Modelling the role of agriculture for the 20th century gl

Global Change Biology 13, 679-706 DOI: 10.1111/j.1365-2486.2006.01305.x

Citation Report

#	Article	IF	CITATIONS
2	Analysis of the T-97 Space Shuttle Solid Rocket Motor Test Facility. , 1989, , .		0
3	Pitch post-processing technique based on robust statistics. Electronics Letters, 2002, 38, 1233.	0.5	1
4	A comprehensive global 5Âmin resolution land-use data set for the year 2000 consistent with national census data. Journal of Land Use Science, 2007, 2, 191-224.	1.0	195
5	Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data. Agricultural and Forest Meteorology, 2007, 146, 134-158.	1.9	86
6	The Impact of Agricultural Soil Erosion on the Global Carbon Cycle. Science, 2007, 318, 626-629.	6.0	802
7	Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochemical Cycles, 2007, 21, .	1.9	163
8	Effects of changes in CO2, climate, and land use on the carbon balance of the land biosphere during the 21st century. Journal of Geophysical Research, 2007, 112, .	3.3	31
9	Simulation of global crop production with the ecosystem model DayCent. Ecological Modelling, 2007, 209, 203-219.	1.2	146
10	Potential future changes in water limitations of the terrestrial biosphere. Climatic Change, 2007, 80, 277-299.	1.7	79
11	Effects of human land-use on the global carbon cycle during the last 6,000Âyears. Vegetation History and Archaeobotany, 2008, 17, 605-615.	1.0	136
12	Training future experts in "biodiversity and ecosystem services― a progress report. Regional Environmental Change, 2008, 8, 125-134.	1.4	1
13	Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agricultural Economics (United Kingdom), 2008, 39, 325-338.	2.0	160
14	Diagnostic assessment of European gross primary production. Global Change Biology, 2008, 14, 2349-2364.	4.2	86
15	Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecological Economics, 2008, 65, 471-487.	2.9	298
16	Modeling the carbon cycle of urban systems. Ecological Modelling, 2008, 216, 107-113.	1.2	165
17	Evaluating a terrestrial ecosystem model with satellite information of greenness. Journal of Geophysical Research, 2008, 113, .	3.3	26
18	Agricultural green and blue water consumption and its influence on the global water system. Water Resources Research, 2008, 44, .	1.7	665
19	The state of plant population modelling in light of environmental change. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 9, 171-189.	1.1	107

ιτλτιώνι Ρερώ

		CITATION REPORT		
#	Article		IF	CITATIONS
20	Causes of change in 20th century global river discharge. Geophysical Research Letters	, 2008, 35, .	1.5	215
21	Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types primary production in the year 2000. Global Biogeochemical Cycles, 2008, 22, .	s, and net	1.9	1,259
22	Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2 Biogeochemical Cycles, 2008, 22, .	2000. Global	1.9	1,328
23	The role of modelling tools in Integrated Sustainability Assessment (ISA). International Innovation and Sustainable Development, 2008, 3, 70.	Journal of	0.3	22
24	Past and future scenarios of the effect of carbon dioxide on plant growth and transpira three vegetation types of southwestern France. Atmospheric Chemistry and Physics, 2	ation for 2008, 8, 397-406.	1.9	42
25	Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly us models. Biogeosciences, 2008, 5, 561-583.	sing seven	1.3	136
26	An integrated model for the assessment of global water resources – Part 1: Model d input meteorological forcing. Hydrology and Earth System Sciences, 2008, 12, 1007-1	escription and 025.	1.9	474
27	Assessing carbon dynamics in Amazonia with the Dynamic Global Vegetation Model Lf evaluation. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Ang Limnologie International Association of Theoretical and Applied Limnology, 2008, 30, 4	PJmL — discharge ewandte 455-458.	0.1	2
28	Competing roles of rising CO ₂ and climate contemporary European carbon balance. Biogeosciences, 2008, 5, 1-10.	e change in the	1.3	30
29	Improving land surface models with FLUXNET data. Biogeosciences, 2009, 6, 1341-13.	59.	1.3	308
30	Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land carbon exchanges from croplands. Biogeosciences, 2009, 6, 969-986.	-atmosphere	1.3	144
31	Towards global empirical upscaling of FLUXNET eddy covariance observations: validati tree ensemble approach using a biosphere model. Biogeosciences, 2009, 6, 2001-201	on of a model 3.	1.3	547
32	Effects of Precipitation Uncertainty on Discharge Calculations for Main River Basins. Jo Hydrometeorology, 2009, 10, 1011-1025.	ournal of	0.7	195
33	Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mech and Remote Sensing. Ambio, 2009, 38, 316-324.	anistic Modeling	2.8	8
34	Dual scale trend analysis for evaluating climatic and anthropogenic effects on the veg surface in Russia and Kazakhstan. Environmental Research Letters, 2009, 4, 045012.	etated land	2.2	88
35	Analyzing the global human appropriation of net primary production $\hat{a} \in \mathbb{C}$ processes, tr implications. An introduction. Ecological Economics, 2009, 69, 250-259.	ajectories,	2.9	135
36	Modeling the Sensitivity of the Seasonal Cycle of GPP to Dynamic LAI and Soil Depths Rainforests. Ecosystems, 2009, 12, 517-533.	in Tropical	1.6	51
37	An Integrated Assessment of changes in the thermohaline circulation. Climatic Change 489-537.	2, 2009, 96,	1.7	66

ARTICLE IF CITATIONS # Carbon in idle croplands. Nature, 2009, 457, 1089-1090. 13.7 57 38 The global distribution of frugivory in birds. Global Ecology and Biogeography, 2009, 18, 150-162. 2.7 Modeling the land requirements and potential productivity of sugarcane and jatropha in Brazil and 40 2.9 69 India using the LPJmL dynamic global vegetation model. Biomass and Bioenergy, 2009, 33, 1087-1095. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 2009, 149, 106-129. Modelling the impacts of weather and climate variability on crop productivity over a large area: A 42 new process-based model development, optimization, and uncertainties analysis. Agricultural and 1.9 172 Forest Meteorology, 2009, 149, 831-850. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology, 2009, 149, 1266-1278. Future water availability for global food production: The potential of green water for increasing 44 1.7 521 resilience to global change. Water Resources Research, 2009, 45, . Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical 180 Cycles, 2009, 23, . Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-boreal Eastern Europe. NATO 0.1 46 3 Science for Peace and Security Series C: Énvironmental Security, 2009, , . Global potential to increase crop production through water management in rainfed agriculture. 2.2 134 Environmental Research Letters, 2009, 4, 044002. Examining the Interaction of Growing Crops with Local Climate Using a Coupled Crop–Climate Model. 1.2 41 48 Journal of Climate, 2009, 22, 1393-1411. Technological change in agriculture and the trade-offs between land expansion, intensification and 49 international trade. IOP Conference Series: Earth and Environmental Science, 2009, 6, 512003. A linked carbon cycle and crop developmental model: Description and evaluation against 50 measurements of carbon fluxes and carbon stocks at several European agricultural sites. 2.5 54 Agriculture, Ecosystems and Environment, 2010, 139, 402-418. The net biome production of full crop rotations in Europe. Agriculture, Ecosystems and Environment, 2010, 139, 336-345. 2.5 The carbon balance of European croplands: A cross-site comparison of simulation models. 52 2.555 Agriculture, Ecosystems and Environment, 2010, 139, 419-453. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agriculture, 194 Ecosystems and Environment, 2010, 139, 363-383. The net ecosystem carbon exchange of human-modified environments in the Australian Capital Region. 54 1.4 8 Regional Environmental Change, 2010, 10, 1-12. Greening the global water system. Journal of Hydrology, 2010, 384, 177-186. 2.3

#	Article	IF	CITATIONS
56	Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. Journal of Hydrology, 2010, 384, 198-217.	2.3	570
57	Virtual water content of temperate cereals and maize: Present and potential future patterns. Journal of Hydrology, 2010, 384, 218-231.	2.3	219
58	Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecological Modelling, 2010, 221, 2188-2196.	1.2	119
59	Exploring the future of European crop production in a liberalised market, with specific consideration of climate change and the regional competitiveness. Ecological Modelling, 2010, 221, 2177-2187.	1.2	39
60	Assessing 20th century climate–vegetation feedbacks of landâ€use change and natural vegetation dynamics in a fully coupled vegetation–climate model. International Journal of Climatology, 2010, 30, 2055-2065.	1.5	70
61	Efficient parallelization of a dynamic global vegetation model with river routing. Environmental Modelling and Software, 2010, 25, 685-690.	1.9	17
62	Modeling vegetation and land use in models of the Earth System. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 840-856.	3.6	63
63	Estimating the risk of Amazonian forest dieback. New Phytologist, 2010, 187, 694-706.	3.5	132
64	Contribution of anthropogenic land cover change emissions to pre-industrial atmospheric CO ₂ . Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 329.	0.8	34
65	Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 700.	0.8	103
66	Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Global Change Biology, 2010, 16, 657-670.	4.2	238
67	The European carbon balance. Part 2: croplands. Global Change Biology, 2010, 16, 1409-1428.	4.2	185
68	Net biome production of the Amazon Basin in the 21st century. Global Change Biology, 2010, 16, 2062-2075.	4.2	61
69	Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters. Global Change Biology, 2010, 16, 2476-2495.	4.2	53
70	Assessing the impact of crops on regional CO ₂ fluxes and atmospheric concentrations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 521.	0.8	40
71	Seasonality of vegetation fires as modified by human action: observing the deviation from ecoâ€climatic fire regimes. Global Ecology and Biogeography, 2010, 19, 575-588.	2.7	126
72	Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 2010, 19, 589-606.	2.7	641
73	Crop planting dates: an analysis of global patterns. Global Ecology and Biogeography, 2010, 19, 607-620.	2.7	431

#	Article	IF	CITATIONS
74	Impact of Temperature Increase and Precipitation Alteration at Climate Change on Forest Productivity and Soil Carbon in Boreal Forest Ecosystems in Canada and Russia: Simulation Approach with the EFIMOD Model. , 0, , .		3
75	A spatial resolution threshold of land cover in estimating terrestrial carbon sequestration in four counties in Georgia and Alabama, USA. Biogeosciences, 2010, 7, 71-80.	1.3	16
76	Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosciences, 2010, 7, 2749-2764.	1.3	53
77	From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences, 2010, 7, 121-149.	1.3	84
78	Deciphering the components of regional net ecosystem fluxes following a bottom-up approach for the Iberian Peninsula. Biogeosciences, 2010, 7, 3707-3729.	1.3	27
79	Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3388-3393.	3.3	577
80	Energy and the food system. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2991-3006.	1.8	257
81	Variability in Harvest Index of Grain Crops and Potential Significance for Carbon Accounting. Advances in Agronomy, 2010, 105, 173-219.	2.4	150
82	Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD. Environmental Research Letters, 2010, 5, 014013.	2.2	38
83	More than "More Individuals†The Nonequivalence of Area and Energy in the Scaling of Species Richness. American Naturalist, 2010, 176, E50-E65.	1.0	72
84	Combined effects of climate and landâ€use change on the future of humid tropical forests. Conservation Letters, 2010, 3, 395-403.	2.8	75
85	MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new highâ€resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 2010, 24, .	1.9	1,032
86	Europeanâ€wide simulations of croplands using an improved terrestrial biosphere model: 2. Interannual yields and anomalous CO ₂ fluxes in 2003. Journal of Geophysical Research, 2010, 115, .	3.3	12
87	Dynamic responses of terrestrial ecosystems structure and function to climate change in China. Journal of Geophysical Research, 2010, 115, .	3.3	35
88	Assessing the productivity function of soils. A review. Agronomy for Sustainable Development, 2010, 30, 601-614.	2.2	165
89	Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 2010, 329, 834-838.	6.0	2,056
90	Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change, 2010, 20, 451-462.	3.6	323
91	The yield gap of global grain production: A spatial analysis. Agricultural Systems, 2010, 103, 316-326.	3.2	420

#	Article	IF	CITATIONS
92	Global mapping of <i>Jatropha curcas</i> yield based on response of fitness to present and future climate. GCB Bioenergy, 2010, 2, 139-151.	2.5	54
93	Europeanâ€wide simulations of croplands using an improved terrestrial biosphere model: Phenology and productivity. Journal of Geophysical Research, 2010, 115, .	3.3	33
94	Benchmarking coupled climateâ€carbon models against longâ€ŧerm atmospheric CO ₂ measurements. Global Biogeochemical Cycles, 2010, 24, .	1.9	97
95	Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: recent developments, limitations, and future challenges. Environmental Reviews, 2010, 18, 333-353.	2.1	141
96	Exploring the potential contribution of irrigation to global agricultural primary productivity. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	26
97	Simulating the effects of climate and agricultural management practices on global crop yield. Clobal Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	282
98	Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resources Research, 2011, 47, .	1.7	340
99	Clobal patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 2011, 116, .	3.3	933
100	A process-based inventory model for landfill CH ₄ emissions inclusive of seasonal soil microclimate and CH ₄ oxidation. Journal of Geophysical Research, 2011, 116, .	3.3	38
101	A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrological Sciences Journal, 2011, 56, 946-965.	1.2	38
102	Assessing the Productivity Function of Soils. , 2011, , 743-760.		4
103	Simulating dynamic crop growth with an adapted land surface model – JULES-SUCROS: Model development and validation. Agricultural and Forest Meteorology, 2011, 151, 137-153.	1.9	72
104	The effect of temporal aggregation of weather input data on crop growth models' results. Agricultural and Forest Meteorology, 2011, 151, 607-619.	1.9	41
105	Exploring global irrigation patterns: A multilevel modelling approach. Agricultural Systems, 2011, 104, 703-713.	3.2	58
106	The impact of future climate change on West African crop yields: What does the recent literature say?. Global Environmental Change, 2011, 21, 1073-1083.	3.6	382
108	Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems. Biological Conservation, 2011, 144, 1585-1594.	1.9	54
109	Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy, 2011, 3, 299-312.	2.5	332
110	Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO ₂ airborne fraction. Biogeosciences, 2011, 8, 2027-2036.	1.3	75

	CHAHOM	IKEPUKI	
#	Article	IF	Citations
111	Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrology and Earth System Sciences, 2011, 15, 3785-3808.	1.9	275
112	Evaluation of global continental hydrology as simulated by the Land-surface Processes and eXchanges Dynamic Global Vegetation Model. Hydrology and Earth System Sciences, 2011, 15, 91-105.	1.9	41
113	Global food production in a water-constrained world: exploring â€~green' and â€~blue' challenges and solutions. , 2011, , 131-152.	ł	10
114	Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrology and Earth System Sciences, 2011, 15, 1641-1660.	1.9	183
115	Challenges in using land use and land cover data for global change studies. Global Change Biology, 2011, 17, 974-989.	4.2	436
116	Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine. Global Change Biology, 2011, 17, 1335-1349.	4.2	159
117	Effects of land use change and management on the European cropland carbon balance. Global Change Biology, 2011, 17, 320-338.	4.2	56
118	Use of Tropical Dry Forests and Agricultural Areas by Neotropical Bird Communities. Biotropica, 2011, 43, 365-370.	0.8	33
119	Spatial and temporal patterns of CO ₂ and CH ₄ fluxes in China's croplands in response to multifactor environmental changes. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 222.	0.8	65
120	Agricultural Irrigation Impacts on Land Surface Characteristics Detected From Satellite Data Products in Jilin Province, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4, 721-729.	2.3	28
121	Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions. Ecological Modelling, 2011, 222, 131-143.	1.2	68
122	Harvesting the sun: New estimations of the maximum population of planet Earth. Ecological Modelling, 2011, 222, 2019-2026.	1.2	26
123	Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe. Ecological Modelling, 2011, 222, 3662-3679.	1.2	10
124	On sustainability of bioenergy production: Integrating co-emissions from agricultural intensification. Biomass and Bioenergy, 2011, 35, 4770-4780.	2.9	58
125	Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields. Biomass and Bioenergy, 2011, 35, 4753-4769.	2.9	202
126	Validating modelled NPP using statistical yield data. Biomass and Bioenergy, 2011, 35, 4665-4674.	2.9	17
127	Effects of data aggregation on simulations of crop phenology. Agriculture, Ecosystems and Environment, 2011, 142, 75-84.	2.5	56
128	Including tropical croplands in a terrestrial biosphere model: application to West Africa. Climatic Change, 2011, 104, 755-782.	1.7	19

