Small self-RNA generated by RNase L amplifies antivira

Nature 448, 816-819 DOI: 10.1038/nature06042

Citation Report

#	Article	IF	CITATIONS
1	Viral Encounters with 2′,5′-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response. Journal of Virology, 2007, 81, 12720-12729.	1.5	522
2	RNA Quality Control in Eukaryotes. Cell, 2007, 131, 660-668.	13.5	291
3	Innate Recognition of Viruses. Immunity, 2007, 27, 370-383.	6.6	614
4	Regulation of innate immunity against hepatitis C virus infection. Hepatology Research, 2008, 38, 115-122.	1.8	46
6	Pathogen subversion of cell-intrinsic innate immunity. Nature Immunology, 2007, 8, 1179-1187.	7.0	160
7	Interferons at age 50: past, current and future impact on biomedicine. Nature Reviews Drug Discovery, 2007, 6, 975-990.	21.5	970
8	MDA5/RIG-I and virus recognition. Current Opinion in Immunology, 2008, 20, 17-22.	2.4	501
9	Macrophage activation by endogenous danger signals. Journal of Pathology, 2008, 214, 161-178.	2.1	498
10	Potential link between the immune system and metabolism of nucleic acids. Current Opinion in Immunology, 2008, 20, 524-529.	2.4	28
11	Tollâ€like Receptor and RICâ€1â€like Receptor Signaling. Annals of the New York Academy of Sciences, 2008, 1143, 1-20.	1.8	842
12	Toll-like receptors regulation of viral infection and diseaseâ~†. Advanced Drug Delivery Reviews, 2008, 60, 786-794.	6.6	73
13	Intracellular pattern-recognition receptorsâ~†. Advanced Drug Delivery Reviews, 2008, 60, 830-840.	6.6	41
14	Host responses to alphavirus infection. Immunological Reviews, 2008, 225, 27-45.	2.8	136
15	Increased virus replication in mammalian cells by blocking intracellular innate defense responses. Gene Therapy, 2008, 15, 545-552.	2.3	50
16	Expression of short interspersed elements and genes transcribed by RNA polymerase III in the regulation of cell processes. Molecular Biology, 2008, 42, 481.	0.4	1
17	Interferon-inducible antiviral effectors. Nature Reviews Immunology, 2008, 8, 559-568.	10.6	1,855
18	Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nature Reviews Immunology, 2008, 8, 594-606.	10.6	1,025
19	Expression profile of interferon stimulated genes in central nervous system of mice infected with dengue virus Type-1. Virology, 2008, 377, 319-329.	1.1	30

#	Article	IF	CITATIONS
20	The IRF Family Transcription Factors in Immunity and Oncogenesis. Annual Review of Immunology, 2008, 26, 535-584.	9.5	1,054
21	Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. Journal of Experimental Medicine, 2008, 205, 1601-1610.	4.2	1,327
22	The mitochondrial antiviral signaling protein, MAVS, is cleaved during apoptosis. Biochemical and Biophysical Research Communications, 2008, 375, 101-106.	1.0	32
23	Host Innate Immune Receptors and Beyond: Making Sense of Microbial Infections. Cell Host and Microbe, 2008, 3, 352-363.	5.1	439
24	Innate immune response to viral infection. Cytokine, 2008, 43, 336-341.	1.4	337
25	Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of General Virology, 2008, 89, 1-47.	1.3	1,364
26	Acute Neurodegeneration and the Inflammasome: Central Processor for Danger Signals and the Inflammatory Response?. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 867-881.	2.4	56
27	Potential for all-trans retinoic acid [tretinoin] to enhance interferon-alpha treatment response in chronic myelogenous leukemia, melanoma, myeloma, and renal cell carcinoma. Cancer Biology and Therapy, 2008, 7, 1515-1519.	1.5	14
28	2007: Signaling Breakthroughs of the Year. Science Signaling, 2008, 1, eg1.	1.6	2
29	Establishment and Maintenance of the Innate Antiviral Response to West Nile Virus Involves both RIG-I and MDA5 Signaling through IPS-1. Journal of Virology, 2008, 82, 609-616.	1.5	286
30	Measles Virus Circumvents the Host Interferon Response by Different Actions of the C and V Proteins. Journal of Virology, 2008, 82, 8296-8306.	1.5	92
31	An essential role for the antiviral endoribonuclease, RNase-L, in antibacterial immunity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20816-20821.	3.3	58
32	RIG-I plays a critical role in negatively regulating granulocytic proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10553-10558.	3.3	57
33	MDA-5 Recognition of a Murine Norovirus. PLoS Pathogens, 2008, 4, e1000108.	2.1	193
34	A viral RNA competitively inhibits the antiviral endoribonuclease domain of RNase L. Rna, 2008, 14, 1026-1036.	1.6	50
35	Intracellular immune dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome: state of the art and therapeutic implications. Expert Opinion on Therapeutic Targets, 2008, 12, 281-289.	1.5	18
36	Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5477-5482.	3.3	273
39	Activation of Innate Immune System During Viral Infection: Role of Pattern-recognition Receptors (PRRs) in Viral Infection. Journal of Bacteriology and Virology, 2009, 39, 145.	0.0	6

#	Article	IF	CITATIONS
40	Rotavirus and Reovirus Modulation of the Interferon Response. Journal of Interferon and Cytokine Research, 2009, 29, 559-567.	0.5	75
41	A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17870-17875.	3.3	96
42	The RIC-I-like Receptor LGP2 Recognizes the Termini of Double-stranded RNA. Journal of Biological Chemistry, 2009, 284, 13881-13891.	1.6	128
43	Distinct Antiviral Roles for Human 2′,5′-Oligoadenylate Synthetase Family Members against Dengue Virus Infection. Journal of Immunology, 2009, 183, 8035-8043.	0.4	152
44	Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production. Journal of General Virology, 2009, 90, 74-78.	1.3	106
45	5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12067-12072.	3.3	348
46	The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Research, 2009, 37, 2014-2025.	6.5	131
47	RNase L Mediated Protection from Virus Induced Demyelination. PLoS Pathogens, 2009, 5, e1000602.	2.1	51
48	Identification of Host Cytosolic Sensors and Bacterial Factors Regulating the Type I Interferon Response to Legionella pneumophila. PLoS Pathogens, 2009, 5, e1000665.	2.1	162
49	Viral RNA and DNA Trigger Common Antiviral Responses in Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2009, 20, 1986-1996.	3.0	54
50	Double-stranded RNA activates type I interferon secretion in glomerular endothelial cells via retinoic acid-inducible gene (RIG)-1. Nephrology Dialysis Transplantation, 2009, 24, 3312-3318.	0.4	67
51	Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: Key regulators of innate immunity. , 2009, 124, 219-234.		156
52	Inhibition of woodchuck hepatitis virus gene expression in primary hepatocytes by siRNA enhances the cellular gene expression. Virology, 2009, 384, 88-96.	1.1	13
53	The role of mammalian ribonucleases (RNases) in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 99-113.	3.3	26
54	The extrinsic RNA-sensing pathway for adjuvant immunotherapy of cancer. Cancer Immunology, Immunotherapy, 2009, 58, 1175-1184.	2.0	54
55	Role of TLR3 in the immunogenicity of replicon plasmid-based vaccines. Gene Therapy, 2009, 16, 359-366.	2.3	24
56	RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nature Immunology, 2009, 10, 1065-1072.	7.0	762
57	RNase L downmodulation of the RNA-binding protein, HuR, and cellular growth. Oncogene, 2009, 28, 1782-1791.	2.6	41

		FORT	
#	Article	IF	CITATIONS
58	Viral sensors: diversity in pathogen recognition. Immunological Reviews, 2009, 227, 87-94.	2.8	64
59	Innate immunity to virus infection. Immunological Reviews, 2009, 227, 75-86.	2.8	1,053
60	Mitochondrial factors in the regulation of innate immunity. Microbes and Infection, 2009, 11, 729-736.	1.0	12
61	Interferons: Signaling, antiviral and viral evasion. Immunology Letters, 2009, 122, 1-11.	1.1	169
62	Interferons and viral infections. BioFactors, 2009, 35, 14-20.	2.6	334
63	Clinical relevance of the 2′–5′-oligoadenylate synthetase/RNase L system for treatment response in chronic hepatitis C. Journal of Hepatology, 2009, 50, 49-58.	1.8	10
64	Nucleotide oligomerization domain-2 interacts with 2′-5′-oligoadenylate synthetase type 2 and enhances RNase-L function in THP-1 cells. Molecular Immunology, 2009, 47, 560-566.	1.0	45
65	Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Archives of Biochemistry and Biophysics, 2009, 488, 23-33.	1.4	90
66	The roles of TLRs, RLRs and NLRs in pathogen recognition. International Immunology, 2009, 21, 317-337.	1.8	1,355
67	Newcastle Disease Virus: A Promising Vector for Viral Therapy, Immune Therapy, and Gene Therapy of Cancer. Methods in Molecular Biology, 2009, 542, 565-605.	0.4	103
68	Intracellular Innate Immune Cascades and Interferon Defenses That Control Hepatitis C Virus. Journal of Interferon and Cytokine Research, 2009, 29, 489-498.	0.5	87
69	siRNA and miRNA Gene Silencing. Methods in Molecular Biology, 2009, , .	0.4	5
70	Differential Regulation of the <i>OASL</i> and <i>OAS1</i> Genes in Response to Viral Infections. Journal of Interferon and Cytokine Research, 2009, 29, 199-208.	0.5	100
71	Influenza Viruses Control the Vertebrate Type I Interferon System: Factors, Mechanisms, and Consequences. Journal of Interferon and Cytokine Research, 2009, 29, 549-558.	0.5	64
72	Double-Stranded DNA Activates Glomerular Endothelial Cells and Enhances Albumin Permeability via a Toll-Like Receptor-Independent Cytosolic DNA Recognition Pathway. American Journal of Pathology, 2009, 175, 1896-1904.	1.9	47
73	Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clinical Microbiology Reviews, 2009, 22, 240-273.	5.7	2,488
74	Viruses and the cellular RNA decay machinery. Wiley Interdisciplinary Reviews RNA, 2010, 1, 47-59.	3.2	21
75	Gene expression in the brain during reovirus encephalitis. Journal of NeuroVirology, 2010, 16, 56-71.	1.0	23

