â€~Trapped rainbow†Storage of light in metamaterial

Nature 450, 397-401 DOI: 10.1038/nature06285

Citation Report

#	Article	IF	CITATIONS
12	Giant and negative bistable shifts for one-dimensional photonic crystal containing a nonlinear metamaterial defect. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 6797-6800.	0.9	15
13	Lateral shifts of an optical beam in an anisotropic metamaterial slab. European Physical Journal D, 2008, 50, 81-85.	0.6	8
14	Causality-Based Criteria for a Negative Refractive Index Must Be Used With Care. Physical Review Letters, 2008, 101, 167401.	2.9	69
15	Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455, 376-379.	13.7	2,007
16	Can light be stopped in realistic metamaterials?. Nature, 2008, 455, E10-E11.	13.7	67
17	Tsakmakidis et al. reply. Nature, 2008, 455, E11-E12.	13.7	27
18	Farewell to Flatland. Nature, 2008, 455, 299-300.	13.7	7
19	Divergence from the superfamily. Nature, 2008, 455, 300-301.	13.7	3
20	From Waveguiding to Spatial Localization of THz Waves Within a Plasmonic Metallic Grating. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 486-490.	1.9	52
21	Metamaterial Analog of Electromagnetically Induced Transparency. Physical Review Letters, 2008, 101, 253903.	2.9	760
22	Slow and frozen waves in a planar air waveguide with anisotropic metamaterial cladding. , 2008, , .		2
23	Coherent Control of Low Loss Surface Polaritons. Physical Review Letters, 2008, 101, 263601.	2.9	47
24	Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures. Physical Review Letters, 2008, 100, 256803.	2.9	353
25	Controlled storage and transfer of photonic space-time quantum-coherence in active quantum dot nanomaterials. Optics Express, 2008, 16, 3744.	1.7	0
26	Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding. Optics Express, 2008, 16, 11077.	1.7	45
27	Prism coupling to 'designer' surface plasmons. Optics Express, 2008, 16, 20441.	1.7	37
28	Slow and stopped light in metamaterials. , 2008, , .		2
29	Goos-Hächen-like shifts in atom optics. Physical Review A, 2008, 77, .	1.0	42

#	ARTICLE	IF	CITATIONS
30	Feasibility overview of plasmonic devices for optoelectronics. , 2008, , .		0
31	Optically controlled resonance energy transfer: Mechanism and configuration for all-optical switching. Journal of Chemical Physics, 2008, 128, 144506.	1.2	39
32	Light trapper by tapered air core in anisotropic metamaterial. , 2008, , .		0
33	All-optical switching based on optical control of energy transfer between thin-film layers. Proceedings of SPIE, 2008, , .	0.8	0
34	Guided modes and light trapping in the negative-refractive-index slab waveguides. , 2008, , .		1
35	Stopped electromagnetic wave in an air waveguide with anisotropic metamaterial cladding. , 2008, , .		0
36	Tunneling-Induced Temporary Light Trapping in Negative-Index-Clad Slab Waveguide. Japanese Journal of Applied Physics, 2008, 47, 4843-4845.	0.8	15
37	Soliton Propagation in Nonlinear Magnetic Metamaterials with Microscopic Disorder. Journal of the Physical Society of Japan, 2008, 77, 074006.	0.7	4
38	Nanowire waveguide made from extremely anisotropic metamaterials. Physical Review A, 2008, 77, .	1.0	51
39	Nanoengineering of a negative-index binary-staircase lens for the optics regime. Applied Physics Letters, 2008, 92, .	1.5	5
40	Negative refractive index of metallic cross-I-shaped pairs: Origin and evolution with pair gap width. Physical Review E, 2008, 78, 016605.	0.8	8
41	Achieving Subdiffraction Imaging through Bound Surface States in Negative Refraction Photonic Crystals in the Near-Infrared Range. Physical Review Letters, 2008, 100, 187401.	2.9	39
42	"Trapped rainbow" storage of light from THz to telecom domain. , 2008, , .		0
43	Nano-optical microlens with ultrashort focal length using negative refraction. Applied Physics Letters, 2008, 93, 053111.	1.5	24
44	CHARACTERISTICS OF GUIDED MODES IN PLANAR CHIRAL NIHILITY META-MATERIAL WAVEGUIDES. Progress in Electromagnetics Research B, 2009, 14, 107-126.	0.7	26
45	EXOTIC CHARACTERISTICS OF POWER PROPAGATION IN THE CHIRAL NIHILITY FIBER. Progress in Electromagnetics Research, 2009, 99, 163-178.	1.6	43
46	Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes. Physical Review B, 2009, 80, .	1.1	87
47	Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide. Journal of Applied Physics, 2009, 106, .	1.1	36

	CITATION R	EPORT	
#	Article	IF	CITATIONS
48	Backward self-induced transparency in metamaterials. Physical Review A, 2009, 80, .	1.0	6
49	Slow wave propagation in a dielectric cylindrical waveguide with anisotropic metamaterial cladding. , 2009, , .		7
50	TRAPPED PHONON IN ACOUSTIC METAMATERIAL. Modern Physics Letters B, 2009, 23, 2853-2859.	1.0	4
51	EQEC 2009 Tutorial speakers metamaterials. , 2009, , .		0
52	Pulse propagation in materials with both electric and magnetic responses: Unlimited bandwidth and only one approximation. , 2009, , .		0
53	The Trapped Rainbow effect for broadband slow light and light storage. , 2009, , .		0
54	Trapped rainbow effect in visible light left-handed heterostructures. Applied Physics Letters, 2009, 95, .	1.5	54
55	Large area light propagation in quasi-zero average refractive index materials. Materials Research Society Symposia Proceedings, 2009, 1182, 85.	0.1	1
56	Negative refraction in visible region using nano-structured metallo-dielectric photonic crystal. , 2009, , .		2
57	All-optical switching based on controlled energy transfer between nanoparticles in film arrays. Journal of Nanophotonics, 2009, 3, 031503.	0.4	10
58	Creating Inâ€Plane Metallicâ€Nanowire Arrays by Cornerâ€Mediated Electrodeposition. Advanced Materials, 2009, 21, 3576-3580.	11.1	26
59	Slow microwave waveguide made of negative permeability metamaterials. Microwave and Optical Technology Letters, 2009, 51, 2705-2709.	0.9	32
60	Slow light in tapered slot photonic crystal waveguide. Science Bulletin, 2009, 54, 3658-3662.	1.7	7
61	Lossy effects on the lateral shifts in negative-phase-velocity medium. Physica B: Condensed Matter, 2009, 404, 243-247.	1.3	0
62	Surface polaritons in planar chiral nihility meta-material waveguides. Optics Communications, 2009, 282, 3899-3904.	1.0	20
63	Unique properties of microwave in interlayer exchange-coupled trilayer ferromagnetic films associated with negative imaginary part of permeability. Journal of Magnetism and Magnetic Materials, 2009, 321, 2139-2144.	1.0	5
64	What is negative refraction?. Journal of Modern Optics, 2009, 56, 1727-1740.	0.6	18
65	FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides. Journal of Optics, 2009, 11, 114027.	1.5	29

# 66	ARTICLE Stored Light in a Plasmonic Nanocavity Based on Extremely-Small-Energy-Velocity Mode. , 2009, , .	IF	CITATIONS 2
67	Perfect lens with not so perfect boundaries. Optics Letters, 2009, 34, 1015.	1.7	10
68	Compensating loss with gain in slow-light propagation along slab waveguide with anisotropic metamaterial cladding. Optics Letters, 2009, 34, 3869.	1.7	14
69	Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1944.	0.9	21
70	Stopping light by an air waveguide with anisotropic metamaterial cladding. Optics Express, 2009, 17, 170.	1.7	73
71	Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material. Optics Express, 2009, 17, 6747.	1.7	56
72	Creating negative refractive identity via single-dielectric resonators. Optics Express, 2009, 17, 12960.	1.7	29
73	Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift. Optics Express, 2009, 17, 21313.	1.7	19
74	Novel nonlinear surface and guided TE waves in asymmetric LHM waveguides. Journal of Optics, 2009, 11, 114032.	1.5	22
75	Light Localization in Slot Photonic Crystal Waveguide. Chinese Physics Letters, 2009, 26, 014209.	1.3	9
76	Guiding Modes of a Slab Waveguide Composed of Impedance-Matched Single Negative Materials. IEEE Photonics Technology Letters, 2009, 21, 736-738.	1.3	10
77	Grating-Induced Dual Mode Couplings in the Negative-Index Slab Waveguide. IEEE Photonics Technology Letters, 2009, 21, 1502-1504.	1.3	10
78	Negative Refractive Index in Chiral Metamaterials. Physical Review Letters, 2009, 102, 023901.	2.9	847
79	Self-Collimation of Light over Millimeter-Scale Distance in a Quasi-Zero-Average-Index Metamaterial. Physical Review Letters, 2009, 102, 133902.	2.9	80
80	Large Positive and Negative Lateral Shifts from an Anisotropic Metamaterial Slab Backed by a Metal. Chinese Physics Letters, 2009, 26, 014101.	1.3	5
81	Quantum Goos-Hächen Effect in Graphene. Physical Review Letters, 2009, 102, 146804.	2.9	215
82	"Rainbow―Trapping and Releasing at Telecommunication Wavelengths. Physical Review Letters, 2009, 102, 056801.	2.9	247
83	Voltage-tunable lateral shifts of ballistic electrons in semiconductor quantum slabs. Journal of Applied Physics, 2009, 105, .	1.1	18

	CITATION R	EPORT	
#	Article	IF	CITATIONS
84	Observation of Zeroth-Order Band Gaps in Negative-Refraction Photonic Crystal Superlattices at Near-Infrared Frequencies. Physical Review Letters, 2009, 102, 203905.	2.9	62
85	Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides. Physical Review B, 2009, 80, .	1.1	101
86	Metamaterials for optical security. Applied Physics Letters, 2009, 94, .	1.5	15
87	Nonlinear guided waves in tuneable, gyrotropic, metamaterial complex structures. , 2009, , .		0
88	Slow light in the dielectric-loaded metallic waveguide for terahertz wave. , 2010, , .		0
89	"Rainbow―trapped in a self-similar coaxial optical waveguide. Applied Physics Letters, 2010, 96, 161101.	1.5	15
90	Crystals with an Open Wave-Vector Surface: Peculiarities of Reflection and Possibilities of Designing Flat Lenses. Crystallography Reports, 2010, 55, 938-943.	0.1	10
91	Specific features of the propagation of electromagnetic waves in a waveguiding structure with superconducting film and metamaterial. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1669-1673.	0.1	2
92	Overcoming Losses with Gain in a Negative Refractive Index Metamaterial. Physical Review Letters, 2010, 105, 127401.	2.9	251
93	Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum. Nano Letters, 2010, 10, 2574-2579.	4.5	345
94	Backward Coupling of Modes in a Left-Handed Metamaterial Tapered Waveguide. IEEE Microwave and Wireless Components Letters, 2010, 20, 378-380.	2.0	6
95	Slow light, open-cavity formation, and large longitudinal electric field on a slab waveguide made of indefinite permittivity metamaterials. Physical Review A, 2010, 82, .	1.0	17
96	Backward-propagating slow light in Mie resonance-based metamaterials. Journal of Optics (United) Tj ETQq0 0 () rgBT /Ove 1.0	erlock 10 Tf 5
97	All-angle negative refraction for visible light from left-handed metallo-dielectric photonic crystal: theoretical and numerical demonstration with nanophotonic device application. Applied Physics B: Lasers and Optics, 2010, 98, 99-106.	1.1	7
98	Bistable and negative lateral shifts of the reflected light beam from Kretschmann configuration with nonlinear left-handed metamaterials. Applied Physics B: Lasers and Optics, 2010, 101, 283-289.	1.1	29
99	Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 264-272.	1.0	4
100	Guided and surface modes in chiral nihility fiber. Optics Communications, 2010, 283, 532-536.	1.0	14
101	Loss-free and active optical negative-index metamaterials. Nature, 2010, 466, 735-738.	13.7	729