#	Article	IF	CITATIONS
129	Carbon, nitrogen and Greenhouse gases budgets over a four years crop rotation in northern France. Plant and Soil, 2011, 343, 109-137.	1.8	111
130	Precessional forcing of tropical vegetation carbon storage. Journal of Quaternary Science, 2011, 26, 463-467.	1.1	6
131	Potential effects of future land-use change on regional carbon stocks in the UK. Environmental Science and Policy, 2011, 14, 40-52.	2.4	48
132	Evaluation of an integrated land use change model including a scenario analysis of land use change for continental Africa. Environmental Modelling and Software, 2011, 26, 1017-1027.	1.9	48
133	An integrated approach to modelling land-use change on continental and global scales. Environmental Modelling and Software, 2011, 26, 1041-1051.	1.9	143
134	Impacts of Climate Change and the End of Deforestation on Land Use in the Brazilian Legal Amazon. Earth Interactions, 2011, 15, 1-29.	0.7	52
135	Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology, 2011, 12, 869-884.	0.7	466
136	Carbon implications of forest restitution in post-socialist Romania. Environmental Research Letters, 2011, 6, 045202.	2.2	47
137	Risk of severe climate change impact on the terrestrial biosphere. Environmental Research Letters, 2011, 6, 034036.	2.2	65
138	Data and monitoring needs for a more ecological agriculture. Environmental Research Letters, 2011, 6, 014017.	2.2	51
141	Plant functional type mapping for earth system models. Geoscientific Model Development, 2011, 4, 993-1010.	1.3	140
143	The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environmental Research Letters, 2011, 6, 034017.	2.2	159
144	Validation of modelled forest biomass in Germany using BETHY/DLR. Geoscientific Model Development, 2011, 4, 1019-1034.	1.3	10
145	Global Water Availability and Requirements for Future Food Production. Journal of Hydrometeorology, 2011, 12, 885-899.	0.7	233
146	Impact of a Statistical Bias Correction on the Projected Hydrological Changes Obtained from Three GCMs and Two Hydrology Models. Journal of Hydrometeorology, 2011, 12, 556-578.	0.7	334
147	Evaluation of a Global Vegetation Model using time series of satellite vegetation indices. Geoscientific Model Development, 2011, 4, 1103-1114.	1.3	42
150	Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe. Journal of Hydrometeorology, 2012, 13, 604-620.	0.7	135
152	The Nexus Land-Use model version 1.0, an approach articulating biophysical potentials and economic dynamics to model competition for land-use. Geoscientific Model Development, 2012, 5, 1297-1322.	1.3	38

#	Article	IF	CITATIONS
153	A comprehensive view on climate change: coupling of earth system and integrated assessment models. Environmental Research Letters, 2012, 7, 024012.	2.2	74
154	Use of agricultural statistics to verify the interannual variability in land surface models: a case study over France with ISBA-A-gs. Geoscientific Model Development, 2012, 5, 37-54.	1.3	25
155	Potential natural vegetation dynamics driven by future long-term climate change and its hydrological impacts in the Hanjiang River basin, China. Hydrology Research, 2012, 43, 73-90.	1.1	7
156	Biophysical regulations of NEE light response in a steppe and a cropland in Inner Mongolia. Journal of Plant Ecology, 2012, 5, 238-248.	1.2	13
157	Global socioeconomic carbon stocks in long-lived products 1900–2008. Environmental Research Letters, 2012, 7, 034023.	2.2	43
158	GLOBAL FOOD SECURITY AND ECONOMIC IMPACT ANALYSIS CAUSED BY CLIMETE CHANGE IMPACT ON AGRICULTURAL PRODUCTIVITY. Journal of Japan Society of Civil Engineers Ser G (Environmental) Tj ETQq1 1 0.78	4 3∂1∄ rgB]	[/®verlock
159	Detection and Attribution of Changes in Water Resources. , 2012, , 422-434.		2
160	Cropland Soil Carbon Dynamics. , 2012, , 303-346.		3
161	The importance of proper hydrology in the forest coverâ€water yield debate: commentary on Ellison <i>et al</i> . (2012) <i>Global Change Biology</i> , <i> 18, 806–820</i> . Global Change Biology, 2012, 18, 2677-2680.	4.2	12
162	A biophysical model of Sugarcane growth. GCB Bioenergy, 2012, 4, 36-48.	2.5	40
163	Changes in land use in South Africa between 1961 and 2006: an integrated socio-ecological analysis based on the human appropriation of net primary production framework. Regional Environmental Change, 2012, 12, 715-727.	1.4	38
164	Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy and Environmental Science, 2012, 5, 8116.	15.6	58
165	Trading more food: Implications for land use, greenhouse gas emissions, and the food system. Global Environmental Change, 2012, 22, 189-209.	3.6	154
166	Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventoryâ€based data. Global Change Biology, 2012, 18, 1282-1299.	4.2	116
167	Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1527-1542.	1.1	135
168	Attributing the impacts of landâ€cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations. Journal of Geophysical Research, 2012, 117, .	3.3	133
169	Evaluation of nine largeâ€scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resources Research, 2012, 48, .	1.7	107
170	Current and future irrigation water requirements in pan-Europe: An integrated analysis of socio-economic and climate scenarios. Global and Planetary Change. 2012. 94-95. 33-45.	1.6	60

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
171	Bioenergy and Biospheric Carbon. , 2012, , 481-492.			1
172	Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Clima America and Eurasia: Results from the First Set of LUCID Experiments. Journal of Climate 3261-3281.	ite over North , 2012, 25,	1.2	313
173	A Global System for Monitoring Ecosystem Service Change. BioScience, 2012, 62, 977-9	186.	2.2	142
174	From actors to agents in socio-ecological systems models. Philosophical Transactions of Society B: Biological Sciences, 2012, 367, 259-269.	the Royal	1.8	136
175	Climate Change, Justice and Sustainability. , 2012, , .			12
176	Interactive Crop Management in the Community Earth System Model (CESM1): Seasona Land–Atmosphere Fluxes. Journal of Climate, 2012, 25, 4839-4859.	al Influences on	1.2	140
177	Estimating Net Primary Production of Turfgrass in an Urban-Suburban Landscape with Q Imagery. Remote Sensing, 2012, 4, 849-866.	uickBird	1.8	24
178	N ₂ O emissions from the global agricultural r current state and future scenarios. Biogeosciences, 2012, 9, 4169-4197.	nitrogen cycle –	1.3	96
179	Alternative methods to predict actual evapotranspiration illustrate the importance of ac for phenology $\hat{a} \in $ Part 2: The event driven phenology model. Biogeosciences, 2012, 9, 1	counting .61-177.	1.3	9
180	Effects of climate model radiation, humidity and wind estimates on hydrological simulat Hydrology and Earth System Sciences, 2012, 16, 305-318.	ions.	1.9	81
181	Land and Water: Linkages to Bioenergy. , 0, , 1459-1526.			14
182	Evaluation of drought propagation in an ensemble mean of large-scale hydrological mod Hydrology and Earth System Sciences, 2012, 16, 4057-4078.	els.	1.9	127
183	Carbon Balance of Noâ€∓ill Soybean with Winter Wheat Cover Crop in the Southeaster Agronomy Journal, 2012, 104, 1321-1335.	ו United States.	0.9	17
184	Impact of Irrigation on Hydrologic Change in Highly Cultivated Basin. , 0, , .			0
185	Can Numerical Models Estimate Indirect Land-Use Change?. SSRN Electronic Journal, 20	12, , .	0.4	1
186	A new concept for simulation of vegetated land surface dynamics – Part 1: The event model. Biogeosciences, 2012, 9, 141-159.	driven phenology	1.3	8
187	Sensitivity analyses of crop yields and changes in climate variables simulated with iGAEZ Processes, 2012, 26, 2482-2500.	. Hydrological	1.1	4
188	OECD Environmental Outlook to 2050. OECD Environmental Outlook, 2012, , .		7.5	363

#	Article	IF	CITATIONS
189	Investigating the impact of climate change on crop phenological events in Europe with a phenology model. International Journal of Biometeorology, 2012, 56, 749-763.	1.3	36
190	Regionalization of a large-scale crop growth model for sub-Saharan Africa: Model setup, evaluation, and estimation of maize yields. Agriculture, Ecosystems and Environment, 2012, 151, 21-33.	2.5	87
191	Projecting trends in plant invasions in Europe under different scenarios of future landâ€use change. Global Ecology and Biogeography, 2012, 21, 75-87.	2.7	89
192	Scenarios for investigating risks to biodiversity. Global Ecology and Biogeography, 2012, 21, 5-18.	2.7	57
193	Climateâ€driven simulation of global crop sowing dates. Global Ecology and Biogeography, 2012, 21, 247-259.	2.7	207
194	Bird dietary guild richness across latitudes, environments and biogeographic regions. Global Ecology and Biogeography, 2012, 21, 328-340.	2.7	133
195	Clobal patterns of specialization and coexistence in bird assemblages. Journal of Biogeography, 2012, 39, 193-203.	1.4	80
196	Additional CO2 emissions from land use change — Forest conservation as a precondition for sustainable production of second generation bioenergy. Ecological Economics, 2012, 74, 64-70.	2.9	68
197	Development of the Biome-BGC model for simulation of managed herbaceous ecosystems. Ecological Modelling, 2012, 226, 99-119.	1.2	70
198	North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison. Ecological Modelling, 2012, 232, 144-157.	1.2	207
199	Measuring agricultural land-use intensity – A global analysis using a model-assisted approach. Ecological Modelling, 2012, 232, 109-118.	1.2	82
200	Evaluation of an ecosystem model for a wheat–maize double cropping system over the North China Plain. Environmental Modelling and Software, 2012, 32, 61-73.	1.9	38
201	<scp>C</scp> hina's crop productivity and soil carbon storage as influenced by multifactor global change. Global Change Biology, 2012, 18, 2945-2957.	4.2	78
202	A <scp>L</scp> and <scp>S</scp> ystem representation for global assessments and landâ€use modeling. Global Change Biology, 2012, 18, 3125-3148.	4.2	161
203	Bioenergy crop models: descriptions, data requirements, and future challenges. GCB Bioenergy, 2012, 4, 620-633.	2.5	79
204	Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry, 2012, 47, 78-92.	4.2	173
205	How sensitive are estimates of carbon fixation in agricultural models to input data?. Carbon Balance and Management, 2012, 7, 3.	1.4	6
206	The representation of landscapes in global scale assessments of environmental change. Landscape Ecology, 2013, 28, 1067-1080.	1.9	68

#	Article	IF	CITATIONS
207	LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landscape Ecology, 2013, 28, 615-636.	1.9	126
208	Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model. Ecological Modelling, 2013, 263, 233-243.	1.2	33
209	Influence of climate change on short term management of field crops – A modelling approach. Agricultural Systems, 2013, 119, 44-57.	3.2	42
210	Impact of derived global weather data on simulated crop yields. Global Change Biology, 2013, 19, 3822-3834.	4.2	113
211	Future water resources for food production in five South Asian river basins and potential for adaptation — A modeling study. Science of the Total Environment, 2013, 468-469, S117-S131.	3.9	78
212	Land cover change or landâ€use intensification: simulating land system change with a globalâ€scale land change model. Clobal Change Biology, 2013, 19, 3648-3667.	4.2	278
213	Long-term variability of the carbon balance in a large irrigated area along the lower Yellow River from 1984 to 2006. Science China Earth Sciences, 2013, 56, 671-683.	2.3	14
214	From set-aside grassland to annual and perennial cellulosic biofuel crops: Effects of land use change on carbon balance. Agricultural and Forest Meteorology, 2013, 182-183, 1-12.	1.9	34
215	Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change, 2013, 23, 130-143.	3.6	222
216	Increasing cropping intensity in response to climate warming in Tibetan Plateau, China. Field Crops Research, 2013, 142, 36-46.	2.3	54
217	Evaluation of continental carbon cycle simulations with North American flux tower observations. Ecological Monographs, 2013, 83, 531-556.	2.4	75
218	Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environmental Research Letters, 2013, 8, 014046.	2.2	240
219	Spin-up processes in the Community Land Model version 4 with explicit carbon and nitrogen components. Ecological Modelling, 2013, 263, 308-325.	1.2	27
220	Effects of land-use change on the carbon balance of 1st generation biofuels: An analysis for the European Union combining spatial modeling and LCA. Biomass and Bioenergy, 2013, 56, 166-178.	2.9	43
221	Effect of spatial heterogeneity on the validation of remote sensing based GPP estimations. Agricultural and Forest Meteorology, 2013, 174-175, 43-53.	1.9	38
222	Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agricultural and Forest Meteorology, 2013, 170, 89-102.	1.9	92
223	Yield gap analysis with local to global relevance—A review. Field Crops Research, 2013, 143, 4-17.	2.3	1,111
224	Specification and Aggregation Errors in Environmentally Extended Input–Output Models. Environmental and Resource Economics, 2013, 56, 307-335.	1.5	57

#	Article	IF	CITATIONS
225	Global biomass potentials under sustainability restrictions defined by the European Renewable Energy Directive 2009/28/ <scp>EC</scp> . GCB Bioenergy, 2013, 5, 652-663.	2.5	31
226	Impacts of elevated <scp><scp>CO</scp>2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest <scp>USA</scp>. Global Change Biology, 2013, 19, 2838-2852.</scp>	4.2	60
227	Climate impacts on global irrigation requirements under 19 GCMs, simulated with a vegetation and hydrology model. Hydrological Sciences Journal, 2013, 58, 88-105.	1.2	89
228	A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Research, 2013, 143, 130-142.	2.3	110
229	Comparing the determinants of cropland abandonment in Albania and Romania using boosted regression trees. Agricultural Systems, 2013, 117, 66-77.	3.2	214
230	The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 2013, 170, 166-182.	1.9	715
231	How satellite rainfall estimate errors may impact rainfed cereal yield simulation in West Africa. Agricultural and Forest Meteorology, 2013, 180, 118-131.	1.9	45
232	The combined controls of land use legacy and earthworm activity on soil organic matter chemistry and particle association during afforestation. Organic Geochemistry, 2013, 58, 56-68.	0.9	33
233	Carbon balance of citrus plantations in Eastern Spain. Agriculture, Ecosystems and Environment, 2013, 171, 103-111.	2.5	21
234	Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century. Global and Planetary Change, 2013, 106, 1-12.	1.6	61
235	Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems. Journal of Hazardous Materials, 2013, 263, 139-145.	6.5	22
236	Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Forest Meteorology, 2013, 170, 32-46.	1.9	148
237	Simulating regional winter wheat yields using input data of different spatial resolution. Field Crops Research, 2013, 145, 67-77.	2.3	33
238	A spatially explicit scheme for tracking and validating annual landscape scale changes in soil carbon. Applied Geography, 2013, 37, 101-113.	1.7	4
239	Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology, 2013, 170, 146-165.	1.9	139
240	Development, uncertainty and sensitivity analysis of the simple SALUS crop model in DSSAT. Ecological Modelling, 2013, 260, 62-76.	1.2	72
241	Dynamic Global Vegetation Models. , 2013, , 670-689.		28
242	The projected impact of climate and land use change on plant diversity: AnÂexample from West Africa. Journal of Arid Environments, 2013, 96, 48-54.	1.2	52

#	Article	IF	CITATIONS
243	Nextâ€generation dynamic global vegetation models: learning from community ecology. New Phytologist, 2013, 198, 957-969.	3.5	378
244	Conservation of undisturbed natural forests and economic impacts on agriculture. Land Use Policy, 2013, 30, 344-354.	2.5	26
245	Postâ€Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Global Biogeochemical Cycles, 2013, 27, 1175-1185.	1.9	161
246	Modeling agriculture in the Community Land Model. Geoscientific Model Development, 2013, 6, 495-515.	1.3	94
247	WRFv3.2-SPAv2: development and validation of a coupled ecosystem–atmosphere model, scaling from surface fluxes of CO ₂ and energy to atmospheric profiles. Geoscientific Model Development, 2013, 6, 1079-1093.	1.3	18
251	Global Multimodel Analysis of Drought in Runoff for the Second Half of the Twentieth Century. Journal of Hydrometeorology, 2013, 14, 1535-1552.	0.7	58
252	Subnivean Arctic and sub-Arctic net ecosystem exchange (NEE). Progress in Physical Geography, 2013, 37, 484-515.	1.4	7
253	Putting mechanisms into crop production models. Plant, Cell and Environment, 2013, 36, 1658-1672.	2.8	159
254	Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP. Earth System Dynamics, 2013, 4, 359-374.	2.7	74
255	Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa. Earth System Dynamics, 2013, 4, 385-407.	2.7	118
256	Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes?. Earth System Dynamics, 2013, 4, 409-424.	2.7	7
257	Critical impacts of global warming on land ecosystems. Earth System Dynamics, 2013, 4, 347-357.	2.7	32
258	Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environmental Research Letters, 2013, 8, 014040.	2.2	213
259	Europe's other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7342-7347.	3.3	102
260	Evaluation of uneven water resource and relation between anthropogenic water withdrawal and ecosystem degradation in Changjiang and Yellow River basins. Hydrological Processes, 2013, 27, 3350-3362.	1.1	16
261	Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology. Environmental Research Letters, 2013, 8, 015030.	2.2	34
262	Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environmental Research Letters, 2013, 8, 034032.	2.2	52
263	Contribution of permafrost soils to the global carbon budget. Environmental Research Letters, 2013, 8, 014026.	2.2	148

