The Role of Headwater Streams in Downstream Water (

Journal of the American Water Resources Association 43, 41-59 DOI: 10.1111/j.1752-1688.2007.00005.x

Citation Report

#	Article	IF	CITATIONS
1	Hydrological Connectivity of Headwaters to Downstream Waters: Introduction to the Featured Collection. Journal of the American Water Resources Association, 2007, 43, 1-4.	1.0	42
2	Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales ¹ . Journal of the American Water Resources Association, 2007, 43, 5-14.	1.0	427
3	DIN Retentionâ€Transport Through Four Hydrologically Connected Zones in a Headwater Catchment of the Upper Mississippi River ¹ . Journal of the American Water Resources Association, 2007, 43, 60-71.	1.0	35
4	The Contribution of Headwater Streams to Biodiversity in River Networks ¹ . Journal of the American Water Resources Association, 2007, 43, 86-103.	1.0	558
5	Hydrological Connectivity Between Headwater Streams and Downstream Waters: How Science Can Inform Policy ¹ . Journal of the American Water Resources Association, 2007, 43, 118-133.	1.0	226
6	Integrating probabalistic and targeted compliance monitoring for comprehensive watershed assessment. Environmental Monitoring and Assessment, 2008, 144, 117-129.	1.3	6
7	Spatial heterogeneity of the spring flood acid pulse in a boreal stream networkâ~†. Science of the Total Environment, 2008, 407, 708-722.	3.9	48
8	Climate's control of intraâ€annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. Journal of Geophysical Research, 2008, 113, .	3.3	89
9	Physical indicators of hydrologic permanence in forested headwater streams. Journal of the North American Benthological Society, 2008, 27, 690-704.	3.0	61
10	ARE RIVERS JUST BIG STREAMS? A PULSE METHOD TO QUANTIFY NITROGEN DEMAND IN A LARGE RIVER. Ecology, 2008, 89, 2935-2945.	1.5	182
11	Non-navigable streams and adjacent wetlands: addressing science needs following the Supreme Court's <i>Rapanos</i> decision. Frontiers in Ecology and the Environment, 2008, 6, 364-371.	1.9	106
12	Disappearing headwaters: patterns of stream burial due to urbanization. Frontiers in Ecology and the Environment, 2008, 6, 308-312.	1.9	243
13	Altered Ecological Flows Blur Boundaries in Urbanizing Watersheds. Ecology and Society, 2009, 14, .	1.0	27
14	Stream Channel Enlargement Response to Urban Land Cover in Small Coastal Plain Watersheds, North Carolina. Physical Geography, 2009, 30, 528-555.	0.6	25
15	Surface water quality and land use in Wisconsin, USA – a GIS approach. Journal of Integrative Environmental Sciences, 2009, 6, 69-89.	1.0	24
16	Temporal variation in substratum-specific rates of N uptake and metabolism and their contribution at the stream-reach scale. Journal of the North American Benthological Society, 2009, 28, 305-318.	3.0	57
17	Advances in the identification and evaluation of complex environmental systems models. Journal of Hydroinformatics, 2009, 11, 266-281.	1.1	18
18	Dynamics of stream water TOC concentrations in a boreal headwater catchment: Controlling factors and implications for climate scenarios. Journal of Hydrology, 2009, 373, 44-56.	2.3	84

#	Article	IF	Citations
19	Retention of Riverine Sediment and Nutrient Loads by Coastal Plain Floodplains. Ecosystems, 2009, 12, 728-746.	1.6	145
20	Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry, 2009, 93, 91-116.	1.7	212
21	Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA. Biogeochemistry, 2009, 93, 117-141.	1.7	124
22	Spatial Variability of Nitrate Concentrations Under Diverse Conditions in Tributaries to a Lake Watershed ¹ . Journal of the American Water Resources Association, 2009, 45, 945-962.	1.0	6
23	Canopy Composition and Forest Structure Provide Restoration Targets for Lowâ€Order Riparian Ecosystems. Restoration Ecology, 2009, 17, 51-59.	1.4	15
24	The ecology, restoration, and management of southeastern floodplain ecosystems: A synthesis. Wetlands, 2009, 29, 624-634.	0.7	34
25	Hydroâ€ecological linkages in urbanizing watersheds: An empirical assessment of inâ€stream nitrate loss and evidence of saturation kinetics. Journal of Geophysical Research, 2009, 114, .	3.3	12
26	Nitrogen and phosphorus retention in surface waters: an inter-comparison of predictions by catchment models of different complexity. Journal of Environmental Monitoring, 2009, 11, 584.	2.1	53
27	Vegetation characteristics of forested hillside seeps in eastern Maine, USA1,2. Journal of the Torrey Botanical Society, 2009, 136, 520-531.	0.1	9
28	On the role of aspect to quantify water transit times in small mountainous catchments. Water Resources Research, 2009, 45, .	1.7	103
29	Biological Assessment to Support Ecological Recovery of a Degraded Headwater System. Environmental Management, 2010, 46, 459-470.	1.2	3
30	Connectivity and Jurisdictional Issues for Rocky Mountains and Great Plains Aquatic Resources. Wetlands, 2010, 30, 865-877.	0.7	7
31	Longitudinal and seasonal variation of stream N uptake in an urbanizing watershed: effect of organic matter, stream size, transient storage and debris dams. Biogeochemistry, 2010, 98, 45-62.	1.7	21
32	Longitudinal assessment of the effect of concentration on stream N uptake rates in an urbanizing watershed. Biogeochemistry, 2010, 98, 63-74.	1.7	16
33	Understanding effects of global change on river ecosystems: science to support policy in a changing world. Hydrobiologia, 2010, 657, 3-18.	1.0	46
34	A Spatially Explicit Model for Estimating Annual Average Loads of Nonpoint Source Nutrient at the Watershed Scale. Environmental Modeling and Assessment, 2010, 15, 569-581.	1.2	13
35	Consequences of nitrate leaching following stem-only harvesting of Swedish forests are dependent on spatial scale. Environmental Pollution, 2010, 158, 3552-3559.	3.7	64
36	Can the distribution of headwater stream chemistry be predicted from downstream observations?. Hydrological Processes, 2010, 24, 2269-2276.	1.1	20

#	Article	IF	CITATIONS
37	A geospatial approach for assessing denitrification sinks within lower-order catchments. Ecological Engineering, 2010, 36, 1596-1606.	1.6	45
38	Headwater streams: neglected ecosystems in the EU Water Framework Directive. Implications for nitrogen pollution control. Environmental Science and Policy, 2010, 13, 423-433.	2.4	49
39	Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water (Switzerland), 2010, 2, 605-648.	1.2	314
40	Use of spatially explicit physicochemical data to measure downstream impacts of headwater stream disturbance. Water Resources Research, 2010, 46, .	1.7	27
41	Forest clearance increases metabolism and organic matter processes in small headwater streams. Journal of the North American Benthological Society, 2010, 29, 546-561.	3.0	33
42	Direct and indirect effects of central stoneroller (<i>Campostoma anomalum</i>) on mesocosm recovery following a flood: can macroconsumers affect denitrification?. Journal of the North American Benthological Society, 2011, 30, 840-852.	3.0	12
43	National and regional comparisons between Strahler order and stream size. Journal of the North American Benthological Society, 2011, 30, 103-121.	3.0	58
44	Temporal inequality in catchment discharge and solute export. Water Resources Research, 2011, 47, .	1.7	72
45	Streamâ \in groundwater exchange and hydrologic turnover at the network scale. Water Resources Research, 2011, 47, .	1.7	58
46	Hydrology and Biogeochemistry Linkages. , 2011, , 271-304.		8
47	Understanding the Factors That Influence Headwater Stream Flows in Response to Storm Events1. Journal of the American Water Resources Association, 2011, 47, 315-336.	1.0	10
48	Evaluating Agricultural Best Management Practices in Tile-Drained Subwatersheds of the Mackinaw River, Illinois. Journal of Environmental Quality, 2011, 40, 1215-1228.	1.0	92
49	NUMERICAL SIMULATION OF MATERIAL CYCLING ALONG A RIVER WITH CONSIDERATION OF SUPPLY-DECOMPOSITION-TRANSPORT OF COARSE PARTICULATE ORGANIC MATTER. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_1333-I_1338.	0.0	0
50			
	Loss of genetic diversity in the North American mayfly Ephemerella invaria associated with deforestation of headwater streams. Freshwater Biology, 2011, 56, 1456-1467.	1.2	19
51	Loss of genetic diversity in the North American mayfly Ephemerella invaria associated with deforestation of headwater streams. Freshwater Biology, 2011, 56, 1456-1467. Extent and Channel Morphology of Unmapped Headwater Stream Segments of the Quabbin Watershed, Massachusetts1. Journal of the American Water Resources Association, 2011, 47, 158-168.	1.2 1.0	19 20
51 52	deforestation of headwater streams. Freshwater Biology, 2011, 56, 1456-1467. Extent and Channel Morphology of Unmapped Headwater Stream Segments of the Quabbin Watershed,		
	deforestation of headwater streams. Freshwater Biology, 2011, 56, 1456-1467. Extent and Channel Morphology of Unmapped Headwater Stream Segments of the Quabbin Watershed, Massachusetts1. Journal of the American Water Resources Association, 2011, 47, 158-168. The Role of Headwater Wetlands in Altering Streamflow and Chemistry in a Maine, USA Catchment1.	1.0	20

