative Neotropical review. Clobal and Planetary Change, 2017, 148, 227-241.	1.6	107
503	Seasonal Changes in Central England Temperatures. Journal of the Royal Statistical Society Series A: Statistics in Society, 2017, 180, 769-791.	0.6	18
504	Detrending phenological time series improves climate–phenology analyses and reveals evidence of plasticity. Ecology, 2017, 98, 647-655.	1.5	63
505	Ecology and management of the black inch worm, Hyposidra talaca Walker (Geometridae: Lepidoptera) infesting Camellia sinensis (Theaceae): A review. Journal of Integrative Agriculture, 2017, 16, 2115-2127.	1.7	21
506	Too Cold, Too Wet, Too Bright, or Just Right? Environmental Predictors of Snake Movement and Activity. Copeia, 2017, 105, 584-591.	1.4	11
507	Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160246.	1.8	124
508	Climate drives phenological reassembly of a mountain wildflower meadow community. Ecology, 2017, 98, 2799-2812.	1.5	62
509	Temporal Variation in Trophic Cascades. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 281-300.	3.8	45
510	Climate variation alters the synchrony of host–parasitoid interactions. Ecology and Evolution, 2017, 7, 8578-8587.	0.8	34
512	A reversal of the shift towards earlier spring phenology in several Mediterranean reptiles and amphibians during the 1998–2013 warming slowdown. Global Change Biology, 2017, 23, 5481-5491.	4.2	13
513	Phylogenetic conservatism and trait correlates of spring phenological responses to climate change in northeast China. Ecology and Evolution, 2017, 7, 6747-6757.	0.8	24
514	Dominance of spotted stemborer <i><scp>C</scp>hilo partellus</i> <scp>S</scp> winhoe (<scp>L</scp> epidoptera: <scp>C</scp> rambidae) over indigenous stemborer species in <scp>A</scp> frica's changing climates: ecological and thermal biology perspectives. Agricultural and Forest Entomology, 2017, 19, 344-356.	0.7	24
515	Decline of a montane Mediterranean pied flycatcher <i>Ficedula hypoleuca</i> population in relation to climate. Journal of Avian Biology, 2017, 48, 1383-1393.	0.6	9
516	Control of annual gonadal cycles in Indian songbirds. Biological Rhythm Research, 2017, 48, 701-721.	0.4	1
517	How does synchrony with host plant affect the performance of an outbreaking insect defoliator?. Oecologia, 2017, 184, 847-857.	0.9	42

#	Article	IF	CITATIONS
518	Predicting phenological shifts in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13212-13217.	3.3	97
520	The effect of climate change on the duration of avian breeding seasons: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171710.	1.2	56
521	Phase Changes and Seasonal Warming in Early Instrumental Temperature Records. Journal of Climate, 2017, 30, 6795-6821.	1.2	10
523	Long-Term Trends In Avian Migration Timing For the State of New York. Wilson Journal of Ornithology, 2017, 129, 271-282.	0.1	6
524	Elevational distribution of butterflies in the Himalayas: a case study from Langtang National Park, Nepal. Journal of Mountain Science, 2017, 14, 1384-1390.	0.8	3
525	Precipitation quantity and timing affect native plant production and growth of a key herbivore, the desert tortoise, in the Mojave Desert. Climate Change Responses, 2017, 4, .	2.6	14
526	Variation in the date of budburst in Quercus robur and Q. petraea across a range of provenances grown in Southern England. European Journal of Forest Research, 2017, 136, 1-12.	1.1	16
527	Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic metaâ€analysis. Journal of Animal Ecology, 2017, 86, 250-261.	1.3	100
528	Influence of temperature on female, embryonic and hatchling traits in syntopic newts, Ichthyosaura alpestris and Lissotriton vulgaris. Journal of Thermal Biology, 2017, 63, 24-30.	1.1	5
529	Impacts of Insect Herbivores on Plant Populations. Annual Review of Entomology, 2017, 62, 207-230.	5.7	57
530	Multidimensional environmental predictors of variation in avian forest and city life histories. Behavioral Ecology, 2017, 28, 59-68.	1.0	42
531	Time and heat for sexual reproduction: comparing the phenology of Chara hispida of two populations at different latitudes. Aquatic Botany, 2017, 136, 71-81.	0.8	16
532	The influence of life history traits on the phenological response of British butterflies to climate variability since the lateâ€19th century. Ecography, 2017, 40, 1152-1165.	2.1	26
533	Incubation behavior adjustments, driven by ambient temperature variation, improve synchrony between hatch dates and caterpillar peak in a wild bird population. Ecology and Evolution, 2017, 7, 9415-9425.	0.8	30
534	Marked reduction in demographic rates and reduced fitness advantage for early breeding is not linked to reduced thermal matching of breeding time. Ecology and Evolution, 2017, 7, 10782-10796.	0.8	16
535	The Pulse of the Planet: Measuring and Interpreting Phenology of Avian Migration. , 2017, , 401-425.		4
536	Impact of Climate Variability on Flowering Phenology and Its Implications for the Schedule of Blossom Festivals. Sustainability, 2017, 9, 1127.	1.6	21
537	Phenocams Bridge the Gap between Field and Satellite Observations in an Arid Grassland Ecosystem. Remote Sensing, 2017, 9, 1071.	1.8	69

#	Article	IF	CITATIONS
538	Effects of climate change on a mutualistic coastal species: Recovery from typhoon damages and risks of population erosion. PLoS ONE, 2017, 12, e0186763.	1.1	6
539	Differences in Rate and Direction of Shifts between Phytoplankton Size Structure and Sea Surface Temperature. Remote Sensing, 2017, 9, 222.	1.8	9
540	Potential benefits of augmenting road-based breeding bird surveys with autonomous recordings. Avian Conservation and Ecology, 2017, 12, .	0.3	8
541	Phenological Shifts in Animals Under Contemporary Climate Change \hat{a} †. , 2017, , .		2
542	Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools: A meta-analysis. Science of the Total Environment, 2018, 630, 181-188.	3.9	29
543	Information Underload: Ecological Complexity, Incomplete Knowledge, and Data Deficits Create Challenges for the Assisted Migration of Forest Trees. BioScience, 2018, 68, 251-263.	2.2	34
544	The relative importance of food abundance and weather on the growth of a sub-arctic shorebird chick. Behavioral Ecology and Sociobiology, 2018, 72, 1.	0.6	14
545	Acceleration of phenological advance and warming with latitude over the past century. Scientific Reports, 2018, 8, 3927.	1.6	95
546	Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. Journal of Animal Ecology, 2018, 87, 1182-1191.	1.3	6
547	Clobal shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5211-5216.	3.3	290
548	Use of fieldâ€portable ultrasonography reveals differences in developmental phenology and maternal egg provisioning in two sympatric viviparous snakes. Ecology and Evolution, 2018, 8, 3330-3340.	0.8	7
549	Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations. Journal of Animal Ecology, 2018, 87, 1080-1090.	1.3	38
550	Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Global Change Biology, 2018, 24, 823-835.	4.2	66
551	Using occupancy modeling to monitor dates of peak vocal activity for passerines in California. Condor, 2018, 120, 188-200.	0.7	19
552	Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming. Ecology and Evolution, 2018, 8, 1316-1327.	0.8	30
553	Phenological cues intrinsic in indigenous knowledge systems for forecasting seasonal climate in the Delta State of Nigeria. International Journal of Biometeorology, 2018, 62, 1115-1119.	1.3	19
554	Latitudinal variation in responses of a forest herbivore and its egg parasitoids to experimental warming. Oecologia, 2018, 186, 869-881.	0.9	5
555	Occupancy modeling of Parnassius clodius butterfly populations in Grand Teton National Park, Wyoming. Journal of Insect Conservation, 2018, 22, 267-276.	0.8	2

ARTICLE IF CITATIONS Climate, tree masting and spatial behaviour in wild boar (Sus scrofa L.): insight from a long-term 556 0.8 35 study. Annals of Forest Science, 2018, 75, 1. Productivity of an Australian mountain grassland is limited by temperature and dryness despite long 1.9 24 growing seasons. Agricultural and Forest Meteorology, 2018, 256-257, 116-124. Impacts on terrestrial biodiversity of moving from a 2°C to a 1.5°C target. Philosophical Transactions 558 24 1.6 Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160456. Breeding-migration patterns and reproductive dynamics of two syntopic newt species (Amphibia,) Tj ETQq1 1 0.784314 rgBT / Overloo Trends in breeding phenology across ten decades show varying adjustments to environmental 560 0.4 9 changes in four wader species. Bird Study, 2018, 65, 44-51. Defining the window of opportunity for feeding initiation by second-instar spruce budworm larvae. Canadian Journal of Forest Research, 2018, 48, 285-291. 0.8 The implications of the United Nations Paris Agreement on climate change for globally significant 562 1.7 72 biodiversity areas. Climatic Change, 2018, 147, 395-409. Reproductive patterns of mussel Perumytilus purpuratus (Bivalvia: Mytilidae), along the Chilean coast: effects caused by climate change?. Journal of the Marine Biological Association of the United Kingdom, 2018, 98, 375-385. 0.4 The â€~golden kelp' <i>Laminaria ochroleuca</i> under global change: Integrating multiple 564 1.9 78 ecoâ€physiological responses with species distribution models. Journal of Ecology, 2018, 106, 47-58. Desynchronizations in beeâ€^eplant interactions cause severe fitness losses in solitary bees. Journal of 1.3 Animal Ecology, 2018, 87, 139-149. Reproductive Phenology and Germination Behavior of Some Important Tree Species of Northeast India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 566 0.4 8 1033-1041. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of 1.3 28 spring temperáture. Journal of Animal Ecológy, 2018, 87, 150-161. Haemoglobinâ€mediated response to hyperâ€thermal stress in the keystone species <i>Daphnia magna</i>. 568 1.5 26 Evolutionary Applications, 2018, 11, 112-120. Poor plant performance under simulated climate change is linked to mycorrhizal responses in a 1.9 semiȧ́€arid shrubland. Journal of Ecology, 2018, 106, 9ॅ60-976. Does the Tachet trait database report voltinism variability of aquatic insects between Mediterranean 570 0.6 18 and Scandinavian regions?. Aquatic Sciences, 2018, 80, 1. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but 571 cannot be directly attributed to the effects of trophic asynchrony on productivity. Global Change Biology, 2018, 24, 957-971. Plasticity in foraging behaviour as a possible response to climate change. Ecological Informatics, 2018, 572 2.314 47, 61-66. Impacts of Climate Change on Insect Pests of Main Crops in Egypt. Handbook of Environmental 573 Chemistry, 2018, , 189-214.