	CITATION REF	ORT	
# 264	ARTICLE The use of dynamic global vegetation models for simulating hydrology and the potential integration of satellite observations. Progress in Physical Geography. 2013. 37, 63-97	IF 1.4	CITATIONS
265	Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atmospheric Chemistry and Physics, 2013, 13, 2793-2825.	1.9	517
266	The parallel system for integrating impact models and sectors (pSIMS). , 2013, , .		12
267	Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resources Research, 2013, 49, 3601-3617.	1.7	52
268	Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrology and Earth System Sciences, 2013, 17, 2247-2262.	1.9	51
269	Incorporating grassland management in ORCHIDEE: model description and evaluation at 11 eddy-covariance sites in Europe. Geoscientific Model Development, 2013, 6, 2165-2181.	1.3	58
270	A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geoscientific Model Development, 2013, 6, 643-685.	1.3	133
271	Inferring past land use-induced changes in surface albedo from satellite observations: a useful tool to evaluate model simulations. Biogeosciences, 2013, 10, 1501-1516.	1.3	40
272	A vital link: water and vegetation in the Anthropocene. Hydrology and Earth System Sciences, 2013, 17, 3841-3852.	1.9	25
273	An ensemble approach to the representation of subgrid-scale heterogeneity of crop phenology and yield in coarse-resolution large-area crop models. J Agricultural Meteorology, 2013, 69, 243-254.	0.8	6
274	A framework for global river flood risk assessments. Hydrology and Earth System Sciences, 2013, 17, 1871-1892.	1.9	327
275	A model-based constraint on CO ₂ fertilisation. Biogeosciences, 2013, 10, 339-355.	1.3	35
276	Controls on the spatial distribution of oceanic Î' ¹³ C _{DIC} . Biogeosciences, 2013, 10, 1815-1833.	1.3	29
277	Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation. Biogeosciences, 2013, 10, 8039-8066.	1.3	48
278	Climate and carbon cycle response to the 1815 Tambora volcanic eruption. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,497.	1.2	46
279	Responses of Terrestrial Ecosystems' Net Primary Productivity to Future Regional Climate Change in China. PLoS ONE, 2013, 8, e60849.	1.1	24
280	A worldwide analysis of trends in water-balance evapotranspiration. Hydrology and Earth System Sciences, 2013, 17, 4177-4187.	1.9	61
281	Limitations, Challenges, and Solutions to Integrating Carbon Dynamics with Land-Use Models. , 0, , 178-208.		4

#	Article	IF	CITATIONS
282	Validating a Dynamic Global Vegetation Model with Remotely Sensed Vegetation Index. Advance Journal of Food Science and Technology, 2013, 5, 132-136.	0.1	0
283	A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS. Biogeosciences, 2013, 10, 2451-2466.	1.3	15
284	Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Climate of the Past, 2014, 10, 487-507.	1.3	107
285	Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration. Hydrology and Earth System Sciences, 2014, 18, 3511-3538.	1.9	285
286	Forest response to increased disturbance in the central Amazon and comparison to western Amazonian forests. Biogeosciences, 2014, 11, 5773-5794.	1.3	22
287	Climate Change Impacts and Market Driven Adaptation: The Costs of Inaction Including Market Rigidities. SSRN Electronic Journal, 0, , .	0.4	4
288	Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System. PLoS ONE, 2014, 9, e105150.	1.1	12
289	Climate-driven interannual variability of water scarcity in food production potential: a global analysis. Hydrology and Earth System Sciences, 2014, 18, 447-461.	1.9	101
290	Extreme events in gross primary production: a characterization across continents. Biogeosciences, 2014, 11, 2909-2924.	1.3	77
291	Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics, 2014, 5, 15-40.	2.7	549
292	Simulation Modeling: Applications in Cropping Systems. , 2014, , 102-112.		32
293	Suitability of modelled and remotely sensed essential climate variables for monitoring Euro-Mediterranean droughts. Geoscientific Model Development, 2014, 7, 931-946.	1.3	40
294	Impact of droughts on the carbon cycle in European vegetation: a probabilistic risk analysis using six vegetation models. Biogeosciences, 2014, 11, 6357-6375.	1.3	32
295	Evaluation of root water uptake in the ISBA-A-gs land surface model using agricultural yield statistics over France. Hydrology and Earth System Sciences, 2014, 18, 4979-4999.	1.9	19
296	Identifying environmental controls on vegetation greenness phenology through model–data integration. Biogeosciences, 2014, 11, 7025-7050.	1.3	68
297	Determining regional limits and sectoral constraints for water use. Hydrology and Earth System Sciences, 2014, 18, 4039-4052.	1.9	8
298	Public-Sector Agricultural Research Priorities for Sustainable Food Security: Perspectives from Plausible Scenarios. SSRN Electronic Journal, 2014, , .	0.4	24
299	A Simple Crop Phenology Algorithm in the Land Surface Model CNâ€CLASS. Agronomy Journal, 2014, 106, 297-308.	0.9	4

	Сітатіс	CITATION REPORT	
#	Article	IF	Citations
300	Climate–Human–Land Interactions: A Review of Major Modelling Approaches. Land, 2014, 3, 793-833.	1.2	35
301	A Comparative Analysis of Global Cropping Systems Models and Maps. SSRN Electronic Journal, 2014, , .	0.4	22
302	Robust features of future climate change impacts on sorghum yields in West Africa. Environmental Research Letters, 2014, 9, 104006.	2.2	93
303	Complexity and determining dangerous levels of climate impacts. Environmental Research Letters, 2014, 9, 011001.	2.2	0
304	The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3228-3232.	3.3	880
305	A highâ€resolution approach to estimating ecosystem respiration at continental scales using operational satellite data. Global Change Biology, 2014, 20, 1191-1210.	4.2	40
306	ORCHIDEEâ€STICS, a processâ€based model of sugarcane biomass production: calibration of model parameters governing phenology. GCB Bioenergy, 2014, 6, 606-620.	2.5	14
307	Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agricultural Economics (United Kingdom), 2014, 45, 103-116.	2.0	85
308	Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3239-3244.	3.3	795
309	Carbon and nitrogen dynamics in bioenergy ecosystems: 1. Model development, validation and sensitivity analysis. GCB Bioenergy, 2014, 6, 740-755.	2.5	9
310	Accounting for environmental flow requirements in global water assessments. Hydrology and Earth System Sciences, 2014, 18, 5041-5059.	1.9	295
311	Climate impacts on human livelihoods: where uncertainty matters in projections of water availability. Earth System Dynamics, 2014, 5, 355-373.	2.7	4
312	Grassland production under global change scenarios for New Zealand pastoral agriculture. Geoscientific Model Development, 2014, 7, 2359-2391.	1.3	11
313	Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technological Forecasting and Social Change, 2014, 81, 236-249.	6.2	83
314	Valuing the impact of trade on local blue water. Ecological Economics, 2014, 101, 43-53.	2.9	42
315	Testing farm management options as climate change adaptation strategies using the MONICA model. European Journal of Agronomy, 2014, 52, 47-56.	1.9	67
316	Time-scale and state dependence of the carbon-cycle feedback to climate. Climate Dynamics, 2014, 42, 1699-1713.	1.7	18
317	How do various maize crop models vary in their responses to climate change factors?. Global Change Biology, 2014, 20, 2301-2320.	4.2	525

		IPORT	
#	Article	IF	Citations
318	A meteorological forcing data set for global crop modeling: Development, evaluation, and intercomparison. Journal of Geophysical Research D: Atmospheres, 2014, 119, 363-384.	1.2	38
319	Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agricultural Economics (United Kingdom), 2014, 45, 69-84.	2.0	220
320	Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3245-3250.	3.3	1,282
321	Projecting future crop productivity for global economic modeling. Agricultural Economics (United) Tj ETQq1 1 0.	784314 rg 2.0	BT /Overloc 169
322	Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature, 2014, 515, 394-397.	13.7	152
323	Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Global Environmental Change, 2014, 29, 223-234.	3.6	103
324	Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1327-33.	3.3	741
325	Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3251-3256.	3.3	971
326	Land-use protection for climate change mitigation. Nature Climate Change, 2014, 4, 1095-1098.	8.1	164
327	Biosphere-human feedbacks: a physical geography perspective. Physical Geography, 2014, 35, 50-75.	0.6	4
328	Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3268-3273.	3.3	1,649
329	Global wheat production potentials and management flexibility under the representative concentration pathways. Global and Planetary Change, 2014, 122, 107-121.	1.6	110
330	Trends in 20th century global rainfall interception as simulated by a dynamic global vegetation model: implications for global water resources. Ecohydrology, 2014, 7, 102-114.	1.1	35
331	Climate-smart agriculture global research agenda: scientific basis for action. Agriculture and Food Security, 2014, 3, .	1.6	165
332	Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 2014, 514, 213-217.	13.7	648
333	Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change, 2014, 123, 495-509.	1.7	140
334	The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Climatic Change, 2014, 123, 705-718.	1.7	81
335	Hotspots of climate change impacts in subâ€Saharan Africa and implications for adaptation and development. Global Change Biology, 2014, 20, 2505-2517.	4.2	82

#	Article	IF	CITATIONS
336	Global models of human decision-making for land-based mitigation and adaptation assessment. Nature Climate Change, 2014, 4, 550-557.	8.1	101
337	Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems?. Ecological Modelling, 2014, 288, 103-111.	1.2	38
338	Agriculture and climate change in global scenarios: why don't the models agree. Agricultural Economics (United Kingdom), 2014, 45, 85-101.	2.0	172
339	Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions. Energy Economics, 2014, 46, 562-575.	5.6	93
340	Influence of groundwater on plant water use and productivity: Development of an integrated ecosystem – Variably saturated soil water flow model. Agricultural and Forest Meteorology, 2014, 189-190, 198-210.	1.9	72
341	Quantifying the contributions of agricultural oasis expansion, management practices and climate change to net primary production and evapotranspiration in croplands in arid northwest China. Journal of Arid Environments, 2014, 100-101, 31-41.	1.2	42
342	Identification of changes in hydrological drought characteristics from a multi-GCM driven ensemble constrained by observed discharge. Journal of Hydrology, 2014, 512, 421-434.	2.3	81
343	On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 2014, 516, 76-96.	2.3	369
344	Ammonia emissions in the United States, European Union, and China derived by highâ€resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3). Journal of Geophysical Research D: Atmospheres, 2014, 119, 4343-4364.	1.2	333
345	Food Security and Food Production Systems. , 0, , 485-534.		67
346	Evaluation of Climate Models. , 2014, , 741-866.		458
347	Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts. Earth's Future, 2014, 2, 83-98.	2.4	25
348	Modeling irrigationâ€based climate change adaptation in agriculture: Model development and evaluation in Northeast China. Journal of Advances in Modeling Earth Systems, 2015, 7, 1409-1424.	1.3	23
349	Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An ecosystem modeling perspective. GCB Bioenergy, 2015, 7, 1211-1221.	2.5	37
350	Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global warming intensity in the conterminous <scp>U</scp> nited <scp>S</scp> tates. GCB Bioenergy, 2015, 7, 25-39.	2.5	22
351	Global biomass production potentials exceed expected future demand without the need for cropland expansion. Nature Communications, 2015, 6, 8946.	5.8	141
352	Sensitivity of burned area in Europe to climate change, atmospheric CO ₂ levels, and demography: A comparison of two fireâ€vegetation models. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2256-2272.	1.3	37
353	Simulated carbon emissions from land-use change are substantially enhanced by accounting for agricultural management. Environmental Research Letters, 2015, 10, 124008.	2.2	103

#	Article	IF	CITATIONS
354	Implications of climate mitigation for future agricultural production. Environmental Research Letters, 2015, 10, 125004.	2.2	49
355	The implication of irrigation in climate change impact assessment: a Europeanâ€wide study. Global Change Biology, 2015, 21, 4031-4048.	4.2	66
356	Comparison of future runoff projections using Budyko framework and global hydrologic model: conceptual simplicity vs process complexity. Hydrological Research Letters, 2015, 9, 75-83.	0.3	7
357	Regional Blue and Green Water Balances and Use by Selected Crops in the <scp> U.S.</scp> . Journal of the American Water Resources Association, 2015, 51, 1626-1642.	1.0	16
358	Errors and uncertainties introduced by a regional climate model in climate impact assessments: example of crop yield simulations in West Africa. Environmental Research Letters, 2015, 10, 124014.	2.2	16
359	Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environmental Research Letters, 2015, 10, 085010.	2.2	216
360	Investigating the influence of two different flow routing algorithms on soil–water–vegetation interactions using the dynamic ecosystem model LPJâ€GUESS. Ecohydrology, 2015, 8, 570-583.	1.1	16
361	Effect of climate change on soil organic carbon in Inner Mongolia. International Journal of Climatology, 2015, 35, 337-347.	1.5	11
362	Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environmental Research Letters, 2015, 10, 094021.	2.2	84
363	Hydrological recurrence as a measure for large river basin classification and process understanding. Hydrology and Earth System Sciences, 2015, 19, 1919-1942.	1.9	9
364	A Stratified Temporal Spectral Mixture Analysis Model for Mapping Cropland Distribution through MODIS Time-Series Data. Journal of Agricultural Science, 2015, 7, .	0.1	2
365	Bayesian inversions of a dynamic vegetation model at four European grassland sites. Biogeosciences, 2015, 12, 2809-2829.	1.3	12
366	Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity. Biogeosciences, 2015, 12, 373-385.	1.3	75
367	Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrology and Earth System Sciences, 2015, 19, 3073-3091.	1.9	264
368	Modelling the response of yields and tissue C : N to changes in atmospheric CO ₂ and N management in the main wheat regions of western Europe. Biogeosciences, 2015, 12, 2489-2515.	1.3	47
369	On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand. Hydrology and Earth System Sciences, 2015, 19, 33-61.	1.9	147
370	Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geoscientific Model Development, 2015, 8, 3545-3561.	1.3	26
371	Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching. Earth System Dynamics, 2015, 6, 745-768.	2.7	40

		CITATION REPORT		
#	Article		IF	CITATIONS
372	Sectorial Water Use Trends in the Urbanizing Pearl River Delta, China. PLoS ONE, 2015,	, 10, e0115039.	1.1	8
373	Using a Simple Apparatus to Measure Direct and Diffuse Photosynthetically Active Radi Locations. PLoS ONE, 2015, 10, e0115633.	ation at Remote	1.1	18
374	Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers. PLoS C e0136237.	NE, 2015, 10,	1.1	50
375	Agricultural productivity in past societies: Toward an empirically informed model for tes cultural evolutionary hypotheses. Cliodynamics, 2015, 6, .	sting	0.1	8
376	The Polar Vegetation Photosynthesis and Respiration Model: a parsimonious, satellite-d model of high-latitude CO ₂ exchange. Geos Development, 2015, 8, 2655-2674.	ata-driven scientific Model	1.3	17
377	A framework for the cross-sectoral integration of multi-model impact projections: land under climate impacts uncertainties. Earth System Dynamics, 2015, 6, 447-460.	use decisions	2.7	38
378	US Maize Data Reveals Adaptation to Heat and Water Stress. SSRN Electronic Journal, 2	2015,,.	0.4	16
379	A probabilistic risk assessment for the vulnerability of the European carbon cycle to we extremes: the ecosystem perspective. Biogeosciences, 2015, 12, 1813-1831.	ather	1.3	10
380	How model and input uncertainty impact maize yield simulations in West Africa. Enviro Research Letters, 2015, 10, 024017.	nmental	2.2	37
381	The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phas Geoscientific Model Development, 2015, 8, 261-277.	e 1 (v1.0).	1.3	190
382	Balancing the environmental benefits of reforestation in agricultural regions. Perspectiv Ecology, Evolution and Systematics, 2015, 17, 301-317.	ves in Plant	1.1	122
383	JULES-crop: a parametrisation of crops in the Joint UK Land Environment Simulator. Geo Model Development, 2015, 8, 1139-1155.	oscientific	1.3	45
384	Finer Resolution Land-Cover Mapping Using Multiple Classifiers and Multisource Remot Data in the Heihe River Basin. IEEE Journal of Selected Topics in Applied Earth Observati Sensing, 2015, 8, 4973-4992.	ely Sensed ions and Remote	2.3	54
385	An analysis of methodological and spatial differences in global cropping systems model Global Ecology and Biogeography, 2015, 24, 180-191.	s and maps.	2.7	42
386	Crop modelling for integrated assessment of risk to food production from climate chan Environmental Modelling and Software, 2015, 72, 287-303.	ıge.	1.9	230
387	Effects of land use planning on aboveground vegetation biomass in China. Environmen Sciences, 2015, 73, 6553-6564.	tal Earth	1.3	2
388	Reforestation with native mixedâ€species plantings in a temperate continental climate sequesters and stabilizes carbon within decades. Global Change Biology, 2015, 21, 155	effectively i2-1566.	4.2	57
389	Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic g vegetation model. Global Change Biology, 2015, 21, 2711-2725.	global	4.2	162