#	Article	IF	CITATIONS
102	Gain in negative-index metamaterials and slow-light waveguides. Proceedings of SPIE, 2010, , .	0.8	0
103	Bright spatial solitons, nonlinear guided waves, and complex metamaterial structures. , 2010, , .		0
104	Trapped Rainbow Storage of Light in Metamaterials. Advances in Science and Technology, 0, , .	0.2	5
105	Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control. Applied Physics Letters, 2010, 97, .	1.5	116
106	Negative-permeability electromagnetically induced transparent and magnetically active metamaterials. Physical Review B, 2010, 81, .	1.1	43
107	Group velocity in lossy periodic structured media. Physical Review A, 2010, 82, .	1.0	29
108	Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies. Applied Physics Letters, 2010, 97, 153115.	1.5	43
109	Metamaterials design using gradient-free numerical optimization. Journal of Applied Physics, 2010, 108, 084303.	1.1	1
110	Broadband Transformation Optics Devices. Materials, 2010, 3, 4793-4810.	1.3	7
111	A scalable multi-allowed band bandpass filter demonstrating ultra-wide-bandwidth, excellent efficiency, and sharp band-edge transition. , 2010, , .		0
112	Experimental demonstration of slowing light by oscillatory mode in left-handed waveguides. Proceedings of SPIE, 2010, , .	0.8	1
113	Characteristics of surface modes in singly negative metamaterial waveguides. , 2010, , .		1
114	Strongly nonlinear wave control in gyroelectric metamaterials. , 2010, , .		0
115	Photocurrent Response of Photoreceptive Devices Using a Retinoid Immobilized in a Chitosan Gel Film. Japanese Journal of Applied Physics, 2010, 49, 127003.	0.8	2
116	Recent developments in the study of slow light in complex photonic materials. , 2010, , .		4
117	Self-assembly of (sub-)micron particles into supermaterials. Journal of Micromechanics and Microengineering, 2010, 20, 064001.	1.5	18
118	Compensation of Losses in Slow-Light Negative-Index Waveguides By Evanescent Pumping. , 2010, , .		2
119	Stacked complementary metasurfaces for ultraslow microwave metamaterials. Applied Physics Letters, 2010, 96, .	1.5	16

#	Article	IF	CITATIONS
120	Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses. Physical Review A, 2010, 81, .	1.0	38
121	Slow light in various media: a tutorial. Advances in Optics and Photonics, 2010, 2, 287.	12.1	154
122	Metamaterial-based control of permeability in GaInAsP/InP multimode-interferometers. , 2010, , .		0
123	Storing light in active optical waveguides with single-negative materials. Applied Physics Letters, 2010, 96, 211112.	1.5	44
124	Plasmonic resonances in optomagnetic metamaterials based on double dot arrays. Optics Express, 2010, 18, 9780.	1.7	23
125	Slow light in the GaAs-rod-loaded metallic waveguide for terahertz wave. Optics Express, 2010, 18, 11132.	1.7	6
126	Guided modes near the Dirac point in negative-zero-positive index metamaterial waveguide. Optics Express, 2010, 18, 12779.	1.7	26
127	Stopping of Light by the Dynamic Tuning of Photonic Crystal Slow Light Device. Optics Express, 2010, 18, 17141.	1.7	16
128	Guiding effects in waveguides with anti-symmetric refractive index layouts. Optics Express, 2010, 18, 20681.	1.7	0
129	Circular motion of electromagnetic power shaping the dispersion of Surface Plasmon Polaritons. Optics Express, 2010, 18, 25861.	1.7	8
130	Flat Surface Plasmon Polariton Bands in Bragg Grating Waveguide for Slow Light. Journal of Lightwave Technology, 2010, 28, 2030-2036.	2.7	17
131	Theory of confined plasmonic waves in coaxial cylindrical cables fabricated of metamaterials. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 148.	0.9	9
132	Asymmetric one-dimensional periodic slow-light waveguide. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1845.	0.9	1
133	Transmission enhancement of slow light by a subwavelength plasmon-dielectric system. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 2433.	0.9	9
134	Trapping light in plasmonic waveguides. Optics Express, 2010, 18, 598.	1.7	147
135	Controllable optical black hole in left-handed materials. Optics Express, 2010, 18, 2106.	1.7	28
136	Slow Light Propagation and Disorder-Induced Localization in Photonic Crystal Waveguides. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 209-223.	0.2	0
137	Experimental observation of the trapped rainbow. Applied Physics Letters, 2010, 96, 211121.	1.5	59

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
138	Slow light propagation in stacked complementary metasurfaces at microwave frequencies. , 2010, , .		0
139	An omnidirectional electromagnetic absorber made of metamaterials. New Journal of Physics, 2010, 12, 063006.	1.2	241
140	A MEMS tunable metamaterial filter. , 2010, , .		9
141	Proposal for graphene-based coherent buffers and memories. Physical Review B, 2010, 81, .	1.1	37
142	Experimental verification of the "rainbow" trapping effect in plasmonic graded gratings. , 2010, , .		1
143	A slab optical waveguide with negative effective thickness. Journal of Modern Optics, 2010, 57, 2137-2140.	0.6	2
144	Adiabatically graded plasmonic structures for "rainbow" trapping effect. , 2011, , .		0
145	Circular dichroism in gold helix metamaterials and gold gyroid structures at optical frequencies. , 2011, , .		0
146	Observation of slow-light in a metamaterials waveguide at microwave frequencies. Applied Physics Letters, 2011, 98, 171907.	1.5	33
147	Gain and plasmon dynamics in active negative-index metamaterials. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3525-3550.	1.6	67
148	Pioneers in metamaterials: John Pendry and Victor Veselago. Journal of Optics (United Kingdom), 2011, 13, 020401.	1.0	24
149	Monolithic Integration of Continuously Tunable Plasmonic Nanostructures. Nano Letters, 2011, 11, 3526-3530.	4.5	59
150	Analytical approach to lossy wave propagation through a graded interface containing negative index material. , 2011, , .		0
151	Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting. Physical Review Letters, 2011, 107, 207401.	2.9	108
152	Integrated metaphotonics. , 2011, , .		2
153	Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance. Physical Review Letters, 2011, 106, 107403.	2.9	295
154	Slow light in one dimensional metallic-dielectric photonic crystals due to sign change of the effective dielectric constant. Applied Physics Letters, 2011, 99, .	1.5	7
155	Dynamics of light amplification and gain in nano-plasmonic fishnet metamaterials. Proceedings of SPIE, 2011, , .	0.8	0

#	Article	IF	CITATIONS
156	Trapping and releasing light by mechanical implementation in metamaterial waveguides. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 272.	0.8	11
157	Experimental observation of the propagation-dependent beam profile distortion and Goos–Hächen shift under the surface plasmon resonance condition. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 314.	0.9	14
158	Double rainbow trapping of light in one-dimensional chirped metallic–dielectric photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2444.	0.9	9
159	Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding. Journal Physics D: Applied Physics, 2011, 44, 475103.	1.3	14
160	Slow non-dispersing wavepackets. Optics Express, 2011, 19, 2286.	1.7	26
161	Slow-light-enhanced codirectional couplers with negative index materials. Optics Express, 2011, 19, 10088.	1.7	1
162	Spoof plasmon analogue of metal-insulator-metal waveguides. Optics Express, 2011, 19, 14860.	1.7	145
163	Energy transport in a metamaterial subwavelength open-cavity resonator. Optics Letters, 2011, 36, 2224.	1.7	4
164	Nonunity permeability in metamaterial-based GaInAsP/InP multimode interferometers. Optics Letters, 2011, 36, 2327.	1.7	23
165	Direct experimental observation of giant Goos–Hächen shifts from bandgap-enhanced total internal reflection. Optics Letters, 2011, 36, 3539.	1.7	24
166	Optical Control through Light Transmission. Optics and Photonics News, 2011, 22, 52.	0.4	3
167	Gain in optical metamaterials. , 0, , 237-264.		0
168	A SLOW LIGHT FISHNET-LIKE ABSORBER IN THE MILLIMETER-WAVE RANGE. Progress in Electromagnetics Research, 2011, 118, 287-301.	1.6	9
169	Experimental verification of the "rainbow" trapping effect in adiabatic plasmonic gratings. , 2011, , .		5
170	Slowing light in all dielectric tapered left-handed waveguide. , 2011, , .		0
171	Slow light using negative metamaterials. Proceedings of SPIE, 2011, , .	0.8	1
172	Controlling ultrafast light with dispersive metamaterials. , 2011, , .		0
173	Novel optical devices using negative refraction of light by periodically corrugated surfaces. , 0, , 158-184.		0

#	Article	IF	CITATIONS
174	Cloaking. , 0, , 316-385.		0
175	Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3801-3803.	0.9	20
176	Magnetic Interactions at Optical Frequencies in an InP-Based Waveguide Device With Metamaterial. IEEE Journal of Quantum Electronics, 2011, 47, 736-744.	1.0	10
177	Graded Metallic Gratings for Ultrawideband Surface Wave Trapping at THz Frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 102-109.	1.9	19
178	Zero phase delay in negative-refractive-index photonic crystal superlattices. Nature Photonics, 2011, 5, 499-505.	15.6	108
179	Low-Loss Multilayered Metamaterial Exhibiting a Negative Index of Refraction at Visible Wavelengths. Physical Review Letters, 2011, 106, 067402.	2.9	158
180	Trapping of surface plasmon polaritons in a multiple-teeth-shaped waveguide at visible wavelengths. Applied Physics B: Lasers and Optics, 2011, 103, 883-887.	1.1	7
181	Broadband slow-light in graded-grating-loaded plasmonic waveguides at telecom frequencies. Applied Physics B: Lasers and Optics, 2011, 104, 653-657.	1.1	14
182	Trapping of surface-plasmon polaritons in a subwavelength cut. Optics Communications, 2011, 284, 153-155.	1.0	5
183	Spatial separation of spectrum inside the tapered metamaterial optical waveguide. Science Bulletin, 2011, 56, 209-214.	1.7	4
184	Flipping photons backward: reversed Cherenkov radiation. Materials Today, 2011, 14, 34-41.	8.3	61
185	TiO2 Wedgy Nanotubes Array Flims for Photovoltaic Enhancement. Applied Surface Science, 2011, 257, 5059-5063.	3.1	19
186	Gain in negative-refractive-index slow-light waveguides. Proceedings of SPIE, 2011, , .	0.8	2
187	Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping. Applied Physics Letters, 2011, 98, .	1.5	41
188	Evanescent gain for slow and stopped light in negative refractive index heterostructures. Physical Review B, 2011, 84, .	1.1	23
189	Otto coupling to a transverse-electric-polarized mode on a metamaterial surface. Physical Review B, 2011, 84, .	1.1	4
190	Rainbow trapping of guided waves. Low Temperature Physics, 2011, 37, 933-939.	0.2	1
191	Special Section Guest Editorial: Metamaterials: Fundamentals and Applications. Journal of Nanophotonics, 2011, 5, 051699.	0.4	0