		Report	
#	Article	IF	CITATIONS
76	Recognition of viruses by cytoplasmic sensors. Current Opinion in Immunology, 2010, 22, 41-47.	2.4	378
77	Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids, 2010, 38, 1283-1299.	1.2	118
78	Biology and pathophysiology of the new human retrovirus XMRV and its association with human disease. Immunologic Research, 2010, 48, 27-39.	1.3	6
79	Exposing Viruses: RNA Patterns Sensed by RIG-I-like Receptors. Journal of Clinical Immunology, 2010, 30, 491-495.	2.0	13
80	The Structural Basis of 5′ Triphosphate Double-Stranded RNA Recognition by RIG-I C-Terminal Domain. Structure, 2010, 18, 1032-1043.	1.6	197
81	High yield synthesis, purification and characterisation of the RNase L activators 5′-triphosphate 2′–5′-oligoadenylates. Antiviral Research, 2010, 87, 345-352.	1.9	13
82	Recognition of viral nucleic acids in innate immunity. Reviews in Medical Virology, 2010, 20, 4-22.	3.9	265
83	Staying on message: design principles for controlling nonspecific responses to siRNA. FEBS Journal, 2010, 277, 4828-4836.	2.2	31
84	Central roles of NLRs and inflammasomes in viral infection. Nature Reviews Immunology, 2010, 10, 688-698.	10.6	369
85	QKI-7 Regulates Expression of Interferon-Related Genes in Human Astrocyte Glioma Cells. PLoS ONE, 2010, 5, e13079.	1.1	8
86	Intrinsic Cellular Defenses against Virus Infection by Antiviral Type I Interferon. Yonsei Medical Journal, 2010, 51, 9.	0.9	54
87	Extracellular 2′-5′ Oligoadenylate Synthetase Stimulates RNase L-Independent Antiviral Activity: a Novel Mechanism of Virus-Induced Innate Immunity. Journal of Virology, 2010, 84, 11898-11904.	1.5	93
88	RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. Rna, 2010, 16, 2108-2119.	1.6	117
89	Infections and autoimmunity: the multifaceted relationship. Journal of Leukocyte Biology, 2009, 87, 385-395.	1.5	188
90	Negative Role of RIC-I Serine 8 Phosphorylation in the Regulation of Interferon-Î ² Production. Journal of Biological Chemistry, 2010, 285, 20252-20261.	1.6	96
91	Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16303-16308.	3.3	357
92	IFN-γ Primes Intact Human Coronary Arteries and Cultured Coronary Smooth Muscle Cells to Double-Stranded RNA- and Self-RNA–Induced Inflammatory Responses by Upregulating TLR3 and Melanoma Differentiation-Associated Gene 5. Journal of Immunology, 2010, 185, 1283-1294.	0.4	33
93	Mechanisms of Prostate Cancer Initiation and Progression. Advances in Cancer Research, 2010, 109, 1-50.	1.9	54

			_
#	ARTICLE	IF	CITATIONS
94	dsRNA and the innate antiviral immune response. Future Virology, 2010, 5, 325-341.	0.9	29
95	RIGorous Detection: Exposing Virus Through RNA Sensing. Science, 2010, 327, 284-286.	6.0	148
96	The role of mitochondria in the mammalian antiviral defense system. Mitochondrion, 2010, 10, 316-320.	1.6	62
97	The interface between the innate interferon response and expression of host retroviral restriction factors. Cytokine, 2010, 52, 108-115.	1.4	30
98	RIG-I Detects Viral Genomic RNA during Negative-Strand RNA Virus Infection. Cell, 2010, 140, 397-408.	13.5	508
99	The Chase for the RIG-I Ligand—Recent Advances. Molecular Therapy, 2010, 18, 1254-1262.	3.7	84
100	Type I Interferon Production Induced by RIG-I-Like Receptors. Journal of Interferon and Cytokine Research, 2010, 30, 875-881.	0.5	30
101	Retinoic Acid-Inducible Gene-I-Like Receptors. Journal of Interferon and Cytokine Research, 2011, 31, 27-31.	0.5	79
102	Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis. Cytokine and Growth Factor Reviews, 2011, 22, 197-210.	3.2	38
103	Analysis of the cumulative changes in Graves' disease thyroid glands points to IFN signature, plasmacytoid DCs and alternatively activated macrophages as chronicity determining factors. Journal of Autoimmunity, 2011, 36, 189-200.	3.0	34
104	New concepts in measles virus replication: Getting in and out in vivo and modulating the host cell environment. Virus Research, 2011, 162, 47-62.	1.1	15
105	Induction and evasion of type I interferon responses by influenza viruses. Virus Research, 2011, 162, 12-18.	1.1	202
106	Stress-Induced Ribonucleases. Nucleic Acids and Molecular Biology, 2011, , 115-134.	0.2	3
107	Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 2011, 479, 423-427.	13.7	364
108	Treatment of Respiratory Syncytial Virus Infection: Past, Present and Future. , 0, , .		5
109	Narrowband ultraviolet B inhibits innate cytosolic double-stranded RNA receptors in psoriatic skin and keratinocytes. British Journal of Dermatology, 2011, 164, 838-847.	1.4	15
110	Mitoxosome: a mitochondrial platform for crossâ€ŧalk between cellular stress and antiviral signaling. Immunological Reviews, 2011, 243, 215-234.	2.8	32
111	dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunological Reviews, 2011, 243, 74-90.	2.8	44

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
112	RIGâ€lâ€like receptors: cytoplasmic sensors for nonâ€self RNA. Immunological Reviews, 2011, 243, 91-98.	2.8	288
113	Innate mechanisms of viral recognition. Molecular Biology, 2011, 45, 5-15.	0.4	13
114	Do double-stranded RNA receptors play a role in preeclampsia?. Placenta, 2011, 32, 201-205.	0.7	20
115	Enterovirus infections of the central nervous system. Virology, 2011, 411, 288-305.	1.1	175
116	RNA species generated in vaccinia virus infected cells activate cell type-specific MDA5 or RIG-I dependent interferon gene transcription and PKR dependent apoptosis. Virology, 2011, 413, 183-193.	1.1	27
117	A central role for RNA in the induction and biological activities of type 1 interferons. Wiley Interdisciplinary Reviews RNA, 2011, 2, 58-78.	3.2	24
118	Pattern recognition of viral nucleic acids by RIG-I-like helicases. Journal of Molecular Medicine, 2011, 89, 5-12.	1.7	18
119	Immune Signaling by RIG-I-like Receptors. Immunity, 2011, 34, 680-692.	6.6	1,570
120	Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Current Opinion in Immunology, 2011, 23, 35-40.	2.4	138
121	New Insights into the Role of RNase L in Innate Immunity. Journal of Interferon and Cytokine Research, 2011, 31, 49-57.	0.5	264
122	Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5′ triphosphate. Nucleic Acids Research, 2011, 39, 1565-1575.	6.5	63
123	RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication. Journal of General Virology, 2011, 92, 2191-2200.	1.3	38
124	Novel inhibitor of influenza non-structural protein 1 blocks multi-cycle replication in an RNase L-dependent manner. Journal of General Virology, 2011, 92, 60-70.	1.3	40
125	Recent insights into regulation of transcription by RNA polymerase III and the cellular functions of its transcripts. Biological Chemistry, 2011, 392, 395-404.	1.2	13
126	VPg-Primed RNA Synthesis of Norovirus RNA-Dependent RNA Polymerases by Using a Novel Cell-Based Assay. Journal of Virology, 2011, 85, 13027-13037.	1.5	72
127	Innate Immune Responses in Human Monocyte-Derived Dendritic Cells Are Highly Dependent on the Size and the 5′ Phosphorylation of RNA Molecules. Journal of Immunology, 2011, 187, 1713-1721.	0.4	45
128	Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Research, 2011, 39, 9329-9338.	6.5	227
129	Inhibition of RNase L and RNA-dependent Protein Kinase (PKR) by Sunitinib Impairs Antiviral Innate Immunity. Journal of Biological Chemistry, 2011, 286, 26319-26326.	1.6	67

