Derivation of pluripotent epiblast stem cells from mam

Nature 448, 191-195 DOI: 10.1038/nature05950

Citation Report

#	Article	IF	CITATIONS
2	Putative Embryonic Stem Cell Lines from Pig Embryos. Journal of Reproduction and Development, 2007, 53, 1137-1149.	0.5	61
3	Embryonic stem cell therapy for diabetes mellitus. Seminars in Cell and Developmental Biology, 2007, 18, 827-838.	2.3	38
4	Stem Cells Remember Their Grade. Cell Stem Cell, 2007, 1, 132-134.	5.2	1
5	Short-Circuiting Epiblast Development. Cell Stem Cell, 2007, 1, 131-132.	5.2	2
7	A Shared Vision. Developmental Cell, 2007, 13, 769-771.	3.1	5
8	Development of Hematopoietic and Endothelial Cells from Human Embryonic Stem Cells: Lessons from the Studies using Mouse as a Model. Scientific World Journal, The, 2007, 7, 1950-1964.	0.8	3
9	Scientific definition by political request. Nature Reports Stem Cells, 0, , .	0.1	1
10	Directing the differentiation of embryonic stem cells to neural stem cells. Developmental Dynamics, 2007, 236, 3255-3266.	0.8	82
12	Many ways to pluripotency. Nature Biotechnology, 2007, 25, 1114-1116.	9.4	16
14	Nanog safeguards pluripotency and mediates germline development. Nature, 2007, 450, 1230-1234.	13.7	1,354
15	Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathologica, 2007, 115, 55-69.	3.9	169
16	Human Embryonic Stem Cells: Mechanisms to Escape Replicative Senescence?. Stem Cell Reviews and Reports, 2007, 3, 270-279.	5.6	52
18	The Pursuit of ES Cell Lines of Domesticated Ungulates. Stem Cell Reviews and Reports, 2008, 4, 235-254.	5.6	80
19	Cell surface biomarkers of embryonic stem cells. Proteomics, 2008, 8, 4025-4035.	1.3	64
20	A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells. Proteomics, 2008, 8, 4036-4053.	1.3	47
21	Systematic localization of octâ€3/4 to the gastrulating mouse conceptus suggests manifold roles in mammalian development. Developmental Dynamics, 2008, 237, 464-475.	0.8	65
22	Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum―and feederâ€free defined culture condition. Developmental Dynamics, 2008, 237, 2129-2138.	0.8	16
23	Regenerative Medicine and Stem Cell Based Drug Discovery. Angewandte Chemie - International Edition, 2008, 47, 5718-5738.	7.2	36

#	Article	IF	CITATIONS
25	Tcf3 Functions as a Steady-State Limiter of Transcriptional Programs of Mouse Embryonic Stem Cell Self-Renewal. Stem Cells, 2008, 26, 1951-1960.	1.4	147
26	Recombinant Vitronectin Is a Functionally Defined Substrate That Supports Human Embryonic Stem Cell Self-Renewal via αVβ5 Integrin. Stem Cells, 2008, 26, 2257-2265.	1.4	389
27	A chemical approach to stem-cell biology and regenerative medicine. Nature, 2008, 453, 338-344.	13.7	313
28	Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFκB and cooperating with Stat3. Nature Cell Biology, 2008, 10, 194-201.	4.6	127
29	A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 2008, 10, 353-360.	4.6	678
30	Optimized mouse ES cell culture system by suspension growth in a fully defined medium. Nature Protocols, 2008, 3, 1013-1017.	5.5	19
31	Molecular and biological properties of pluripotent embryonic stem cells. Gene Therapy, 2008, 15, 74-81.	2.3	91
32	G1 to S phase cell cycle transition in somatic and embryonic stem cells. Journal of Anatomy, 2008, 213, 30-44.	0.9	139
33	Bridging the gap from frog research to human therapy: A tale of neural differentiation in <i>Xenopus</i> animal caps and human pluripotent cells. Development Growth and Differentiation, 2008, 50, S47-55.	0.6	7
34	Immunohistochemical localization of nanog and Oct4 in stem cell compartments of human sacrococcygeal teratomas. Histopathology, 2008, 52, 717-730.	1.6	12
35	The Manipulation of Gametes and Embryos in Farm Animals. Reproduction in Domestic Animals, 2008, 43, 1-7.	0.6	36
36	Recent Progress in Embryonic Stem Cell Research and Its Application in Domestic Species. Reproduction in Domestic Animals, 2008, 43, 193-199.	0.6	42
37	Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks. DNA Repair, 2008, 7, 1471-1483.	1.3	73
38	Proteomics and human embryonic stem cells. Stem Cell Research, 2008, 1, 169-182.	0.3	34
39	Cybrid human embryos – warranting opportunities to augment embryonic stem cell research. Trends in Biotechnology, 2008, 26, 469-474.	4.9	8
40	Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biology, 2008, 6, e253.	2.6	728
41	Stable embryonic stem cell lines in rabbits: potential small animal models for human research. Reproductive BioMedicine Online, 2008, 17, 706-715.	1.1	55
42	Control of Early Fate Decisions in Human ES Cells by Distinct States of TGFÎ ² Pathway Activity. Stem Cells and Development, 2008, 17, 1065-1078.	1.1	67

#	Article	IF	CITATIONS
43	Embryonic stem cells to beta-cells by understanding pancreas development. Molecular and Cellular Endocrinology, 2008, 288, 86-94.	1.6	29
44	Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: New tools to study trophoblast growth and differentiation. Developmental Biology, 2008, 322, 1-10.	0.9	33
46	TGFÎ ² and SMADs Talk to NANOG in Human Embryonic Stem Cells. Cell Stem Cell, 2008, 3, 127-128.	5.2	22
47	Dynamic Equilibrium and Heterogeneity of Mouse Pluripotent Stem Cells with Distinct Functional and Epigenetic States. Cell Stem Cell, 2008, 3, 391-401.	5.2	596
48	Krüppel-like factor 5 Is Essential for Blastocyst Development and the Normal Self-Renewal of Mouse ESCs. Cell Stem Cell, 2008, 3, 555-567.	5.2	177
49	Germ Line, Stem Cells, and Epigenetic Reprogramming. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 9-15.	2.0	53
50	Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell, 2008, 132, 567-582.	13.5	1,251
51	Stem Cells and Early Lineage Development. Cell, 2008, 132, 527-531.	13.5	292
52	Capturing Pluripotency. Cell, 2008, 132, 532-536.	13.5	413
53	Ronin Is Essential for Embryogenesis and the Pluripotency of Mouse Embryonic Stem Cells. Cell, 2008, 133, 1162-1174.	13.5	180
54	The Growth Factor Environment Defines Distinct Pluripotent Ground States in Novel Blastocyst-Derived Stem Cells. Cell, 2008, 135, 449-461.	13.5	197
55	Germline Competent Embryonic Stem Cells Derived from Rat Blastocysts. Cell, 2008, 135, 1299-1310.	13.5	623
56	Capture of Authentic Embryonic Stem Cells from Rat Blastocysts. Cell, 2008, 135, 1287-1298.	13.5	725
57	Reproductive Technologies and Related Studies in the Cynomolgus Monkey. Journal of Mammalian Ova Research, 2008, 25, 133-142.	0.1	0
58	Alternative Sources of Pluripotent Stem Cells: Scientific Solutions to an Ethical Dilemma. Stem Cells and Development, 2008, 17, 1-10.	1.1	68
59	Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells. Human Molecular Genetics, 2008, 17, R60-R66.	1.4	54
60	The Origins of Human Embryonic Stem Cells: A Biological Conundrum. Cells Tissues Organs, 2008, 188, 9-22.	1.3	11
61	Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/l²-catenin, Activin/Nodal and BMP signaling. Development (Cambridge), 2008, 135, 2969, 2979	1.2	287

#	Article	IF	CITATIONS
62	Identification and characterization of subpopulations in undifferentiated ES cell culture. Development (Cambridge), 2008, 135, 909-918.	1.2	480
63	Combinatorial Signals of Activin/Nodal and Bone Morphogenic Protein Regulate the Early Lineage Segregation of Human Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 24991-25002.	1.6	89
64	Heterokaryon-Based Reprogramming of Human B Lymphocytes for Pluripotency Requires Oct4 but Not Sox2. PLoS Genetics, 2008, 4, e1000170.	1.5	115
65	Understanding pluripotencyhow embryonic stem cells keep their options open. Molecular Human Reproduction, 2008, 14, 513-520.	1.3	17
66	Pluripotent stem cell lines. Genes and Development, 2008, 22, 1987-1997.	2.7	301
67	Modelling germ cell development in vitro. Molecular Human Reproduction, 2008, 14, 501-511.	1.3	27
68	Stem Cells Bioprocessing: An Important Milestone to Move Regenerative Medicine Research Into the Clinical Arena. Pediatric Research, 2008, 63, 461-466.	1.1	37
69	Embryonic Stem Cells as a Source of Pulmonary Epithelium In Vitro and In Vivo. Proceedings of the American Thoracic Society, 2008, 5, 717-722.	3.5	45
70	New Paths to Pluripotent Stem Cells. Current Stem Cell Research and Therapy, 2008, 3, 151-162.	0.6	21
71	Stem Cell Therapy to Treat Diabetes Mellitus. Review of Diabetic Studies, 2008, 5, 203-219.	0.5	14
73	Establishment of Rat Embryonic Stem Cells and Making of Chimera Rats. PLoS ONE, 2008, 3, e2800.	1.1	62
74	Contrasting Expression of Keratins in Mouse and Human Embryonic Stem Cells. PLoS ONE, 2008, 3, e3451.	1.1	22
75	Pluripotent caricatures. Nature Reports Stem Cells, 2008, , .	0.1	1
77	The LIF cytokine: towards adulthood. European Cytokine Network, 2009, 20, 51-62.	1.1	32
78	Epiblast-derived stem cells in embryonic and adult tissues. International Journal of Developmental Biology, 2009, 53, 1529-1540.	0.3	67
79	Mechanisms of Stem Cell Self-renewal. , 2009, , 73-80.		1
80	Early Cell Fate Decisions of Human Embryonic Stem Cells and Mouse Epiblast Stem Cells Are Controlled by the Same Signalling Pathways. PLoS ONE, 2009, 4, e6082.	1.1	232
81	Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines. PLoS ONE, 2009, 4, e7216.	1.1	50

#	Article	IF	CITATIONS
84	Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development (Cambridge), 2009, 136, 3215-3222.	1.2	512
85	Identification and Characterization of Side Population Cells in Embryonic Stem Cell Cultures. Stem Cells and Development, 2009, 18, 1155-1166.	1.1	21
86	Pluripotential Stem Cells from Vertebrate Embryos. , 2009, , 1-11.		0
87	The transcriptional foundation of pluripotency. Development (Cambridge), 2009, 136, 2311-2322.	1.2	393
88	Instructing an Embryonic Stem Cell-Derived Oocyte Fate: Lessons from Endogenous Oogenesis. Endocrine Reviews, 2009, 30, 264-283.	8.9	46
89	The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle, 2009, 8, 3822-3830.	1.3	130
90	Inner Cell Mass Localization of NANOG Precedes OCT3/4 in Rhesus Monkey Blastocysts. Stem Cells and Development, 2009, 18, 1451-1458.	1.1	28
91	Stem cells, signals and vertebrate body axis extension. Development (Cambridge), 2009, 136, 1591-1604.	1.2	259
92	mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7840-7845.	3.3	193
94	Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development (Cambridge), 2009, 136, 1339-1349.	1.2	379
95	Protocols for Generating ES Cell-Derived Dopamine Neurons. Advances in Experimental Medicine and Biology, 2009, 651, 101-111.	0.8	21
96	Chemical Genetics Identifies c-Src as an Activator of Primitive Ectoderm Formation in Murine Embryonic Stem Cells. Science Signaling, 2009, 2, ra64.	1.6	26
97	Epigenetic regulation of X-inactivation in human embryonic stem cells. Epigenetics, 2009, 4, 19-22.	1.3	22
98	MOLECULAR REGULATION OF CELLULAR INTERACTIONS BY THE RHO-ROCK-MYOSIN II SIGNALING AXIS IN PLURIPOTENT STEM CELLS. Gene Therapy and Regulation, 2009, 04, 57-80.	0.3	0
99	Transcriptional heterogeneity in mouse embryonic stem cells. Reproduction, Fertility and Development, 2009, 21, 67.	0.1	22
100	Derivation and Characterization of Rabbit Embryonic Stem Cells: A Review. , 2009, , 77-104.		0
101	Stem Cells, Hypoxia and Hypoxia-Inducible Factors. , 2009, , 211-231.		1
102	The biology of activin: recent advances in structure, regulation and function. Journal of Endocrinology, 2009, 202, 1-12.	1.2	216

#	Article	IF	CITATIONS
103	Stems Cells and The Price of Immortality. Stem Cell Research, 2009, 2, 26-28.	0.3	2
104	Establishment and characterization of baboon embryonic stem cell lines: An Old World Primate model for regeneration and transplantation research. Stem Cell Research, 2009, 2, 178-187.	0.3	25
105	Explanation for excessive DNA single-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells. Experimental Cell Research, 2009, 315, 1505-1520.	1.2	86
107	Pleiotropic function of FGFâ€4: Its role in development and stem cells. Developmental Dynamics, 2009, 238, 265-276.	0.8	37
108	Pericellular matrix of deciduaâ€derived mesenchymal cells: A potent humanâ€derived substrate for the maintenance culture of human ES cells. Developmental Dynamics, 2009, 238, 1118-1130.	0.8	12
109	In vitro and in vivo differentiation of human embryonic stem cells into retinaâ€like organs and comparison with that from mouse pluripotent epiblast stem cells. Developmental Dynamics, 2009, 238, 2266-2279.	0.8	25
110	Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis, 2009, 47, 93-106.	0.8	84
111	Keeping an eye on retinoblastoma control of human embryonic stem cells. Journal of Cellular Biochemistry, 2009, 108, 1023-1030.	1.2	38
112	Determinants of pluripotency: From avian, rodents, to primates. Journal of Cellular Biochemistry, 2010, 109, 16-25.	1.2	19
113	Pluripotency: Toward a gold standard for human ES and iPS cells. Journal of Cellular Physiology, 2009, 220, 21-29.	2.0	105
114	Design principles of pluripotency. EMBO Molecular Medicine, 2009, 1, 251-254.	3.3	10
115	Activin A-Induced Differentiation of Embryonic Stem Cells into Endoderm and Pancreatic Progenitors—The Influence of Differentiation Factors and Culture Conditions. Stem Cell Reviews and Reports, 2009, 5, 159-173.	5.6	93
116	Current progress and prospects of induced pluripotent stem cells. Science in China Series C: Life Sciences, 2009, 52, 622-636.	1.3	27
117	Abrogation of E-Cadherin-Mediated Cell–Cell Contact in Mouse Embryonic Stem Cells Results in Reversible LIF-Independent Self-Renewal. Stem Cells, 2009, 27, 2069-2080.	1.4	110
118	Signaling Pathways Controlling Pluripotency and Early Cell Fate Decisions of Human Induced Pluripotent Stem Cells. Stem Cells, 2009, 27, 2655-2666.	1.4	160
119	A Novel Role for γ-Secretase in the Formation of Primitive Streak-like Intermediates from ES Cells in Culture. Stem Cells, 2009, 27, 2941-2951.	1.4	24
120	MicroRNA 92b Controls the G1/S Checkpoint Gene p57 in Human Embryonic Stem Cells. Stem Cells, 2009, 27, 1524-1528.	1.4	119
121	Isolation of three stem cell lines from human sacrococcygeal teratomas. Journal of Pathology, 2009, 217, 589-596.	2.1	12

ARTICLE IF CITATIONS # Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts. 123 5.7 22 Cell Research, 2009, 19, 173-186. Induced pluripotent stem cells and the stability of the differentiated state. EMBO Reports, 2009, 10, 124 714-721. 125 Human embryonic stem cells: 10 years on. Laboratory Investigation, 2009, 89, 259-262. 1.7 9 Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature, 2009, 498 459, 708-711. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature, 2009, 127 13.7 357 461, 1292-1295. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nature Reviews Molecular Cell Biology, 2009, 10, 91-103. 128 16.1 Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nature 129 16.1 441 Reviews Molecular Cell Biology, 2009, 10, 526-537. Expression and functional analysis of G1 to S regulatory components reveals an important role for 130 2.6 164 CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene, 2009, 28, 20-30. Riding Shotgun: A Dual Role for the Epidermal Growth Factorâ€Cripto/FRLâ€1/Cryptic Protein Cripto in 131 1.3 31 Nodal Trafficking. Traffic, 2009, 10, 783-791. Chicken embryonic stem cells as a nonâ€mammalian embryonic stem cell model. Development Growth 36 and Differentiation, 2010, 52, 101-114. Stem Cells in Marine Organisms., 2009, , . 133 18 Biphasic Induction of Pdx1 in Mouse and Human Embryonic Stem Cells Can Mimic Development of 1.4 Pancreatic Î²-Cells. Stem Cells, 2009, 27, 341-351. Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic 135 1.2 156 reprogramming in vitro. Development (Cambridge), 2009, 136, 3549-3556. Murine embryonic stem cells as a model for human embryonic stem-cell research. Cell and Tissue Biology, 2009, 3, 199-212. 0.2 Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 137 1.2 669 (Cambridge), 2009, 136, 1063-1069. Improved Electrospray Ionization Efficiency Compensates for Diminished Chromatographic Resolution and Enables Proteomics Analysis of Tyrosine Signaling in Embryonic Stem Cells. Analytical Chemistry, 2009, 81, 3440-3447. Transforming Growth Factor type \hat{l}^2 and Smad family signaling in stem cell function. Cytokine and 139 3.243 Growth Factor Reviews, 2009, 20, 449-458. Gene expression profiles of human inner cell mass cells and embryonic stem cells. Differentiation, 2009, 78, 18-23.