#	Article	IF	CITATIONS
192	An investigation on magnetic responses in Ag-SiO 2 -Ag nanosandwich structures. Proceedings of SPIE, 2011, , .	0.8	0
193	Enriching the Symmetry of Maxwell Equations through Unprecedented Magnetic Responses of Artificial Metamaterials and Their Revolutionary Applications. Symmetry, 2011, 3, 283-304.	1.1	0
194	Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range. Chinese Physics Letters, 2011, 28, 054208.	1.3	1
195	Non-unity permeability in InP-based Mach-Zehnder interferometer with metamaterial. , 2011, , .		0
196	Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proceedings of the United States of America, 2011, 108, 5169-5173.	3.3	141
197	Strong magnetic resonance of coupled aluminum nanodisks on top of a silicon waveguide. , 2012, , .		8
198	High-speed rainbow trapping and release by mechanical approaches in the terahertz regime. Journal of Modern Optics, 2012, 59, 686-692.	0.6	7
199	Carrier-concentration-dependent resonance frequency shift in a metamaterial loaded semiconductor. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2110.	0.9	5
200	Plasmonic Nanolasers Without Cavity, Threshold and Diffraction Limit using Stopped Light. , 2012, , .		3
201	Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials. Optics Express, 2012, 20, 7580.	1.7	53
202	Asymmetric fishnet metamaterials with strong optical activity. Optics Express, 2012, 20, 10776.	1.7	18
203	Visible-band dispersion by a tapered air-core Bragg waveguide. Optics Express, 2012, 20, 23906.	1.7	6
204	Light localization, photon sorting, and enhanced absorption in subwavelength cavity arrays. Optics Express, 2012, 20, 24226.	1.7	21
205	Spatial Coherence and Optical Beam Shifts. Physical Review Letters, 2012, 109, 213901.	2.9	24
206	Enhancement of light-matter interactions in slow-wave metasurfaces. Physical Review B, 2012, 85, .	1.1	12
207	Slow Light Propagation in a Cylindrical Waveguide with Left-Handed Material. , 2012, , .		0
208	Fiber-pigtailed optical switch based on gigantic bloch-surface-wave-induced Goos-Hanchen shifts. , 2012, , .		1
209	Revealing the truth about â€~trapped rainbow' storage of light in metamaterials. Scientific Reports, 2012, 2, 583.	1.6	71

#	Article	IF	CITATIONS
210	Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp. Scientific Reports, 2012, 2, 829.	1.6	49
211	Generalized Analytical Solutions for Nonlinear Positive-Negative Index Couplers. Research Letters in Physics, 2012, 2012, 1-4.	0.2	10
212	Tune the "rainbow―trapped in a multilayered waveguide. Europhysics Letters, 2012, 99, 57007.	0.7	3
213	Experimental research of slow wave effect based on surface waves in 1D metamaterials waveguide. , 2012, , .		0
214	Metamaterials. , 0, , 384-405.		0
215	Observation of nonspecular effects for Gaussian Schell-model light beams. Physical Review A, 2012, 86,	1.0	17
216	High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Letters, 2012, 12, 6223-6229.	4.5	1,120
217	Symmetry breaking and optical negative index of closed nanorings. Nature Communications, 2012, 3, 1180.	5.8	68
218	Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Letters, 2012, 12, 1443-1447.	4.5	864
219	Active nanoplasmonic metamaterials. Nature Materials, 2012, 11, 573-584.	13.3	502
220	Proposed isotropic negative index in three-dimensional optical metamaterials. Physical Review B, 2012, 85, .	1.1	20
221	Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave. Optics Express, 2012, 20, 8998.	1.7	71
222	Tuned switching of surface waves by a liquid crystal cap layer in one-dimensional photonic crystals. Applied Optics, 2012, 51, 2909.	0.9	10
223	Slow and stopped-light lasing in active plasmonic metamaterials. , 2012, , .		2
224	Wideband trapping of light by edge states in honeycomb photonic crystals. Journal of Physics Condensed Matter, 2012, 24, 492203.	0.7	5
225	Coherent Amplification and Noise in Gain-Enhanced Nanoplasmonic Metamaterials: A Maxwell-Bloch Langevin Approach. ACS Nano, 2012, 6, 2420-2431.	7.3	79
226	Spatiospectral separation of exceptional points in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi mathvariant="script">PT -symmetric optical potentials. Physical Review A, 2012, 86</mml:mi </mml:math 	1.0	23
227	Wide-angle 90°-polarization rotator using chiral metamaterial with negative refractive index. Journal of Electromagnetic Waves and Applications, 2012, 26, 1967-1976.	1.0	36

#	Article	IF	Citations
228	Application of TiO ₂ with different structures in solar cells. Chinese Physics B, 2012, 21, 118401.	0.7	19
229	Advances in active and nonlinear metamaterials. Proceedings of SPIE, 2012, , .	0.8	0
230	A tri-helical model for nanoplasmonic gyroid metamaterials. New Journal of Physics, 2012, 14, 083032.	1.2	35
231	Extreme control of light in metamaterials: Complete and loss-free stopping of light. Physica B: Condensed Matter, 2012, 407, 4066-4069.	1.3	26
232	Macroscopic electromagnetic response of arbitrarily shaped spatially dispersive bodies formed by metallic wires. Physical Review B, 2012, 86, .	1.1	6
233	Modern Trends in Metamaterial Applications. Advances in OptoElectronics, 2012, 2012, 1-2.	0.6	1
234	Photonic Band Gap Engineered Materials for Controlling the Group Velocity of Light. , 0, , .		0
235	Conditions of Perfect Imaging in Negative Refraction Materials with Gain. Advances in OptoElectronics, 2012, 2012, 1-5.	0.6	1
236	Negative Index Photonic Crystals Superlattices and Zero Phase Delay Lines". , 2012, , .		1
237	Analysis of transverse power flow via surface modes in metamaterial waveguides. Physical Review A, 2012, 85, .	1.0	8
238	Bottom-up fabrication methods of optical metamaterials. Journal of Materials Chemistry, 2012, 22, 9439.	6.7	55
239	3D THz metamaterials from micro/nanomanufacturing. Laser and Photonics Reviews, 2012, 6, 219-244.	4.4	65
240	Photonic crystal devices: some basics and selected topics. Laser and Photonics Reviews, 2012, 6, 564-597.	4.4	24
241	Metamaterials: Definitions, properties, applications, and FDTD-based modeling and simulation (Invited) Tj ETQq1	1 8.7843	l4rgBT /Ove
242	Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012, 11, 426-431.	13.3	1,617
243	Trirefringence in nonlinear metamaterials. Physical Review A, 2012, 86, .	1.0	6
244	Dynamics of amplification in a nanoplasmonic metamaterial. Applied Physics A: Materials Science and Processing, 2012, 107, 77-82.	1.1	1
245	Temperature dependence of the surface-plasmon-induced Goos–Hächen shifts. Applied Physics B: Lasers and Optics, 2012, 107, 111-118.	1.1	10

#	Article	IF	CITATIONS
246	Negative refraction and left-handed properties in two-dimensional photonic crystals. Optik, 2012, 123, 30-33.	1.4	1
247	Trapped rainbow techniques for spectroscopy on a chip and fluorescence enhancement. Applied Physics B: Lasers and Optics, 2012, 106, 577-581.	1.1	8
248	Plasmonic Nanogap Tilings: Light-Concentrating Surfaces for Low-Loss Photonic Integration. ACS Nano, 2013, 7, 7093-7100.	7.3	12
249	Frozen mode from hybridized extraordinary transmission and Fabry-Perot resonances. Physical Review B, 2013, 87, .	1.1	11
250	Tunable out-of-plane slow light in resonance induced transparent grating waveguide structures. Applied Physics Letters, 2013, 103, 061109.	1.5	7
251	Rainbow trapping using chirped all-dielectric periodic structures. Applied Physics B: Lasers and Optics, 2013, 110, 411-417.	1.1	25
252	Manipulation of light in MIM plasmonic waveguide systems. Science Bulletin, 2013, 58, 3607-3616.	1.7	48
253	Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 757-763.	2.0	116
254	Plasmonic rainbow trapping by a graphene monolayer on a dielectric layer with a silicon grating substrate. Optics Express, 2013, 21, 28628.	1.7	44
255	Coupled magnetic resonator optical waveguides. Laser and Photonics Reviews, 2013, 7, 882-900.	4.4	12
256	Asymmetric split-ring resonators: a way toward high-quality metamaterials. Optical Engineering, 2013, 53, 031207.	0.5	1
257	Microwave surface waves supported by a tapered geometry metasurface. Applied Physics Letters, 2013, 103, .	1.5	8
258	Generation of scalable quasi-3D metallo-dielectric SERS substrates through orthogonal reactive ion etching. Journal of Materials Chemistry C, 2013, 1, 3110.	2.7	11
259	Three-layered metallodielectric nanoshells: plausible meta-atoms for metamaterials with isotropic negative refractive index at visible wavelengths. Optics Express, 2013, 21, 1076.	1.7	23
260	Low-loss and high- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> planar metamaterial with toroidal moment. Physical Review B, 2013, 87, .	1.1	153
261	Silver nano-structures prepared by oriented evaporation on laser-patterned poly(methyl) Tj ETQq1 1 0.784314 rg	BT /Overlo	ock 10 Tf 50
262	Reduction of propagation loss by introducing hybrid plasmonic model in graded-grating based "trapped rainbow―system. Optics Communications, 2013, 301-302, 116-120.	1.0	6
263	A polarization splitter based on slow light effect in a left-handed material waveguide. Optik, 2013, 124, 6509-6511.	1.4	0

	CITATION	n Report	
#	Article	IF	CITATIONS
264	Surface wave modes in single-negative metamaterials fibers. Optics Communications, 2013, 291, 232-237.	1.0	0
265	Trapping of electromagnetic wave in single-negative metamaterial waveguides. Optik, 2013, 124, 6242-6244.	1.4	1
266	Dirac-like Plasmons in Honeycomb Lattices of Metallic Nanoparticles. Physical Review Letters, 2013, 110, 106801.	2.9	115
267	Analytic theory of optical nanoplasmonic metamaterials. Physical Review B, 2013, 87, .	1.1	13
268	On the Origin of Chirality in Nanoplasmonic Gyroid Metamaterials. Advanced Materials, 2013, 25, 612-617.	11.1	82
269	SYNTHESIS OF LOW-LOSS METAMATERIALS WITH NEGATIVE INDEX IN THE VISIBLE DOMAIN. Modern Physic Letters B, 2013, 27, 1330011.	s 1.0	2
270	Slow Surface Plasmons in Plasmonic Grating Waveguide. IEEE Photonics Technology Letters, 2013, 25, 410-413.	1.3	24
271	SURFACE PLASMONS IN COAXIAL METAMATERIAL CABLES. Modern Physics Letters B, 2013, 27, 1330013.	1.0	5
272	Terahertz angle-insensitive 90° polarization rotator using chiral metamaterial. Physica B: Condensed Matter, 2013, 422, 83-86.	1.3	8
273	Group velocity reduction in multilayer metamaterial waveguide. Optik, 2013, 124, 1230-1233.	1.4	13
275	Rainbow Trapping in Hyperbolic Metamaterial Waveguide. Scientific Reports, 2013, 3, 1249.	1.6	153
276	Asymmetric Lamb wave propagation in phononic crystal slabs with graded grating. Journal of Applied Physics, 2013, 113, .	1.1	50
277	Photonic analog of a van Hove singularity in metamaterials. Physical Review B, 2013, 88, .	1.1	40
278	Organic solar cells with plasmonic layers formed by laser nanofabrication. Physical Chemistry Chemical Physics, 2013, 15, 8237.	1.3	42
279	Rainbow trapping of surface plasmon polariton waves in metal–insulator–metal graded grating waveguide. Optics Communications, 2013, 290, 188-191.	1.0	12
280	Gain-assisted trapping of light in tapered plasmonic waveguide. Optics Letters, 2013, 38, 558.	1.7	33
281	Weak measurement of the Goos–HÃ ¤ chen shift. Optics Letters, 2013, 38, 1232.	1.7	99
282	Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies. Optics Express, 2013, 21, 20888.	1.7	78