#	Article	IF	CITATIONS
130	Activation of IFN-Î ² expression by a viral mRNA through RNase L and MDA5. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2118-2123.	3.3	76
131	The Interferon-Inducible Gene viperin Restricts West Nile Virus Pathogenesis. Journal of Virology, 2011, 85, 11557-11566.	1.5	130
132	RIG-I-Mediated Antiviral Signaling Is Inhibited in HIV-1 Infection by a Protease-Mediated Sequestration of RIG-I. Journal of Virology, 2011, 85, 1224-1236.	1.5	167
133	The TLR3/TICAM-1 Pathway Is Mandatory for Innate Immune Responses to Poliovirus Infection. Journal of Immunology, 2011, 187, 5320-5327.	0.4	80
134	RIG-I Like Receptors in Antiviral Immunity and Therapeutic Applications. Viruses, 2011, 3, 906-919.	1.5	59
135	IFNÎ ³ Inhibits the Cytosolic Replication of Shigella flexneri via the Cytoplasmic RNA Sensor RIG-I. PLoS Pathogens, 2012, 8, e1002809.	2.1	29
136	Induction of GADD34 Is Necessary for dsRNA-Dependent Interferon-Î ² Production and Participates in the Control of Chikungunya Virus Infection. PLoS Pathogens, 2012, 8, e1002708.	2.1	104
137	Recognition of viruses in the cytoplasm by RLRs and other helicases—how conformational changes, mitochondrial dynamics and ubiquitination control innate immune responses. International Immunology, 2012, 24, 739-749.	1.8	16
138	Biochemical, inhibition and inhibitor resistance studies of xenotropic murine leukemia virus-related virus reverse transcriptase. Nucleic Acids Research, 2012, 40, 345-359.	6.5	14
139	Sensing of RNA Viruses: a Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion. Journal of Virology, 2012, 86, 2900-2910.	1.5	506
140	RNase L Triggers Autophagy in Response to Viral Infections. Journal of Virology, 2012, 86, 11311-11321.	1.5	83
141	Innate Immune Messenger 2-5A Tethers Human RNase L into Active High-Order Complexes. Cell Reports, 2012, 2, 902-913.	2.9	55
142	Host Translation at the Nexus of Infection and Immunity. Cell Host and Microbe, 2012, 12, 470-483.	5.1	130
143	Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nature Reviews Immunology, 2012, 12, 479-491.	10.6	353
144	Identification of OASL d, a splice variant of human OASL, with antiviral activity. International Journal of Biochemistry and Cell Biology, 2012, 44, 1133-1138.	1.2	7
145	Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology. Cell Host and Microbe, 2012, 11, 607-616.	5.1	242
146	Cell-intrinsic innate immune control of West Nile virus infection. Trends in Immunology, 2012, 33, 522-530.	2.9	46
147	Multifaceted Antiviral Actions of Interferon-stimulated Gene Products. , 2012, , 387-423.		0

#	ARTICLE RNase L Induces Autophagy via c-Jun N-terminal Kinase and Double-stranded RNA-dependent Protein	IF	CITATIONS
148 150	Kinase Signaling Pathways. Journal of Biological Chemistry, 2012, 287, 43651-43664. The Biased Nucleotide Composition of HIV-1 Triggers Type I Interferon Response and Correlates with Subtype D Increased Pathogenicity. PLoS ONE, 2012, 7, e33502.	1.6	63 29
151	West Nile Virus Noncoding Subgenomic RNA Contributes to Viral Evasion of the Type I Interferon-Mediated Antiviral Response. Journal of Virology, 2012, 86, 5708-5718.	1.5	170
152	Intrinsic antiviral immunity. Nature Immunology, 2012, 13, 214-222.	7.0	439
153	Regulation of inducible gene expression by natural antisense transcripts. Frontiers in Bioscience - Landmark, 2012, 17, 938.	3.0	43
154	Expression, purification and characterization of the interferon-inducible, antiviral and tumour-suppressor protein, human RNase L. Journal of Biosciences, 2012, 37, 103-113.	0.5	9
155	Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiology Reviews, 2012, 36, 663-683.	3.9	103
156	The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells. DNA Repair, 2012, 11, 488-501.	1.3	35
157	Sensing of viral nucleic acids by RIG-I: From translocation to translation. European Journal of Cell Biology, 2012, 91, 78-85.	1.6	35
158	Astrogliosis involves activation of retinoic acidâ€inducible geneâ€iike signaling in the innate immune response after spinal cord injury. Glia, 2012, 60, 414-421.	2.5	43
159	Did Cholera Toxin Finally Get Caught?. Cell Host and Microbe, 2013, 13, 501-503.	5.1	1
160	BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals, 2013, 41, 39-51.	0.5	72
161	Cell-Type-Specific Activation of the Oligoadenylate Synthetase–RNase L Pathway by a Murine Coronavirus. Journal of Virology, 2013, 87, 8408-8418.	1.5	52
162	Pattern Recognition Receptor MDA5 Modulates CD8 ⁺ T Cell-Dependent Clearance of West Nile Virus from the Central Nervous System. Journal of Virology, 2013, 87, 11401-11415.	1.5	50
163	Enter at your own risk: How enteroviruses navigate the dangerous world of pattern recognition receptor signaling. Cytokine, 2013, 63, 230-236.	1.4	34
164	DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 854-865.	0.9	154
165	Effects of Cellular Activation on Anti-HIV-1 Restriction Factor Expression Profile in Primary Cells. Journal of Virology, 2013, 87, 11924-11929.	1.5	34
166	The ribonuclease <scp>l</scp> â€dependent antiviral roles of human 2′,5′â€oligoadenylate synthetase famil members against hepatitis C virus. FEBS Letters, 2013, 587, 156-164.	У _{1.3}	49

#	Article	IF	CITATIONS
167	Suppression of Antiviral Innate Immunity by Sunitinib Enhances Oncolytic Virotherapy. Molecular Therapy, 2013, 21, 1749-1757.	3.7	56
168	Paramyxovirus V Proteins Disrupt the Fold of the RNA Sensor MDA5 to Inhibit Antiviral Signaling. Science, 2013, 339, 690-693.	6.0	107
169	Innate immune responses in hepatitis C virus infection. Seminars in Immunopathology, 2013, 35, 53-72.	2.8	71
170	Master sensors of pathogenic RNA – RIG-I like receptors. Immunobiology, 2013, 218, 1322-1335.	0.8	192
171	Ribonuclease L is not critical for innate restriction and adaptive immunity against Friend retrovirus infection. Virology, 2013, 443, 134-142.	1.1	12
172	Spontaneous activation of RNA-sensing pathways in autoimmune disease. Current Opinion in Immunology, 2013, 25, 712-719.	2.4	15
173	Mapping the crossroads of immune activation and cellular stress response pathways. EMBO Journal, 2013, 32, 1214-1224.	3.5	113
174	Regulation of Human RNase-L by the miR-29 Family Reveals a Novel Oncogenic Role in Chronic Myelogenous Leukemia. Journal of Interferon and Cytokine Research, 2013, 33, 34-42.	0.5	30
175	Intracellular Pathogen Detection by RIG-I-Like Receptors. Advances in Immunology, 2013, 117, 99-125.	1.1	147
176	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869.	6.6	686
176 178	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Molecular and Cellular Endocrinology, 2013, 365, 75-83.	6.6 1.6	686 18
176 178 179	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Molecular and Cellular Endocrinology, 2013, 365, 75-83. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology, 2013, 10, 106.	6.6 1.6 0.9	686 18 79
176 178 179 180	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Molecular and Cellular Endocrinology, 2013, 365, 75-83. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology, 2013, 10, 106. The Essential, Nonredundant Roles of RIG-1 and MDA5 in Detecting and Controlling West Nile Virus Infection. Journal of Virology, 2013, 87, 11416-11425.	6.6 1.6 0.9 1.5	686 18 79 170
176 178 179 180 181	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Molecular and Cellular Endocrinology, 2013, 365, 75-83. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology, 2013, 10, 106. The Essential, Nonredundant Roles of RIG-1 and MDA5 in Detecting and Controlling West Nile Virus Infection. Journal of Virology, 2013, 87, 11416-11425. Multi-level regulation of cellular recognition of viral dsRNA. Cellular and Molecular Life Sciences, 2013, 70, 1949-1963.	 6.6 1.6 0.9 1.5 2.4 	 686 18 79 170 30
 176 178 179 180 181 182 	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Molecular and Cellular Endocrinology, 2013, 365, 75-83. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology, 2013, 10, 106. The Essential, Nonredundant Roles of RIC-1 and MDA5 in Detecting and Controlling West Nile Virus Infection. Journal of Virology, 2013, 87, 11416-11425. Multi-level regulation of cellular recognition of viral dsRNA. Cellular and Molecular Life Sciences, 2013, 70, 1949-1963. The Innate Immune Playbook for Restricting West Nile Virus Infection. Viruses, 2013, 5, 2643-2658.	 6.6 1.6 0.9 1.5 2.4 1.5 	 686 18 79 170 30 44
176 178 179 180 181 182	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Molecular and Cellular Endocrinology, 2013, 365, 75-83. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology, 2013, 10, 106. The Essential, Nonredundant Roles of RIG-1 and MDA5 in Detecting and Controlling West Nile Virus Infection. Journal of Virology, 2013, 87, 11416-11425. Multi-level regulation of cellular recognition of viral dsRNA. Cellular and Molecular Life Sciences, 2013, 70, 1949-1963. The Innate Immune Playbook for Restricting West Nile Virus Infection. Viruses, 2013, 5, 2643-2658. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HIV-1. Scientifica, 2013, 2013, 1-20.	 6.6 1.6 0.9 1.5 2.4 1.5 0.6 	 686 18 79 170 30 44 27
 176 178 179 180 181 182 183 184 	Cytosolic Sensing of Viruses. Immunity, 2013, 38, 855-869. Induction of CXCL10 chemokine in adrenocortical cells by stimulation through toll-like receptor 3. Molecular and Cellular Endocrinology, 2013, 365, 75-83. Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology, 2013, 10, 106. The Essential, Nonredundant Roles of RIG-1 and MDA5 in Detecting and Controlling West Nile Virus Infection. Journal of Virology, 2013, 87, 11416-11425. Multi-level regulation of cellular recognition of viral dsRNA. Cellular and Molecular Life Sciences, 2013, 70, 1949-1963. The Innate Immune Playbook for Restricting West Nile Virus Infection. Viruses, 2013, 5, 2643-2658. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HV-1. Scientifica, 2013, 2013, 1-20. RIG-1 and MDA-5 Detection of Viral RNA-dependent RNA Polymerase Activity Restricts Positive-Strand RNA Virus Replication. PLoS Pathogens, 2013, 9, e1003610.	 6.6 1.6 0.9 1.5 2.4 1.5 0.6 2.1 	 686 18 79 170 30 44 27 66