#	Article	IF	CITATIONS
390	Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecological Monographs, 2015, 85, 49-72.	2.4	41
391	Parameter and uncertainty estimation for maize, peanut and cotton using the SALUS crop model. Agricultural Systems, 2015, 135, 31-47.	3.2	25
392	Agricultural trade and tropical deforestation: interactions and related policy options. Regional Environmental Change, 2015, 15, 1757-1772.	1.4	23
394	Creating long-term weather data from thin air for crop simulation modeling. Agricultural and Forest Meteorology, 2015, 209-210, 49-58.	1.9	94
395	Improved estimation of nitrogen uptake in grasslands using the nitrogen dilution curve. Agronomy for Sustainable Development, 2015, 35, 1561-1570.	2.2	9
396	Emulating global climate change impacts on crop yields. Statistical Modelling, 2015, 15, 499-525.	0.5	27
397	Historical and future quantification of terrestrial carbon sequestration from a Greenhouse-Gas-Value perspective. Global Environmental Change, 2015, 32, 153-164.	3.6	20
398	Codominant water control on global interannual variability and trends in land surface phenology and greenness. Clobal Change Biology, 2015, 21, 3414-3435.	4.2	165
399	Evaluating the Influence of Plant-Specific Physiological Parameterizations on the Partitioning of Land Surface Energy Fluxes. Journal of Hydrometeorology, 2015, 16, 517-533.	0.7	24
400	Pasture harvest, carbon sequestration and feeding potentials under different grazing intensities. Advances in Animal Biosciences, 2015, 6, 43-45.	1.0	5
401	Land-Use and Carbon Cycle Responses to Moderate Climate Change: Implications for Land-Based Mitigation?. Environmental Science & Technology, 2015, 49, 6731-6739.	4.6	36
402	Clobal hydrology 2015: State, trends, and directions. Water Resources Research, 2015, 51, 4923-4947.	1.7	267
403	Emulating maize yields from global gridded crop models using statistical estimates. Agricultural and Forest Meteorology, 2015, 214-215, 134-147.	1.9	27
404	ENSO–climate fluctuation–crop yield early warning system—A case study in Jilin and Liaoning Province in Northeast China. Physics and Chemistry of the Earth, 2015, 87-88, 10-18.	1.2	7
405	Global Human Appropriation of Net Primary Production for Biomass Consumption in the European Union, 1986–2007. Journal of Industrial Ecology, 2015, 19, 825-836.	2.8	41
406	Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 2015, 70, 98-111.	1.9	125
407	National indicators for observing ecosystem service change. Global Environmental Change, 2015, 35, 12-21.	3.6	28
408	Three centuries of dual pressure from land use and climate change on the biosphere. Environmental Research Letters, 2015, 10, 044011.	2.2	50

#	Article	IF	CITATIONS
409	Regional-scale analysis of carbon and water cycles on managed grassland systems. Environmental Modelling and Software, 2015, 72, 356-371.	1.9	41
410	The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI). ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 175-189.	0.4	3
411	Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 261-277.	0.4	11
412	Rising temperatures reduce global wheatÂproduction. Nature Climate Change, 2015, 5, 143-147.	8.1	1,544
413	Modelling climate and land-use change impacts with SWIM: lessons learnt from multiple applications. Hydrological Sciences Journal, 2015, 60, 606-635.	1.2	46
414	Environmental flow provision: Implications for agricultural water and land-use at the global scale. Global Environmental Change, 2015, 30, 113-132.	3.6	47
415	Ethical aspects in the economic modeling of water policy options. Global Environmental Change, 2015, 30, 80-91.	3.6	13
416	Precipitation event distribution in Central Argentina: spatial and temporal patterns. Ecohydrology, 2015, 8, 94-104.	1.1	24
417	Availability assessment of bioenergy and power plant location optimization: A case study for Pakistan. Renewable and Sustainable Energy Reviews, 2015, 42, 700-711.	8.2	9
418	Grand Challenges Related to the Assessment of Climate Change Impacts on Freshwater Resources. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	17
419	Global hydrological models: a review. Hydrological Sciences Journal, 2015, 60, 549-565.	1.2	204
420	Crop modeling for climate change impact and adaptation. , 2015, , 505-546.		25
422	ORCHIDEE-CROP (v0), a new process-based agro-land surface model: model description and evaluation over Europe. Geoscientific Model Development, 2016, 9, 857-873.	1.3	51
423	A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v.Â1) – PartÂ1: Model description. Geoscientific Model Development, 2016, 9, 4133-4154.	1.3	22
426	Re-evaluating the 1940s CO ₂ plateau. Biogeosciences, 2016, 13, 4877-4897.	1.3	22
428	Soil carbon response to land-use change: evaluation of a global vegetation model using observational meta-analyses. Biogeosciences, 2016, 13, 5661-5675.	1.3	29
429	Current overview and potential applications of the soil ecosystem services approach in Brazil. Pesquisa Agropecuaria Brasileira, 2016, 51, 1021-1038.	0.9	22
430	Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management. Biogeosciences, 2016, 13, 3757-3776.	1.3	34

#	Article	IF	CITATIONS
431	A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v.Â1) – PartÂ2: Model validation. Geoscientific Model Development, 2016, 9, 4155-4167.	1.3	18
432	Climate change increases riverine carbon outgassing, while export to the ocean remains uncertain. Earth System Dynamics, 2016, 7, 559-582.	2.7	7
433	PLASIM–GENIE v1.0: a new intermediate complexity AOGCM. Geoscientific Model Development, 2016, 9, 3347-3361.	1.3	25
435	Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 2016, 9, 175-222.	1.3	379
436	Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrology and Earth System Sciences, 2016, 20, 953-973.	1.9	150
437	Flexible Strategies for Coping with Rainfall Variability: Seasonal Adjustments in Cropped Area in the Ganges Basin. PLoS ONE, 2016, 11, e0149397.	1.1	21
438	Terrestrial Ecosystems and Earth System Models. , 2015, , 453-482.		2
439	Crop-specific seasonal estimates of irrigation-water demand in South Asia. Hydrology and Earth System Sciences, 2016, 20, 1971-1982.	1.9	40
440	A novel bias correction methodology for climate impact simulations. Earth System Dynamics, 2016, 7, 71-88.	2.7	75
441	Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth System Dynamics, 2016, 7, 627-647.	2.7	46
442	Derivation of rice crop calendar and evaluation of crop phenometrics and latitudinal relationship for major south and south-east Asian countries: A remote sensing approach. Computers and Electronics in Agriculture, 2016, 127, 336-350.	3.7	16
443	Integrated crop water management might sustainably halve the global food gap. Environmental Research Letters, 2016, 11, 025002.	2.2	182
444	Recent progresses in incorporating human land–water management into global land surface models toward their integration into Earth system models. Wiley Interdisciplinary Reviews: Water, 2016, 3, 548-574.	2.8	110
445	Effect of climate data on simulated carbon and nitrogen balances for Europe. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1352-1371.	1.3	8
446	Highâ€resolution modeling of human and climate impacts on global water resources. Journal of Advances in Modeling Earth Systems, 2016, 8, 735-763.	1.3	132
447	Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects. Environmental Research Letters, 2016, 11, 085001.	2.2	74
449	Diet change and food loss reduction: What is their combined impact on global water use and scarcity?. Earth's Future, 2016, 4, 62-78.	2.4	69
450	Productivity ranges of sustainable biomass potentials from non-agricultural land. Environmental Research Letters, 2016, 11, 074026.	2.2	13

#	Article	IF	CITATIONS
451	Deforestation in Amazonia impacts riverine carbon dynamics. Earth System Dynamics, 2016, 7, 953-968.	2.7	4
452	Impacts devalue the potential of large-scale terrestrial CO ₂ removal through biomass plantations. Environmental Research Letters, 2016, 11, 095010.	2.2	19
453	Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China. Scientific Reports, 2016, 6, 20905.	1.6	19
454	Evaluation of global warming impacts on the carbon budget of terrestrial ecosystems in monsoon Asia: a multiâ€model analysis. Ecological Research, 2016, 31, 459-474.	0.7	12
455	Constraining future terrestrial carbon cycle projections using observationâ€based water and carbon flux estimates. Clobal Change Biology, 2016, 22, 2198-2215.	4.2	46
456	Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. GCB Bioenergy, 2016, 8, 66-80.	2.5	150
457	Assessing water resource use in livestock production: A review of methods. Livestock Science, 2016, 187, 68-79.	0.6	68
458	Effect of sowing date distributions on simulation of maize yields at regional scale – A case study in Central Ghana, West Africa. Agricultural Systems, 2016, 147, 10-23.	3.2	29
459	Quantitative assessment of resources and environmental carrying capacity in the northwest temperate continental climate ecotope of China. Environmental Earth Sciences, 2016, 75, 1.	1.3	30
460	Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Regional Environmental Change, 2016, 16, 1225-1238.	1.4	55
461	Global and regional health effects of future food production under climate change: a modelling study. Lancet, The, 2016, 387, 1937-1946.	6.3	318
462	Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling and Software, 2016, 81, 86-101.	1.9	50
463	Reconciling the discrepancy in ground―and satelliteâ€observed trends in the spring phenology of winter wheat in China from 1993 to 2008. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1027-1042.	1.2	42
464	Regional disparities in the beneficial effects of rising CO2 concentrations on crop waterÂproductivity. Nature Climate Change, 2016, 6, 786-790.	8.1	190
465	Crop planting date matters: Estimation methods and effect on future yields. Agricultural and Forest Meteorology, 2016, 223, 103-115.	1.9	57
466	Simulating the net ecosystem CO2 exchange and its components over winter wheat cultivation sites across a large climate gradient in Europe using the ORCHIDEE-STICS generic model. Agriculture, Ecosystems and Environment, 2016, 226, 1-17.	2.5	11
467	Green and blue water demand from large-scale land acquisitions in Africa. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11471-11476.	3.3	62
470	Structural approaches to modeling the impact of climate change and adaptation technologies on crop yields and food security. Global Food Security, 2016, 10, 63-70.	4.0	68

ITATION P

#	Article	IF	CITATIONS
471	Accounting for interannual variability in agricultural intensification: The potential of crop selection in Sub-Saharan Africa. Agricultural Systems, 2016, 148, 159-168.	3.2	10
472	Resilience of Amazon forests emerges from plant traitÂdiversity. Nature Climate Change, 2016, 6, 1032-1036.	8.1	201
473	Estimating agro-ecosystem carbon balance of northern Japan, and comparing the change in carbon stock by soil inventory and net biome productivity. Science of the Total Environment, 2016, 554-555, 293-302.	3.9	9
474	Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, 2016, 9, 674-678.	5.4	108
475	Productive performance of alternative land covers along aridity gradients: Ecological, agronomic and economic perspectives. Agricultural Systems, 2016, 149, 20-29.	3.2	19
476	Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 2016, 6, 29987.	1.6	350
477	Robust strategies of climate change mitigation in interacting energy, economy and land use systems. International Journal of Climate Change Strategies and Management, 2016, 8, 732-757.	1.5	3
478	Dynamic changes of a city's carbon balance and its influencing factors: a case study in Xiamen, China. Carbon Management, 2016, 7, 149-160.	1.2	9
479	The impact of high-end climate change on agricultural welfare. Science Advances, 2016, 2, e1501452.	4.7	118
480	IMPLICATION OF PARIS AGREEMENT IN THE CONTEXT OF LONG-TERM CLIMATE MITIGATION TARGET. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2016, 72, I_223-I_231.	0.1	3
481	Past and present biophysical redundancy of countries as a buffer to changes in food supply. Environmental Research Letters, 2016, 11, 055008.	2.2	29
482	Implication of Paris Agreement in the context of long-term climate mitigation goals. SpringerPlus, 2016, 5, 1620.	1.2	34
483	Causes and trends of water scarcity in food production. Environmental Research Letters, 2016, 11, 015001.	2.2	93
484	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
485	"Climate Cost of Cultivationâ€: A New Crop Index Method to Quantify Farmers' Cost of Climate Change Exemplified in Rural India. Geneva Papers on Risk and Insurance: Issues and Practice, 2016, 41, 280-306.	1.1	5
486	Accurate representation of leaf longevity is important for simulating ecosystem carbon cycle. Basic and Applied Ecology, 2016, 17, 396-407.	1.2	9
487	Intraspecific biogenic silica variations in the grass species Pennisetum pedicellatum along an evapotranspiration gradient in South Niger. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 220, 84-93.	0.6	32
488	Projecting Basin-Scale Distributed Irrigation and Domestic Water Demands and Values: A Generic Method for Large-Scale Modeling. Water Economics and Policy, 2016, 02, 1650023.	0.3	2

#	Article	IF	CITATIONS
489	Drivers and patterns of land biosphere carbon balance reversal. Environmental Research Letters, 2016, 11, 044002.	2.2	38
490	Global change pressures on soils from land use and management. Global Change Biology, 2016, 22, 1008-1028.	4.2	605
491	Largeâ€scale impact of climate change vs. landâ€use change on future biome shifts in Latin America. Global Change Biology, 2016, 22, 3689-3701.	4.2	30
492	Enhanced seasonal CO ₂ exchange caused by amplified plant productivity in northern ecosystems. Science, 2016, 351, 696-699.	6.0	319
493	Tradeâ€offs between land and water requirements for largeâ€scale bioenergy production. GCB Bioenergy, 2016, 8, 11-24.	2.5	108
494	Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenergy, 2016, 8, 81-95.	2.5	43
495	Evaluating Regional and Global Hydrological Models against Streamflow and Evapotranspiration Measurements. Journal of Hydrometeorology, 2016, 17, 995-1010.	0.7	62
496	A decade of sea level rise slowed by climate-driven hydrology. Science, 2016, 351, 699-703.	6.0	219
497	Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method. Agricultural and Forest Meteorology, 2016, 218-219, 37-49.	1.9	52
498	Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Science of the Total Environment, 2016, 554-555, 34-41.	3.9	195
499	Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change. Science of the Total Environment, 2016, 545-546, 424-433.	3.9	28
500	Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns. Ecological Economics, 2016, 122, 12-24.	2.9	21
501	Is extensive terrestrial carbon dioxide removal a â€~green' form of geoengineering? A global modelling study. Global and Planetary Change, 2016, 137, 123-130.	1.6	48
502	Modelling of grassland fluxes in Europe: Evaluation of two biogeochemical models. Agriculture, Ecosystems and Environment, 2016, 215, 1-19.	2.5	48
503	Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Surveys in Geophysics, 2016, 37, 419-451.	2.1	77
504	How much yield loss has been caused by extreme temperature stress to the irrigated rice production in China?. Climatic Change, 2016, 134, 635-650.	1.7	53
505	Long-term water demand for electricity, industry and households. Environmental Science and Policy, 2016, 55, 75-86.	2.4	63
506	Olive cultivation in the heart of the Persian Achaemenid Empire: new insights into agricultural practices and environmental changes reflected in a late Holocene pollen record from Lake Parishan, SW Iran, Vegetation History and Archaeobotany, 2016, 25, 255-269	1.0	31