#		IF	CITATIONS
283	Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. Optics Express, 2013, 21, 1633.	1.7	102
284	In-line rainbow trapping based on plasmonic gratings in optical microfibers. Optics Express, 2013, 21, 16552.	1.7	11
285	Dispersion engineering of surface plasmons. Optics Express, 2013, 21, 31883.	1.7	10
286	Quantum optical properties of a dipole emitter coupled to an É>-near-zero nanoscale waveguide. Optics Express, 2013, 21, 32279.	1.7	51
287	Tuning the effective refractive index of a thin air gap region sandwiched by metallic metamaterials by lateral displacements. Journal of Applied Physics, 2013, 113, .	1.1	7
288	Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light. Physical Review A, 2013, 87, .	1.0	38
289	Rainbow trapping based on long-range plasmonic Bragg gratings at telecom frequencies. Chinese Physics B, 2013, 22, 077301.	0.7	4
290	A GENERAL ANISOTROPIC ETCHING STRATEGY FOR THE FABRICATION OF TUBE-LIKE OR MESOPOROUS SINGLE CRYSTAL TIO2. Functional Materials Letters, 2013, 06, 1350051.	0.7	0
291	Extended slow-light field enhancement in positive-index/negative-index heterostructures. Physical Review B, 2013, 88, .	1.1	10
292	Theoretical study of the all-optical tunable rainbow-trapping-like effect in chirped plasmonic slot waveguides. Journal of Optics (United Kingdom), 2013, 15, 035003.	1.0	3
293	Efficient transition between photonic and plasmonic guided modes at abrupt junction of MIM plasmonic waveguide. Optics Express, 2013, 21, 20762.	1.7	3
294	Slowing light by exciting the fundamental degeneracy oscillatory mode in a negative refractive waveguide. Applied Physics Letters, 2013, 102, 111102.	1.5	5
295	Acoustic rainbow trapping. Scientific Reports, 2013, 3, .	1.6	240
296	Graphene field effect transistor without an energy gap. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8786-8789.	3.3	72
297	Metamaterialâ€Based Two Dimensional Plasmonic Subwavelength Structures Offer the Broadest Waveband Light Harvesting. Advanced Optical Materials, 2013, 1, 43-49.	3.6	150
298	REALIZING FLEXIBLE ULTRA-FLAT-BAND SLOW LIGHT IN HYBRID PHOTONIC CRYSTAL WAVEGUIDES FOR EFFICIENT OUT-OF-PLANE COUPLING. Progress in Electromagnetics Research, 2014, 149, 281-289.	1.6	1
299	Tunable Plasmonic and Hyperbolic Metamaterials Based on Enhanced Nonlinear Response. International Journal of Antennas and Propagation, 2014, 2014, 1-11.	0.7	9
300	Rainbow on a Chip: Experimental Observation of the Trapped Rainbow Effect Using Tapered Hollow Bragg Waveguides. Eureka, 2014, 4, 35-39.	0.1	1

#	Article	IF	CITATIONS
302	Slowdown of group velocity of light in PPLN by employing electro-optic effect. Journal of Nonlinear Optical Physics and Materials, 2014, 23, 1450006.	1.1	0
303	Double-negative metamaterial from conducting spheres with a high-permittivity shell. Optics Letters, 2014, 39, 4587.	1.7	5
304	The Basics of Plasmonics. Handbook of Surface Science, 2014, , 37-74.	0.3	6
305	Ultraâ€confined Modes in Metal Nanoparticle Arrays for Subwavelength Light Guiding and Amplification. Advanced Optical Materials, 2014, 2, 394-399.	3.6	10
306	A spin beam splitter in graphene through the Goos–HÃ ¤ chen shift. Applied Physics Letters, 2014, 105, .	1.5	27
307	A 4-way wavelength demultiplexer based on the plasmonic broadband slow wave system. Optics Express, 2014, 22, 21589.	1.7	36
308	Multiscale metamaterials: a new route to isotropic double-negative behaviour at visible frequencies. Optics Express, 2014, 22, 21929.	1.7	2
309	Tunable trapping and releasing light in graded graphene-silica metamaterial waveguide. Optics Express, 2014, 22, 24312.	1.7	5
310	Relation of the angular momentum of surface modes to the position of their power-flow center. Optics Express, 2014, 22, 30184.	1.7	5
311	Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 2014, 16, 093017.	1.2	87
312	Spatial separation of spoof surface acoustic waves on the graded groove grating. Journal of Applied Physics, 2014, 116, .	1.1	40
313	Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber. Advanced Materials, 2014, 26, 7959-7965.	11.1	603
314	Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum. Physical Review B, 2014, 90, .	1.1	94
315	Efficient localization of terahertz waves within a gradient dielectric-filled metallic grating. Applied Physics Express, 2014, 7, 124301.	1.1	8
316	True stopping of light: a new regime for nanophotonics. Proceedings of SPIE, 2014, , .	0.8	1
317	Negative Goos-HÃ ¤ chen shift in reflection from subwavelength gratings. Journal of Nanophotonics, 2014, 8, 084093.	0.4	12
318	Trapping a rainbow in a dielectric waveguide. , 2014, , .		0
319	Nonlinear dispersion equation and guided modes in a slab waveguide composed of a negative-index medium. Optical and Quantum Electronics, 2014, 46, 155-163.	1.5	11

#	Article	IF	Citations
320	Novel adiabatic structure for stopping light in lossy metamaterial waveguide with active cladding ZnO/Au. Optical and Quantum Electronics, 2014, 46, 1405-1411.	1.5	1
321	Controlling light with plasmonic multilayers. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12, 213-230.	1.0	52
322	Completely Stopped and Dispersionless Light in Plasmonic Waveguides. Physical Review Letters, 2014, 112, 167401.	2.9	58
323	Review Article: The weak interactive characteristic of resonance cells and broadband effect of metamaterials. AIP Advances, 2014, 4, .	0.6	12
324	Study on the Tunneling Mode in a Sub-Wavelength Open-Cavity Resonator Consisting of Single Negative Materials. IEEE Transactions on Antennas and Propagation, 2014, 62, 504-508.	3.1	1
325	Stopped-light nanolasing in hybrid plasmonic waveguides. , 2014, , .		1
326	Nearâ€Field Hyperspectral Optical Imaging. ChemPhysChem, 2014, 15, 619-629.	1.0	8
327	Slow surface plasmon pulse excitation in metal-insulator-metal plasmonic waveguide with chirped grating. Optics Express, 2014, 22, 18464.	1.7	4
328	Plasmonic Rainbow Trapping by a Silica–Graphene–Silica on a Sloping Silicon Substrate. Journal of Lightwave Technology, 2014, 32, 4193-4198.	2.7	4
329	Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials. Nature Communications, 2014, 5, 5247.	5.8	158
330	Cavity-free plasmonic nanolasing enabled by dispersionless stopped light. Nature Communications, 2014, 5, 4972.	5.8	146
331	Multiperiodicity in plasmonic multilayers: General description and diversity of topologies. Physical Review A, 2014, 90, .	1.0	14
332	Active Optical Metamaterials. Progress in Optics, 2014, 59, 1-88.	0.4	6
333	Experiment and Theory of the Broadband Absorption by a Tapered Hyperbolic Metamaterial Array. ACS Photonics, 2014, 1, 618-624.	3.2	208
334	Optical delay lines using coupled slab waveguides and ring resonator with a negative refractive index core. Optik, 2014, 125, 5723-5726.	1.4	2
335	Comparison of gold- and graphene-based resonant nanostructures for terahertz metamaterials and an ultrathin graphene-based modulator. Physical Review B, 2014, 90, .	1.1	39
336	Large and bistable Goos–HÃ ¤ chen shifts from the Kretschmann configuration with a nonlinear negative–zero–positive index metamaterial. Journal of Optics (United Kingdom), 2014, 16, 045101.	1.0	5
337	Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations. Chinese Physics B, 2014, 23, 047808.	0.7	11

#	Article	IF	CITATIONS
338	High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array. Optics Express, 2015, 23, 30681.	1.7	29
339	Ultrafast acousto-plasmonics in gold nanoparticle superlattices. Physical Review B, 2015, 92, .	1.1	32
341	Permeability-controlled optical modulator with Tri-gate metamaterial: control of permeability on InP-based photonic integration platform. Scientific Reports, 2015, 5, 8985.	1.6	11
342	Wave fronts and packets in 1D models of different meta-materials: Graphene, left-handed media and transmission line. Physica Status Solidi (B): Basic Research, 2015, 252, 2330-2338.	0.7	1
343	A Flat Lens with Tunable Phase Gradient by Using Random Access Reconfigurable Metamaterial. Advanced Materials, 2015, 27, 4739-4743.	11.1	121
344	Acoustic rainbow trapping by coiling up space. Scientific Reports, 2014, 4, 7038.	1.6	83
345	A multiband THz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Materials Research Express, 2015, 2, 055801.	0.8	11
346	Wide band-gap seismic metastructures. Extreme Mechanics Letters, 2015, 4, 111-117.	2.0	216
347	Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality. Advanced Materials, 2015, 27, 5610-5616.	11.1	92
348	Dirac plasmons in bipartite lattices of metallic nanoparticles. 2D Materials, 2015, 2, 014008.	2.0	9
349	MEMS for Plasmon Control of Optical Metamaterials. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 137-146.	1.9	27
350	Incidence Ways of Electromagnetic Wave and Their Influences on the Absorption and Resonant Wavelength of Split-Ring Resonators. Plasmonics, 2015, 10, 183-189.	1.8	2
351	Tunable plasmon polaritons in arrays of interacting metallic nanoparticles. European Physical Journal B, 2015, 88, 1.	0.6	17
352	Graphene-based active slow surface plasmon polaritons. Scientific Reports, 2015, 5, 8443.	1.6	134
353	ENG-cladded metamaterial-loaded helical waveguide for optoelectronics applications. Journal of Electromagnetic Waves and Applications, 2015, 29, 2501-2511.	1.0	1
354	Plasmon-induced transparency in terahertz planar metamaterials. Optics Communications, 2015, 356, 84-89.	1.0	10
355	Investigation of light trapping effect in hyperbolic metamaterial slow-light waveguides. Applied Physics Express, 2015, 8, 082601.	1.1	19
356	Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies. Scientific Reports, 2015, 5, 11195.	1.6	23

		CITATION REPORT		
#	Article		IF	CITATIONS
357	Theoretical analysis of dipole-induced electromagnetic transparency. Physical Review A	, 2015, 91, .	1.0	15
358	A Naked Eye Refractive Index Sensor with a Visible Multiple Peak Metamaterial Absorbe 15, 7454-7461.	er. Sensors, 2015,	2.1	13
359	Germanium nanopyramid arrays showing near-100% absorption in the visible regime. N 2015, 8, 2216-2222.	lano Research,	5.8	24
360	Trapping surface plasmon polaritons on ultrathin corrugated metallic strips in microwa frequencies. Optics Express, 2015, 23, 7031.	ve	1.7	53
361	High quality broadband spatial reflections of slow Rayleigh surface acoustic waves mod graded grooved surface. Journal of Applied Physics, 2015, 117, .	Julated by a	1.1	15
362	Gain-assisted plasmon induced transparency in T-shaped metamaterials for slow light. J Optics (United Kingdom), 2015, 17, 055002.	ournal of	1.0	17
363	Stopping light in an active medium. European Physical Journal D, 2015, 69, 1.		0.6	14
364	Surface plasmon sorting and engineered dispersion curves using multilayer doped sem Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1007.	iconductors.	0.9	4
365	Realization of "trapped rainbow―in 1D slab waveguide with surface dispersion en Express, 2015, 23, 6326.	gineering. Optics	1.7	11
366	Stopping terahertz radiation without backscattering over a broad band. Optics Express	s, 2015, 23, 11790.	1.7	24
367	All-optical light storage in bound states in the continuum and release by demand. Opti 23, 22520.	cs Express, 2015,	1.7	25
368	Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotoni 165-185.	cs, 2015, 4,	2.9	141
369	Compact broadband slow wave system based on spoof plasmonic THz waveguide with grooves. Optics Communications, 2015, 356, 336-342.	meander	1.0	3
370	Quantum-Coherently Assisted Deep-UV Localization of Photonic States in Active Stopp Plasmonic Heterostructures. , 2015, , .	oed-Light		0
371	Trapping light into high orbital momentum modes of fiber tapers. Optics Letters, 2015	, 40, 3782.	1.7	4
372	Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled t surface plasmons. Nature Communications, 2015, 6, 8969.	o graphene	5.8	197
373	Light storage in a cylindrical waveguide with metamaterials. Optics and Laser Technolo 28-35.	gy, 2015, 68,	2.2	10
374	Hyperbolic metamaterials and their applications. Progress in Quantum Electronics, 201	.5, 40, 1-40.	3.5	535

