Rapid planetesimal formation in turbulent circumstella

Nature 448, 1022-1025 DOI: 10.1038/nature06086

Citation Report

#	Article	IF	CITATIONS
2	Terrestrial planet formation in extra-solar planetary systems. Proceedings of the International Astronomical Union, 2007, 3, 233-250.	0.0	4
3	Dust evolution in protoplanetary disks. Proceedings of the International Astronomical Union, 2007, 3, 375-380.	0.0	0
4	The first movement. Nature, 2007, 448, 1003-1003.	13.7	4
5	From discs to planetesimals: Evolution of gas and dust discs. New Astronomy Reviews, 2008, 52, 60-77.	5.2	45
6	From boulders to planetary systems. New Astronomy Reviews, 2008, 52, 78-93.	5.2	6
7	Accretion of the Earth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4061-4075.	1.6	61
8	Kinematics of solid particles in a turbulent protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2008, 386, 145-154.	1.6	30
9	The Formation Conditions of Chondrules and Chondrites. Science, 2008, 320, 1617-1619.	6.0	231
10	The Growth Mechanisms of Macroscopic Bodies in Protoplanetary Disks. Annual Review of Astronomy and Astrophysics, 2008, 46, 21-56.	8.1	672
11	Isotopes as clues to the origin and earliest differentiation history of the Earth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4129-4162.	1.6	22
12	Evolution of Debris Disks. Annual Review of Astronomy and Astrophysics, 2008, 46, 339-383.	8.1	728
13	Stokes Trapping and Planet Formation. Astrophysical Journal, Supplement Series, 2008, 176, 484-496.	3.0	33
14	The role of magnetic fields for planetary formation. Proceedings of the International Astronomical Union, 2008, 4, 249-258.	0.0	26
15	Dust coagulation and processing in an evolving disk. Physica Scripta, 2008, T130, 014015.	1.2	3
16	Turbulent protostellar discs. Physica Scripta, 2008, T130, 014016.	1.2	3
17	Gravoturbulent planetesimal formation. Physica Scripta, 2008, T130, 014018.	1.2	3
18	10 μm interferometry of disks around young stars. Journal of Physics: Conference Series, 2008, 131, 012023.	0.3	2
19	Early phases of planet formation in protoplanetary disks. Physica Scripta, 2008, T130, 014019.	1.2	14

#	Article	IF	CITATIONS
20	Planetesimal formation near the snow line in MRI-driven turbulent protoplanetary disks. Astronomy and Astrophysics, 2008, 487, L1-L4.	2.1	122
21	Toward Planetesimals: Dense Chondrule Clumps in the Protoplanetary Nebula. Astrophysical Journal, 2008, 687, 1432-1447.	1.6	324
22	The Physics of Protoplanetesimal Dust Agglomerates. II. Lowâ€Velocity Collision Properties. Astrophysical Journal, 2008, 675, 764-776.	1.6	54
23	"TAIL-END―BONDI-HOYLE ACCRETION IN YOUNG STAR CLUSTERS: IMPLICATIONS FOR DISKS, PLANETS, AND STARS. Astronomical Journal, 2008, 135, 2380-2397.) 1.9	49
24	Accretion and Destruction of Planetesimals in Turbulent Disks. Astrophysical Journal, 2008, 686, 1292-1301.	1.6	82
25	Vertical Shearing Instabilities in Radially Shearing Disks: The Dustiest Layers of the Protoplanetary Nebula. Astrophysical Journal, 2008, 675, 1549-1558.	1.6	68
26	Coâ€Accretion of Chondrules and Dust in the Solar Nebula. Astrophysical Journal, 2008, 679, 1588-1610.	1.6	68
27	Numerical Simulations of the Gravitational Instability in the Dust Layer of a Protoplanetary Disk Using a Thin Disk Model. Astrophysical Journal, 2008, 675, 1559-1575.	1.6	7
28	Solving the Coagulation Equation by the Moments Method. Astrophysical Journal, 2008, 682, 515-526.	1.6	28
29	Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. Astronomy and Astrophysics, 2008, 480, 859-877.	2.1	502
30	Global magnetohydrodynamical models of turbulence in protoplanetary disks. Astronomy and Astrophysics, 2008, 479, 883-901.	2.1	65
31	Probing dust grain evolution in IM Lupi's circumstellar disc. Astronomy and Astrophysics, 2008, 489, 633-650.	2.1	145
32	Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks. Astronomy and Astrophysics, 2009, 497, 869-888.	2.1	141
33	MODIFICATION OF ANGULAR VELOCITY BY INHOMOGENEOUS MAGNETOROTATIONAL INSTABILITY GROWTH IN PROTOPLANETARY DISKS. Astrophysical Journal, 2009, 691, 1697-1706.	1.6	21
34	THREE-DIMENSIONAL SIMULATIONS OF KELVIN-HELMHOLTZ INSTABILITY IN SETTLED DUST LAYERS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2009, 691, 907-921.	1.6	38
35	ON HYDRODYNAMIC MOTIONS IN DEAD ZONES. Astrophysical Journal, 2009, 704, 1239-1250.	1.6	50
36	PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL UNSTRATIFIED DISKS. Astrophysical Journal, 2009, 707, 1233-1246.	1.6	37
37	Dust retention in protoplanetary disks. Astronomy and Astrophysics, 2009, 503, L5-L8.	2.1	123

	CITATION	Report	
#	Article	IF	CITATIONS
38	Standing on the shoulders of giants. Astronomy and Astrophysics, 2009, 493, 1125-1139.	2.1	127
39	Protoplanetary disk evolution. , 0, , 65-108.		0
40	Long-wavelength observations of debris discs around sun-like stars. Astronomy and Astrophysics, 2009, 497, 409-421.	2.1	45
41	<i>N</i> BODY SIMULATION OF PLANETESIMAL FORMATION THROUGH GRAVITATIONAL INSTABILITY AND COAGULATION. II. ACCRETION MODEL. Astrophysical Journal, 2009, 703, 1363-1373.	1.6	10
42	Protoplanetary disk structure. , 0, , 34-64.		0
43	Observations of planetary systems. , 0, , 1-33.		0
44	Building, moving and destroying Planets. , 2009, , .		0
45	VELOCITY-DEPENDENT CATASTROPHIC DISRUPTION CRITERIA FOR PLANETESIMALS. Astrophysical Journal, 2009, 691, L133-L137.	1.6	169
46	N-Body simulations of growth from 1km planetesimals at 0.4AU. Icarus, 2009, 203, 626-643.	1.1	40
47	Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus, 2009, 203, 644-662.	1.1	356
48	Asteroids were born big. Icarus, 2009, 204, 558-573.	1.1	424
49	Origins of Planetary Systems: Constraints and Challenges. Earth, Moon and Planets, 2009, 105, 311-320.	0.3	2
50	Aus Staub geboren. Planetenentstehung. Physik in Unserer Zeit, 2009, 40, 20-27.	0.0	0
51	Dust settling in magnetorotationally driven turbulent discs - I. Numerical methods and evidence for a vigorous streaming instability. Monthly Notices of the Royal Astronomical Society, 2009, 397, 24-43.	1.6	43
52	Planetesimals to protoplanets - II. Effect of debris on terrestrial planet formation. Monthly Notices of the Royal Astronomical Society, 2009, 396, 718-728.	1.6	27
53	Debris disc stirring by secular perturbations from giant planets. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1403-1414.	1.6	131
54	Structures in sand streams. Nature, 2009, 459, 1064-1065.	13.7	6
55	A score for membrane fusion. Nature, 2009, 459, 1065-1066.	13.7	3

#	Article	IF	CITATIONS
56	Archaeology of the asteroid belt. Nature, 2009, 460, 963-964.	13.7	0
57	Gravity ripples chased. Nature, 2009, 460, 964-965.	13.7	1
58	Origin and chronology of chondritic components: A review. Geochimica Et Cosmochimica Acta, 2009, 73, 4963-4997.	1.6	171
59	Chronology of meteorites and the early solar system. Geochimica Et Cosmochimica Acta, 2009, 73, 4919-4921.	1.6	4
60	Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica Et Cosmochimica Acta, 2009, 73, 5835-5853.	1.6	148
61	Planetary Migration: What Does It Mean for Planet Formation?. Annual Review of Earth and Planetary Sciences, 2009, 37, 321-344.	4.6	27
62	4.5 Chronology of the Solar System. Landolt-Bâ^šâ^,rnstein - Group VI Astronomy and Astrophysics, 2009, , 771-788.	0.1	1
63	Fluid Mechanics in Disks Around Young Stars. Annual Review of Fluid Mechanics, 2009, 41, 283-315.	10.8	16
64	ZONAL FLOWS AND LONG-LIVED AXISYMMETRIC PRESSURE BUMPS IN MAGNETOROTATIONAL TURBULENCE. Astrophysical Journal, 2009, 697, 1269-1289.	1.6	321
65	Vortices in self-gravitating gaseous discs. Monthly Notices of the Royal Astronomical Society, 2009, 394, 2153-2163.	1.6	26
67	PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY. Astrophysical Journal, 2009, 704, L75-L79.	1.6	345
68	Angular momentum of two collided rarefied preplanetesimals and formation of binaries. Proceedings of the International Astronomical Union, 2009, 5, 37-40.	0.0	0
69	Open issues in small-and large-scale structure formation. , 2009, , 427-440.		1
70	FORMATION OF THE TERRESTRIAL PLANETS FROM A NARROW ANNULUS. Astrophysical Journal, 2009, 703, 1131-1140.	1.6	265
71	GIANT PLANET MIGRATION, DISK EVOLUTION, AND THE ORIGIN OF TRANSITIONAL DISKS. Astrophysical Journal, 2009, 704, 989-1001.	1.6	169
72	Planetesimal formation in turbulent circumstellar disks. Proceedings of the International Astronomical Union, 2010, 6, 434-435.	0.0	0
73	High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. Proceedings of the International Astronomical Union, 2010, 6, 89-94.	0.0	0
74	A new view on planet formation. Proceedings of the International Astronomical Union, 2010, 6, 101-104.	0.0	10

#	Article	IF	CITATIONS
75	Formation of brown dwarfs and planets. Proceedings of the International Astronomical Union, 2010, 6, 105-112.	0.0	0
76	ACCRETION IN EVOLVED AND TRANSITIONAL DISKS IN CEP OB2: LOOKING FOR THE ORIGIN OF THE INNER HOLES. Astrophysical Journal, 2010, 710, 597-612.	1.6	127
77	A NEW CONDITION FOR THE TRANSITION FROM RUNAWAY TO OLIGARCHIC GROWTH. Astrophysical Journal Letters, 2010, 714, L103-L107.	3.0	62
78	RESIDENCE TIMES OF PARTICLES IN DIFFUSIVE PROTOPLANETARY DISK ENVIRONMENTS. I. VERTICAL MOTIONS. Astrophysical Journal, 2010, 723, 514-529.	1.6	61
79	THE INVISIBLE MAJORITY? EVOLUTION AND DETECTION OF OUTER PLANETARY SYSTEMS WITHOUT GAS GIANTS. Astrophysical Journal, 2010, 719, 1454-1469.	1.6	37
80	ON THE POSSIBILITY OF ENRICHMENT AND DIFFERENTIATION IN GAS GIANTS DURING BIRTH BY DISK INSTABILITY. Astrophysical Journal, 2010, 724, 618-639.	1.6	79
81	THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS. Astrophysical Journal Letters, 2010, 723, L233-L237.	3.0	53
82	DYNAMICS OF SOLIDS IN THE MIDPLANE OF PROTOPLANETARY DISKS: IMPLICATIONS FOR PLANETESIMAL FORMATION. Astrophysical Journal, 2010, 722, 1437-1459.	1.6	279
83	A <i>SPITZER</i> SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES. Astrophysical Journal, 2010, 720, 887-903.	1.6	170
84	DIRECT EVIDENCE FOR GRAVITATIONAL INSTABILITY AND MOONLET FORMATION IN SATURN's RINGS. Astrophysical Journal Letters, 2010, 718, L176-L180.	3.0	42
85	THE EFFECT OF THE RADIAL PRESSURE GRADIENT IN PROTOPLANETARY DISKS ON PLANETESIMAL FORMATION. Astrophysical Journal Letters, 2010, 722, L220-L223.	3.0	135
86	PROTOPLANETARY DISK WINDS VIA MAGNETOROTATIONAL INSTABILITY: FORMATION OF AN INNER HOLE AND A CRUCIAL ASSIST FOR PLANET FORMATION. Astrophysical Journal, 2010, 718, 1289-1304.	1.6	151
87	FORMING PLANETESIMALS BY GRAVITATIONAL INSTABILITY. I. THE ROLE OF THE RICHARDSON NUMBER IN TRIGGERING THE KELVIN-HELMHOLTZ INSTABILITY. Astrophysical Journal, 2010, 718, 1367-1377.	1.6	39
88	Formation and evolution of planetary systems: the impact of high-angular resolution optical techniques. Astronomy and Astrophysics Review, 2010, 18, 317-382.	9.1	32
89	The formation of Uranus and Neptune in solid-rich feeding zones: Connecting chemistry and dynamics. Icarus, 2010, 207, 491-498.	1.1	44
90	Metallicity of the massive protoplanets around HR 8799 If formed by gravitational instability. Icarus, 2010, 207, 503-508.	1.1	67
91	Accretion among preplanetary bodies: The many faces of runaway growth. Icarus, 2010, 210, 507-538.	1.1	59
94	A hybrid scheme for gas–dust systems stiffly coupled via viscous drag. Journal of Computational Physics, 2010, 229, 3916-3937.	1.9	31

#	Article	IF	Citations
95	Deciphering the origin of the regular satellites of gaseous giants – Iapetus: The Rosetta ice-moon. Icarus, 2010, 207, 448-460.	1.1	20
96	Numerical modelling of heating in porous planetesimal collisions. Icarus, 2010, 208, 468-481.	1.1	99
97	The distributions and ages of refractory objects in the solar nebula. Icarus, 2010, 208, 455-467.	1.1	101
98	Planetesimal formation by turbulent concentration. Icarus, 2010, 208, 505-517.	1.1	97
99	Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus, 2010, 208, 518-538.	1.1	144
100	Three-body capture of irregular satellites: Application to Jupiter. Icarus, 2010, 208, 824-836.	1.1	31
101	Planetary growth with collisional fragmentation and gas drag. Icarus, 2010, 209, 836-847.	1.1	82
102	Formation of planets by tidal downsizing of giant planet embryos. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 408, L36-L40.	1.2	139
103	On the dynamics of planetesimals embedded in turbulent protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2010, 409, 639-661.	1.6	82
104	Radiatively heated, protoplanetary discs with dead zones – I. Dust settling and thermal structure of discs around M stars. Monthly Notices of the Royal Astronomical Society, 2010, 401, 143-159.	1.6	20
105	The angular momentum of colliding rarefied preplanetesimals and the formation of binaries. Monthly Notices of the Royal Astronomical Society, 2010, 403, 405-414.	1.6	11
106	Dust settling in magnetorotationally-driven turbulent discs - II. The pervasiveness of the streaming instability and its consequences. Monthly Notices of the Royal Astronomical Society, 2010, 403, 211-228.	1.6	17
107	Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	52
108	Relative velocities of solids in a turbulent protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	11
109	Long-lived planetesimal discs. Monthly Notices of the Royal Astronomical Society, 2010, 401, 867-889.	1.6	72
110	FROM DUST TO PLANETESIMAL: THE SNOWBALL PHASE?. Astrophysical Journal, 2010, 724, 1153-1164.	1.6	46
111	The validity of the super-particle approximation during planetesimal formation. Astronomy and Astrophysics, 2010, 511, A69.	2.1	24
112	Consequences of the simultaneous formation of giant planets by the core accretion mechanism. Astronomy and Astrophysics, 2010, 521, A50.	2.1	31