#	Article	IF	Citations
574	Predicting future frost damage risk of kiwifruit in Korea under climate change using an integrated modelling approach. International Journal of Climatology, 2018, 38, 5354-5367.	1.5	9
575	Climate and synchrony with conspecifics determine the effects of flowering phenology on reproductive success in <i>Silene acaulis</i> . Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	10
576	Unraveling the influences of climate change in Lepidosauria (Reptilia). Journal of Thermal Biology, 2018, 78, 401-414.	1.1	39
577	Morphological Variation Tracks Environmental Gradients in an Agricultural Pest, <i>Phaulacridium vittatum </i> (Orthoptera: Acrididae). Journal of Insect Science, 2018, 18, .	0.6	17
578	Differential changes in the onset of spring across US National Wildlife Refuges and North American migratory bird flyways. PLoS ONE, 2018, 13, e0202495.	1.1	16
579	Quantifying temporal change in plant population attributes: insights from a resurrection approach. AoB PLANTS, 2018, 10, ply063.	1.2	14
580	Thermal pace-of-life strategies improve phenological predictions in ectotherms. Scientific Reports, 2018, 8, 15891.	1.6	4
581	Does climate change and plant phenology research neglect the Arctic tundra?. Ecosphere, 2018, 9, e02362.	1.0	15
582	Inclusion of host quality data improves predictions of herbivore phenology. Entomologia Experimentalis Et Applicata, 2018, 166, 648-660.	0.7	18
583	Biologging Physiological and Ecological Responses to Climatic Variation: New Tools for the Climate Change Era. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	51
585	Temperature affects phenological synchrony in a tree-killing bark beetle. Oecologia, 2018, 188, 117-127.	0.9	15
586	Spatiotemporal analysis of the effect of climate change on vegetation health in the Drakensberg Mountain Region of South Africa. Environmental Monitoring and Assessment, 2018, 190, 358.	1.3	18
587	Successional change in species composition alters climate sensitivity of grassland productivity. Global Change Biology, 2018, 24, 4993-5003.	4.2	21
588	Reduced geographical variability in spring phenology of temperate trees with recent warming. Agricultural and Forest Meteorology, 2018, 256-257, 526-533.	1.9	33
589	Detecting mismatches in the phenology of cotton bollworm larvae and cotton flowering in response to climate change. International Journal of Biometeorology, 2018, 62, 1507-1520.	1.3	11
590	The importance of lakes for bat conservation in Amazonian rainforests: an assessment using autonomous recorders. Remote Sensing in Ecology and Conservation, 2018, 4, 339-351.	2.2	48
591	Spatio-temporal variation in fitness responses to contrasting environments in <i>Arabidopsis thaliana</i> . Evolution; International Journal of Organic Evolution, 2018, 72, 1570-1586.	1.1	34
593	Experimental warming in the field delays phenology and reduces body mass, fat content and survival: Implications for the persistence of a pollinator under climate change. Functional Ecology, 2018, 32, 2345-2356.	1.7	62

#	Article	IF	CITATIONS
594	Using archived television video footage to quantify phenology responses to climate change. Methods in Ecology and Evolution, 2018, 9, 1874-1882.	2.2	15
595	Reflections on, and visions for, the changing field of pollination ecology. Ecology Letters, 2018, 21, 1282-1295.	3.0	50
596	Getting ahead of the curve: cities as surrogates for global change. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180643.	1.2	60
597	Effects of climate warming and prolonged snow cover on phenology of the early life history stages of four alpine herbs on the southeastern Tibetan Plateau. American Journal of Botany, 2018, 105, 967-976.	0.8	26
598	Shifts in phenological distributions reshape interaction potential in natural communities. Ecology Letters, 2018, 21, 1143-1151.	3.0	64
599	Experimental shifts in phenology affect fitness, foraging, and parasitism in a native solitary bee. Ecology, 2018, 99, 2187-2195.	1.5	18
601	Pear (Pyrus spp.) Breeding. , 2018, , 131-163.		10
602	Using CRISPR as a Gene Editing Tool for Validating Adaptive Gene Function in Tree Landscape Genomics. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	20
603	Pattern and driving factor of intense defoliation of rubber plantations in SW China. Ecological Indicators, 2018, 94, 104-116.	2.6	22
604	Long-term monitoring of the endemic <i>Rana latastei</i> : suggestions for after-LIFE management. Oryx, 2018, 52, 709-717.	0.5	6
605	Warming springs and habitat alteration interact to impact timing of breeding and population dynamics in a migratory bird. Global Change Biology, 2018, 24, 5292-5303.	4.2	34
606	Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyteâ€dominated systems with zero net effect on carbon burial. Global Change Biology, 2018, 24, 5231-5242.	4.2	43
607	Decline of meadow spittlebugs, a previously abundant insect, along the California coast. Ecology, 2018, 99, 2614-2616.	1.5	11
608	Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biological Conservation, 2018, 226, 247-255.	1.9	13
609	Phenology Response to Climatic Dynamic across China's Grasslands from 1985 to 2010. ISPRS International Journal of Geo-Information, 2018, 7, 290.	1.4	9
610	Altered spring phenology of North American freshwater turtles and the importance of representative populations. Ecology and Evolution, 2018, 8, 5815-5827.	0.8	29
611	Fruiting patterns of macrofungi in tropical and temperate land use types in Yunnan Province, China. Acta Oecologica, 2018, 91, 7-15.	0.5	3
612	Changes in urban plant phenology in the Pacific Northwest from 1959 to 2016: anthropogenic warming and natural oscillation. International Journal of Biometeorology, 2018, 62, 1675-1684.	1.3	10

ARTICLE IF CITATIONS # Modeling reproductive traits of an invasive bivalve species under contrasting climate scenarios from 613 0.6 19 1960 to 2100. Journal of Sea Research, 2019, 143, 128-139. Spatiotemporal differences in the climatic growing season in the Qinling Mountains of China under the influence of global warming from 1964 to 2015. Theoretical and Applied Climatology, 2019, 138, 614 1.3 1899-1911. Climate Warming Does Not Always Extend the Plant Growing Season in Inner Mongolian Grasslands: 615 Evidence From a 30â€Year In Situ Observations at Eight Experimental Sites. Journal of Geophysical 1.3 15 Research G: Biogeosciences, 2019, 124, 2364-2378. Shifts in phenological mean and synchrony interact to shape competitive outcomes. Ecology, 2019, 100, e02826. Temperature coupling of mate attraction signals and female mate preferences in four populations of 617 <i>Enchenopa</i> treehopper (Hemiptera: Membracidae). Journal of Evolutionary Biology, 2019, 32, 0.8 23 1046-1056 Adaptive responses of animals to climate change are most likely insufficient. Nature Communications, 2019, 10, 3109. 5.8 Heatwaves and Novel Host Consumption Increase Overwinter Mortality of an Imperiled Wetland 619 1.1 29 Butterfly. Frontiers in Ecology and Evolution, 2019, 7, . An examination of climateâ€driven floweringâ€time shifts at large spatial scales over 153 years in a 0.8 14 common weedy annual. American Journal of Botany, 2019, 106, 1435-1443. Changes of energy fluxes in marine animal forests of the Anthropocene: factors shaping the future 621 1.2 24 seascape. ICES Journal of Marine Science, 2019, 76, 2008-2019. Drop it like it's hot: Interpopulation variation in thermal phenotypes shows counter-gradient pattern. 1.1 Journal of Thermal Biology, 2019, 83, 178-186. Autonomous sound recording outperforms human observation for sampling birds: a systematic map 623 101 1.8 and user guide. Ecological Applications, 2019, 29, e01954. Invasion and drought alter phenological sensitivity and synergistically lower ecosystem production. 624 1.5 Ecology, 2019, 100, e02802. Geographic variation in the intensity of warming and phenological mismatch between Arctic 625 2.4 39 shorebirds and invertebrates. Ecological Monographs, 2019, 89, e01383. Phenology in a warming world: differences between native and nonâ€native plant species. Ecology Letters, 2019, 22, 1253-1263. Behavioral adaptations of sandy beach macrofauna in face of climate change impacts: A conceptual 627 0.9 25 framework. Estuarine, Coastal and Shelf Science, 2019, 225, 106236. When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact 1.2 on plant reproduction. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190573. Global Climate Change as a Driver of Bottom-Up and Top-Down Factors in Agricultural Landscapes and 629 1.1 53 the Fate of Host-Parasitoid Interactions. Frontiers in Ecology and Evolution, 2019, 7, . Dynamics of net primary productivity on the Mongolian Plateau: Joint regulations of phenology and 1.4 drought. International Journal of Applied Earth Observation and Geoinformation, 2019, 81, 85-97.