#	Article	IF	CITATIONS
141	Nanog Is the Gateway to the Pluripotent Ground State. Cell, 2009, 138, 722-737.	13.5	904
142	Identification of an ES cell pluripotent state-specific DUSP6 enhancer. Biochemical and Biophysical Research Communications, 2009, 378, 319-323.	1.0	3
143	Evolution of transcriptional control in mammals. Current Opinion in Genetics and Development, 2009, 19, 579-585.	1.5	47
144	Generation of Rat and Human Induced Pluripotent Stem Cells by Combining Genetic Reprogramming and Chemical Inhibitors. Cell Stem Cell, 2009, 4, 16-19.	5.2	520
145	Optimal Timing of Inner Cell Mass Isolation Increases the Efficiency of Human Embryonic Stem Cell Derivation and Allows Generation of Sibling Cell Lines. Cell Stem Cell, 2009, 4, 103-106.	5.2	171
146	Rats, Cats, and Elephants, but Still No Unicorn: Induced Pluripotent Stem Cells from New Species. Cell Stem Cell, 2009, 4, 3-4.	5.2	14
147	Histone Deacetylase Inhibition Elicits an Evolutionarily Conserved Self-Renewal Program in Embryonic Stem Cells. Cell Stem Cell, 2009, 4, 359-369.	5.2	144
148	Molecules that Promote or Enhance Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 4, 301-312.	5.2	357
149	Stem Cell States, Fates, and the Rules of Attraction. Cell Stem Cell, 2009, 4, 387-397.	5.2	307
150	Metastable Pluripotent States in NOD-Mouse-Derived ESCs. Cell Stem Cell, 2009, 4, 513-524.	5.2	318
151	Resetting the Epigenome beyond Pluripotency in the Germline. Cell Stem Cell, 2009, 4, 493-498.	5.2	81
152	Naive and Primed Pluripotent States. Cell Stem Cell, 2009, 4, 487-492.	5.2	1,579
153	gPS Navigates Germ Cells to Pluripotency. Cell Stem Cell, 2009, 5, 3-4.	5.2	21
154	Regulatory circuits underlying pluripotency and reprogramming. Trends in Pharmacological Sciences, 2009, 30, 296-302.	4.0	61
155	Pluripotent stem cells. Transfusion Clinique Et Biologique, 2009, 16, 65-69.	0.2	11
156	Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Developmental Biology, 2009, 330, 73-82.	0.9	62
157	Characterization of Canine Embryonic Stem Cell Lines Derived From Different Niche Microenvironments. Stem Cells and Development, 2009, 18, 1167-1178.	1.1	51
158	Regulation of Stem Cell Pluripotency and Differentiation Involves a Mutual Regulatory Circuit of the Nanog, OCT4, and SOX2 Pluripotency Transcription Factors With Polycomb Repressive Complexes and Stem Cell microRNAs. Stem Cells and Development, 2009, 18, 1093-1108.	1.1	375

#	Article	IF	CITATIONS
159	Development and Engineering of Dopamine Neurons. Advances in Experimental Medicine and Biology, 2009, , .	0.8	6
161	PGC Specification <i>In Vivo</i> and <i>In Vitro</i> . Journal of Mammalian Ova Research, 2009, 26, 171-177.	0.1	0
162	Neurogenic Potential of Isolated Precursor Cells from Early Post-Gastrula Somitic Tissue. Stem Cells and Development, 2009, 18, 1533-1542.	1.1	8
163	The Cell Cycle and Myc Intersect with Mechanisms that Regulate Pluripotency and Reprogramming. Cell Stem Cell, 2009, 5, 141-149.	5.2	244
164	Very Small Embryonic/Epiblast-Like Stem Cells. American Journal of Pathology, 2009, 174, 1985-1992.	1.9	48
165	Expression of Pluripotency-Related Genes during Bovine Inner Cell Mass Explant Culture. Cloning and Stem Cells, 2009, 11, 355-365.	2.6	48
166	Activin-A attenuates several human natural killer cell functions. Blood, 2009, 113, 3218-3225.	0.6	61
167	Control of Stemness by Fibroblast Growth Factor Signaling in Stem Cells and Cancer Stem Cells. Current Stem Cell Research and Therapy, 2009, 4, 9-15.	0.6	61
168	Spinal Epidural Teratoma: Review of Spinal Teratoma With Consideration on the Pathogenesis: Case Report. Neurosurgery, 2010, 67, E1818-E1825.	0.6	26
169	Epigenetic Reprogramming of Mouse Germ Cells toward Totipotency. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 211-218.	2.0	46
171	Emerging use of stem cells in regenerative medicine. Biochemical Journal, 2010, 428, 11-23.	1.7	92
172	The ground state of pluripotency. Biochemical Society Transactions, 2010, 38, 1027-1032.	1.6	323
173	Platelet Endothelial Cell Adhesion Molecule-1, Stage-Specific Embryonic Antigen-1, and Flk-1 Mark Distinct Populations of Mouse Embryonic Stem Cells During Differentiation Toward Hematopoietic/Endothelial Cells. Stem Cells and Development, 2010, 19, 1937-1948.	1.1	11
174	Axolotl <i>Nanog</i> activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals. Development (Cambridge), 2010, 137, 2973-2980.	1.2	51
175	Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Research, 2010, 20, 155-169.	2.4	287
176	Making the blastocyst: lessons from the mouse. Journal of Clinical Investigation, 2010, 120, 995-1003.	3.9	312
177	Cellular models for disease exploring and drug screening. Protein and Cell, 2010, 1, 355-362.	4.8	9
178	The Promise of Stem Cell Research in Pigs and Other Ungulate Species. Stem Cell Reviews and Reports, 2010, 6, 31-41.	5.6	76

#	Article	IF	CITATIONS
179	Progress and Promise Towards Safe Induced Pluripotent Stem Cells for Therapy. Stem Cell Reviews and Reports, 2010, 6, 297-306.	5.6	61
180	Epiblast/Germ Line Hypothesis of Cancer Development Revisited: Lesson from the Presence of Oct-4+ Cells in Adult Tissues. Stem Cell Reviews and Reports, 2010, 6, 307-316.	5.6	70
181	Pluripotent Stem Cells: Origin, Maintenance and Induction. Stem Cell Reviews and Reports, 2010, 6, 633-649.	5.6	53
182	Pluripotency maintenance mechanism of embryonic stem cells and reprogramming. International Journal of Hematology, 2010, 91, 360-372.	0.7	8
183	BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 416-430.	0.7	70
184	Generation of Sheffield (Shef) human embryonic stem cell lines using a microdrop culture system. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 236-241.	0.7	40
185	Stem cells and cell lines from the human auditory organ: applications, hurdles and bottlenecks in the development of regenerative therapies for deafness. Drug Discovery Today, 2010, 15, 283-286.	3.2	13
186	Pluripotent stem cells: private obsession and public expectation. EMBO Molecular Medicine, 2010, 2, 113-116.	3.3	10
187	Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology, 2010, 51, 1754-1765.	3.6	449
188	FGF signalling as a mediator of lineage transitions—Evidence from embryonic stem cell differentiation. Journal of Cellular Biochemistry, 2010, 110, 10-20.	1.2	32
189	Three inhibitors of FGF receptor, ERK, and GSK3 establishes germlineâ€competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability. Genesis, 2010, 48, 317-327.	0.8	91
190	The Janus face of pluripotent stem cells – Connection between pluripotency and tumourigenicity. BioEssays, 2010, 32, 993-1002.	1.2	14
191	Nano-scale control of cellular environment to drive embryonic stem cells selfrenewal and fate. Biomaterials, 2010, 31, 1742-1750.	5.7	52
192	Distinguishing Between Mouse and Human Pluripotent Stem Cell Regulation: The Best Laid Plans of Mice and Men. Stem Cells, 2010, 28, 419-430.	1.4	76
193	Nuclear Transfer-Derived Epiblast Stem Cells Are Transcriptionally and Epigenetically Distinguishable from Their Fertilized-Derived Counterparts. Stem Cells, 2010, 28, 743-752.	1.4	27
194	Human Embryonic Stem Cells Are Capable of Executing G1/S Checkpoint Activation. Stem Cells, 2010, 28, 1143-1152.	1.4	69
195	Cripto-1 Is a Cell Surface Marker for a Tumorigenic, Undifferentiated Subpopulation in Human Embryonal Carcinoma Cells Â. Stem Cells, 2010, 28, 1303-1314.	1.4	57
196	Retinoic Acid Synthesis Promotes Development of Neural Progenitors from Mouse Embryonic Stem Cells by Suppressing Endogenous, Wnt-Dependent Nodal Signaling. Stem Cells, 2010, 28, 1498-1509.	1.4	71

	CITATION	CITATION REPORT	
# 197	ARTICLE Neural Induction Intermediates Exhibit Distinct Roles of Fgf Signaling. Stem Cells, 2010, 28, 1772-1781.	IF 1.4	Citations 35
198	Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia, 2010, 24, 1450-1461.	3.3	96
199	Extrinsic regulation of pluripotent stem cells. Nature, 2010, 465, 713-720.	13.7	282
200	A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature, 2010, 468, 316-320.	13.7	407
201	Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nature Genetics, 2010, 42, 631-634.	9.4	698
202	Targets and dynamics of promoter DNA methylation during early mouse development. Nature Genetics, 2010, 42, 1093-1100.	9.4	527
203	Embryonic and adult stem cell systems in mammals: Ontology and regulation. Development Growth and Differentiation, 2010, 52, 115-129.	0.6	21
204	Mouse ES cell culture system as a model of development. Development Growth and Differentiation, 2010, 52, 275-283.	0.6	44
205	Epiblast stem cells contribute new insight into pluripotency and gastrulation. Development Growth and Differentiation, 2010, 52, 293-301.	0.6	40
206	Epigenetic profiles in primordial germ cells: Global modulation and fine tuning of the epigenome for acquisition of totipotency. Development Growth and Differentiation, 2010, 52, 517-525.	0.6	31
207	Human Cardiomyocytes from Embryonic Stem Cells. , 2010, , 877-896.		0
208	The mechanism of stem cell differentiation into smooth muscle cells. Thrombosis and Haemostasis, 2010, 104, 440-448.	1.8	30
209	Porcine induced pluripotent stem cells analogous to nave and primed embryonic stem cells of the mouse. International Journal of Developmental Biology, 2010, 54, 1703-1711.	0.3	98
210	Faithful reprogramming to pluripotency in mammals - what does nuclear transfer teach us?. International Journal of Developmental Biology, 2010, 54, 1609-1621.	0.3	8
211	Global Chromatin Architecture Reflects Pluripotency and Lineage Commitment in the Early Mouse Embryo. PLoS ONE, 2010, 5, e10531.	1.1	233
212	Differentiating Embryonic Stem Cells Pass through â€ [~] Temporal Windows' That Mark Responsiveness to Exogenous and Paracrine Mesendoderm Inducing Signals. PLoS ONE, 2010, 5, e10706.	1.1	53
213	Variations of X Chromosome Inactivation Occur in Early Passages of Female Human Embryonic Stem Cells. PLoS ONE, 2010, 5, e11330.	1.1	54
214	An ES-Like Pluripotent State in FGF-Dependent Murine iPS cells. PLoS ONE, 2010, 5, e16092.	1.1	17

#	Article	IF	CITATIONS
216	In vitro derivation of germ cells from embryonic stem cells. Frontiers in Bioscience - Landmark, 2010, 15, 46.	3.0	15
218	The absence of <i>Prep1</i> causes p53-dependent apoptosis of mouse pluripotent epiblast cells. Development (Cambridge), 2010, 137, 3393-3403.	1.2	37
219	A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state pluripotency. Development (Cambridge), 2010, 137, 3185-3192.	1.2	147
220	Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development (Cambridge), 2010, 137, 881-890.	1.2	116
221	Distinct functions of BMP4 during different stages of mouse ES cell neural commitment. Development (Cambridge), 2010, 137, 2095-2105.	1.2	115
222	Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8129-8134.	3.3	312
223	Somatic Nucleus Reprogramming Is Significantly Improved by m-Carboxycinnamic Acid Bishydroxamide, a Histone Deacetylase Inhibitor. Journal of Biological Chemistry, 2010, 285, 31002-31010.	1.6	61
224	Characterization of a novel embryonic stem cell line from an ICSI-derived blastocyst in the African green monkey. Reproduction, 2010, 139, 565-573.	1.1	17
225	The genetics of induced pluripotency. Reproduction, 2010, 139, 35-44.	1.1	59
226	Germ cell specification in mice: signaling, transcription regulation, and epigenetic consequences. Reproduction, 2010, 139, 931-942.	1.1	122
227	Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development (Cambridge), 2010, 137, 2279-2287.	1.2	133
229	Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes and Development, 2010, 24, 312-326.	2.7	270
230	Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10783-10790.	3.3	212
231	Microwaves from Mobile Phones Inhibit 53BP1 Focus Formation in Human Stem Cells More Strongly Than in Differentiated Cells: Possible Mechanistic Link to Cancer Risk. Environmental Health Perspectives, 2010, 118, 394-399.	2.8	57
232	Effect of Different Culture Conditions on Establishment of Embryonic Stem Cells from BALB/cAJ and NZB/BINJ Mice. Cellular Reprogramming, 2010, 12, 679-688.	0.5	14
233	Pig Epiblast Stem Cells Depend on Activin/Nodal Signaling for Pluripotency and Self-Renewal. Stem Cells and Development, 2010, 19, 1627-1636.	1.1	107
234	Assisted Reproductive Technologies (ART) With Baboons Generate Live Offspring: A Nonhuman Primate Model for ART and Reproductive Sciences. Reproductive Sciences, 2010, 17, 917-930.	1.1	13
235	Induced pluripotent stem cells: epigenetic memories and practical implications. Molecular Human Reproduction, 2010, 16, 880-885.	1.3	58

#	Article	IF	CITATIONS
236	Repression of Retrotransposal Elements in Mouse Embryonic Stem Cells Is Primarily Mediated by a DNA Methylation-independent Mechanism*. Journal of Biological Chemistry, 2010, 285, 21082-21091.	1.6	65
237	Conversion of Mouse Epiblast Stem Cells to an Earlier Pluripotency State by Small Molecules. Journal of Biological Chemistry, 2010, 285, 29676-29680.	1.6	107
238	Nodal Signaling Recruits the Histone Demethylase Jmjd3 to Counteract Polycomb-Mediated Repression at Target Genes. Science Signaling, 2010, 3, ra48.	1.6	102
239	Modeling Co-Expression across Species for Complex Traits: Insights to the Difference of Human and Mouse Embryonic Stem Cells. PLoS Computational Biology, 2010, 6, e1000707.	1.5	24
240	A Scalable Approach for Discovering Conserved Active Subnetworks across Species. PLoS Computational Biology, 2010, 6, e1001028.	1.5	17
241	ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Human Molecular Genetics, 2010, 19, 2456-2467.	1.4	167
242	Generation of Induced Pluripotent Stem Cells in Rabbits. Journal of Biological Chemistry, 2010, 285, 31362-31369.	1.6	153
243	The role of FGF/Erk signaling in pluripotent cells. Development (Cambridge), 2010, 137, 3351-3360.	1.2	349
244	Characterization of microRNAs Involved in Embryonic Stem Cell States. Stem Cells and Development, 2010, 19, 935-950.	1.1	156
245	Human pluripotent stem cells: From biology to cell therapy. World Journal of Stem Cells, 2010, 2, 24.	1.3	12
246	Transcription Factors for the Modulation of Pluripotency and Reprogramming. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 237-244.	2.0	40
247	Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Research, 2010, 20, 804-815.	2.4	204
248	The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 155-163.	1.8	145
249	X Chromosome Inactivation and Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 2010, 695, 132-154.	0.8	22
250	A WD-Repeat Protein Stabilizes ORC Binding to Chromatin. Molecular Cell, 2010, 40, 99-111.	4.5	124
251	On the formation of germ cells: The good, the bad and the ugly. Differentiation, 2010, 79, 131-140.	1.0	32
252	Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations. Cell, 2010, 141, 872-883.	13.5	367
253	Pluripotency and Cellular Reprogramming: Facts, Hypotheses, Unresolved Issues. Cell, 2010, 143, 508-525.	13.5	635

#	Article	IF	CITATIONS
254	Epiblast Stem Cell Subpopulations Represent Mouse Embryos of Distinct Pregastrulation Stages. Cell, 2010, 143, 617-627.	13.5	195
255	SIP1 Mediates Cell-Fate Decisions between Neuroectoderm and Mesendoderm in Human Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 59-70.	5.2	115
256	Conserved and Divergent Roles of FGF Signaling in Mouse Epiblast Stem Cells and Human Embryonic Stem Cells. Cell Stem Cell, 2010, 6, 215-226.	5.2	308
257	A Murine ESC-like State Facilitates Transgenesis and Homologous Recombination in Human Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 535-546.	5.2	194
258	Multiple, Interconvertible States of Human Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 497-499.	5.2	14
259	Actin-Myosin Contractility Is Responsible for the Reduced Viability of Dissociated Human Embryonic Stem Cells. Cell Stem Cell, 2010, 7, 240-248.	5.2	253
260	Molecular Pathway and Cell State Responsible for Dissociation-Induced Apoptosis in Human Pluripotent Stem Cells. Cell Stem Cell, 2010, 7, 225-239.	5.2	370
261	Stat3 Activation Is Limiting for Reprogramming to Ground State Pluripotency. Cell Stem Cell, 2010, 7, 319-328.	5.2	215
262	Multiple, Interconvertible States of Human Pluripotent Stem Cells. Cell Stem Cell, 2010, 7, 270.	5.2	0
263	Different Flavors of Pluripotency, MolecularÂMechanisms, and Practical Implications. Cell Stem Cell, 2010, 7, 559-564.	5.2	37
264	Another Horse in the Meta-Stable State of Pluripotency. Cell Stem Cell, 2010, 7, 641-642.	5.2	5
265	Equine embryos and embryonic stem cells: Defining reliable markers of pluripotency. Theriogenology, 2010, 74, 516-524.	0.9	53
266	Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends in Pharmacological Sciences, 2010, 31, 36-45.	4.0	175
267	Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis. Developmental Biology, 2010, 342, 63-73.	0.9	30
268	Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Developmental Biology, 2010, 344, 16-25.	0.9	176
269	Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9222-9227.	3.3	755
270	Induced pluripotent stem cells – alchemist's tale or clinical reality?. Expert Reviews in Molecular Medicine, 2010, 12, 25.	1.6	16
271	Modulation of embryonic stem cell fate and somatic cell reprogramming by small molecules. Reproductive BioMedicine Online, 2010, 21, 26-36.	1.1	9