#	Article	IF	CITATIONS
113	DUST CONCENTRATION AT THE BOUNDARY BETWEEN STEADY SUPER/SUB-KEPLERIAN FLOW CREATED BY INHOMOGENEOUS GROWTH OF MAGNETO-ROTATIONAL INSTABILITY. Astrophysical Journal, 2010, 714, 1155-1169.	1.6	16
114	<i>N</i> BODY SIMULATION OF PLANETESIMAL FORMATION THROUGH GRAVITATIONAL INSTABILITY OF A DUST LAYER IN LAMINAR GAS DISK. Astrophysical Journal, 2010, 719, 1021-1031.	1.6	35
115	Formation of habitable planets. , 0, , 136-153.		0
116	Rossby wave instability and three-dimensional vortices in accretion disks. Astronomy and Astrophysics, 2010, 516, A31.	2.1	90
117	ACCRETION IN PROTOPLANETARY DISKS BY COLLISIONAL FUSION. Astrophysical Journal, 2010, 719, 540-549.	1.6	29
118	The effect of gas drag on the growth of protoplanets. Astronomy and Astrophysics, 2010, 520, A43.	2.1	450
119	The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. Astronomy and Astrophysics, 2010, 513, A57.	2.1	415
120	Grain growth across protoplanetary discs: 10Â <i>μ</i> m silicate feature versus millimetre slope. Astronomy and Astrophysics, 2010, 515, A77.	2.1	40
121	Stochastic Late Accretion to Earth, the Moon, and Mars. Science, 2010, 330, 1527-1530.	6.0	194
122	The PIERNIK MHD code – a multi-fluid, non-ideal extension of the relaxing-TVD schemeÂ(II). EAS Publications Series, 2010, 42, 281-285.	0.3	10
123	Testing planet formation models against observations. EAS Publications Series, 2010, 42, 209-225.	0.3	3
124	From Grains to Planetesimals. EAS Publications Series, 2010, 41, 187-207.	0.3	75
125	FORMATION OF KUIPER BELT BINARIES BY GRAVITATIONAL COLLAPSE. Astronomical Journal, 2010, 140, 785-793.	1.9	185
126	VARIATIONS ON DEBRIS DISKS. II. ICY PLANET FORMATION AS A FUNCTION OF THE BULK PROPERTIES AND INITIAL SIZES OF PLANETESIMALS. Astrophysical Journal, Supplement Series, 2010, 188, 242-279.	3.0	67
127	PARTICLE–GAS DYNAMICS WITH ATHENA: METHOD AND CONVERGENCE. Astrophysical Journal, Supplement Series, 2010, 190, 297-310.	3.0	125
128	Dust growth in protoplanetary disks — a comprehensive experimental/theoretical approach. Research in Astronomy and Astrophysics, 2010, 10, 1199-1214.	0.7	68
129	Astronomy's Greatest Hits: The 100 Most Cited Papers in Each Year of the First Decade of the 21st Century (2000–2009). Publications of the Astronomical Society of the Pacific, 2010, 122, 1214-1235.	1.0	9
130	Thermal constraints on the early history of the H-chondrite parent body reconsidered. Geochimica Et Cosmochimica Acta, 2010, 74, 5410-5423.	1.6	65

#	Article	IF	CITATIONS
131	Chondritic Mg isotope composition of the Earth. Geochimica Et Cosmochimica Acta, 2010, 74, 5069-5083.	1.6	141
132	A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters, 2010, 296, 423-433.	1.8	47
133	Similar-sized collisions and the diversity of planets. Chemie Der Erde, 2010, 70, 199-219.	0.8	100
134	Dynamics of highâ€ŧemperature materials delivered by jets to the outer solar nebula. Meteoritics and Planetary Science, 2009, 44, 1663-1673.	0.7	17
135	Forming Planetesimals in Solar and Extrasolar Nebulae. Annual Review of Earth and Planetary Sciences, 2010, 38, 493-522.	4.6	366
136	Origin and Formation of Planetary Systems. Astrobiology, 2010, 10, 19-32.	1.5	46
137	Terrestrial planet formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19165-19170.	3.3	32
138	Astrophysical turbulence modeling. Reports on Progress in Physics, 2011, 74, 046901.	8.1	75
139	Genetic Map. , 2011, , 642-643.		0
140	A Perspective from Extinct Radionuclides on a Young Stellar Object: The Sun and Its Accretion Disk. Annual Review of Earth and Planetary Sciences, 2011, 39, 351-386.	4.6	157
141	Super-Earths: a new class of planetary bodies. Contemporary Physics, 2011, 52, 403-438.	0.8	21
142	The pirouette effect in turbulent flows. Nature Physics, 2011, 7, 709-712.	6.5	72
143	Galactic Habitable Zone. , 2011, , 626-627.		0
144	Gravitational Collapse. , 2011, , 692-692.		0
145	Extreme 54Cr-rich nano-oxides in the CI chondrite Orgueil – Implication for a late supernova injection into the solar system. Geochimica Et Cosmochimica Acta, 2011, 75, 629-644.	1.6	98
146	Magnesium isotopes constraints on the origin of Mg-rich olivines from the Allende chondrite: Nebular versus planetary?. Earth and Planetary Science Letters, 2011, 301, 107-116.	1.8	24
147	Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 2011, 305, 1-10.	1.8	247
148	Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 2011, 308, 369-379.	1.8	125

		CITATION RE	PORT	
#	Article		IF	CITATIONS
149	Size of the group IVA iron meteorite core: Constraints from the age and composition of Muonionalusta. Earth and Planetary Science Letters, 2011, 308, 410-416.		1.8	12
150	Differentiation of planetesimals and the thermal consequences of melt migration. Meteoritics a Planetary Science, 2011, 46, 903-918.	nd	0.7	83
151	Brown dwarfs and free-floating planets. , 0, , 209-216.			0
152	Formation and evolution. , 0, , 217-254.			3
153	ON THE FORMATION OF PLANETESIMALS VIA SECULAR GRAVITATIONAL INSTABILITIES WITH TU STIRRING. Astrophysical Journal, 2011, 731, 99.	IRBULENT	1.6	152
154	High-resolution simulations of planetesimal formation in turbulent protoplanetary discs. Astronand Astrophysics, 2011, 529, A62.	omy	2.1	105
155	MODELING MAGNETOROTATIONAL TURBULENCE IN PROTOPLANETARY DISKS WITH DEAD ZOI Astrophysical Journal, 2011, 742, 65.	√ES.	1.6	119
156	PLANETESIMALS IN DEBRIS DISKS OF SUN-LIKE STARS. Astrophysical Journal, 2011, 739, 36.		1.6	47
157	The first stages of planet formation in binary systems: how far can dust coagulation proceed?. Astronomy and Astrophysics, 2011, 527, A10.		2.1	33
158	Last giant impact on the Neptunian system. Astronomy and Astrophysics, 2011, 530, A46.		2.1	3
159	PLANETESIMAL FORMATION BY SUBLIMATION. Astrophysical Journal, 2011, 728, 20.		1.6	78
160	Formation and Orbital Evolution of Planets. Proceedings of the International Astronomical Unio 2011, 7, 429-436.	n,	0.0	0
161	TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYI SIMULATIONS OF ACCRETION DISKS. Astrophysical Journal, 2011, 735, 122.	DRODYNAMIC	1.6	114
162	FORMATION OF PLANETARY CORES AT TYPE I MIGRATION TRAPS. Astrophysical Journal Letters, L9.	2011, 728,	3.0	58
163	USING KUIPER BELT BINARIES TO CONSTRAIN NEPTUNE'S MIGRATION HISTORY. Astrophysical J 730, 132.	ournal, 2011,	1.6	45
164	ELECTROSTATIC BARRIER AGAINST DUST GROWTH IN PROTOPLANETARY DISKS. II. MEASURING THE "FROZEN―ZONE. Astrophysical Journal, 2011, 731, 96.	THE SIZE OF	1.6	61
165	The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. Astronomy a Astrophysics, 2011, 534, A73.	nd	2.1	68
166	CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES. Astrophysical Journa	l, 2011, 743, 1.	1.6	80

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
167	Simultaneous formation of solar system giant planets. Astronomy and Astrophysics, 2011, 532, A142.	2.1	21
168	TURBULENT CLUSTERING OF PROTOPLANETARY DUST AND PLANETESIMAL FORMATION. Astrophysical Journal, 2011, 740, 6.	1.6	103
169	PLANETESIMAL FORMATION INDUCED BY SINTERING. Astrophysical Journal Letters, 2011, 733, L41.	3.0	27
170	THREE-DIMENSIONAL LAGRANGIAN TURBULENT DIFFUSION OF DUST GRAINS IN A PROTOPLANETARY DISK: METHOD AND FIRST APPLICATIONS. Astrophysical Journal, 2011, 737, 33.	1.6	38
171	Formation of terrestrial planet cores inside giant planet embryos. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1462-1478.	1.6	63
172	Probing the history of Solar system through the cratering records on Vesta and Ceres. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2439-2466.	1.6	54
173	Turbulent diffusion of large solids in a protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2011, 415, 93-102.	1.6	25
174	On the dynamics of planetesimals embedded in turbulent protoplanetary discs with dead zones. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3291-3307.	1.6	65
175	On linear dust-gas streaming instabilities in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3591-3598.	1.6	90
176	dustybox and dustywave: two test problems for numerical simulations of two-fluid astrophysical dust-gas mixtures. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1491-1497.	1.6	41
177	Divergence-free interpolation of vector fields from point values — exact â^‡ â‹ <i>B</i> = 0 in numerical simulations. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 413, L76-L80.	1.2	30
178	A turbulent matter. Nature, 2011, 470, 475-476.	13.7	37
179	When catastrophe strikes a cell. Nature, 2011, 470, 476-477.	13.7	77
180	A numerical simulation of a â€~Super-Earth' core delivery from â^¼100 to â^¼8 au. Monthly Notices of the Ro Astronomical Society, 2011, 415, 3319-3334.	oyal 1.6	97
181	Initial sizes of planetesimals and accretion of the asteroids. Icarus, 2011, 214, 671-684.	1.1	142
182	Against all odds? Forming the planet of the HD 196885 binary. Celestial Mechanics and Dynamical Astronomy, 2011, 111, 29-49.	0.5	72
183	The Architectural Design Rules of Solar Systems Based on the New Perspective. Earth, Moon and Planets, 2011, 108, 15-37.	0.3	2
184	Planetesimal Formation Through Streaming and Gravitational Instabilities. Earth, Moon and Planets, 2011, 108, 39-43.	0.3	37

	CHATION RE	PORI	
#	Article	IF	Citations
185	Vesta and Ceres: Crossing the History of the Solar System. Space Science Reviews, 2011, 163, 25-40.	3.7	42
186	Origin, Internal Structure and Evolution of 4 Vesta. Space Science Reviews, 2011, 163, 77-93.	3.7	54
187	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. Space Science Reviews, 2011, 163, 41-61.	3.7	65
188	UV photolysis, organic molecules in young disks, and the origin of meteoritic amino acids. Icarus, 2011, 212, 885-895.	1.1	22
189	PLANETARY CORE FORMATION WITH COLLISIONAL FRAGMENTATION AND ATMOSPHERE TO FORM GAS GIANT PLANETS. Astrophysical Journal, 2011, 738, 35.	1.6	58
190	Thermal evolution of icy planetesimals in the solar nebula. Earth, Planets and Space, 2011, 63, 1193-1206.	0.9	24
191	EMPIRICAL CONSTRAINTS ON TURBULENCE IN PROTOPLANETARY ACCRETION DISKS. Astrophysical Journal, 2011, 727, 85.	1.6	140
192	ELECTROSTATIC BARRIER AGAINST DUST GROWTH IN PROTOPLANETARY DISKS. I. CLASSIFYING THE EVOLUTION OF SIZE DISTRIBUTION. Astrophysical Journal, 2011, 731, 95.	1.6	75
193	POROSITIES OF PROTOPLANETARY DUST AGGLOMERATES FROM COLLISION EXPERIMENTS. Astrophysical Journal, 2011, 742, 5.	1.6	53
194	Planetesimal Formation in Zonal Flows Arising in Magneto-Rotationally-Unstable Protoplanetary Disks. Proceedings of the International Astronomical Union, 2012, 8, 244-249.	0.0	0
195	Detection of a Proto-planetary Clump in the Habitable Zone of GM Cephei. Proceedings of the International Astronomical Union, 2012, 8, 74-76.	0.0	0
196	UNDERSTANDING HOW PLANETS BECOME MASSIVE. I. DESCRIPTION AND VALIDATION OF A NEW TOY MODEL. Astrophysical Journal, 2012, 747, 115.	1.6	80
197	ALMA OBSERVATIONS OF ϕOph 102: GRAIN GROWTH AND MOLECULAR GAS IN THE DISK AROUND A YOUNG BROWN DWARF. Astrophysical Journal Letters, 2012, 761, L20.	3.0	69
198	COAGULATION CALCULATIONS OF ICY PLANET FORMATION AT 15-150 AU: A CORRELATION BETWEEN THE MAXIMUM RADIUS AND THE SLOPE OF THE SIZE DISTRIBUTION FOR TRANS-NEPTUNIAN OBJECTS. Astronomical Journal, 2012, 143, 63.	1.9	56
199	Turbulence-induced collisional velocities and density enhancements: large inertial range results from shell models. Monthly Notices of the Royal Astronomical Society, 2012, 426, 784-795.	1.6	17
200	Planet formation by concurrent collapse. , 2012, , .		0
201	Detection of turbulent thermal diffusion of particles in numerical simulations. Physics of Fluids, 2012, 24, .	1.6	18
202	Evolution of macroscopic dust agglomerates – Implications for planetesimal growth. EAS Publications Series, 2012, 58, 213-217.	0.3	0

#	Article	IF	CITATIONS
203	Angular Momenta of Collided Rarefied Preplanetesimals. Proceedings of the International Astronomical Union, 2012, 8, 285-288.	0.0	2
204	Forming different planetary systems. Research in Astronomy and Astrophysics, 2012, 12, 1081-1106.	0.7	12
205	COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS. Astrophysical Journal, 2012, 745, 79.	1.6	330
206	A POSSIBLE DETECTION OF OCCULTATION BY A PROTO-PLANETARY CLUMP IN GM Cephei. Astrophysical Journal, 2012, 751, 118.	1.6	10
207	ROSSBY WAVE INSTABILITY AT DEAD ZONE BOUNDARIES IN THREE-DIMENSIONAL RESISTIVE MAGNETOHYDRODYNAMICAL GLOBAL MODELS OF PROTOPLANETARY DISKS. Astrophysical Journal, 2012, 756, 62.	1.6	96
208	RAPID FORMATION OF SATURN AFTER JUPITER COMPLETION. Astrophysical Journal, 2012, 756, 70.	1.6	29
209	PLANET FORMATION IN CIRCUMBINARY CONFIGURATIONS: TURBULENCE INHIBITS PLANETESIMAL ACCRETION. Astrophysical Journal Letters, 2012, 761, L7.	3.0	69
210	Trapping dust particles in the outer regions of protoplanetary disks. Astronomy and Astrophysics, 2012, 538, A114.	2.1	298
211	Rapid growth of gas-giant cores by pebble accretion. Astronomy and Astrophysics, 2012, 544, A32.	2.1	644
212	REBOUND: an open-source multi-purpose <i>N</i> -body code for collisional dynamics. Astronomy and Astrophysics, 2012, 537, A128.	2.1	673
213	Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. Astronomy and Astrophysics, 2012, 540, A73.	2.1	169
214	INDUCED TURBULENCE AND THE DENSITY STRUCTURE OF THE DUST LAYER IN A PROTOPLANETARY DISK. Astrophysical Journal, 2012, 744, 101.	1.6	21
216	A simple model for the evolution of the dust population in protoplanetary disks. Astronomy and Astrophysics, 2012, 539, A148.	2.1	555
217	PLANETESIMAL AND PROTOPLANET DYNAMICS IN A TURBULENT PROTOPLANETARY DISK: IDEAL STRATIFIED DISKS. Astrophysical Journal, 2012, 748, 79.	1.6	45
218	PLANETESIMAL FORMATION IN MAGNETOROTATIONALLY DEAD ZONES: CRITICAL DEPENDENCE ON THE NET VERTICAL MAGNETIC FLUX. Astrophysical Journal Letters, 2012, 753, L8.	3.0	50
219	A METHOD FOR COUPLING DYNAMICAL AND COLLISIONAL EVOLUTION OF DUST IN CIRCUMSTELLAR DISKS: THE EFFECT OF A DEAD ZONE. Astrophysical Journal, 2012, 753, 119.	1.6	39
220	Inertial particle relative velocity statistics in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 2012, 696, 45-66.	1.4	52
221	Planetesimal formation in self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1444-1454.	1.6	64