#	Article	IF	CITATIONS
631	Consistent declines in wing lengths of Calidridine sandpipers suggest a rapid morphometric response to environmental change. PLoS ONE, 2019, 14, e0213930.	1.1	21
632	PhenoPine: A simulation model to trace the phenological changes in Pinus roxhburghii in response to ambient temperature rise. Ecological Modelling, 2019, 404, 12-20.	1.2	22
633	It's about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography, 2019, 28, 532-566.	0.9	83
634	Larval and phenological traits predict insect community response to mowing regime manipulations. Ecological Applications, 2019, 29, e01900.	1.8	19
635	Trailsâ€∎sâ€ŧransects: phenology monitoring across heterogeneous microclimates in Acadia National Park, Maine. Ecosphere, 2019, 10, e02626.	1.0	11
636	Advances in phenology are conserved across scale in present and future climates. Nature Climate Change, 2019, 9, 419-425.	8.1	29
637	Prairie plant phenology driven more by temperature than moisture in climate manipulations across a latitudinal gradient in the Pacific Northwest, USA. Ecology and Evolution, 2019, 9, 3637-3650.	0.8	24
638	A decade of flowering phenology of the keystone saguaro cactus (<i>Carnegiea gigantea</i>). American Journal of Botany, 2019, 106, 199-210.	0.8	8
639	Potential limitations of behavioral plasticity and the role of egg relocation in climate change mitigation for a thermally sensitive endangered species. Ecology and Evolution, 2019, 9, 1603-1622.	0.8	20
640	Extreme heterogeneity of population response to climatic variation and the limits of prediction. Global Change Biology, 2019, 25, 2127-2136.	4.2	31
641	The forgotten season: the impact of autumn phenology on a specialist insect herbivore community on oak. Ecological Entomology, 2019, 44, 425-435.	1.1	28
642	Warming-induced shifts in amphibian phenology and behavior lead to altered predator–prey dynamics. Oecologia, 2019, 189, 803-813.	0.9	21
643	Spatial and habitat variation in aphid, butterfly, moth and bird phenologies over the last half century. Global Change Biology, 2019, 25, 1982-1994.	4.2	42
644	Earlier spring passage of †Greenlandic' Northern Wheatears <i>Oenanthe o. leucorhoa</i> on the coast of Belgium. Ringing and Migration, 2019, 34, 52-56.	0.2	1
645	Factors influencing plasticity in the arrivalâ€breeding interval in a migratory species reacting to climate change. Ecology and Evolution, 2019, 9, 12291-12301.	0.8	5
646	Changing seasonality of the sea: past, present, and future. , 2019, , 39-51.		1
647	Parent-offspring conflict over reproductive timing: ecological dynamics far away and at other times may explain spawning variability in Pacific herring. ICES Journal of Marine Science, 2019, 76, 559-572.	1.2	11
648	Latitudinal variation in the phenological responses of eastern tent caterpillars and their egg parasitoids. Ecological Entomology, 2019, 44, 50-61.	1.1	12

#	Article	IF	CITATIONS
649	Herbarium specimens reveal increasing herbivory over the past century. Journal of Ecology, 2019, 107, 105-117.	1.9	56
650	Vegetation phenology and its variations in the Tibetan Plateau, China. International Journal of Remote Sensing, 2019, 40, 3323-3343.	1.3	7
651	Impacts of maternal characteristics and temperature on juvenile survival in the crocodile lizard: Implications for conservation. Zoo Biology, 2019, 38, 272-280.	0.5	5
652	Asynchrony between ant seed dispersal activity and fruit dehiscence of myrmecochorous plants. American Journal of Botany, 2019, 106, 71-80.	0.8	13
653	Butterfly–host plant synchrony determines patterns of host use across years and regions. Oikos, 2019, 128, 493-502.	1.2	9
654	Genotypic variation in phenological plasticity: Reciprocal common gardens reveal adaptive responses to warmer springs but not to fall frost. Global Change Biology, 2019, 25, 187-200.	4.2	76
655	Phenological Patterns of an Endangered Tree Species Syzygium caryophyllatum in Western Ghats, India: Implication for Conservation. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 1275-1281.	0.4	3
656	Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution, 2019, 3, 45-52.	3.4	79
657	The mechanisms of phenology: the patterns and processes of phenological shifts. Ecological Monographs, 2019, 89, e01337.	2.4	172
658	Experimental migration upward in elevation is associated with strong selection on life history traits. Ecology and Evolution, 2020, 10, 612-625.	0.8	17
659	Linking interâ€annual variation in environment, phenology, and abundance for a montane butterfly community. Ecology, 2020, 101, e02906.	1.5	22
660	Dynamics of flowering phenology of alpine plant communities in response to temperature and snowmelt time: Analysis of a nine-year phenological record collected by citizen volunteers. Environmental and Experimental Botany, 2020, 170, 103843.	2.0	17
661	On quantifying the apparent temperature sensitivity of plant phenology. New Phytologist, 2020, 225, 1033-1040.	3.5	52
662	Amphibian and reptile phenology: the end of the warming hiatus and the influence of the NAO in the North Mediterranean. International Journal of Biometeorology, 2020, 64, 423-432.	1.3	4
663	Modeling Overdispersion, Autocorrelation, and Zero-Inflated Count Data Via Generalized Additive Models and Bayesian Statistics in an Aphid Population Study. Neotropical Entomology, 2020, 49, 40-51.	0.5	9
664	Divergent carbon cycle response of forest and grassâ€dominated northern temperate ecosystems to record winter warming. Global Change Biology, 2020, 26, 1519-1531.	4.2	13
665	Projected warming disrupts the synchrony of riparian seed release and snowmelt streamflow. New Phytologist, 2020, 225, 693-712.	3.5	8
666	Abnormal shoot growth in Korean red pine as a response to microclimate changes due to urbanization in Korea. International Journal of Biometeorology, 2020, 64, 571-584.	1.3	6

#	Article	IF	CITATIONS
667	Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nature Ecology and Evolution, 2020, 4, 115-121.	3.4	55
668	Climate and host genotype jointly shape tree phenology, disease levels and insect attacks. Oikos, 2020, 129, 391-401.	1.2	21
669	Host plant phenology, insect outbreaks and herbivore communities – The importance of timing. Journal of Animal Ecology, 2020, 89, 829-841.	1.3	25
670	A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecological Indicators, 2020, 110, 105885.	2.6	4
671	Testing the effect of quantitative genetic inheritance in structured models on projections of population dynamics. Oikos, 2020, 129, 559-571.	1.2	12
672	Phenological asynchrony: a ticking timeâ€bomb for seemingly stable populations?. Ecology Letters, 2020, 23, 1766-1775.	3.0	43
673	Does behavioral thermal tolerance predict distribution pattern and habitat use in two sympatric Neotropical frogs?. PLoS ONE, 2020, 15, e0239485.	1.1	11
674	Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18557-18565.	3.3	57
675	The accuracy of phenology estimators for use with sparsely sampled presenceâ€only observations. Methods in Ecology and Evolution, 2020, 11, 1273-1285.	2.2	29
676	Flowering phenology of a widespread perennial herb shows contrasting responses to global warming between humid and nonâ€humid regions. Functional Ecology, 2020, 34, 1870-1881.	1.7	22
677	Response of reindeer mating time to climatic variability. BMC Ecology, 2020, 20, 44.	3.0	1
678	Understanding the Social Dynamics of Breeding Phenology: Indirect Genetic Effects and Assortative Mating in a Long-Distance Migrant. American Naturalist, 2020, 196, 566-576.	1.0	15
679	Effects of Extreme Low Winter Temperatures on the Overwintering Survival of the Introduced Larval Parasitoids <i>Spathius galinae</i> and <i>Tetrastichus planipennisi</i> : Implications for Biological Control of Emerald Ash Borer in North America. Journal of Economic Entomology, 2020, 113, 1145-1151.	0.8	22
680	Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169, 1-16.	4.9	35
681	Habitat ecology of Nearctic–Neotropical migratory landbirds on the nonbreeding grounds. Condor, 2020, 122, .	0.7	16
682	Invertebrate Decline Leads to Shifts in Plant Species Abundance and Phenology. Frontiers in Plant Science, 2020, 11, 542125.	1.7	12
683	Seasonal Variation in Reproduction of Horseshoe Crabs (Limulus polyphemus) from the Gulf Coast of Florida. Biological Bulletin, 2020, 239, 24-39.	0.7	4
684	Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species. Ecology and Evolution, 2020, 10, 10219-10229.	0.8	15