#	Article	IF	CITATIONS
507	Exploring future agricultural development and biodiversity in Uganda, Rwanda and Burundi: a spatially explicit scenario-based assessment. Regional Environmental Change, 2017, 17, 1409-1420.	1.4	19
508	Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 2017, 202, 5-20.	2.3	109
509	Climatic influence on corn sowing date in the Midwestern United States. International Journal of Climatology, 2017, 37, 1595-1602.	1.5	17
510	Consistent negative response of US crops to high temperatures in observations and crop models. Nature Communications, 2017, 8, 13931.	5.8	321
511	Dependency of Crop Production between Global Breadbaskets: A Copula Approach for the Assessment of Global and Regional Risk Pools. Risk Analysis, 2017, 37, 2212-2228.	1.5	34
512	Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geoscience, 2017, 10, 79-84.	5.4	284
513	Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models. Agricultural and Forest Meteorology, 2017, 236, 145-161.	1.9	52
514	Assessing the impact of changes in land-use intensity and climate on simulated trade-offs between crop yield and nitrogen leaching. Agriculture, Ecosystems and Environment, 2017, 239, 385-398.	2.5	13
515	More diverse benefits from timber versus dedicated bioenergy plantations for terrestrial carbon dioxide removal. Environmental Research Letters, 2017, 12, 021001.	2.2	2
516	Projections of soil carbon using the combination of the CNOP-P method and GCMs from CMIP5 under RCP4.5 in north-south transect of eastern China. Plant and Soil, 2017, 413, 243-260.	1.8	14
517	Vulnerability of European freshwater catchments to climate change. Global Change Biology, 2017, 23, 3567-3580.	4.2	68
518	The use of food imports to overcome local limits to growth. Earth's Future, 2017, 5, 393-407.	2.4	70
519	Freshwater use in livestock production—To be used for food crops or livestock feed?. Agricultural Systems, 2017, 155, 1-8.	3.2	18
520	Evaluating livestock mobility as a strategy for climate change mitigation: Combining models to address the specificities of pastoral systems. Agriculture, Ecosystems and Environment, 2017, 242, 89-101.	2.5	25
521	Tradeâ€offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Global Change Biology, 2017, 23, 4303-4317.	4.2	44
522	Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renewable and Sustainable Energy Reviews, 2017, 69, 719-734.	8.2	70
523	Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecological Indicators, 2017, 74, 241-260.	2.6	110
524	Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature Communications, 2017, 8, 15697.	5.8	287

ARTICLE IF CITATIONS The present and future effects of land use on ecological assemblages in tropical grasslands and 525 1.2 15 savannas in Africa. Oikos, 2017, 126, 1760-1769. The limits to globalâ€warming mitigation by terrestrial carbon removal. Earth's Future, 2017, 5, 463-474. 2.4 Future extreme temperature and its impact on rice yield in China. International Journal of 527 1.5 44 Climatology, 2017, 37, 4814-4827. Rice yield development and the shrinking yield gaps in China, 1981–2008. Regional Environmental Change, 2017, 17, 2397-2408. Impact of LULCC on the emission of BVOCs during the 21st century. Atmospheric Environment, 2017, 529 1.9 11 165, 73-87. Climate change impacts on EU agriculture: A regionalized perspective taking into account market-driven adjustments. Agricultural Systems, 2017, 156, 52-66. 3.2 531 Possible pathways and tensions in the food and water nexus. Earth's Future, 2017, 5, 449-462. 2.4 37 using MODFLOW-AgroIBIS (MAGI), a complete critical zone model. Ecological Modelling, 2017, 359, 201-219. 1.2 34 Climate change and agriculture under CO 2 fertilization effects and farm level adaptation: Where do 533 5.1 18 the models meet?. Applied Energy, 2017, 195, 556-571. 534 Ecosystem Services., 2017,, 39-78. Why Have Improved Cook-Stove Initiatives in India Failed?. World Development, 2017, 92, 13-27. 535 2.6 117 Role of Fire in the Global Land Water Budget during the Twentieth Century due to Changing 1.2 54 Ecosystems. Journal of Climate, 2017, 30, 1893-1908. Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: 537 4.6 57 Consequences for Food Prices. Environmental Science & amp; Technology, 2017, 51, 365-374. Regional contribution to variability and trends of global gross primary productivity. Environmental 2.2 65 Research Letters, 2017, 12, 105005. Livestock production and the water challenge of future food supply: Implications of agricultural 539 3.6 34 management and dietary choices. Global Environmental Change, 2017, 47, 121-132. Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact 540 2.2 assessment studies. Environmental Research Letters, 2017, 12, 085001. Food and water security: Analysis of integrated modeling platforms. Agricultural Water Management, 541 2.4 27 2017, 194, 100-112. Livestock and human use of land: Productivity trends and dietary choices as drivers of future land 44 and carbon dynamics. Global and Planetary Change, 2017, 159, 1-10.

#	ARTICLE	IF	CITATIONS
543	Grain Yield Observations Constrain Cropland CO ₂ Fluxes Over Europe. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3238-3259.	1.3	6
544	A spatially explicit crop planting initiation and progression model for the conterminous United States. European Journal of Agronomy, 2017, 90, 184-197.	1.9	3
545	Application of remote sensing in estimating maize grain yield in heterogeneous African agricultural landscapes: a review. International Journal of Remote Sensing, 2017, 38, 6816-6845.	1.3	48
546	High-resolution assessment of global technical and economic hydropower potential. Nature Energy, 2017, 2, 821-828.	19.8	186
547	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	2.2	30
548	Implications of the Paris Agreement in the Context of Long-Term Climate Mitigation Goals. , 2017, , 11-29.		1
549	Representing agriculture in <scp>E</scp> arth <scp>S</scp> ystem <scp>M</scp> odels: Approaches and priorities for development. Journal of Advances in Modeling Earth Systems, 2017, 9, 2230-2265.	1.3	54
550	Integrating water supply constraints into irrigated agricultural simulations of California. Environmental Modelling and Software, 2017, 96, 335-346.	1.9	18
551	Modelling fertiliser significance in three major crops. European Journal of Agronomy, 2017, 90, 1-11.	1.9	6
552	Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change. Environmental Research Letters, 2017, 12, 075007.	2.2	31
553	Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems. Environmental Research Letters, 2017, 12, 075006.	2.2	32
554	Assessing inter-sectoral climate change risks: the role of ISIMIP. Environmental Research Letters, 2017, 12, 010301.	2.2	49
555	Clobal Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports, 2017, 7, 15554.	1.6	268
556	Four dimensions of water security with a case of the indirect role of water in global food security. Water Security, 2017, 1, 36-45.	1.2	45
557	Modeling the biomass of energy crops: Descriptions, strengths and prospective. Journal of Integrative Agriculture, 2017, 16, 1197-1210.	1.7	19
558	Quantification of uncertainties in global grazing systems assessment. Global Biogeochemical Cycles, 2017, 31, 1089-1102.	1.9	62
560	Influences of agricultural phenology dynamic on land surface biophysical process and climate feedback. Journal of Chinese Geography, 2017, 27, 1085-1099.	1.5	14
561	Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 2017, 155, 269-288.	3.2	261

#	Article	IF	CITATIONS
562	A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1°C, 2°C and 3°C. Climatic Change, 2017, 141, 577-595.	1.7	104
563	Towards a more holistic sustainability assessment framework for agro-bioenergy systems — A review. Environmental Impact Assessment Review, 2017, 62, 61-75.	4.4	61
564	Sâ€World: A Global Soil Map for Environmental Modelling. Land Degradation and Development, 2017, 28, 22-33.	1.8	56
565	Spatial and temporal uncertainty of crop yield aggregations. European Journal of Agronomy, 2017, 88, 10-21.	1.9	63
566	Baseline simulation for global wheat production with CIMMYT mega-environment specific cultivars. Field Crops Research, 2017, 202, 122-135.	2.3	44
567	Trade-offs between plant species richness and carbon storage in the context of afforestation – Examples from afforestation scenarios in the Mulde Basin, Germany. Ecological Indicators, 2017, 73, 139-155.	2.6	33
568	Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 2017, 42, 297-315.	3.6	418
569	Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Global Environmental Change, 2017, 42, 237-250.	3.6	523
570	The GEO Handbook on Biodiversity Observation Networks. , 2017, , .		35
571	Boosting the use of spectral heterogeneity in the impact assessment of agricultural land use on biodiversity. Journal of Cleaner Production, 2017, 140, 516-524.	4.6	7
572	Understanding the weather signal in national cropâ€yield variability. Earth's Future, 2017, 5, 605-616.	2.4	85
573	Estimating global cropland production from 1961 to 2010. Earth System Dynamics, 2017, 8, 875-887.	2.7	6
575	Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences, 2017, 14, 4829-4850.	1.3	33
576	ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial–aquatic continuum of the Amazon basin. Geoscientific Model Development, 2017, 10, 3821-3859.	1.3	40
577	Land-Surface Characteristics and Climate in West Africa: Models' Biases and Impacts of Historical Anthropogenically-Induced Deforestation. Sustainability, 2017, 9, 1917.	1.6	18
578	A globally calibrated scheme for generating daily meteorology from monthly statistics: Global-WGEN (GWGEN)Âv1.0. Geoscientific Model Development, 2017, 10, 3771-3791.	1.3	1
579	Adapting Agricultural Production Systems to Climate Change—What's the Use of Models?. Agriculture (Switzerland), 2017, 7, 86.	1.4	38
581	Carbon and Water Budgets in Multiple Wheat-Based Cropping Systems in the Inland Pacific Northwest US: Comparison of CropSyst Simulations with Eddy Covariance Measurements. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	11

#	Article	IF	CITATIONS
583	Human–water interface in hydrological modelling: current status and future directions. Hydrology and Earth System Sciences, 2017, 21, 4169-4193.	1.9	171
584	The impacts of data constraints on the predictive performance of a general process-based crop model (PeakN-crop v1.0). Geoscientific Model Development, 2017, 10, 1679-1701.	1.3	6
585	Assessing the impacts of 1.5â€ [−] °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	1.3	410
586	Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth System Dynamics, 2017, 8, 369-386.	2.7	69
587	Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications. Geoscientific Model Development, 2017, 10, 1403-1422.	1.3	213
588	Vegetation Growth Models Improve Surface Layer Flux Simulations of a Temperate Grassland. Vadose Zone Journal, 2017, 16, 1-19.	1.3	6
590	Representing winter wheat in the Community Land Model (version 4.5). Geoscientific Model Development, 2017, 10, 1873-1888.	1.3	24
592	Crop Parameters for Modeling Sugarcane under Rainfed Conditions in Mexico. Sustainability, 2017, 9, 1337.	1.6	16
594	Land use options for staying within the Planetary Boundaries – Synergies and trade-offs between global and local sustainability goals. Global Environmental Change, 2018, 49, 73-84.	3.6	88
595	The impact of global change on economic values of water for Public Irrigation Schemes at the São Francisco River Basin in Brazil. Regional Environmental Change, 2018, 18, 1943-1955.	1.4	8
596	Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Global Change Biology, 2018, 24, 3199-3213.	4.2	22
597	Global change effects on land management in the Mediterranean region. Global Environmental Change, 2018, 50, 238-254.	3.6	91
598	Comparing crop growth and carbon budgets simulated across AmeriFlux agricultural sites using the Community Land Model (CLM). Agricultural and Forest Meteorology, 2018, 256-257, 315-333.	1.9	13
599	Evaluation of CLM-Crop for maize growth simulation over Northeast China. Ecological Modelling, 2018, 377, 26-34.	1.2	7
600	Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nature Climate Change, 2018, 8, 391-397.	8.1	455
601	Large uncertainty in carbon uptake potential of landâ€based climateâ€change mitigation efforts. Global Change Biology, 2018, 24, 3025-3038.	4.2	56
602	The LEGATO cross-disciplinary integrated ecosystem service research framework: an example of integrating research results from the analysis of global change impacts and the social, cultural and economic system dynamics of irrigated rice production. Paddy and Water Environment, 2018, 16, 287-319.	1.0	11
603	Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nature Climate Change, 2018, 8, 151-155.	8.1	207

#	Article	IF	CITATIONS
604	Unpacking the nexus: Different spatial scales for water, food and energy. Global Environmental Change, 2018, 48, 22-31.	3.6	67
605	Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 2018, 48, 119-135.	3.6	202
606	Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 2018, 553, 73-76.	13.7	422
607	The Biosphere Under Potential Paris Outcomes. Earth's Future, 2018, 6, 23-39.	2.4	12
608	Adaptation required to preserve future high-end river flood risk at present levels. Science Advances, 2018, 4, eaao1914.	4.7	97
609	MODISâ€Based Estimates of Global Terrestrial Ecosystem Respiration. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 326-352.	1.3	27
610	Two-thirds of global cropland area impacted by climate oscillations. Nature Communications, 2018, 9, 1257.	5.8	66
611	Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models. Soil and Tillage Research, 2018, 180, 210-221.	2.6	43
612	Human impact parameterizations in global hydrological models improve estimates of monthly discharges and hydrological extremes: a multi-model validation study. Environmental Research Letters, 2018, 13, 055008.	2.2	91
613	Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments. Climatic Change, 2018, 146, 319-333.	1.7	23
614	Scenarios of land-use change in a deforestation corridor in the Brazilian Amazon: combining two scales of analysis. Regional Environmental Change, 2018, 18, 143-159.	1.4	24
615	The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). International Journal of Life Cycle Assessment, 2018, 23, 368-378.	2.2	471
616	Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Environmental Research Letters, 2018, 13, 015003.	2.2	38
617	Future land use and land cover in Southern Amazonia and resulting greenhouse gas emissions from agricultural soils. Regional Environmental Change, 2018, 18, 129-142.	1.4	17
618	Response of ecosystem productivity to dry/wet conditions indicated by different drought indices. Science of the Total Environment, 2018, 612, 347-357.	3.9	39
619	Models meet data: Challenges and opportunities in implementing land management in Earth system models. Global Change Biology, 2018, 24, 1470-1487.	4.2	86
620	A historical perspective on soil organic carbon in Mediterranean cropland (Spain, 1900–2008). Science of the Total Environment, 2018, 621, 634-648.	3.9	53
621	Multi-model approach for assessing the sunflower food value chain in Tanzania. Agricultural Systems, 2018, 159, 103-110.	3.2	15

#	Article	IF	CITATIONS
622	Impact of ET ₀ method on the simulation of historical and future crop yields: a case study of millet growth in Senegal. International Journal of Climatology, 2018, 38, 729-741.	1.5	8
623	Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C. Environmental Research Letters, 2018, 13, 044036.	2.2	48
624	Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America. Atmospheric Chemistry and Physics, 2018, 18, 17963-17978.	1.9	25
627	A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: an example from the Amazon region. Geoscientific Model Development, 2018, 11, 5203-5215.	1.3	6
628	Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL (version 5.0). Geoscientific Model Development, 2018, 11, 2789-2812.	1.3	61
629	Climate change vs. socio-economic development: understanding the future South Asian water gap. Hydrology and Earth System Sciences, 2018, 22, 6297-6321.	1.9	54
631	Enhanced peak growth of global vegetation and its key mechanisms. Nature Ecology and Evolution, 2018, 2, 1897-1905.	3.4	169
632	Going local: Evaluating and regionalizing a global hydrological model's simulation of river flows in a medium-sized East African basin. Journal of Hydrology: Regional Studies, 2018, 19, 349-364.	1.0	13
633	LPJmL4 – a dynamic global vegetation model with managed land – PartÂ1: Model description. Geoscientific Model Development, 2018, 11, 1343-1375.	1.3	140
634	Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields. Sustainability, 2018, 10, 3673.	1.6	27
635	The Impacts of Climate Change on Crop Yields in Tanzania: Comparing an Empirical and a Process-Based Model. , 2018, , 149-163.		0
637	Regional paleoclimates and local consequences: Integrating GIS analysis of diachronic settlement patterns and process-based agroecosystem modeling of potential agricultural productivity in Provence (France). PLoS ONE, 2018, 13, e0207622.	1.1	10
638	Assessing the efficiency of changes in land use for mitigating climate change. Nature, 2018, 564, 249-253.	13.7	333
639	Biomass production in plantations: Land constraints increase dependency on irrigation water. GCB Bioenergy, 2018, 10, 628-644.	2.5	15
640	Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 2018, 8, 914-920.	8.1	101
641	Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. European Journal of Agronomy, 2018, 101, 163-173.	1.9	103
642	Large-scale bioenergy production: how to resolve sustainability trade-offs?. Environmental Research Letters, 2018, 13, 024011.	2.2	96
643	Carbon sources/sinks analysis of land use changes in China based on data envelopment analysis. Journal of Cleaner Production, 2018, 204, 702-711.	4.6	89