	CHATION I	LEPORT	
#	Article	IF	CITATIONS
272	The Life of a Cell: Probing the Complex Relationships with the World. Cell Stem Cell, 2010, 6, 499-501.	5.2	5
273	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	2.7	678
274	Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Research, 2010, 20, 761-770.	2.4	526
275	Epigenome Disruptors. Science, 2010, 330, 598-599.	6.0	7
276	Cellular Programming and Reprogramming. Methods in Molecular Biology, 2010, , .	0.4	5
277	Isolation and Maintenance of Mouse Epiblast Stem Cells. Methods in Molecular Biology, 2010, 636, 25-44.	0.4	30
278	The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, 2010, , .	0.8	3
279	Molecular mechanisms of pluripotency and reprogramming. Stem Cell Research and Therapy, 2010, 1, 33.	2.4	12
280	Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochemical Journal, 2011, 438, 11-23.	1.7	164
282	Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Research, 2011, 21, 486-501.	5.7	165
283	Chemical Strategies for Stem Cell Biology and Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 73-90.	5.7	61
284	Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nature Methods, 2011, 8, 957-962.	9.0	77
285	Cell Cycle Adaptations and Maintenance of Genomic Integrity in Embryonic Stem Cells and Induced Pluripotent Stem Cells. Results and Problems in Cell Differentiation, 2011, 53, 415-458.	0.2	25
286	Genomic Approaches to Deconstruct Pluripotency. Annual Review of Genomics and Human Genetics, 2011, 12, 165-185.	2.5	33
287	Stem Cells & amp; Regenerative Medicine. Pancreatic Islet Biology, 2011, , .	0.1	6
288	Role of mechanical factors in fate decisions of stem cells. Regenerative Medicine, 2011, 6, 229-240.	0.8	155
289	Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nature Cell Biology, 2011, 13, 753-761.	4.6	224
290	Gene Targeting and Subsequent Site-Specific Transgenesis at the β-actin(ACTB) Locus in Common Marmoset Embryonic Stem Cells. Stem Cells and Development, 2011, 20, 1587-1599.	1.1	24

#	Article	IF	CITATIONS
291	Dynamic changes in gene expression during human early embryo development: from fundamental aspects to clinical applications. Human Reproduction Update, 2011, 17, 272-290.	5.2	121
292	Human pluripotent stem cells for genetic disease modeling and drug screening. Regenerative Medicine, 2011, 6, 607-622.	0.8	4
293	The Function of E-Cadherin in Stem Cell Pluripotency and Self-Renewal. Genes, 2011, 2, 229-259.	1.0	68
294	Cell Fusion-Mediated Nuclear Reprogramming of Somatic Cells. , 2011, , 59-69.		0
296	Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nature Cell Biology, 2011, 13, 1070-1075.	4.6	413
297	Chromatin Connections to Pluripotency and Cellular Reprogramming. Cell, 2011, 145, 835-850.	13.5	356
298	Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells. Cell, 2011, 146, 519-532.	13.5	1,156
299	Switching stem cell state through programmed germ cell reprogramming. Differentiation, 2011, 81, 281-291.	1.0	10
301	Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1-11.	1.8	62
302	Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming. Antioxidants and Redox Signaling, 2011, 15, 1799-1820.	2.5	31
303	The Function of Nanog in Pluripotency. , 2011, , 99-112.		0
304	Linking X chromosome inactivation to pluripotency: Necessity or fate?. Trends in Molecular Medicine, 2011, 17, 329-336.	3.5	12
305	New Lessons from Random X-Chromosome Inactivation in the Mouse. Journal of Molecular Biology, 2011, 409, 62-69.	2.0	11
306	Choreographing pluripotency and cell fate with transcription factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 337-349.	0.9	15
307	Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo. Developmental Biology, 2011, 349, 350-362.	0.9	54
308	The Pou5f1/Pou3f-dependent but SoxB-independent regulation of conserved enhancer N2 initiates Sox2 expression during epiblast to neural plate stages in vertebrates. Developmental Biology, 2011, 352, 354-366.	0.9	63
309	FGF4-dependent stem cells derived from rat blastocysts differentiate along the trophoblast lineage. Developmental Biology, 2011, 351, 110-119.	0.9	59
310	iPS cells: A source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2011, 50, 327-332.	0.9	152

	Сітатіс	on Report	
#	Article	IF	CITATIONS
311	Methods for extracting function from mammalian genomes. Methods, 2011, 53, 329-330.	1.9	0
312	FGF2 Sustains NANOG and Switches the Outcome of BMP4-Induced Human Embryonic Stem Cell Differentiation. Cell Stem Cell, 2011, 8, 326-334.	5.2	216
313	Isolation of Epiblast Stem Cells from Preimplantation Mouse Embryos. Cell Stem Cell, 2011, 8, 318-325.	5.2	161
314	Primed for Pluripotency. Cell Stem Cell, 2011, 8, 241-242.	5.2	7
315	Clever Leukemic Stem Cells Branch Out. Cell Stem Cell, 2011, 8, 242-244.	5.2	9
316	miR-371-3 Expression Predicts Neural Differentiation Propensity in Human Pluripotent Stem Cells. Cell Stem Cell, 2011, 8, 695-706.	5.2	126
317	BRACHYURY and CDX2 Mediate BMP-Induced Differentiation of Human and Mouse Pluripotent Stem Cells into Embryonic and Extraembryonic Lineages. Cell Stem Cell, 2011, 9, 144-155.	5.2	340
318	The multi-potentiality of skin-derived stem cells in pigs. Theriogenology, 2011, 75, 1372-1380.	0.9	10
319	Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology, 2011, 75, 513-526.	0.9	69
320	X-chromosome epigenetic reprogramming in pluripotent stem cells via noncoding genes. Seminars in Cell and Developmental Biology, 2011, 22, 336-342.	2.3	27
321	Use of implantable temperature transponders for the determination of air cell temperature, eggshell water vapor conductance, and their functional relationships in embryonated broiler hatching eggs ,. Poultry Science, 2011, 90, 1191-1196.	1.5	13
322	Human Pluripotent Stem Cells: Decoding the NaÃ ⁻ ve State. Science Translational Medicine, 2011, 3, 76ps10.	5.8	9
323	Of Stem Cells and Germ Cells. Reproduction in Domestic Animals, 2011, 46, 53-59.	0.6	1
324	The Coupling of X-Chromosome Inactivation to Pluripotency. Annual Review of Cell and Developmental Biology, 2011, 27, 611-629.	4.0	35
325	Transforming Growth Factor-Beta Superfamily in Mouse Embryonic Stem Cell Self-Renewal. Vitamins and Hormones, 2011, 87, 341-365.	0.7	1
326	Factors Regulating Pluripotency and Differentiation in Early Mammalian Embryos and Embryo-derived Stem Cells. Vitamins and Hormones, 2011, 87, 1-37.	0.7	11
327	Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18283-18288.	3.3	224
328	lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 2011, 477, 295-300.	13.7	1,749

#	Article	IF	CITATIONS
329	Cell Cycle Regulation by microRNAs in Stem Cells. Results and Problems in Cell Differentiation, 2011, 53, 459-472.	0.2	31
330	The LIF/STAT3 Pathway in ES Cell Self-renewal. , 0, , .		0
331	Molecular Biomarkers of Embryonic Stem Cells. , 2011, , .		0
332	Molecular Mechanisms of Pluripotency in Murine Embryonic Stem Cells. , 2011, , .		0
333	Pancreatic Stem Cells: Unresolved Business. , 2011, , .		1
334	Improved differentiation protocol of rat bone marrow precursors to functional islet like cells. Stem Cell Studies, 2011, 1, 5.	0.2	10
335	Medaka Cleavage Embryos Are Capable of Generating ES-Like Cell Cultures. International Journal of Biological Sciences, 2011, 7, 418-425.	2.6	15
336	Signaling Pathways in Mouse Embryo Stem Cell Self-Renewal. , 2011, , .		0
337	Very Small Embryonic/Epiblast-Like Stem Cells (VSELs) Residing in Adult Tissues and Their Role in Tissue Rejuvenation and Regeneration. , 2011, , .		0
338	Methods to Generate Chimeric Mice from Embryonic Stem Cells. , 2011, , .		2
339	Stem Cells: General Features and Characteristics. , 0, , .		10
340	Alternative Splicing in Self-Renewal of Embryonic Stem Cells. Stem Cells International, 2011, 2011, 1-8.	1.2	8
341	Patient-Specific Pluripotent Stem Cells in Neurological Diseases. Stem Cells International, 2011, 2011, 1-17.	1.2	34
342	Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development. Genes, 2011, 2, 298-312.	1.0	2
343	A Virus-Free Poly-Promoter Vector Induces Pluripotency in Quiescent Bovine Cells under Chemically Defined Conditions of Dual Kinase Inhibition. PLoS ONE, 2011, 6, e24501.	1.1	68
344	Role of Neural Stem Cells in Parkinsons Disease. Current Signal Transduction Therapy, 2011, 6, 337-340.	0.3	0
345	Stem Cells with Neurogenic Potential and Steroid Hormones. Current Topics in Medicinal Chemistry, 2011, 11, 1684-1693.	1.0	5
346	Looking into the Black Box: Insights into the Mechanisms of Somatic Cell Reprogramming. Genes, 2011, 2, 81-106.	1.0	7

#	Article	IF	CITATIONS
348	A proposal of a novel experimental procedure to genetically identify disease gene loci in humans. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2011, 87, 91-103.	1.6	0
349	Cellular therapies for lung disease: A distant horizon. Respirology, 2011, 16, 223-237.	1.3	39
350	The transcriptional and signalling networks of pluripotency. Nature Cell Biology, 2011, 13, 490-496.	4.6	284
351	Direct reprogramming of fibroblasts into epiblast stem cells. Nature Cell Biology, 2011, 13, 66-71.	4.6	111
352	Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO Journal, 2011, 30, 2373-2387.	3.5	131
353	Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends in Cell Biology, 2011, 21, 274-282.	3.6	71
354	Association of Rex-1 to target genes supports its interaction with Polycomb function. Stem Cell Research, 2011, 7, 1-16.	0.3	18
355	Interspecies chimera between primate embryonic stem cells and mouse embryos: Monkey ESCs engraft into mouse embryos, but not post-implantation fetuses. Stem Cell Research, 2011, 7, 28-40.	0.3	17
356	MicroRNAs regulating cell pluripotency and vascular differentiation. Vascular Pharmacology, 2011, 55, 69-78.	1.0	14
357	Effect of glucose concentration during embryoid body (EB) formation from mouse embryonic stem cells on EB growth and cell differentiation. Journal of Bioscience and Bioengineering, 2011, 111, 92-97.	1.1	22
358	Nanog Overcomes Reprogramming Barriers and Induces Pluripotency in Minimal Conditions. Current Biology, 2011, 21, 65-71.	1.8	154
359	Phagocytosis: Coupling of Mitochondrial Uncoupling andÂEngulfment. Current Biology, 2011, 21, R852-R854.	1.8	4
360	Blimp1 Expression Predicts Embryonic Stem Cell Development InÂVitro. Current Biology, 2011, 21, 1759-1765.	1.8	43
361	Embryonic Stem Cells: Testing the Germ-Cell Theory. Current Biology, 2011, 21, R850-R852.	1.8	2
362	Gene expression heterogeneities in embryonic stem cell populations: origin and function. Current Opinion in Cell Biology, 2011, 23, 650-656.	2.6	96
363	Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biology, 2011, 13, 838-845.	4.6	475
364	The origin and identity of embryonic stem cells. Development (Cambridge), 2011, 138, 3-8.	1.2	183
365	Effect of exogenous factors on the induction of spicule formation in sea urchin embryonic cell cultures. Russian Journal of Developmental Biology, 2011, 42, 342-348.	0.1	3

#	Article	IF	CITATIONS
366	Expression patterns of germ line specific genes in mouse and human pluripotent stem cells are associated with regulation of ground and primed state of pluripotency. Russian Journal of Developmental Biology, 2011, 42, 355-375.	0.1	7
367	FGF signalling inhibits neural induction in human embryonic stem cells. EMBO Journal, 2011, 30, 4874-4884.	3.5	123
368	Establishment of goat embryonic stem cells from in vivo produced blastocystâ€stage embryos. Molecular Reproduction and Development, 2011, 78, 202-211.	1.0	37
369	Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer and Metastasis Reviews, 2011, 30, 311-324.	2.7	48
370	XCI in preimplantation mouse and human embryos: first there is remodelling…. Human Genetics, 2011, 130, 203-215.	1.8	29
371	X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Human Genetics, 2011, 130, 265-280.	1.8	58
372	Pluripotency of Male Germline Stem Cells. Molecules and Cells, 2011, 32, 113-122.	1.0	4
373	In vitro immunogenicity of undifferentiated pluripotent stem cells (PSC) and derived lineages. Seminars in Immunopathology, 2011, 33, 551-562.	2.8	21
374	Present state and future perspectives of using pluripotent stem cells in toxicology research. Archives of Toxicology, 2011, 85, 79-117.	1.9	143
375	Wnt/β-catenin Signaling in Embryonic Stem Cell Self-renewal and Somatic Cell Reprogramming. Stem Cell Reviews and Reports, 2011, 7, 836-846.	5.6	129
376	LacdiNAc (GalNAcβ1-4GlcNAc) Contributes to Self-Renewal of Mouse Embryonic Stem Cells by Regulating Leukemia Inhibitory Factor/STAT3 Signaling. Stem Cells, 2011, 29, 641-650.	1.4	55
377	Snail and the microRNA-200 Family Act in Opposition to Regulate Epithelial-to-Mesenchymal Transition and Germ Layer Fate Restriction in Differentiating ESCs. Stem Cells, 2011, 29, 764-776.	1.4	73
378	Activin/Nodal Signaling Controls Divergent Transcriptional Networks in Human Embryonic Stem Cells and in Endoderm Progenitors. Stem Cells, 2011, 29, 1176-1185.	1.4	150
379	Distinct Developmental Ground States of Epiblast Stem Cell Lines Determine Different Pluripotency Features. Stem Cells, 2011, 29, 1496-1503.	1.4	98
380	Reprogramming the pluripotent cell cycle: Restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells. Journal of Cellular Physiology, 2011, 226, 1149-1156.	2.0	85
381	Mechanistic insights into reprogramming to induced pluripotency. Journal of Cellular Physiology, 2011, 226, 868-878.	2.0	45
383	Chemical Control of Stem Cell Fate and Developmental Potential. Angewandte Chemie - International Edition, 2011, 50, 200-242.	7.2	124
384	The "occlusis―model of cell fate restriction. BioEssays, 2011, 33, 13-20.	1.2	9

#	Article	IF	CITATIONS
385	Regenerative Chemical Biology: Current Challenges and Future Potential. Chemistry and Biology, 2011, 18, 413-424.	6.2	25
386	Activin/Nodal Signaling and Pluripotency. Vitamins and Hormones, 2011, 85, 39-58.	0.7	10
387	Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells. Epigenetics, 2011, 6, 1149-1161.	1.3	25
388	Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2198-2207.	1.8	225
389	Dynamic Changes in Epigenetic Marks and Gene Expression During Porcine Epiblast Specification. Cellular Reprogramming, 2011, 13, 345-360.	0.5	15
390	Dual Roles of Oct4 in the Maintenance of Mouse P19 Embryonal Carcinoma Cells: As Negative Regulator of Wnt/l²-Catenin Signaling and Competence Provider for Brachyury Induction. Stem Cells and Development, 2011, 20, 621-633.	1.1	19
391	Mapping the networks for pluripotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2238-2246.	1.8	16
392	Defining pluripotent stem cells through quantitative proteomic analysis. Expert Review of Proteomics, 2011, 8, 29-42.	1.3	26
393	The evolving biology of small molecules: controlling cell fate and identity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2208-2221.	1.8	74
394	Paracrine and Epigenetic Control of Trophectoderm Differentiation from Human Embryonic Stem Cells: The Role of Bone Morphogenic Protein 4 and Histone Deacetylases. Stem Cells and Development, 2011, 20, 1601-1614.	1.1	44
395	Transcription factor heterogeneity and epiblast pluripotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2230-2237.	1.8	30
396	Mouse pluripotent stem cells at a glance. Journal of Cell Science, 2011, 124, 3727-3732.	1.2	31
397	Rat Blastocyst-Derived Stem Cells Are Precursors of Embryonic and Extraembryonic Lineages1. Biology of Reproduction, 2011, 84, 1128-1138.	1.2	8
398	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development (Cambridge), 2011, 138, 4853-4865.	1.2	69
399	Control of embryonic stem cell metastability by l-proline catabolism. Journal of Molecular Cell Biology, 2011, 3, 108-122.	1.5	66
400	A genome-wide RNAi screen in mouse embryonic stem cells identifies Mp1 as a key mediator of differentiation. Journal of Experimental Medicine, 2011, 208, 2675-2689.	4.2	24
401	p53, Stem Cells, and Reprogramming: Tumor Suppression beyond Guarding the Genome. Genes and Cancer, 2011, 2, 404-419.	0.6	125
402	Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells. Development (Cambridge), 2011, 138, 4363-4374.	1.2	83