#	Article	IF	CITATIONS
685	Phenological delay despite warming in wood frog <i>Rana sylvatica</i> reproductive timing: a 20â€year study. Ecography, 2020, 43, 1791-1800.	2.1	18
686	Asynchrony among insect pollinator groups and flowering plants with elevation. Scientific Reports, 2020, 10, 13268.	1.6	11
687	A hierarchical threshold modeling approach for understanding phenological responses to climate change: when did North American lilacs start to bloom earlier?. SN Applied Sciences, 2020, 2, 1.	1.5	0
688	Warming Reduces Net Carbon Gain and Productivity in Medicago sativa L. and Festuca arundinacea. Agronomy, 2020, 10, 1601.	1.3	8
689	Seasonality of biological and physical systems as indicators of climatic variation and change. Climatic Change, 2020, 163, 1755-1771.	1.7	9
690	Temperatureâ€related breakdowns in the coordination of mating in Enchenopa binotata treehoppers (Hemiptera: Membracidae). Ethology, 2020, 126, 870-882.	0.5	13
691	Does habitat partitioning by sympatric plovers affect nest survival?. Auk, 2020, 137, .	0.7	2
692	Threeâ€dimensional change in temperature sensitivity of northern vegetation phenology. Global Change Biology, 2020, 26, 5189-5201.	4.2	48
693	Environmental controls on Landsatâ€derived phenoregions across an East African megatransect. Ecosphere, 2020, 11, e03143.	1.0	4
694	High-Arctic family planning: earlier spring onset advances age at first reproduction in barnacle geese. Biology Letters, 2020, 16, 20200075.	1.0	7
695	Potential sources of bias in the climate sensitivities of fish otolith biochronologies. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 1552-1563.	0.7	15
696	Flowering patterns change along elevational gradients and relate to life-history strategies in 29 herbaceous species. Alpine Botany, 2020, 130, 41-58.	1.1	31
697	Highâ€ŧhroughput droneâ€based remote sensing reliably tracks phenology in thousands of conifer seedlings. New Phytologist, 2020, 226, 1667-1681.	3.5	51
698	Trend Evolution of Vegetation Phenology in China during the Period of 1981–2016. Remote Sensing, 2020, 12, 572.	1.8	24
699	Standardized ethograms and a device for assessing amphibian thermal responses in a warming world. Journal of Thermal Biology, 2020, 89, 102565.	1.1	6
700	The role of sand lances (<i>Ammodytes</i> sp.) in the Northwest Atlantic Ecosystem: A synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 2020, 21, 522-556.	2.7	32
701	Temperature has a causal and plastic effect on timing of breeding in a small songbird. Journal of Experimental Biology, 2020, 223, .	0.8	14
702	Autumn migratory departure is influenced by reproductive timing and weather in an Arctic passerine. Journal of Ornithology, 2020, 161, 779-791.	0.5	12

#	Article	IF	CITATIONS
703	Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Scientific Reports, 2020, 10, 8822.	1.6	29
704	Climate change impacts on potential future ranges of non-human primate species. Climatic Change, 2020, 162, 2301-2318.	1.7	16
705	Snow-mediated plasticity does not prevent camouflage mismatch. Oecologia, 2020, 194, 301-310.	0.9	10
706	Climate warming has changed phenology and compressed the climatically suitable habitat of Metasequoia glyptostroboides over the last half century. Global Ecology and Conservation, 2020, 23, e01140.	1.0	9
707	Does phenology explain plant–pollinator interactions at different latitudes? An assessment of its explanatory power in plant–hoverfly networks in French calcareous grasslands. Oikos, 2020, 129, 753-765.	1.2	16
708	Herbarium records indicate variation in bloom-time sensitivity to temperature across a geographically diverse region. International Journal of Biometeorology, 2020, 64, 873-880.	1.3	18
709	Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 2020, 18, 141-150.	1.9	241
710	Effects of climate change and crop planting structure on the abundance of cotton bollworm, <i>Helicoverpa armigera</i> (Hübner) (Lepidoptera: Noctuidae). Ecology and Evolution, 2020, 10, 1324-1338.	0.8	12
711	Monitoring Grass Phenology and Hydrological Dynamics of an Oak–Grass Savanna Ecosystem Using Sentinel-2 and Terrestrial Photography. Remote Sensing, 2020, 12, 600.	1.8	21
712	How well do the spring indices predict phenological activity across plant species?. International Journal of Biometeorology, 2020, 64, 889-901.	1.3	14
713	Rapid and varied responses of songbirds to climate change in California coniferous forests. Biological Conservation, 2020, 241, 108347.	1.9	25
714	Phenological synchrony shapes pathology in host–parasite systems. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192597.	1.2	19
715	The impact of elevated temperature and CO2 on growth, physiological and immune responses of Polypedates cruciger (common hourglass tree frog). Frontiers in Zoology, 2020, 17, 3.	0.9	7
716	Warming counteracts defoliationâ€induced mismatch by increasing herbivoreâ€plant phenological synchrony. Clobal Change Biology, 2020, 26, 2072-2080.	4.2	27
717	Phenological responses to climate warming in temperate moths and butterflies: species traits predict future changes in voltinism. Oikos, 2020, 129, 1051-1060.	1.2	25
718	Nesting outcomes under anthropogenic change – effects of changing climate and nestbox provision on the reproduction of Great Tits <i>Parus major</i> . Ibis, 2021, 163, 65-78.	1.0	1
719	Evolved Phenological Cueing Strategies Show Variable Responses to Climate Change. American Naturalist, 2021, 197, E1-E16.	1.0	5
720	Intra―and interspecific variation in the responses of insect phenology to climate. Journal of Animal Ecology, 2021, 90, 248-259.	1.3	36

#	Article	IF	CITATIONS
721	Diadromous fish modified timing of upstream migration over the last 30 years in France. Freshwater Biology, 2021, 66, 286-302.	1.2	9
722	Climate, urbanization, and species traits interactively drive flowering duration. Global Change Biology, 2021, 27, 892-903.	4.2	36
723	A unifying framework for studying and managing climate-driven rates of ecological change. Nature Ecology and Evolution, 2021, 5, 17-26.	3.4	58
724	The USA National Phenology Network: Big Idea, Productivity, and Potential—and Now, at Big Risk. Bulletin of the Ecological Society of America, 2021, 102, e01802.	0.2	3
725	Bird ecology. , 2021, , 373-388.		1
726	Unsynchronized Driving Mechanisms of Spring and Autumn Phenology Over Northern Hemisphere Grasslands. Frontiers in Forests and Global Change, 2021, 3, .	1.0	8
727	Impact of climate change on insect pests of rice–wheat cropping system: recent trends and mitigation strategies. , 2021, , 225-239.		6
730	Rainfall decrease and red deer rutting behaviour: Weaker and delayed rutting activity though higher opportunity for sexual selection. PLoS ONE, 2021, 16, e0244802.	1.1	8
731	Changes in coral reef ecosystems as an indication of climate and global change. , 2021, , 427-443.		2
732	Insect communities. , 2021, , 389-407.		1
732 733	Insect communities., 2021, , 389-407. Climate Warming Impacts on Communities of Marine Species., 2021, , .		1
732 733 734	Insect communities., 2021,, 389-407. Climate Warming Impacts on Communities of Marine Species., 2021,,. The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology, 2021, 35, 821-834.	1.7	1 5 23
732 733 734 735	Insect communities., 2021,, 389-407. Climate Warming Impacts on Communities of Marine Species., 2021,,. The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology, 2021, 35, 821-834. Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants. Oikos, 2021, 130, 753-765.	1.7	1 5 23 18
 732 733 734 735 736 	Insect communities., 2021,, 389-407. Climate Warming Impacts on Communities of Marine Species., 2021,,. The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology, 2021, 35, 821-834. Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants. Oikos, 2021, 130, 753-765. Rapid changes in DNA methylation associated with the initiation of reproduction in a small songbird. Molecular Ecology, 2021, 30, 3645-3659.	1.7 1.2 2.0	1 5 23 18 24
 732 733 734 735 736 737 	Insect communities., 2021, , 389-407. Climate Warming Impacts on Communities of Marine Species., 2021, , . The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology, 2021, 35, 821-834. Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants. Oikos, 2021, 130, 753-765. Rapid changes in DNA methylation associated with the initiation of reproduction in a small songbird. Molecular Ecology, 2021, 30, 3645-3659. Species traits affect phenological responses to climate change in a butterfly community. Scientific Reports, 2021, 11, 3283.	1.7 1.2 2.0 1.6	1 5 23 18 24 21
 732 733 734 735 736 737 738 	Insect communities., 2021,, 389-407. Climate Warming Impacts on Communities of Marine Species., 2021,, The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology, 2021, 35, 821-834. Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants. Oikos, 2021, 130, 753-765. Rapid changes in DNA methylation associated with the initiation of reproduction in a small songbird. Molecular Ecology, 2021, 30, 3645-3659. Species traits affect phenological responses to climate change in a butterfly community. Scientific Reports, 2021, 11, 3283. Grizzled Skippers stuck in the south: Populationâ€level responses of an earlyâ€successional specialist butterfly to climate across its UK range over 40 years. Diversity and Distributions, 2021, 27, 962-972.	1.7 1.2 2.0 1.6	1 5 23 18 24 21
 732 733 734 735 736 737 738 739 	Insect communities., 2021,, 389-407. Climate Warming Impacts on Communities of Marine Species., 2021,, The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology, 2021, 35, 821-834. Microclimatic variability buffers butterfly populations against increased mortality caused by phenological asynchrony between larvae and their host plants. Oikos, 2021, 130, 753-765. Rapid changes in DNA methylation associated with the initiation of reproduction in a small songbird. Molecular Ecology, 2021, 30, 3645-3659. Species traits affect phenological responses to climate change in a butterfly community. Scientific Reports, 2021, 11, 3283. Grizzled Skippers stuck in the south: Population&Evel responses of an early&Esuccessional specialist butterfly to climate across its UK range over 40 years. Diversity and Distributions, 2021, 27, 962-972. Uniforming spring phenology under non-uniform climate warming across latitude in China. Science of the Total Environment, 2021, 762, 143177.	1.7 1.2 2.0 1.6 1.9 3.9	1 5 23 18 24 21 0