#	Article	IF	CITATIONS
644	Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environmental Research Letters, 2018, 13, 044014.	2.2	81
645	Changes in crop yields and their variability at different levels of global warming. Earth System Dynamics, 2018, 9, 479-496.	2.7	33
647	Improving Representation of Crop Growth and Yield in the Dynamic Land Ecosystem Model and Its Application to China. Journal of Advances in Modeling Earth Systems, 2018, 10, 1680-1707.	1.3	21
649	Global economic response to river floods. Nature Climate Change, 2018, 8, 594-598.	8.1	141
650	Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	2.2	38
651	Evaluating changes of biomass in global vegetation models: the role of turnover fluctuations and ENSO events. Environmental Research Letters, 2018, 13, 075002.	2.2	3
652	Warm Winter, Wet Spring, and an Extreme Response in Ecosystem Functioning on the Iberian Peninsula. Bulletin of the American Meteorological Society, 2018, 99, S80-S85.	1.7	7
653	Carbon Sequestration in Cropland Soils. , 2018, , 137-173.		0
654	Analyzing the relationship between urbanization, food supply and demand, and irrigation requirements in Jordan. Science of the Total Environment, 2018, 636, 1500-1509.	3.9	11
655	LPJmL4 – a dynamic global vegetation model with managed land – PartÂ2: Model evaluation. Geoscientific Model Development, 2018, 11, 1377-1403.	1.3	57
656	Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6. Geoscientific Model Development, 2018, 11, 429-451.	1.3	39
657	Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrology and Earth System Sciences, 2018, 22, 2117-2133.	1.9	106
658	Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual cycle. Agricultural and Forest Meteorology, 2018, 260-261, 262-272.	1.9	12
659	AÂframework for modelling the complexities of food and water security under globalisation. Earth System Dynamics, 2018, 9, 103-118.	2.7	29
660	Comparing impacts of climate change and mitigation on global agriculture by 2050. Environmental Research Letters, 2018, 13, 064021.	2.2	93
661	Carbon uptake by European agricultural land is variable, and in many regions could be increased: Evidence from remote sensing, yield statistics and models of potential productivity. Science of the Total Environment, 2018, 643, 902-911.	3.9	11
662	A Global Analysis of Future Water Deficit Based On Different Allocation Mechanisms. Water Resources Research, 2018, 54, 5803-5824.	1.7	42
663	Risk of increased food insecurity under stringent global climate change mitigation policy. Nature Climate Change, 2018, 8, 699-703.	8.1	319

#	Article	IF	CITATIONS
664	Explaining Extreme Events of 2016 from a Climate Perspective. Bulletin of the American Meteorological Society, 2018, 99, S1-S157.	1.7	42
665	Lab to Field Assessment of the Ecotoxicological Impact of Chlorpyrifos, Isoproturon, or Tebuconazole on the Diversity and Composition of the Soil Bacterial Community. Frontiers in Microbiology, 2018, 9, 1412.	1.5	46
666	Asymmetric responses of primary productivity to altered precipitation simulated by ecosystem models across three long-term grassland sites. Biogeosciences, 2018, 15, 3421-3437.	1.3	55
667	Assessing Long-Term Hydrological Impact of Climate Change Using an Ensemble Approach and Comparison with Global Gridded Model-A Case Study on Goodwater Creek Experimental Watershed. Water (Switzerland), 2018, 10, 564.	1.2	17
668	Sensitivity assessment and evaluation of a spatially explicit land-use model for Southern Amazonia. Ecological Informatics, 2018, 48, 69-79.	2.3	8
669	Unravelling Land-Use Change Mechanisms at Global and Regional Scales. BioPhysical Economics and Resource Quality, 2018, 3, 1.	2.4	5
670	Implications of accounting for management intensity on carbon and nitrogen balances of European grasslands. PLoS ONE, 2018, 13, e0201058.	1.1	9
671	Quantifying the spatial patterns of urban carbon metabolism: A case study of Hangzhou, China. Ecological Indicators, 2018, 95, 474-484.	2.6	50
672	Yield risks in global maize markets: Historical evidence and projections in key regions of the world. Weather and Climate Extremes, 2018, 19, 42-48.	1.6	9
673	The use of biogeochemical models to evaluate mitigation of greenhouse gas emissions from managed grasslands. Science of the Total Environment, 2018, 642, 292-306.	3.9	41
674	A Spatially Explicit Assessment of Growing Water Stress in China From the Past to the Future. Earth's Future, 2019, 7, 1027-1043.	2.4	27
675	Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nature Sustainability, 2019, 2, 594-601.	11.5	197
676	Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin. Hydrology and Earth System Sciences, 2019, 23, 3057-3080.	1.9	79
677	Parameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble. PLoS ONE, 2019, 14, e0221862.	1.1	42
678	Integrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?. Water (Switzerland), 2019, 11, 2223.	1.2	24
684	Reconciling global sustainability targets and local action for food production and climate change mitigation. Clobal Environmental Change, 2019, 59, 101983.	3.6	36
685	A framework to quantify impacts of elevated CO2 concentration, global warming and leaf area changes on seasonal variations of water resources on a river basin scale. Journal of Hydrology, 2019, 570, 508-522.	2.3	23
686	The Challenge of Feeding the World While Preserving Natural Resources: Findings of a Global Bioeconomic Model. , 2019, , 171-189.		2

#	Article	IF	CITATIONS
687	Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environmental Research Letters, 2019, 14, 084001.	2.2	25
688	Can agricultural intensification help to conserve biodiversity? A scenario study for the African continent. Journal of Environmental Management, 2019, 247, 29-37.	3.8	13
689	Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage). Geoscientific Model Development, 2019, 12, 2419-2440.	1.3	31
690	MAgPIE 4 – aÂmodular open-source framework for modeling global land systems. Geoscientific Model Development, 2019, 12, 1299-1317.	1.3	56
691	The Global Gridded Crop Model Intercomparison phase 1 simulation dataset. Scientific Data, 2019, 6, 50.	2.4	57
692	A Forest Model Intercomparison Framework and Application at Two Temperate Forests Along the East Coast of the United States. Forests, 2019, 10, 180.	0.9	5
693	Assessing land use/cover dynamics and exploring drivers in the Amazon's arc of deforestation through a hierarchical, multi-scale and multi-temporal classification approach. Remote Sensing Applications: Society and Environment, 2019, 15, 100233.	0.8	10
694	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	5.8	123
695	Recent Global Cropland Water Consumption Constrained by Observations. Water Resources Research, 2019, 55, 3708-3738.	1.7	26
696	Global agricultural green and blue water consumption under future climate and land use changes. Journal of Hydrology, 2019, 574, 242-256.	2.3	63
697	Making the Paris agreement climate targets consistent with food security objectives. Global Food Security, 2019, 23, 93-103.	4.0	46
698	Global advanced bioenergy potential under environmental protection policies and societal transformation measures. GCB Bioenergy, 2019, 11, 1041-1055.	2.5	39
699	Potential impacts of agricultural development on freshwater biodiversity in the Lake Victoria basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1052-1062.	0.9	15
700	Increases in heat-induced tree mortality could drive reductions of biomass resources in Canada's managed boreal forest. Landscape Ecology, 2019, 34, 403.	1.9	40
701	Multimodel assessments of human and climate impacts on mean annual streamflow in China. Hydrology and Earth System Sciences, 2019, 23, 1245-1261.	1.9	34
702	Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Science of the Total Environment, 2019, 668, 696-713.	3.9	66
703	Indian summer monsoon: Extreme events, historical changes, and role of anthropogenic forcings. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e571.	3.6	117
704	The Future of Sustainable Development. , 2019, , 199-268.		0

CITATION REPORT IF CITATIONS Global crop output and irrigation water requirements under a changing climate. Heliyon, 2019, 5, 1.4 15 A review of global-local-global linkages in economic land-use/cover change models. Environmental Research Letters, 2019, 14, 053003. 2.2 Tree mortality submodels drive simulated longâ€term forest dynamics: assessing 15 models from the 1.0 93 stand to global scale. Ecosphere, 2019, 10, e02616. Northern Hemisphere Extratropical Turbulent Heat Fluxes in ASRv2 and Global Reanalyses. Journal of 1.2 Climate, 2019, 32, 2145-2166. Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley. 2.4 11 Agricultural Water Management, 2019, 217, 60-72. System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus. Renewable and Sustainable Energy Reviews, 2019, 105, 230-243. 8.2 110 Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental 2.2 118 impacts. Environmental Research Letters, 2019, 14, 053001. Evaluation of Mean Absolute Error in Collaborative Filtering for Sparsity Users and Items on Female Lightning impulse dielectric properties of nano-modified insulating fluids., 2019,,. 0 Two-stage Robust optimization Method for Day-ahead Scheduling Considering Renewable Portfolio

5

1

Raspberry Pi Performance Analysis in Real-Time Applications with the RT-Preempt Patch., 2019,,. 715

Cross Fracture Simulation Based on Cohesive Element., 2019,,. Oblique Thin wire for nonuniform FDTD method., 2019,,. 717 0 MLSD 2019 Cover Page., 2019,,.

LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis., 2019,,. 719 158

Deep Learning for Inexpensive Image Classification of Wildlife on the Raspberry Pi., 2019, , .

Research on Nonlinear Equivalent Circuit of High Power Piezoelectric Transducer., 2019,,. 721

Social-Aware Content Delivery in Low Latency D2D Caching Networks., 2019,,.

ARTICLE

e01266.

#

705

707

709

711

713

714

Daily Network., 2019,,.

Standard., 2019, , .

#	Article	IF	Citations
723	The Optimization Method of Ship Level Repair Plan based on System Effectiveness. , 2019, , .		0
725	Modified Control Algorithm for Detection and Correction of Incorrect Phase Sequence Connections of Grid-feeding Inverter. , 2019, , .		0
726	Research and Tutorial Program Committee. , 2019, , .		0
728	High Dynamic Arm Voltage Control and Balancing of Parallel Connected HVDC MMCs. , 2019, , .		1
729	Fatshake: Device for Producing Globules of Adipose Tissue. , 2019, , .		0
730	Analysis and Research on Failure Mechanism of Electrical Connector Burning Failure Mode. , 2019, , .		0
731	Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model. Earth System Dynamics, 2019, 10, 617-630.	2.7	22
732	PALEO-PGEM v1.0: a statistical emulator of Pliocene–Pleistocene climate. Geoscientific Model Development, 2019, 12, 5137-5155.	1.3	25
733	Radial Basis Function (RBF) Based on Multistage Autoencoders for Intrusion Detection system (IDS). , 2019, , .		2
734	An Incremental Feature Selection Approach Based on Information Entropy for Incomplete Data. , 2019, , \cdot		1
735	Hypercube States for Sub-Planck Sensing. , 2019, , .		0
736	BigData Analysis of Stack Overflow for Energy Consumption of Android Framework. , 2019, , .		0
737	Tongue Semantic Segmentation Based on Fully Convolutional Neural Network. , 2019, , .		2
738	Experimental Implementation of Non-uniformity Effects in Artificial Media : (Invited). , 2019, , .		0
739	Characterization of SnO2 Thin Films Fabricated by Chemical Spray Pyrolysis. , 2019, , .		1
740	Teaching Reform of Virtual Simulation Training in Parodontology. , 2019, , .		0
741	Industrial Informatics and Cloud Computing. , 2019, , .		0
742	Study of Interaction of Hydrogen with Di-aza-substituted Sumanene Compounds. , 2019, , .		0

#	Article	IF	CITATIONS
743	A Comparative Study of Flexible Power Point Tracking Algorithms in Photovoltaic Systems. , 2019, , .		6
744	Modelling and Simulation of an Integrated 28-GHz Rotman Lens Beamformer for 5G Subsystems. , 2019, , \cdot		1
745	A Practical Method for Estimating Efficiency Maps for PM Machines Using a Reduced Number of Tests. , 2019, , .		6
746	Template-based Ear Modeling and Reconstruction. , 2019, , .		1
747	When Interactive Graphic Storytelling Fails. , 2019, , .		2
748	Framework for Analysis and Feedback of Evaluation Expressions in Restaurant Reviews. , 2019, , .		2
749	Al-based Design Methodology for High-speed Transmission Line in PCB. , 2019, , .		1
750	Cascaded Optic Fibre–Visible Light Communications: Channel Model and Analysis. , 2019, , .		3
751	Demo: Device-free Activity Monitoring Through Real-time Analysis on Prevalent WiFi Signals. , 2019, , .		0
752	A Study on Model Based Control of DC-DC Converter with Simple Enumeration and Pruning Restriction Computation. , 2019, , .		2
753	The Influence of Environmental Change (Crops and Water) on Population Redistribution in Mexico and Ethiopia. Applied Sciences (Switzerland), 2019, 9, 5219.	1.3	4
754	Exâ€ante evaluation of promising soybean innovations for subâ€5aharan Africa. Food and Energy Security, 2019, 8, e00172.	2.0	6
755	Disequilibrium of terrestrial ecosystem CO ₂ budget caused by disturbance-induced emissions and non-CO ₂ carbon export flows: a global model assessment. Earth System Dynamics, 2019, 10, 685-709.	2.7	22
756	Integrated scenarios to support analysis of the food–energy–water nexus. Nature Sustainability, 2019, 2, 1132-1141.	11.5	79
757	Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations. Scientific Reports, 2019, 9, 18757.	1.6	28
758	Improving the LPJmL4-SPITFIRE vegetation–fire model for South America using satellite data. Geoscientific Model Development, 2019, 12, 5029-5054.	1.3	16
759	Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA. Science of the Total Environment, 2019, 650, 1371-1381.	3.9	47
760	Modelling cropping periods of grain crops at the global scale. Global and Planetary Change, 2019, 174, 35-46.	1.6	35

#	Article	IF	CITATIONS
761	Global historical soybean and wheat yield loss estimates from ozone pollution considering water and temperature as modifying effects. Agricultural and Forest Meteorology, 2019, 265, 1-15.	1.9	55
762	Blind spots in ecosystem services research and challenges for implementation. Regional Environmental Change, 2019, 19, 2151-2172.	1.4	77
763	Assessing human and environmental pressures of global land-use change 2000–2010. Global Sustainability, 2019, 2, .	1.6	60
764	Options to model the effects of tillage on N2O emissions at the global scale. Ecological Modelling, 2019, 392, 212-225.	1.2	9
765	Modelling carbon stock and carbon sequestration ecosystem services for policy design: a comprehensive approach using a dynamic vegetation model. Ecosystems and People, 2019, 15, 42-60.	1.3	12
767	From paleoclimate variables to prehistoric agriculture: Using a process-based agro-ecosystem model to simulate the impacts of Holocene climate change on potential agricultural productivity in Provence, France. Quaternary International, 2019, 501, 303-316.	0.7	14
768	Modelling world agriculture as a learning machine? From mainstream models to Agribiom 1.0. Land Use Policy, 2020, 96, 103624.	2.5	10
769	Assessments of gross primary productivity estimations with satellite data-driven models using eddy covariance observation sites over the northern hemisphere. Agricultural and Forest Meteorology, 2020, 280, 107771.	1.9	24
770	Afforestation for climate change mitigation: Potentials, risks and tradeâ€offs. Global Change Biology, 2020, 26, 1576-1591.	4.2	162
771	ADAPTATIONS AND MITIGATION POLICIES TO CLIMATE CHANGE: A DYNAMIC CGE-WE MODEL. Singapore Economic Review, 2023, 68, 2169-2193.	0.9	7
772	Reducing Uncertainties of Future Global Soil Carbon Responses to Climate and Land Use Change With Emergent Constraints. Global Biogeochemical Cycles, 2020, 34, e2020GB006589.	1.9	4
773	Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales. Earth's Future, 2020, 8, e2020EF001616.	2.4	69
774	Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity. Water Resources Research, 2020, 56, e2019WR026995.	1.7	66
775	How Simulations of the Land Carbon Sink Are Biased by Ignoring Fluvial Carbon Transfers: A Case Study for the Amazon Basin. One Earth, 2020, 3, 226-236.	3.6	26
776	Assessing River Basin Development Given Waterâ€Energyâ€Foodâ€Environment Interdependencies. Earth's Future, 2020, 8, e2019EF001464.	2.4	30
777	Calibration and validation of SiBcrop Model for simulating LAI and surface heat fluxes of winter wheat in the North China Plain. Journal of Integrative Agriculture, 2020, 19, 2206-2215.	1.7	1
778	Beyond land-use intensity: Assessing future global crop productivity growth under different socioeconomic pathways. Technological Forecasting and Social Change, 2020, 160, 120208.	6.2	21
779	Assessing the impact of increased legume production in Europe on global agricultural emissions. Regional Environmental Change, 2020, 20, 1.	1.4	10