		PORT	
#	Article	IF	CITATIONS
222	Building Terrestrial Planets. Annual Review of Earth and Planetary Sciences, 2012, 40, 251-275.	4.6	392
223	Post-impact thermal evolution of porous planetesimals. Geochimica Et Cosmochimica Acta, 2012, 95, 252-269.	1.6	65
224	The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. , 2012, , .		29
225	The origin of chondrules and chondrites: Debris from lowâ€velocity impacts between molten planetesimals?. Meteoritics and Planetary Science, 2012, 47, 2170-2192.	0.7	97
226	Detrital remanent magnetization in the solar nebula. Journal of Geophysical Research, 2012, 117, .	3.3	18
227	Dust release and tensile strength of the non-volatile layer of cometary nuclei. Icarus, 2012, 221, 1-11.	1.1	130
228	On the origin of elemental abundances in the terrestrial planets. Icarus, 2012, 221, 859-874.	1.1	46
230	Planet Formation. , 0, , 73-86.		0
231	HOW NOT TO BUILD TATOOINE: THE DIFFICULTY OF IN SITU FORMATION OF CIRCUMBINARY PLANETS KEPLER 16b, KEPLER 34b, AND KEPLER 35b. Astrophysical Journal Letters, 2012, 754, L16.	3.0	123
232	SECULAR GRAVITATIONAL INSTABILITY OF A DUST LAYER IN SHEAR TURBULENCE. Astrophysical Journal, 2012, 746, 35.	1.6	27
233	THERMAL-INSTABILITY-DRIVEN TURBULENT MIXING IN GALACTIC DISKS. I. EFFECTIVE MIXING OF METALS. Astrophysical Journal, 2012, 758, 48.	1.6	74
234	PLANETESIMAL FORMATION AT THE BOUNDARY BETWEEN STEADY SUPER/SUB-KEPLERIAN FLOW CREATED BY INHOMOGENEOUS GROWTH OF MAGNETOROTATIONAL INSTABILITY. Astrophysical Journal, 2012, 747, 11.	1.6	14
235	Chemistry in disks. Astronomy and Astrophysics, 2012, 548, A70.	2.1	64
236	Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astronomy and Astrophysics, 2012, 537, A125.	2.1	137
237	Circumstellar disks and planets. Astronomy and Astrophysics Review, 2012, 20, 1.	9.1	19
238	Are supermassive black holes shrouded by â€~super-Oort' clouds of comets and asteroids?. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1238-1247.	1.6	14
239	Dusty gas with smoothed particle hydrodynamics - I. Algorithm and test suite. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2345-2364.	1.6	100
240	Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 2012, 217, 339-354.	1.1	84

#	Article	IF	CITATIONS
241	Free collisions in a microgravity many-particle experiment – II: The collision dynamics of dust-coated chondrules. Icarus, 2012, 218, 701-706.	1.1	33
242	Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved?. Meteoritics and Planetary Science, 2012, 47, 1157-1175.	0.7	68
243	The importance of experiments: Constraints on chondrule formation models. Meteoritics and Planetary Science, 2012, 47, 1139-1156.	0.7	126
244	Dead zones as safe havens for planetesimals: influence of disc mass and external magnetic field. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1140-1159.	1.6	75
245	Global variation of the dust-to-gas ratio in evolving protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2012, 423, 389-405.	1.6	21
246	Global models of runaway accretion in white dwarf debris discs. Monthly Notices of the Royal Astronomical Society, 2012, 423, 505-528.	1.6	127
247	On the accumulation of planetesimals near disc gaps created by protoplanets. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1450-1462.	1.6	81
248	An alternative origin for debris rings of planetesimals. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2104-2119.	1.6	39
249	On the origin of the Almahata Sitta meteorite and 2008 TC3 asteroid. Monthly Notices of the Royal Astronomical Society, 2012, 424, 508-518.	1.6	25
250	Modeling of aggregation of fractal dust clusters in a laminar protoplanetary disk. Solar System Research, 2013, 47, 80-98.	0.3	23
251	Sedimentation equilibrium and the generalized Archimedes' principle. Journal of Chemical Physics, 2013, 138, 114907.	1.2	8
252	Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus, 2013, 226, 671-681.	1.1	59
253	Imaging of the CO Snow Line in a Solar Nebula Analog. Science, 2013, 341, 630-632.	6.0	252
254	Still Water: Dead Zones and Collimated Ejecta from the Impact of Granular Jets. Physical Review Letters, 2013, 111, 168001.	2.9	17
255	<i>HERSCHEL</i> 's "COLD DEBRIS DISKS†BACKGROUND GALAXIES OR QUIESCENT RIMS OF PLANETARY SYSTEMS?. Astrophysical Journal, 2013, 772, 32.	1.6	57
256	Chemistry in Protoplanetary Disks. Chemical Reviews, 2013, 113, 9016-9042.	23.0	188
257	A Quantum Many-Body Spin System in an Optical Lattice Clock. Science, 2013, 341, 632-636.	6.0	152
258	Effective Rates in Dilute Reaction-Advection Systems for the Annihilation Process A+A→â^ Journal of Statistical Physics, 2013, 153, 530-550.	0.5	1

#	Article	IF	Citations
259	The early impact histories of meteorite parent bodies. Meteoritics and Planetary Science, 2013, 48, 1894-1918.	0.7	49
260	A PARAMETER STUDY FOR BAROCLINIC VORTEX AMPLIFICATION. Astrophysical Journal, 2013, 765, 115.	1.6	73
261	The Formation of Mars: Building Blocks and Accretion Time Scale. Space Science Reviews, 2013, 174, 11-25.	3.7	75
262	An initial meteoroid stream survey in the southern hemisphere using the Southern Argentina Agile Meteor Radar (SAAMER). Icarus, 2013, 223, 677-683.	1.1	16
263	Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters, 2013, 374, 204-214.	1.8	103
264	Three-dimensional observation of carbonaceous chondrites by synchrotron radiation X-ray CT – Quantitative analysis and developments for the future sample return missions. Geochimica Et Cosmochimica Acta, 2013, 116, 17-32.	1.6	20
265	Differentiated Planetesimals and the Parent Bodies of Chondrites. Annual Review of Earth and Planetary Sciences, 2013, 41, 529-560.	4.6	118
266	PHOTOPHORETIC SEPARATION OF METALS AND SILICATES: THE FORMATION OF MERCURY-LIKE PLANETS AND METAL DEPLETION IN CHONDRITES. Astrophysical Journal, 2013, 769, 78.	1.6	78
267	Thermal history of the H-chondrite parent body: Implications for metamorphic grade and accretionary time-scales. Geochimica Et Cosmochimica Acta, 2013, 119, 302-321.	1.6	51
268	The Formation and Dynamics of Super-Earth Planets. Annual Review of Earth and Planetary Sciences, 2013, 41, 469-495.	4.6	48
269	Impact disruption of primordial planetesimals. Planetary and Space Science, 2013, 75, 96-104.	0.9	4
270	The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3444-3455.	1.6	393
271	The formation of planets in circumbinary discs. Monthly Notices of the Royal Astronomical Society, 2013, 429, 895-902.	1.6	68
272	Turbulence-induced collision velocities and rates between different sized dust grains. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1274-1284.	1.6	40
273	Clump formation due to the gravitational instability of a multiphase medium in a massive protoplanetary disc. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2-12.	1.6	11
274	Streaming instability in the quasi-global protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1460-1468.	1.6	29
275	Resolved debris discs around A stars in the Herschel DEBRIS survey. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1263-1280.	1.6	144
276	THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. I. THE TURBULENT STIRRING RECIPE. Astrophysical Journal, 2013, 771, 43.	1.6	35

#	Article	IF	CITATIONS
277	PLANET FORMATION IN SMALL SEPARATION BINARIES: NOT SO SECULARLY EXCITED BY THE COMPANION. Astrophysical Journal Letters, 2013, 765, L8.	3.0	56
278	STEADY STATE DUST DISTRIBUTIONS IN DISK VORTICES: OBSERVATIONAL PREDICTIONS AND APPLICATIONS TO TRANSITIONAL DISKS. Astrophysical Journal, 2013, 775, 17.	1.6	137
279	PLANETARY POPULATIONS IN THE MASS-PERIOD DIAGRAM: A STATISTICAL TREATMENT OF EXOPLANET FORMATION AND THE ROLE OF PLANET TRAPS. Astrophysical Journal, 2013, 778, 78.	1.6	72
280	CAN PLANETESIMALS FORM BY COLLISIONAL FUSION?. Astrophysical Journal, 2013, 773, 120.	1.6	32
281	A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS. Astrophysical Journal Letters, 2013, 764, L2.	3.0	55
282	EVIDENCE FOR A SNOW LINE BEYOND THE TRANSITIONAL RADIUS IN THE TW Hya PROTOPLANETARY DISK. Astrophysical Journal, 2013, 766, 82.	1.6	99
283	THE FATE OF PLANETESIMALS IN TURBULENT DISKS WITH DEAD ZONES. II. LIMITS ON THE VIABILITY OF RUNAWAY ACCRETION. Astrophysical Journal, 2013, 771, 44.	1.6	70
284	TURBULENCE-INDUCED RELATIVE VELOCITY OF DUST PARTICLES. I. IDENTICAL PARTICLES. Astrophysical Journal, 2013, 776, 12.	1.6	51
285	MRI-driven angular momentum transport in protoplanetary disks. EAS Publications Series, 2013, 62, 95-142.	0.3	11
286	GLOBAL DRAG-INDUCED INSTABILITIES IN PROTOPLANETARY DISKS. Astrophysical Journal, 2013, 772, 75.	1.6	10
287	Formation of (exo–)planets. Astronomische Nachrichten, 2013, 334, 589-594.	0.6	3
288	The heating history of Vesta and the onset of differentiation. Meteoritics and Planetary Science, 2013, 48, 2316-2332.	0.7	27
289	THE ONSET OF DIFFERENTIATION AND INTERNAL EVOLUTION: THE CASE OF 21 LUTETIA. Astrophysical Journal, 2013, 770, 50.	1.6	1
290	EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE. Astrophysical Journal, 2013, 771, 19.	1.6	91
291	FROM DUST TO PLANETESIMALS: CRITERIA FOR GRAVITATIONAL INSTABILITY OF SMALL PARTICLES IN GAS. Astrophysical Journal, 2013, 764, 20.	1.6	58
292	When and why formation of large bodies in circumstellar discs could take place?. EPJ Web of Conferences, 2013, 46, 07004.	0.1	1
293	Influence of the circumbinary disk gravity on planetesimal accumulation in the Kepler–16 system. Astronomy and Astrophysics, 2013, 553, A71.	2.1	46
294	Multiwavelength interferometric observations and modeling of circumstellar disks. Astronomy and Astrophysics, 2013, 555, A103.	2.1	17

#	Article	IF	CITATIONS
295	Planetesimal formation via sweep-up growth at the inner edge of dead zones. Astronomy and Astrophysics, 2013, 556, A37.	2.1	57
296	The Story of Planets: Anchoring Numerics in Reality. Proceedings of the International Astronomical Union, 2013, 8, 123-130.	0.0	0
297	Large-scale planetesimal formation by streaming instability. Proceedings of the International Astronomical Union, 2013, 8, 177-178.	0.0	0
298	Ice Condensation as a Planet Formation Mechanism. Proceedings of the International Astronomical Union, 2013, 8, 382-383.	0.0	0
299	Theoretical models of planetary system formation: mass vs. semi-major axis. Astronomy and Astrophysics, 2013, 558, A109.	2.1	126
300	Fluffy dust forms icy planetesimals by static compression. Astronomy and Astrophysics, 2013, 557, L4.	2.1	207
301	Photophoresis boosts giant planet formation. Astronomy and Astrophysics, 2013, 555, A98.	2.1	9
302	Planet formation models: the interplay with the planetesimal disc. Astronomy and Astrophysics, 2013, 549, A44.	2.1	94
303	Ice condensation as a planet formation mechanism. Astronomy and Astrophysics, 2013, 552, A137.	2.1	198
304	Preplanetary scavengers: Growing tall in dust collisions. Astronomy and Astrophysics, 2013, 559, A123.	2.1	25
305	Pebble formation by ice condensation. EPJ Web of Conferences, 2013, 46, 06005.	0.1	0
306	Stellar irradiated discs and implications on migration of embedded planets. Astronomy and Astrophysics, 2014, 564, A135.	2.1	79
307	On the filtering and processing of dust by planetesimals. Astronomy and Astrophysics, 2014, 572, A72.	2.1	71
308	Planetesimal fragmentation and giant planet formation. Astronomy and Astrophysics, 2014, 565, A96.	2.1	29
309	CHALLENGES IN FORMING THE SOLAR SYSTEM'S GIANT PLANET CORES VIA PEBBLE ACCRETION. Astronomical Journal, 2014, 148, 109.	1.9	51
310	MULTIPLE AND FAST: THE ACCRETION OF ORDINARY CHONDRITE PARENT BODIES. Astrophysical Journal, 2014, 791, 120.	1.6	75
311	Geochemical and Planetary Dynamical Views on the Origin of Earth's Atmosphere and Oceans. , 2014, , 1-35.		23
312	Growing dust grains in protoplanetary discs – I. Radial drift with toy growth models. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3025-3036.	1.6	8

	CITATION RI	EPORT	
#	Article	IF	Citations
313	Dusty gas with one fluid. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2136-2146.	1.6	85
314	Dust and gas mixtures with multiple grain species – a one-fluid approach. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1940-1956.	1.6	54
315	New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles. New Journal of Physics, 2014, 16, 055013.	1.2	42
316	The circulation of dust in protoplanetary discs and the initial conditions of planet formation. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3545-3556.	1.6	35
317	The make-up of stars. , 2014, , .		0
318	MACROSCOPIC DUST IN PROTOPLANETARY DISKS—FROM GROWTH TO DESTRUCTION. Astrophysical Journal, 2014, 796, 99.	1.6	39
319	MAGNETIC FLUX CONCENTRATION AND ZONAL FLOWS IN MAGNETOROTATIONAL INSTABILITY TURBULENCE. Astrophysical Journal, 2014, 796, 31.	1.6	104
320	Numerical models of the thermomechanical evolution of planetesimals: Application to the acapulcoiteâ€lodranite parent body. Meteoritics and Planetary Science, 2014, 49, 1083-1099.	0.7	59
321	INSIDE-OUT PLANET FORMATION. Astrophysical Journal, 2014, 780, 53.	1.6	175
322	AFTER RUNAWAY: THE TRANS-HILL STAGE OF PLANETESIMAL GROWTH. Astrophysical Journal, 2014, 780, 22.	1.6	6
323	EXPERIMENTAL STUDY ON BOUNCING BARRIERS IN PROTOPLANETARY DISKS. Astrophysical Journal, 2014, 783, 111.	1.6	44
324	On the mechanism of the formation and mass growth of solar system bodies at the early stages of evolution. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq1 1 0.78431	l4 ngBT /C)ve d ock 10 T
325	THE FATE OF SCATTERED PLANETS. Astrophysical Journal, 2014, 796, 141.	1.6	46
326	The mass budget of planet-forming discs: isolating the epoch of planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3315-3329.	1.6	100
327	Water formation in early solar nebula: II–Collapsing cloud core. Planetary and Space Science, 2014, 98, 233-253.	0.9	7
328	Dynamics of the terrestrial planets from a large number of N-body simulations. Earth and Planetary Science Letters, 2014, 392, 28-38.	1.8	67
329	The quasi-universality of chondrule size as a constraint for chondrule formation models. Icarus, 2014, 232, 176-186.	1.1	29
330	Timing of metal–silicate differentiation in the Eagle Station pallasite parent body. Comptes Rendus - Geoscience, 2014, 346, 75-81.	0.4	5