#	Article	IF	CITATIONS
741	The effects of four decades of climate change on the breeding ecology of an avian sentinel species across a 1,500â€km latitudinal gradient are stronger at high latitudes. Ecology and Evolution, 2021, 11, 6233-6247.	0.8	2
742	Annual acoustic dynamics are associated with seasonality in a monsoon tropical forest in South Vietnam. Ecological Indicators, 2021, 122, 107269.	2.6	5
743	Monitoring Forest Phenology in a Changing World. Forests, 2021, 12, 297.	0.9	23
744	European plants lagging behind climate change pay a climatic debt in the North, but are favoured in the South. Ecology Letters, 2021, 24, 1178-1186.	3.0	9
745	Will predicted positive effects of climate change be enough to reverse declines of the regionally Endangered Natterjack toad in Ireland?. Ecology and Evolution, 2021, 11, 5049-5064.	0.8	4
746	Response of chloroplast pigments, sugars and phenolics of sweet cherry leaves to chilling. Scientific Reports, 2021, 11, 7210.	1.6	10
747	The four antelope species on the Qinghai-Tibet plateau face habitat loss and redistribution to higher latitudes under climate change. Ecological Indicators, 2021, 123, 107337.	2.6	27
749	Agriculture is adapting to phenological shifts caused by climate change, but grassland songbirds are not. Ecology and Evolution, 2021, 11, 6993-7002.	0.8	7
750	Improved performance of the eastern spruce budworm on black spruce as warming temperatures disrupt phenological defences. Global Change Biology, 2021, 27, 3358-3366.	4.2	18
751	Evolvability under climate change: Bone development and shape plasticity are heritable and correspond with performance in Arctic charr (<i>Salvelinus alpinus</i>). Evolution & Development, 2021, 23, 333-350.	1.1	6
753	Climate change effects on animal ecology: butterflies and moths as a case study. Biological Reviews, 2021, 96, 2113-2126.	4.7	63
754	Effect of Heat Resource Effectiveness Change on Rice Potential Yield in Southern China. Processes, 2021, 9, 896.	1.3	1
755	Changes in phenology and abundance of an at-risk butterfly. Journal of Insect Conservation, 2021, 25, 499-510.	0.8	6
756	Daily Patterns of River Herring (<i>Alosa</i> spp.) Spawning Migrations: Environmental Drivers and Variation among Coastal Streams in Massachusetts. Transactions of the American Fisheries Society, 2021, 150, 501-513.	0.6	9
757	Warming and predator drive functional responses of three subtropical cladocerans. Aquatic Ecology, 2021, 55, 903-914.	0.7	0
758	The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arctic Science, 2022, 8, 1026-1039.	0.9	7
759	Estimating abundance and phenology from transect count data with GLMs. Oikos, 2021, 130, 1335-1345.	1.2	8
760	50 Years of Pollen Monitoring in Basel (Switzerland) Demonstrate the Influence of Climate Change on Airborne Pollen. Frontiers in Allergy, 2021, 2, 677159.	1.2	38

#	Article	IF	CITATIONS
761	Mitochondrial DNA as a Molecular Marker in Insect Ecology: Current Status and Future Prospects. Annals of the Entomological Society of America, 2021, 114, 470-476.	1.3	28
762	The Impact of Climate Change on Agricultural Insect Pests. Insects, 2021, 12, 440.	1.0	347
763	Asymmetric densityâ€dependent competition and predation between larval salamanders. Freshwater Biology, 2021, 66, 1356-1365.	1.2	3
764	Rapid phenological change differs across four trophic levels over 15 years. Oecologia, 2021, 196, 577-587.	0.9	5
766	Tracking the seasonal dynamics of Himalayan birch using a time-lapse camera. Folia Geobotanica, 2021, 56, 125-138.	0.4	2
767	Plant phenological responses to experimental warming—A synthesis. Global Change Biology, 2021, 27, 4110-4124.	4.2	39
768	Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology. Journal of Animal Ecology, 2021, 90, 2348-2361.	1.3	12
769	Diversity of response and effect traits provides complementary information about avian community dynamics linked to ecological function. Functional Ecology, 2021, 35, 1938-1950.	1.7	10
770	Social competition as a driver of phenotype–environment correlations: implications for ecology and evolution. Biological Reviews, 2021, 96, 2561-2572.	4.7	17
771	FenologÃa reproductiva de Prunus lundelliana Standl. (Rosaceae), un árbol en peligro de extinción con potencial para restaurar bosques nubosos de Mesoamérica. Ciencia, TecnologÃa Y Salud, 2021, 8, 43-56.	0.0	0
772	Amphibian breeding phenology influences offspring size and response to a common wetland contaminant. Frontiers in Zoology, 2021, 18, 31.	0.9	13
773	Can flowers affect land surface albedo and soil microclimates?. International Journal of Biometeorology, 2021, 65, 2011-2023.	1.3	3
774	Leaf and Community Photosynthetic Carbon Assimilation of Alpine Plants Under in-situ Warming. Frontiers in Plant Science, 2021, 12, 690077.	1.7	6
775	The thermal environment as a moderator of social evolution. Biological Reviews, 2021, 96, 2890-2910.	4.7	5
776	Herbarium records demonstrate changes in flowering phenology associated with climate change over the past century within the Cape Floristic Region, South Africa. Climate Change Ecology, 2021, 1, 100006.	0.9	6
777	Strong impacts of autumn phenology on grassland ecosystem water use efficiency on the Tibetan Plateau. Ecological Indicators, 2021, 126, 107682.	2.6	25
778	Spring phenology drives range shifts in a migratory Arctic ungulate with key implications for the future. Global Change Biology, 2021, 27, 4546-4563.	4.2	12
779	How phenological tracking shapes species and communities in nonâ€stationary environments. Biological Reviews, 2021, 96, 2810-2827.	4.7	12

#	Article	IF	CITATIONS
780	Demographic effects of phenological variation in natural populations of two pond-breeding salamanders. Oecologia, 2021, 196, 1073-1083.	0.9	2
781	Multi-decade changes in pollen season onset, duration, and intensity: A concern for public health?. Science of the Total Environment, 2021, 781, 146382.	3.9	27
782	Demographic Consequences of Phenological Shifts in Response to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 221-245.	3.8	67
783	Impacts of changing climate on the distribution of migratory birds in China: Habitat change and population centroid shift. Ecological Indicators, 2021, 127, 107729.	2.6	22
785	Breeding season shift by the Oahu Elepaio (Chasiempis ibidis) in response to changing rainfall patterns. Wilson Journal of Ornithology, 2021, 132, .	0.1	1
786	Breeding season shift by the Oahu Elepaio (Chasiempis ibidis) in response to changing rainfall patterns. Wilson Journal of Ornithology, 2021, 132, .	0.1	Ο
787	Vegetation Response to Holocene Climate Change in the Qinling Mountains in the Temperate–Subtropical Transition Zone of Central–East China. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
788	Divergent shifts in flowering phenology of herbaceous plants on the warming Qinghai–Tibetan plateau. Agricultural and Forest Meteorology, 2021, 307, 108502.	1.9	4
789	Comparing <i>in situ</i> spring phenology and satellite-derived start of season at rural and urban sites in Ireland. International Journal of Remote Sensing, 2021, 42, 7821-7841.	1.3	8
790	Coping with Environmental Extremes: Population Ecology and Behavioural Adaptation of Erebia pronoe, an Alpine Butterfly Species. Insects, 2021, 12, 896.	1.0	5
791	PS3: The Pheno-Synthesis software suite for integration and analysis of multi-scale, multi-platform phenological data. Ecological Informatics, 2021, 65, 101400.	2.3	4
792	Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Science of the Total Environment, 2021, 796, 149055.	3.9	67
793	Quantitative assessment of the impact of climatic factors on phenological changes in the Qilian Mountains, China. Forest Ecology and Management, 2021, 499, 119594.	1.4	17
794	Impact of climatic patterns on phenophase and growth of multi-purpose trees of north-western mid-Himalayan ecosystem. Trees, Forests and People, 2021, 6, 100143.	0.8	8
795	Patterns of tree species richness in Southwest China. Environmental Monitoring and Assessment, 2021, 193, 97.	1.3	13
796	Long-Term Species Diversity and Climate Change: An Intimate Relationship Over the Last Ten Decades : Case Study in Egypt. , 2021, , 1-24.		0
797	Phenological shifts of abiotic events, producers and consumers across a continent. Nature Climate Change, 2021, 11, 241-248.	8.1	37
799	The Phenology of Gross Ecosystem Productivity and Ecosystem Respiration in Temperate Hardwood and Conifer Chronosequences. , 2009, , 59-85.		14

#	Article	IF	CITATIONS
800	Winter Climate Change and Ecological Implications in Temperate Systems. , 2013, , 29-40.		3
801	Quercus suber Distribution Revisited. Geobotany Studies, 2015, , 181-212.	0.2	3
802	Drawing on Place and Culture for Climate Change Education in Native Communities. Environmental Discourses in Science Education, 2015, , 121-138.	1.1	2
803	Fisheries Stock Assessment, Environmental Variability, and CalCOFI. , 2014, , 151-164.		2
804	A Semiprognostic Phenology Model for Simulating Multidecadal Dynamics of Global Vegetation Leaf Area Index. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001935.	1.3	7
805	Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Scientific Data, 2020, 7, 47.	2.4	22
806	Increased temperature delays the late-season phenology of multivoltine insect. Scientific Reports, 2016, 6, 38022.	1.6	18
807	The implications of climate change for positive contributions of invertebrates to world agriculture CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-48.	0.6	16
813	Airborne Pollen in Europe. , 2017, , 127-162.		1
814	Modeling the predicted suitable habitat distribution of Javan hawk-eagle Nisaetus bartelsi in the Java Island, Indonesia. Biodiversitas, 2018, 19, 1539-1551.	0.2	7
815	Grasshopper Community Response to Climatic Change: Variation Along an Elevational Gradient. PLoS ONE, 2010, 5, e12977.	1.1	59
816	Predictable Variation of Range-Sizes across an Extreme Environmental Gradient in a Lizard Adaptive Radiation: Evolutionary and Ecological Inferences. PLoS ONE, 2011, 6, e28942.	1.1	18
817	Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming. PLoS ONE, 2012, 7, e41764.	1.1	13
818	Modeling Hawaiian Ecosystem Degradation due to Invasive Plants under Current and Future Climates. PLoS ONE, 2014, 9, e95427.	1.1	61
819	Reproducing on Time When Temperature Varies: Shifts in the Timing of Courtship by Fiddler Crabs. PLoS ONE, 2014, 9, e97593.	1.1	19
820	Plastic Responses to Elevated Temperature in Low and High Elevation Populations of Three Grassland Species. PLoS ONE, 2014, 9, e98677.	1.1	31
821	Climate Change and Phenology: Empoasca fabae (Hemiptera: Cicadellidae) Migration and Severity of Impact. PLoS ONE, 2015, 10, e0124915.	1.1	32
822	A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming. PLoS ONE, 2015, 10, e0139029.	1.1	12