		CITATION REPORT		
#	Article		IF	CITATIONS
375	Broadband absorption engineering of hyperbolic metafilm patterns. Scientific Reports,	2014, 4, 4498.	1.6	157
376	Investigation of nonlinear light optimum parameters to compensate loss in multilayer waveguide with an active cladding layer. Optical and Quantum Electronics, 2015, 47, 3	metamaterial 863-373.	1.5	0
377	Rainbow-trapping by adiabatic tuning of intragroove plasmon coupling. Optics Express	s, 2016, 24, 26745.	1.7	13
378	Compact spoof surface plasmon polaritons waveguide drilled with L-shaped grooves. C 2016, 24, 28693.	Optics Express,	1.7	19
379	Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs f lasers [Invited]. Optics Express, 2016, 24, 17916.	aster than	1.7	76
380	Slowing down light using a dendritic cell cluster metasurface waveguide. Scientific Rep 37856.	oorts, 2016, 6,	1.6	12
381	Conversion and reflection of Rayleigh waves with the seismic metawedge. , 2016, , .			1
382	Novel spoof plasmonic based compact slow wave structure for terahertz and microwar applications. , 2016, , .	ve		2
383	Self-organization of frozen light in near-zero-index media with cubic nonlinearity. Scien 2016, 6, 20088.	tific Reports,	1.6	21
384	Precise rainbow trapping for low-frequency acoustic waves with micro Mie resonance-t structures. Applied Physics Letters, 2016, 108, .	based	1.5	52
385	Compact Multilayer Film Structures for Ultrabroadband, Omnidirectional, and Efficient ACS Photonics, 2016, 3, 590-596.	Absorption.	3.2	108
386	Interplay between anisotropy and spatial dispersion in metamaterial waveguides. Physi 2016, 94, .	cal Review B,	1.1	13
387	High-quality-factor planar optical cavities with laterally stopped, slowed, or reversed lig Express, 2016, 24, 18399.	ht. Optics	1.7	8
388	Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap. Sn and Structures, 2016, 25, 085017.	hart Materials	1.8	67
389	Determination of the Goos-HÃ ¤ chen shift in dielectric waveguides via photo emission of microscopy in the visible spectrum. Optics Express, 2016, 24, 3839.	electron	1.7	13
390	Fluids by design using chaotic surface waves to create a metafluid that is Newtonian, t entirely tunable. Proceedings of the National Academy of Sciences of the United States 2016, 113, 10807-10812.	hermal, and s of America,	3.3	10
391	Enhancement of the Purcell factor in multiperiodic hyperboliclike metamaterials. Physic 2016, 93, .	cal Review A,	1.0	22
392	Planar gradient metamaterials. Nature Reviews Materials, 2016, 1, .		23.3	153

#	Article	IF	CITATIONS
393	A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs. Scientific Reports, 2016, 6, 28256.	1.6	60
394	Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Scientific Reports, 2016, 6, 29429.	1.6	76
395	Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Nature Communications, 2016, 7, 11731.	5.8	236
396	Dual band metamaterial perfect absorber based on artificial dielectric "moleculesâ€: Scientific Reports, 2016, 6, 28906.	1.6	51
397	Truly trapped rainbow by utilizing nonreciprocal waveguides. Scientific Reports, 2016, 6, 30206.	1.6	24
398	A seismic metamaterial: The resonant metawedge. Scientific Reports, 2016, 6, 27717.	1.6	264
399	Slowing light by activating an oscillatory mode in a negative refractive waveguide composed of all dielectric metamaterials. Applied Physics Express, 2016, 9, 012003.	1.1	3
400	Self-Trapped Band and Semi-Opening Movable Cavity. IEEE Journal of Quantum Electronics, 2016, 52, 1-7.	1.0	6
401	Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes. Journal of Physics Condensed Matter, 2016, 28, 016002.	0.7	4
402	Slowing and stopping of wave in dispersive metamaterial loaded helical guide. Optics Express, 2016, 24, 2687.	1.7	1
403	High-Throughput Fabrication of Resonant Metamaterials with Ultrasmall Coaxial Apertures via Atomic Layer Lithography. Nano Letters, 2016, 16, 2040-2046.	4.5	84
404	Propagation of TM surface modes in a taper slab waveguide with anisotropic metamaterials. Optik, 2016, 127, 3848-3852.	1.4	0
405	MMPA, Based on Electromagnetically-Induced Transparency. Springer Series in Materials Science, 2016, , 99-112.	0.4	0
406	Efficient metamaterial-based plasmonic sensors for micromixing evaluation. Journal Physics D: Applied Physics, 2016, 49, 035501.	1.3	2
407	Effects of multi-layer stacking along the propagation direction of an infrared metamaterial on the electromagnetic response of the structure. Optik, 2016, 127, 1408-1413.	1.4	9
408	Ultrathin Corrugated Metallic Strips for Ultrawideband Surface Wave Trapping at Terahertz Frequencies. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	5
409	Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates. Scientific Reports, 2017, 7, 40004.	1.6	37
410	Utilizing the power of Cerenkov light with nanotechnology. Nature Nanotechnology, 2017, 12, 106-117.	15.6	156

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
411	A disorder-based strategy for tunable, broadband wave attenuation. , 2017, , .		1
412	Characteristics of slow light in a magnetized plasma hyperbolic metamaterial waveguide. Optical and Quantum Electronics, 2017, 49, 1.	1.5	13
413	Theoretical investigation of guided modes in planar waveguides having chiral negative index metamaterial core layer. Optik, 2017, 131, 562-573.	1.4	14
414	Dynamic control of the terahertz rainbow trapping effect based on a silicon-filled graded grating. Chinese Physics B, 2017, 26, 017301.	0.7	1
415	Analog of midinfrared electromagnetically induced-transparency and slow rainbow trapping light based on graphene nanoribbon-coated silica substrate. Journal of Nanophotonics, 2017, 11, 026011.	0.4	9
416	Largeâ€Area Wideâ€Incidentâ€Angle Metasurface Perfect Absorber in Total Visible Band Based on Coupled Mie Resonances. Advanced Optical Materials, 2017, 5, 1700064.	3.6	70
417	Controlled opacity in a class of nonlinear dielectric media. Physical Review A, 2017, 95, .	1.0	2
418	Stopped microwave-rainbow in 3D chirped photonic crystals. , 2017, , .		1
419	Topological collective plasmons in bipartite chains of metallic nanoparticles. Physical Review B, 2017, 95, .	1.1	83
420	Ultraslow waves on the nanoscale. Science, 2017, 358, .	6.0	107
421	Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 2017, 7, 13595.	1.6	258
422	Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides. Journal of Optics (United Kingdom), 2017, 19, 124013.	1.0	21
423	Simultaneous enhancement of light extraction and spontaneous emission using a partially reflecting metasurface cavity. Physical Review A, 2017, 95, .	1.0	19
424	Combining ε-Near-Zero Behavior and Stopped Light Energy Bands for Ultra-Low Reflection and Reduced Dispersion of Slow Light. Scientific Reports, 2017, 7, 8702.	1.6	9
425	An ultra-compact rejection filter based on spoof surface plasmon polaritons. Scientific Reports, 2017, 7, 10576.	1.6	38
426	Broadband room temperature strong coupling between quantum dots and metamaterials. Nanoscale, 2017, 9, 11418-11423.	2.8	15
427	Permanent storage of light in a double-slab structure. Optics Communications, 2017, 402, 502-506.	1.0	4
428	Rainbow trapping in a chirped three-dimensional photonic crystal. Scientific Reports, 2017, 7, 3046.	1.6	23

#	Article	IF	CITATIONS
429	Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces. Scientific Reports, 2017, 7, 6750.	1.6	84
430	Largeâ€Scale Modulation of Leftâ€Handed Passband in Hybrid Graphene/Dielectric Metasurface. Annalen Der Physik, 2017, 529, 1700125.	0.9	4
431	Multi-low-frequency flexural wave attenuation in Euler–Bernoulli beams using local resonators containing negative-stiffness mechanisms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3141-3148.	0.9	38
432	Manipulation of acoustic transmission by zero-index metamaterial with rectangular defect. Journal of Applied Physics, 2017, 122, 215103.	1.1	10
433	Characterization of surface-plasmon polaritons at lossy interfaces. Journal of Optics (United) Tj ETQq0 0 0 rgBT /0	Dverlock 1 1.0	.0 Tf 50 582
434	Active Metamaterials. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 193-237.	0.1	0

435	Ultrafast Plasmonics. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 255-306.	0.1	1
436	A Dielectric-Thickness-Adjusting Method for Manipulating Graphene Surface Plasmon Polariton. Plasmonics, 2017, 12, 605-610.	1.8	2
438	Subwavelength Micro-Antenna for Achieving Slow Light at Microwave Wavelengths via Electromagnetically Induced Transparency in 2D Metamaterials. Plasmonics, 2017, 12, 1343-1352.	1.8	27
439	Slow waves in locally resonant metamaterials line defect waveguides. Scientific Reports, 2017, 7, 15105.	1.6	57
440	Electromagnetic energy accumulation in mesophotonic slow-light waveguides. , 2017, , .		1
441	Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling. Optics Express, 2017, 25, A612.	1.7	48
442	Near-field edge fringes at sharp material boundaries. Optics Express, 2017, 25, 23935.	1.7	39
443	Multi-mode resonance properties of two-dimensional metal-dielectric-metal fishnet metasurface at visible wavelengths. Optics Express, 2017, 25, 28417.	1.7	11
444	Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Optical Materials Express, 2017, 7, 606.	1.6	65
445	Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands. Optics Express, 2017, 25, 7263.	1.7	41
446	Metamaterials and Metasurfaces for Sensor Applications. Sensors, 2017, 17, 1726.	2.1	174
447	Elastic Wave Control Beyond Band-Gaps: Shaping the Flow of Waves in Plates and Half-Spaces with	0.8	43

#	Article	IF	Citations
448	Metamaterial Waveguide Devices for Integrated Optics. Materials, 2017, 10, 1037.	1.3	22
449	Spoof surface plasmon polaritons on ultrathin metal strips: from rectangular grooves to split-ring structures. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1130.	0.9	8
450	Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances. ACS Photonics, 2018, 5, 1612-1618.	3.2	123
451	Ultra-broadband and wide-angle perfect absorber based on composite metal–semiconductor grating. Optics Communications, 2018, 406, 95-102.	1.0	12
452	Ultra-broadband and tunable slow surface plasmon polaritions in a simple graphene-based waveguide. Journal of Optics (United Kingdom), 2018, 20, 035002.	1.0	0
453	Ultra-wide band dispersionless slow light waveguides. Optical and Quantum Electronics, 2018, 50, 1.	1.5	2
454	Liquid crystal-filled meta-pixel with switchable asymmetric reflectance and transmittance. Journal of Molecular Liquids, 2018, 267, 411-414.	2.3	7
455	Inherent losses induced absorptive acoustic rainbow trapping with a gradient metasurface. Journal of Applied Physics, 2018, 123, .	1.1	32
456	Steady bound electromagnetic eigenstate arises in a homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector. Optics Communications, 2018, 413, 167-171.	1.0	6
457	Rainbow Trapping in Highly Doped Silicon Graded Grating Strip at the Terahertz Range. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	0
458	Quantum coherence–driven self-organized criticality and nonequilibrium light localization. Science Advances, 2018, 4, eaaq0465.	4.7	6
459	A Universal Plasmonic Polarization State Analyzer. Plasmonics, 2018, 13, 1129-1134.	1.8	10
460	Analysis of Non-Propagating Modes for Light Trapping in Plasmonic Waveguides. , 2018, , .		0
461	Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas. Chinese Physics B, 2018, 27, 117805.	0.7	3
462	Completely stopping microwaves with extremely enhanced magnetic fields. Scientific Reports, 2018, 8, 15811.	1.6	4
463	Transmission and absorption in a waveguide with a metamaterial cavity. Journal of the Acoustical Society of America, 2018, 144, 3172-3180.	0.5	13
464	A Two-Way THz Frequency Splitter Using CPS-Based SSPPs. , 2018, , .		1
465	Conversion of Love waves in a forest of trees. Physical Review B, 2018, 98, .	1.1	40