#	Article	IF	Citations
331	Hybrid methods in planetesimal dynamics: description of a new composite algorithm. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3620-3649.	1.6	28
332	Thermal modeling for a parent body of Itokawa. Meteoritics and Planetary Science, 2014, 49, 228-236.	0.7	20
333	Planetesimal formation in self-gravitating discs $\hat{a} \in$ "the effects of particle self-gravity and back-reaction. Monthly Notices of the Royal Astronomical Society, 2014, 442, 361-371.	1.6	44
334	TURBULENCE-INDUCED RELATIVE VELOCITY OF DUST PARTICLES. III. THE PROBABILITY DISTRIBUTION. Astrophysical Journal, 2014, 792, 69.	1.6	16
335	Origin of the imbalance between energy cascade and dissipation in turbulence. Physical Review E, 2014, 90, 023003.	0.8	22
336	ON THE FEEDING ZONE OF PLANETESIMAL FORMATION BY THE STREAMING INSTABILITY. Astrophysical Journal, 2014, 792, 86.	1.6	79
337	No nebular magnetization in the Allende CV carbonaceous chondrite. Earth and Planetary Science Letters, 2014, 404, 54-66.	1.8	34
338	Explaining Mercury's density through magnetic erosion. Icarus, 2014, 241, 329-335.	1.1	16
339	Clustering, Fronts, and Heat Transfer in Turbulent Suspensions of Heavy Particles. Physical Review Letters, 2014, 112, 234503.	2.9	20
340	Planet Formation. , 2014, , 55-72.		7
341	Restriction of parent body heating by metalâ€ŧroilite melting: Thermal models for the ordinary chondrites. Meteoritics and Planetary Science, 2014, 49, 636-651.	0.7	30
342	Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar. Journal of Geophysical Research: Space Physics, 2014, 119, 2269-2287.	0.8	28
343	CIRCUMBINARY PLANET FORMATION IN THE KEPLER-16 SYSTEM. II. A TOY MODEL FOR IN SITU PLANET FORMATION WITHIN A DEBRIS BELT. Astrophysical Journal, 2014, 790, 41.	1.6	49
344	Comets formed in solar-nebula instabilities! – An experimental and modeling attempt to relate the activity of comets to their formation process. Icarus, 2014, 235, 156-169.	1.1	100
345	CHEMISTRY IN AN EVOLVING PROTOPLANETARY DISK: EFFECTS ON TERRESTRIAL PLANET COMPOSITION. Astrophysical Journal, 2014, 787, 81.	1.6	90
346	Water delivery and giant impacts in the â€~Grand Tack' scenario. Icarus, 2014, 239, 74-84.	1.1	209
347	Protoplanetary dust porosity and FU Orionis outbursts: Solving the mystery of Earth's missing volatiles. Icarus, 2014, 237, 84-96.	1.1	23
348	Planet-vortex interaction: How a vortex can shepherd a planetary embryo. Astronomy and Astrophysics, 2014, 572, A61.	2.1	13

		CITATION REPORT		
#	Article		IF	CITATIONS
349	Can dust coagulation trigger streaming instability?. Astronomy and Astrophysics, 2014	ł, 572, A78.	2.1	99
350	Planetary system formation in thermally evolving viscous protoplanetary discs. Philoso Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20	phical 0130074.	1.6	2
352	Rapid planetesimal formation in the inner protoplanetary disk. Proceedings of the Inter Astronomical Union, 2014, 9, 208-211.	national	0.0	2
353	The Chemistry of Nearby Disks. Proceedings of the International Astronomical Union, 2	2015, 10, 143-148.	0.0	0
354	Linking the Origin of Asteroids to Planetesimal Formation in the Solar Nebula. Proceed International Astronomical Union, 2015, 10, 1-8.	ings of the	0.0	10
357	Mechanisms for the clustering of inertial particles in the inertial range of isotropic turb Physical Review E, 2015, 92, 023029.	ulence.	0.8	44
358	Continuous Growth of Droplet Size Variance due to Condensation in Turbulent Clouds Review Letters, 2015, 115, 184501.	. Physical	2.9	71
359	NEUTRAL Na IN COMETARY TAILS AS A REMNANT OF EARLY AQUEOUS ALTERATION. A Letters, 2015, 801, L30.	strophysical Journal	3.0	9
360	CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK. Astrophysical Jo	ournal, 2015, 813, 128.	1.6	111
361	BUILDING MASSIVE COMPACT PLANETESIMAL DISKS FROM THE ACCRETION OF PEBB Journal, 2015, 809, 94.	LES. Astrophysical	1.6	36
362	WEAK TURBULENCE IN THE HD 163296 PROTOPLANETARY DISK REVEALED BY ALMA (Astrophysical Journal, 2015, 813, 99.	CO OBSERVATIONS.	1.6	208
363	Slow-growing pebbles lead to fast-growing Jupiters. Physics Today, 2015, 68, 16-19.		0.3	2
364	The structure of protoplanetary discs around evolving young stars. Astronomy and Ast 2015, 575, A28.	rophysics,	2.1	227
365	How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astro Astrophysics, 2015, 579, A43.	onomy and	2.1	210
366	A particle-based hybrid code for planet formation. Icarus, 2015, 260, 368-395.		1.1	9
367	Tidal Downsizing model – III. Planets from sub-Earths to brown dwarfs: structure and preferences. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1654-167	l metallicity 6.	1.6	51
368	Vortex cycles at the inner edges of dead zones in protoplanetary disks. Astronomy and 2015, 573, A132.	Astrophysics,	2.1	14
369	Disk evolution: dust and gas. EPJ Web of Conferences, 2015, 102, 00004.		0.1	2

#	Article	IF	CITATIONS
371	The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Astronomy and Astrophysics, 2015, 581, A107.	2.1	84
372	What drives the dust activity of comet 67P/Churyumov-Gerasimenko?. Astronomy and Astrophysics, 2015, 583, A12.	2.1	75
373	Stirring in massive, young debris discs from spatially resolved Herschel imagesâ~ Monthly Notices of the Royal Astronomical Society, 2015, 447, 577-597.	1.6	50
374	Evidence for pebbles in comets. Icarus, 2015, 262, 9-13.	1.1	12
375	Growth of calcium–aluminum-rich inclusions by coagulation and fragmentation in a turbulent protoplanetary disk: Observations and simulations. Icarus, 2015, 252, 440-453.	1.1	17
376	PLANET FORMATION IN STELLAR BINARIES. II. OVERCOMING THE FRAGMENTATION BARRIER IN α CENTAURI AND CEPHEI-LIKE SYSTEMS. Astrophysical Journal, 2015, 798, 70.	^ĵ 3 1.6	61
377	Global models of planet formation and evolution. International Journal of Astrobiology, 2015, 14, 201-232.	0.9	135
378	Charges dropped. Nature Physics, 2015, 11, 709-710.	6.5	8
379	The Origin of the Natural Satellites. , 2015, , 559-604.		20
380	Asteroids and Comets. , 2015, , 487-528.		2
380 381	Asteroids and Comets. , 2015, , 487-528. Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties. Icarus, 2015, 253, 31-39.	1.1	2 9
380 381 382	Asteroids and Comets., 2015, , 487-528. Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties. Icarus, 2015, 253, 31-39. THE SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE OF A CLUMP OF SOLIDS IN A GAS. Astrophysical Journal, 2015, 805, 42.	1.1	2 9 10
380 381 382 383	Asteroids and Comets., 2015, , 487-528. Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties. Icarus, 2015, 253, 31-39. THE SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE OF A CLUMP OF SOLIDS IN A GAS. Astrophysical Journal, 2015, 805, 42. Planetesimal formation in an evolving protoplanetary disc: effects of evaporation cooling from water ice inside the snow line. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1084-1097.	1.1 1.6 1.6	2 9 10 24
380 381 382 383 383	Asteroids and Comets., 2015,, 487-528. Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties. Icarus, 2015, 253, 31-39. THE SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE OF A CLUMP OF SOLIDS IN A GAS. Astrophysical Journal, 2015, 805, 42. Planetesimal formation in an evolving protoplanetary disc: effects of evaporation cooling from water ice inside the snow line. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1084-1097. Jupiter's decisive role in the inner Solar System's early evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4214-4217.	1.1 1.6 1.6 3.3	2 9 10 24 101
 380 381 382 383 383 384 385 	Asteroids and Comets., 2015, , 487-528. Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties. Icarus, 2015, 253, 31-39. THE SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE OF A CLUMP OF SOLIDS IN A GAS. Astrophysical Journal, 2015, 805, 42. Planetesimal formation in an evolving protoplanetary disc: effects of evaporation cooling from water ice inside the snow line. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1084-1097. Jupiter's decisive role in the inner Solar System's early evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4214-4217. The formation of the solar system. Physica Scripta, 2015, 90, 068001.	1.1 1.6 1.6 3.3 1.2	2 9 10 24 24 101
380 381 382 383 383 385	Asteroids and Comets., 2015, , 487-528. Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties. Icarus, 2015, 253, 31-39. THE SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE OF A CLUMP OF SOLIDS IN A GAS. Astrophysical Journal, 2015, 805, 42. Planetesimal formation in an evolving protoplanetary disc: effects of evaporation cooling from water ice inside the snow line. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1084-1097. Jupiter's decisive role in the inner Solar System's early evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4214-4217. The formation of the solar system. Physica Scripta, 2015, 90, 068001. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth and Planetary Science Letters, 2015, 420, 45-54.	1.1 1.6 1.6 3.3 1.2 1.8	2 9 10 24 24 101 51
380 381 382 383 383 385 385 386	Asteroids and Comets., 2015,, 487-528. Free collisions in a microgravity many-particle experiment. IV. – Three-dimensional analysis of collision properties. Icarus, 2015, 253, 31-39. THE SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE OF A CLUMP OF SOLIDS IN A GAS. Astrophysical Journal, 2015, 805, 42. Planetesimal formation in an evolving protoplanetary disc: effects of evaporation cooling from water ice inside the snow line. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1084-1097. Jupiter〙s decisive role in the inner Solar System〙s early evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4214-4217. The formation of the solar system. Physica Scripta, 2015, 90, 068001. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth and Planetary Science Letters, 2015, 420, 45-54. Curveballs in protoplanetary discs 〓 the effect of the Magnus force on planet formation. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1779-1792.	1.1 1.6 1.6 3.3 1.2 1.8 1.6	2 9 10 24 24 101 51 112

#	Article	IF	CITATIONS
389	Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 2015, 1, e1500109.	4.7	331
390	Smoothed particle hydrodynamics simulations of gas and dust mixtures. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3932-3947.	1.6	35
391	Growing the gas-giant planets by the gradual accumulation of pebbles. Nature, 2015, 524, 322-324.	13.7	208
392	FORMATION OF SUPER-EARTH MASS PLANETS AT 125–250 AU FROM A SOLAR-TYPE STAR. Astrophysical Journal, 2015, 806, 42.	1.6	39
393	A systematic for oxygen isotopic variation in meteoritic chondrules. Earth and Planetary Science Letters, 2015, 430, 308-315.	1.8	32
394	PARTICLE TRAPPING AND STREAMING INSTABILITY IN VORTICES IN PROTOPLANETARY DISKS. Astrophysical Journal, 2015, 804, 35.	1.6	81
395	Planetesimal formation in self-gravitating discs – dust trapping by vortices. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4233-4244.	1.6	16
396	CONGLOMERATION OF KILOMETER-SIZED PLANETESIMALS. Astrophysical Journal, 2015, 801, 15.	1.6	27
397	Origin and Evolution of the Cometary Reservoirs. Space Science Reviews, 2015, 197, 191-269.	3.7	140
398	In search of the source of asteroid (101955) Bennu: Applications of the stochastic YORP model. Icarus, 2015, 247, 191-217.	1.1	125
399	Semarkona: Lessons for chondrule and chondrite formation. Icarus, 2015, 245, 32-37.	1.1	9
400	INTEGRATION OF PARTICLE-GAS SYSTEMS WITH STIFF MUTUAL DRAG INTERACTION. Astrophysical Journal, Supplement Series, 2016, 224, 39.	3.0	57
401	FORMING CHONDRITES IN A SOLAR NEBULA WITH MAGNETICALLY INDUCED TURBULENCE. Astrophysical Journal Letters, 2016, 820, L12.	3.0	13
402	MEASUREMENTS OF WATER SURFACE SNOW LINES IN CLASSICAL PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 818, 22.	1.6	58
403	Spontaneous concentrations of solids through two-way drag forces between gas and sedimenting particles. Astronomy and Astrophysics, 2016, 591, A133.	2.1	19
404	Effect of turbulence on collisions of dust particles with planetesimals in protoplanetary disks. Astronomy and Astrophysics, 2016, 589, A129.	2.1	21
405	Modelling circumbinary protoplanetary disks. Astronomy and Astrophysics, 2016, 590, A62.	2.1	14
406	<i>Herschel</i> detects oxygen in the <i>l²</i> Pictoris debris disk. Astronomy and Astrophysics, 2016, 591, A27.	2.1	25

#	Article	IF	CITATIONS
407	The radial dependence of pebble accretion rates: A source of diversity in planetary systems. Astronomy and Astrophysics, 2016, 591, A72.	2.1	109
408	Non-axisymmetric instabilities in discs with imposed zonal flows. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3725-3736.	1.6	7
409	Acceleration of cometary dust near the nucleus: application to 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3410-3420.	1.6	31
410	Astrophysics with Extraterrestrial Materials. Annual Review of Astronomy and Astrophysics, 2016, 54, 53-93.	8.1	133
411	PLANETESIMAL FORMATION BY GRAVITATIONAL INSTABILITY OF A POROUS DUST DISK. Astrophysical Journal Letters, 2016, 825, L28.	3.0	10
412	Comet formation in collapsing pebble clouds. Astronomy and Astrophysics, 2016, 587, A128.	2.1	47
413	THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY. Astrophysical Journal, 2016, 822, 55.	1.6	245
414	PROMPT PLANETESIMAL FORMATION BEYOND THE SNOW LINE. Astrophysical Journal Letters, 2016, 828, L2.	3.0	53
415	THE COLLISIONAL EVOLUTION OF UNDIFFERENTIATED ASTEROIDS AND THE FORMATION OF CHONDRITIC METEOROIDS. Astrophysical Journal, 2016, 824, 12.	1.6	22
416	FRIENDS OF HOT JUPITERS. IV. STELLAR COMPANIONS BEYOND 50 au MIGHT FACILITATE GIANT PLANET FORMATION, BUT MOST ARE UNLIKELY TO CAUSE KOZAI–LIDOV MIGRATION. Astrophysical Journal, 2016, 827, 8.	1.6	123
417	Why are Jupiter-family comets active and asteroids in cometary-like orbits inactive?. Astronomy and Astrophysics, 2016, 589, A111.	2.1	15
418	Grand Challenges in Protoplanetary Disc Modelling. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	61
419	THE SPIRAL WAVE INSTABILITY INDUCED BY A GIANT PLANET. I. PARTICLE STIRRING IN THE INNER REGIONS OF PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 833, 126.	1.6	43
420	THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS. Astrophysical Journal, 2016, 832, 41.	1.6	241
421	On the growth of pebble-accreting planetesimals. Astronomy and Astrophysics, 2016, 586, A66.	2.1	48
422	Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line. Astronomy and Astrophysics, 2016, 596, L3.	2.1	86
423	The motion of chondrules and other particles in a protoplanetary disc with temperature fluctuations. Monthly Notices of the Royal Astronomical Society, 2016, 463, 4167-4174.	1.6	6
424	Close-in planetesimal formation by pile-up of drifting pebbles. Astronomy and Astrophysics, 2016, 594, A105.	2.1	168