#	Article	IF	CITATIONS
186	Hepatitis C Virus Pathogen Associated Molecular Pattern (PAMP) Triggers Production of Lambda-Interferons by Human Plasmacytoid Dendritic Cells. PLoS Pathogens, 2013, 9, e1003316.	2.1	57
187	Evasion of Antiviral Innate Immunity by Theiler's Virus L* Protein through Direct Inhibition of RNase L. PLoS Pathogens, 2013, 9, e1003474.	2.1	62
188	Role of Ribonuclease L in Viral Pathogen-Associated Molecular Pattern/Influenza Virus and Cigarette Smoke–Induced Inflammation and Remodeling. Journal of Immunology, 2013, 191, 2637-2646.	0.4	19
189	Alphacoronavirus Protein 7 Modulates Host Innate Immune Response. Journal of Virology, 2013, 87, 9754-9767.	1.5	41
190	Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1652-1657.	3.3	142
191	RNase-L Deficiency Exacerbates Experimental Colitis and Colitis-associated Cancer. Inflammatory Bowel Diseases, 2013, 19, 1295-1305.	0.9	28
192	CpG Usage in RNA Viruses: Data and Hypotheses. PLoS ONE, 2013, 8, e74109.	1.1	94
193	Use of RNA Domains in the Viral Genome as Innate Immunity Inducers for Antiviral Strategies and Vaccine Improvement. , 2013, , .		1
194	Receptors in Antiviral Immunity. , 2014, , .		0
195	RNase L Attenuates Mitogen-stimulated Gene Expression via Transcriptional and Post-transcriptional Mechanisms to Limit the Proliferative Response. Journal of Biological Chemistry, 2014, 289, 33629-33643.	1.6	17
196	The influence of viral RNA secondary structure on interactions with innate host cell defences. Nucleic Acids Research, 2014, 42, 3314-3329.	6.5	42
197	Cell-Type-Specific Effects of RNase L on Viral Induction of Beta Interferon. MBio, 2014, 5, e00856-14.	1.8	45
198	Defects in TLR3 expression and RNase L activation lead to decreased MnSOD expression and insulin resistance in muscle cells of obese people. Cell Death and Disease, 2014, 5, e1136-e1136.	2.7	28
199	Implication of PMLIV in Both Intrinsic and Innate Immunity. PLoS Pathogens, 2014, 10, e1003975.	2.1	83
200	An Important Role for Mitochondrial Antiviral Signaling Protein in the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle. Journal of Virology, 2014, 88, 5778-5787.	1.5	68
201	Canââ,¬â,,¢t RIDD off viruses. Frontiers in Microbiology, 2014, 5, 292.	1.5	13
202	RNase L Interacts with Filamin A To Regulate Actin Dynamics and Barrier Function for Viral Entry. MBio, 2014, 5, e02012.	1.8	21
203	Viral Phosphodiesterases That Antagonize Double-Stranded RNA Signaling to RNase L by Degrading 2-5A. Journal of Interferon and Cytokine Research, 2014, 34, 455-463.	0.5	64

#	Article	IF	CITATIONS
204	Immune sensing of nucleic acids in inflammatory skin diseases. Seminars in Immunopathology, 2014, 36, 519-529.	2.8	11
205	Wanderings in Biochemistry. Journal of Biological Chemistry, 2014, 289, 19254-19268.	1.6	2
206	RNase L restricts the mobility of engineered retrotransposons in cultured human cells. Nucleic Acids Research, 2014, 42, 3803-3820.	6.5	55
207	Ribonuclease L and metal-ion–independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Research, 2014, 42, 5202-5216.	6.5	46
208	Enteropathogenic Escherichia coli Inhibits Type I Interferon- and RNase L-Mediated Host Defense To Disrupt Intestinal Epithelial Cell Barrier Function. Infection and Immunity, 2014, 82, 2802-2814.	1.0	29
209	Dimeric Structure of Pseudokinase RNase L Bound to 2-5A Reveals a Basis for Interferon-Induced Antiviral Activity. Molecular Cell, 2014, 53, 221-234.	4.5	123
210	The neuroimmune response to West Nile virus. Journal of NeuroVirology, 2014, 20, 113-121.	1.0	18
211	Large-Scale Nucleotide Optimization of Simian Immunodeficiency Virus Reduces Its Capacity To Stimulate Type I Interferon <i>In Vitro</i> . Journal of Virology, 2014, 88, 4161-4172.	1.5	21
212	Innate Immune Sensing and Signaling of Cytosolic Nucleic Acids. Annual Review of Immunology, 2014, 32, 461-488.	9.5	957
213	Expression of mRNA and protein–protein interaction of the antiviral endoribonuclease RNase L in mouse spleen. International Journal of Biological Macromolecules, 2014, 69, 307-318.	3.6	10
214	Innate Antiviral Immune Signaling, Viral Evasion and Modulation by HIV-1. Journal of Molecular Biology, 2014, 426, 1161-1177.	2.0	64
215	Inosine-Mediated Modulation of RNA Sensing by Toll-Like Receptor 7 (TLR7) and TLR8. Journal of Virology, 2014, 88, 799-810.	1.5	27
216	Ribonucleases as antiviral agents. Molecular Biology, 2014, 48, 615-623.	0.4	48
217	Activation and regulation of pathogen sensor RIC-I. Cytokine and Growth Factor Reviews, 2014, 25, 513-523.	3.2	42
218	Antiviral innate immunity and stress granule responses. Trends in Immunology, 2014, 35, 420-428.	2.9	192
219	Making ends meet: a role of <scp>RNA</scp> ligase <scp>RTCB</scp> in unfolded protein response. EMBO Journal, 2014, 33, 2887-2889.	3.5	9
220	Broad and adaptable RNA structure recognition by the human interferon-induced tetratricopeptide repeat protein IFIT5. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12025-12030.	3.3	76
221	Sensing viral invasion by RIG-I like receptors. Current Opinion in Microbiology, 2014, 20, 131-138.	2.3	90

#	Article	IF	CITATIONS
222	Induction and suppression of innate antiviral responses by picornaviruses. Cytokine and Growth Factor Reviews, 2014, 25, 577-585.	3.2	55
223	dsRNA-Activation of TLR3 and RLR Signaling: Gene Induction-Dependent and Independent Effects. Journal of Interferon and Cytokine Research, 2014, 34, 427-436.	0.5	101
224	Host Detection and the Stealthy Phenotype in Influenza Virus Infection. Current Topics in Microbiology and Immunology, 2014, 386, 121-147.	0.7	16
225	Altered <scp>RIG</scp> â€I/ <scp>DDX58</scp> â€mediated innate immunity in dermatomyositis. Journal of Pathology, 2014, 233, 258-268.	2.1	92
226	Engineered plant virus resistance. Plant Science, 2014, 228, 11-25.	1.7	74
227	Roles of HIV-1 capsid in viral replication and immune evasion. Virus Research, 2014, 193, 116-129.	1.1	49
228	Recognition of 2′,5′-linked oligoadenylates by human ribonuclease L: molecular dynamics study. Journal of Molecular Modeling, 2014, 20, 2123.	0.8	0
229	The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nature Immunology, 2014, 15, 839-845.	7.0	170
230	RNase-L Control of Cellular mRNAs: Roles in Biologic Functions and Mechanisms of Substrate Targeting. Journal of Interferon and Cytokine Research, 2014, 34, 275-288.	0.5	44
231	Induction and control of the type I interferon pathway by Bluetongue virus. Virus Research, 2014, 182, 59-70.	1.1	31
232	Effective inhibition of Japanese encephalitis virus replication by shRNAs targeting various viral genes in vitro and in vivo. Virology, 2014, 454-455, 48-59.	1.1	17
233	Inhibition of hepatitis B virus replication by ligand-mediated activation of RNase L. Antiviral Research, 2014, 104, 118-127.	1.9	17
234	Intracellular immunity: finding the enemy within—how cells recognize and respond to intracellular pathogens. Journal of Leukocyte Biology, 2014, 96, 233-244.	1.5	34
235	Disease Severity Is Associated with Differential Gene Expression at the Early and Late Phases of Infection in Nonhuman Primates Infected with Different H5N1 Highly Pathogenic Avian Influenza Viruses. Journal of Virology, 2014, 88, 8981-8997.	1.5	45
236	Lentivirus-mediated RNA interference against Japanese encephalitis virus infection in vitro and in vivo. Antiviral Research, 2014, 108, 56-64.	1.9	9
237	RIG-I-like receptors and negative-strand RNA viruses: RLRly bird catches some worms. Cytokine and Growth Factor Reviews, 2014, 25, 621-628.	3.2	26
238	Innate Immunity to Viruses. , 0, , 183-196.		0
239	The expression of tRNA genes and young Alu subfamilies in human tumor cells U937 during apoptosis. Cell and Tissue Biology, 2015, 9, 356-363.	0.2	1