#	Articie	IF	CITATION
466	Liquid Crystal Enabled Dynamic Nanodevices. Nanomaterials, 2018, 8, 871.	1.9	23
467	Graded resonator arrays for spatial frequency separation and amplification of water waves. Journal of Fluid Mechanics, 2018, 854, .	1.4	42
468	The multi-physics metawedge: graded arrays on fluid-loaded elastic plates and the mechanical analogues of rainbow trapping and mode conversion. New Journal of Physics, 2018, 20, 053017.	1.2	36
469	Spoof Plasmonics: From Metamaterial Concept to Topological Description. Advanced Materials, 2018, 30, e1706683.	11.1	111
470	One-way edge modes in a photonic crystal of semiconductor at terahertz frequencies. Scientific Reports, 2018, 8, 8165.	1.6	8
471	Slow light in a hyperbolic metamaterial waveguide cladded with arbitrary nonlinear dielectric materials. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	3
472	Large-Area, Cost-Effective, Ultra-Broadband Perfect Absorber Utilizing Manganese in Metal-Insulator-Metal Structure. Scientific Reports, 2018, 8, 9162.	1.6	65
473	Analysis of the slow-light effect in silicon wire waveguides with metamaterials. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 797.	0.9	10
474	Flexible metasurface black nickel with stepped nanopillars. Optics Letters, 2018, 43, 1231.	1.7	29
475	Light–Matter Interaction within Extreme Dimensions: From Nanomanufacturing to Applications. Advanced Optical Materials, 2018, 6, 1800444.	3.6	22
476	Using double chirping to minimise absorption in lossy broadband dielectric reflectors. Optical Materials Express, 2018, 8, 1827.	1.6	0
477	Multiresonance response in hyperbolic metamaterials. Applied Optics, 2018, 57, 2135.	0.9	14
478	Acoustic Analogues of High-Index Optical Waveguide Devices. Scientific Reports, 2018, 8, 10401.	1.6	23
479	Slowing designer surface plasmons in a surface-wave photonic crystal. Applied Optics, 2018, 57, 7089.	0.9	2
480	Frequency-domain versus time-domain analysis of slow-light mesophotonic waveguides: Theoretical insights for practically realizable devices. , 2018, , .		1
481	Design Anisotropic Broadband <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>ïµ</mml:mi></mml:math> -Near-Zero Metamaterials: Rigorous Use of Bergman and Milton Spectral Representations. Physical Review Applied, 2018, 9, .	1.5	7
482	High-Speed Efficient Terahertz Modulation Based on Tunable Collective-Individual State Conversion within an Active 3 nm Two-Dimensional Electron Gas Metasurface. Nano Letters, 2019, 19, 7588-7597.	4.5	64
483	A fully coupled subwavelength resonance approach to filtering auditory signals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190049.	1.0	16

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
484	Ultimate Light Trapping in a Free-Form Plasmonic Waveguide. Physical Review Applied, 2019, 12, .	1.5	9
485	A high-quality spin and valley beam splitter in WSe ₂ tunnelling junction through the Goos–HĀ ¤ chen shift. Journal of Physics Condensed Matter, 2019, 31, 225303.	0.7	7
486	Phaseâ€Modulated Scattering Manipulation for Exterior Cloaking in Metal–Dielectric Hybrid Metamaterials. Advanced Materials, 2019, 31, e1903206.	11.1	38
487	Quasielectrostatic Wave Propagation Beyond the Delay-Bandwidth Limit in Switched Networks. Physical Review X, 2019, 9, .	2.8	21
489	Nanofocusing and deceleration of terahertz plasma waves in tapered metal-insulator-graphene heterostructure. Journal of Physics Condensed Matter, 2019, 31, 34LT02.	0.7	4
490	Giant Enhancement of the Goos-Hächen Shift Assisted by Quasibound States in the Continuum. Physical Review Applied, 2019, 12, .	1.5	139
491	Light-trapping modes in lossy plasmonic waveguides. AIP Advances, 2019, 9, 065205.	0.6	1
492	Multiresonant plasmonics with spatial mode overlap: overview and outlook. Nanophotonics, 2019, 8, 1199-1225.	2.9	35
494	Role of nanophotonics in the birth of seismic megastructures. Nanophotonics, 2019, 8, 1591-1605.	2.9	10
495	Mimicking the cochlea with an active acoustic metamaterial. New Journal of Physics, 2019, 21, 093012.	1.2	28
498	Constructing Metastructures with Broadband Electromagnetic Functionality. Advanced Materials, 2020, 32, e1904646.	11.1	85
499	Rainbow Trapping with Long Oscillation Lifetimes in Gradient Magnetoinductive Metasurfaces. Physical Review Applied, 2019, 12, .	1.5	21
500	Low-frequency wave-energy amplification in graded two-dimensional resonator arrays. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190104.	1.6	11
501	A broadband and polarization-insensitive perfect absorber based on a van der Waals material in the mid-infrared regime. Results in Physics, 2019, 15, 102687.	2.0	10
502	A refractive index from negative to positive of graphene plasmonic crystal at the Dirac-like cone in mid-infrared region. Photonics and Nanostructures - Fundamentals and Applications, 2019, 37, 100745.	1.0	1
503	The influence of building interactions on seismic and elastic body waves. EPJ Applied Metamaterials, 2019, 6, 18.	0.8	13
504	Rayleigh–Bloch, topological edge and interface waves for structured elastic plates. Wave Motion, 2019, 86, 162-174.	1.0	25
505	Flat lensing by graded line meta-arrays. Physical Review B, 2019, 99, .	1.1	10

#	Article	IF	CITATIONS
506	Achieving volumetric gain metamaterials. AIP Advances, 2019, 9, 055314.	0.6	1
507	Left-handed band in an electromagnetic metamaterial induced by sub-wavelength multiple scattering. Applied Physics Letters, 2019, 114, .	1.5	14
508	Gain enhancement of circular waveguide antennas using nearâ€≢ero index metamaterials. Microwave and Optical Technology Letters, 2019, 61, 1617-1621.	0.9	2
509	Bandgap widening by disorder in rainbow metamaterials. Applied Physics Letters, 2019, 114, .	1.5	94
510	Experimental demonstration of broadband light trapping by exciting surface modes of an all-dielectric taper. Scientific Reports, 2019, 9, 3538.	1.6	3
511	Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial. Journal of Optics (United Kingdom), 2019, 21, 035101.	1.0	8
512	A Route to Unusually Broadband Plasmonic Absorption Spanning from Visible to Mid-infrared. Plasmonics, 2019, 14, 1269-1281.	1.8	8
513	Experimental Evidence of Rainbow Trapping and Bloch Oscillations of Torsional Waves in Chirped Metallic Beams. Scientific Reports, 2019, 9, 1860.	1.6	19
514	Compact Acoustic Rainbow Trapping in a Bioinspired Spiral Array of Graded Locally Resonant Metamaterials. Sensors, 2019, 19, 788.	2.1	34
515	Multi-band Terahertz Transmission Using Frequency-selective Surfaces Based on â€~F' Shapes Arranged in Odd-symmetry. , 2019, , .		0
516	Hyperbolic Metamaterial Near-field Coupler. , 2019, , .		3
517	Gradient-Index Granular Crystals: From Boomerang Motion to Asymmetric Transmission of Waves. Physical Review Letters, 2019, 123, 214301.	2.9	4
518	Damage analysis of a perfect broadband absorber by a femtosecond laser. Scientific Reports, 2019, 9, 15880.	1.6	5
519	Near-zero-index materials for photonics. Nature Reviews Materials, 2019, 4, 742-760.	23.3	234
520	Controlling seismic elastic surface waves via interacting structures. , 2019, , .		0
521	Active Optical Metamaterials. , 2019, , 187-261.		2
522	Structural Slow Waves: Parallels between Photonic Crystals and Plasmonic Waveguides. ACS Photonics, 2019, 6, 4-17.	3.2	20
523	Slow and Stopped Light in Metamaterials. , 2019, , 155-173.		1

#	Article	IF	CITATIONS
524	Hybrid Newmark-conformal FDTD modeling of thin spoof plasmonic metamaterials. Journal of Computational Physics, 2019, 376, 390-410.	1.9	6
525	Chemo- and Thermomechanically Configurable 3D Optical Metamaterials Constructed from Colloidal Nanocrystal Assemblies. ACS Nano, 2020, 14, 1427-1435.	7.3	20
526	Multiple band-rejection filters in dual-frequency bands based on spoof surface plasmon polaritons. Journal of Optics (United Kingdom), 2020, 22, 015001.	1.0	13
527	A Review of Research on Seismic Metamaterials. Advanced Engineering Materials, 2020, 22, 1901148.	1.6	63
528	Graded elastic metasurface for enhanced energy harvesting. New Journal of Physics, 2020, 22, 013013.	1.2	92
529	Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting. Applied Physics Letters, 2020, 117, .	1.5	51
530	Tailored elastic surface to body wave Umklapp conversion. Nature Communications, 2020, 11, 3267.	5.8	38
531	Polarization-insensitive classical electromagnetically induced transparency metamaterial with large group delay by Dirac semimetal. Results in Physics, 2020, 19, 103377.	2.0	13
532	3D rainbow phononic crystals for extended vibration attenuation bands. Scientific Reports, 2020, 10, 18989.	1.6	30
533	Broadband near-infrared metamaterial absorber based on rainbow trapping effect. Optics Communications, 2020, 475, 126284.	1.0	8
534	Ultrabroadband Absorption Enhancement via Hybridization of Localized and Propagating Surface Plasmons. Nanomaterials, 2020, 10, 1625.	1.9	15
535	Tunable terahertz metamaterial using electrostatically electric split-ring resonator. Results in Physics, 2020, 19, 103638.	2.0	20
536	Topological Rainbow Trapping for Elastic Energy Harvesting in Graded Su-Schrieffer-Heeger Systems. Physical Review Applied, 2020, 14, .	1.5	77
537	Ultrathin entirely flat Umklapp lenses. Physical Review B, 2020, 101, .	1.1	9
538	Terahertz plasma wave localization and velocity control in tapered double-layer graphene heterostructure. Europhysics Letters, 2020, 130, 17005.	0.7	0
539	Guided Optical Modes in Metal-Cladded Tunable Hyperbolic Metamaterial Slab Waveguides. Crystals, 2020, 10, 176.	1.0	8
540	Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews, 2020, 120, 6197-6246.	23.0	78
541	Propagation of wave in a cylindrical waveguide filled with hyperbolic negative index medium. Microwave and Optical Technology Letters, 2020, 62, 3385-3390.	0.9	9