#	Article	IF	CITATIONS
425	Preferential concentration of heavy particles in compressible isotropic turbulence. Physics of Fluids, 2016, 28, .	1.6	29
426	Collision velocity of dust grains in self-gravitating protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2676-2693.	1.6	61
427	Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2962-2972.	1.6	46
428	Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Science Reviews, 2016, 205, 213-230.	3.7	31
429	The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus, 2016, 274, 350-365.	1.1	89
430	YOUNG "DIPPER―STARS IN UPPER SCO AND OPH OBSERVED BY K2. Astrophysical Journal, 2016, 816, 69.	1.6	124
431	PEBBLE ACCRETION AND THE DIVERSITY OF PLANETARY SYSTEMS. Astrophysical Journal, 2016, 825, 63.	1.6	84
432	Detection of infrasound disturbances from the Earth's stratosphere. , 2016, , .		2
433	Dust Evolution and the Formation of Planetesimals. Space Science Reviews, 2016, 205, 41-75.	3.7	215
434	Lead isotope evidence for a young formation age of the Earth–Moon system. Earth and Planetary Science Letters, 2016, 452, 36-43.	1.8	62
435	Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals. Monthly Notices of the Royal Astronomical Society, 2016, 462, S132-S137.	1.6	111
436	Abrupt growth of large aggregates by correlated coalescences in turbulent flow. Physical Review E, 2016, 93, 031102.	0.8	25
437	Fractal cometary dust – a window into the early Solar system. Monthly Notices of the Royal Astronomical Society, 2016, 462, S304-S311.	1.6	97
438	Origin of the local structures at the Philae landing site and possible implications on the formation and evolution of 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S23-S32.	1.6	60
439	HYDROCARBON EMISSION RINGS IN PROTOPLANETARY DISKS INDUCED BY DUST EVOLUTION. Astrophysical Journal, 2016, 831, 101.	1.6	149
440	Challenges in planet formation. Journal of Geophysical Research E: Planets, 2016, 121, 1962-1980.	1.5	127
441	ROCKY PLANET FORMATION: QUICK AND NEAT. Astrophysical Journal, 2016, 831, 8.	1.6	27
442	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	2.1	159

#	Article		CITATIONS
443	A panoptic model for planetesimal formation and pebble delivery. Astronomy and Astrophysics, 2016, 586, A20.	2.1	75
444	Constraining turbulence mixing strength in transitional discs with planets using SPHERE and ALMA. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L85-L89.	1.2	33
445	OSSOS III—RESONANT TRANS-NEPTUNIAN POPULATIONS: CONSTRAINTS FROM THE FIRST QUARTER OF THE OUTER SOLAR SYSTEM ORIGINS SURVEY. Astronomical Journal, 2016, 152, 23.	1.9	52
446	Fossilized condensation lines in the Solar System protoplanetary disk. Icarus, 2016, 267, 368-376.	1.1	152
447	Turbulent thermal diffusion: a way to concentrate dust in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3079-3089.	1.6	32
448	N ₂ AND CO DESORPTION ENERGIES FROM WATER ICE. Astrophysical Journal Letters, 2016, 816, L28.	3.0	76
449	Collisions of solid ice in planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4328-4334.	1.6	32
450	Vortex formation in protoplanetary discs induced by the vertical shear instability. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3571-3584.	1.6	57
451	GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS. Astrophysical Journal, 2016, 818, 200.	1.6	85
452	MAGNETO-THERMAL DISK WINDS FROM PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 818, 152.	1.6	157
453	FORMING THE COLD CLASSICAL KUIPER BELT IN A LIGHT DISK. Astrophysical Journal, 2016, 818, 175.	1.6	40
454	A semi-analytical model for exploring Galilean satellites formation from a massive disk. Icarus, 2016, 266, 1-14.	1.1	43
455	Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochimica Et Cosmochimica Acta, 2016, 176, 295-315.	1.6	40
456	Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2886-2891.	3.3	109
457	CHONDRULE FORMATION VIA IMPACT JETTING TRIGGERED BY PLANETARY ACCRETION. Astrophysical Journal, 2016, 816, 8.	1.6	16
458	The origin of the neon isotopes in chondrites and on Earth. Earth and Planetary Science Letters, 2016, 433, 249-256.	1.8	33
459	Dawes Review 7: The Tidal Downsizing Hypothesis of Planet Formation. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	72
460	How primordial is the structure of comet 67P?. Astronomy and Astrophysics, 2017, 597, A61.	2.1	48

#	Article	IF	CITATIONS
461	THE ROLE OF PEBBLE FRAGMENTATION IN PLANETESIMAL FORMATION. I. EXPERIMENTAL STUDY. Astrophysical Journal, 2017, 834, 145.	1.6	50
462	PLANETESIMAL COLLISIONS AS A CHONDRULE FORMING EVENT. Astrophysical Journal, 2017, 834, 125.	1.6	20
463	Giant ripples on comet 67P/Churyumov–Gerasimenko sculpted by sunset thermal wind. Proceedings of the United States of America, 2017, 114, 2509-2514.	3.3	51
464	United theory of planet formation (i): Tandem regime. New Astronomy, 2017, 54, 7-23.	0.8	28
465	Planetesimal Formation in the Warm, Inner Disk: Experiments with Tempered Dust. Astrophysical Journal, 2017, 837, 59.	1.6	8
466	Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk. Astrophysical Journal, 2017, 839, 16.	1.6	137
467	Eulerian and L agrangian approaches to multidimensional condensation and collection. Journal of Advances in Modeling Earth Systems, 2017, 9, 1116-1137.	1.3	22
468	Formulas for Radial Transport in Protoplanetary Disks. Astrophysical Journal, 2017, 840, 86.	1.6	31
469	Initial mass function of planetesimals formed by the streaming instability. Astronomy and Astrophysics, 2017, 597, A69.	2.1	124
470	Terrestrial Planet Formation: Dynamical Shake-up and the Low Mass of Mars. Astronomical Journal, 2017, 153, 216.	1.9	49
471	Primordial atmosphere incorporation in planetary embryos and the origin of Neon in terrestrial planets. Icarus, 2017, 293, 199-205.	1.1	14
472	Making Terrestrial Planets: High Temperatures, FU Orionis Outbursts, Earth, and Planetary System Architectures. Astrophysical Journal Letters, 2017, 840, L5.	3.0	32
473	Developments and difficulties in predicting the relative velocities of inertial particles at the small-scales of turbulence. Physics of Fluids, 2017, 29, .	1.6	4
474	Planetesimal formation near the snowline: in or out?. Astronomy and Astrophysics, 2017, 602, A21.	2.1	155
475	Planetesimal Clearing and Size-dependent Asteroid Retention by Secular Resonance Sweeping during the Depletion of the Solar Nebula. Astrophysical Journal, 2017, 836, 207.	1.6	24
476	Fractal dust constrains the collisional history of comets. Monthly Notices of the Royal Astronomical Society, 2017, 469, S39-S44.	1.6	58
477	Dynamics of Porous Dust Aggregates and Gravitational Instability of Their Disk. Astrophysical Journal, 2017, 842, 61.	1.6	8
478	All planetesimals born near the Kuiper belt formed as binaries. Nature Astronomy, 2017, 1, .	4.2	63

#	Article	IF	CITATIONS
479	Using the Main Asteroid Belt to Constrain Planetesimal and Planet Formation. , 0, , 38-68.		0
480	Composition of Solar System Small Bodies. , 2017, , 269-297.		14
481	Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142. Astrophysical Journal, 2017, 838, 20.	1.6	66
482	FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1910-1914.	1.6	35
483	The ice content of Kuiper belt objects. Nature Astronomy, 2017, 1, .	4.2	8
484	Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles. Monthly Notices of the Royal Astronomical Society, 2017, 469, S755-S773.	1.6	146
485	Origin of orbits of secondaries in the discovered trans-Neptunian binaries. Solar System Research, 2017, 51, 409-416.	0.3	5
486	Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks. Astrophysical Journal, 2017, 849, 41.	1.6	5
487	Formation of solar system analogues – I. Looking for initial conditions through a population synthesis analysis. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2753-2770.	1.6	44
488	Pebble Accretion at the Origin of Water in Europa. Astrophysical Journal, 2017, 845, 92.	1.6	39
489	Formation of trans-Neptunian satellite systems at the stage of condensations. Solar System Research, 2017, 51, 294-314.	0.3	8
490	Formation of the Proto-Earth in the Solar Nebula. , 2017, , 25-58.		0
491	Forming Planets via Pebble Accretion. Annual Review of Earth and Planetary Sciences, 2017, 45, 359-387.	4.6	281
492	Evidence for Universality in the Initial Planetesimal Mass Function. Astrophysical Journal Letters, 2017, 847, L12.	3.0	118
493	Meet the primordial asteroid family. Science, 2017, 357, 972-973.	6.0	0
494	Identification of a primordial asteroid family constrains the original planetesimal population. Science, 2017, 357, 1026-1029.	6.0	81
495	Formation of TRAPPIST-1 and other compact systems. Astronomy and Astrophysics, 2017, 604, A1.	2.1	128
496	Chondrules: Ubiquitous Chondritic Solids Tracking the Evolution of the Solar Protoplanetary Disk. Astrophysics and Space Science Library, 2017, , 161-195.	1.0	14

#	Article	IF	CITATIONS
497	Normal Gravity Fields and Equipotential Ellipsoids of Small Objects in the Solar System: A Closed-form Solution in Ellipsoidal Harmonics up to the Second Degree. Astrophysical Journal, 2017, 850, 107.	1.6	4
498	Multiple Disk Gaps and Rings Generated by a Single Super-Earth. Astrophysical Journal, 2017, 843, 127.	1.6	157
499	Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astronomy and Astrophysics, 2017, 602, A105.	2.1	310
500	A pebbles accretion model with chemistry and implications for the Solar system. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4282-4298.	1.6	21
501	Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus, 2017, 281, 459-475.	1.1	29
502	The origin of high eccentricity planets: The dispersed planet formation regime for weakly magnetized disks. Geoscience Frontiers, 2017, 8, 233-245.	4.3	4
503	Mn–Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: Constraints on the accretion ages of chondritic asteroids. Geochimica Et Cosmochimica Acta, 2017, 199, 58-74.	1.6	21
504	On the formation and chemical composition of super Earths. Monthly Notices of the Royal Astronomical Society, 2017, 464, 428-452.	1.6	52
505	CONSERT constrains the internal structure of 67P at a few metres size scale. Monthly Notices of the Royal Astronomical Society, 2017, 469, S805-S817.	1.6	21
506	How pristine is the interior of the comet 67P/Churyumov–Gerasimenko?. Monthly Notices of the Royal Astronomical Society, 2017, 469, S685-S694.	1.6	22
507	Self-induced dust traps: overcoming planet formation barriers. Monthly Notices of the Royal Astronomical Society, 0, , stx016.	1.6	64
508	<i>N</i> -body simulations of planet formation via pebble accretion. Astronomy and Astrophysics, 2017, 607, A67.	2.1	31
509	Planetesimal formation starts at the snow line. Astronomy and Astrophysics, 2017, 608, A92.	2.1	196
510	Robustness of N ₂ H ⁺ as tracer of the CO snowline. Astronomy and Astrophysics, 2017, 599, A101.	2.1	70
511	Redistribution of CO at the location of the CO ice line in evolving gas and dust disks. Astronomy and Astrophysics, 2017, 600, A140.	2.1	57
512	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	3.7	76
513	Application of the Exact Regularized Point Particle method (ERPP) to particle laden turbulent shear flows in the two-way coupling regime. International Journal of Multiphase Flow, 2018, 101, 113-124.	1.6	25
514	Dust Evolution in Protoplanetary Discs and the Formation of Planetesimals. Space Science Reviews, 2018, 214, 1.	3.7	92

	Сітатіс	on Report	
#	Article	IF	CITATIONS
515	Dust concentration and chondrule formation. Meteoritics and Planetary Science, 2018, 53, 1507-1515.	0.7	4
516	Turbulence in the TW Hya Disk. Astrophysical Journal, 2018, 856, 117.	1.6	149
517	Resonant Drag Instability of Grains Streaming in Fluids. Astrophysical Journal Letters, 2018, 856, L15.	3.0	53
518	Debris disc constraints on planetesimal formation. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2564-2575.	1.6	36
519	The Physics of Protoplanetary Dust Agglomerates. X. High-velocity Collisions between Small and Large Dust Agglomerates as a Growth Barrier. Astrophysical Journal, 2018, 853, 74.	1.6	21
520	Small-scale dynamics of settling, bidisperse particles in turbulence. Journal of Fluid Mechanics, 2018, 839, 594-620.	1.4	30
521	Impact splash chondrule formation during planetesimal recycling. Icarus, 2018, 302, 27-43.	1.1	79
522	1I/â€ [~] Oumuamua as a Tidal Disruption Fragment from a Binary Star System. Astrophysical Journal Letters, 2018, 852, L15.	3.0	66
523	Dust Evolution in Protoplanetary Disks. , 2018, , 1-16.		0
524	Breakthrough revisited: investigating the requirements for growth of dust beyond the bouncing barrier. Monthly Notices of the Royal Astronomical Society, 2018, 475, 167-180.	1.6	13
525	Giant Planet Formation and Migration. Space Science Reviews, 2018, 214, 1.	3.7	19
526	Where can a Trappist-1 planetary system be produced?. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5460-5473.	1.6	41
527	Linear growth of streaming instability in pressure bumps. Monthly Notices of the Royal Astronomical Society, 2018, 473, 796-805.	1.6	36
528	Single planet formation regime in the high-ionization environment: Possible origin of hot Jupiters and super-Earths. Geoscience Frontiers, 2018, 9, 1023-1031.	4.3	2
529	Reconstructing the size distribution of the primordial Main Belt. Icarus, 2018, 304, 14-23.	1.1	21
530	Checking the compatibility of the cold Kuiper belt with a planetary instability migration model. Icarus, 2018, 306, 319-327.	1.1	28
531	Tandem Planetary Formation Theory. Journal of Geography (Chigaku Zasshi), 2018, 127, 577-607.	0.1	3
532	Dynamics and Origin of Comets: New Problems Appeared after the Rosetta Space Mission. Solar System Research, 2018, 52, 382-391.	0.3	2

#	Article	IF	CITATIONS
533	Streaming instability of multiple particle species in protoplanetary disks. Astronomy and Astrophysics, 2018, 618, A75.	2.1	35
534	Formation of Embryos of the Earth and the Moon from a Common Rarefied Condensation and Their Subsequent Growth. Solar System Research, 2018, 52, 401-416.	0.3	6
535	Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk. Astrophysical Journal, 2018, 868, 27.	1.6	71
536	Dust Evolution and Satellitesimal Formation in Circumplanetary Disks. Astrophysical Journal, 2018, 866, 142.	1.6	28
537	Why do protoplanetary disks appear not massive enough to form the known exoplanet population?. Astronomy and Astrophysics, 2018, 618, L3.	2.1	151
538	Dust Evolution in Protoplanetary Disks. , 2018, , 2205-2220.		0
539	Instabilities and Flow Structures in Protoplanetary Disks: Setting the Stage for Planetesimal Formation. , 2018, , 2251-2286.		8
540	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
541	Connecting Planetary Composition with Formation. , 2018, , 2475-2521.		4
542	Evidence for a massive dust-trapping vortex connected to spirals. Astronomy and Astrophysics, 2018, 619, A161.	2.1	69
543	The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust Trapping in Thin-ringed Protoplanetary Disks. Astrophysical Journal Letters, 2018, 869, L46.	3.0	250
544	The Origin and Evolution of Saturn, with Exoplanet Perspective. , 2018, , 5-43.		23
545	A Lagrangian model for dust evolution in protoplanetary disks: formation of wet and dry planetesimals at different stellar masses. Astronomy and Astrophysics, 2018, 620, A134.	2.1	39
546	Collisional Growth of Icy Dust Aggregates in the Disk Formation Stage: Difficulties for Planetesimal Formation via Direct Collisional Growth outside the Snowline. Astrophysical Journal, 2018, 868, 118.	1.6	20
547	The Effect of Jupiter's Formation on the Distribution of Refractory Elements and Inclusions in Meteorites. Astrophysical Journal, Supplement Series, 2018, 238, 11.	3.0	158
548	A Subgrid Model for the Growth of Dust Particles in Hydrodynamical Simulations of Protoplanetary Disks. Astrophysical Journal, 2018, 863, 97.	1.6	13
549	Instabilities and Flow Structures in Protoplanetary Disks: Setting the Stage for Planetesimal Formation. , 2018, , 1-36.		3
550	The curious case of Mars' formation. Astronomy and Astrophysics, 2018, 617, A17.	2.1	17