#	Article	IF	Citations
240	Post-transcriptional inducible gene regulation by natural antisense RNA. Frontiers in Bioscience - Landmark, 2015, 20, 1-36.	3.0	40
241	Innate Antiviral Immunity against Dengue Virus. Critical Reviews in Immunology, 2015, 35, 253-260.	1.0	10
242	RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1. International Journal of Molecular Sciences, 2015, 16, 17611-17636.	1.8	41
243	Overexpression of the Transcription Factor Sp1 Activates the OAS-RNAse L-RIG-I Pathway. PLoS ONE, 2015, 10, e0118551.	1.1	18
244	Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity. Virologica Sinica, 2015, 30, 163-173.	1.2	26
245	Human RNase L tunes gene expression by selectively destabilizing the microRNA-regulated transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15916-15921.	3.3	44
246	Influenza virus activation of the interferon system. Virus Research, 2015, 209, 11-22.	1.1	164
247	RNase L Targets Distinct Sites in Influenza A Virus RNAs. Journal of Virology, 2015, 89, 2764-2776.	1.5	49
248	InÂVivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus. Cell Reports, 2015, 11, 1714-1726.	2.9	75
249	Preparations of Bacillus pumilus secreted RNase: One enzyme or two?. Microbiology, 2015, 84, 491-497.	0.5	6
250	Cardif (MAVS) Regulates the Maturation of NK Cells. Journal of Immunology, 2015, 195, 2157-2167.	0.4	13
251	Inhibition of the OAS/RNase L pathway by viruses. Current Opinion in Virology, 2015, 15, 19-26.	2.6	98
252	The catcher in the RIG-I. Cytokine, 2015, 76, 38-41.	1.4	19
253	Innate immunity at mucosal surfaces: the IRE1-RIDD-RIG-I pathway. Trends in Immunology, 2015, 36, 401-409.	2.9	41
254	High Anti–Dengue Virus Activity of the <i>OAS</i> Gene Family Is Associated With Increased Severity of Dengue. Journal of Infectious Diseases, 2015, 212, 2011-2020.	1.9	37
255	Antiviral gene expression in psoriasis. Journal of the European Academy of Dermatology and Venereology, 2015, 29, 1951-1957.	1.3	32
256	Roles of retinoic acid-inducible gene-I-like receptors (RLRs), Toll-like receptor (TLR) 3 and 2′-5′ oligoadenylate synthetase as viral recognition receptors on human mast cells in response to viral infection. Immunologic Research, 2015, 61, 240-249.	1.3	15
257	A novel RNA molecular signature for activation of 2′-5′ oligoadenylate synthetase-1. Nucleic Acids Research, 2015, 43, 544-552.	6.5	18

	CITATION RE	PORT	
#	Article	IF	Citations
258	Intracellular detection of viral nucleic acids. Current Opinion in Microbiology, 2015, 26, 1-9.	2.3	103
259	RNase L Activates the NLRP3 Inflammasome during Viral Infections. Cell Host and Microbe, 2015, 17, 466-477.	5.1	128
260	Modeling and analysis of innate immune responses induced by the host cells against hepatitis C virus infection. Integrative Biology (United Kingdom), 2015, 7, 544-559.	0.6	4
261	RIG-I and TLR3 are both required for maximum interferon induction by influenza virus in human lung alveolar epithelial cells. Virology, 2015, 482, 181-188.	1.1	82
262	No Love Lost Between Viruses and Interferons. Annual Review of Virology, 2015, 2, 549-572.	3.0	123
263	Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes?. Nature Reviews Microbiology, 2015, 13, 71-82.	13.6	209
264	Interferon-stimulated gene of 20 kDa protein (ISG20) degrades RNA of hepatitis B virus to impede the replication of HBV <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2016, 7, 68179-68193.	0.8	30
265	Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response. Advances in Virus Research, 2016, 96, 219-243.	0.9	245
266	The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. International Journal of Molecular Sciences, 2016, 17, 74.	1.8	39
267	Virusâ€derived small RNAs: molecular footprints of host–pathogen interactions. Wiley Interdisciplinary Reviews RNA, 2016, 7, 824-837.	3.2	31
268	Links between recognition and degradation of cytoplasmic viral RNA in innate immune response. Reviews in Medical Virology, 2016, 26, 90-101.	3.9	19
269	Genome-wide identification of quantitative trait transcripts for blood traits in the liver samples of a White Duroc × Erhualian F ₂ pig resource population. Physiological Genomics, 2016, 48, 573-579.	1.0	4
270	Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation. MBio, 2016, 7, e00258.	1.8	125
271	Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity, 2016, 44, 739-754.	6.6	390
272	Viral evasion of intracellular DNA and RNA sensing. Nature Reviews Microbiology, 2016, 14, 360-373.	13.6	354
273	The role of mouse 2′,5′-oligoadenylate synthetase 1 paralogs. Infection, Genetics and Evolution, 2016, 45, 393-401.	1.0	23
274	Nuclear import sequence identification in hOAS3 protein. Inflammation Research, 2016, 65, 895-904.	1.6	8
275	Chronic Myeloid Leukemia. Hematologic Malignancies, 2016, , .	0.2	3

#	ARTICLE	IF	CITATIONS
276	Discriminating self from non-self in nucleic acid sensing. Nature Reviews Immunology, 2016, 16, 566-580.	10.6	438
277	Interferon α/β. , 2016, , 485-493.		1
278	The Interferon Alpha Revival in CML. Hematologic Malignancies, 2016, , 207-230.	0.2	0
279	Putative RNA-directed adaptive mutations in cancer evolution. Transcription, 2016, 7, 164-187.	1.7	5
280	Opposing Roles of Double-Stranded RNA Effector Pathways and Viral Defense Proteins Revealed with CRISPR-Cas9 Knockout Cell Lines and Vaccinia Virus Mutants. Journal of Virology, 2016, 90, 7864-7879.	1.5	49
281	Structural features of influenza A virus panhandle RNA enabling the activation of RIG-I independently of 5′-triphosphate. Nucleic Acids Research, 2016, 44, 8407-8416.	6.5	31
282	RNase L and the NLRP3-inflammasome: An old merchant in a new trade. Cytokine and Growth Factor Reviews, 2016, 29, 63-70.	3.2	9
283	MicroRNA Cargo of Extracellular Vesicles from Alcohol-exposed Monocytes Signals Naive Monocytes to Differentiate into M2 Macrophages. Journal of Biological Chemistry, 2016, 291, 149-159.	1.6	182
284	Suppression of NYVAC Infection in HeLa Cells Requires RNase L but Is Independent of Protein Kinase R Activity. Journal of Virology, 2016, 90, 2135-2141.	1.5	1
285	Activation of RNase L by Murine Coronavirus in Myeloid Cells Is Dependent on Basal <i>Oas</i> Gene Expression and Independent of Virus-Induced Interferon. Journal of Virology, 2016, 90, 3160-3172.	1.5	44
286	Long noncoding RNAs in viral infections. Virus Research, 2016, 212, 1-11.	1.1	91
287	MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. Brain, 2016, 139, 86-100.	3.7	40
288	Adenovirus VA RNA: An essential pro-viral non-coding RNA. Virus Research, 2016, 212, 39-52.	1.1	56
289	Emerging roles of the processing of nucleic acids and Toll-like receptors in innate immune responses to nucleic acids. Journal of Leukocyte Biology, 2017, 101, 135-142.	1.5	29
290	Innate Immunity Signaling. , 2017, , 245-260.		1
291	Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors. Journal of Biological Chemistry, 2017, 292, 9000-9009.	1.6	68
292	Association of the OAS3 rs1859330 G/A genetic polymorphism with severity of enterovirus-71 infection in Chinese Han children. Archives of Virology, 2017, 162, 2305-2313.	0.9	13
293	Discrimination of Self and Non-Self Ribonucleic Acids. Journal of Interferon and Cytokine Research, 2017, 37, 184-197.	0.5	31