#	Article	IF	CITATIONS
403	The microenvironment patterns the pluripotent mouse epiblast through paracrine Furin and Pace4 proteolytic activities. Genes and Development, 2011, 25, 1871-1880.	2.7	42
404	Pluripotent Stem Cells for the Study of CNS Development. Frontiers in Molecular Neuroscience, 2011, 4, 30.	1.4	40
405	The different shades of mammalian pluripotent stem cells. Human Reproduction Update, 2011, 17, 254-271.	5.2	47
406	MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo. Cell Cycle, 2011, 10, 584-591.	1.3	15
407	Pluripotency and lineages in the mammalian blastocyst: An evolutionary view. Cell Cycle, 2011, 10, 1731-1738.	1.3	6
408	Leukemia Inhibitory Factor (LIF)-dependent, Pluripotent Stem Cells Established from Inner Cell Mass of Porcine Embryos. Journal of Biological Chemistry, 2011, 286, 28948-28953.	1.6	93
409	Generation of Stable Pluripotent Stem Cells From NOD Mouse Tail-Tip Fibroblasts. Diabetes, 2011, 60, 1393-1398.	0.3	20
410	Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes and Development, 2011, 25, 238-250.	2.7	303
411	Switching on pluripotency: a perspective on the biological requirement of Nanog. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2222-2229.	1.8	35
412	Differentiation of an embryonic stem cell to hemogenic endothelium by defined factors: essential role of bone morphogenetic protein 4. Development (Cambridge), 2011, 138, 2833-2843.	1.2	35
413	Graded Nodal/Activin Signaling Titrates Conversion of Quantitative Phospho-Smad2 Levels into Qualitative Embryonic Stem Cell Fate Decisions. PLoS Genetics, 2011, 7, e1002130.	1.5	80
414	The Liberation of Embryonic Stem Cells. PLoS Genetics, 2011, 7, e1002019.	1.5	84
415	Framing pluripotency: iPS cells and the shaping of stem cell science. New Genetics and Society, 2011, 30, 415-431.	0.7	18
416	HLA-G Expression in Human Embryonic Stem Cells and Preimplantation Embryos. Journal of Immunology, 2011, 186, 2663-2671.	0.4	73
417	Ubiquitin-mediated regulation of JAK-STAT signaling in embryonic stem cells. Jak-stat, 2012, 1, 168-175.	2.2	20
418	Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells. Cell Adhesion and Migration, 2012, 6, 59-73.	1.1	169
419	Wnt/β-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4485-4490.	3.3	313
420	Extracellular Matrix Promotes Highly Efficient Cardiac Differentiation of Human Pluripotent Stem Cells. Circulation Research, 2012, 111, 1125-1136.	2.0	416

#	Article	IF	CITATIONS
421	Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development (Cambridge), 2012, 139, 129-139.	1.2	143
422	Human Amnion–Derived Cells as a Reliable Source of Stem Cells. Current Molecular Medicine, 2012, 12, 1340-1349.	0.6	20
423	The lesser known story of X chromosome reactivation. Cell Cycle, 2012, 11, 229-235.	1.3	7
424	Stem Cells in Adult Human Ovaries: From Female Fertility to Ovarian Cancer. Current Pharmaceutical Design, 2012, 18, 283-292.	0.9	19
425	Neural stem cells: Brain building blocks and beyond. Upsala Journal of Medical Sciences, 2012, 117, 132-142.	0.4	60
426	Reconciling the different roles of Gsk3î² in "naÃ⁻ve―and "primed―pluripotent stem cells. Cell Cycle, 201 11, 2991-2996.	12. 1.3	27
427	DNA and Chromatin Modification Networks Distinguish Stem Cell Pluripotent Ground States. Molecular and Cellular Proteomics, 2012, 11, 1036-1047.	2.5	15
428	Global Gene Expression Analysis of Very Small Embryonic-Like Stem Cells Reveals that the <i>Ezh2</i> -Dependent Bivalent Domain Mechanism Contributes to Their Pluripotent State. Stem Cells and Development, 2012, 21, 1639-1652.	1.1	65
429	Reduced Oxygen Concentration Enhances Conversion of Embryonic Stem Cells to Epiblast Stem Cells. Stem Cells and Development, 2012, 21, 1239-1249.	1.1	16
430	Overexpression of bone morphogenetic protein 4 in STO fibroblast feeder cells represses the proliferation of mouse embryonic stem cells <i>in vitro</i> . Experimental and Molecular Medicine, 2012, 44, 457.	3.2	2
431	Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development (Cambridge), 2012, 139, 3301-3305.	1.2	70
432	Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development (Cambridge), 2012, 139, 3926-3937.	1.2	75
433	Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. Journal of Molecular Endocrinology, 2012, 49, R89-R111.	1.1	69
434	Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Human Molecular Genetics, 2012, 21, 2054-2067.	1.4	78
435	Adherens Junctions and Stem Cells. Sub-Cellular Biochemistry, 2012, 60, 359-377.	1.0	10
436	Histone Deacetylase Inhibitors in Cell Pluripotency, Differentiation, and Reprogramming. Stem Cells International, 2012, 2012, 1-10.	1.2	103
437	Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 835-840.	3.3	83
438	LKB1 Controls the Pluripotent State of Human Embryonic Stem Cells. Cellular Reprogramming, 2012, 14, 164-170.	0.5	16

#	Article	IF	CITATIONS
439	Teratocarcinoma Formation in Embryonic Stem Cell-Derived Neural Progenitor Hippocampal Transplants. Cell Transplantation, 2012, 21, 1603-1611.	1.2	19
440	Reprogramming Pig Fetal Fibroblasts Reveals a Functional LIF Signaling Pathway. Cellular Reprogramming, 2012, 14, 112-122.	0.5	28
441	Cell fate regulation in early mammalian development. Physical Biology, 2012, 9, 045002.	0.8	33
442	Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nature Biotechnology, 2012, 30, 278-282.	9.4	109
443	InÂVivo Differentiation Potential of Epiblast Stem Cells Revealed by Chimeric Embryo Formation. Cell Reports, 2012, 2, 1571-1578.	2.9	161
444	Derivation of dopaminergic neurons from pluripotent stem cells. Progress in Brain Research, 2012, 200, 243-263.	0.9	56
445	Modulation of Pluripotency in the Porcine Embryo and iPS Cells. PLoS ONE, 2012, 7, e49079.	1.1	78
446	Specification of functional neurons and glia from human pluripotent stem cells. Protein and Cell, 2012, 3, 818-825.	4.8	15
447	Why is it so Difficult to Derive Pluripotent Stem Cells in Domestic Ungulates?. Reproduction in Domestic Animals, 2012, 47, 11-17.	0.6	35
448	The Harmonies Played by TGF-β in Stem Cell Biology. Cell Stem Cell, 2012, 11, 751-764.	5.2	165
449	Model systems for studying trophoblast differentiation from human pluripotent stem cells. Cell and Tissue Research, 2012, 349, 809-824.	1.5	53
450	Molecular Identification of t: Vps52 Promotes Pluripotential Cell Differentiation through Cell–Cell Interactions. Cell Reports, 2012, 2, 1363-1374.	2.9	31
451	Modeling human hematopoietic cell development from pluripotent stem cells. Experimental Hematology, 2012, 40, 601-611.	0.2	35
452	Loss of Oct4 expression during the development of murine embryoid bodies. Developmental Biology, 2012, 371, 170-179.	0.9	22
453	X-chromosome inactivation in monkey embryos and pluripotent stem cells. Developmental Biology, 2012, 371, 146-155.	0.9	23
454	Cellular Heterogeneity During Embryonic Stem Cell Differentiation to Epiblast Stem Cells Is Revealed by the ShcD/RaLP Adaptor Protein. Stem Cells, 2012, 30, 2423-2436.	1.4	21
455	Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integrative Biology (United Kingdom), 2012, 4, 1049-1058.	0.6	132
456	Generation and Characterization of LIF-dependent Canine Induced Pluripotent Stem Cells from Adult Dermal Fibroblasts. Stem Cells and Development, 2012, 21, 2288-2297.	1.1	67

#	Article	IF	CITATIONS
457	The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature, 2012, 488, 409-413.	13.7	322
458	Epiblast Stem Cell-Based System Reveals Reprogramming Synergy of Germline Factors. Cell Stem Cell, 2012, 10, 425-439.	5.2	134
459	The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 110-117.	5.2	23
460	Expanding the Boundaries of Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 666-677.	5.2	58
461	Pluripotency Takes Off without Blimp1. Cell Stem Cell, 2012, 11, 1-2.	5.2	8
462	Epigenetic Alterations in Human Pluripotent Stem Cells: A Tale of Two Cultures. Cell Stem Cell, 2012, 11, 9-15.	5.2	31
463	Importance of culture conditions during the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells. Theriogenology, 2012, 78, 1243-1251.e2.	0.9	23
464	Pluripotency in the Embryo and in Culture. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008128-a008128.	2.3	256
465	Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. Molecular BioSystems, 2012, 8, 744.	2.9	52
467	Wnt Pathway Regulation of Embryonic Stem Cell Self-Renewal. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007971-a007971.	2.3	77
468	JAK/STAT3 signalling is sufficient and dominant over antagonistic cues for the establishment of naive pluripotency. Nature Communications, 2012, 3, 817.	5.8	93
469	A regulatory loop involving Dies1 and miRâ€125a controls BMP4 signaling in mouse embryonic stem cells. FASEB Journal, 2012, 26, 3957-3968.	0.2	32
470	Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nature Biotechnology, 2012, 30, 531-542.	9.4	102
471	Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. Rna, 2012, 18, 253-264.	1.6	84
472	Preferential emergence of cell types expressing markers for primitive endoderm lineages in mouse embryonic stem cells expressing exogenous EGAM1 homeoprotein. Journal of Bioscience and Bioengineering, 2012, 114, 342-346.	1.1	6
473	Cell-Surface Proteomics Identifies Lineage-Specific Markers of Embryo-Derived Stem Cells. Developmental Cell, 2012, 22, 887-901.	3.1	134
474	Nkx1-2 is a transcriptional repressor and is essential for the activation of Brachyury in P19 mouse embryonal carcinoma cell. Differentiation, 2012, 83, 282-292.	1.0	22
475	Accessing na \tilde{A} ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	1.5	92

#	Article	IF	CITATIONS
476	Understanding Pancreas Development for β-Cell Repair and Replacement Therapies. Current Diabetes Reports, 2012, 12, 481-489.	1.7	7
477	Embryonic and induced pluripotent stem cell differentiation as a tool in neurobiology. Biotechnology Journal, 2012, 7, 1156-1168.	1.8	9
478	E-cadherin and, in Its Absence, N-cadherin Promotes Nanog Expression in Mouse Embryonic Stem Cells via STAT3 Phosphorylation. Stem Cells, 2012, 30, 1842-1851.	1.4	66
479	Pluripotency and its layers of complexity. Cell Regeneration, 2012, 1, 1:7.	1.1	5
480	Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development (Cambridge), 2012, 139, 4123-4132.	1.2	99
481	Transcriptional regulatory networks in epiblast cells and during anterior neural plate development as modeled in epiblast stem cells. Development (Cambridge), 2012, 139, 4675-4675.	1.2	2
482	Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature, 2012, 490, 407-411.	13.7	149
483	Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming. Journal of Cell Science, 2012, 125, 5609-5620.	1.2	142
484	Self-formation of layered neural structures in three-dimensional culture of ES cells. Current Opinion in Neurobiology, 2012, 22, 768-777.	2.0	137
485	Combinatorial control of cell fate and reprogramming in the mammalian germline. Current Opinion in Genetics and Development, 2012, 22, 466-474.	1.5	36
486	The development of pluripotent stem cells. Current Opinion in Genetics and Development, 2012, 22, 403-408.	1.5	12
487	Microenvironment-mediated reversion of epiblast stem cells by reactivation of repressed JAK–STAT signaling. Integrative Biology (United Kingdom), 2012, 4, 1367.	0.6	12
489	Induction of Somatic Cell Reprogramming Using the MicroRNA miR-302. Progress in Molecular Biology and Translational Science, 2012, 111, 83-107.	0.9	14
490	Neural Development and Stem Cells. , 2012, , .		0
491	Nuclear Reprogramming and Stem Cells. , 2012, , .		1
492	LIF-Dependent Signaling: New Pieces in the Lego. Stem Cell Reviews and Reports, 2012, 8, 1-15.	5.6	79
493	Human and Mouse Induced Pluripotent Stem Cells Are Differentially Reprogrammed in Response to Kinase Inhibitors. Stem Cells and Development, 2012, 21, 1287-1298.	1.1	21
494	Generation of Functional Primordial Germ Cells from Pluripotent Stem Cells. Journal of Mammalian Ova Research, 2012, 29, 2-10.	0.1	3

#	Article	IF	CITATIONS
495	Inhibition of activin/nodal signalling is necessary for pancreatic differentiation of human pluripotent stem cells. Diabetologia, 2012, 55, 3284-3295.	2.9	55
496	Primordial Germ Cells in Mice. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008375-a008375.	2.3	308
497	DNA Methylation Profiles Define Stem Cell Identity and Reveal a Tight Embryonic–Extraembryonic Lineage Boundary. Stem Cells, 2012, 30, 2732-2745.	1.4	77
499	Adherens Junctions: from Molecular Mechanisms to Tissue Development and Disease. Sub-Cellular Biochemistry, 2012, , .	1.0	6
501	A System to Enrich for Primitive Streak-Derivatives, Definitive Endoderm and Mesoderm, from Pluripotent Cells in Culture. PLoS ONE, 2012, 7, e38645.	1.1	5
502	X-Chromosome Inactivation in Rett Syndrome Human Induced Pluripotent Stem Cells. Frontiers in Psychiatry, 2012, 3, 24.	1.3	41
503	Troika of the Mouse Blastocyst: Lineage Segregation and Stem Cells. Current Stem Cell Research and Therapy, 2012, 7, 78-91.	0.6	26
504	Established Preblastocyst- and Blastocyst-Derived ES Cell Lines Have Highly Similar Gene Expression Profiles, Despite Their Differing Requirements for Derivation Culture Conditions. Cellular Reprogramming, 2012, 14, 1-7.	0.5	1
505	Neural and Dopaminergic Differentiation of Human Pluripotent Stem Cells. , 2012, , 265-287.		0
507	Protein Kinase C Mediated Extraembryonic Endoderm Differentiation of Human Embryonic Stem Cells. Stem Cells, 2012, 30, 461-470.	1.4	62
508	Concise Review: Induced Pluripotent Stem Cells Versus Embryonic Stem Cells: Close Enough or Yet Too Far Apart?. Stem Cells, 2012, 30, 33-41.	1.4	184
509	Concise Review: A Chemical Approach to Control Cell Fate and Function. Stem Cells, 2012, 30, 61-68.	1.4	88
510	Status of Genomic Imprinting in Epigenetically Distinct Pluripotent Stem Cells. Stem Cells, 2012, 30, 161-168.	1.4	38
511	The molecular circuitry underlying pluripotency in embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 443-456.	6.6	12
512	Thermal Stability of Fibroblast Growth Factor Protein Is a Determinant Factor in Regulating Self-Renewal, Differentiation, and Reprogramming in Human Pluripotent Stem Cells. Stem Cells, 2012, 30, 623-630.	1.4	107
513	Activin and BMP4 Synergistically Promote Formation of Definitive Endoderm in Human Embryonic Stem Cells. Stem Cells, 2012, 30, 631-642.	1.4	97
514	Derivation and Invasive Function of Trophoblast from Human Pluripotent Stem Cells. , 2012, , 101-109.		1
515	X chromosome inactivation in the cycle of life. Development (Cambridge), 2012, 139, 2085-2089.	1.2	49

	CHANOR		
#	Article	IF	Citations
516	The expanding role of miR-302–367 in pluripotency and reprogramming. Cell Cycle, 2012, 11, 1517-1523.	1.3	61
517	Pancreatic Stem Cells: From Possible to Probable. Stem Cell Reviews and Reports, 2012, 8, 647-657.	5.6	16
518	Human pre-implantation embryo development. Development (Cambridge), 2012, 139, 829-841.	1.2	289
519	Derivation and Characterization of Embryonic Stem Cells Lines Derived from Transgenic Fischer 344 and Dark Agouti Rats. Stem Cells and Development, 2012, 21, 1571-1586.	1.1	16
520	Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development (Cambridge), 2012, 139, 2866-2877.	1.2	87
521	Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Molecular Reproduction and Development, 2012, 79, 461-477.	1.0	30
522	Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin. Human Molecular Genetics, 2012, 21, 751-764.	1.4	46
523	Generation of human vascular smooth muscle subtypes provides insight into embryological origin–dependent disease susceptibility. Nature Biotechnology, 2012, 30, 165-173.	9.4	321
524	The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development (Cambridge), 2012, 139, 2288-2298.	1.2	156
525	Mechanism of MicroRNA-Mediated Global DNA Demethylation in Human iPS Cells. , 2012, , 117-134.		0
526	microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays, 2012, 34, 670-680.	1.2	70
527	Pluripotency and Nuclear Reprogramming. Annual Review of Biochemistry, 2012, 81, 737-765.	5.0	37
528	Delineating nuclear reprogramming. Protein and Cell, 2012, 3, 329-345.	4.8	3
530	HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO Journal, 2012, 31, 2103-2116.	3.5	480
531	Generation of Chimeric Rhesus Monkeys. Cell, 2012, 148, 285-295.	13.5	141
532	Developmental incompatibility of human parthenogenetic embryonic stem cells in mouse blastocysts. In Vitro Cellular and Developmental Biology - Animal, 2012, 48, 156-164.	0.7	0
533	From RNAi Screens to Molecular Function in Embryonic Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 32-42.	5.6	13
534	Retinoic Acid Enhances Skeletal Myogenesis in Human Embryonic Stem Cells by Expanding the Premyogenic Progenitor Population. Stem Cell Reviews and Reports, 2012, 8, 482-493.	5.6	48