ARTICLE IF CITATIONS # Cascaded Nanorod Arrays for Ultrabroadband, Omnidirectional and Polarization-Insensitive 542 1.3 6 Absorption. Applied Sciences (Switzerland), 2020, 10, 3878. Delineating rainbow reflection and trapping with applications for energy harvesting. New Journal of 543 1.2 Physics, 2020, 22, 063024. 544 Stopping light using a transient Bragg grating. Physical Review A, 2020, 101, . 1.0 1 Mimicking the active cochlea with a fluid-coupled array of subwavelength Hopf resonators. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 545 20190870 Trapping and releasing bidirectional rainbow at terahertz frequencies. Optics Communications, 2020, 546 1.0 6 473, 125999. Hyperbolic metamaterials: From dispersion manipulation to applications. Journal of Applied Physics, 1.1 2020, 127, . 548 Plasmon Localization Assisted by Conformal Symmetry. ACS Photonics, 2020, 7, 951-958. 3.2 3 A metasurface absorber based on the slow-wave effect. AIP Advances, 2020, 10, . 549 0.6 Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures. Journal of 550 2.1 35 Sound and Vibration, 2020, 480, 115377. Plasmonic Metasurfaces Enabled Ultraâ€Compact Broadband Waveguide TMâ€Pass Polarizer. Annalen Der Physik, 2021, 533, . Tunable TM modes in a slab waveguide including a graphene-dielectric multilayer structure. Optik, 552 1.4 1 2021, 227, 165414. Light–Matter Interaction in Quantum Confined 2D Polar Metals. Advanced Functional Materials, 2021, 31, 2005977. Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the 554 0.3 15 complex frequency plane. Comptes Rendus Physique, 2020, 21, 713-749. A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on 2.2 14 a multi-layer plasmonic structure. Nanoscale Advances, 2021, 3, 4072-4078. All-optical tunable slow-light based on an analogue of electromagnetically induced transparency in a 556 2.2 19 hybrid metamaterial. Nanoscale Advances, 2021, 3, 5636-5641. Unconventional time-bandwidth performance of resonant cavities with nonreciprocal coupling. Physical Review A, 2021, 103, . State-of-the-Art of Engineered Materials for Energy Harvesting. SpringerBriefs in Applied Sciences and 558 0.2 0 Technology, 2021, , 7-25. 559 Localizing Elastic Edge Waves via the Topological Rainbow Effect. Physical Review Applied, 2021, 15, . 1.5 34

		CITATION REPORT		
#	Article		IF	CITATIONS
560	Graded Elastic Metamaterials. SpringerBriefs in Applied Sciences and Technology, 202	l,,61-89.	0.2	1
561	Polarization- and angle-insensitive ultrabroadband perfect metamaterial absorber for thermophotovoltaics. Journal of the Optical Society of America B: Optical Physics, 202	1, 38, 327.	0.9	30
562	Controlled switching of the optical surface waves in one-dimensional photonic crystals left-handed materials in the presence of a chiral metamaterial as a cap layer. Photonics Nanostructures - Fundamentals and Applications, 2021, 43, 100891.	containing and	1.0	4
563	Metamaterial beam for flexural wave resonance rainbow trapping and piezoelectric enharvesting. Journal of Applied Physics, 2021, 129, .	ergy	1.1	14
564	Beyond the Visible: Bioinspired Infrared Adaptive Materials. Advanced Materials, 2021,	33, e2004754.	11.1	201
565	Tunable enhancement of spatial lateral shifts in periodic chiral metamaterials. Journal o (United Kingdom), 2021, 23, 025402.	f Optics	1.0	5
566	Mark Stockman: Evangelist for Plasmonics. ACS Photonics, 2021, 8, 683-698.		3.2	2
567	Slow wave and truly rainbow trapping in a one-way terahertz waveguide. Optics Expre 11328.	ss, 2021, 29,	1.7	13
568	Topological rainbow based on graded topological photonic crystals. Optics Letters, 20	21, 46, 1237.	1.7	37
569	Topological Rainbow Concentrator Based on Synthetic Dimension. Physical Review Let 113902.	ters, 2021, 126,	2.9	77
570	Broadband acoustic focusing via binary rectangular cavity/Helmholtz resonator metas of Applied Physics, 2021, 129, .	ırface. Journal	1.1	22
571	Transmission and rainbow trapping of acoustic waves in a fluid medium using gradient superlattices. Journal of Applied Physics, 2021, 129, 154501.	-index	1.1	2
572	Visible-infrared (0.4–20 <i> î¼ </i> m) ultra-broadband absorber based on c Applied Physics Letters, 2021, 118, .	ascade film stacks.	1.5	13
573	Progress and perspectives on phononic crystals. Journal of Applied Physics, 2021, 129,		1.1	105
574	Stopping surface magneto-plasmons by non-reciprocal graded waveguides. Physics Le General, Atomic and Solid State Physics, 2021, 398, 127279.	ters, Section A:	0.9	6
575	Block Copolymer Directed Metamaterials and Metasurfaces for Novel Optical Devices. Optical Materials, 2021, 9, 2100175.	Advanced	3.6	47
576	Multiband Omnidirectional Ventilated Acoustic Barriers Based on Localized Acoustic R Trapping. Physical Review Applied, 2021, 15, .	ainbow	1.5	13
577	Correlated disorder in rainbow metamaterials for vibration attenuation. Proceedings o Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2610-2621.	the ,2021, 235,	1.1	6

#		IE	CITATIONS
#	From Photonic Crystals to Seismic Metamaterials: A Review via Phononic Crystals and Acoustic	IF	CHATIONS
578	Metamaterials. Archives of Computational Methods in Engineering, 2022, 29, 1137-1198.	6.0	67
579	A review on seismic metamaterials: From natural toartificial structures. Chinese Science Bulletin, 2022, 67, 1264-1278.	0.4	7
580	Fourier optics with linearly tapered waveguides: Light trapping and focusing. APL Photonics, 2021, 6, 066108.	3.0	0
581	Coupling the first and second attenuation zones in seismic metasurface. Applied Physics Letters, 2021, 119, .	1.5	10
582	Broadband energy squeezing and tunneling based on unidirectional modes. Optical Materials Express, 2021, 11, 2975.	1.6	4
583	Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-Hächen shifts with perfect reflection. Physical Review A, 2021, 104, .	1.0	51
584	Selective Mode Conversion and Rainbow Trapping via Graded Elastic Waveguides. Physical Review Applied, 2021, 16, .	1.5	37
585	Giant and tunable Goos-Hächen shift with a high reflectance induced by PT-symmetry in atomic vapor. Optics Express, 2021, 29, 30436.	1.7	4
586	Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2021, 2, .	5.5	28
587	Bandgap widening by optimized disorder in one-dimensional locally resonant piezoelectric metamaterials. Journal of Sound and Vibration, 2021, 512, 116369.	2.1	20
588	Wide Rayleigh waves bandgap engineered metabarriers for ground born vibration attenuation. Engineering Structures, 2021, 246, 113019.	2.6	23
589	Past, present and future of seismic metamaterials: experiments on soil dynamics, cloaking, large scale analogue computer and space–time modulations. Comptes Rendus Physique, 2020, 21, 767-785.	0.3	7
590	A near infrared plasmonic perfect absorber as a sensor for hemoglobin concentration detection. Optical and Quantum Electronics, 2021, 53, 1.	1.5	21
591	Advanced Multiresonator Designs for Energy Harvesting. SpringerBriefs in Applied Sciences and Technology, 2021, , 91-120.	0.2	0
592	Deceleration of terahertz plasma waves in tapered heterostructure with active graphene pumped by optical plasmons. AIP Conference Proceedings, 2021, , .	0.3	0
594	Les métamatériaux, des micro-ondes à l'optiqueÂ: théorie et applications. Annales De Physique, 2009, 1-120.	34, 0:2	1
595	Graded multifunctional piezoelectric metastructures for wideband vibration attenuation and energy harvesting. Smart Materials and Structures, 2021, 30, 015029.	1.8	49
596	Experimental realization of broadband control of water-wave-energy amplification in chirped arrays. Physical Review Fluids, 2020, 5, .	1.0	14

#	Article	IF	CITATIONS
597	Forest Trees as Naturally Available Seismic Metamaterials: Low Frequency Rayleigh Wave with Extremely Wide Bandgaps. International Journal of Structural Stability and Dynamics, 2020, 20, 2043014.	1.5	24
599	Anomalies in light scattering. Advances in Optics and Photonics, 2019, 11, 892.	12.1	161
600	Rainbow Trapping in Hyperbolic Metamaterial Waveguide. , 2013, , .		3
601	Adverse effect of material absorption on stopped light hollow waveguides with negative index metamaterial cladding. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 248.	0.9	1
602	Ultrabroadband absorber based on a funnel-shaped anisotropic metamaterial. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2889.	0.9	17
603	Infrared metamaterial refractive-index-based sensor. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2712.	0.9	14
604	Magnetically controllable slow light based on magnetostrictive forces. Optics Express, 2019, 27, 5544.	1.7	69
605	Broadband one-way propagation and rainbow trapping of terahertz radiations. Optics Express, 2019, 27, 10659.	1.7	19
606	Demonstration of slow-light effect in silicon-wire waveguides combined with metamaterials. Optics Express, 2019, 27, 15007.	1.7	12
607	Waveguide modes in Weyl semimetals with tilted dirac cones. Optics Express, 2019, 27, 36164.	1.7	31
608	Control of slow-light effect in a metamaterial-loaded Si waveguide. Optics Express, 2020, 28, 23198.	1.7	8
609	Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials. Optics Express, 2020, 28, 31844.	1.7	23
610	Slow light mediated by mode topological transitions in hyperbolic waveguides. Optics Letters, 2021, 46, 58.	1.7	5
611	Two broad absorption bands in infrared atmosphere transparent windows by trapezoid multilayered grating. Optical Materials Express, 2020, 10, 682.	1.6	13
612	Trapping a magnetic rainbow by using a one-way magnetostatic-like mode. Optical Materials Express, 2019, 9, 4399.	1.6	10
613	Nonreciprocal cavities and the time-bandwidth limit: comment. Optica, 2020, 7, 1097.	4.8	12
614	INFLUENCE OF EXTERNAL MAGNETIC FIELD ON A SYMMETRICAL GYROTROPIC SLAB IN TERMS OF GOOS-HÄNCHEN SHIFTS. Progress in Electromagnetics Research, 2008, 82, 137-150.	1.6	9
615	Rainbows at the End of Subwavelength Discontinuities: Plasmonic Light Trapping for Sensing Applications. Advanced Optical Materials, 2021, 9, 2100695.	3.6	12

#	Article	IF	CITATIONS
616	A review of perfect absorbers based on the two dimensional materials in the visible and near-infrared regimes. Journal Physics D: Applied Physics, 2022, 55, 093002.	1.3	20
617	Frequency distillation with dispersive reflector for multitone ultrasound perception. Applied Physics Letters, 2021, 119, .	1.5	1
619	How to trap a rainbow. Nature, 0, , .	13.7	0
620	Stopping light in metamaterials: the trapped rainbow. SPIE Newsroom, 2008, , .	0.1	3
621	Surface polariton-polariton induced transparency in left-handed metamaterials. , 2008, , .		0
622	Stopped Light in Negative-Index Metamaterial Heterostructures. , 2008, , .		0
623	â€~Trapped Rainbow' Schemes for Storing Light in Engineered Waveguides. , 2009, , .		0
624	"Rainbow―trapping and temperature tunable structures for telecom waves. , 2009, , .		0
625	Recent Advances in â€~Trapped Rainbow' Techniques for Stopping Light. , 2009, , .		0
626	The Confinement of Electromagnetic Radiation of Nanoemitters in a Multilayered Microsphere with Left-Handed Layers. Journal of Electromagnetic Analysis and Applications, 2010, 02, 654-663.	0.1	0
627	Nonlinear Wave Control and Rainbows in Complex Gyroelectric Structures. , 2010, , .		0
628	Slow Light Amplification and Nano-Lasing in Active Plasmonic Metamaterials. , 2011, , .		0
629	Giant Goos-Hanchen shift enhancement under total internal reflection by one-dimensional photonic crystals. , 2011, , .		0
630	Nonlinear Plasmonics Near the Dirac Point in Negative-Zero-Positive Index Metamaterials–Optical Simulations of Electron in Graphene. , 0, , .		0
631	Metamaterials. Springer Series in Optical Sciences, 2012, , 569-610.	0.5	0
632	Trapped Rainbow Techniques for Spectroscopy on a Chip and Fluorescence Enhancement. , 2012, , .		0
633	Electron Optics in Graphene. The Electrical Engineering Handbook, 2012, , 573-594.	0.2	0
634	Non-Unity Permeability in InP-Based Photonic Device Combined with Metamaterial. , 0, , .		0