#	Article	IF	CITATIONS
294	Interactions Between NS1 of Influenza A Viruses and Interferon-α/β: Determinants for Vaccine Development. Journal of Interferon and Cytokine Research, 2017, 37, 331-341.	0.5	6
295	Recognition of Viral RNA by Pattern Recognition Receptors in the Induction of Innate Immunity and Excessive Inflammation During Respiratory Viral Infections. Viral Immunology, 2017, 30, 408-420.	0.6	47
296	The role of MDA5 in the development of autoimmune disease. Journal of Leukocyte Biology, 2018, 103, 185-192.	1.5	17
297	The innate immune receptor <scp>MDA</scp> 5 limits rotavirus infection but promotes cell death and pancreaticÂinflammation. EMBO Journal, 2017, 36, 2742-2757.	3.5	24
298	Rapid RNase L–driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. Rna, 2017, 23, 1660-1671.	1.6	103
299	RNA PAMPs as Molecular Tools for Evaluating RIC-I Function in Innate Immunity. Methods in Molecular Biology, 2017, 1656, 119-129.	0.4	3
301	Sequence-Specific Sensing of Nucleic Acids. Trends in Immunology, 2017, 38, 53-65.	2.9	45
302	Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine, 2017, 98, 4-14.	1.4	33
303	Attacked from All Sides: RNA Decay in Antiviral Defense. Viruses, 2017, 9, 2.	1.5	56
304	Host Cell Restriction Factors that Limit Influenza A Infection. Viruses, 2017, 9, 376.	1.5	58
305	RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells. International Journal of Molecular Sciences, 2017, 18, 529.	1.8	19
306	RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant?. Frontiers in Immunology, 2017, 8, 331.	2.2	140
307	Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Research, 2017, 45, 10740-10750.	6.5	43
308	Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross. G3: Genes, Genomes, Genetics, 2017, 7, 1665-1682.	0.8	38
309	Mediating the death of dormant tumor cells. Molecular and Cellular Oncology, 2018, 5, e1458013.	0.3	3
310	RIG-I and Other RNA Sensors in Antiviral Immunity. Annual Review of Immunology, 2018, 36, 667-694.	9.5	343
311	ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine and Growth Factor Reviews, 2018, 40, 48-58.	3.2	25
312	A potential robust antiviral defense state in the common vampire bat: Expression, induction and molecular characterization of the three interferon-stimulated genes -OAS1, ADAR1 and PKR. Developmental and Comparative Immunology, 2018, 85, 95-107.	1.0	8

#	Article	IF	Citations
313	Causes and consequences of genomic instability in laminopathies: Replication stress and interferon response. Nucleus, 2018, 9, 289-306.	0.6	42
314	RAS-Like Protein. , 2018, , 4497-4497.		0
315	RhoGEF Kinase. , 2018, , 4699-4699.		0
316	Rotamase. , 2018, , 4752-4752.		0
317	Ramp. , 2018, , 4433-4438.		0
318	Self-RNA sentinels signal viral invasion. Nature Immunology, 2018, 19, 4-5.	7.0	4
319	Association analysis of novel polymorphisms in <i>2′, 5′â€oligoadenylate synthetase</i> gene with reproductive traits in indigenous and crossâ€bred cattle of Indian Origin. Reproduction in Domestic Animals, 2018, 53, 442-449.	0.6	3
320	Self-Recognition of an Inducible Host IncRNA by RIG-I Feedback Restricts Innate Immune Response. Cell, 2018, 173, 906-919.e13.	13.5	224
321	Intracellular Antiviral Immunity. Advances in Virus Research, 2018, 100, 309-354.	0.9	27
322	RIG-I: a multifunctional protein beyond a pattern recognition receptor. Protein and Cell, 2018, 9, 246-253.	4.8	59
323	Murine Hepatitis Virus nsp14 Exoribonuclease Activity Is Required for Resistance to Innate Immunity. Journal of Virology, 2018, 92, .	1.5	52
324	Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nature Immunology, 2018, 19, 53-62.	7.0	179
325	Extracellular RNA Sensing by Pattern Recognition Receptors. Journal of Innate Immunity, 2018, 10, 398-406.	1.8	66
326	Innate Immune Detection of Cardioviruses and Viral Disruption of Interferon Signaling. Frontiers in Microbiology, 2018, 9, 2448.	1.5	15
327	Nucleotide Modifications Decrease Innate Immune Response Induced by Synthetic Analogs of snRNAs and snoRNAs. Genes, 2018, 9, 531.	1.0	45
328	RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection. Nature Communications, 2018, 9, 4841.	5.8	110
329	HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nature Communications, 2018, 9, 5366.	5.8	26
330	Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses, 2018, 10, 708.	1.5	66

#	Article	IF	CITATIONS
331	Interplay between Cellular Metabolism and Cytokine Responses during Viral Infection. Viruses, 2018, 10, 521.	1.5	33
332	Induction and Suppression of Innate Antiviral Responses by Hepatitis A Virus. Frontiers in Microbiology, 2018, 9, 1865.	1.5	6
333	Molecular Mechanisms for the Adaptive Switching Between the OAS/RNase L and OASL/RIG-I Pathways in Birds and Mammals. Frontiers in Immunology, 2018, 9, 1398.	2.2	29
334	A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L. PLoS Pathogens, 2018, 14, e1006989.	2.1	27
335	Changes in Gene Expression and DNA Methylation of Evolutionarily Young AluY Repeats during Apoptosis of Human K562 Erythro-Myeloblastic Leukemia Cells. Journal of Evolutionary Biochemistry and Physiology, 2018, 54, 30-42.	0.2	0
336	The Essential Role of Double-Stranded RNA–Dependent Antiviral Signaling in the Degradation of Nonself Single-Stranded RNA in Nonimmune Cells. Journal of Immunology, 2018, 201, 1044-1052.	0.4	4
337	An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17399-17408.	3.3	78
338	Cellular Therapy for Melanoma. , 2019, , 1-33.		0
339	RNase L Induces Expression of A Novel Serine/Threonine Protein Kinase, DRAK1, to Promote Apoptosis. International Journal of Molecular Sciences, 2019, 20, 3535.	1.8	15
340	Cytoplasmic dsRNA induces the expression of OCT3/4 and NANOG mRNAs in differentiated human cells. Journal of Biological Chemistry, 2019, 294, 18969-18979.	1.6	3
341	Polymerase III transcription is necessary for T cell priming by dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22721-22729.	3.3	15
342	Literature review of baseline information on nonâ€coding RNA (ncRNA) to support the risk assessment of ncRNAâ€based genetically modified plants for food and feed. EFSA Supporting Publications, 2019, 16, 1688E.	0.3	31
343	Actinomycin D-Activated RNase L Promotes H2A.X/H2B-Mediated DNA Damage and Apoptosis in Lung Cancer Cells. Frontiers in Oncology, 2019, 9, 1086.	1.3	3
344	Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-Î ² promoter activation: its implication for vaccine design. Journal of Microbiology, 2019, 57, 803-811.	1.3	34
345	RNase L Reprograms Translation by Widespread mRNA Turnover Escaped by Antiviral mRNAs. Molecular Cell, 2019, 75, 1203-1217.e5.	4.5	93
346	Concerted 2-5A-Mediated mRNA Decay and Transcription Reprogram Protein Synthesis in the dsRNA Response. Molecular Cell, 2019, 75, 1218-1228.e6.	4.5	50
347	The Nuclear Matrix Protein SAFA Surveils Viral RNA and Facilitates Immunity by Activating Antiviral Enhancers and Super-enhancers. Cell Host and Microbe, 2019, 26, 369-384.e8.	5.1	54
348	Selective degradation of plasmid-derived mRNAs by MCPIP1 RNase. Biochemical Journal, 2019, 476, 2927-2938.	1.7	6