#	ARTICLE	IF	CITATIONS
781	The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa. Climatic Change, 2020, 162, 1213-1229.	1.7	22
782	Estimating dissolved carbon concentrations in global soils: a global database and model. SN Applied Sciences, 2020, 2, 1.	1.5	14
783	Land management and climate change determine secondâ€generation bioenergy potential of the US Northern Great Plains. GCB Bioenergy, 2020, 12, 491-509.	2.5	10
784	Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 2020, 10, 13768.	1.6	423
785	Using the Budyko Framework for Calibrating a Global Hydrological Model. Water Resources Research, 2020, 56, e2019WR026280.	1.7	33
786	Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 2020, 17, 2107-2133.	1.3	24
787	Importance of nutrient loading and irrigation in gross primary productivity trends in India. Journal of Hydrology, 2020, 588, 125047.	2.3	8
788	The impact of climate change on Brazil's agriculture. Science of the Total Environment, 2020, 740, 139384.	3.9	67
789	Spatial pattern of arable land-use intensity in China. Land Use Policy, 2020, 99, 104845.	2.5	78
790	Decadal variation in CO ₂ fluxes and its budget in a wheat and maize rotation cropland over the North China Plain. Biogeosciences, 2020, 17, 2245-2262.	1.3	26
791	An Implementation of an Industrial Internet of Things on an SMT Assembly Line. , 2020, , .		5
792	A multi-model analysis of teleconnected crop yield variability in a range of cropping systems. Earth System Dynamics, 2020, 11, 113-128.	2.7	21
793	Creating Power System Network Layouts: A Fast Parallel Algorithm. IEEE Systems Journal, 2020, 14, 3687-3694.	2.9	3
794	Comparative Assessment of Climate Engineering Scenarios in the Presence of Parametric Uncertainty. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001787.	1.3	0
795	Climate Extreme Versus Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and Precipitation. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005252.	1.3	29
796	A Novel Measure of Uncertainty in the Dempster-Shafer Theory. IEEE Access, 2020, 8, 51550-51559.	2.6	8
797	Load-Balancing Algorithm for Multiple Gateways in Fog-Based Internet of Things. IEEE Internet of Things Journal, 2020, 7, 7043-7053.	5.5	22
798	The Study on Multiparametric Sensitivity of Chaotic Oscillators. , 2020, , .		7

#	Article	IF	CITATIONS
799	Designing Content Placement of CDN for Improving Aggregation Effect of ICN FIBs. , 2020, , .		1
800	Regional Carrying Capacities of Freshwater Consumption—Current Pressure and Its Sources. Environmental Science & Technology, 2020, 54, 9083-9094.	4.6	23
801	Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and Southâ€ŧoâ€North Water Diversion. Earth's Future, 2020, 8, e2020EF001492.	2.4	30
802	Regional differentiation in climate change induced drought trends in the Netherlands. Environmental Research Letters, 2020, 15, 094081.	2.2	37
803	Uncertainty analysis of multiple global GPP datasets in characterizing the lagged effect of drought on photosynthesis. Ecological Indicators, 2020, 113, 106224.	2.6	32
804	Enhancement of the Multiplexing Capacity and Measurement Accuracy of FBG Sensor System Using IWDM Technique and Deep Learning Algorithm. Journal of Lightwave Technology, 2020, 38, 1589-1603.	2.7	30
805	Bezier-Based Hough Transforms for Doppler Localization of Human Targets. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 173-177.	2.4	5
806	Cross-Calibration of MODIS Reflective Solar Bands With Sentinel 2A/2B MSI Instruments. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 5000-5007.	2.7	10
808	First process-based simulations of climate change impacts on global tea production indicate large effects in the World's major producer countries. Environmental Research Letters, 2020, 15, 034023.	2.2	15
809	Extending a first-principles primary production model to predict wheat yields. Agricultural and Forest Meteorology, 2020, 287, 107932.	1.9	17
810	Water productivity and footprint of major Brazilian rainfed crops – A spatially explicit analysis of crop management scenarios. Agricultural Water Management, 2020, 233, 105996.	2.4	23
811	Planar Transformers in LLC Resonant Converters: High-Frequency Fringing Losses Modeling. IEEE Transactions on Power Electronics, 2020, 35, 9632-9649.	5.4	31
812	Statistical emulators of irrigated crop yields and irrigation water requirements. Agricultural and Forest Meteorology, 2020, 284, 107828.	1.9	4
813	Decision-Making to Diversify Farm Systems for Climate Change Adaptation. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	52
814	A Data-Intensive Approach to Address Food Sustainability: Integrating Optic and Microwave Satellite Imagery for Developing Long-Term Global Cropping Intensity and Sowing Month from 2001 to 2015. Sustainability, 2020, 12, 3227.	1.6	16
815	A Wheeled Horizontal Dual-Axis MEMS Gyroscope Based on Single Proof Mass with Mechanical Coupling Suppression Silicon Gratings. , 2020, , .		2
817	Local food crop production can fulfil demand for less than one-third of the population. Nature Food, 2020, 1, 229-237.	6.2	102
818	Projected climate change impacts on mean and year-to-year variability of yield of key smallholder crops in Sub-Saharan Africa. Climate and Development, 2021, 13, 268-282.	2.2	45

#	Article	IF	CITATIONS
819	Land degradation and climate change: Global impact on wheat yields. Land Degradation and Development, 2021, 32, 387-398.	1.8	22
820	Improved index insurance design and yield estimation using a dynamic factor forecasting approach. Insurance: Mathematics and Economics, 2021, 96, 208-221.	0.7	6
821	Description of local carbon flux from large scale gridded climate data by a dynamic global vegetation model at variable time steps: Example of Euroflux sites. Science of the Total Environment, 2021, 756, 143492.	3.9	0
822	Assessing future cross-border climate impacts using shared socioeconomic pathways. Climate Risk Management, 2021, 32, 100311.	1.6	6
823	Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 2021, 11, 226-233.	8.1	345
824	Impact of precipitation and increasing temperatures on drought trends in eastern Africa. Earth System Dynamics, 2021, 12, 17-35.	2.7	32
825	An integrative approach to estimating productivity in past societies using <i>Seshat: Global History Databank</i> . Holocene, 2021, 31, 1055-1065.	0.9	8
826	Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. Journal of Hydrology, 2021, 593, 125932.	2.3	70
827	Importance of the description of light interception in crop growth models. Plant Physiology, 2021, 186, 977-997.	2.3	21
828	Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences. Geoscientific Model Development, 2021, 14, 1639-1656.	1.3	6
829	Phenology as accuracy metrics for vegetation index forecasting over Tunisian forest and cereal cover types. International Journal of Remote Sensing, 2021, 42, 4644-4671.	1.3	7
830	Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services. Earth System Dynamics, 2021, 12, 327-351.	2.7	11
831	Financial Feasibility of Water Conservation in Agriculture. Earth's Future, 2021, 9, e2020EF001726.	2.4	10
832	Observationâ€Constrained Projection of Global Flood Magnitudes With Anthropogenic Warming. Water Resources Research, 2021, 57, e2020WR028830.	1.7	19
833	Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 2021, 11, 3746-3770.	0.8	37
834	Irrigation of biomass plantations may globally increase water stress more than climate change. Nature Communications, 2021, 12, 1512.	5.8	54
835	Irrigation, damming, and streamflow fluctuations of the Yellow River. Hydrology and Earth System Sciences, 2021, 25, 1133-1150.	1.9	19
836	Coordinated intensification to reconcile the â€~zero hunger' and â€~life on land' Sustainable Development Goals. Journal of Environmental Management, 2021, 284, 112032.	3.8	13

#	Article	IF	CITATIONS
837	Evaluation of Future Impacts of Climate Change, CO2, and Land Use Cover Change on Global Net Primary Productivity Using a Processed Model. Land, 2021, 10, 365.	1.2	5
838	Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season. Biogeosciences, 2021, 18, 2405-2428.	1.3	19
839	Global cotton production under climate change – Implications for yield and water consumption. Hydrology and Earth System Sciences, 2021, 25, 2027-2044.	1.9	42
840	Evergreen fruit crops improve carbon pools, enzymes and nutrient availability in soil over deciduous ones under subtropical conditions. Communications in Soil Science and Plant Analysis, 2021, 52, 1864-1878.	0.6	2
841	Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model. Geoscientific Model Development, 2021, 14, 2575-2601.	1.3	5
842	Environmental and socioeconomic footprints of the German bioeconomy. Nature Sustainability, 2021, 4, 775-783.	11.5	21
844	New framework for natural-artificial transport paths and hydrological connectivity analysis in an agriculture-intensive catchment. Water Research, 2021, 196, 117015.	5.3	26
845	Advances in Land Surface Modelling. Current Climate Change Reports, 2021, 7, 45-71.	2.8	43
846	The sensitivity of vegetation cover to climate change in multiple climatic zones using machine learning algorithms. Ecological Indicators, 2021, 124, 107443.	2.6	26
847	Impacts of Land Use/Land Cover Distributions and Vegetation Amount on Land Surface Temperature Simulation in East China. Earth and Space Science, 2021, 8, e2020EA001544.	1.1	4
848	Climate-induced hysteresis of the tropical forest in a fire-enabled Earth system model. European Physical Journal: Special Topics, 2021, 230, 3153-3162.	1.2	4
849	Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geoscientific Model Development, 2021, 14, 3843-3878.	1.3	41
850	A comprehensive uncertainty quantification of large-scale process-based crop modeling frameworks. Environmental Research Letters, 2021, 16, 084010.	2.2	24
851	Dynamics of soil organic carbon in the steppes of Russia and Kazakhstan under past and future climate and land use. Regional Environmental Change, 2021, 21, 1.	1.4	9
852	CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model. Geoscientific Model Development, 2021, 14, 4117-4141.	1.3	13
855	Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nature Climate Change, 2021, 11, 772-779.	8.1	148
856	Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production. Economics of Disasters and Climate Change, 2021, 5, 367-390.	1.3	12
858	The Global Water Cycle Budget: A Chronological Review. Surveys in Geophysics, 2021, 42, 1075-1107.	2.1	14

#	Article	IF	CITATIONS
859	Understanding the development of viticulture in Roman Gaul during and after the Roman climate optimum: The contribution of spatial analysis and agro-ecosystem modeling. Journal of Archaeological Science: Reports, 2021, 38, 103099.	0.2	2
860	Plant pathogen infection risk tracks global crop yields under climate change. Nature Climate Change, 2021, 11, 710-715.	8.1	177
861	Greenhouse Gas Emissions and Crop Yields From Winter Oilseed Rape Cropping Systems are Unaffected by Management Practices. Frontiers in Environmental Science, 2021, 9, .	1.5	8
862	Trade-offs between water needs for food, utilities, and the environment—a nexus quantification at different scales. Environmental Research Letters, 2021, 16, 115003.	2.2	5
863	Saturation of Global Terrestrial Carbon Sink Under a High Warming Scenario. Global Biogeochemical Cycles, 2021, 35, e2020GB006800.	1.9	11
864	Optimizing the Sowing Date to Improve Water Management and Wheat Yield in a Large Irrigation Scheme, through a Remote Sensing and an Evolution Strategy-Based Approach. Remote Sensing, 2021, 13, 3789.	1.8	10
865	Environmental flow requirements largely reshape global surface water scarcity assessment. Environmental Research Letters, 2021, 16, 104029.	2.2	13
866	The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. Journal of Hydrology, 2021, 601, 126658.	2.3	73
867	Mitigation of global warming potential and greenhouse gas intensity in arable soil with green manure as source of nitrogen. Environmental Pollution, 2021, 288, 117724.	3.7	12
868	Hybrid phenology matching model for robust crop phenological retrieval. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 308-326.	4.9	14
870	Climate change impacts on renewable energy supply. Nature Climate Change, 2021, 11, 119-125.	8.1	218
871	Implementation of sequential cropping into JULESvn5.2 land-surface model. Geoscientific Model Development, 2021, 14, 437-471.	1.3	2
872	Interactive Effects of Land Use and Climate on Soil Organic Carbon Storage in Western Siberian Steppe Soils. Innovations in Landscape Research, 2020, , 183-199.	0.2	8
873	Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects. Space Sciences Series of ISSI, 2016, , 229-261.	0.0	1
874	Modelling and Tools Supporting the Transition to a Bioeconomy. , 2018, , 289-316.		4
875	Dynamic Global Vegetation Modeling: Quantifying Terrestrial Ecosystem Responses to Large-Scale Environmental Change. , 2007, , 175-192.		222
876	Carbon Sequestration and Greenhouse Gas Fluxes from Cropland Soils – Climate Opportunities and Threats. Environmental Science and Engineering, 2009, , 81-111.	0.1	5
877	Conceptual design and implementation of a model for the integrated simulation of large-scale land-use systems. Environmental Science and Engineering, 2009, , 425-438.	0.1	11

#	ARTICLE	IF	CITATIONS
878	Recent Trends in Land Surface Phenologies Within the Don and Dnieper River Basins from the Perspective of MODIS Collection 4 Products. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 183-189.	0.1	2
879	Sources of uncertainty in global modelling of future soil organic carbon storage. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 283-315.	0.1	15
880	Model-Based Biospheric Greenhouse Gas Balance of Hungary. , 2011, , 295-330.		3
881	Forests and Global Change. Ecological Studies, 2011, , 711-725.	0.4	4
882	Climate Change and Water Supply. , 2012, , 19-32.		4
883	Food Security in a Changing Climate. , 2012, , 33-43.		1
884	Conceptual and Empirical Approaches to Mapping and Quantifying Land-Use Intensity. , 2014, , 61-86.		10
885	Agricultural Development and Land Use Change in India: A Scenario Analysis of Tradeâ€Offs Between UN Sustainable Development Goals (SDGs). Earth's Future, 2020, 8, e2019EF001287.	2.4	66
886	Gridded emissions and land-use data for 2005–2100 under diverse socioeconomic and climate mitigation scenarios. Scientific Data, 2018, 5, 180210.	2.4	39
887	Chapter 3. Ecosystem Services and Food Production. Issues in Environmental Science and Technology, 2010, , 52-69.	0.4	10
888	Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environmental Research Letters, 2020, 15, 044006.	2.2	25
889	The response of maize, sorghum, and soybean yield to growing-phase climate revealed with machine learning. Environmental Research Letters, 2020, 15, 094013.	2.2	48
891	Higher than expected CO ₂ fertilization inferred from leaf to global observations. Global Change Biology, 2020, 26, 2390-2402.	4.2	98
892	The Worldwide Variation in Avian Clutch Size across Species and Space. PLoS Biology, 2008, 6, e303.	2.6	353
893	Resolving Conflicts between Agriculture and the Natural Environment. PLoS Biology, 2015, 13, e1002242.	2.6	102
894	A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use. PLoS ONE, 2013, 8, e57750.	1.1	83
895	Diagnosing the Dynamics of Observed and Simulated Ecosystem Gross Primary Productivity with Time Causal Information Theory Quantifiers. PLoS ONE, 2016, 11, e0164960.	1.1	20
897	Modelling the Implications of Climate Change for European Freshwater Wetland Distributions: A Review of Knowledge and Gaps. International Journal of Climate Change: Impacts and Responses, 2011, 2, 37-62.	0.1	3