#	Article	IF	CITATIONS
55	Distance-decay patterns of nutrient loading at watershed scale: Regression modeling with a special spatial aggregation strategy. Journal of Hydrology, 2011, 402, 239-249.	2.3	20
56	Spatio-temporal variations of nitrogen in an agricultural watershed in eastern China: Catchment export, stream attenuation and discharge. Environmental Pollution, 2011, 159, 2989-2995.	3.7	20
57	An assessment of structural attributes and ecosystem function in restored Virginia coalfield streams. Hydrobiologia, 2011, 671, 51-63.	1.0	23
58	Nitrogen removal by streams and rivers of the Upper Mississippi River basin. Biogeochemistry, 2011, 102, 183-194.	1.7	13
59	Spatial variability in nutrient concentration and biofilm nutrient limitation in an urban watershed. Biogeochemistry, 2011, 106, 265-280.	1.7	27
60	Stream bed substrate composition adjacent to different riparian land-uses in Iowa, USA. Ecological Engineering, 2011, 37, 1692-1699.	1.6	13
61	Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 2011, 92, 331-362.	3.8	772
62	Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 214-219.	3.3	517
63	Variation among Estuarine Geochemistry and Productivity. , 2011, , 87-98.		0
64	Contributions to the Theoretical Foundations of Integrated Modeling in Biogeochemistry and Their Application in Contaminated Areas. Soil Biology, 2012, , 385-416.	0.6	5
65	Catchment topography and wetland geomorphology drive macroinvertebrate community structure and juvenile salmonid distributions in south-central Alaska headwater streams. Freshwater Science, 2012, 31, 341-364.	0.9	18
66	The effects of human land use on flow regime and water chemistry of headwater streams in the highlands of Chiapas. Knowledge and Management of Aquatic Ecosystems, 2012, , 09.	0.5	13
67	Estimating Contributions of Nitrate and Herbicides From Groundwater to Headwater Streams, Northern Atlantic Coastal Plain, United States ¹ . Journal of the American Water Resources Association, 2012, 48, 1075-1090.	1.0	27
68	Nitrate-nitrogen patterns in engineered catchments in the upper Mississippi River basin. Ecological Engineering, 2012, 42, 1-9.	1.6	47
69	Headwater stream temperature: Interpreting response after logging, with and without riparian buffers, Washington, USA. Forest Ecology and Management, 2012, 270, 302-313.	1.4	59
70	Spatial patterns of soil nitrification and nitrate export from forested headwaters in the northeastern United States. Journal of Geophysical Research, 2012, 117, .	3.3	20
71	Land use control of stream nitrate concentrations in mountainous coastal California watersheds. Journal of Geophysical Research, 2012, 117, .	3.3	28
72	What's a Stream Without Water? Disproportionality in Headwater Regions Impacting Water Quality. Environmental Management, 2012, 50, 849-860.	1.2	38

#	Article	IF	CITATIONS
73	Variation in the photochemical lability of dissolved organic matter in a large boreal watershed. Aquatic Sciences, 2012, 74, 751-768.	0.6	13
74	Lead, zinc, and chromium concentrations in acidic headwater streams in Sweden explained by chemical, climatic, and land-use variations. Biogeosciences, 2012, 9, 4323-4335.	1.3	19
75	Landscape and Wetland Influences on Headwater Stream Chemistry in the Kenai Lowlands, Alaska. Wetlands, 2012, 32, 301-310.	0.7	23
76	Landscape-level nitrogen import and export in an ecosystem with complex terrain, Colorado Front Range. Biogeochemistry, 2012, 109, 271-285.	1.7	21
77	Managing the impacts of nutrient enrichment on river systems: dealing with complex uncertainties in risk analyses. Freshwater Biology, 2012, 57, 108-123.	1.2	29
78	Nitrogen cycling and dynamics in a macrophyteâ€rich stream as determined by a release. Freshwater Biology, 2012, 57, 1579-1591.	1.2	44
79	The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: A review. Science of the Total Environment, 2012, 417-418, 1-12.	3.9	128
80	Stream nitrate uptake and transient storage over a gradient of geomorphic complexity, northâ€eentral Colorado, USA. Hydrological Processes, 2012, 26, 3241-3252.	1.1	52
81	Refining a kick sampling strategy for the bioassessment of benthic macroinvertebrates in headwater streams. Hydrobiologia, 2012, 683, 53-68.	1.0	15
82	Prioritizing locations for the riparian establishment based on spatiotemporal change of riparian forest area at a watershed scale. Paddy and Water Environment, 2012, 10, 49-58.	1.0	3
83	Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network. Hydrological Processes, 2013, 27, 3438-3451.	1.1	82
84	Variations in surface water-ground water interactions along a headwater mountain stream: Comparisons between transient storage and water balance analyses. Water Resources Research, 2013, 49, 3359-3374.	1.7	71
85	Effect of climate change and increased atmospheric CO2 on hydrological and nitrogen cycling in an intensive agricultural headwater catchment in western France. Climatic Change, 2013, 120, 433-447.	1.7	21
86	Water renewal along the aquatic continuum offsets cumulative retention by lakes: implications for the character of organic carbon in boreal lakes. Aquatic Sciences, 2013, 75, 535-545.	0.6	28
87	Mississippi River Ecohydrology: Past, present and future. Ecohydrology and Hydrobiology, 2013, 13, 73-83.	1.0	19
88	Identifying Riparian Buffer Effects on Stream Nitrogen in Southeastern Coastal Plain Watersheds. Environmental Management, 2013, 52, 1161-1176.	1.2	19
89	Cumulative Effects of Small Reservoirs on Streamflow in Northern Coastal California Catchments. Water Resources Management, 2013, 27, 5101.	1.9	40
90	Comparing the Extent and Permanence of Headwater Streams From Two Field Surveys to Values From Hydrographic Databases and Maps. Journal of the American Water Resources Association, 2013, 49, 867-882.	1.0	87

#	Article	IF	CITATIONS
91	Hydrogeochemical Characterization of Headwater Seepages Inhabited by the Endangered Bunched Arrowhead (<i>Sagittaria fasciculata</i>) in the Upper Piedmont of South Carolina. Southeastern Naturalist, 2013, 12, 619-637.	0.2	1
92	Blazing and grazing: influences of fire and bison on tallgrass prairie stream water quality. Freshwater Science, 2013, 32, 779-791.	0.9	21
93	Greater phosphorus uptake in forested headwater streams modified by clearfell forestry. Hydrobiologia, 2013, 703, 1-14.	1.0	10
94	A phosphorus index that combines critical source areas and transport pathways using a travel time approach. Journal of Hydrology, 2013, 486, 123-135.	2.3	57
95	Classifying the Health of Connecticut Streams Using Benthic Macroinvertebrates with Implications for Water Management. Environmental Management, 2013, 51, 1274-1283.	1.2	9
96	Recent trends in rivers with near-natural flow regime. Progress in Physical Geography, 2013, 37, 685-700.	1.4	39
97	Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12213-12218.	3.3	167
98	Nitrogen Pollution Characteristics and Genetic Analysis of FengHe River and its Tributaries. Applied Mechanics and Materials, 0, 316-317, 227-230.	0.2	2
99	Mineralisation of dissolved organic matter by heterotrophic stream biofilm communities in a large boreal catchment. Freshwater Biology, 2013, 58, 2007-2026.	1.2	23
100	Ecological Risk Assessment of China's Freshwater Ecosystems Applying the Relative Risk Model: Toward an Ecosystem-Based Water Management in China. Human and Ecological Risk Assessment (HERA), 2013, 19, 296-316.	1.7	6
101	The influence of environmental factors on the structure of caddisfly (Trichoptera) assemblage in the Nišava River (Central Balkan Peninsula). Knowledge and Management of Aquatic Ecosystems, 2013, , 03.	0.5	6
102	Spatial patterns of some trace elements in four Swedish stream networks. Biogeosciences, 2013, 10, 1407-1423.	1.3	12
103	Assessing Different Mechanisms of Toxicity in Mountaintop Removal/Valley Fill Coal Mining-Affected Watershed Samples Using Caenorhabditis elegans. PLoS ONE, 2013, 8, e75329.	1.1	21
104	Estimating Summer Nutrient Concentrations in Northeastern Lakes from SPARROW Load Predictions and Modeled Lake Depth and Volume. PLoS ONE, 2013, 8, e81457.	1.1	15
105	Agriculture and Eutrophication: Where Do We Go from Here?. Sustainability, 2014, 6, 5853-5875.	1.6	370
106	Global Change and Water Availability and Quality: Challenges Ahead. , 2014, , 11-20.		1
107	Sampling at mesoscale physical habitats to explain headwater stream water quality variations: Its comparison to equal-spaced sampling under seasonal and rainfall aided flushing states. Journal of Hydrology, 2014, 519, 3615-3633.	2.3	19
108	IMPACT OF CHANGING HYDROLOGY ON NUTRIENT UPTAKE IN HIGH ARCTIC RIVERS. River Research and Applications, 2014, 30, 1073-1083.	0.7	17