#	Article	IF	CITATIONS
823	The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages. PLoS ONE, 2016, 11, e0149220.	1.1	109
824	Indirect effect of temperature on fish population abundances through phenological changes. PLoS ONE, 2017, 12, e0175735.	1.1	34
825	Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham's skink, Egernia cunninghami. PLoS ONE, 2017, 12, e0184193.	1.1	12
826	High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE, 2018, 13, e0192401.	1.1	23
827	LATE BLOOMING OF PLANTS FROM NORTHERN NOVA SCOTIA: RESPONSES TO A MILD FALL AND WINTER. Proceedings of the Nova Scotian Institute of Science, 2011, 46, .	0.0	3
828	A REVIEW OF THE POTENTIAL CLIMATE CHANGE IMPACT ON INSECT POPULATIONS – GENERAL AND AGRICULTURAL ASPECTS. Applied Ecology and Environmental Research, 2010, 8, 143-151.	0.2	64
829	A POPULATION DYNAMICAL MODEL OF OPEROPHTERA BRUMATA , L. EXTENDED BY CLIMATIC FACTORS. Applied Ecology and Environmental Research, 2011, 9, 433-447.	0.2	2
830	Advancing Leaf-Out and Flowering Phenology is Not Matched by Migratory Bird Arrivals Recorded in Hunting Guide's Journal in Aroostook County, Maine. Northeastern Naturalist, 2019, 26, 561.	0.1	3
831	A review on studies of effects of climate change on phytoplankton in freshwater systems. Hupo Kexue/Journal of Lake Sciences, 2015, 27, 1-10.	0.3	3
832	Impacts of Climate Change on Biodiversity. Journal of Disaster Research, 2008, 3, 98-104.	0.4	2
833	Degree-days units and expected generation numbers of peach fruit fly Bactrocera zonata (Saunders) (Diptera: Tephritidae) under climate change in. Egyptian Academic Journal of Biological Sciences, 2010, 3, 11-19.	0.1	5
835	Honey bees ensure the pollination of <i>Parkia biglobosa</i> in absence of bats. Journal of Pollination Ecology, 0, 20, 22-34.	0.5	5
838	Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Climate Research, 2009, 39, 275-286.	0.4	72
839	Climate change and chromosomal inversions in Drosophila subobscura. Climate Research, 2010, 43, 103-114.	0.4	55
840	Bird arrival dates in Central Europe based on one of the earliest phenological networks. Climate Research, 2015, 63, 91-98.	0.4	8
841	Shifting time: recent changes to the phenology of Australian species. Climate Research, 2015, 63, 203-214.	0.4	15
842	Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shoresÂ. Marine Ecology - Progress Series, 2009, 396, 245-259.	0.9	221
843	Seabirds and climate change: roadmap for the future. Marine Ecology - Progress Series, 2012, 454, 107-117.	0.9	99

#	Article	IF	CITATIONS
844	Limited individual phenotypic plasticity in the timing of and investment into egg laying in southern rockhopper penguins under climate change. Marine Ecology - Progress Series, 2015, 524, 269-281.	0.9	13
845	Effects of climate on the mole crab Emerita brasiliensis on a dissipative beach in Uruguay. Marine Ecology - Progress Series, 2016, 552, 211-222.	0.9	13
846	Climatic Causes of Plant Flowering Time Displacement in the Central Forest Reserve. Povolzhskii Ekologicheskii Zhurnal, 2020, , 52-65.	0.0	3
847	Effects of phenological change on ecosystem productivity of temperate deciduous broad-leaved forests in North America. Chinese Journal of Plant Ecology, 2013, 36, 363-371.	0.3	5
848	Early onset of breeding season in the green toad Bufotes viridis in Western Poland. Herpetozoa, 0, 32, 109-112.	1.0	10
849	Distinct Global Patterns of Strong Positive and Negative Shifts of Seasons over the Last 6 Decades. Atmospheric and Climate Sciences, 2012, 02, 76-88.	0.1	7
850	Differences in Morphological, Physiological and Growth Traits between Two Endemic Subspecies of <i>Brassica rupestris</i> Raf.: Implications for Their Conservation. American Journal of Plant Sciences, 2013, 04, 42-50.	0.3	5
854	Caterpillars Count! A Citizen Science Project for Monitoring Foliage Arthropod Abundance and Phenology. Citizen Science: Theory and Practice, 2019, 4, .	0.6	17
855	Natural Ecosystems. , 2013, , 148-167.		6
856	The effect of climate change on plant diseases. African Journal of Biotechnology, 2012, 11, .	0.3	46
858	Non-parallel changes in songbird migration timing are not explained by changes in stopover duration. PeerJ, 2020, 8, e8975.	0.9	4
861	Impacts of Satellite Revisit Frequency on Spring Phenology Monitoring of Deciduous Broad-Leaved Forests Based on Vegetation Index Time Series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10500-10508.	2.3	12
862	The Role of Temperate Agroforestry Practices in Supporting Pollinators. , 2021, , 275-304.		1
864	Atmospheric Warming-Associated Phenological Earliness Does Not Increase the Length of Growing Season in Himalayan Trees. Forest Science, 2021, 67, 694-700.	0.5	4
865	The interâ€forest line could be the master key to track biocoenotic effects of climate change in a subtropical forest. Biotropica, 2022, 54, 57-70.	0.8	2
867	Climate drivers of adult insect activity are conditioned by life history traits. Ecology Letters, 2021, 24, 2687-2699.	3.0	16
868	Ecogeographical Adaptation Revisited: Morphological Variations in the Plateau Brown Frog along an Elevation Gradient on the Qinghai–Tibetan Plateau. Biology, 2021, 10, 1081.	1.3	7
869	The relationship of mean temperature and 9 collected butterfly species' wingspan as the response of global warming. Journal of Ecology and Environment, 2021, 45, .	1.6	2

ARTICLE IF CITATIONS Uses of the Data. , 2010, , 233-246. 870 0 Islands on the Continent: Conservation Biogeography in Changing Ecosystems. Plant and Vegetation, 871 2011, , 181-194. Seasonal and Altitudinal Variation in Pollinator Communities in Grand Teton National Park. Annual 872 0.0 2 Report, 0, 34, 5-11. Effects of coral bleaching on coral habitats and associated fishes. , 2012, , 59-67. 874 Pest Dynamics and Potential Emergence of New Biotypes Under Climate Change Scenario in 875 0 Horticultural Crops., 2013, , 279-286. Climate Change Impacts on Woodland Species: Implications for The Conservation of Woodland 0.2 Habitats in Ireland. Biology and Environment, 2013, 113, 1-31. 877 The New CalCOFI and Fisheries., 2014, , 165-174. 0 Classic CalCOFI., 2014, , 61-75. 879 Insights for Fisheries from Experimental and Predation Studies., 2014, 139-150. 0 Perspectives on CalCOFI., 2014, , 175-213. Climate Change and Wildlife inÂthe Southern United States., 2013, , 379-420. 881 0 Prediction of Adult Emergence Time and Generation Number of Overwintered Small Brown Planthopper, Laodelphax striatellus According to RCP8.5 Climate Change Scenario. Korean Journal of Applied Entomology, 2013, 52, 427-430. Phenoindicators of the North-Eastern Altai Geosystem. Izvestiya of Altai State University, 2014, , . 885 0.1 0 Selective Reporting and the Social Cost of Carbon. SSRN Electronic Journal, 0, , . 0.4 CLIMATE CHANGE IMPACT ON POPULATION DENSITY OF PARLATORIA DATE SCALE INSECT, PARLATORIA BLANCHARDII INFESTING DATE PALM TREES IN LUXOR GOVERNORATE, EGYPT. Egyptian Journal of 887 0 0.1 Agricultural Research, 2015, 93, 231-250. THE INFLUENCE OF CLIMATIC ANOMALIES ON THE ANIMALS IN MIDDLE LATITUDES OF THE EAST OF THE 888 RUSSIAN PLAIN. Sel'skokhozyaistvennaya Biologiya, 2015, 50, 137-151. 890 Terrestrische und semiterrestrische Ökosysteme., 2018, 109-145. 0 The Abiotic and Biotic Factors and Their Relationships with The Population Density of The Sunt Wax 891 Scale Insect, Waxiella mimosae (Signoret) Infesting Sunt Trees in Luxor Governorate, Egypt. 0.1 Agricultural Research & Technology: Open Access Journal, 2018, 18, .