#	Article	IF	CITATIONS
349	Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Frontiers in Pharmacology, 2019, 10, 1019.	1.6	5
350	Double-Stranded RNA Sensors and Modulators in Innate Immunity. Annual Review of Immunology, 2019, 37, 349-375.	9.5	249
351	Real-time 2-5A kinetics suggest that interferons β and λ evade global arrest of translation by RNase L. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2103-2111.	3.3	29
352	Modulation of Innate Immune Signaling Pathways by Herpesviruses. Viruses, 2019, 11, 572.	1.5	26
353	Epidemiology of Prostate Cancer. World Journal of Oncology, 2019, 10, 63-89.	0.6	1,503
354	Molecular characterization and expression of the teleost cytosolic DNA sensor genes cGAS, LSm14A, DHX9, and DHX36 in Japanese medaka, Oryzias latipes. Developmental and Comparative Immunology, 2019, 99, 103402.	1.0	14
355	Sec62 Suppresses Foot-and-Mouth Disease Virus Proliferation by Promotion of IRE1α–RIG-I Antiviral Signaling. Journal of Immunology, 2019, 203, 429-440.	0.4	6
356	Endogenous Nucleic Acid Recognition by RIG-I-Like Receptors and cGAS. Journal of Interferon and Cytokine Research, 2019, 39, 450-458.	0.5	29
357	RNA regulation of the antiviral protein 2′â€5′â€oligoadenylate synthetase. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1534.	3.2	61
358	Regulation of signaling mediated by nucleic acid sensors for innate interferon-mediated responses during viral infection. International Immunology, 2019, 31, 477-488.	1.8	25
359	Fueling Type I Interferonopathies: Regulation and Function of Type I Interferon Antiviral Responses. Journal of Interferon and Cytokine Research, 2019, 39, 383-392.	0.5	18
360	Innate immune response in astrocytes infected with herpes simplex virus 1. Archives of Virology, 2019, 164, 1433-1439.	0.9	7
361	Toll-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression: a two-stage association study and functional investigation. Oncolmmunology, 2019, 8, e1593801.	2.1	15
362	TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opinion on Therapeutic Targets, 2019, 23, 437-446.	1.5	48
363	Interferon-Stimulated Genes—Mediators of the Innate Immune Response during Canine Distemper Virus Infection. International Journal of Molecular Sciences, 2019, 20, 1620.	1.8	13
364	Crosstalk Between Mammalian Antiviral Pathways. Non-coding RNA, 2019, 5, 29.	1.3	11
365	Nucleic Acid Sensing in Allergic Disorders. International Review of Cell and Molecular Biology, 2019, 345, 1-33.	1.6	1
366	Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA–triggered innate immune responses. Journal of Biological Chemistry, 2019, 294, 1710-1720.	1.6	118

	CHATION	REPORT	
#	Article	IF	Citations
367	Stimulation of Innate Immunity by Host and Viral RNAs. Trends in Immunology, 2019, 40, 1134-1148.	2.9	80
368	Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. Frontiers in Immunology, 2019, 10, 2608.	2.2	70
369	The Cellular Localization of the p42 and p46 Oligoadenylate Synthetase 1 Isoforms and Their Impact on Mitochondrial Respiration. Viruses, 2019, 11, 1122.	1.5	10
370	Self-Awareness: Nucleic Acid–Driven Inflammation and the Type I Interferonopathies. Annual Review of Immunology, 2019, 37, 247-267.	9.5	111
371	Contaminants in Atlantic walruses in Svalbard Part 2: Relationships with endocrine and immune systems. Environmental Pollution, 2019, 246, 658-667.	3.7	12
372	Intracellular RNA Sensing in Mammalian Cells: Role in Stress Response and Cancer Therapies. International Review of Cell and Molecular Biology, 2019, 344, 31-89.	1.6	30
373	Camouflage and interception: how pathogens evade detection by intracellular nucleic acid sensors. Immunology, 2019, 156, 217-227.	2.0	19
374	New advances in our understanding of the "unique―RNase L in host pathogen interaction and immune signaling. Cytokine, 2020, 133, 153847.	1.4	43
375	Impact of double-stranded RNA characteristics on the activation of human 2′–5′-oligoadenylate synthetase 2 (OAS2). Biochemistry and Cell Biology, 2020, 98, 70-82.	0.9	15
376	An overview of photocatalyst immobilization methods for air pollution remediation. Chemical Engineering Journal, 2020, 391, 123490.	6.6	70
377	Evasion of Type I Interferon by SARS-CoV-2. Cell Reports, 2020, 33, 108234.	2.9	742
378	A phenolic small molecule inhibitor of RNase L prevents cell death from ADAR1 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24802-24812.	3.3	17
379	Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs. Nucleic Acids Research, 2020, 48, 7520-7531.	6.5	23
380	Immune Sensing Mechanisms that Discriminate Self from Altered Self and Foreign Nucleic Acids. Immunity, 2020, 53, 54-77.	6.6	115
381	Viruses join the circular RNA world. FEBS Journal, 2021, 288, 4488-4502.	2.2	33
382	Self RNA Sensing by RIG-l–like Receptors in Viral Infection and Sterile Inflammation. Journal of Immunology, 2020, 205, 883-891.	0.4	21
383	RNase T2 in Inflammation and Cancer: Immunological and Biological Views. Frontiers in Immunology, 2020, 11, 1554.	2.2	14
384	Loss of the Nuclear Protein RTF2 Enhances Influenza Virus Replication. Journal of Virology, 2020, 94, .	1.5	5

ARTICLE IF CITATIONS # A ribosomal RNA fragment with 2â€²,3â€²-cyclic phosphate and GTP-binding activity acts as RIG-I ligand. 385 6.5 7 Nucleic Acids Research, 2020, 48, 10397-10412. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses, 2020, 12, 984. 1.5 Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. Journal of 387 0.5 31 Interferon and Cytokine Research, 2020, 40, 543-548. Modulation Effects of Toxoplasma gondii Histone H2A1 on Murine Macrophages and Encapsulation 388 with Polymer as a Vaccine Candidate. Vaccines, 2020, 8, 731. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines, 2020, 389 2.1 13 8.256. RIG-I-like receptors: their regulation and roles in RNA sensing. Nature Reviews Immunology, 2020, 20, 10.6 838 537-551. 391 Distinct and Orchestrated Functions of RNA Sensors in Innate Immunity. Immunity, 2020, 53, 26-42. 6.6 83 RNase L Is Involved in Liposaccharide-Induced Lung Inflammation. Viruses, 2020, 12, 73. 1.5 393 Cellular Factors Targeting HIV-1 Transcription and Viral RNA Transcripts. Viruses, 2020, 12, 495. 23 1.5 NOD1 and NOD2 Activation by Diverse Stimuli: a Possible Role for Sensing Pathogen-Induced 394 1.0 Endoplasmic Reticulum Stress. Infection and Immunity, 2020, 88, . RNase L Amplifies Interferon Signaling by Inducing Protein Kinase R-Mediated Antiviral Stress Granules. 395 1.5 43 Journal of Virology, 2020, 94, . Mechanisms of Attenuation by Genetic Recoding of Viruses. MBio, 2021, 12, . 1.8 The Interferon-Alpha Revival in CML. Hematologic Malignancies, 2021, , 197-226. 397 0.2 0 Making Sense of Intracellular Nucleic Acid Sensing in Type I Interferon Activation in Sjögren's Syndrome. Journal of Clinical Medicine, 2021, 10, 532. 398 1.0 ABCE1 Regulates RNase L-Induced Autophagy during Viral Infections. Viruses, 2021, 13, 315. 399 1.5 3 Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Research, 2021, 49, 6007-6026. Quercetin and Its Nano-Scale Delivery Systems in Prostate Cancer Therapy: Paving the Way for Cancer 401 1.7 43 Elimination and Reversing Chemoresistance. Cancers, 2021, 13, 1602. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses, 2021, 13, 522. 1.5

#	Article	IF	CITATIONS
405	SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	159
406	Genetic predisposition in the $2\hat{a}\in^2$ -5 $\hat{a}\in^2$ A pathway in the development of type 1 diabetes: potential contribution to dysregulation of innate antiviral immunity. Diabetologia, 2021, 64, 1805-1815.	2.9	17
407	Zika virus employs the host antiviral RNase L protein to support replication factory assembly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
410	Autophagy, Unfolded Protein Response, and Neuropilin-1 Cross-Talk in SARS-CoV-2 Infection: What Can Be Learned from Other Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 5992.	1.8	25
411	Thermal and Photocatalytic Performance of Unsaturated Polyester Resins Modified with TiO2 Nanoparticles as Panel Bodies for Vehicles. Polymers, 2021, 13, 2036.	2.0	4
412	RIG-I-Like Receptor-Mediated Recognition of Viral Genomic RNA of Severe Acute Respiratory Syndrome Coronavirus-2 and Viral Escape From the Host Innate Immune Responses. Frontiers in Immunology, 2021, 12, 700926.	2.2	69
413	Inhibition of Antiviral Innate Immunity by Foot-and-Mouth Disease Virus L ^{pro} through Interaction with the N-Terminal Domain of Swine RNase L. Journal of Virology, 2021, 95, e0036121.	1.5	6
414	Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. European Journal of Immunology, 2021, 51, 1897-1910.	1.6	27
415	OAS1/RNase L executes RIG-I ligand–dependent tumor cell apoptosis. Science Immunology, 2021, 6, .	5.6	19
416	Structural insights into the distinctive RNA recognition and therapeutic potentials of RIG″â€like receptors. Medicinal Research Reviews, 2022, 42, 399-425.	5.0	8
417	Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines, 2021, 9, 765.	1.4	49
418	RNA regulatory mechanisms that control antiviral innate immunity. Immunological Reviews, 2021, 304, 77-96.	2.8	14
419	Specificity and Mechanism of Coronavirus, Rotavirus, and Mammalian Two-Histidine Phosphoesterases That Antagonize Antiviral Innate Immunity. MBio, 2021, 12, e0178121.	1.8	17
420	Endomembrane targeting of human OAS1 p46 augments antiviral activity. ELife, 2021, 10, .	2.8	41
421	The Endogenous RIG-I Ligand Is Generated in Influenza A-Virus Infected Cells. Viruses, 2021, 13, 1564.	1.5	4
422	RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis. Cell, 2021, 184, 5419-5431.e16.	13.5	8
423	Factors Regulating the Activity of LINE1 Retrotransposons. Genes, 2021, 12, 1562.	1.0	17
424	The molecular mechanism of RIGâ€I activation and signaling. Immunological Reviews, 2021, 304, 154-168.	2.8	93