#	Article	IF	CITATIONS
109	Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality. Environmental Management, 2014, 54, 1288-1305.	1.2	23
110	Vegetation structure along urban ephemeral streams in southeastern Arizona. Urban Ecosystems, 2014, 17, 349-368.	1.1	6
111	From Headwaters to Coast: Influence of Human Activities on Water Quality of the Potomac River Estuary. Aquatic Geochemistry, 2014, 20, 291-323.	1.5	66
112	Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes. Biogeochemistry, 2014, 121, 247-269.	1.7	59
113	A screening-level modeling approach to estimate nitrogen loading and standard exceedance risk, with application to the Tippecanoe River watershed, Indiana. Journal of Environmental Management, 2014, 135, 1-10.	3.8	7
114	A Review of the Hyporheic Zone, Stream Restoration, and Means to Enhance Denitrification. Critical Reviews in Environmental Science and Technology, 2014, 44, 2337-2379.	6.6	68
115	High frequency variability of environmental drivers determining benthic community dynamics in headwater streams. Environmental Sciences: Processes and Impacts, 2014, 16, 1629-1636.	1.7	14
116	Characterizing Storm-Event Nitrate Fluxes in a Fifth Order Suburbanizing Watershed Using In Situ Sensors. Environmental Science & Technology, 2014, 48, 7756-7765.	4.6	56
117	A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins. Geophysical Research Letters, 2014, 41, 6403-6412.	1.5	134
118	Nitrate uptake dynamics of surface transient storage in stream channels and fluvial wetlands. Biogeochemistry, 2014, 120, 239-257.	1.7	30
119	Climate variability masks the impacts of land use change on nutrient export in a suburbanizing watershed. Biogeochemistry, 2014, 121, 45-59.	1.7	45
120	Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 2014, 50, 5342-5350.	1.7	325
121	A synoptic survey of ecosystem services from headwater catchments in the United States. Ecosystem Services, 2014, 7, 106-115.	2.3	39
122	Scaling of increased dissolved organic carbon inputs by forest clear-cutting – What arrives downstream?. Journal of Hydrology, 2014, 508, 299-306.	2.3	33
123	Influence of Restoration Age and Riparian Vegetation on Reachâ€5cale Nutrient Retention in Restored Urban Streams. Journal of the American Water Resources Association, 2014, 50, 626-638.	1.0	60
124	Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania. Frontiers in Microbiology, 2014, 5, 522.	1.5	58
125	Shallow Groundwater Denitrification in Riparian Zones of a Headwater Agricultural Landscape. Journal of Environmental Quality, 2014, 43, 732-744.	1.0	42
126	Composition and characteristics of macrophyte assemblages in small streams in Ireland. Biology and Environment, 2014, 114B, 163.	0.2	4

#	Article	IF	CITATIONS
127	Land use around headwater streams in a semi-rural environment in the humid tropics. International Journal of Water, 2014, 8, 82.	0.1	3
128	Urban Stream Deserts as a Consequence of Excess Stream Burial in Urban Watersheds. Annals of the American Association of Geographers, 2015, 105, 649-664.	3.0	37
129	River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resources Research, 2015, 51, 6893-6922.	1.7	290
130	Nutrient uptake along a fire gradient in boreal streams of Central Siberia. Freshwater Science, 2015, 34, 1443-1456.	0.9	30
131	Science at the boundaries: scientific support for the Clean Water Rule. Freshwater Science, 2015, 34, 1588-1594.	0.9	55
132	The spatial and temporal evolution of contributing areas. Water Resources Research, 2015, 51, 4550-4573.	1.7	74
133	Nutrient uptake dynamics across a gradient of nutrient concentrations and ratios at the landscape scale. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 326-340.	1.3	26
134	A Spatially Explicit Model for Mapping Headwater Streams. Journal of the American Water Resources Association, 2015, 51, 226-239.	1.0	21
135	Temporal control on concentration, character, and export of dissolved organic carbon in two hemiboreal headwater streams draining contrasting catchments. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 832-846.	1.3	34
136	Influence of Riparian Seepage Zones on Nitrate Variability in Two Agricultural Headwater Streams. Journal of the American Water Resources Association, 2015, 51, 883-897.	1.0	10
137	Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China. Sustainability, 2015, 7, 9067-9087.	1.6	32
138	Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation. PLoS ONE, 2015, 10, e0140430.	1.1	9
139	A field comparison of multiple techniques to quantify groundwater–surface-water interactions. Freshwater Science, 2015, 34, 139-160.	0.9	77
140	Stoichiometric impact of calcium carbonate deposition on nitrogen and phosphorus supplies in three montane streams. Biogeochemistry, 2015, 126, 285-300.	1.7	23
141	Variability of N Export in Water: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 2245-2281.	6.6	32
142	Comparison of Organic Matter Composition in Agricultural versus Forest Affected Headwaters with Special Emphasis on Organic Nitrogen. Environmental Science & Technology, 2015, 49, 2081-2090.	4.6	73
143	Reach-scale geomorphic differences between headwater streams draining mountaintop mined and unmined catchments. Geomorphology, 2015, 236, 25-33.	1.1	12
144	Vegetative litter decomposition along urban ephemeral streams in Southeastern Arizona. Urban Ecosystems, 2015, 18, 431-448.	1.1	3

#	Article	IF	CITATIONS
145	Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed. Agricultural Water Management, 2015, 158, 42-50.	2.4	67
146	The varying role of water column nutrient uptake along river continua in contrasting landscapes. Biogeochemistry, 2015, 125, 115-131.	1.7	42
147	Indirect nitrous oxide emissions from streams within the US Corn Belt scale with stream order. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9839-9843.	3.3	131
148	Quantifying land use effects on forested riparian buffer vegetation structure using LiDAR data. Ecosphere, 2015, 6, 1-17.	1.0	30
149	Predicting alpine headwater stream intermittency: a case study in the northern Rocky Mountains. Ecohydrology and Hydrobiology, 2015, 15, 68-80.	1.0	26
150	Controls on Temperature in Salmonidâ€Bearing Headwater Streams in Two Common Hydrogeologic Settings, Kenai Peninsula, Alaska. Journal of the American Water Resources Association, 2015, 51, 84-98.	1.0	21
151	Long-term impacts of land cover changes on stream channel loss. Science of the Total Environment, 2015, 537, 399-410.	3.9	33
152	Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecological Indicators, 2015, 48, 396-407.	2.6	165
153	Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms. Biogeosciences, 2016, 13, 1-12.	1.3	34
154	Hydrologic Exchange Flows and Their Ecological Consequences inÂRiver Corridors. , 2016, , 1-83.		17
155	Map-based prediction of organic carbon in headwater streams improved by downstream observations from the river outlet. Biogeosciences, 2016, 13, 399-413.	1.3	3
156	From Headwaters to Rivers to River Networks. , 2016, , 349-388.		9
157	Beyond the Clean Water Rule: Impacts of a Non-Jurisdictional Ditch on Headwater Stream Discharge and Water Chemistry. Water (Switzerland), 2016, 8, 607.	1.2	1
158	Sediment, water column, and openâ€channel denitrification in rivers measured using membraneâ€inlet mass spectrometry. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1258-1274.	1.3	69
159	The influence of storm characteristics on hydrological connectivity in intermittent channel networks: implications for nitrogen transport and denitrification. Freshwater Biology, 2016, 61, 1214-1227.	1.2	11
160	Throughfall enrichment and stream nutrient chemistry in small headwater catchments with different land cover in southern Chile. Hydrological Processes, 2016, 30, 4944-4955.	1.1	11
161	Interpreting the seasonal and long-term trend of nitrate in both groundwater and spring water in a typical headwater wetland with well-defined groundwater flow pathways. Water Science and Technology: Water Supply, 2016, 16, 1327-1338.	1.0	0
162	Using microbiological tracers to assess the impact of winter land use restrictions on the quality of stream headwaters in a small catchment. Science of the Total Environment, 2016, 541, 949-956.	3.9	7