#	Article	IF	CITATIONS
893	Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 117-141.	0.3	0
894	Climate-Related Correlates of Several Metrics of Breeding Phenology in a Spotted Salamander (Ambystoma maculatum) Population in Ohio. Journal of Herpetology, 2019, 53, 257.	0.2	1
895	The role of phenology for determining plant-pollinator interactions along a latitudinal gradient. Peer Community in Ecology, 0, , 100034.	0.0	0
896	Effect of Soil Moisture on the Epigeic Arthropods Diversity in Steppe Landscape. Journal of Ecological Engineering, 2020, 21, 137-147.	0.5	2
897	Inter-Annual Variation of Exogenous Cues Influences Reproductive Phenology of the Longnose Shiner, Notropis longirostris. Southeastern Naturalist, 2020, 19, 553.	0.2	3
899	Transgenerational acclimation influences asexual reproduction in Aurelia aurita jellyfish polyps in response to temperature. Marine Ecology - Progress Series, 2020, 656, 35-50.	0.9	4
900	Long-Term Species Diversity and Climate Change: An Intimate Relationship Over the Last Ten Decades – Case Study in Egypt. , 2020, , 1-24.		0
901	Developing a Historical Phenology Dataset through Community Involvement for Climate Change Research. American Journal of Climate Change, 2020, 09, 11-22.	0.5	2
902	Mapping Phenological Functional Types (PhFT) in the Indian Eastern Himalayas using machine learning algorithm in Google Earth Engine. Computers and Geosciences, 2022, 158, 104982.	2.0	17
903	Vegetation structure and floristic composition (Case study: Mala Galeh Protected area, Fars Province,) Tj ETQq1	1 0.78431 0.0	.4 rgBT /Over
903 904	Vegetation structure and floristic composition (Case study: Mala Galeh Protected area, Fars Province,) Tj ETQq1 Annual schedules. , 2022, , 1203-1230.	1 0,78431 0.0	1
903 904 905	Vegetation structure and floristic composition (Case study: Mala Galeh Protected area, Fars Province,) Tj ETQq1 Annual schedules. , 2022, , 1203-1230. Lengthened flowering season under climate warming: Evidence from manipulative experiments. Agricultural and Forest Meteorology, 2022, 312, 108713.	1 0,78431 0.0 1.9	4 rgBT /Over 1 7
903 904 905 906	Vegetation structure and floristic composition (Case study: Mala Galeh Protected area, Fars Province,) Tj ETQq1 Annual schedules. , 2022, , 1203-1230. Lengthened flowering season under climate warming: Evidence from manipulative experiments. Agricultural and Forest Meteorology, 2022, 312, 108713. Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas. , 2022, , 578-602.	1 0,78431 0.0 1.9	4 rgBT /Over 1 7 1
903 904 905 906	Vegetation structure and floristic composition (Case study: Mala Galeh Protected area, Fars Province,) Tj ETQq1 Annual schedules. , 2022, , 1203-1230. Lengthened flowering season under climate warming: Evidence from manipulative experiments. Agricultural and Forest Meteorology, 2022, 312, 108713. Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas. , 2022, , 578-602. Embryonic Development of Grasshopper Populations Along Latitudinal Gradients Reveal Differential Thermoaccumulation for Adaptation to Climate Warming. Frontiers in Ecology and Evolution, 2021, 9, .	1 0.78431 1.9 1.1	4 rgBT /Over 1 7 1 1
903 904 905 906 907	Vegetation structure and floristic composition (Case study: Mala Galeh Protected area, Fars Province,) Tj ETQq1 Annual schedules. , 2022, , 1203-1230. Lengthened flowering season under climate warming: Evidence from manipulative experiments. Agricultural and Forest Meteorology, 2022, 312, 108713. Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas. , 2022, , 578-602. Embryonic Development of Grasshopper Populations Along Latitudinal Gradients Reveal Differential Thermoaccumulation for Adaptation to Climate Warming. Frontiers in Ecology and Evolution, 2021, 9, . Extreme temperatures help in identifying thresholds in phenological responses. Global Ecology and Biogeography, 2022, 31, 321-331.	1 0.78431 1.9 1.1 2.7	4 rgBT /Over 1 7 1 1 5
 903 904 905 906 907 908 909 	Vegetation structure and floristic composition (Case study: Mala Galeh Protected area, Fars Province,) Tj ETQq1 Annual schedules. , 2022, , 1203-1230. Lengthened flowering season under climate warming: Evidence from manipulative experiments. Agricultural and Forest Meteorology, 2022, 312, 108713. Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas. , 2022, , 578-602. Embryonic Development of Grasshopper Populations Along Latitudinal Gradients Reveal Differential Thermoaccumulation for Adaptation to Climate Warming. Frontiers in Ecology and Evolution, 2021, 9, . Extreme temperatures help in identifying thresholds in phenological responses. Global Ecology and Biogeography, 2022, 31, 321-331. Does Climate Warming Favour Early Season Species?. Frontiers in Plant Science, 2021, 12, 765351.	1 0.78431 1.9 1.1 2.7 1.7	4 rgBT /Over 1 7 1 1 5 6
903 904 905 906 907 908 909	Vegetation structure and floristic composition (Case study: Mala Galeh Protected area, Fars Province,) Tj ETQq1 Annual schedules. , 2022, , 1203-1230. Lengthened flowering season under climate warming: Evidence from manipulative experiments. Agricultural and Forest Meteorology, 2022, 312, 108713. Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas. , 2022, , 578-602. Embryonic Development of Grasshopper Populations Along Latitudinal Gradients Reveal Differential Thermoaccumulation for Adaptation to Climate Warming. Frontiers in Ecology and Evolution, 2021, 9, . Extreme temperatures help in identifying thresholds in phenological responses. Global Ecology and Biogeography, 2022, 31, 321-331. Does Climate Warming Favour Early Season Species?. Frontiers in Plant Science, 2021, 12, 765351. Rapid advancement of spring migration and en route adjustment of migration timing in response to weather during fall migration in Vauxãe™s Swifts (Chaetura vauxi). Canadian Journal of Zoology, 0, .	1 0.78431 1.9 1.1 2.7 1.7 0.4	4 rgBT /Over 1 7 1 1 5 6 1

#	Article	IF	CITATIONS
912	Phenological Response Patterns of Forest Communities to Annual Climate Variability at Long-Term Ecological Monitoring Sites in Western Himalaya. SSRN Electronic Journal, 0, , .	0.4	0
913	Differential Effects of Winter and Spring Warming on Flowering Phenology of Cherry Trees Across a Latitudinal Gradient. SSRN Electronic Journal, 0, , .	0.4	0
914	Data mining assessment of Poaceae pollen influencing factors and its environmental implications. Science of the Total Environment, 2022, 815, 152874.	3.9	1
915	Intra species diversity of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in relation to geography and host plants affiliation in Uttarakhand Himalayan population, India. Phytoparasitica, 0, , 1.	0.6	3
916	Assessment of Amphibians Vulnerability to Climate Change in China. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	4
917	The effect of temperature and behaviour on the interaction between two dragonfly larvae species within the native and expanded range. Ecological Entomology, 2022, 47, 460-474.	1.1	3
918	Temperature-precipitation background affects spatial heterogeneity of spring phenology responses to climate change in northern grasslands (30°N-55°N). Agricultural and Forest Meteorology, 2022, 315, 108816.	1.9	13
919	How to describe and measure phenology? An investigation on the diversity of metrics using phenology of births in large herbivores. Oikos, 2022, 2022, .	1.2	2
920	Microclimateâ€driven trends in springâ€emergence phenology in a temperate reptile (<i>Vipera berus</i>): Evidence for a potential "climate trap�. Ecology and Evolution, 2022, 12, e8623.	0.8	9
921	A specialist bee and its host plants experience phenological shifts at different rates in response to climate change. Ecology, 2022, 103, e3658.	1.5	14
922	DOMINANT SONORAN DESERT PLANT SPECIES HAVE DIVERGENT PHENOLOGICAL RESPONSES TO CLIMATE CHANGE. Madro $ ilde{A}$ ±0, 2021, 68, .	0.3	8
923	Sustaining ecosystem services. , 2022, , 753-797.		0
924	Responses to abiotic conditions. , 2022, , 29-91.		0
925	Summary and synthesis. , 2022, , 851-864.		0
926	Effect of climate change on regeneration of plants from seeds in grasslands. , 2022, , 87-99.		0
927	Long-Term Decrease in Coloration: A Consequence of Climate Change?. American Naturalist, 2022, 200, 32-47.	1.0	6
928	Strong impact of temperature and resource specialisation on patterns of voltinism within an oakâ€associated insect community. Ecological Entomology, 2022, 47, 544-552.	1.1	3
929	Phenological Variation in Spring Migration Timing of Adult Alewife in Coastal Massachusetts. Marine and Coastal Fisheries, 2022, 14, .	0.6	6

#	Article	IF	CITATIONS
930	Climate warming changes synchrony of plants and pollinators. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212142.	1.2	16
931	Climate change affects bird nesting phenology: Comparing contemporary field and historical museum nesting records. Journal of Animal Ecology, 2023, 92, 263-272.	1.3	14
932	The importance of including phenology when modelling species ecological niche. Ecography, 2023, 2023, .	2.1	13
933	Vegetative and reproductive phenology of Copaifera langsdorffii Desf. in different phytophysiognomies. Research, Society and Development, 2022, 11, e41011427288.	0.0	1
934	MeadoWatch: a long-term community-science database of wildflower phenology in Mount Rainier National Park. Scientific Data, 2022, 9, 151.	2.4	3
935	Impact of climate change on Helicoverpa armigera voltinism in different Agro-Climatic Zones of India. Journal of Thermal Biology, 2022, 106, 103229.	1.1	0
936	Phenological response patterns of forest communities to annual weather variability at long-term ecological monitoring sites in Western Himalaya. Trees, Forests and People, 2022, 8, 100237.	0.8	2
937	A crossâ€scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates. New Phytologist, 2022, 233, 2340-2353.	3.5	18
938	Effects of climate change on different geographical populations of the cotton bollworm <i>Helicoverpa armigera</i> (Lepidoptera, Noctuidae). Ecology and Evolution, 2021, 11, 18357-18368.	0.8	5
939	STUDY OF PHENOLOGICAL BEHAVIOR OF PLANTS OF LOWER TANAWAL, ABBOTTABAD, PAKISTAN. International Journal of Research -GRANTHAALAYAH, 2021, 9, 133-145.	0.1	0
940	Climatic Causes of Time Displacement of Plant Flowering in the Central Forest Reserve. Biology Bulletin, 2021, 48, 1754-1760.	0.1	0
941	Higher Temperatures Reduce the Efficacy of a Key Biocontrol Parasitoid. SSRN Electronic Journal, 0, , .	0.4	0
942	Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications, 2022, 13, 2112.	5.8	15
964	Forest wildflowers bloom earlier as Europe warms: lessons from herbaria and spatial modelling. New Phytologist, 2022, 235, 52-65.	3.5	8
965	Phenological sensitivity and seasonal variability explain climate-driven trends in Mediterranean butterflies. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220251.	1.2	9
966	Integrating microclimatic variation in phenological responses to climate change: A 28â€year study in a hibernating mammal. Ecosphere, 2022, 13, .	1.0	5
967	Woody species do not differ in dormancy progression: Differences in time to budbreak due to forcing and cold hardiness. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112250119.	3.3	13
968	Phenological patterns of herbaceous Mediterranean plant communities in spring: is there a difference between native and formerly-cultivated grasslands?. Plant Ecology and Evolution, 2022, 155, 207-220.	0.3	1