IF ARTICLE CITATIONS # Metamaterial Van Hove Singularity., 2013,,. 635 0 Experimental studies of slow wave based on the surface waves in a two-dimensional metamaterials 0.2 waveguide. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 024203. Enhanced Slow Wave through Dispersive Metamaterial Loaded Helical Guide: Analytical Study and 637 0 Design., 2014,,. Light Nearly Stopped in a Waveguide. Physics Magazine, 0, 7, . 638 Unlocking Metamaterial Properties through Multiscale Design., 0,,. 639 0 Quantum-Coherently Assisted Deep-UV Localization of Light in Active Plasmonic Heterostructures., 2015,,. Quantum-Coherence Emergent Self-Organized Criticality and Nonequilibrium Light Localization., 2016, 642 0 ,. Amplification of terahertz plasma waves in tapered metal-insulator-graphene heterostructure., 2019,, 643 Nonreciprocal Goos-HÃ**¤**chen shift by topological edge states of a magnetic photonic crystal. Optics 645 1.7 13 Express, 2020, 28, 19916. 646 Graphene-based terahertz metamirror with wavefront reconfiguration. Optics Express, 2021, 29, 39574. 1.7 Enhanced Energy Harvesting of Flexural Waves in Elastic Beams by Bending Mode of Graded 647 1.2 13 Resonators. Frontiers in Materials, 2021, 8, . High Q-factor terahertz metamaterial for superior refractive index sensing. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3929. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic 649 5.8 58 metamaterials. Nature Communications, 2021, 12, 6425. Structural parameters of hyperbolic metamaterials controlling high-k mode resonant wavelengths. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3784. Optical meta-waveguides for integrated photonics and beyond. Light: Science and Applications, 2021, 651 196 7.7 10, 235. Highly Efficient and Broadband Achromatic Transmission Metasurface to Refract and Focus in 4.4 Microwave Region. Laser and Photonics Reviews, 2022, 16, . 653 Strong Coupling in Semiconductor Hyperbolic Metamaterials. Nano Letters, 2021, 21, 9951-9957. 4.5 5 Dual-mode of topological rainbow in gradual photonic heterostructures. Journal Physics D: Applied 654 1.3 Physics, 2022, 55, 095103.

ARTICLE IF CITATIONS # Free-form optimization of nanophotonic devices: from classical methods to deep learning. 655 2.9 38 Nanophotonics, 2022, 11, 1809-1845. Microscopies Enabled by Photonic Metamaterials. Sensors, 2022, 22, 1086. 2.1 657 Octet lattice-based plate for elastic wave control. Scientific Reports, 2022, 12, 1088. 1.6 11 Nonlocalityâ€Enabled Pulse Management in Epsilonâ€Nearâ€Zero Metamaterials. Advanced Materials, 2023, 11.1 35, e2107023. Homogenization of the wave equation with non-uniformly oscillating coefficients. Mathematics and 659 1.5 3 Mechanics of Solids, 2022, 27, 2341-2365. Realization of broadband truly rainbow trapping in gradient-index metamaterials. Optics Express, 2022, 1.7 30, 3941. Bidirectional Rainbow Trapping in 1-D Chirped Topological Photonic Crystal. Frontiers in Physics, 661 1.0 7 2022, 10, . Graded elastic meta-waveguides for rainbow reflection, trapping and mode conversion. EPJ Applied 0.8 Metamaterials, 2022, 9, 6. Programmable Rainbow Trapping and Band-Gap Enhancement via Spatial Group-Velocity Tailoring in 663 25 1.5 Elastic Metamaterials. Physical Review Applied, 2022, 17, . Abnormal optical response of PAMAM dendrimer-based silver nanocomposite metamaterials. 664 3.4 Photonics Research, 2022, 10, 965. High-speed infrared photonic band microscope using hyperspectral Fourier image spectroscopy. Optics 665 1.7 5 Letters, 2022, 47, 2430. Modified fishnet structure with a wide negative refractive index band and a high figure of merit at 666 0.9 microwave frequencies. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1282. Perspective on the topological rainbow. Applied Physics Letters, 2021, 119, . 667 1.5 22 Exceeding the classical time-bandwidth product in nonlinear time-invariant systems. Nonlinear 2.7 Dynamics, 0, , 1. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electronic Advances, 2022, 5, 669 6.4 54 200098-200098. Design of three-dimensional isotropic negative-refractive-index metamaterials with wideband response based on an effective-medium approach. Applied Physics A: Materials Science and Processing, 670 1.1 2022, 128, 1. Rainbow reflection and broadband energy absorption of water waves by graded arrays of vertical 671 1.4 13 barriers. Journal of Fluid Mechanics, 2022, 941, . Rainbow gyroscopic disk metastructures for broadband vibration attenuation in rotors. Journal of 672 2.1 Sound and Vibration, 2022, 532, 116982.

#	ARTICLE	IF	CITATIONS
674	I unable topological edge states and rainbow trapping in two dimensional magnetoelastic phononic crystal plates based on an external magnetostatic field. International Journal of Mechanical Sciences, 2022, 225, 107360.	3.6	22
675	Robustness of subwavelength devices: a case study of cochlea-inspired rainbow sensors. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	4
676	Probing Two Distinct Types of Topological Rainbow Concentrators Related to the Acoustic Valley Hall Insulator in Synthesized Three-Dimensional Space. Physical Review Applied, 2022, 17, .	1.5	8
677	Light localization in 1D chirped photonic crystals. European Physical Journal Plus, 2022, 137, .	1.2	3
678	Broadband Multiple Topological Rainbows. Annalen Der Physik, 2022, 534, .	0.9	7
679	Super-Resolution Displacement Spectroscopic Sensing over a Surface "Rainbow― Engineering, 2022, 17, 75-81.	3.2	1
680	Broadband vibration suppression of rainbow metamaterials with acoustic black hole. International Journal of Mechanical Sciences, 2022, 228, 107485.	3.6	36
681	Quantification of the Effects of an Urban Layer on Rayleigh Wave Characteristics and Development of a Meta-City. Pure and Applied Geophysics, 2022, 179, 3253-3277.	0.8	2
682	Harnessing rainbow trapping via hybrid electromechanical metastructures for enhanced energy harvesting and vibration attenuation. Journal of Applied Physics, 2022, 132, .	1.1	2
683	Tunable transmission of a normal incidence through a double-slab structure. Journal of Electromagnetic Waves and Applications, 0, , 1-13.	1.0	1
684	Sorting strategy to retune the disordered periodic structures regarding vibration reduction in band gaps. Frontiers in Mechanical Engineering, 0, 8, .	0.8	0
685	A graded metamaterial for broadband and high-capability piezoelectric energy harvesting. Energy Conversion and Management, 2022, 269, 116056.	4.4	26
686	Seismic resonant metamaterials for the protection of an elastic-plastic SDOF system against vertically propagating seismic shear waves (SH) in nonlinear soil. Soil Dynamics and Earthquake Engineering, 2022, 162, 107366.	1.9	7
687	Metamaterial plate with compliant quasi-zero-stiffness resonators for ultra-low-frequency band gap. Journal of Sound and Vibration, 2022, 540, 117297.	2.1	25
688	From cavity optomechanics to cavity-less exciton optomechanics: a review. Nanoscale, 2022, 14, 16710-16730.	2.8	4
689	Vibration Resonance and Dynamic Characteristics of Pillared Phononic Crystals and Acoustic Metamaterials. , 2022, , .		0
690	Realization of large transmitted optical Goos–HÃ ¤ chen shifts in photonic crystal slabs. Nanophotonics, 2022, 11, 4531-4536.	2.9	7
691	Adjustable enhanced Goos-Hächen shift in a magneto-optic photonic crystal waveguide. Optics Express, 2022, 30, 36478.	1.7	1

#	Article	IF	CITATIONS
692	Reconfigurable graphene-based metamaterial polarization converter for terahertz applications. Optical and Quantum Electronics, 2022, 54, .	1.5	2
693	Controlling Sound Wave Propagation in Topological Crystalline Insulators and Rainbow-Trapping. Physical Review Applied, 2022, 18, .	1.5	6
694	Correlation-enhanced Goos-Hächen shift in Rydberg atomic gases. Physical Review A, 2022, 106, .	1.0	4
695	Topological rainbow trapping based on non-Hermitian twisted piecing photonic crystals. Photonics Research, 2022, 10, 2728.	3.4	5
696	Rainbow trapping and releasing based on the topological photonic crystals and a gradient 1D array. Journal of Applied Physics, 2022, 132, .	1.1	2
697	Vibration suppression by mistuning acoustic black hole dynamic vibration absorbers. Journal of Sound and Vibration, 2023, 542, 117370.	2.1	18
698	Bandgap characteristics of the two-dimensional missing rib lattice structure. Applied Mathematics and Mechanics (English Edition), 2022, 43, 1631-1640.	1.9	3
699	Artificially engineered metaconcrete with wide bandgap for seismic surface wave manipulation. Engineering Structures, 2023, 276, 115375.	2.6	18
700	Broadband stealth devices based on encoded metamaterials. Applied Optics, 2022, 61, 10171.	0.9	0
701	Collective lattice and plasmonic resonances in the enhancement of circular dichroism in disk–rod metasurface. Journal of Applied Physics, 2023, 133, .	1.1	5
702	Asymptotic Links between Signal Processing, Acoustic Metamaterials, and Biology. SIAM Journal on Imaging Sciences, 2023, 16, 64-88.	1.3	2
703	Peculiarities of Light Absorption in Chirped One-Dimensional Photonic Crystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 0, , .	0.2	0
704	Controllable subwavelength topological rainbow trapping in water-filling acoustic metamaterials. Applied Acoustics, 2023, 207, 109366.	1.7	6
705	Optimised graded metamaterials for mechanical energy confinement and amplification via reinforcement learning. European Journal of Mechanics, A/Solids, 2023, 99, 104947.	2.1	7
706	Topological rainbow trapping based on gradual valley photonic crystals. Frontiers in Physics, 0, 11, .	1.0	3
707	Realization of large transmitted Goos–Hächen shifts with high (near 100%) transmittance based on a coupled double-layer grating system. Optics Letters, 2023, 48, 1710.	1.7	1
708	Continuum of Bound States in a Non-Hermitian Model. Physical Review Letters, 2023, 130, .	2.9	5
709	Topological rainbow trapping and acoustic energy amplification in two-dimensional gradient phononic crystals. Applied Physics Letters, 2023, 122, .	1.5	13

#	Article	IF	CITATIONS
710	Tailored Topological Edge Waves via Chiral Hierarchical Metamaterials. Physical Review Applied, 2023, 19, .	1.5	6
711	Visible and infrared dual-band anti-counterfeiting with self-assembled photonic heterostructures. Optics Express, 2023, 31, 13875.	1.7	1
712	Negative refraction in hyperbolic hetero-bicrystals. Science, 2023, 379, 555-557.	6.0	23
713	Gate-tunable negative refraction of mid-infrared polaritons. Science, 2023, 379, 558-561.	6.0	32
714	A Fourfold Star Petal–Shaped Polarization-Insensitive Broadband Plasmonic Metamaterial Absorber. Plasmonics, 2023, 18, 1059-1074.	1.8	4
715	Imaging-based intelligent spectrometer on a plasmonic rainbow chip. Nature Communications, 2023, 14,	5.8	6
716	Analytical solutions for Bloch waves in resonant phononic crystals: deep-subwavelength energy splitting and mode steering between topologically protected interfacial and edge states. Quarterly Journal of Mechanics and Applied Mathematics, 2023, 76, 163-209.	0.5	3
724	Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods. Light: Science and Applications, 2023, 12, .	7.7	12
729	Plasmonic "Rainbow―for Super-Resolution Displacement Spectroscopic Analysis and Surface Biosensing. , 2023, , .		0
733	The importance of full-scale experiments for the study of seismic metamaterials. , 2024, , 519-528.		0
751	Roton-Like Dispersion via Polarization Change for Elastic Wave Control. , 2023, , .		0
752	Plasmonic Rainbow Chip for Super-Resolution Displacement Spectrometer and Surface Biosensor. , 2023, , .		1