# 163	ARTICLE Is water age a reliable indicator for evaluating water quality effectiveness of water diversion projects in eutrophic lakes?. Journal of Hydrology, 2016, 542, 281-291.	IF 2.3	CITATIONS
164	Effect of land cover on channel form adjustment of headwater streams in a lateritic belt of West Bengal (India). International Soil and Water Conservation Research, 2016, 4, 267-277.	3.0	17
165	Exploring lag times between monthly atmospheric deposition and stream chemistry in Appalachian forests using cross-correlation. Atmospheric Environment, 2016, 146, 206-214.	1.9	5
166	A <scp>GIS</scp> Framework for Regional Modeling of Riverine Nitrogen Transport: Case Study, San Antonio and Guadalupe Basins. Journal of the American Water Resources Association, 2016, 52, 1-15.	1.0	17
167	Dissolved organic carbon uptake in streams: A review and assessment of reachâ€scale measurements. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2019-2029.	1.3	83
168	Variability in isotopic composition of base flow in two headwater streams of the southern Appalachians. Water Resources Research, 2016, 52, 4264-4279.	1.7	19
169	Transit times—the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 629-657.	2.8	184
170	Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments. Forest Ecology and Management, 2016, 376, 9-23.	1.4	16
171	Enriched Groundwater Seeps in Two Vermont Headwater Catchments are Hotspots of Nitrate Turnover. Wetlands, 2016, 36, 237-249.	0.7	31
172	Constitution of a catchment virtual observatory for sharing flow and transport models outputs. Journal of Hydrology, 2016, 543, 59-66.	2.3	14
173	Stable isotope on the evaluation of water quality in the presence of WWTPs in rivers. Environmental Science and Pollution Research, 2016, 23, 18175-18182.	2.7	12
174	Collocation of hydrological and biological attenuation of nitrate in an urban stream. Hydrological Processes, 2016, 30, 2948-2957.	1.1	1
175	What Matters When Explaining Environmentalism at the Watershed Level. Environment and Behavior, 2016, 48, 1148-1174.	2.1	10
176	Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Science of the Total Environment, 2016, 548-549, 325-339.	3.9	102
177	Flow intermittency, physico-chemistry and function of headwater streams in an Alpine glacial catchment. Aquatic Sciences, 2016, 78, 327-341.	0.6	37
178	Barrage fishponds: Reduction of pesticide concentration peaks and associated risk of adverse ecological effects in headwater streams. Journal of Environmental Management, 2016, 169, 261-271.	3.8	19
179	The potential of agricultural headwater streams to retain soluble reactive phosphorus. Hydrobiologia, 2017, 793, 149-160.	1.0	29
180	Impacts of converting low-intensity pastureland to high-intensity bioenergy cropland on the water quality of tropical streams in Brazil. Science of the Total Environment, 2017, 584-585, 339-347.	3.9	52

#	Article	IF	CITATIONS
181	Imaging Hydrological Processes in Headwater Riparian Seeps with Time‣apse Electrical Resistivity. Ground Water, 2017, 55, 136-148.	0.7	9
182	Input-output model based ecological risk assessment for ecological risk management of watersheds: a case study in the Taihu Lake watershed, China. Water Policy, 2017, 19, 556-573.	0.7	1
183	Estimation of Catchment Nutrient Loads in New Zealand Using Monthly Water Quality Monitoring Data. Journal of the American Water Resources Association, 2017, 53, 158-178.	1.0	20
184	The significance of small streams. Frontiers of Earth Science, 2017, 11, 447-456.	0.9	120
185	Watershed influences on the structure and function of riparian wetlands associated with headwater streams – Kenai Peninsula, Alaska. Science of the Total Environment, 2017, 599-600, 124-134.	3.9	12
186	Climate change, water supply and environmental problems of headwaters: The paradigmatic case of the Tiber, Savio and Marecchia rivers (Central Italy). Science of the Total Environment, 2017, 598, 733-748.	3.9	23
187	Ecohydrological interfaces as hot spots of ecosystem processes. Water Resources Research, 2017, 53, 6359-6376.	1.7	155
188	Longitudinal patterns of microplastic concentration and bacterial assemblages in surface and benthic habitats of an urban river. Freshwater Science, 2017, 36, 491-507.	0.9	130
189	Water quality longitudinal profile of the ParaÃba do Sul River, Brazil during an extreme drought event. Limnology and Oceanography, 2017, 62, S131.	1.6	15
190	Peatland restoration and the dynamics of dissolved nitrogen in upland freshwaters. Ecological Engineering, 2017, 106, 44-54.	1.6	4
191	Assessing the importance of seepage and springs to nitrate flux in a stream network in the Wisconsin sand plains. Hydrological Processes, 2017, 31, 2016-2028.	1.1	10
192	Spatio-temporal streamflow generation in a small, steep headwater catchment in western Japan. Hydrological Sciences Journal, 2017, 62, 818-829.	1.2	6
193	Carbon dynamics of river corridors and the effects of human alterations. Ecological Monographs, 2017, 87, 379-409.	2.4	86
194	Catchment land use-dependent effects of barrage fishponds on the functioning of headwater streams. Environmental Science and Pollution Research, 2017, 24, 5452-5468.	2.7	7
195	SWAT modeling of hydrology, sediment and nutrients from the Grand River, Ontario. Water Quality Research Journal of Canada, 2017, 52, 243-257.	1.2	13
196	Enhancing protection for vulnerable waters. Nature Geoscience, 2017, 10, 809-815.	5.4	141
197	Effects of conservation wetlands on stream habitat, water quality and fish communities in agricultural watersheds of the lower Mississippi River Basin. Ecological Engineering, 2017, 107, 99-109.	1.6	17
198	Development of Regional Curves for Hydrologic Landscape Regions (<scp>HLR</scp>) in the Contiguous United States. Journal of the American Water Resources Association, 2017, 53, 903-928.	1.0	14

#	Article	IF	CITATIONS
199	Headwater stream length dynamics across four physiographic provinces of the <scp>A</scp> ppalachian <scp>H</scp> ighlands. Hydrological Processes, 2017, 31, 3350-3363.	1.1	72
200	Disrupted carbon cycling in restored and unrestored urban streams: Critical timescales and controls. Limnology and Oceanography, 2017, 62, S160.	1.6	29
201	Headwater regions — Physical, ecological, and social approaches to understand these areas: introduction to the special issue. Frontiers of Earth Science, 2017, 11, 443-446.	0.9	4
202	The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia, 2017, 793, 3-39.	1.0	332
203	Spatially Explicit Modeling in Ecology: A Review. Ecosystems, 2017, 20, 284-300.	1.6	88
204	Climate change and multiple stressors in small tropical streams. Hydrobiologia, 2017, 793, 41-53.	1.0	45
205	Relative linkages of stream water quality and environmental health with the land use and hydrologic drivers in the coastalâ€urban watersheds of southeast Florida. GeoHealth, 2017, 1, 180-195.	1.9	12
206	Anthropogenic Phosphorus Inputs to a River Basin and Their Impacts on Phosphorus Fluxes Along Its Upstreamâ€Đownstream Continuum. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3273-3287.	1.3	19
207	Leaf litter additions enhance stream metabolism, denitrification, and restoration prospects for agricultural catchments. Ecosphere, 2017, 8, e02018.	1.0	25
208	Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed. Biogeochemistry, 2017, 136, 353-372.	1.7	18
209	Development of a Hydrologic Connectivity Dataset for SWAT Assessments in the US. Water (Switzerland), 2017, 9, 892.	1.2	5
210	Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the AladaÄŸlar Range (Adana, Turkey). Geofluids, 2017, 2017, 1-21.	0.3	21
211	Assessing the Yield and Load of Contaminants with Stream Order: Would Policy Requiring Livestock to Be Fenced Out of Highâ€Order Streams Decrease Catchment Contaminant Loads?. Journal of Environmental Quality, 2017, 46, 1038-1047.	1.0	17
212	An Opinion on Spring Habitats within the Earth's Critical Zone in Headwater Regions. Water (Switzerland), 2017, 9, 645.	1.2	11
213	Effects of Thinning on Flow Peaks in a Forested Headwater Catchment in Western Japan. Water (Switzerland), 2017, 9, 446.	1.2	2
214	Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters. Journal of the American Water Resources Association, 2018, 54, 287-297.	1.0	30
215	Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis. Journal of the American Water Resources Association, 2018, 54, 323-345.	1.0	53
216	Role of riparian wetlands and hydrological connectivity in the dynamics of stream thermal regimes. Hydrology Research, 2018, 49, 634-647.	1.1	4