#	Article	IF	CITATIONS
969	Long-Term Trends in Laying date and Fledged Young of Barn Swallow Hirundo rustica in Two Regions of the Netherlands. Ardea, 2022, 110, .	0.3	0
973	Precipitation versus temperature as phenology controls in drylands. Ecology, 2022, 103, .	1.5	17
974	A cross-taxonomic perspective on the integration of temperature cues in vertebrate seasonal neuroendocrine pathways. Hormones and Behavior, 2022, 144, 105215.	1.0	8
975	Temporal skewness of pollination success in the spring ephemeral Trillium camschatcense. Die Naturwissenschaften, 2022, 109, .	0.6	Ο
976	Long-term, climate-driven phenological shift in a tropical large carnivore. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
977	Estimation of Blooming Start with the Adaptation of the Unified Model for Three Apricot Cultivars (Prunus armeniaca L.) Based on Long-Term Observations in Hungary (1994–2020). Diversity, 2022, 14, 560.	0.7	1
978	Trends to adaptation of the Sahara frog (Pelophylax saharicus) larvae across an environmental gradient. , 2022, 77, 2857-2866.		1
980	The ecological implications of intra―and interâ€species variation in phenological sensitivity. New Phytologist, 2022, 236, 760-773.	3.5	7
982	Disorder or a new order: How climate change affects phenological variability. Ecology, 2023, 104, .	1.5	9
984	Advance in the timing of the annual migration of the brown-veined white butterfly through Johannesburg, South Africa, over the period 1914–2020. International Journal of Biometeorology, 2022, 66, 2251-2258.	1.3	2
986	Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria. Journal of Thermal Biology, 2022, 108, 103296.	1.1	5
990	Integrated Insect Pest Management Under Changing Climate. , 2022, , .		Ο
991	Aquatic Life at Risk Under Global Warming and Climate Change Regime. Encyclopedia of the UN Sustainable Development Goals, 2022, , 1-13.	0.0	0
992	Timing of a plant–herbivore interaction alters plant growth and reproduction. Ecology, 2023, 104, .	1.5	5
993	Key regions in the modulation of seasonal GMST variability by analyzing the two hottest years: 2016 vs. 2020. Environmental Research Letters, 2022, 17, 094034.	2.2	3
994	Heat-Induced Hatching of Red-Eyed Treefrog Embryos: Hydration and Clutch Structure Increase Behavioral Thermal Tolerance. Integrative Organismal Biology, 2022, 4, .	0.9	4
995	A quantitative synthesis of and predictive framework for studying winter warming effects in reptiles. Oecologia, 0, , .	0.9	1
996	Impact of Climate Change on Fruit Crops- A Review. Current World Environment Journal, 2022, 17, 319-330.	0.2	1

#	Article	IF	CITATIONS
998	The International Tundra Experiment (ITEX): 30 years of research on tundra ecosystems. Arctic Science, 2022, 8, 550-571.	0.9	11
999	Warming and predation risk only weakly shape size-mediated priority effects in a cannibalistic damselfly. Scientific Reports, 2022, 12, .	1.6	5
1002	Higher temperatures reduce the efficacy of a key biocontrol parasitoid. Biological Control, 2022, 176, 105079.	1.4	3
1003	Estimating the potential threat of increasing temperature to the forests of Turkey: a focus on two invasive alien insect pests. IForest, 2022, 15, 444-450.	0.5	0
1004	Geographical patterns of Fejervarya limnocharis gut microbiota by latitude along mainland China's coastline. Frontiers in Microbiology, 0, 13, .	1.5	1
1005	Scientists' warning on climate change and insects. Ecological Monographs, 2023, 93, .	2.4	90
1006	Impact of Environmental Gradients on Phenometrics of Major Forest Types of Kumaon Region of the Western Himalaya. Forests, 2022, 13, 1973.	0.9	3
1007	Global warming modifies the seasonal distribution of clutches on a Mediterranean great tit population. International Journal of Biometeorology, 2023, 67, 367-376.	1.3	3
1008	A polar insect's tale: Observations on the life cycle of <i>Parochlus steinenii</i> , the only winged midge native to Antarctica. Ecology, 2023, 104, .	1.5	4
1009	Extrinsic and intrinsic factors drive the timing of gestation and reproductive success of Scandinavian brown bears. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
1011	Differences in individual flowering time change pollen limitation and seed set in three montane wildflowers. American Journal of Botany, 0, , .	0.8	1
1012	A comparative study of 17 phenological models to predict the start of the growing season. Frontiers in Forests and Global Change, 0, 5, .	1.0	1
1013	Climate Change and Global Insect Dynamics. , 2022, , 335-351.		0
1014	Surviving on the edge: present and future effects of climate warming on the common frog (<i>Rana) Tj ETQq1 1</i>	0.784314 0.9	rgBT /Overlo
1015	Changes in phenology can alter patterns of natural selection: the joint evolution of germination time and postâ€germination traits. New Phytologist, 0, , .	3.5	4
1016	Four decades of phenology in an alpine amphibian: trends, stasis, and climatic drivers. , 0, 3, .		1
1017	Assessing the breeding phenology of a threatened frog species using eDNA and automatic acoustic monitoring. PeerJ, 0, 11, e14679.	0.9	3
1018	Climate Change Impact on Honeybees (Apis spp.) and Their Pollination Services. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 147-173.	0.3	0

\mathbf{C}	TAT	ON	DEE	ODT
	IAL		KEP	UKI

#	Article	IF	CITATIONS
1019	Chilling and heat requirements for woody taxa in Tétouan (NW Morocco). Aerobiologia, 2023, 39, 241-255.	0.7	0
1020	Contrasting responses of peak vegetation growth to asymmetric warming: Evidences from FLUXNET and satellite observations. Global Change Biology, 2023, 29, 2363-2379.	4.2	4
1021	Continental synchrony and local responses: Climatic effects on spatiotemporal patterns of calving in a social ungulate. Ecosphere, 2023, 14, .	1.0	3
1022	European forests under global climate change: Review of tree growth processes, crises and management strategies. Journal of Environmental Management, 2023, 332, 117353.	3.8	31
1023	Evidence of stronger range shift response to ongoing climate change by ectotherms and high-latitude species. Biological Conservation, 2023, 279, 109911.	1.9	7
1024	Environmental Drivers of Amphibian Breeding Phenology across Multiple Sites. Diversity, 2023, 15, 253.	0.7	3
1025	The emergence and shift in seasonality of Lyme borreliosis in Northern Europe. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	1.2	7
1026	Limited population and community effects of hatching asynchrony in a pondâ€breeding salamander. Ecosphere, 2023, 14, .	1.0	1
1027	Modeling present and future distribution of plankton populations in a coastal upwelling zone: the copepod Calanus chilensis as a study case. Scientific Reports, 2023, 13, .	1.6	0
1028	Neuro-immunohistochemical and molecular gene expression variations during hibernation and activity phases between Rana mascareniensis and Rana ridibunda. Journal of Thermal Biology, 2023, 114, 103490.	1.1	1
1029	Not just flowering time: a resurrection approach shows floral attraction traits are changing over time. Evolution Letters, 2023, 7, 88-98.	1.6	3
1030	The Effects of Monthly Rainfall and Temperature on Flowering and Fruiting Intensities Vary within and among Selected Woody Species in Northwestern Ethiopia. Forests, 2023, 14, 541.	0.9	2
1031	How will climatic warming affect insect pollinators?. Advances in Insect Physiology, 2023, , 1-115.	1.1	4
1033	Tracking phenological distributions and interaction potential across life stages. Oikos, 2023, 2023, .	1.2	1
1034	Climate changeâ€induced ecosystem disturbance: a review on sclerophyllous and semiâ€deciduous forests in Tunisia. Plant Biology, 0, , .	1.8	1
1036	Transgenerational effects influence acclimation to varying temperatures in Aurelia aurita polyps (Cnidaria: Scyphozoa). Hydrobiologia, 2023, 850, 1955-1967.	1.0	2
1037	The pace of shifting seasons in lakes. Nature Communications, 2023, 14, .	5.8	9
1038	The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits. PeerJ, 0, 11, e15188.	0.9	5

#	Article	IF	CITATIONS
1063	Phenological Shifts in Animals Under Contemporary Climate Change. , 2013, , 609-622.		0
1072	Environmental Change in Ladakh's Changthang: A Local, Regional and Global Phenomenon. Advances in Asian Human-Environmental Research, 2023, , 119-146.	0.7	0