		CITATION RE	PORT	
#	Article		IF	Citations
535	Establishment of epigenetic patterns in development. Chromosoma, 2012, 121, 251-2	262.	1.0	37
536	Induction of pluripotent stem cells from fetal and adult cynomolgus monkey fibroblast human transcription factors. Primates, 2012, 53, 205-213.	ts using four	0.7	21
537	Self-organizing circuitry and emergent computation in mouse embryonic stem cells. Se Research, 2012, 8, 324-333.	zem Cell	0.3	21
538	WNTing embryonic stem cells. Trends in Cell Biology, 2012, 22, 159-168.		3.6	64
539	Rat placentation: An experimental model for investigating the hemochorial maternal-fe Placenta, 2012, 33, 233-243.	etal interface.	0.7	180
540	An updated view on stem cell differentiation into smooth muscle cells. Vascular Pharm 56, 280-287.	acology, 2012,	1.0	11
541	Human hypoblast formation is not dependent on FGF signalling. Developmental Biolog 358-363.	зу, 2012, 361,	0.9	208
542	Mapping mouse hemangioblast maturation from headfold stages. Developmental Biol	ogy, 2012, 365, 1-13.	0.9	11
543	Twenty Years of Embryonic Stem Cell Research in Farm Animals. Reproduction in Dom 2012, 47, 80-85.	estic Animals,	0.6	31
544	Induced Pluripotent Stem Cells from Pigs and Other Ungulate Species: An Alternative Stem Cells?. Reproduction in Domestic Animals, 2012, 47, 92-97.	to Embryonic	0.6	44
545	Recent Advances in Stem and Germ Cell Research: Implications for the Derivation of Pi Cells. Reproduction in Domestic Animals, 2012, 47, 98-106.	g Pluripotent	0.6	12
546	Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing conditions. Protein and Cell, 2012, 3, 71-79.	culture	4.8	33
547	Quantitative and semiquantitative immunoassay of growth factors and cytokines in th medium of STO and CF-1 mouse feeder cells. In Vitro Cellular and Developmental Biolo 48, 1-11.	ie conditioned ogy - Animal, 2012,	0.7	25
548	Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and oste differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 371	ogenic -382.	1.3	14
549	Early embryonic development, assisted reproductive technologies, and pluripotent ste in domestic mammals. Veterinary Journal, 2013, 197, 128-142.	m cell biology	0.6	34
550	Generation of eggs from mouse embryonic stem cells and induced pluripotent stem ce Protocols, 2013, 8, 1513-1524.	ells. Nature	5.5	188
553	Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem Structural and Molecular Biology, 2013, 20, 1131-1139.	cells. Nature	3.6	1,416
554	The role of pluripotency gene regulatory network components in mediating transitions pluripotent cell states. Current Opinion in Genetics and Development, 2013, 23, 504-	s between 511.	1.5	48

CITATI	0.11	DEDO	D.T.
	()N	$\mathbf{K} \in \mathbf{P}(\mathbf{A})$	1 N
		ILLI U	IX I

#	Article	IF	CITATIONS
555	Reprogramming and Transdifferentiation Shift the Landscape of Regenerative Medicine. DNA and Cell Biology, 2013, 32, 565-572.	0.9	22
556	Expression of TGFβ family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems. Russian Journal of Developmental Biology, 2013, 44, 7-18.	0.1	2
557	Stepwise Differentiation from NaÃ⁻ve State Pluripotent Stem Cells to Functional Primordial Germ Cells Through an Epiblast-Like State. Methods in Molecular Biology, 2013, 1074, 175-183.	0.4	24
558	Chemical Approaches to Stem Cell Biology and Therapeutics. Cell Stem Cell, 2013, 13, 270-283.	5.2	156
559	Isolation and Culture of Rabbit Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1074, 39-49.	0.4	4
560	microRNA Control of Mouse and Human Pluripotent Stem Cell Behavior. Annual Review of Cell and Developmental Biology, 2013, 29, 213-239.	4.0	75
561	Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nature Communications, 2013, 4, 2403.	5.8	139
562	L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation. Stem Cell Reports, 2013, 1, 307-321.	2.3	80
563	Synergistic Mechanisms of DNA Demethylation during Transition to Ground-State Pluripotency. Stem Cell Reports, 2013, 1, 518-531.	2.3	115
564	Development: Sketch for a Theory ofÂOct4. Current Biology, 2013, 23, R1014-R1016.	1.8	2
565	Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Developmental Biology, 2013, 375, 54-64.	0.9	298
566	Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO Journal, 2013, 32, 2561-2574.	3.5	199
567	Converting Mouse Epiblast Stem Cells into Mouse Embryonic Stem Cells by Using Small Molecules. Methods in Molecular Biology, 2013, 1074, 31-37.	0.4	5
568	Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504, 282-286.	13.7	924
569	Influence of Activin A Supplementation During Human Embryonic Stem Cell Derivation on Germ Cell Differentiation Potential. Stem Cells and Development, 2013, 22, 3141-3155.	1.1	23
571	Dual Kinase Inhibition Promotes Pluripotency in Finite Bovine Embryonic Cell Lines. Stem Cells and Development, 2013, 22, 1728-1742.	1.1	29
572	Stem Cells from Early Mammalian Embryos. , 2013, , 41-57.		0
573	Potential for pharmacological manipulation of human embryonic stem cells. British Journal of Pharmacology, 2013, 169, 269-289.	2.7	11

		FORT	
#	Article	IF	CITATIONS
574	Embryonic stem cells shed new light on the developmental roles of p53. Cell and Bioscience, 2013, 3, 42.	2.1	9
575	Effect of <scp>TGF</scp> â€i²1 Superfamily Members on Survival of Buffalo (<i><scp>B</scp>ubalus) Tj ETQq1 1</i>	0,784314	⊧rgBT /Ονer
576	Roles of CDX2 and EOMES in human induced trophoblast progenitor cells. Biochemical and Biophysical Research Communications, 2013, 431, 197-202.	1.0	23
577	The Cell-Cycle State of Stem Cells Determines Cell Fate Propensity. Cell, 2013, 155, 135-147.	13.5	541
578	Concise Review: Pursuing Self-Renewal and Pluripotency with the Stem Cell Factor Nanog. Stem Cells, 2013, 31, 1227-1236.	1.4	87
579	Mouse Primed Embryonic Stem Cells Could Be Maintained and Reprogrammed on Human Amnion Epithelial Cells. Stem Cells and Development, 2013, 22, 320-329.	1.1	10
580	Characteristics of stem cells. , 2013, , 1-32.		0
581	Pivots of pluripotency: The roles of non-coding RNA in regulating embryonic and induced pluripotent stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2385-2394.	1.1	31
582	Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110330.	1.8	374
583	The transcriptional regulation of pluripotency. Cell Research, 2013, 23, 20-32.	5.7	110
584	The transition of mouse pluripotent stem cells from the naÃ⁻ve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody. Biochemical and Biophysical Research Communications, 2013, 430, 1175-1181.	1.0	21
585	Nodal signalling in embryogenesis and tumourigenesis. International Journal of Biochemistry and Cell Biology, 2013, 45, 885-898.	1.2	77
586	Intrapatient Variations in Type 1 Diabetes-specific iPS Cell Differentiation Into Insulin-producing Cells. Molecular Therapy, 2013, 21, 228-239.	3.7	89
587	DNA Repair in Normal Stem Cells. , 2013, , 53-87.		2
588	Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development (Cambridge), 2013, 140, 43-55.	1.2	147
589	Promoting Reprogramming by FGF2 Reveals that the Extracellular Matrix Is a Barrier for Reprogramming Fibroblasts to Pluripotency. Stem Cells, 2013, 31, 729-740.	1.4	44
590	Naive pluripotency is associated with global DNA hypomethylation. Nature Structural and Molecular Biology, 2013, 20, 311-316.	3.6	465
591	Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484.	2.9	56

#	Article	IF	CITATIONS
592	Abundant Nucleostemin Expression Supports the Undifferentiated Properties of Germ Cell Tumors. American Journal of Pathology, 2013, 183, 592-603.	1.9	7
593	High Yields of Oligodendrocyte Lineage Cells from Human Embryonic Stem Cells at Physiological Oxygen Tensions for Evaluation of Translational Biology. Stem Cell Reports, 2013, 1, 437-450.	2.3	83
594	Reprogramming to Pluripotency Using Designer TALE Transcription Factors Targeting Enhancers. Stem Cell Reports, 2013, 1, 183-197.	2.3	74
595	Competitive Interactions Eliminate Unfit Embryonic Stem Cells at the Onset of Differentiation. Developmental Cell, 2013, 26, 19-30.	3.1	199
596	Driving pluripotency and reprogramming: Nuclear receptors at the helm. Seminars in Cell and Developmental Biology, 2013, 24, 670-678.	2.3	6
597	Pluripotency of Induced Pluripotent Stem Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 299-303.	3.0	12
598	Regulation of developmental competence and commitment towards the definitive endoderm lineage in human embryonic stem cells. Stem Cell Research, 2013, 10, 489-502.	0.3	12
599	Generation of Naive-Like Porcine-Induced Pluripotent Stem Cells Capable of Contributing to Embryonic and Fetal Development. Stem Cells and Development, 2013, 22, 473-482.	1.1	124
600	Production of hepatocyte-like cells from human pluripotent stem cells. Nature Protocols, 2013, 8, 430-437.	5.5	292
601	Pluripotent genes in avian stem cells. Development Growth and Differentiation, 2013, 55, 41-51.	0.6	16
602	TGF-β family signaling in stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2280-2296.	1.1	134
603	Minireview: The Diverse Roles of Nuclear Receptors in the Regulation of Embryonic Stem Cell Pluripotency. Molecular Endocrinology, 2013, 27, 864-878.	3.7	16
604	Epigenetics of Reprogramming to Induced Pluripotency. Cell, 2013, 152, 1324-1343.	13.5	277
605	Derivation of human embryonic stem cells using a post–inner cell mass intermediate. Nature Protocols, 2013, 8, 254-264.	5.5	23
606	Mechanisms of Stem Cell Self-Renewal. , 2013, , 67-76.		0
607	Differentiation in Early Development. , 2013, , 139-154.		5
608	Tcf7l1 prepares epiblast cells in the gastrulating mouse embryo for lineage specification. Development (Cambridge), 2013, 140, 1665-1675.	1.2	62
609	The TGFÎ ² superfamily in stem cell biology and early mammalian embryonic development. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2268-2279.	1.1	64

#	Article	IF	CITATIONS
610	Exit from Pluripotency Is Gated by Intracellular Redistribution of the bHLH Transcription Factor Tfe3. Cell, 2013, 153, 335-347.	13.5	296
611	iTRAQ proteome analysis reflects a progressed differentiation state of epiblast derived versus inner cell mass derived murine embryonic stem cells. Journal of Proteomics, 2013, 90, 38-51.	1.2	10
612	Uncovering the true identity of na $ ilde{A}$ ve pluripotent stem cells. Trends in Cell Biology, 2013, 23, 442-448.	3.6	29
613	The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos. Biochemical Society Transactions, 2013, 41, 711-719.	1.6	25
614	Signaling pathways during maintenance and definitive endoderm differentiation of embryonic stem cells. International Journal of Developmental Biology, 2013, 57, 1-12.	0.3	41
615	Very small embryonicâ€like cells: Biology and function of these potential endogenous pluripotent stem cells in adult tissues. Molecular Reproduction and Development, 2013, 80, 677-690.	1.0	39
616	The mammalian germline as a pluripotency cycle. Development (Cambridge), 2013, 140, 2495-2501.	1.2	55
617	X Chromosome Inactivation and Epigenetic Responses to Cellular Reprogramming. Annual Review of Genomics and Human Genetics, 2013, 14, 85-110.	2.5	81
618	Embryonic Stem Cells: A Signalling Perspective. , 2013, , 49-68.		1
619	Polycomb Determines Responses to Smad2/3 Signaling in Embryonic Stem Cell Differentiation and in Reprogramming. Stem Cells, 2013, 31, 1488-1497.	1.4	7
620	Origins and implications of pluripotent stem cell variability and heterogeneity. Nature Reviews Molecular Cell Biology, 2013, 14, 357-368.	16.1	283
621	The way Wnt works: Components and mechanism. Growth Factors, 2013, 31, 1-31.	0.5	197
622	Concise Review: Bone Marrow Meets Blastocyst: Lessons from an Unlikely Encounter. Stem Cells, 2013, 31, 620-626.	1.4	9
623	Epigenetic Regulation of Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 307-328.	0.8	19
624	A short G1 phase is an intrinsic determinant of naÃ⁻ve embryonic stem cell pluripotency. Stem Cell Research, 2013, 10, 118-131.	0.3	229
625	Induction of a Human Pluripotent State with Distinct Regulatory Circuitry that Resembles Preimplantation Epiblast. Cell Stem Cell, 2013, 13, 663-675.	5.2	349
626	Cre/loxP, Flp/FRT Systems and Pluripotent Stem Cell Lines. Topics in Current Genetics, 2013, , 189-209.	0.7	3
627	Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency. Biology Open, 2013, 2, 1049-1056.	0.6	29

#	Article	IF	CITATIONS
628	Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naÃ ⁻ ve pluripotency. Biology Open, 2013, 2, 613-628.	0.6	50
629	Very small embryonic-like stem-cell optimization of isolation protocols: an update of molecular signatures and a review of current in vivo applications. Experimental and Molecular Medicine, 2013, 45, e56-e56.	3.2	18
630	Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reproduction, Fertility and Development, 2013, 25, 94.	0.1	16
631	Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in in in induced pluripotent stem cells. Nucleic Acids Research, 2013, 41, 1829-1847.	6.5	75
632	Molecular Mechanisms Underlying Pluripotency. , 0, , .		0
633	Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells. Frontiers in Physiology, 2013, 4, 303.	1.3	15
634	Induced pluripotent stem cells and cell therapy. Journal of Clinical and Experimental Investigations, 2013, 4, .	0.1	0
635	Induced pluripotent stem cells in medicine and biology. Development (Cambridge), 2013, 140, 2457-2461.	1.2	220
636	Smad2 Is Essential for Maintenance of the Human and Mouse Primed Pluripotent Stem Cell State. Journal of Biological Chemistry, 2013, 288, 18546-18560.	1.6	78
637	Location of transient ectodermal progenitor potential in mouse development. Development (Cambridge), 2013, 140, 4533-4543.	1.2	58
638	Culture of Mouse Amniotic Fluid-Derived Cells on Irradiated STO Feeders Results in the Generation of Primitive Endoderm Cell Lines Capable of Self-Renewal in vitro. Cells Tissues Organs, 2013, 198, 111-126.	1.3	2
639	Strategies To Modulate Heritable Epigenetic Defects in Cellular Machinery: Lessons from Nature. Pharmaceuticals, 2013, 6, 1-24.	1.7	27
640	Ex Vivo Reconstitution of Arterial Endothelium by Embryonic Stem Cell-Derived Endothelial Progenitor Cells in Baboons. Stem Cells and Development, 2013, 22, 631-642.	1.1	11
641	Disease modelling using induced pluripotent stem cells: Status and prospects. BioEssays, 2013, 35, 271-280.	1.2	16
642	Endothelial reconstitution by <scp>CD</scp> 34+ progenitors derived from baboon embryonic stem cells. Journal of Cellular and Molecular Medicine, 2013, 17, 242-251.	1.6	4
643	DNA methylation profiles provide a viable index for porcine pluripotent stem cells. Genesis, 2013, 51, 763-776.	0.8	6
644	A Focused Microarray for Screening Rat Embryonic Stem Cell Lines. Stem Cells and Development, 2013, 22, 431-443.	1.1	9
645	Hes1 Desynchronizes Differentiation of Pluripotent Cells by Modulating STAT3 Activity. Stem Cells, 2013, 31, 1511-1522.	1.4	36