#	Article	IF	CITATIONS
217	Trends and seasonality of river nutrients in agricultural catchments: 18 years of weekly citizen science in France. Science of the Total Environment, 2018, 624, 845-858.	3.9	102
218	Unexpected spatial stability of water chemistry in headwater stream networks. Ecology Letters, 2018, 21, 296-308.	3.0	149
219	Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: A national perspective on eutrophication. Science of the Total Environment, 2018, 621, 849-862.	3.9	113
220	Sediment–Water Surface Area Along Rivers: Water Column Versus Benthic. Ecosystems, 2018, 21, 1505-1520.	1.6	19
221	Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin. Journal of Hydrology, 2018, 559, 749-761.	2.3	45
222	Limited N removal by denitrification in agricultural drainage ditches in the Taihu Lake region of China. Journal of Soils and Sediments, 2018, 18, 1110-1119.	1.5	19
223	Differences in soil chemistry remain following wildfires on temperate heath and blanket bog sites of conservation concern. Geoderma, 2018, 315, 20-26.	2.3	10
224	Effects of land use and sampling distance on water quality in tropical headwater springs (Pimenta) Tj ETQq1 1 0.	.784314 rg	gBT_{Overlock
225	Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China. Environmental Science and Pollution Research, 2018, 25, 2756-2773.	2.7	25
226	Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States. Journal of Hydrology, 2018, 556, 359-370.	2.3	70
227	The Native Vegetation Protection Law of Brazil and the challenge for first-order stream conservation. Perspectives in Ecology and Conservation, 2018, 16, 49-53.	1.0	14
228	Land Use: Catchment Management. , 2018, , .		0
229	Effects of Urban Stormwater Control Measures on Denitrification in Receiving Streams. Water (Switzerland), 2018, 10, 1582.	1.2	10
230	Toward measuring biogeochemistry within the streamâ€groundwater interface at the network scale: An initial assessment of two spatial sampling strategies. Limnology and Oceanography: Methods, 2018, 16, 722-733.	1.0	15
231	The Relative Influence of Storm and Landscape Characteristics on Shallow Groundwater Responses in Forested Headwater Catchments. Water Resources Research, 2018, 54, 9883-9900.	1.7	13
232	Restoration increases transient storages in boreal headwater streams. River Research and Applications, 2018, 34, 1278-1285.	0.7	4
233	Using geochemistry to understand water sources and transit times in headwater streams of a temperate rainforest. Applied Geochemistry, 2018, 99, 1-12.	1.4	19
234	Luteinizing Hormone Involvement in Aging Female Cognition: Not All Is Estrogen Loss. Frontiers in Endocrinology, 2018, 9, 544.	1.5	25

#	Article	IF	CITATIONS
235	Coupling High-Frequency Stream Metabolism and Nutrient Monitoring to Explore Biogeochemical Controls on Downstream Nitrate Delivery. Environmental Science & Technology, 2018, 52, 13708-13717.	4.6	32
236	River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks. Biogeochemistry, 2018, 141, 503-521.	1.7	96
237	Substrate-specific biofilms control nutrient uptake in experimental streams. Freshwater Science, 2018, 37, 456-471.	0.9	14
238	Small Water Bodies in Great Britain and Ireland: Ecosystem function, human-generated degradation, and options for restorative action. Science of the Total Environment, 2018, 645, 1598-1616.	3.9	87
239	Groundwater Flow and Exchange Across the Land Surface Explain Carbon Export Patterns in Continuous Permafrost Watersheds. Geophysical Research Letters, 2018, 45, 7596-7605.	1.5	37
240	Influence of Land Use and Point Source Pollution on Water Quality in a Developed Region: A Case Study in Shunde, China. International Journal of Environmental Research and Public Health, 2018, 15, 51.	1.2	12
241	Spatial Assessment of Water Quality with Urbanization in 2007–2015, Shanghai, China. Remote Sensing, 2018, 10, 1024.	1.8	13
242	Limited nitrate retention capacity in the Upper Mississippi River. Environmental Research Letters, 2018, 13, 074030.	2.2	26
243	Modeling anthropogenic nitrogen flow for the Niantic River catchment in coastal New England. Landscape Ecology, 2018, 33, 1385-1398.	1.9	2
244	Subsurface nutrient processing capacity in agricultural roadside ditches. Science of the Total Environment, 2018, 637-638, 470-479.	3.9	11
245	Modeling wet headwater stream networks across multiple flow conditions in the Appalachian Highlands. Earth Surface Processes and Landforms, 2018, 43, 2762-2778.	1.2	31
246	Nitrogen and phosphorus discharge from small agricultural catchments predicted from land use and hydroclimate. Land Use Policy, 2018, 75, 260-268.	2.5	11
247	Differing Modes of Biotic Connectivity within Freshwater Ecosystem Mosaics. Journal of the American Water Resources Association, 2019, 55, 307-317.	1.0	23
248	An overview of patterns and dynamics of suspended sediment transport in an agroforest headwater system in humid climate: Results from a long-term monitoring. Science of the Total Environment, 2019, 648, 33-43.	3.9	21
249	Monarch Habitat as a Component of Multifunctional Landscape Restoration Using Continuous Riparian Buffers. Frontiers in Environmental Science, 2019, 7, .	1.5	3
250	Small Ponds in Headwater Catchments Are a Dominant Influence on Regional Nutrient and Sediment Budgets. Geophysical Research Letters, 2019, 46, 9669-9677.	1.5	45
251	Advocating for Science: Amici Curiae Brief of Wetland and Water Scientists in Support of the Clean Water Rule. Wetlands, 2019, 39, 403-414.	0.7	17
252	Modeling River Connectivity Using the Barrier Assessment Tool and Available Data on Registered Dams in the Guadalupe–San Antonio River System, Texas. Professional Geographer, 2019, 71, 616-630.	1.0	1

#	Article	IF	CITATIONS
253	Basins, beaver ponds, and the storage and redistribution of trace elements in an industrially impacted coastal plain stream on the Savannah River Site, SC, USA. Environment International, 2019, 133, 105174.	4.8	3
254	Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion. Environmental Pollution, 2019, 255, 113273.	3.7	27
255	What Triggers Streamflow for Intermittent Rivers and Ephemeral Streams in Lowâ€Gradient Catchments in Mediterranean Climates. Water Resources Research, 2019, 55, 9926-9946.	1.7	43
256	Hydrologic Extremes and Legacy Sources Can Override Efforts to Mitigate Nutrient and Sediment Losses at the Catchment Scale. Journal of Environmental Quality, 2019, 48, 1314-1324.	1.0	22
257	Spatial patterns of water quality impairments from point source nutrient loads in Germany's largest national River Basin (Weser River). Science of the Total Environment, 2019, 697, 134145.	3.9	23
258	Supply, Demand, and In-Stream Retention of Dissolved Organic Carbon and Nitrate During Storms in Mediterranean Forested Headwater Streams. Frontiers in Environmental Science, 2019, 7, .	1.5	24
259	Urban legacies: Aquatic stressors and low aquatic biodiversity persist despite implementation of regenerative stormwater conveyance systems. Freshwater Science, 2019, 38, 818-833.	0.9	18
260	Connectivity and Nitrate Uptake Potential of Intermittent Streams in the Northeast USA. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	5
261	Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: A catchment modeling approach - Part 2. Science of the Total Environment, 2019, 653, 1557-1570.	3.9	31
262	Headwater Streams andÂWetlands are CriticalÂfor Sustaining Fish, Fisheries, and Ecosystem Services. Fisheries, 2019, 44, 73-91.	0.6	110
263	Nitrogen transport and retention in a headwater catchment with dense distributions of lowland ponds. Science of the Total Environment, 2019, 683, 37-48.	3.9	42
264	Estimation of macropore flow characteristics in stony soils of a small mountain catchment. Journal of Hydrology, 2019, 574, 1176-1187.	2.3	23
265	River nutrient water and sediment measurements inform on nutrient retention, with implications for eutrophication. Science of the Total Environment, 2019, 684, 296-302.	3.9	59
266	Climate, Landforms, and Geology Affect Baseflow Sources in a Mountain Catchment. Water Resources Research, 2019, 55, 5238-5254.	1.7	42
267	Distribution of Landscape Units Within Catchments Influences Nutrient Export Dynamics. Frontiers in Environmental Science, 2019, 7, .	1.5	28
268	Seasonal dynamics and exports of elements from a firstâ€order stream to a large inland lake in Michigan. Hydrological Processes, 2019, 33, 1476-1491.	1.1	2
269	Modeling the Natural Drainage Network of the Grand River in Southern Ontario: Agriculture May Increase Total Channel Length of Low-Order Streams. Geosciences (Switzerland), 2019, 9, 46.	1.0	2
270	Detecting Signals of Largeâ€Scale Climate Phenomena in Discharge and Nutrient Loads in the Mississippiâ€Atchafalaya River Basin. Geophysical Research Letters, 2019, 46, 3791-3801.	1.5	21