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
551	Two Key Parameters Controlling Particle Clumping Caused by Streaming Instability in the Dead-zone Dust Layer of a Protoplanetary Disk. Astrophysical Journal, 2018, 860, 140.	1.6	21
552	Origin of Earth's Water: Chondritic Inheritance Plus Nebular Ingassing and Storage of Hydrogen in the Core. Journal of Geophysical Research E: Planets, 2018, 123, 2691-2712.	1.5	61
553	Dynamics of nonspherical, fractal-like water-ice particles in a plasma environment. Scientific Reports, 2018, 8, 15405.	1.6	6
555	Radial velocities. , 0, , 17-80.		0
556	Astrometry. , 0, , 81-102.		0
557	Timing. , 0, , 103-118.		0
558	Microlensing. , 0, , 119-152.		0
560	Host stars. , 0, , 373-428.		0
561	Brown dwarfs and free-floating planets. , 0, , 429-448.		0
562	Formation and evolution. , 0, , 449-558.		0
563	Interiors and atmospheres. , 0, , 559-648.		0
564	The solar system. , 0, , 649-700.		0
570	Diverse Protoplanetary Disk Morphology Produced by a Jupiter-mass Planet. Astrophysical Journal Letters, 2018, 864, L26.	3.0	50
573	Gas and multispecies dust dynamics in viscous protoplanetary discs: the importance of the dust back-reaction. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4187-4206.	1.6	44
574	The common origin of family and non-family asteroids: Implications for meteorites and NEAs. Proceedings of the International Astronomical Union, 2018, 14, 281-282.	0.0	0
575	Connecting Planetary Composition with Formation. , 2018, , 1-47.		1
576	Formation of Terrestrial Planets. , 2018, , 1-59.		0
577	Free Cooling of a Granular Gas of Rodlike Particles in Microgravity. Physical Review Letters, 2018, 120, 214301.	2.9	32

		CITATION RE	PORT	
#	Article		IF	CITATIONS
578	Resonant drag instabilities in protoplanetary discs: the streaming instability and new, fa instabilities. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5011-5040	ister growing I.	1.6	93
579	Photoevaporation Does Not Create a Pileup of Giant Planets at 1 au. Astrophysical Journ 145.	nal, 2018, 855,	1.6	7
580	Azimuthal and Vertical Streaming Instability at High Dust-to-gas Ratios and on the Scale Planetesimal Formation. Astrophysical Journal, 2018, 861, 47.	2s of	1.6	35
581	Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar Astronomy and Astrophysics, 2018, 611, A18.	nebula.	2.1	41
582	The Absolute Pb–Pb Isotope Ages of Chondrules. , 0, , 300-323.			5
583	Planetesimal formation during protoplanetary disk buildup. Astronomy and Astrophysic A62.	s, 2018, 614,	2.1	57
584	Exploring the Possible Continuum Between Comets and Asteroids. , 2018, , 409-438.			3
585	The common origin of family and non-family asteroids. Nature Astronomy, 2018, 2, 549	-554.	4.2	33
586	On the Numerical Robustness of the Streaming Instability: Particle Concentration and C Protoplanetary Disks. Astrophysical Journal, 2018, 862, 14.	as Dynamics in	1.6	48
587	Rubble Pile Asteroids. Annual Review of Astronomy and Astrophysics, 2018, 56, 593-62	4.	8.1	106
588	Transits. , 0, , 153-328.			0
589	Limits on the number of primordial Scattered disc objects at Pluto mass and higher from of their dynamical signatures on the present-day trans-Neptunian Populations. Monthly Royal Astronomical Society, 2018, 480, 1870-1882.	n the absence Notices of the	1.6	12
590	Abundances of Ordinary Chondrites in Thermally Evolving Planetesimals. Astrophysical J 863, 100.	ournal, 2018,	1.6	4
591	Water in the history of Mars: An assessment. Planetary and Space Science, 2019, 166, 7	70-89.	0.9	11
592	Planetary system around the nearby M dwarf GJ 357 including a transiting, hot, Earth-siz optimal for atmospheric characterization. Astronomy and Astrophysics, 2019, 628, A39	zed planet	2.1	97
593	Geochemical Features of the Moon and Earth Predetermined by the Mechanism of Form Earth–Moon System (Report at the 81st International Meteorite Conference, Moscov Geochemistry International, 2019, 57, 837-850.	nation of the v, July 2018).	0.2	1
594	Revised Description of Dust Diffusion and a New Instability Creating Multiple Rings in P Disks. Astrophysical Journal, 2019, 881, 53.	rotoplanetary	1.6	44
595	Exoplanet interiors and habitability. Advances in Physics: X, 2019, 4, 1630316.		1.5	9

ARTICLE IF CITATIONS # The orbit and size-frequency distribution of long period comets observed by Pan-STARRS1. Icarus, 2019, 596 1.1 34 333, 252-272. Understanding droplet collisions through a model flow: Insights from a Burgers vortex. Physical Review E, 2019, 99, 063107. 0.8 Planetesimal formation in an evolving protoplanetary disk with a dead zone. Astronomy and 598 2.1 19 Astrophysics, 2019, 627, A50. Planet seeding through gas-assisted capture of interstellar objects. Monthly Notices of the Royal 599 Astronomical Society, 2019, 487, 3324-3332. Heavy Metal Rules. I. Exoplanet Incidence and Metallicity. Geosciences (Switzerland), 2019, 9, 105. 600 1.0 51 Effect of nucleation on icy pebble growth in protoplanetary discs. Astronomy and Astrophysics, 2019, 2.1 629, A65. The DSHARP Rings: Evidence of Ongoing Planetesimal Formation?. Astrophysical Journal Letters, 2019, 602 3.0 57 884, L5. N-body simulations of terrestrial planet growth with resonant dynamical friction. Monthly Notices 1.6 of the Royal Astronomical Society, 2019, 489, 2159-2176. Size and density sorting of dust grains in SPH simulations of protoplanetary discs $\hat{a} \in I$. Fragmentation. 604 1.6 8 Monthly Notices of the Royal Astronomical Society, 2019, 490, 4428-4446. A Plutoâ€"Charon Sonata. III. Growth of Charon from a Circum-Pluto Ring of Debris. Astronomical 1.9 Journal, 2019, 158, 142. On the nature of the resonant drag instability of dust streaming in protoplanetary disc. Monthly 606 1.6 15 Notices of the Royal Astronomical Society, 0, , . An Observational Study for Grain Dynamics in the AS 209 Disk with Submillimeter Polarization*. 1.6 Astrophysical Journal, 2019, 883, 16. Probing CO and N₂ Snow Surfaces in Protoplanetary Disks with 608 1.6 47 N₂H⁺ Emission. Astrophysical Journal, 2019, 882, 160. The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of 609 1.6 the Radial Gas Pressure Gradient. Astrophysical Journal, 2019, 883, 192 Dust accretion in binary systems: implications for planets and transition discs. Monthly Notices of 610 7 1.6 the Royal Astronomical Society, 2019, , . Compressive strength of comet 67P/Churyumov-Gerasimenko derived from Philae surface contacts. Astronomy and Astrophysics, 2019, 630, Á2. Homogeneity of 67P/Churyumov-Gerasimenko as seen by CONSERT: implication on composition and 612 2.123 formation. Astronomy and Astrophysics, 2019, 630, A6. Formation of rocky and icy planetesimals inside and outside the snow line: effects of diffusion, 2.1 sublimation, and back-reaction. Astronomy and Astrophysics, 2019, 629, A90.

#	Article		CITATIONS
614	Mineralogically zoned chondrules in ordinary chondrites as evidence for open system chondrule behaviour. Geochimica Et Cosmochimica Acta, 2019, 249, 1-16.	1.6	18
615	Resistive evolution of toroidal field distributions and their relation to magnetic clouds. Journal of Plasma Physics, 2019, 85, .	0.7	0
616	Implications of Philae Magnetometry Measurements at Comet 67P/Churyumov–Gerasimenko for the Nebular Field of the Outer Solar System. Astrophysical Journal, 2019, 875, 39.	1.6	7
617	Thermal torque effects on the migration of growing low-mass planets. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5690-5708.	1.6	28
618	Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 2019, 3, 808-812.	4.2	102
619	Streaming Instability in the Gas-Dust Medium of the Protoplanetary Disc and the Formation of Fractal Dust Clusters. Solar System Research, 2019, 53, 181-198.	0.3	8
620	The Initial Conditions for Planet Formation: Turbulence Driven by Hydrodynamical Instabilities in Disks around Young Stars. Publications of the Astronomical Society of the Pacific, 2019, 131, 072001.	1.0	67
621	Rocky Planetesimal Formation Aided by Organics. Astrophysical Journal, 2019, 877, 128.	1.6	19
622	Deep Exploration of ϵ Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet*. Astronomical Journal, 2019, 157, 33.	1.9	53
623	Pebble accretion in self-gravitating protostellar discs. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4465-4473.	1.6	5
624	Non-linear evolution of the resonant drag instability in magnetized gas. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3991-3998.	1.6	21
625	Dense Particle Clouds in Laboratory Experiments in Context of Drafting and Streaming Instability. Astrophysical Journal, 2019, 872, 3.	1.6	12
626	Tensile Strength of Porous Dust Aggregates. Astrophysical Journal, 2019, 874, 159.	1.6	29
627	A high binary fraction for the most massive close-in giant planets and brown dwarf desert members. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4967-4996.	1.6	56
628	Mineralogy, Structure, and Habitability of Carbon-Enriched Rocky Exoplanets: A Laboratory Approach. Astrobiology, 2019, 19, 867-884.	1.5	12
629	Diagnosing the Clumpy Protoplanetary Disk of the UXor Type Young Star GM Cephei. Astrophysical Journal, 2019, 871, 183.	1.6	7
630	Characterizing gravito-turbulence in 3D: turbulent properties and stability against fragmentation. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3718-3729.	1.6	21
631	Growth after the streaming instability. Astronomy and Astrophysics, 2019, 624, A114.	2.1	44

#	Article		CITATIONS
633	Accretion of the asteroids: Implications for their thermal evolution. Meteoritics and Planetary Science, 2019, 54, 1115-1132.	0.7	37
634	Origin of the metamorphosed clasts in the <scp>CV</scp> 3 carbonaceous chondrite breccias of Graves Nunataks 06101, Vigarano, Roberts Massif 04143, and Yamatoâ€86009. Meteoritics and Planetary Science, 2019, 54, 1133-1152.	0.7	1
635	A Hypothesis for the Rapid Formation of Planets. Astrophysical Journal Letters, 2019, 874, L34.	3.0	22
636	Dusty spirals triggered by shadows in transition discs. Astronomy and Astrophysics, 2019, 622, A43.	2.1	11
637	Pebble accretion in Class 0/I YSOs as a possible pathway for early planet formation. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1574-1588.	1.6	11
638	VLT/SPHERE Multiwavelength High-contrast Imaging of the HD 115600 Debris Disk: New Constraints on the Dust Geometry and the Presence of Young Giant Planets. Astronomical Journal, 2019, 157, 39.	1.9	18
639	Planetesimal Population Synthesis: Pebble Flux-regulated Planetesimal Formation. Astrophysical Journal, 2019, 874, 36.	1.6	68
640	Effect of Different Angular Momentum Transport Mechanisms on the Distribution of Water in Protoplanetary Disks. Astrophysical Journal, 2019, 875, 43.	1.6	6
641	Multiple Spiral Arms in the Disk around Intermediate-mass Binary HD 34700A. Astrophysical Journal, 2019, 872, 122.	1.6	46
642	Dust Pileup at the Dead-zone Inner Edge and Implications for the Disk Shadow. Astrophysical Journal, 2019, 871, 10.	1.6	37
643	Physical Processes in Protoplanetary Disks. Saas-Fee Advanced Course, 2019, , 1-150.	1.1	24
644	Planet Formation and Disk-Planet Interactions. Saas-Fee Advanced Course, 2019, , 151-260.	1.1	4
645	Linking planetesimal and dust content in protoplanetary disks via a local toy model. Astronomy and Astrophysics, 2019, 629, A116.	2.1	19
646	Demographics of Planetesimals Formed by the Streaming Instability. Astrophysical Journal, 2019, 885, 69.	1.6	60
647	Tracking Dust Grains during Transport and Growth in Protoplanetary Disks. Astrophysical Journal, 2019, 885, 118.	1.6	17
648	Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysics, 2019, 627, A154.	2.1	22
649	Discovery of fossil asteroidal ice in primitive meteorite Acfer 094. Science Advances, 2019, 5, eaax5078.	4.7	33

A General Model of Celestial Body Formation from Initial Condensation of Gas and Dust Particles to the "Embryos―of Planets. Moscow University Physics Bulletin (English Translation of Vestnik) Tj ETQq1 1 0.78**63**14 rgBTi/Overlo

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
651	Connecting planet formation and astrochemistry. Astronomy and Astrophysics, 2019, 632, A63	3. 2	.1	51
652	Laboratory Experiments on the Motion of Dense Dust Clouds in Protoplanetary Disks. Astrophy Journal Letters, 2019, 886, L36.	sical 3	.0	7
653	Unveiling Dust Aggregate Structure in Protoplanetary Disks by Millimeter-wave Scattering Polarization. Astrophysical Journal, 2019, 885, 52.	1.	.6	33
654	Experiments on cometary activity: ejection of dust aggregates from a sublimating water-ice sur Monthly Notices of the Royal Astronomical Society, 2019, 483, 1202-1210.	face. 1	.6	9
655	Trans-Neptunian binary formation and evolution. , 2020, , 225-247.			3
656	Introduction: The Trans-Neptunian belt—Past, present, and future. , 2020, , 1-22.			5
657	Kuiper belt: Formation and evolution. , 2020, , 25-59.			44
658	Observations of Protoplanetary Disk Structures. Annual Review of Astronomy and Astrophysics 58, 483-528.	, 2020, 8	.1	220
659	Dust settling instability in protoplanetary discs. Monthly Notices of the Royal Astronomical Soc 2020, 497, 2715-2729.	iety, 1	.6	16
660	Solution to the debris disc mass problem: planetesimals are born small?. Monthly Notices of the Astronomical Society, 2020, 500, 718-735.	Royal 1	.6	41
661	Hydrodynamical turbulence in eccentric circumbinary discs and its impact on the inÂsitu forma circumbinary planets. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2849-286	tion of 1.	.6	19
662	Thermal inertias of pebble-pile comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Astronomical Society, 2020, 497, 1166-1180.	Royal 1	.6	7
663	Physical models of streaming instabilities in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1239-1251.	1.	.6	22
664	Observing protoplanetary discs with the Square Kilometre Array – I. Characterizing pebble substructure caused by forming planets. Monthly Notices of the Royal Astronomical Society, 20 498, 5116-5127.	020, 1	.6	11
665	The resonant drag instability of dust streaming in turbulent protoplanetary disc. Monthly Notic the Royal Astronomical Society, 2020, 494, 1395-1410.	es of 1.	.6	6
666	Weak Magnetic Fields in the Outer Solar Nebula Recorded in CR Chondrites. Journal of Geophy Research E: Planets, 2020, 125, e2019JE006260.	sical 1	.5	22
667	The imprint of the protoplanetary disc in the accretion of super-Earth envelopes. Monthly Notic the Royal Astronomical Society, 2020, 494, 2440-2448.	es of 1.	.6	25
668	Cascade Model for Planetesimal Formation by Turbulent Clustering. Astrophysical Journal, 2020 120.), 892, <u>1</u>	.6	27

# 669	ARTICLE Formation of Giant Planet Satellites. Astrophysical Journal, 2020, 894, 143.	IF 1.6	Citations
670	Streaming Instability in Turbulent Protoplanetary Disks. Astrophysical Journal, 2020, 895, 4.	1.6	52
671	Requirements for Gravitational Collapse in Planetesimal Formation—The Impact of Scales Set by Kelvin–Helmholtz and Nonlinear Streaming Instability. Astrophysical Journal, 2020, 895, 91.	1.6	43
672	Collisional heating and compaction of small bodies: Constraints for their origin and evolution. Icarus, 2020, 350, 113867.	1.1	13
673	On the activity of comets: understanding the gas and dust emission from comet 67/Churyumov–Gerasimenko's south-pole region during perihelion. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3690-3715.	1.6	45
674	The Mysterious Location of Maryland on 2014 MU69 and the Reconfiguration of Its Bilobate Shape. Astrophysical Journal Letters, 2020, 891, L12.	3.0	8
675	Setting the Stage: Planet Formation and Volatile Delivery. Space Science Reviews, 2020, 216, 1.	3.7	24
676	Hypothesis about Enrichment of Solar System. Physics, 2020, 2, 213-276.	0.5	2
677	Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysics, 2020, 637, A5.	2.1	20
679	Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth. Science, 2020, 367, .	6.0	64
680	The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt. Science, 2020, 367, .	6.0	79
681	Origin and Evolution of Cometary Nuclei. Space Science Reviews, 2020, 216, 1.	3.7	24
682	The magnetorotational instability prefers three dimensions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190622.	1.0	4
683	Observations of Planetary Systems. , 2020, , 1-48.		0
684	Terrestrial Planet Formation. , 2020, , 181-219.		0
686	Protoplanetary Disk Structure. , 2020, , 49-85.		0
687	Protoplanetary Disk Evolution. , 2020, , 86-140.		0
688	Planetesimal Formation. , 2020, , 141-180.		0