#	Article	IF	CITATIONS
425	A prenylated dsRNA sensor protects against severe COVID-19. Science, 2021, 374, eabj3624.	6.0	124
426	The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxidants and Redox Signaling, 2021, 35, 1376-1392.	2.5	24
427	The role of regulatory T cells in the pathogenesis and treatment of prostate cancer. Life Sciences, 2021, 284, 119132.	2.0	26
428	A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases. Chemosphere, 2021, 284, 131344.	4.2	35
429	Does the Global Outbreak of COVID-19 or Other Viral Diseases Threaten the Stem Cell Reservoir Inside the Body?. Stem Cell Reviews and Reports, 2021, 17, 214-230.	1.7	11
430	Prostate cancer: Therapeutic prospect with herbal medicine. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100034.	1.7	13
431	Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence, 2021, 12, 444-469.	1.8	26
432	Cytoplasmic Viral RNA Sensors: RIG-I-Like Receptors. , 2016, , 352-359.		3
433	Nucleic Acid Innate Immune Receptors. RSC Drug Discovery Series, 2019, , 292-305.	0.2	1
434	Sunitinib inhibits RNase L by destabilizing its active dimer conformation. Biochemical Journal, 2020, 477, 3387-3399.	1.7	10
435	Critical role of RIG-I and MDA5 in early and late stages of Tulane virus infection. Journal of General Virology, 2017, 98, 1016-1026.	1.3	11
441	Interferons and Antiviral Action. , 0, , 91-106.		2
442	RAC1 activation drives pathologic interactions between the epidermis and immune cells. Journal of Clinical Investigation, 2016, 126, 2661-2677.	3.9	48
443	Dysregulation of IFN System Can Lead to Poor Response to Pegylated Interferon and Ribavirin Therapy in Chronic Hepatitis C. PLoS ONE, 2011, 6, e19799.	1.1	14
444	Critical Role of an Antiviral Stress Granule Containing RIG-I and PKR in Viral Detection and Innate Immunity. PLoS ONE, 2012, 7, e43031.	1.1	294
445	RNAi Induces Innate Immunity through Multiple Cellular Signaling Pathways. PLoS ONE, 2013, 8, e64708.	1.1	21
446	Characterization of Rotavirus RNAs That Activate Innate Immune Signaling through the RIG-I-Like Receptors. PLoS ONE, 2013, 8, e69825.	1.1	33
447	Lack of RNase L Attenuates Macrophage Functions. PLoS ONE, 2013, 8, e81269.	1.1	17

#	Article	IF	CITATIONS
448	Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health. Current Medicinal Chemistry, 2019, 26, 1027-1044.	1.2	5
449	Pathologic effects of RNase-L dysregulation in immunity and proliferative control. Frontiers in Bioscience - Scholar, 2012, S4, 767-786.	0.8	14
451	Influenza A induced cellular signal transduction pathways. Journal of Thoracic Disease, 2013, 5 Suppl 2, S132-41.	0.6	12
452	Strain-Dependent Contribution of MAVS to Spontaneous Germinal Center Responses. ImmunoHorizons, 2019, 3, 463-477.	0.8	2
453	The IFN Response in Bats Displays Distinctive IFN-Stimulated Gene Expression Kinetics with Atypical RNASEL Induction. Journal of Immunology, 2018, 200, 209-217.	0.4	73
454	New twists in the unfolded protein response. ELife, 2012, 1, e00243.	2.8	3
455	Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. ELife, 2014, 3, e01535.	2.8	99
456	ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. ELife, 2015, 4, .	2.8	75
457	Comparative analysis of viral RNA signatures on different RIG-I-like receptors. ELife, 2016, 5, e11275.	2.8	80
458	CpG and UpA dinucleotides in both coding and non-coding regions of echovirus 7 inhibit replication initiation post-entry. ELife, 2017, 6, .	2.8	60
459	Interferon responses to norovirus infections: current and future perspectives. Journal of General Virology, 2021, 102, .	1.3	11
460	Synthetic microRNA Targeting Glioma-associated Antigen-1 Protein. Methods in Molecular Biology, 2009, 487, 1-15.	0.4	14
461	Chapter 5. RIG-I-Like RNA Helicases: Multidomain Proteins in Antiviral Innate Immunity and Processing of Small Regulatory RNAs. RSC Biomolecular Sciences, 2010, , 121-148.	0.4	0
463	Cellular Restriction Factors: Exploiting the Body's Antiviral Proteins to Combat HIV-1/AIDS. , 0, , .		0
464	Regulation of Innate Immunity and Interferon Defenses by Hepatitis C Virus. , 2012, , 245-269.		0
465	Pattern Recognition Receptors and Aging. , 2014, , 87-143.		0
466	Regulation of Innate Immunity by the Flaviviridae. , 0, , 317-333.		0
467	Suppression of Innate Immunity by Orthomyxoviruses. , 0, , 267-286.		1

#	Article	IF	CITATIONS
468	Evasion of Innate Host Antiviral Defenses by Picornaviruses. , 0, , 335-351.		1
469	Targeting the Interferon Response for Antiviral Therapy. , 0, , 317-332.		0
470	RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities. , 0, , 195-210.		0
471	Innate Immune Responses. , 0, , 285-302.		Ο
472	Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections. , 0, , 29-38.		0
474	Ribonuclease L (RNase L). , 2018, , 4709-4717.		0
480	Cellular Therapy for Melanoma. , 2020, , 1267-1299.		0
481	siRNA Therapeutic Design: Tools and Challenges. , 2012, , 475-503.		0
483	The role of innate immunity in chronic hepatitis C viral infection. Gastroenterology and Hepatology, 2007, 3, 683-4.	0.2	0
486	How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity. Viruses, 2021, 13, 2309.	1.5	10
487	Identification of Small Molecule Inhibitors of RNase L by Fragment-Based Drug Discovery. Journal of Medicinal Chemistry, 2022, 65, 1445-1457.	2.9	4
488	Hepatitis-D Virus Infection Is Not Impaired by Innate Immunity but Increases Cytotoxic T-Cell Activity. Cells, 2021, 10, 3253.	1.8	3
489	Association of Viral Infection With the Development and Pathogenesis of Systemic Lupus Erythematosus. Frontiers in Medicine, 2022, 9, 849120.	1.2	14
491	The Role of Long Noncoding RNA BST2-2 in the Innate Immune Response to Viral Infection. Journal of Virology, 2022, 96, e0020722.	1.5	4
492	Viral long non-coding RNA regulates virus life-cycle and pathogenicity. Molecular Biology Reports, 2022, 49, 6693-6700.	1.0	8
495	H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway. Science Advances, 2022, 8, eabf8627.	4.7	10
496	A loosened gating mechanism of RIG-I leads to autoimmune disorders. Nucleic Acids Research, 2022, 50, 5850-5863.	6.5	9
497	MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America. 2022, 119.	3.3	20

	CHAILO	N KLPORT	
#	Article	IF	Citations
498	Sequence-Specific Features of Short Double-Strand, Blunt-End RNAs Have RIG-I- and Type 1 Interferon-Dependent or -Independent Anti-Viral Effects. Viruses, 2022, 14, 1407.	1.5	1
500	IRF3 inhibits nuclear translocation of NF-κB to prevent viral inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
501	Unconventional functions of miRNAs. , 2022, , 181-214.		0
502	When does hepatitis B virus meet long-stranded noncoding RNAs?. Frontiers in Microbiology, 0, 13, .	1.5	2
503	Modified (2′,5′)Oligonucleotides: The Influence of Structural and Steriochemical Factors on Biological and Immunotropic Activity. , 0, , .		0
504	Rotavirus NSP1 Subverts the Antiviral Oligoadenylate Synthetase-RNase L Pathway by Inducing RNase L Degradation. MBio, 2022, 13, .	1.8	3
505	RBP–RNA interactions in the control of autoimmunity and autoinflammation. Cell Research, 2023, 33, 97-115.	5.7	18
506	Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction. Nature Cancer, 0, , .	5.7	10
507	RIG-l–like Receptor Regulation of Immune Cell Function and Therapeutic Implications. Journal of Immunology, 2022, 209, 845-854.	0.4	4
509	Differential Loss of OAS Genes Indicates Diversification of Antiviral Immunity in Mammals. Vaccines, 2023, 11, 419.	2.1	1
510	Inborn Errors of Immunity Predisposing to Herpes Simplex Virus Infections of the Central Nervous System. Pathogens, 2023, 12, 310.	1.2	1
511	2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 477-491.	2.3	3
512	Crosstalk between Autophagy and RLR Signaling. Cells, 2023, 12, 956.	1.8	4
513	Single cell analysis reveals satellite cell heterogeneity for proinflammatory chemokine expression. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	4
520	Role of RIG-I-Like Receptors in the Activation of Innate Immunity in Tuberculosis. Russian Journal of Bioorganic Chemistry, 2023, 49, 742-750.	0.3	0