#	Article	IF	CITATIONS
271	Using stable isotopes and tritium to delineate groundwater flow systems and their relationship to streams in the Geum River basin, Korea. Journal of Hydrology, 2019, 573, 267-280.	2.3	23
272	How Hydrologic Connectivity Regulates Water Quality in River Corridors. Journal of the American Water Resources Association, 2019, 55, 369-381.	1.0	75
273	Strong and recurring seasonality revealed within stream diatom assemblages. Scientific Reports, 2019, 9, 3313.	1.6	16
274	Springs drive downstream nitrate export from artificially-drained agricultural headwater catchments. Science of the Total Environment, 2019, 671, 119-128.	3.9	20
275	Effects of channel morphology on nitrate retention in a headwater agricultural stream in Lake Chaohu Basin, China. Environmental Science and Pollution Research, 2019, 26, 10651-10661.	2.7	2
276	Chemical controls on dissolved phosphorus mobilization in a calcareous agricultural stream during base flow. Science of the Total Environment, 2019, 660, 876-885.	3.9	10
277	Advances in Quantifying Streamflow Variability Across Continental Scales: 1. Identifying Natural and Anthropogenic Controlling Factors in the USA Using a Spatially Explicit Modeling Method. Water Resources Research, 2019, 55, 10893-10917.	1.7	7
278	LINX I and II: Lessons Learned and Emerging Questions. Frontiers in Environmental Science, 2019, 7, .	1.5	4
279	Multiscale Featureâ€feature Interactions Control Patterns of Hyporheic Exchange in a Simulated Headwater Mountain Stream. Water Resources Research, 2019, 55, 10976-10992.	1.7	15
280	Excess Nitrate Export in Mountaintop Removal Coal Mining Watersheds. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3867-3880.	1.3	17
281	Management of headwaters based on macroinvertebrate assemblages and environmental attributes. Science of the Total Environment, 2019, 650, 438-451.	3.9	5
282	Mixed-chemical exposure and predicted effects potential in wadeable southeastern USA streams. Science of the Total Environment, 2019, 655, 70-83.	3.9	40
283	The effect of agriculture on the seasonal dynamics and functional diversity of benthic biofilm in tropical headwater streams. Biotropica, 2019, 51, 18-27.	0.8	10
284	Modeling Benthic Versus Hyporheic Nutrient Uptake in Unshaded Streams With Varying Substrates. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 367-383.	1.3	19
285	High stream intermittency in an alpine fluvial network: Val Roseg, Switzerland. Limnology and Oceanography, 2020, 65, 557-568.	1.6	30
286	Forest streams are important sources for nitrous oxide emissions. Global Change Biology, 2020, 26, 629-641.	4.2	27
287	Effects of climateâ€related variability in storage on streamwater solute concentrations and fluxes in a small forested watershed in the Southeastern United States. Hydrological Processes, 2020, 34, 189-208.	1.1	4
288	Evaluating transient storage and associated nutrient retention in a nutrient-rich headwater stream: a case study in Lake Chaohu Basin, China. Environmental Science and Pollution Research, 2020, 27, 6066-6077.	2.7	4

#	Article	IF	CITATIONS
289	Barrage fishponds, a funnel effect for metal contaminants on headwater streams. Environmental Science and Pollution Research, 2020, 27, 6228-6238.	2.7	0
290	Downstream transport processes modulate the effects of environmental heterogeneity on riverine phytoplankton. Science of the Total Environment, 2020, 703, 135519.	3.9	16
291	The life aquatic in high relief: shifts in the physical and biological characteristics of alpine lakes along an elevation gradient in the Rocky Mountains, USA. Aquatic Sciences, 2020, 82, 1.	0.6	7
292	Climate change and traditional upland paddy farming: a Philippine case study. Paddy and Water Environment, 2020, 18, 317-330.	1.0	3
293	Water quality evaluation of two urban streams in Northwest Uruguay: are national regulations for urban stream quality sufficient?. Environmental Monitoring and Assessment, 2020, 192, 661.	1.3	9
294	Bayesian estimates of the mean recharge elevations of water sources in the Central America region using stable water isotopes. Journal of Hydrology: Regional Studies, 2020, 32, 100739.	1.0	7
295	Characterizing nitrogen attenuation by headwater slope wetlands across different land uses. Ecological Engineering, 2020, 149, 105833.	1.6	5
296	Impact of Riparian and Stream Restoration on Denitrification in Geomorphic Features of Agricultural Streams. Transactions of the ASABE, 2020, 63, 1157-1167.	1.1	1
297	Headwater Catchments Govern Biogeochemistry in America's Largest Freeâ€Flowing River Network. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005851.	1.3	6
298	Urbanization alters coastal plain stream carbon export and dissolved oxygen dynamics. Science of the Total Environment, 2020, 747, 141132.	3.9	19
299	Stream order and connectivity affect phosphorus distribution in plain river network. Environmental Pollutants and Bioavailability, 2020, 32, 146-153.	1.3	4
300	Near-surface soil moisture dynamics in a prairie hillslope seep/headwater stream system in Texas, USA. Physical Geography, 2020, , 1-21.	0.6	1
301	Runâ€ofâ€river dams as a barrier to the movement of a streamâ€dwelling amphibian. Ecosphere, 2020, 11, e03207.	1.0	8
302	Inexpensive spot sampling provides unexpectedly effective indicators of watershed nitrogen status. Ecosphere, 2020, 11, e03224.	1.0	7
303	Streamflow permanence in headwater streams across four geomorphic provinces in Northern California. Hydrological Processes, 2020, 34, 4487-4504.	1.1	14
304	Does the buffer width matter: Testing the effectiveness of forest certificates in the protection of headwater stream ecosystems. Forest Ecology and Management, 2020, 478, 118532.	1.4	17
305	Spatiotemporal Dynamics of Nitrogen Transport in the Qiandao Lake Basin, a Large Hilly Monsoon Basin of Southeastern China. Water (Switzerland), 2020, 12, 1075.	1.2	7
306	Effects of dams and reservoirs on organic matter decomposition in forested mountain streams in western Japan. River Research and Applications, 2020, 36, 1257-1266.	0.7	7

#	Article	IF	CITATIONS
307	Prescribed fire effects on sediment and nutrient exports in forested environments: A review. Journal of Environmental Quality, 2020, 49, 793-811.	1.0	17
308	Headwaters drive streamflow and lowland tracer export in a largeâ€scale humid tropical catchment. Hydrological Processes, 2020, 34, 3824-3841.	1.1	13
309	Simulating Groundwater‣treamflow Connections in the Upper Colorado River Basin. Ground Water, 2020, 58, 392-405.	0.7	19
310	Conceptual Mini-Catchment Typologies for Testing Dominant Controls of Nutrient Dynamics in Three Nordic Countries. Water (Switzerland), 2020, 12, 1776.	1.2	12
311	Headwater Streams. , 2020, , 371-378.		6
312	The variation and controls of mean transit times in Australian headwater catchments. Hydrological Processes, 2020, 34, 4034-4048.	1.1	11
313	Low threshold for nitrogen concentration saturation in headwaters increases regional and coastal delivery. Environmental Research Letters, 2020, 15, 044018.	2.2	9
314	Combining Tools from Edge-of-Field to In-Stream to Attenuate Reactive Nitrogen along Small Agricultural Waterways. Water (Switzerland), 2020, 12, 383.	1.2	23
315	Thinking Upstream: How Do Landowner Attitudes Affect Forested Riparian Buffer Coverage?. Environmental Management, 2020, 65, 689-701.	1.2	4
316	Influence of water body area on water quality in the southern Jiangsu Plain, eastern China. Journal of Cleaner Production, 2020, 254, 120136.	4.6	36
317	Selenium Bioaccumulation Across Trophic Levels and Along a Longitudinal Gradient in Headwater Streams. Environmental Toxicology and Chemistry, 2020, 39, 692-704.	2.2	15
318	Nutrient attenuation in a shallow, gravel-bed river. I. <i>In-situ</i> chamber experiments. New Zealand Journal of Marine and Freshwater Research, 2020, 54, 393-409.	0.8	2
319	Climate Change Causes River Network Contraction and Disconnection in the H.J. Andrews Experimental Forest, Oregon, USA. Frontiers in Water, 2020, 2, .	1.0	32
320	Spatiotemporal Variability in Transport and Reactive Processes Across a First―to Fifthâ€Order Fluvial Network. Water Resources Research, 2020, 56, e2019WR026303.	1.7	6
321	Drought alters the biogeochemistry of boreal stream networks. Nature Communications, 2020, 11, 1795.	5.8	49
322	The ability of detainment bunds to decrease surface runoff leaving pastoral catchments: Investigating a novel approach to agricultural stormwater management. Agricultural Water Management, 2021, 243, 106423.	2.4	5
323	Disentangling the Impact of Catchment Heterogeneity on Nitrate Export Dynamics From Event to Longâ€Term Time Scales. Water Resources Research, 2021, 57, e2020WR027992.	1.7	23
324	Examining the utility of continuously quantified Darcy fluxes through the use of periodic temperature time series. Journal of Hydrology, 2021, 595, 125675.	2.3	6