#	Article	IF	CITATIONS
689	Giant Planet Formation. , 2020, , 220-246.		0
690	Early Evolution of Planetary Systems. , 2020, , 247-300.		0
695	Channels for streaming instability in dusty discs. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4591-4598.	1.6	14
696	How planets grow by pebble accretion. Astronomy and Astrophysics, 2020, 634, A15.	2.1	34
697	Formation of planetary populations â" II. Effects of initial disc size and radial dust drift. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1013-1033.	1.6	8
698	Constraining planet formation around 6–8 M⊙ stars. Monthly Notices of the Royal Astronomical Society, 2020, 493, 765-775.	1.6	12
699	Accretion of a large LL parent planetesimal from a recently formed chondrule population. Science Advances, 2020, 6, eaay8641.	4.7	8
700	Near-infrared spectroscopy of the Chaldaea asteroid family: Possible link to the Klio family. Icarus, 2021, 354, 114028.	1.1	3
701	Evolution of MU69 from a binary planetesimal into contact by Kozai-Lidov oscillations and nebular drag. Icarus, 2021, 356, 113831.	1.1	10
702	A re-assessment of the Kuiper belt size distribution for sub-kilometer objects, revealing collisional equilibrium at small sizes. Icarus, 2021, 356, 114256.	1.1	28
703	Formation of Venus, Earth and Mars: Constrained by Isotopes. Space Science Reviews, 2021, 217, 1.	3.7	22
704	The formation of the cold classical Kuiper Belt by a short range transport mechanism. Icarus, 2021, 357, 114121.	1.1	7
705	Protoplanetary Disk Rings as Sites for Planetesimal Formation. Astronomical Journal, 2021, 161, 96.	1.9	59
706	The black hole masses of extremely luminous radio- <i>WISE</i> selected galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1527-1548.	1.6	2
707	Linking planetary embryo formation to planetesimal formation. Astronomy and Astrophysics, 2021, 645, A131.	2.1	17
708	Learning about comets from the study of mass distributions and fluxes of meteoroid streams. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2277-2289.	1.6	11
709	A Smoking Gun for Planetesimal Formation: Charge-driven Growth into a New Size Range. Astrophysical Journal Letters, 2021, 908, L22.	3.0	12
710	Formation of Multiple-planet Systems in Resonant Chains around M Dwarfs. Astrophysical Journal, 2021, 907, 81.	1.6	5

#	Article	IF	CITATIONS
711	A â^¼75 per cent occurrence rate of debris discs around F stars in the βÂPic moving group. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5390-5416.	1.6	27
712	The effect of the streaming instability on protoplanetary disc emission at millimetre wavelengths. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1495-1510.	1.6	4
713	The radial structure of planetary bodies formed by the streaming instability. Astronomy and Astrophysics, 2021, 647, A126.	2.1	9
714	Rapid formation of super-Earths around low-mass stars. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1390-1406.	1.6	9
715	Constraining planetesimal stirring: how sharp are debris disc edges?. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5100-5114.	1.6	16
716	<i>N</i> -body simulations of planet formation via pebble accretion. Astronomy and Astrophysics, 2021, 650, A116.	2.1	14
717	AB Aurigae: possible evidence of planet formation through the gravitational instability. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2877-2888.	1.6	7
718	On the Stickiness of CO ₂ and H ₂ O Ice Particles. Astrophysical Journal, 2021, 910, 130.	1.6	15
719	Testing the Jeans, Toomre, and Bonnor–Ebert Concepts for Planetesimal Formation: 3D Streaming-instability Simulations of Diffusion-regulated Formation of Planetesimals. Astrophysical Journal, 2021, 911, 9.	1.6	30
720	The water-ice line as a birthplace of planets: implications of a species-dependent dust fragmentation threshold. Astronomy and Astrophysics, 2021, 650, A185.	2.1	13
721	The Onset of Chaos in Permanently Deformed Binaries from Spin–Orbit and Spin–Spin Coupling. Astrophysical Journal, 2021, 913, 31.	1.6	6
722	On the vertical shear instability in magnetized protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2983-2998.	1.6	11
723	An evolutionary system of mineralogy, Part IV: Planetesimal differentiation and impact mineralization (4566 to 4560 Ma). American Mineralogist, 2021, 106, 730-761.	0.9	19
724	Pebble Trapping in Vortices: Three-dimensional Simulations. Astrophysical Journal, 2021, 913, 92.	1.6	19
725	Growing Mars fast: High-resolution GPU simulations of embryo formation. Icarus, 2021, 359, 114305.	1.1	21
726	Experimental study of clusters in dense granular gas and implications for the particle stopping time in protoplanetary disks. Icarus, 2021, 360, 114307.	1.1	5
727	Understanding planet formation using microgravity experiments. Nature Reviews Physics, 2021, 3, 405-421.	11.9	22
728	Dynamic evolution of major element chemistry in protoplanetary disks and its implications for Earth-enstatite chondrite connection. Icarus, 2021, 361, 114368.	1.1	4

#	Article	IF	CITATIONS
729	Rotational Disruption of Porous Dust Aggregates due to Gas Flow in Protoplanetary Disks. Astrophysical Journal, 2021, 913, 132.	1.6	3
730	Thermophysical evolution of planetesimals in the primordial disc. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5654-5685.	1.6	29
731	Observation of bottom-up formation for charged grain aggregates related to pre-planetary evolution beyond the bouncing barrier. Astronomy and Astrophysics, 2021, 650, A77.	2.1	7
732	Growth of aggregates with liquid-like ice shells in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5153-5159.	1.6	6
733	The Sandwich Mode for Vertical Shear Instability in Protoplanetary Disks. Astrophysical Journal, 2021, 915, 130.	1.6	24
734	From dust to planets – I. Planetesimal and embryo formation. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3596-3614.	1.6	15
735	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	1.6	4
736	The astrophysical context of collision processes in meteorites. Meteoritics and Planetary Science, 2021, 56, 1406-1421.	0.7	5
737	Forming pressure traps at the snow line to isolate isotopic reservoirs in the absence of a planet. Astronomy and Astrophysics, 2021, 652, A35.	2.1	13
738	The importance of thermal torques on the migration of planets growing by pebble accretion. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3638-3652.	1.6	13
739	Collisional Growth within the Solar System's Primordial Planetesimal Disk and the Timing of the Giant Planet Instability. Astrophysical Journal Letters, 2021, 917, L8.	3.0	6
741	Hayabusa2 extended mission: New voyage to rendezvous with a small asteroid rotating with a short period. Advances in Space Research, 2021, 68, 1533-1555.	1.2	20
742	Electron Holography Details the Tagish Lake Parent Body and Implies Early Planetary Dynamics of the Solar System. Astrophysical Journal Letters, 2021, 917, L5.	3.0	2
743	Oort cloud Ecology. Astronomy and Astrophysics, 2021, 652, A144.	2.1	11
744	A minimal model for vertical shear instability in protoplanetary accretion disks. Geophysical and Astrophysical Fluid Dynamics, 2021, 115, 674-695.	0.4	2
745	Migration processes in the Solar System and their role in the evolution of the Earth and planets. Physics-Uspekhi, 2023, 66, 2-31.	0.8	8
746	Exoplanet Statistics and Theoretical Implications. Annual Review of Astronomy and Astrophysics, 2021, 59, 291-336.	8.1	89
747	Migrating Planets into Ultra-short-period Orbits during Episodic Accretion Events. Astrophysical Journal, 2021, 919, 76.	1.6	5

	CITATION	Report	
#	Article	IF	CITATIONS
748	The New Generation Planetary Population Synthesis (NGPPS) VI. Introducing KOBE: <i>Kepler</i> Observes Bern Exoplanets. Astronomy and Astrophysics, 2021, 656, A74.	2.1	20
749	Thresholds for Particle Clumping by the Streaming Instability. Astrophysical Journal, 2021, 919, 107.	1.6	59
750	Transneptunian Space. Annual Review of Astronomy and Astrophysics, 2021, 59, 203-246.	8.1	36
751	The early instability scenario: Mars' mass explained by Jupiter's orbit. Icarus, 2021, 367, 114585.	1.1	11
752	Bifurcation of planetary building blocks during Solar System formation. Science, 2021, 371, 365-370.	6.0	108
753	Far and extreme ultraviolet radiation fields and consequent disc destruction in star-forming regions. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2665-2681.	1.6	15
754	Polydisperse streaming instability – III. Dust evolution encourages fast instability. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1469-1486.	1.6	19
755	Vertical settling of pebbles in turbulent circumbinary discs and the <i>inÂsitu</i> formation of circumbinary planets. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4806-4815.	1.6	6
757	The Origin and Evolution of the Asteroid Belt—Implications for Vesta and Ceres. , 2011, , 41-61.		1
758	Particle Trapping in Protoplanetary Disks: Models vs. Observations. Astrophysics and Space Science Library, 2017, , 91-142.	1.0	11
759	Dust Coagulation with Porosity Evolution. Astrophysics and Space Science Library, 2017, , 143-159.	1.0	2
760	The Emerging Paradigm of Pebble Accretion. Astrophysics and Space Science Library, 2017, , 197-228.	1.0	75
761	Planet Formation in Binaries. , 2015, , 309-340.		31
762	Dynamics and Planet Formation in/Around Binaries. Astrophysics and Space Science Library, 2010, , 165-193.	1.0	4
763	From Disks to Planets. , 2013, , 1-62.		26
766	Oligarchic planetesimal accretion and giant planet formation II. Astronomy and Astrophysics, 2009, 500, 1249-1252.	2.1	26
767	The Edgeworth-Kuiper debris disk. Astronomy and Astrophysics, 2010, 520, A32.	2.1	48
768	An improved model of the Edgeworth-Kuiper debris disk. Astronomy and Astrophysics, 2012, 540, A30.	2.1	59

#	Article	IF	CITATIONS
769	Crossing barriers in planetesimal formation: The growth of mm-dust aggregates with large constituent grains. Astronomy and Astrophysics, 2012, 542, A80.	2.1	28
770	Dust-trapping Rossby vortices in protoplanetary disks. Astronomy and Astrophysics, 2012, 545, A134.	2.1	90
771	Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. Astronomy and Astrophysics, 2012, 546, A18.	2.1	156
772	Lopsided dust rings in transition disks. Astronomy and Astrophysics, 2013, 550, L8.	2.1	120
773	Three-dimensional modeling of radiative disks in binaries. Astronomy and Astrophysics, 2013, 556, A148.	2.1	24
774	Stellar irradiated discs and implications on migration of embedded planets. Astronomy and Astrophysics, 2014, 570, A75.	2.1	51
775	Erosion and the limits to planetesimal growth. Astronomy and Astrophysics, 2015, 574, A83.	2.1	78
776	Testing particle trapping in transition disks with ALMA. Astronomy and Astrophysics, 2015, 584, A16.	2.1	55
777	Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and Astrophysics, 2016, 586, A80.	2.1	43
778	Dynamical rearrangement of super-Earths during disk dispersal. Astronomy and Astrophysics, 2017, 606, A66.	2.1	8
779	Eccentricity excitation and merging of planetary embryos heated by pebble accretion. Astronomy and Astrophysics, 2017, 606, A114.	2.1	29
780	Neutron star planets: Atmospheric processes and irradiation. Astronomy and Astrophysics, 2017, 608, A147.	2.1	7
781	The coexistence of the streaming instability and the vertical shear instability in protoplanetary disks. Astronomy and Astrophysics, 2020, 635, A190.	2.1	41
782	Investigating gravitational collapse of a pebble cloud to form transneptunian binaries. Astronomy and Astrophysics, 2020, 643, A55.	2.1	12
783	Pebble-driven planet formation around very low-mass stars and brown dwarfs. Astronomy and Astrophysics, 2020, 638, A88.	2.1	42
784	Constraining the parameter space for the solar nebula. Astronomy and Astrophysics, 2020, 640, A61.	2.1	18
785	Annular substructures in the transition disks around LkCa 15 and J1610. Astronomy and Astrophysics, 2020, 639, A121.	2.1	36
786	Effect of pebble flux-regulated planetesimal formation on giant planet formation. Astronomy and Astrophysics, 2020, 642, A75.	2.1	29

$\mathcal{O} = \mathcal{O}$	 D	_
	REDU	ND T
CITAT	NLFU	

#	Article	IF	CITATIONS
787	Protostellar collapse: the conditions to form dust-rich protoplanetary disks. Astronomy and Astrophysics, 2020, 641, A112.	2.1	36
788	Giant planet formation at the pressure maxima of protoplanetary disks. Astronomy and Astrophysics, 2020, 642, A140.	2.1	33
789	Connecting planet formation and astrochemistry. Astronomy and Astrophysics, 2020, 642, A229.	2.1	32
790	Destruction of eccentric planetesimals by ram pressure and erosion. Astronomy and Astrophysics, 2020, 644, A20.	2.1	3
791	A coagulation-fragmentation model for the turbulent growth andÂdestruction of preplanetesimals. Astronomy and Astrophysics, 2008, 486, 597-611.	2.1	35
792	Turbulent transport and its effect on the dead zoneÂinÂprotoplanetary discs. Astronomy and Astrophysics, 2008, 483, 815-830.	2.1	69
793	Embryos grown in the dead zone. Astronomy and Astrophysics, 2008, 491, L41-L44.	2.1	82
794	Large grains in discs around young stars: ATCA observations of WW Chamaeleontis, RU Lupi, and CS Chamaeleontis. Astronomy and Astrophysics, 2009, 495, 869-879.	2.1	48
795	Spectroastrometric Imaging of Molecular Gas within Protoplanetary Disk Gaps. Astrophysical Journal, 2008, 684, 1323-1329.	1.6	194
796	GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS. Astrophysical Journal, 2013, 763, 117.	1.6	107
797	Debris disks: seeing dust, thinking of planetesimals and planets. Research in Astronomy and Astrophysics, 2010, 10, 383-414.	0.7	133
798	A tale of planet formation: from dust to planets. Research in Astronomy and Astrophysics, 2020, 20, 164.	0.7	37
799	Polydisperse streaming instability $\hat{a} \in$ 1. Tightly coupled particles and the terminal velocity approximation. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4223-4238.	1.6	31
800	Streaming instability on different scales – I. Planetesimal mass distribution variability. Monthly Notices of the Royal Astronomical Society, 2020, 500, 520-530.	1.6	12
801	The impact of pre-main sequence stellar evolution on mid-plane snowline locations and C/O in planet forming discs. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4658-4670.	1.6	10
802	High resolution observations of molecular emission lines toward the CI Tau proto-planetary disc: planet-carved gaps or shadowing?. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	10
803	The birth environment of planetary systems. Royal Society Open Science, 2020, 7, 201271.	1.1	28
804	Caustics-induced coalescence of small droplets near a vortex. Physical Review Fluids, 2017, 2,	1.0	11