#	Article	IF	CITATIONS
646	Matrix Remodeling Maintains Embryonic Stem Cell Self-Renewal by Activating Stat3. Stem Cells, 2013, 31, 1097-1106.	1.4	26
647	The Embryo Potentiality Argument Revisited: "Once More Unto the Breach, Dear Friends― American Journal of Bioethics, 2013, 13, 28-29.	0.5	18
648	Clonal Isolation of an Intermediate Pluripotent Stem Cell State. Stem Cells, 2013, 31, 918-927.	1.4	20
649	Co-Motif Discovery Identifies an Esrrb-Sox2-DNA Ternary Complex as a Mediator of Transcriptional Differences Between Mouse Embryonic and Epiblast Stem Cells. Stem Cells, 2013, 31, 269-281.	1.4	36
650	Chemical approaches to studying stem cell biology. Cell Research, 2013, 23, 81-91.	5.7	32
651	Naive-like Conversion Overcomes the Limited Differentiation Capacity of Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2013, 288, 26157-26166.	1.6	43
652	Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes. Cell Cycle, 2013, 12, 302-311.	1.3	8
653	MicroRNAs in regulation of pluripotency and somatic cell reprogramming. RNA Biology, 2013, 10, 1255-1261.	1.5	24
654	Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1212-21.	3.3	226
655	JAK-STAT3 and somatic cell reprogramming. Jak-stat, 2013, 2, e24935.	2.2	30
656	Characteristics of Bovine Inner Cell Mass-Derived Cell Lines and Their Fate in Chimeric Conceptuses1. Biology of Reproduction, 2013, 89, 28.	1.2	21
657	Would the real human embryonic stem cell please stand up?. BioEssays, 2013, 35, 632-638.	1.2	10
658	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
659	Characterization of human pluripotent stem cells. NeuroReport, 2013, 24, 1031-1034.	0.6	5
661	Human genes modulating primordial germ cell and gamete formation. , 0, , 224-235.		0
662	Epigenetic consequences of somatic cell nuclear transfer and induced pluripotent stem cell reprogramming. , 0, , 261-273.		0
663	Nodal/Cripto signaling in fetal male germ cell development: implications for testicular germ cell tumors. International Journal of Developmental Biology, 2013, 57, 211-219.	0.3	25
664	Multiple Paths to Reprogramming. , 2013, , .		0

.
#	Article	IF	CITATIONS
667	Signaling pathways dictating pluripotency in embryonic stem cells. International Journal of Developmental Biology, 2013, 57, 667-675.	0.3	13
668	The Role of NF-κB Signaling in the Maintenance of Pluripotency of Human Induced Pluripotent Stem Cells. PLoS ONE, 2013, 8, e56399.	1.1	34
669	STELLA Facilitates Differentiation of Germ Cell and Endodermal Lineages of Human Embryonic Stem Cells. PLoS ONE, 2013, 8, e56893.	1.1	43
670	Epiblast Ground State Is Controlled by Canonical Wnt/Ĵ²-Catenin Signaling in the Postimplantation Mouse Embryo and Epiblast Stem Cells. PLoS ONE, 2013, 8, e63378.	1.1	97
671	Sox2 Level Is a Determinant of Cellular Reprogramming Potential. PLoS ONE, 2013, 8, e67594.	1.1	5
672	Grand challenges in stem cell treatments. Frontiers in Cell and Developmental Biology, 2013, 1, 2.	1.8	19
673	Generation of Leukemia Inhibitory Factor-Dependent Induced Pluripotent Stem Cells from the Massachusetts General Hospital Miniature Pig. BioMed Research International, 2013, 2013, 1-11.	0.9	29
674	Embryonic stem cells. , 0, , 3-18.		1
675	Neural Stem/Progenitor Cells for Spinal Cord Regeneration. , 2013, , .		3
676	Conditions and Techniques for Mouse Embryonic Stem Cell Derivation and Culture. , 2013, , .		3
677	The biology and therapeutic potential of embryonic stem cells. , 0, , 364-373.		0
678	Embryonic Stem Cell Therapy – From Bench to Bed. , 2013, , .		1
679	Efficient Reprogramming of NaÃ ⁻ ve-Like Induced Pluripotent Stem Cells from Porcine Adipose-Derived Stem Cells with a Feeder-Independent and Serum-Free System. PLoS ONE, 2014, 9, e85089.	1.1	45
680	Live Cell Imaging of the Nascent Inactive X Chromosome during the Early Differentiation Process of Naive ES Cells towards Epiblast Stem Cells. PLoS ONE, 2014, 9, e116109.	1.1	19
681	The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. ELife, 2014, 3, .	2.8	213
682	Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential. Journal of Clinical Medicine, 2014, 3, 1064-1083.	1.0	20
683	BMP4 regulation of human trophoblast development. International Journal of Developmental Biology, 2014, 58, 239-246.	0.3	31
684	MicroRNAs: Modulators of Cell Identity, and their Applications in Tissue Engineering. MicroRNA (Shariqah, United Arab Emirates), 2014, 3, 45-53.	0.6	44

#	Article	IF	Citations
685	First Cell Fate Decisions in Early Development. , 2014, , 95-106.		0
686	Derivation of naÃ ⁻ ve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4484-4489.	3.3	415
688	Naive embryonic stem cells: the future of stem cell research?. Regenerative Medicine, 2014, 9, 401-403.	0.8	6
689	Induced Pluripotent Stem Cells. , 2014, , 581-594.		6
690	Stem Cell Transcriptional Networks. Methods in Molecular Biology, 2014, , .	0.4	6
691	Dynamic Proteomic Profiles of In Vivo- and In Vitro-Produced Mouse Postimplantation Extraembryonic Tissues and Placentas1. Biology of Reproduction, 2014, 91, 155.	1.2	28
692	Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos. Stem Cells International, 2014, 2014, 1-9.	1.2	12
693	A Novel Nodal Enhancer Dependent on Pluripotency Factors and Smad2/3 Signaling Conditions a Regulatory Switch During Epiblast Maturation. PLoS Biology, 2014, 12, e1001890.	2.6	41
694	The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ISRN Stem Cells, 2014, 2014, 1-19.	1.8	5
695	Modeling Cerebrovascular Pathophysiology in Amyloid-β Metabolism using Neural-Crest-Derived Smooth Muscle Cells. Cell Reports, 2014, 9, 391-401.	2.9	25
696	Sox17-Mediated XEN Cell Conversion Identifies Dynamic Networks Controlling Cell-Fate Decisions in Embryo-Derived Stem Cells. Cell Reports, 2014, 9, 780-793.	2.9	53
697	Genomic Characterization of the Mouse Ribosomal DNA Locus. G3: Genes, Genomes, Genetics, 2014, 4, 243-254.	0.8	39
699	Establishment of a primed pluripotent epiblast stem cell in FGF4-based conditions. Scientific Reports, 2014, 4, 7477.	1.6	41
700	Haploid Mouse Embryonic Stem Cells: Rapid Genetic Screening and Germline Transmission. Annual Review of Cell and Developmental Biology, 2014, 30, 705-722.	4.0	32
701	Novel Cell Lines Isolated From Mouse Embryonic Stem Cells Exhibiting De Novo Methylation of the E-Cadherin Promoter. Stem Cells, 2014, 32, 2869-2879.	1.4	5
702	Mouse Primordial Germ Cells. International Review of Cell and Molecular Biology, 2014, 309, 1-57.	1.6	23
703	Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Research, 2014, 42, e155-e155.	6.5	173
704	Patz1 Regulates Embryonic Stem Cell Identity. Stem Cells and Development, 2014, 23, 1062-1073.	1.1	38

#	Article	IF	Citations
705	Human Stem Cells for Craniomaxillofacial Reconstruction. Stem Cells and Development, 2014, 23, 1437-1451.	1.1	9
706	<scp>D</scp> kk1â€dependent inhibition of <scp>W</scp> nt signaling activates <scp><i>Hesx1</i></scp> expression through its 5′ enhancer and directs forebrain precursor development. Genes To Cells, 2014, 19, 374-385.	0.5	9
707	Surfaceome Profiling Reveals Regulators of Neural Stem Cell Function. Stem Cells, 2014, 32, 258-268.	1.4	22
708	Perspectives of germ cell development in vitro in mammals. Animal Science Journal, 2014, 85, 617-626.	0.6	26
709	A designer's guide to pluripotency. Nature, 2014, 516, 172-173.	13.7	12
711	The Neural Stem Cell Lineage Reveals Novel Relationships Among Spermatogonial Germ Stem Cells and Other Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 767-778.	1.1	3
712	Stress and pluripotency. Frontiers in Cell and Developmental Biology, 2014, 2, 32.	1.8	1
713	Stem Cells and Stem Cell-derived Tissues and Their Use in Safety Assessment. Journal of Biological Chemistry, 2014, 289, 4555-4561.	1.6	28
714	Differentiation of trophoblast cells from human embryonic stem cells: to be or not to be?. Reproduction, 2014, 147, D1-D12.	1.1	66
715	Mapping the route from naive pluripotency to lineage specification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130540.	1.8	183
716	The birth of embryonic pluripotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130541.	1.8	48
717	Primoridal germ cell specification: a context-dependent cellular differentiation event. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130543.	1.8	30
718	Transcriptional Repression by the BRG1-SWI/SNF Complex Affects the Pluripotency of Human Embryonic Stem Cells. Stem Cell Reports, 2014, 3, 460-474.	2.3	93
719	Current state of the opportunities for derivation of germ-like cells from pluripotent stem cells: are you a man, or a mouse?. Biotechnology and Biotechnological Equipment, 2014, 28, 184-191.	0.5	5
720	Regulation of LINE-1 in mammals. Biomolecular Concepts, 2014, 5, 409-428.	1.0	17
721	microRNAs and Cardiac Cell Fate. Cells, 2014, 3, 802-823.	1.8	38
722	Glycyrrhizin Suppresses Lung Adenocarcinoma Cell Growth Through Inhibition of Thromboxane Synthase. Cellular Physiology and Biochemistry, 2014, 33, 375-388.	1.1	56
723	Fate of iPSCs Derived from Azoospermic and Fertile Men following Xenotransplantation to Murine Seminiferous Tubules. Cell Reports, 2014, 7, 1284-1297.	2.9	91

#	Article	IF	CITATIONS
724	Ketamine exposure in early development impairs specification of the primary germ cell layers. Neurotoxicology and Teratology, 2014, 43, 59-68.	1.2	9
725	TGF-Î ² signaling to chromatin: How Smads regulate transcription during self-renewal and differentiation. Seminars in Cell and Developmental Biology, 2014, 32, 107-118.	2.3	129
726	Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cellular and Molecular Life Sciences, 2014, 71, 2271-2288.	2.4	114
727	Totipotency and lineage segregation in the human embryo. Molecular Human Reproduction, 2014, 20, 599-618.	1.3	55
728	Recreating kidney progenitors from pluripotent cells. Pediatric Nephrology, 2014, 29, 543-552.	0.9	22
729	Evidence for self-maintaining pluripotent murine stem cells in embryoid bodies. Stem Cell Reviews and Reports, 2014, 10, 1-15.	5.6	7
730	Cell therapy for type 1 diabetes. QJM - Monthly Journal of the Association of Physicians, 2014, 107, 253-259.	0.2	20
731	Wnt of the Two Horizons: Putting Stem Cell Self-Renewal and Cell Fate Determination into Context. Stem Cells and Development, 2014, 23, 1975-1990.	1.1	9
733	PRDM14: a unique regulator for pluripotency and epigenetic reprogramming. Trends in Biochemical Sciences, 2014, 39, 289-298.	3.7	58
734	Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nature Genetics, 2014, 46, 558-566.	9.4	271
735	<i>Xist</i> Deficiency and Disorders of X-Inactivation in Rabbit Embryonic Stem Cells Can Be Rescued by Transcription-Factor-Mediated Conversion. Stem Cells and Development, 2014, 23, 2283-2296.	1.1	7
736	A centrosomal route for cancer genome instability. Nature Cell Biology, 2014, 16, 504-506.	4.6	27
737	Embryonic stem cell identity grounded in the embryo. Nature Cell Biology, 2014, 16, 502-504.	4.6	17
738	The ability of inner-cell-mass cells to self-renew asÂembryonic stem cells is acquired following epiblastAspecification. Nature Cell Biology, 2014, 16, 513-525.	4.6	386
739	Transcription regulation and chromatin structure in the pluripotent ground state. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 129-137.	0.9	33
740	The epigenetics of early development: Inferences from stem cells. Molecular Reproduction and Development, 2014, 81, 194-201.	1.0	7
741	Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells and Development, 2014, 23, 193-208.	1.1	48
742	Stem Cells and Cancer Stem Cells, Volume 11. Stem Cells and Cancer Stem Cells, 2014, , .	0.1	0

#	Article	IF	CITATIONS
743	Nanog Is Dispensable for the Generation of Induced Pluripotent Stem Cells. Current Biology, 2014, 24, 347-350.	1.8	69
745	Naiveté of the human pluripotent stem cell. Nature Biotechnology, 2014, 32, 68-70.	9.4	15
746	Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Nature Communications, 2014, 5, 3070.	5.8	58
747	The Transcriptional and Functional Properties of Mouse Epiblast Stem Cells Resemble the Anterior Primitive Streak. Cell Stem Cell, 2014, 14, 107-120.	5.2	255
748	Mechanisms of Pluripotency In Vivo and In Vitro. Current Topics in Developmental Biology, 2014, 107, 1-37.	1.0	46
749	From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130542.	1.8	28
750	Pancreatic Stem Cells Remain Unresolved. Stem Cells and Development, 2014, 23, 2803-2812.	1.1	38
751	Signaling pathways in induced naÃ ⁻ ve pluripotency. Current Opinion in Genetics and Development, 2014, 28, 10-15.	1.5	20
752	Activin/Nodal signalling before implantation: setting the stage for embryo patterning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130539.	1.8	23
753	Differential response of epiblast stem cells to Nodal and Activin signalling: a paradigm of early endoderm development in the embryo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130550.	1.8	15
754	Low expression of activin a in mouse and human embryonic teratocarcinoma cells. Russian Journal of Developmental Biology, 2014, 45, 224-230.	0.1	1
755	Finding degrees of separation: Experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. Journal of Neuroscience Methods, 2014, 236, 125-147.	1.3	13
756	Distinct Wnt-driven primitive streak-like populations reflect <i>in vivo</i> lineage precursors. Development (Cambridge), 2014, 141, 1209-1221.	1.2	215
757	Use of pluripotent stem cells for reproductive medicine: are we there yet?. Veterinary Quarterly, 2014, 34, 42-51.	3.0	9
758	Experimental teratoma: At the crossroad of fetal- and onco-development. Seminars in Cancer Biology, 2014, 29, 75-79.	4.3	10
760	Generation of Naive Induced Pluripotent Stem Cells from Rhesus Monkey Fibroblasts. Cell Stem Cell, 2014, 15, 488-497.	5.2	110
761	Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human. Cell, 2014, 158, 1254-1269.	13.5	784
762	Nodal·Gdf1 Heterodimers with Bound Prodomains Enable Serum-independent Nodal Signaling and Endoderm Differentiation. Journal of Biological Chemistry, 2014, 289, 17854-17871.	1.6	36

#	Article	IF	CITATIONS
763	A Method to Identify and Isolate Pluripotent Human Stem Cells and Mouse Epiblast Stem Cells Using Lipid Body-Associated Retinyl Ester Fluorescence. Stem Cell Reports, 2014, 3, 169-184.	2.3	19
764	Nanog co-regulated by Nodal/Smad2 and Oct4 is required for pluripotency in developing mouse epiblast. Developmental Biology, 2014, 392, 182-192.	0.9	29
766	<i>Xist</i> Repression Shows Time-Dependent Effects on the Reprogramming of Female Somatic Cells to Induced Pluripotent Stem Cells. Stem Cells, 2014, 32, 2642-2656.	1.4	21
767	The Nature of Embryonic Stem Cells. Annual Review of Cell and Developmental Biology, 2014, 30, 647-675.	4.0	371
768	Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency. Cell Stem Cell, 2014, 15, 471-487.	5.2	702
769	The Differential Effects of 2% Oxygen Preconditioning on the Subsequent Differentiation of Mouse and Human Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 1910-1922.	1.1	18
770	Regulatory Principles of Pluripotency: From the Ground State Up. Cell Stem Cell, 2014, 15, 416-430.	5.2	334
771	From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cellular and Molecular Life Sciences, 2014, 71, 2917-2930.	2.4	23
772	Aberrant Patterns of X Chromosome Inactivation in a New Line of Human Embryonic Stem Cells Established in Physiological Oxygen Concentrations. Stem Cell Reviews and Reports, 2014, 10, 472-479.	5.6	7
773	The Generation of Definitive Endoderm from Human Embryonic Stem Cells is Initially Independent from Activin A but Requires Canonical Wnt-Signaling. Stem Cell Reviews and Reports, 2014, 10, 480-493.	5.6	56
774	Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reproductive Medicine and Biology, 2014, 13, 203-215.	1.0	62
775	Conversion of Partially Reprogrammed Cells to Fully Pluripotent Stem Cells Is Associated with Further Activation of Stem Cell Maintenance- and Gamete Generation-Related Genes. Stem Cells and Development, 2014, 23, 2637-2648.	1.1	8
776	The Naive State of Human Pluripotent Stem Cells: A Synthesis of Stem Cell and Preimplantation Embryo Transcriptome Analyses. Cell Stem Cell, 2014, 15, 410-415.	5.2	134
777	Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo. Animal Reproduction Science, 2014, 149, 67-79.	0.5	15
778	Analysis of essential pathways for selfâ€renewal in common marmoset embryonic stem cells. FEBS Open Bio, 2014, 4, 213-219.	1.0	11
779	Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions. Journal of Biotechnology, 2014, 173, 53-58.	1.9	33
780	Review: The transcriptional and signalling networks of mouse trophoblast stem cells. Placenta, 2014, 35, S81-S85.	0.7	41
781	Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development (Cambridge), 2014, 141, 2376-2390.	1.2	79