#	Article	IF	CITATIONS
325	Hydromorphologic Sorting of In-Stream Nitrogen Uptake Across Spatial Scales. Ecosystems, 2021, 24, 1184-1202.	1.6	2
326	Conceptual Framework of Connectivity for a National Agroecosystem Model Based on Transport Processes and Management Practices. Journal of the American Water Resources Association, 2021, 57, 154-169.	1.0	10
327	Utilizing Geospatial Tools to Assign Unique Identifiers to Water Bodies in a Low-Income Country. Journal of Water Resource and Protection, 2021, 13, 236-253.	0.3	0
328	The River Corridor's Evolving Connectivity of Lotic and Lentic Waters. Frontiers in Water, 2021, 2, .	1.0	6
329	Effect of Decreasing Biological Lability on Dissolved Organic Matter Dynamics in Streams. Water Resources Research, 2021, 57, e2020WR027918.	1.7	6
330	Baseflow nitrate dynamics within nested watersheds of an agricultural stream in Nebraska, USA. Agriculture, Ecosystems and Environment, 2021, 308, 107223.	2.5	20
331	Water column contributions to the metabolism and nutrient dynamics of mid-sized rivers. Biogeochemistry, 2021, 153, 67-84.	1.7	7
332	A case study of factors controlling water quality in two warm monomictic tropical reservoirs located in contrasting agricultural watersheds. Science of the Total Environment, 2021, 762, 144511.	3.9	18
333	Influence of surface geology on phosphorus export in coastal forested headwater catchments in Akita, Japan. Soil Science and Plant Nutrition, 2021, 67, 332-346.	0.8	0
334	The Case for Studying Highly Modified Agricultural Streams: Farming for Biogeochemical Insights. Limnology and Oceanography Bulletin, 2021, 30, 41-47.	0.2	8
335	A practical tool to support ecosystem-based management in a river ecosystem: a case study of the Yellow River in China. Water Policy, 2021, 23, 737-749.	0.7	0
337	The Role of Hyporheic Connectivity in Determining Nitrogen Availability: Insights From an Intermittent Antarctic Stream. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006309.	1.3	7
338	Spatio-temporal controls of C–N–P dynamics across headwater catchments of a temperate agricultural region from public data analysis. Hydrology and Earth System Sciences, 2021, 25, 2491-2511.	1.9	12
340	Multi-region assessment of chemical mixture exposures and predicted cumulative effects in USA wadeable urban/agriculture-gradient streams. Science of the Total Environment, 2021, 773, 145062.	3.9	20
341	Sediment and Nutrient Retention in Ponds on an Agricultural Stream: Evaluating Effectiveness for Diffuse Pollution Mitigation. Water (Switzerland), 2021, 13, 1640.	1.2	10
342	Development of random forest model as decision support tool in water resources management of Ogun headwater catchments. Applied Water Science, 2021, 11, 1.	2.8	5
343	Decay Rate of Escherichia coli in a Mountainous Tropical Headwater Wetland. Water (Switzerland), 2021, 13, 2068.	1.2	5
344	Tropical forest understorey riparian and upland composition, structure, and function in areas with different past land use. Applied Vegetation Science, 2021, 24, .	0.9	3

#	Article	IF	CITATIONS
345	Natural attenuation of large anthropogenic nitrate loads in a subtropical stream revealed by δ15N and δ18O. Journal of Hydrology, 2021, 598, 126077.	2.3	3
346	Capital and symbolic power in water quality governance: stakeholder dynamics in managing nonpoint sources pollution. Journal of Environmental Management, 2021, 290, 112587.	3.8	10
347	Assessing the potential and kinetics of coupled nutrients uptake in mesotrophic streams in Chaohu Lake Basin, China. Environmental Science and Pollution Research, 2021, 28, 62877-62890.	2.7	1
348	A comparison of water quality sensor deployment designs in wadeable streams. Limnology and Oceanography: Methods, 2021, 19, 673.	1.0	2
349	The ability of detainment bunds to decrease sediments transported from pastoral catchments in surface runoff. Hydrological Processes, 2021, 35, e14309.	1.1	2
350	Groundwater Dominates Water Fluxes in a Headwater Catchment During Drought. Frontiers in Water, 2021, 3, .	1.0	3
351	Hydraulic and biological controls of biofilm nitrogen uptake in gravelâ€bed streams. Limnology and Oceanography, 2021, 66, 3887-3900.	1.6	5
352	Restored riverine wetlands in a headwater stream can simultaneously behave as sinks of N2O and hotspots of CH4 production. Environmental Pollution, 2021, 284, 117114.	3.7	16
353	Ecological theory applied to environmental metabolomes reveals compositional divergence despite conserved molecular properties. Science of the Total Environment, 2021, 788, 147409.	3.9	21
354	Using flow simulation to inform the design and placement of remediation units in rivers. Journal of the Royal Society of New Zealand, 2021, 51, 212-241.	1.0	3
355	Estimate of nutrient sources and transport into Bohai Bay in China from a lower plain urban watershed using a SPARROW model. Environmental Science and Pollution Research, 2021, 28, 25733-25747.	2.7	10
356	Geomorphology Imparts Spatial Organization on Hydrological and Biogeochemical Fluxes. , 2022, , 53-67.		2
357	Agricultural development risks increasing gully erosion and cumulative sediment yields from headwater streams in Great Barrier Reef catchments. Land Degradation and Development, 2021, 32, 1555-1569.	1.8	16
358	Global Sources of Nitrous Oxide. , 2013, , 131-175.		5
359	Mean transit time and subsurface flow paths in a humid temperate headwater catchment with granitic bedrock. Journal of Hydrology, 2020, 587, 124942.	2.3	12
361	Urban Stream Burial Increases Watershed-Scale Nitrate Export. PLoS ONE, 2015, 10, e0132256.	1.1	34
362	Spatial Distribution and Geomorphological Characteristics of Headwater Stream (Dorang) Catchments in Geum River Basin. Journal of Korean Neuropsychiatric Association, 2014, 30, 319-328.	0.2	1
363	Impacts of Small Impoundments On An Intermittent Headwater Stream Community. Southwestern Naturalist, 2018, 63, 34-41.	0.1	6

#	Article	IF	CITATIONS
364	Managing the small stream network for improved water quality, biodiversity and ecosystem services protection (SSNet). Research Ideas and Outcomes, 0, 5, .	1.0	6
365	Spatial assessment of sewage discharge with urbanization in 2004–2014, Beijing, China. AIMS Environmental Science, 2016, 3, 842-857.	0.7	3
368	Assessing seasonal variations in water sources of streamflow in a temperate mesoscale catchment with granitic bedrocks using hydrochemistry and stable isotopes. Journal of Hydrology: Regional Studies, 2021, 38, 100940.	1.0	3
369	Understanding effects of global change on river ecosystems: science to support policy in a changing world. , 2010, , 3-18.		1
372	Nutrient Limitation and Uptake Rates in Streams and Rivers of the Greater Yellowstone Ecosystem. Annual Report, 0, 36, 153-159.	0.0	0
373	Land Use: Catchment Management. , 2014, , 98-113.		0
375	Headwater Streams Contain Amounts of Heavy Metal in an Alpine Forest in the Upper Reaches of the Yangtze River. Sains Malaysiana, 2019, 48, 1565-1574.	0.3	1
376	Effectiveness of Stormwater Best Management Practices in Headwater Streams to Mitigate Harmful Algal Blooms. Case Studies in the Environment, 2020, 4, .	0.4	0
377	Improving Water Sustainability through Modeling Optimum Sites for Riparian Forest Reforestation. Water (Switzerland), 2021, 13, 46.	1.2	2
378	Stacked conservation practices reduce nitrogen loss: A paired watershed study. Journal of Environmental Management, 2022, 302, 114053.	3.8	3
379	Long-Term Ecohydrologic Monitoring: A Case Study from the Santee Experimental Forest, South Carolina. The Journal of South Carolina Water Resources, 2020, , 46-55.	0.7	4
380	Salmonid Habitat and Population Capacity Estimates for Steelhead Trout and Chinook Salmon Upstream of Scott Dam in the Eel River, California. Northwest Science, 2020, 94, 70.	0.1	6
381	Future of Freshwater Ecosystems in a 1.5°C Warmer World. Frontiers in Environmental Science, 2021, 9, .	1.5	18
382	Upstream 2000Âha is the boundary of the stream water nitrogen and phosphorus saturation concentration threshold in the subtropical agricultural catchment. Catena, 2022, 211, 105960.	2.2	8
383	Assessment of Index Case Family Testing Among Adults Attending Art Clinic at Kule Refugee Camp, Southwest Ethiopia: 2021. HIV/AIDS - Research and Palliative Care, 2022, Volume 14, 13-21.	0.4	2
384	Longitudinal Chemical Gradients and the Functional Responses of Nutrients, Organic Matter, and Other Parameters to the Land Use Pattern and Monsoon Intensity. Water (Switzerland), 2022, 14, 237.	1.2	3
385	Aquatic Macrophytes Are Associated With Variation in Biogeochemistry and Bacterial Assemblages of Mountain Lakes. Frontiers in Microbiology, 2021, 12, 777084.	1.5	6
386	DNA metabarcoding reveals human impacts on macroinvertebrate communities in polluted headwater streams: Evidence from the Liao River in northeast China. Environmental Pollution, 2022, 300, 118929.	3.7	2