#	Article	IF	CITATIONS
898	Landscape models to support sustainable intensification of agroecological systems. Burleigh Dodds Series in Agricultural Science, 2019, , 321-354.	0.1	1
899	Catastrophic Risk, Precautionary Abatement, and Adaptation Transfers. SSRN Electronic Journal, 0, , .	0.4	1
900	On the Use of Agricultural System Models for Exploring Technological Innovations Across Scales in Africa: A Critical Review. SSRN Electronic Journal, 0, , .	0.4	5
901	The Theory of Change for the CSA Approach: A Guide to Evidence-Based Implementation at the Country Level. SSRN Electronic Journal, 0, , .	0.4	1
902	The Impacts of Climate Variability on Crop Yields and Irrigation Water Demand in South Asia. Water (Switzerland), 2021, 13, 50.	1.2	14
903	Light Meter for Measuring Photosynthetically Active Radiation. American Journal of Plant Sciences, 2018, 09, 2420-2428.	0.3	10
906	Human alterations of the terrestrial water cycle through land management. Advances in Geosciences, 0, 18, 43-50.	12.0	55
907	Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling. Advances in Geosciences, 0, 18, 51-61.	12.0	22
908	A model-based assessment of the potential role of irrigated cropland for biogas production in Europe. Advances in Geosciences, 0, 21, 85-90.	12.0	2
909	Modelling historical and current irrigation water demand on the continental scale: Europe. Advances in Geosciences, 0, 27, 79-85.	12.0	50
910	Understanding the uncertainty in global forest carbon turnover. Biogeosciences, 2020, 17, 3961-3989.	1.3	45
936	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	3.7	616
937	Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development, 2020, 13, 3267-3298.	1.3	60
938	MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change. Geoscientific Model Development, 2020, 13, 4713-4747.	1.3	14
939	Simulating human impacts on global water resources using VIC-5. Geoscientific Model Development, 2020, 13, 5029-5052.	1.3	16
940	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	1.3	408
941	Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1). Geoscientific Model Development, 2020, 13, 6077-6092.	1.3	8
965	What role will climate change play in EU agricultural markets? An integrated assessment taking into account carbon fertilization effects. Spanish Journal of Agricultural Research, 2017, 15, e0115.	0.3	3

#	Article	IF	CITATIONS
966	Increasing Risk of Ecological Change to Major Rivers of the World With Global Warming. Earth's Future, 2021, 9, .	2.4	19
967	Estimating global land system impacts of timber plantations using MAgPIE 4.3.5. Geoscientific Model Development, 2021, 14, 6467-6494.	1.3	2
968	Natural infrastructure in sustaining global urban freshwater ecosystem services. Nature Sustainability, 2021, 4, 1068-1075.	11.5	62
969	Accounting for forest management in the estimation of forest carbon balance using the dynamic vegetation model LPJ-GUESS (v4.0, r9710): implementation and evaluation of simulations for Europe. Geoscientific Model Development, 2021, 14, 6071-6112.	1.3	17
970	Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change. Climatic Change, 2021, 168, 1.	1.7	6
971	Amplified Drought and Flood Risk Under Future Socioeconomic and Climatic Change. Earth's Future, 2021, 9, e2021EF002295.	2.4	36
972	Soil organic carbon dynamics from agricultural management practices under climate change. Earth System Dynamics, 2021, 12, 1037-1055.	2.7	12
978	The Nexus Land-Use Model, An Approach Articulating Biophysical Potentials and Economic Dynamics to Model Competition for Land-Uses. SSRN Electronic Journal, 0, , .	0.4	0
982	Simulation of Land Management Effects on Soil N2O Emissions using a Coupled Hydrology-Biogeochemistry Model on the Landscape Scale. , 2013, , 1-22.		1
983	Advancement Report on Adaptation and Damage Functions in the WITCH Model and Test Runs. SSRN Electronic Journal, 0, , .	0.4	0
984	A Model Based Method to Assess Climate Change Impacts on Rain-Fed Farming Systems: How to Analyze Crop-Yield Variability?. Environmental Science and Engineering, 2013, , 489-510.	0.1	0
986	A Global Approach to Estimating the Benefit-Cost Ratio of Water Supply Measures in the Agricultural Sector. , 2014, , 73-87.		0
994	Simulation of Land Management Effects on Soil N2O Emissions Using a Coupled Hydrology-Biogeochemistry Model on the Landscape Scale. , 2015, , 2207-2231.		0
999	MACROECONOMIC IMPACT INDUCED BY CROP YIELD CHANGE ASSOCIATED WITH CLIMATE CHANGE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2017, 73, I_397-I_405.	0.1	0
1000	Dynamic Global Vegetation Models. , 2019, , 843-863.		2
1001	Using Dynamic Global Vegetation Models (DGVMs) for Projecting Ecosystem Services at Regional Scales. , 2019, , 57-61.		2
1002	Tree Cover and Biomass Carbon on Agricultural Land in Mala Planina. Key Challenges in Geography, 2020, , 265-274.	0.1	1
1005	An Integrated Modelling Approach for Land Use Changes on Different Scales. Innovations in Landscape Research, 2020, , 509-524.	0.2	0

#	Article	IF	CITATIONS
1006	Szenarien und Modelle zur Gestaltung einer nachhaltigen Bioökonomie. , 2020, , 297-310.		0
1007	Aggregation of gridded emulated projections at the national or regional level: rainfed and irrigated crop yields and irrigation water requirements. , 2020, 5, 138-151.		0
1008	Attributing Global Land Carbon Loss to Regional Agricultural and Forestry Commodity Consumption. Environmental Science & Technology, 2021, 55, 823-831.	4.6	6
1009	Impact of green water anomalies on global rainfed crop yields. Environmental Research Letters, 2020, 15, 124030.	2.2	7
1010	Impact of environmental changes and land management practices on wheat production in India. Earth System Dynamics, 2020, 11, 641-652.	2.7	9
1011	Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China. Journal of Hydrology, 2022, 604, 127231.	2.3	10
1012	The Possible Impacts of Different Global Warming Levels on Major Crops in Egypt. Atmosphere, 2021, 12, 1589.	1.0	5
1013	Impact of declining renewable energy costs on electrification in low-emission scenarios. Nature Energy, 2022, 7, 32-42.	19.8	196
1014	ls potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM. Land Use Policy, 2022, 112, 105871.	2.5	7
1015	Exploring river nitrogen and phosphorus loading and export to global coastal waters in the Shared Socio-economic pathways. Global Environmental Change, 2022, 72, 102426.	3.6	62
1016	Effects of initialization of a global land-use model on simulated land change and loss of natural vegetation. Environmental Modelling and Software, 2022, 148, 105287.	1.9	2
1017	Livestock and future food supply scenarios. , 2022, , 107-121.		1
1018	Evaluation of multiple satellite precipitation products for rainfed maize production systems over Vietnam. Scientific Reports, 2022, 12, 485.	1.6	15
1019	Using real-time mobile phone data to characterize the relationships between small-scale farmers' planting dates and socio-environmental factors. Climate Risk Management, 2022, 35, 100396.	1.6	2
1020	Land surface processes in climate models. , 0, , 395-417.		1
1021	Distribution and Attribution of Gross Primary Productivity Increase Over the Mongolian Plateau, 2001-2018. IEEE Access, 2022, 10, 25125-25134.	2.6	6
1023	The role of cover crops for cropland soil carbon, nitrogen leaching, and agricultural yields – a global simulation study with LPJmL (V. 5.0-tillage-cc). Biogeosciences, 2022, 19, 957-977.	1.3	15
1024	Future upstream water consumption and its impact on downstream water availability in the transboundary Indus Basin. Hydrology and Earth System Sciences, 2022, 26, 861-883.	1.9	16

#	Article	IF	CITATIONS
1026	Uncertainties in estimating global potential yields and their impacts for long-term modeling. Food Security, 2022, 14, 1177-1190.	2.4	2
1027	Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environmental Research Letters, 2022, 17, 045004.	2.2	11
1028	Assessing the Sensitivity of Vegetation Cover to Climate Change in the Yarlung Zangbo River Basin Using Machine Learning Algorithms. Remote Sensing, 2022, 14, 1556.	1.8	5
1030	Impact of Inter-Basin Water Transfer on Water Scarcity in Water-Receiving Area under Global Warming. , 2022, , 240-266.		0
1031	Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin. Agricultural Water Management, 2022, 266, 107548.	2.4	8
1032	Germany's Agricultural Land Footprint and the Impact of Import Pattern Allocation. Sustainability, 2022, 14, 105.	1.6	1
1033	Multi-model evaluation of catchment- and global-scale hydrological model simulations of drought characteristics across eight large river catchments. Advances in Water Resources, 2022, 165, 104212.	1.7	5
1036	7. Modélisation globale. , 0, , 284-285.		0
1037	Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production– a modelling study in eastern Africa. Biogeosciences, 2022, 19, 2145-2169.	1.3	2
1038	Projected environmental benefits of replacing beef with microbial protein. Nature, 2022, 605, 90-96.	13.7	72
1039	Identifying Potential Clusters of Future Migration Associated With Water Stress in Africa: A Vulnerability Approach. Frontiers in Human Dynamics, 2022, 4, .	1.0	1
1040	Quantifying global agricultural water appropriation with data derived from earth observations. Journal of Cleaner Production, 2022, 358, 131891.	4.6	27
1041	State of science in carbon budget assessments for temperate forests and grasslands. , 2022, , 237-270.		0
1042	Historical and future Palmer Drought Severity Index with improved hydrological modeling. Journal of Hydrology, 2022, 610, 127941.	2.3	16
1043	Spatial Quantification of the Water-Saving Potential of Laser Land Leveling and its Contribution to Achieving Sustainable Development Goal 6 in the Indus River Basin. SSRN Electronic Journal, 0, , .	0.4	1
1044	Genetic Diversity of Rhanterium eppaposum Oliv. Populations in Kuwait as Revealed by GBS. Plants, 2022, 11, 1435.	1.6	4
1045	Climate change, comparative advantage and the water capability to produce agricultural goods. World Development, 2022, 158, 105963.	2.6	11
1047	Projected Increases in Global Terrestrial Net Primary Productivity Loss Caused by Drought Under Climate Change. Earth's Future, 2022, 10, .	2.4	16

#	Article	IF	CITATIONS
1048	Observational constraint of process crop models suggests higher risks for global maize yield under climate change. Environmental Research Letters, 2022, 17, 074023.	2.2	6
1049	Fine scale variability in Green Vegetation Fraction Over the Southern Great Plains using Sentinel-2 satellite: A case study. Remote Sensing Applications: Society and Environment, 2022, 27, 100799.	0.8	0
1050	The role of food and land use systems in achieving India's sustainability targets Environmental Research Letters, 0, , .	2.2	3
1051	Implementation and calibration of short-rotation eucalypt plantation module within the ECOSMOS land surface model. Agricultural and Forest Meteorology, 2022, 323, 109043.	1.9	2
1052	Process-explicit models reveal the structure and dynamics of biodiversity patterns. Science Advances, 2022, 8, .	4.7	33
1053	Net irrigation requirement under different climate scenarios using AquaCrop over Europe. Hydrology and Earth System Sciences, 2022, 26, 3731-3752.	1.9	6
1054	Model-based design of crop diversification through new field arrangements in spatially heterogeneous landscapes. A review. Agronomy for Sustainable Development, 2022, 42, .	2.2	19
1055	Risk of Climate Change for Hydroelectricity Production in China Is Small but Significant Reductions Cannot Be Precluded for More Than a Third of the Installed Capacity. Water Resources Research, 2022, 58, .	1.7	1
1056	Spatiotemporal evolutionary and mechanism analysis of grassland GPP in China. Ecological Indicators, 2022, 143, 109323.	2.6	7
1057	Microbe-iron interactions control lignin decomposition in soil. Soil Biology and Biochemistry, 2022, 173, 108803.	4.2	9
1058	Incorporating dynamic crop growth processes and management practices into a terrestrial biosphere model for simulating crop production in the United States: Toward a unified modeling framework. Agricultural and Forest Meteorology, 2022, 325, 109144.	1.9	9
1059	Fine resolution remote sensing spectra improves estimates of gross primary production of croplands. Agricultural and Forest Meteorology, 2022, 326, 109175.	1.9	4
1060	Cost-benefit of green infrastructures for water management: A sustainability assessment of full-scale constructed wetlands in Northern and Southern Italy. Ecological Engineering, 2022, 185, 106797.	1.6	8
1061	How digital is agriculture in a subset of countries from South America? Adoption and limitations. Crop and Pasture Science, 2023, 74, 555-572.	0.7	4
1062	Climate change impacts and adaptation strategies: An assessment on sorghum for Burkina Faso. European Journal of Agronomy, 2023, 142, 126655.	1.9	2
1063	Land use change and carbon emissions of a transformation to timber cities. Nature Communications, 2022, 13, .	5.8	74
1064	Continued Increases of Gross Primary Production in Urban Areas during 2000–2016. Journal of Remote Sensing, 2022, 2022, .	3.2	17
1065	Pathway to achieve a sustainable food and land-use transition in India. Sustainability Science, 2023, 18, 457-468.	2.5	6

#	Article	IF	CITATIONS
1066	Uncertainties of gross primary productivity of Chinese grasslands based on multi-source estimation. Frontiers in Environmental Science, 0, 10, .	1.5	2
1067	Macroeconomic co-benefits of DRR investment: assessment using the Dynamic Model of Multi-hazard Mitigation CoBenefits (DYNAMMICs) model. Disaster Prevention and Management, 2022, ahead-of-print,	0.6	0
1068	Physically constrained generative adversarial networks for improving precipitation fields from Earth system models. Nature Machine Intelligence, 2022, 4, 828-839.	8.3	10
1071	Understanding the transgression of global and regional freshwater planetary boundaries. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	2
1072	Future projections of river nutrient export to the global coastal ocean show persisting nitrogen and phosphorus distortion. Frontiers in Water, 0, 4, .	1.0	1
1073	Management-induced changes in soil organic carbon on global croplands. Biogeosciences, 2022, 19, 5125-5149.	1.3	4
1074	Food, climate and biodiversity: a trilemma of mineral nitrogen use in European agriculture. Review of Agricultural Food and Environmental Studies, 2022, 103, 271-299.	0.2	5
1075	Opportunities for carbon sequestration in intensive soft fruit production systems. Acta Horticulturae Et Regiotecturae, 2022, 25, 107-114.	0.5	1
1076	Global Evaluation of Runoff Simulation From Climate, Hydrological and Land Surface Models. Water Resources Research, 2023, 59, .	1.7	11
1077	Modelling crop yield and harvest index: the role of carbon assimilation and allocation parameters. Modeling Earth Systems and Environment, 2023, 9, 2617-2635.	1.9	3
1078	Evaluation of global gridded crop models in simulating sugarcane yield in China. Atmospheric and Oceanic Science Letters, 2023, , 100329.	0.5	2
1079	Using crop modeling to find solutions for wheat diseases: A review. Frontiers in Environmental Science, 0, 10, .	1.5	2
1080	Environmental and Economic Benefits of Sustainable Sugarcane Initiative and Production Constraints in Pakistan: A Review. , 2022, , 441-468.		0
1081	Land Use and Management. Geography of the Physical Environment, 2022, , 295-462.	0.2	0
1083	Responses of hydroelectricity generation to streamflow drought under climate change. Renewable and Sustainable Energy Reviews, 2023, 174, 113141.	8.2	10
1084	Atmospheric dryness thresholds of grassland productivity decline in China. Journal of Environmental Management, 2023, 338, 117780.	3.8	2
1085	DHI-GHM: Real-time and forecasted hydrology for the entire planet. Journal of Hydrology, 2023, 620, 129431.	2.3	2
1086	The meso scale as a frontier in interdisciplinary modeling of sustainability from local to global scales. Environmental Research Letters, 2023, 18, 025007.	2.2	6

#	Article	IF	CITATIONS
1089	Model emulators for the assessment of regional impacts and risks of climate change: A case study of rainfed maize production in Mexico. Frontiers in Environmental Science, 0, 11, .	1.5	1
1090	Technical and Economic Irrigation Potentials within land and water boundaries. Water Resources Research, 0, , .	1.7	Ο
1091	Land cover change and socioecological influences on terrestrial carbon production in an agroecosystem. Landscape Ecology, 2023, 38, 3845-3867.	1.9	2
1093	Exploring the potential of agricultural system change as an integrated adaptation strategy for water and food security in the Indus basin. Environment, Development and Sustainability, 0, , .	2.7	2
1094	Simple and Innovative Methods to Estimate Gross Primary Production and Transpiration of Crops: A Review. Studies in Big Data, 2023, , 125-156.	0.8	1
1096	Introduction of modelling the impact of ground-level ozone on crops at a local and global scale. Advances in Botanical Research, 2023, , 1-45.	0.5	Ο
1111	The global biogeography of tree leaf form and habit. Nature Plants, 2023, 9, 1795-1809.	4.7	1
1119	Dynamic Global Vegetation Models. , 2013, , 845-867.		Ο
1129	Dynamics and Drivers of Net Primary Production (NPP) in Southern Africa Based on Estimates from Earth Observation and Process-Based Dynamic Vegetation Modelling. Ecological Studies, 2024, , 759-786.	0.4	0