	CHATION	LPORT	
#	Article	IF	CITATIONS
805	Turbulence modulation in heavy-loaded suspensions of tiny particles. Physical Review Fluids, 2017, 2, .	1.0	29
806	Influence of Reynolds number on the motion of settling, bidisperse inertial particles in turbulence. Physical Review Fluids, 2019, 4, .	1.0	14
807	Formation of Jupiter and Conditions for Accretion of the Galilean Satellites. , 0, , 27-58.		3
808	Origin of Earth's oceans: An assessment of the total amount, history and supply of water. Geochemical Journal, 2016, 50, 27-42.	0.5	54
809	Dust Evolution in Protoplanetary Disks. , 2014, , .		84
810	New Paradigms for Asteroid Formation. , 2015, , .		17
811	The Formation and Evolution of Ordinary Chondrite Parent Bodies. , 2015, , .		11
812	Formation, Composition, and History of the Pluto System: A Post-New Horizons Synthesis. , 2020, , 1-1.		4
813	The Streaming Instability in Two-dimensional Protoplanetary Disks. Astrophysical Journal, 2020, 898, 7.	1.6	9
814	The Axisymmetric Streaming Instability in Protoplanetary Disks. Astrophysical Journal, 2020, 898, 8.	1.6	8
815	Turbulence Sets the Length Scale for Planetesimal Formation: Local 2D Simulations of Streaming Instability and Planetesimal Formation. Astrophysical Journal, 2020, 901, 54.	1.6	69
816	Secular Gravitational Instability of Drifting Dust in Protoplanetary Disks: Formation of Dusty Rings without Significant Gas Substructures. Astrophysical Journal, 2020, 900, 182.	1.6	29
817	Dust Growth by Accretion of Molecules in Supersonic Interstellar Turbulence. Astrophysical Journal, 2020, 903, 148.	1.6	6
818	Turbulence Regulates the Rate of Planetesimal Formation via Gravitational Collapse. Astrophysical Journal, 2020, 904, 132.	1.6	39
819	Pebble-trapping Backreaction Does Not Destroy Vortices. Research Notes of the AAS, 2018, 2, 195.	0.3	21
820	Col-OSSOS: Compositional Homogeneity of Three Kuiper Belt Binaries. Planetary Science Journal, 2020, 1, 16.	1.5	8
821	The formation of wide <i>exoKuiper</i> belts from migrating dust traps. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5638-5656.	1.6	9
822	The Axisymmetric Streaming Instability Revisited. Astrophysical Journal, 2021, 920, 80.	1.6	3

#	Article	IF	CITATIONS
823	OSSOS Finds an Exponential Cutoff in the Size Distribution of the Cold Classical Kuiper Belt. Astrophysical Journal Letters, 2021, 920, L28.	3.0	22
824	Origin, Internal Structure and Evolution of 4 Vesta. , 2011, , 77-93.		Ο
825	The Formation of Mars: Building Blocks and Accretion Time Scale. Space Sciences Series of ISSI, 2012, , 11-25.	0.0	0
827	Planet Formation. , 2014, , 1-6.		0
829	High Performance Astrophysical Fluid Simulations Using InSilicoLab Framework. Lecture Notes in Computer Science, 2014, , 293-304.	1.0	1
830	Turbulence (Planetary Disks). , 2014, , 1-2.		0
831	Turbulence (Planetary Disks). , 2015, , 2558-2559.		0
832	Planet Formation. , 2015, , 1912-1916.		0
833	Gravitational Collapse, Planetary. , 2015, , 1008-1008.		0
834	Formation of Planetesimals: The Building Blocks of Planets. , 2015, , 873-877.		0
835	Dust Evolution and the Formation of Planetesimals. Space Sciences Series of ISSI, 2016, , 81-115.	0.0	0
836	Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution. Space Sciences Series of ISSI, 2016, , 255-272.	0.0	0
839	Origin and Evolution of the Cometary Reservoirs. , 2017, , 191-269.		0
840	Expanding Beyond the Solar System: Current Observation and Theory. Advanced Information and Knowledge Processing, 2017, , 29-50.	0.2	0
841	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	0
842	Giant Planet Formation and Migration. Space Sciences Series of ISSI, 2018, , 255-289.	0.0	0
843	Disentangling Planets from Photoelectric Instability in Gas-rich Optically Thin Dusty Disks. Astrophysical Journal, 2019, 887, 6.	1.6	0
844	Evolution of the parent body of enstatite (EL) chondrites. Icarus, 2022, 373, 114762.	1.1	7

		CITATION REPORT		
#	Article		IF	Citations
845	The CoPhyLab comet-simulation chamber. Review of Scientific Instruments, 2021, 92,	115102.	0.6	6
846	Planetesimals on Eccentric Orbits Erode Rapidly. Astrophysical Journal, 2021, 921, 123		1.6	2
847	Modelling the water and carbon dioxide production rates of Comet 67P/Churyumovâ€ Monthly Notices of the Royal Astronomical Society, 2021, 509, 3065-3085.	"Gerasimenko.	1.6	19
848	Bridging the Gap between Protoplanetary and Debris Disks: Separate Evolution of Milli Micrometer-sized Dust. Astrophysical Journal, 2021, 921, 72.	meter and	1.6	33
850	A close-encounter method for simulating the dynamics of planetesimals. Astronomy ar 2020, 644, A14.	nd Astrophysics,	2.1	0
851	The rise time of the change of cometary brightness during its outburst. Icarus, 2022, 3	75, 114847.	1.1	7
852	Formation of the Earth and Moon: Influence of Small Bodies. Geochemistry Internation 1010-1017.	al, 2021, 59,	0.2	5
853	From Pebbles and Planetesimals to Planets and Dust: The Protoplanetary Disk–Debri Astrophysical Journal, 2022, 925, 45.	s Disk Connection.	1.6	17
854	Dust Settling and Clumping in MRI-turbulent Outer Protoplanetary Disks. Astrophysica 924, 3.	ıl Journal, 2022,	1.6	21
855	Interstellar Planetesimals: Potential Seeds for Planet Formation?. Astrophysical Journal,	, 2022, 924, 96.	1.6	6
856	Spectral characterisation of inertial particle clustering in turbulence. Journal of Fluid Me 2022, 934, .	echanics,	1.4	8
857	Streaming Instabilities in Accreting and Magnetized Laminar Protoplanetary Disks. Astr Journal, 2022, 926, 14.	rophysical	1.6	6
858	Acceleration statistics of tracer and light particles in compressible homogeneous isotro turbulence. Journal of Fluid Mechanics, 2022, 935, .	opic	1.4	0
859	Planetesimal rings as the cause of the Solar System's planetary architecture. Natur 6, 357-366.	re Astronomy, 2022,	4.2	43
860	Possible Ribose Synthesis in Carbonaceous Planetesimals. Life, 2022, 12, 404.		1.1	6
861	Origin and Dynamical Evolution of the Asteroid Belt. , 2022, , 227-249.			9
862	Probing the Inner Edge of Dead Zones in Protoplanetary Disks with ALMA and Next Ge Large Array. Astrophysical Journal, 2022, 928, 110.	neration Very	1.6	0
863	Tensile strength and surface energy of CO2 ice in the context of planet formation. Mo of the Royal Astronomical Society, 2022, 512, 3754-3758.	nthly Notices	1.6	3

		Report	
#	Article	IF	CITATIONS
864	Dust Dynamics in Transitional Disks: Clumping and Disk Recession. Astrophysical Journal, 2022, 928, 74.	1.6	3
865	Formation of Main Belt Asteroids. , 2022, , 199-211.		3
866	Resilience of Planetesimal Formation in Weakly Reinforced Pressure Bumps. Astrophysical Journal, 2022, 927, 52.	1.6	13
867	Intricate relations among particle collision, relative motion and clustering in turbulent clouds: computational observation and theory. Atmospheric Chemistry and Physics, 2022, 22, 3779-3788.	1.9	3
868	The role of density perturbation on planet formation by pebble accretion. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5278-5297.	1.6	5
869	Inside–out planet formation: VI. oligarchic coagulation of planetesimals from a pebble ring?. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5486-5499.	1.6	6
870	Planetary core formation via multispecies pebble accretion. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1298-1314.	1.6	12
871	Early differentiation of magmatic iron meteorite parent bodies from Mn–Cr chronometry. Geochemical Perspectives Letters, 0, 20, 6-10.	1.0	10
872	Shapes, structures, and evolution of small bodies. Astrodynamics, 2021, 5, 293-329.	1.5	17
873	Coagulation Instability in Protoplanetary Disks: A Novel Mechanism Connecting Collisional Growth and Hydrodynamical Clumping of Dust Particles. Astrophysical Journal, 2021, 923, 34.	1.6	15
874	Hydrodynamic interactions and extreme particle clustering in turbulence. Journal of Fluid Mechanics, 2022, 933, .	1.4	13
875	ALMA Super-resolution Imaging of T Tau: r = 12 au Gap in the Compact Dust Disk around T Tau N. Astrophysical Journal, 2021, 923, 121.	1.6	6
876	Dynamo effect in unstirred self-gravitating turbulence. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2136-2151.	1.6	5
878	Nucleation and growth of iron pebbles explains the formation of iron-rich planets akin to Mercury. Astronomy and Astrophysics, 2022, 662, A19.	2.1	15
879	HD 83443c: A Highly Eccentric Giant Planet on a 22 yr Orbit. Astronomical Journal, 2022, 163, 273.	1.9	4
880	Structure of differentiated planetesimals: A chondritic fridge on top of a magma ocean. Icarus, 2022, 385, 115100.	1.1	8
881	Prograde spin-up during gravitational collapse. Astronomy and Astrophysics, 2022, 663, A164.	2.1	5
882	Are there any pristine comets? Constraints from pebble structure. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3366-3394.	1.6	8

#	Article	IF	CITATIONS
883	Combined effects of disc windsÂand turbulence-driven accretion on planet populations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2548-2577.	1.6	3
884	Morphology and dynamical stability of self-gravitating vortices. Astronomy and Astrophysics, 2022, 666, A92.	2.1	2
885	Formation of Comets. Universe, 2022, 8, 381.	0.9	13
886	The size of monomers of dust aggregates in planet-forming disks. Astronomy and Astrophysics, 2022, 663, A57.	2.1	22
887	Forcing in DNS of stationary isotropic turbulence and its effects on the closure of diffusion current in the PDF kinetic equation for high-inertia particle pairs. International Journal of Multiphase Flow, 2022, 155, 104187.	1.6	0
888	Direct Formation of Planetary Embryos in Self-gravitating Disks. Astrophysical Journal, 2022, 933, 100.	1.6	9
889	Ionizing protoplanetary discs in pebble collisions. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 517, L65-L70.	1.2	2
890	Toward a population synthesis of disks and planets. Astronomy and Astrophysics, 2022, 666, A73.	2.1	5
891	Planetesimal Dynamics in the Presence of a Giant Planet. II. Dependence on Planet Mass and Eccentricity. Astrophysical Journal, 2022, 935, 113.	1.6	2
892	DustPy: A Python Package for Dust Evolution in Protoplanetary Disks. Astrophysical Journal, 2022, 935, 35.	1.6	19
893	Growing the seeds of pebble accretion through planetesimal accretion. Astronomy and Astrophysics, 2022, 666, A108.	2.1	7
894	A Multifluid Dust Module in Athena++: Algorithms and Numerical Tests. Astrophysical Journal, Supplement Series, 2022, 262, 11.	3.0	13
895	The coexistence of the streaming instability and the vertical shear instability in protoplanetary disks. Astronomy and Astrophysics, 2022, 666, A98.	2.1	5
896	Nonlinear Outcome of Coagulation Instability in Protoplanetary Disks. I. First Numerical Study of Accelerated Dust Growth and Dust Concentration at Outer Radii. Astrophysical Journal, 2022, 937, 21.	1.6	4
897	Rethinking the role of the giant planet instability in terrestrial planet formation models. Icarus, 2023, 389, 115260.	1.1	5
898	Global Modeling of Nebulae with Particle Growth, Drift, and Evaporation Fronts. II. The Influence of Porosity on Solids Evolution. Astrophysical Journal, 2022, 936, 42.	1.6	5
899	Global Modeling of Nebulae with Particle Growth, Drift, and Evaporation Fronts. III. Redistribution of Refractories and Volatiles. Astrophysical Journal, 2022, 936, 40.	1.6	5
900	Migration Traps as the Root Cause of the Kepler Dichotomy. Astrophysical Journal, 2022, 937, 53.	1.6	3

#	Article	IF	Citations
901	Primordial dusty rings and episodic outbursts in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4448-4468.	1.6	2
902	Establishing Dust Rings and Forming Planets within Them. Astrophysical Journal, 2022, 937, 95.	1.6	3
903	TEMPus VoLA: The timed Epstein multi-pressure vessel at low accelerations. Review of Scientific Instruments, 2022, 93, 104502.	0.6	1
904	Rapid formation of massive planetary cores in a pressure bump. Astronomy and Astrophysics, 2022, 668, A170.	2.1	11
905	Other Worlds in the Cosmos: From Philosophy to Scientific Reality. , 2022, , 299-330.		0
906	The accretion of planet Earth. Nature Reviews Earth & Environment, 2023, 4, 19-35.	12.2	4
907	Sub-mm/mm optical properties of real protoplanetary matter derived from <i>Rosetta</i> /MIRO observations of comet 67P. Monthly Notices of the Royal Astronomical Society, 2022, 519, 641-665.	1.6	4
908	Nonlinear Outcome of Coagulation Instability in Protoplanetary Disks. II. Dust-ring Formation Mediated by Backreaction and Fragmentation. Astrophysical Journal, 2022, 940, 152.	1.6	4
909	Direct measurement of decimetre-sized rocky material in the Oort cloud. Nature Astronomy, 2023, 7, 318-329.	4.2	4
910	An improved Representative Particle Monte Carlo method for the simulation of particle growth. Astronomy and Astrophysics, 0, , .	2.1	0
911	Meteorites and the RNA World: Synthesis of Nucleobases in Carbonaceous Planetesimals and the Role of Initial Volatile Content. Astrophysical Journal, 2023, 942, 50.	1.6	3
912	ORIGO: A mission concept to challenge planetesimal formation theories. Frontiers in Space Technologies, 0, 3, .	0.8	0
913	Anatomy of rocky planets formed by rapid pebble accretion. II. Differentiation by accretion energy and thermal blanketing. Astronomy and Astrophysics, 0, , .	2.1	6
914	Turbulence in Particle-laden Midplane Layers of Planet-forming Disks. Astrophysical Journal, 2023, 942, 74.	1.6	3
915	A Mixed Stirring Mechanism for Debris Discs with Giant and Dwarf Planetary Perturbations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	1
916	Breaking Degeneracies in Formation Histories by Measuring Refractory Content in Gas Giants. Astrophysical Journal, 2023, 943, 112.	1.6	8
917	Long-term Protoplanetary Disk Evolution from Molecular Cloud Core Collapse and Implications for Planet Formation. I. Weak and Moderate Disk Self-gravities. Astrophysical Journal, 2023, 944, 31.	1.6	2
918	Terrestrial planet formation from a ring. Icarus, 2023, 396, 115497.	1.1	3

#	Article	IF	CITATIONS
919	High-resolution Study of Planetesimal Formation by Gravitational Collapse of Pebble Clouds. Astrophysical Journal, 2023, 943, 125.	1.6	4
920	Making the Solar System. Astrophysical Journal, 2023, 944, 127.	1.6	2
921	Compression of Dust Aggregates via Sequential Collisions with High Mass Ratios. Astrophysical Journal, 2023, 945, 68.	1.6	3
922	Collisional heating of icy planetesimals – I. Catastrophic collisions. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2484-2503.	1.6	4
923	Disc population synthesis: Decrease in the solid mass reservoir through pebble drift. Astronomy and Astrophysics, 2023, 673, A139.	2.1	6
924	An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion. Astrophysical Journal, 2023, 946, 60.	1.6	6
925	Revisiting Collisional Dust Growth in Class 0/I Protostellar Disks: Sweep-up Can Convert a Few 10 M _{âS•} of Dust into Kilogram Pebbles in 0.1 Myr. Astrophysical Journal, 2023, 946, 94.	1.6	5
926	Understanding the trans-Neptunian Solar System. Reconciling the results of serendipitous stellar occultations and the inferences from the cratering record. Astronomy and Astrophysics, 0, , .	2.1	0
927	The Hot Main Kuiper Belt Size Distribution from OSSOS. Astrophysical Journal Letters, 2023, 947, L4.	3.0	1
928	Stability Analysis for General Order Central Finite-difference Hyperdiffusivity with Time Integrators of Arbitrary Accuracy. Research Notes of the AAS, 2023, 7, 69.	0.3	0
939	Planet Formation. , 2023, , 2352-2356.		0
940	Formation of Planetesimals: The Building Blocks of Planets. , 2023, , 1060-1064.		0
941	Gravitational Collapse, Planetary. , 2023, , 1216-1217.		0
942	Turbulence (Planetary Disks). , 2023, , 3121-3121.		0