#	Article	IF	CITATIONS
782	Roles of TGF-Î ² family signals in the fate determination of pluripotent stem cells. Seminars in Cell and Developmental Biology, 2014, 32, 98-106.	2.3	69
783	Molecular Control of Induced Pluripotency. Cell Stem Cell, 2014, 14, 720-734.	5.2	121
784	Epigenomic Comparison Reveals Activation of "Seed―Enhancers during Transition from Naive to Primed Pluripotency. Cell Stem Cell, 2014, 14, 854-863.	5.2	137
785	Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development (Cambridge), 2014, 141, 2173-2181.	1.2	171
786	Stable Methylation at Promoters Distinguishes Epiblast Stem Cells from Embryonic Stem Cells and the In Vivo Epiblasts. Stem Cells and Development, 2014, 23, 2014-2029.	1.1	31
787	Single-Cell Gene Expression Profiles Define Self-Renewing, Pluripotent, and Lineage Primed States of Human Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 881-895.	2.3	78
788	Development of FGF2-dependent pluripotent stem cells showing naive state characteristics from murine preimplantation inner cell mass. Stem Cell Research, 2014, 13, 75-87.	0.3	7
789	Reprogramming of mouse somatic cells into pluripotent stem-like cells using a combination of small molecules. Biomaterials, 2014, 35, 7336-7345.	5.7	34
790	Role of cell–cell adhesion complexes in embryonic stem cell biology. Journal of Cell Science, 2014, 127, 2603-2613.	1.2	115
791	Local BMP-SMAD1 Signaling Increases LIF Receptor-Dependent STAT3 Responsiveness and Primed-to-Naive Mouse Pluripotent Stem Cell Conversion Frequency. Stem Cell Reports, 2014, 3, 156-168.	2.3	18
792	Neural stem cells derived from epiblast stem cells display distinctive properties. Stem Cell Research, 2014, 12, 506-516.	0.3	13
793	Efficient definitive endoderm induction from mouse embryonic stem cell adherent cultures: A rapid screening model for differentiation studies. Stem Cell Research, 2014, 12, 166-177.	0.3	32
794	Hematopoietic Stem Cell Aging and Oxidative Stress. , 2014, , 124-141.		0
795	Morphologyâ€based mammalian stem cell tests reveal potential developmental toxicity of donepezil. Molecular Reproduction and Development, 2014, 81, 994-1008.	1.0	24
796	Role of tumor suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells. Stem Cell Research and Therapy, 2014, 5, 58.	2.4	21
797	The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biology, 2015, 5, 150092.	1.5	21
798	Challenges in Retinal Circuit Regeneration. Biological and Pharmaceutical Bulletin, 2015, 38, 341-357.	0.6	7
800	DAZL regulates Tet1 translation in murine embryonic stem cells. EMBO Reports, 2015, 16, 791-802.	2.0	24

#	Article	IF	CITATIONS
801	Methods for Precisely Localized Transfer of Cells or DNA into Early Postimplantation Mouse Embryos. Journal of Visualized Experiments, 2015, , e53295.	0.2	3
802	Cdh2 stabilizes FGFR1 and contributes to primed-state pluripotency in mouse epiblast stem cells. Scientific Reports, 2015, 5, 14722.	1.6	19
803	Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells. Cell Systems, 2015, 1, 141-151.	2.9	15
804	Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm. Stem Cell Reports, 2015, 5, 97-110.	2.3	52
805	Intrinsic factors and the embryonic environment influence the formation of extragonadal teratomas during gestation. BMC Developmental Biology, 2015, 15, 35.	2.1	10
806	Alternative Routes to Induce NaÃ⁻ve Pluripotency in Human Embryonic Stem Cells. Stem Cells, 2015, 33, 2686-2698.	1.4	118
807	Human Pluripotent Stem Cell Mechanobiology: Manipulating the Biophysical Microenvironment for Regenerative Medicine and Tissue Engineering Applications. Stem Cells, 2015, 33, 3187-3196.	1.4	38
808	å≌f½æ€§çжæ‹ã,'æ"뽜ãᠯMã,‹ãŸã,ã®æ‰‹å¼•ã• Nature Digest, 2015, 12, 24-25.	0.0	0
809	Life by design: Philosophical perspectives on synthetic biology. BIO Web of Conferences, 2015, 4, 00015.	0.1	4
810	Chemical Approaches to Controlling Cell Fate. , 2015, , 59-76.		2
811	NaÃ ⁻ ve-like conversion enhances the difference in innate <i>in vitro</i> differentiation capacity between rabbit ES cells and iPS cells. Journal of Reproduction and Development, 2015, 61, 13-19.	0.5	15
812	Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells. PLoS ONE, 2015, 10, e0130332.	1.1	4
813	Tetraploid Embryonic Stem Cells Maintain Pluripotency and Differentiation Potency into Three Germ Layers. PLoS ONE, 2015, 10, e0130585.	1.1	13
814	Alkaline Phosphatase in Stem Cells. Stem Cells International, 2015, 2015, 1-11.	1.2	142
815	Cell Cycle-Driven Heterogeneity: On the Road to Demystifying the Transitions between "Poised―and "Restricted―Pluripotent Cell States. Stem Cells International, 2015, 2015, 1-9.	1.2	15
816	Stem cell maintenance by manipulating signaling pathways: past, current and future. BMB Reports, 2015, 48, 668-676.	1.1	18
817	A Primary Role for the Tsix IncRNA in Maintaining Random X-Chromosome Inactivation. Cell Reports, 2015, 11, 1251-1265.	2.9	87
818	Application Of Small Molecules Favoring NaÃ ⁻ ve Pluripotency during Human Embryonic Stem Cell Derivation. Cellular Reprogramming, 2015, 17, 170-180.	0.5	16

#	Article	IF	CITATIONS
819	Successful Reprogramming of Epiblast Stem Cells by Blocking Nuclear Localization of β-Catenin. Stem Cell Reports, 2015, 4, 103-113.	2.3	32
820	Interspecific <i>in vitro</i> assay for the chimera-forming ability of human pluripotent stem cells. Development (Cambridge), 2015, 142, 3222-30.	1.2	53
821	Ectodermal progenitors derived from epiblast stem cells by inhibition of Nodal signaling. Journal of Molecular Cell Biology, 2015, 7, 455-465.	1.5	24
822	Epigenetic regulation in stem cell development, cell fate conversion, and reprogramming. Biomolecular Concepts, 2015, 6, 1-9.	1.0	8
823	Mouse and human blastocyst-derived stem cells: vive les differences. Development (Cambridge), 2015, 142, 9-12.	1.2	112
824	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	2.3	72
825	Mechanism and Reconstitution In Vitro of Germ Cell Development in Mammals. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 147-154.	2.0	23
826	Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell, 2015, 17, 651-662.	5.2	252
827	Studying Lineage Decision-Making In Vitro: Emerging Concepts and Novel Tools. Annual Review of Cell and Developmental Biology, 2015, 31, 317-345.	4.0	41
828	X chromosome reactivation in reprogramming and in development. Current Opinion in Cell Biology, 2015, 37, 75-83.	2.6	55
829	The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cellÂtransition. Nature Cell Biology, 2015, 17, 1523-1535.	4.6	360
830	Understanding Cancer Stem Cells Biology to Get Rid of Tumours. , 2015, , 15-28.		0
831	Computational Biology Methods for Characterization of Pluripotent Cells. Methods in Molecular Biology, 2015, 1357, 195-220.	0.4	1
832	Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biology, 2015, 16, 149.	3.8	104
833	A Simple and Robust Method for Establishing Homogeneous Mouse Epiblast Stem Cell Lines by Wnt Inhibition. Stem Cell Reports, 2015, 4, 744-757.	2.3	65
834	LIF signal in mouse embryonic stem cells. Jak-stat, 2015, 4, 1-9.	2.2	44
835	Exploring standards for industrializing human induced pluripotent stem cells. Pharmaceutical Bioprocessing, 2015, 3, 199-213.	0.8	1
836	From pluripotency to myogenesis: a multistep process in the dish. Journal of Muscle Research and Cell Motility, 2015, 36, 363-375.	0.9	20

#	Article	IF	CITATIONS
837	Proteomics and glycoproteomics of pluripotent stem ell surface proteins. Proteomics, 2015, 15, 1152-1163.	1.3	4
838	Forced Expression of Nanog or Esrrb Preserves the ESC Status in the Absence of Nucleostemin Expression. Stem Cells, 2015, 33, 1089-1101.	1.4	6
839	Ex Uno Plures: Molecular Designs for Embryonic Pluripotency. Physiological Reviews, 2015, 95, 245-295.	13.1	30
840	Endogenous WNT Signals Mediate BMP-Induced and Spontaneous Differentiation of Epiblast Stem Cells and Human Embryonic Stem Cells. Stem Cell Reports, 2015, 4, 114-128.	2.3	122
841	Inhibition of Transforming Growth Factor β (TGF-β) Signaling can Substitute for Oct4 Protein in Reprogramming and Maintain Pluripotency. Journal of Biological Chemistry, 2015, 290, 4500-4511.	1.6	42
842	Activin/Nodal signalling in stem cells. Development (Cambridge), 2015, 142, 607-619.	1.2	147
843	Transcription factorâ€mediated reprogramming: epigenetics and therapeutic potential. Immunology and Cell Biology, 2015, 93, 284-289.	1.0	18
844	Transcriptome analysis of chicken ES, blastodermal and germ cells reveals that chick ES cells are equivalent to mouse ES cells rather than EpiSC. Stem Cell Research, 2015, 14, 54-67.	0.3	61
845	Biobanks for Induced Pluripotent Stem Cells and Reprogrammed Tissues. , 2015, , 179-194.		0
846	Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cellular and Molecular Life Sciences, 2015, 72, 1741-1757.	2.4	121
847	<i>Cdx2</i> Efficiently Induces Trophoblast Stem-Like Cells in NaÃ⁻ve, but Not Primed, Pluripotent Stem Cells. Stem Cells and Development, 2015, 24, 1352-1365.	1.1	25
848	Ovine Induced Pluripotent Stem Cells Are Resistant to Reprogramming after Nuclear Transfer. Cellular Reprogramming, 2015, 17, 19-27.	0.5	23
849	Generation of Intermediate Porcine iPS Cells Under Culture Condition Favorable for Mesenchymal-to-Epithelial Transition. Stem Cell Reviews and Reports, 2015, 11, 24-38.	5.6	42
850	Mitochondrial and Metabolic Remodeling During Reprogramming and Differentiation of the Reprogrammed Cells. Stem Cells and Development, 2015, 24, 1366-1373.	1.1	49
851	Lineage specificity of primary cilia in the mouse embryo. Nature Cell Biology, 2015, 17, 113-122.	4.6	150
852	Prospects for genetically modified non-human primate models, including the common marmoset. Neuroscience Research, 2015, 93, 110-115.	1.0	75
853	Acquiring Ground State Pluripotency: Switching Mouse Embryonic Stem Cells from Serum/LIF Medium to 2i/LIF Medium. Methods in Molecular Biology, 2015, 1341, 41-48.	0.4	16
854	From Naive to Primed Pluripotency: In Vitro Conversion of Mouse Embryonic Stem Cells in Epiblast Stem Cells. Methods in Molecular Biology, 2015, 1341, 209-216.	0.4	19

	CITATION R	EPORT	
#	Article	IF	Citations
855	How are pluripotent cells captured in culture?. Reproductive Medicine and Biology, 2015, 14, 85-98.	1.0	4
856	Multiple targets for multiple sclerosis. Genes and Diseases, 2015, 2, 222-223.	1.5	0
857	Generation of Naivetropic Induced Pluripotent Stem Cells from Parkinson's Disease Patients for High-Efficiency Genetic Manipulation and Disease Modeling. Stem Cells and Development, 2015, 24, 2591-2604.	1.1	19
858	Stem cells in reproductive medicine: ready for the patient?: Figure 1. Human Reproduction, 2015, 30, 2014-2021.	0.4	58
859	WNT/β-Catenin Signaling Affects Cell Lineage and Pluripotency-Specific Gene Expression in Bovine Blastocysts: Prospects for Bovine Embryonic Stem Cell Derivation. Stem Cells and Development, 2015, 24, 2437-2454.	1.1	29
860	Generation of Cynomolgus Monkey Chimeric Fetuses using Embryonic Stem Cells. Cell Stem Cell, 2015, 17, 116-124.	5.2	109
861	New insights into the conserved mechanism of pluripotency maintenance. Current Opinion in Genetics and Development, 2015, 34, 1-9.	1.5	3
862	Thermoresponsive hydrogel maintains the mouse embryonic stem cell "naÃ⁻ve―pluripotency phenotype. Biomaterials Science, 2015, 3, 1371-1375.	2.6	8
863	Choosing Cell Fate Through a Dynamic Cell Cycle. Current Stem Cell Reports, 2015, 1, 129-138.	0.7	15
864	Robust InÂVitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 178-194.	5.2	428
865	Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cellsin vitro. Journal of Molecular Cell Biology, 2015, 7, 326-337.	1.5	19
866	The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology. Human Reproduction Update, 2015, 21, 616-626.	5.2	17
867	LIF signaling in stem cells and development. Development (Cambridge), 2015, 142, 2230-2236.	1.2	103
868	Human primordial germ cell commitment <i>inÂvitro</i> associates with a unique PRDM14 expression profile. EMBO Journal, 2015, 34, 1009-1024.	3.5	122
869	From naÃ ⁻ ve pluripotency to chimeras: a new ethical challenge?. Development (Cambridge), 2015, 142, 6-8.	1.2	29
870	Histone deacetylation promotes mouse neural induction by restricting Nodal-dependent mesendoderm fate. Nature Communications, 2015, 6, 6830.	5.8	25
871	Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4666-4671.	3.3	43
872	Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature, 2015, 522, 216-220.	13.7	336

#	ARTICLE α6β1- and αV-integrins are required for long-term self-renewal of murine embryonic stem cells in the	IF	CITATIONS
873	absence of LIF. BMC Cell Biology, 2015, 16, 3.	3.0	22
874	Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2337-46.	3.3	62
875	Derivation and characterization of human embryonic stem cells on human amnion epithelial cells. Scientific Reports, 2015, 5, 10014.	1.6	17
876	Architectural hallmarks of the pluripotent genome. FEBS Letters, 2015, 589, 2905-2913.	1.3	21
877	Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nature Communications, 2015, 6, 7095.	5.8	137
878	Development of Teratocarcinomas and Teratomas in Severely Immunodeficient NOD.Cg-Prkdcscid ll2rgtm1Wjl/Szj (NSG) Mice. Stem Cells and Development, 2015, 24, 1515-1520.	1.1	6
879	Understanding Mammalian Germ Line Development with In Vitro Models. Stem Cells and Development, 2015, 24, 2101-2113.	1.1	3
880	An alternative pluripotent state confers interspecies chimaeric competency. Nature, 2015, 521, 316-321.	13.7	215
881	Temporal and Embryonic Lineage-Dependent Regulation of Human Vascular SMC Development by NOTCH3. Stem Cells and Development, 2015, 24, 846-856.	1.1	12
882	Activin/Nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark. Genes and Development, 2015, 29, 702-717.	2.7	115
883	Intrinsic regulations in neural fate commitment. Development Growth and Differentiation, 2015, 57, 109-120.	0.6	24
884	Linking the Cell Cycle to Cell Fate Decisions. Trends in Cell Biology, 2015, 25, 592-600.	3.6	278
885	From Genomics to Gene Therapy: Induced Pluripotent Stem Cells Meet Genome Editing. Annual Review of Genetics, 2015, 49, 47-70.	3.2	111
886	ELABELA Is an Endogenous Growth Factor that Sustains hESC Self-Renewal via the PI3K/AKT Pathway. Cell Stem Cell, 2015, 17, 435-447.	5.2	139
887	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	13.7	338
888	The pluripotent state in mouse and human. Development (Cambridge), 2015, 142, 3090-3099.	1.2	136
889	Dynamic Pluripotent Stem Cell States and Their Applications. Cell Stem Cell, 2015, 17, 509-525.	5.2	133
890	rsPSCs: A new type of pluripotent stem cells. Cell Research, 2015, 25, 889-890.	5.7	1

#	Article	IF	CITATIONS
891	Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5936-43.	3.3	88
892	An Xist-activating antisense RNA required for X-chromosome inactivation. Nature Communications, 2015, 6, 8564.	5.8	26
893	The Current State of NaÃ⁻ve Human Pluripotency. Stem Cells, 2015, 33, 3181-3186.	1.4	33
894	A developmental framework for induced pluripotency. Development (Cambridge), 2015, 142, 3274-3285.	1.2	94
896	Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development (Cambridge), 2015, 142, 1528-41.	1.2	105
897	Establishing the human naÃ ⁻ ve pluripotent state. Current Opinion in Genetics and Development, 2015, 34, 35-45.	1.5	23
898	Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development (Cambridge), 2015, 142, 3151-65.	1.2	343
899	Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Seminars in Cell and Developmental Biology, 2015, 47-48, 101-109.	2.3	32
900	Epigenetic gene regulation and stem cell function. , 2015, , 149-181.		0
901	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	2.3	84
902	Wnt/β-catenin and LIF/Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. Journal of Cell Science, 2016, 129, 269-76.	1.2	43
903	Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis. Developmental Cell, 2015, 35, 366-382.	3.1	383
904	Biological Networks Governing the Acquisition, Maintenance, and Dissolution of Pluripotency: Insights from Functional Genomics Approaches. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 189-198.	2.0	2
905	Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 1390-1404.	1.4	22
906	An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy. Frontiers in Biology, 2015, 10, 11-27.	0.7	6
907	Comparative FAIRE-seq Analysis Reveals Distinguishing Features of the Chromatin Structure of Ground State- and Primed-Pluripotent Cells. Stem Cells, 2015, 33, 378-391.	1.4	17
908	Computational image analysis of colony and nuclear morphology to evaluate human induced pluripotent stem cells. Scientific Reports, 2014, 4, 6996.	1.6	62
909	Pluripotency in the light of the developmental hourglass. Biological Reviews, 2015, 90, 428-443.	4.7	6