#	Article	IF	CITATIONS
387	Groundwaterâ€surface water exchange as key control for instream and groundwater nitrate concentrations along a firstâ€order agricultural stream. Hydrological Processes, 0, , .	1.1	4
388	Factors influencing chronic semi-arid headwater stream impairments: a southern California case study. AIMS Geosciences, 2022, 8, 98-126.	0.4	0
389	Vulnerable Waters are Essential to Watershed Resilience. Ecosystems, 2023, 26, 1-28.	1.6	21
390	Riparian Buffers and Land Cover Change. , 2021, , .		Ο
391	Mapping the functional connectivity of ecosystem services supply across a regional landscape. ELife, 2022, 11, .	2.8	5
392	Magnitude and determinants of male partner involvement in PMTCT service utilization of pregnant women attending public health facilities of Ethiopia, 2021: a systematic review and meta-analysis. AIDS Research and Therapy, 2022, 19, 8.	0.7	3
393	Nitrogen Transport/Deposition from Paddy Ecosystem and Potential Pollution Risk Period in Southwest China. Water (Switzerland), 2022, 14, 539.	1.2	3
394	Seasonal flashiness and high frequency discharge events in headwater streams in the North Carolina Piedmont (<scp>United States</scp>). Hydrological Processes, 2022, 36, .	1.1	4
395	Superlinear scaling of riverine biogeochemical function with watershed size. Nature Communications, 2022, 13, 1230.	5.8	9
396	Nutrient limitation in Atlantic salmon rivers and streams: Causes, consequences, and management strategies. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 1073-1091.	0.9	4
397	Sensor-Equipped Unmanned Surface Vehicle for High-Resolution Mapping of Water Quality in Low- to Mid-Order Streams. ACS ES&T Water, 2022, 2, 425-435.	2.3	5
398	Potential microbial enzyme activity in seasonal snowpack is high and reveals P limitation. Ecosphere, 2022, 13, .	1.0	1
399	Sensitivity of headwater streamflow to thawing permafrost and vegetation change in a warming Arctic. Environmental Research Letters, 2022, 17, 044074.	2.2	12
400	Influence of land cover, catchment morphometry and rainfall on water quality and material transport of headwaters and low-order streams of a tropical mountainous watershed. Catena, 2022, 213, 106137.	2.2	11
401	Spatiotemporal assessment of potential drivers of salt marsh dieback in the North Inlet-Winyah Bay estuary, South Carolina (1990–2019). Journal of Environmental Management, 2022, 313, 114907.	3.8	2
408	Polyphosphate Accumulation Tracks Incremental P-Enrichment in a Temperate Watershed (Pennsylvania, United States) as an Indicator of Stream Ecosystem Legacy P. Frontiers in Environmental Science, 0, 10, .	1.5	2
409	Morphometric analysis of low mountains for mapping flash flood susceptibility in headwaters. Natural Hazards, 2022, 114, 3235-3254.	1.6	2
411	The Impact of Clear-Cutting on the Volume and Chemistry of Water at a Sandy Nutrient-Poor Pine Site. Forests, 2022, 13, 1226.	0.9	1

#	Article	IF	CITATIONS
412	Use of geostatistical models to evaluate landscape and stream network controls on postâ€fire stream nitrate concentrations. Hydrological Processes, 2022, 36, .	1.1	5
413	Freshwater biodiversity conservation in China: Progress in the Yangtze River basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 1565-1570.	0.9	5
414	Stream Recovery Post Channelization: A Case Study of Low-Gradient Streams in Central Illinois, USA. Hydrology, 2022, 9, 160.	1.3	0
415	Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality. Geoscientific Model Development, 2022, 15, 7287-7323.	1.3	10
416	Nutrient delivery by groundwater discharge to headwater streams IN agricultural catchments. Hydrological Processes, 2022, 36, .	1.1	1
417	Modeling streamflow in headwater catchments: A data-based mechanistic grounded framework. Journal of Hydrology: Regional Studies, 2022, 44, 101243.	1.0	2
418	An overview of the effects of forest management on groundwater hydrology. , 0, , .		11
419	An integrated management system for the Douglas-fir tussock moth in southern British Columbia. , 0, , \cdot		0
420	Baseline assessment of the hydrological network and land use in riparian buffers of Pampean streams of Uruguay. Environmental Monitoring and Assessment, 2023, 195, .	1.3	2
422	Spatial microbial respiration variations in the hyporheic zones within the Columbia River Basin. Journal of Geophysical Research G: Biogeosciences, 0, , .	1.3	1
423	Soil frost controls streamflow generation processes in headwater catchments. Journal of Hydrology, 2023, 617, 128801.	2.3	4
424	Ecosystem services provided by small streams: an overview. Hydrobiologia, 2023, 850, 2501-2535.	1.0	15
425	Divisional water quality management-based pollution source control in China's watersheds: an analysis by introducing economic factors. Environmental Science and Pollution Research, 2023, 30, 29510-29524.	2.7	1
426	Combined Effects of Stream Hydrology and Land Use on Basinâ€Scale Hyporheic Zone Denitrification in the Columbia River Basin. Water Resources Research, 2022, 58, .	1.7	1
427	Testing Hidden Assumptions of Representativeness in Reachâ€Scale Studies of Hyporheic Exchange. Water Resources Research, 2023, 59, .	1.7	2
428	A Longitudinal Assessment of Benthic Macroinvertebrate Diversity and Water Quality along the Bronx River. Northeastern Naturalist, 2023, 29, .	0.1	1
429	A review of the nature and source of nutrient impairment in small streams: a desk based characterisation for targeted mitigation measures. Hydrobiologia, 2023, 850, 3293-3311.	1.0	2
430	Low-level cadmium alleviates the disturbance of doxycycline on nitrogen removal and N2O emissions in ditch wetlands by altering microbial community and enzymatic activity. Journal of Cleaner Production, 2023, 387, 135807.	4.6	4

	Сітаті	CITATION REPORT		
#	Article	IF	CITATIONS	
431	Groundwater flow paths drive longitudinal patterns of stream dissolved organic carbonÂ(DOC) concentrations in boreal landscapes. Hydrology and Earth System Sciences, 2023, 27, 613-625.	1.9	1	
432	The effects of land use on water quality of alpine rivers: A case study in Qilian Mountain, China. Science of the Total Environment, 2023, 875, 162696.	3.9	7	
435	Mine reclamation does not restore leaf processing in low-order streams. Hydrobiologia, 0, , .	1.0	0	
436	The C-FEWS framework: Supporting studies of climate-induced extremes on food, energy, and water systems at the regional scale. Frontiers in Environmental Science, 0, 11, .	1.5	7	
437	Stability in headwater chemical signatures across a dynamic flow regime in a highly urbanized <scp>Piedmont</scp> catchment. Hydrological Processes, 2023, 37, .	1.1	0	
438	Reservoir flood regulation affects nutrient transport through altering water and sediment conditions. Water Research, 2023, 233, 119728.	5.3	9	
439	Patterns of nitrate retention in agriculturally influenced streams and rivers. Biogeochemistry, 2023, 163, 155-183.	1.7	3	
440	Water Quality Modeling in Headwater Catchments: Comprehensive Data Assessment, Model Development and Simulation of Scenarios. Water (Switzerland), 2023, 15, 868.	1.2	0	
441	The evaluation of N/P fate using the SPARROW model: a case study in an arid and semi-arid region, northern China. Environmental Science and Pollution Research, 2023, 30, 55662-55677.	2.7	0	
442	Hydrodynamics and geomorphology of groundwater environments. , 2023, , 3-37.		1	
443	Differential responses for stream algal assemblages exposed to factorial N and P enrichment along an in situ DOC gradient. Frontiers in Environmental Science, 0, 11, .	1.5	0	
444	A new framework to model the distributed transfer and retention of nutrients by incorporating topology structure of small water bodies. Water Research, 2023, 238, 119991.	5.3	6	

467 Variation in Estuarine Geochemistry and Productivity. , 2024, , 105-118.