# 910	ARTICLE Embryonic Versus Adult Stem Cells. , 2015, , 249-262.	IF	Citations
911	Pluripotent States of Human Embryonic Stem Cells. Cellular Reprogramming, 2015, 17, 1-6.	0.5	15
912	Hypoxia Induces Pluripotency in Primordial Germ Cells by HIF1α Stabilization and Oct4 Deregulation. Antioxidants and Redox Signaling, 2015, 22, 205-223.	2.5	21
913	Inhibition of Transforming Growth Factor β Signaling Promotes Epiblast Formation in Mouse Embryos. Stem Cells and Development, 2015, 24, 497-506.	1.1	8
914	SOX2-Dependent Regulation of Pluripotent Stem Cells. , 2016, , 163-185.		4
915	The paradox of Foxd3: how does it function in pluripotency and differentiation of embryonic stem cells?. Stem Cell Investigation, 2016, 3, 73-73.	1.3	7
916	Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-15.	1.2	50
917	Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells. Stem Cells International, 2016, 2016, 1-13.	1.2	32
918	Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	33
919	Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells International, 2016, 2016, 1-20.	1.2	111
920	Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Frontiers in Cell and Developmental Biology, 2016, 4, 134.	1.8	58
921	Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells. Keio Journal of Medicine, 2016, 66, 1-8.	0.5	6
922	Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture. PLoS ONE, 2016, 11, e0163244.	1.1	12
923	Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming. PLoS ONE, 2016, 11, e0150715.	1.1	29
924	Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells. PLoS ONE, 2016, 11, e0159246.	1.1	14
925	States of Pluripotency: Na $ ilde{A}$ 've and Primed Pluripotent Stem Cells. , 2016, , .		6
926	Regulation of Sox2 via Many Enhancers of Distinct Specificities. , 2016, , 107-129.		4
927	Spatiotemporal Reconstruction of the Human Blastocyst by Single-Cell Gene-Expression Analysis Informs Induction of Naive Pluripotency. Developmental Cell, 2016, 38, 100-115.	3.1	35

#	ARTICLE Embryonic Stem Cells Cultured in Microfluidic Chambers Take Control of Their Fate by Producing	IF	CITATIONS
920	Endogenous Signals Including LIF. Stem Cells, 2016, 34, 1501-1512. Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing, Cell Stem Cell, 2016, 19, 127-138.	5.2	139
930	Axial levelâ€dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate. Development Growth and Differentiation, 2016, 58, 427-436.	0.6	15
931	Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5. Cellular Reprogramming, 2016, 18, 171-186.	0.5	2
932	Stem cells and interspecies chimaeras. Nature, 2016, 540, 51-59.	13.7	134
933	Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. EMBO Journal, 2016, 35, 618-634.	3.5	155
934	Generating Blood from iPS Cells. , 2016, , 399-420.		1
935	Efficient derivation of extraembryonic endoderm stem cell lines from mouse postimplantation embryos. Scientific Reports, 2016, 6, 39457.	1.6	21
936	Distinct Enhancer Activity of Oct4 in Naive and Primed Mouse Pluripotency. Stem Cell Reports, 2016, 7, 911-926.	2.3	63
937	Stem cell toxicology: a powerful tool to assess pollution effects on human health. National Science Review, 2016, 3, 430-450.	4.6	22
939	Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1. Cell Chemical Biology, 2016, 23, 494-507.	2.5	25
940	An overview of mammalian pluripotency. Development (Cambridge), 2016, 143, 1644-1648.	1.2	29
941	Activators and repressors: A balancing act for X-inactivation. Seminars in Cell and Developmental Biology, 2016, 56, 3-8.	2.3	7
942	Establishment and Characterization of NaÃ⁻ve Pluripotency in Human Embryonic Stem Cells. Methods in Molecular Biology, 2016, 1516, 13-46.	0.4	6
943	Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 2016, 18, 573-586.	5.2	398
944	Developmental Competence for Primordial Germ Cell Fate. Current Topics in Developmental Biology, 2016, 117, 471-496.	1.0	16
945	The pluripotency factor <i>Nanog</i> regulates pericentromeric heterochromatin organization in mouse embryonic stem cells. Genes and Development, 2016, 30, 1101-1115.	2.7	50
946	Aberrant methylation of Meg3 in alpha1,3-galactosyltransferase knockout pig induced pluripotent stem cells. Animal Cells and Systems, 2016, 20, 130-139.	0.8	2

#	Article	IF	CITATIONS
947	Cellular Metabolism and Induced Pluripotency. Cell, 2016, 166, 1371-1385.	13.5	133
948	Mature Let-7 miRNAs fine tune expression of LIN28B in pluripotent human embryonic stem cells. Stem Cell Research, 2016, 17, 498-503.	0.3	18
949	Sirtuin 1 Promotes Deacetylation of Oct4 andÂMaintenance of Naive Pluripotency. Cell Reports, 2016, 17, 809-820.	2.9	32
950	Tankyrase inhibition promotes a stable human naÃ ⁻ ve pluripotent state with improved functionality. Development (Cambridge), 2016, 143, 4368-4380.	1.2	64
951	Establishment of X chromosome inactivation and epigenomic features of the inactive X depend on cellular contexts. BioEssays, 2016, 38, 869-880.	1.2	31
952	Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation. Genome Research, 2016, 26, 1342-1354.	2.4	93
953	Conserved and divergent expression patterns of markers of axial development in the laboratory opossum, <i>Monodelphis domestica</i> . Developmental Dynamics, 2016, 245, 1176-1188.	0.8	3
954	Wnt/Î2-catenin signaling promotes self-renewal and inhibits the primed state transition in naÃ ⁻ ve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6382-E6390.	3.3	98
955	A Panel of Embryonic Stem Cell Lines Reveals the Variety and Dynamic of Pluripotent States in Rabbits. Stem Cell Reports, 2016, 7, 383-398.	2.3	17
956	Contributions of Mammalian Chimeras to Pluripotent Stem Cell Research. Cell Stem Cell, 2016, 19, 163-175.	5.2	61
957	Capturing Identity and Fate Ex Vivo. Current Topics in Developmental Biology, 2016, 120, 361-400.	1.0	8
958	Capturing the ephemeral human pluripotent state. Developmental Dynamics, 2016, 245, 762-773.	0.8	10
959	A Primitive Growth Factor, NME7AB, Is Sufficient to Induce Stable NaÃ ⁻ ve State Human Pluripotency; Reprogramming in This Novel Growth Factor Confers Superior Differentiation. Stem Cells, 2016, 34, 847-859.	1.4	25
960	Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks. Stem Cells, 2016, 34, 1427-1436.	1.4	105
961	Singleâ€cell <scp>RNA</scp> sequencing: revealing human preâ€implantation development, pluripotency and germline development. Journal of Internal Medicine, 2016, 280, 252-264.	2.7	11
962	Specification and epigenetic programming of the human germ line. Nature Reviews Genetics, 2016, 17, 585-600.	7.7	352
963	A developmental coordinate of pluripotency among mice, monkeys and humans. Nature, 2016, 537, 57-62.	13.7	419
964	Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biology, 2016, 17, 173.	3.8	354

ARTICLE IF CITATIONS # Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency. 965 5.8 56 Nature Communications, 2016, 7, 12589. Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos. Genes 2.7 and Development, 2016, 30, 1937-1942. 967 Metabolism of pluripotent stem cells. Frontiers in Biology, 2016, 11, 355-365. 0.7 0 Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Endothelial 968 Network Formation. Stem Cells Translational Medicine, 2016, 5, 946-959. Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial 969 0.8 27 organization in a dish. Developmental Dynamics, 2016, 245, 976-990. Small-Molecule Induction of Canine Embryonic Stem Cells Toward NaÃ⁻ve Pluripotency. Stem Cells and Development, 2016, 25, 1208-1222. 1.1 Targeting the transforming growth factor-l² signaling during pre-implantation development in embryos 971 0.5 9 of cattle, sheep and goats. Growth Factors, 2016, 34, 141-148. O-GlcNAc is required for the survival of primed pluripotent stem cells and their reversion to the 1.0 14 naà ve state. Biochemical and Biophysical Research Communications, 2016, 480, 655-661. Skin-derived stem cells as a source of primordial germ cell- and oocyte-like cells. Cell Death and 974 2.7 23 Disease, 2016, 7, e2471-e2471. Epigenetics in Development, Differentiation and Reprogramming., 2016, , 421-448. Generation of human organs in pigs via interspecies blastocyst complementation. Reproduction in 977 21 0.6 Domestic Animals, 2016, 51, 18-24. Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in 979 5.2 Mouse Embryos. Cell Stem Cell, 2016, 19, 587-592. TGFÎ² signaling regulates the choice between pluripotent and neural fates during reprogramming of 980 1.6 16 human urine derived cells. Scientific Reports, 2016, 6, 22484. Single-cell pluripotency regulatory networks. Proteomics, 2016, 16, 2303-2312. 1.3 Full biological characterization of human pluripotent stem cells will open the door to translational 982 1.9 7 research. Archives of Toxicology, 2016, 90, 2173-2186. Zfp281 Coordinates Opposing Functions of Tet1 and Tet2 in Pluripotent States. Cell Stem Cell, 2016, 19, 5.2 89 355-369. Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs. Cell 984 2.9 28 Reports, 2016, 15, 787-800. Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell, 2016, 18, 721-735. 5.2

#	Article	IF	CITATIONS
986	RISC-mediated control of selected chromatin regulators stabilizes ground state pluripotency of mouse embryonic stem cells. Genome Biology, 2016, 17, 94.	3.8	12
987	Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. Cell Regeneration, 2016, 5, 5:2.	1.1	25
988	Stem Cells: A Renaissance in Human Biology Research. Cell, 2016, 165, 1572-1585.	13.5	87
989	Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonic Stem Cell Subtypes and Specification of Inner Cell Mass-Derived Epiblast. Cell Reports, 2016, 15, 2651-2664.	2.9	59
990	Mitochondrial functions in stem cells. Current Opinion in Genetics and Development, 2016, 38, 110-117.	1.5	22
991	Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of WNT-Induced Presomitic Mesoderm. Stem Cells, 2016, 34, 1790-1800.	1.4	23
992	Dynamic Heterogeneity of Brachyury in Mouse Epiblast Stem Cells Mediates Distinct Response to Extrinsic Bone Morphogenetic Protein (BMP) Signaling. Journal of Biological Chemistry, 2016, 291, 15212-15225.	1.6	13
993	Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death and Disease, 2016, 7, e2050-e2050.	2.7	46
994	How Many Non-coding RNAs Does It Take to Compensate Male/Female Genetic Imbalance?. Advances in Experimental Medicine and Biology, 2016, 886, 33-49.	0.8	2
995	Comparison of the Ultrastructures of Primed and NaÃ ⁻ ve Mouse Embryonic Stem Cells. Cellular Reprogramming, 2016, 18, 48-53.	0.5	2
996	A dual role of Erk signaling in embryonic stem cells. Experimental Hematology, 2016, 44, 151-156.	0.2	33
997	Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nature Protocols, 2016, 11, 327-346.	5.5	32
998	Epigenetic regulation of early neural fate commitment. Cellular and Molecular Life Sciences, 2016, 73, 1399-1411.	2.4	13
999	Pluripotent Stem Cells from Domesticated Mammals. Annual Review of Animal Biosciences, 2016, 4, 223-253.	3.6	85
1000	Non-coding RNA and the Reproductive System. Advances in Experimental Medicine and Biology, 2016, , .	0.8	4
1001	In vitro culture of stem-like cells derived from somatic cell nuclear transfer bovine embryos of the Korean beef cattle species, HanWoo. Reproduction, Fertility and Development, 2016, 28, 1762.	0.1	8
1002	Targeting human oligodendrocyte progenitors for myelin repair. Experimental Neurology, 2016, 283, 489-500.	2.0	43
1003	Plasticity underlies tumor progression: role of Nodal signaling. Cancer and Metastasis Reviews, 2016, 35, 21-39.	2.7	30

	CHATION	LEPORT	
#	Article	IF	CITATIONS
1004	MLL1 Inhibition Reprograms Epiblast Stem Cells to Naive Pluripotency. Cell Stem Cell, 2016, 18, 481-494.	5.2	57
1005	Molecular features of cellular reprogramming and development. Nature Reviews Molecular Cell Biology, 2016, 17, 139-154.	16.1	136
1006	Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes and Development, 2016, 30, 421-433.	2.7	115
1007	Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nature Reviews Molecular Cell Biology, 2016, 17, 155-169.	16.1	490
1008	Snapshots of Pluripotency. Stem Cell Reports, 2016, 6, 163-167.	2.3	8
1009	Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts. Transgenic Research, 2016, 25, 375-384.	1.3	16
1010	Network-based methods for identifying critical pathways of complex diseases: a survey. Molecular BioSystems, 2016, 12, 1082-1089.	2.9	15
1011	Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports, 2016, 6, 437-446.	2.3	310
1012	Key Signaling Events for Committing Mouse Pluripotent Stem Cells to the Germline Fate1. Biology of Reproduction, 2016, 94, 24.	1.2	6
1013	Two Histone Variants TH2A and TH2B Enhance Human Induced Pluripotent Stem Cell Generation. Stem Cells and Development, 2016, 25, 251-258.	1.1	21
1014	NaÃ⁻ve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Stem Cells Translational Medicine, 2016, 5, 8-19.	1.6	59
1015	Human-Mouse Chimerism Validates Human Stem Cell Pluripotency. Cell Stem Cell, 2016, 18, 67-72.	5.2	106
1016	Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Research, 2016, 26, 350-366.	5.7	59
1018	Sex-specific silencing of X-linked genes by Xist RNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E309-18.	3.3	37
1019	BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment. Cytokine and Growth Factor Reviews, 2016, 27, 55-63.	3.2	8
1020	Generation of genome-edited mouse epiblast stem cells via a detour through ES cell-chimeras. Differentiation, 2016, 91, 119-125.	1.0	11
1022	Posttranscriptional Modulation of Sox2 Activity by miRNAs. , 2016, , 43-71.		0
1023	Initial embryology and pluripotent stem cells in the pig—The quest for establishing the pig as a model for cell therapy. Theriogenology, 2016, 85, 162-171.	0.9	10

#	Article	IF	CITATIONS
1024	Activin A in combination with <scp>ERK</scp> 1/2 <scp>MAPK</scp> pathway inhibition sustains propagation of mouse embryonic stem cells. Genes To Cells, 2017, 22, 189-202.	0.5	7
1025	Jmjd2c/Kdm4c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development (Cambridge), 2017, 144, 567-579.	1.2	24
1026	Primate embryogenesis predicts the hallmarks of human naÃ⁻ve pluripotency. Development (Cambridge), 2017, 144, 175-186.	1.2	106
1027	Exploring early differentiation and pluripotency in domestic animals. Reproduction, Fertility and Development, 2017, 29, 101.	0.1	4
1028	Characterization of goat inner cell mass derived cells in double kinase inhibition condition. Biochemical and Biophysical Research Communications, 2017, 483, 325-331.	1.0	3
1029	TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022186.	2.3	101
1030	Formative pluripotency: the executive phase in a developmental continuum. Development (Cambridge), 2017, 144, 365-373.	1.2	345
1031	DNA methylation is dispensable for changes in global chromatin architecture but required for chromocentre formation in early stem cell differentiation. Chromosoma, 2017, 126, 605-614.	1.0	17
1033	Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. Stem Cell Research, 2017, 19, 104-112.	0.3	20
1034	PDCFRα+ Cells in Embryonic Stem Cell Cultures Represent the InÂVitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports, 2017, 8, 318-333.	2.3	26
1035	An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells. Protein and Cell, 2017, 8, 379-393.	4.8	36
1036	Species-specific developmental timing is maintained by pluripotent stem cells ex utero. Developmental Biology, 2017, 423, 101-110.	0.9	43
1037	Metabolic remodeling during the loss and acquisition of pluripotency. Development (Cambridge), 2017, 144, 541-551.	1.2	141
1038	Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nature Communications, 2017, 8, 15055.	5.8	60
1039	Eat, breathe, ROS: controlling stem cell fate through metabolism. Expert Review of Cardiovascular Therapy, 2017, 15, 345-356.	0.6	5
1040	Lineage-specific functions of TET1 in the postimplantation mouse embryo. Nature Genetics, 2017, 49, 1061-1072.	9.4	96
1041	ChIP-seq analysis of genomic binding regions of five major transcription factors in mouse epiblast stem cells that highlights a central role for ZIC2. Development (Cambridge), 2017, 144, 1948-1958.	1.2	31
1042	Hybrid Cellular Metabolism Coordinated by Zic3 and Esrrb Synergistically Enhances Induction of Naive Pluripotency. Cell Metabolism, 2017, 25, 1103-1117.e6.	7.2	67

#	Article	IF	CITATIONS
1043	Protein Kinases in Pluripotency—Beyond the Usual Suspects. Journal of Molecular Biology, 2017, 429, 1504-1520.	2.0	18
1044	Properties of embryoid bodies. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e259.	5.9	76
1045	Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling. Neurobiology of Disease, 2017, 99, 84-120.	2.1	11
1046	The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Developmental Biology, 2017, 17, 7.	2.1	132
1047	Inhibition of Wnt/β-catenin signaling by IWR1 induces expression of Foxd3 to promote mouse epiblast stem cell self-renewal. Biochemical and Biophysical Research Communications, 2017, 490, 616-622.	1.0	11
1048	The Art of Capturing Pluripotency: Creating the Right Culture. Stem Cell Reports, 2017, 8, 1457-1464.	2.3	39
1049	Capturing Human NaÃ ⁻ ve Pluripotency in the Embryo and in the Dish. Stem Cells and Development, 2017, 26, 1141-1161.	1.1	29
1050	Derivation of Pluripotent Stem Cells with InÂVivo Embryonic and Extraembryonic Potency. Cell, 2017, 169, 243-257.e25.	13.5	382
1051	Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency. Cell Reports, 2017, 19, 20-35.	2.9	53
1052	SMARCAD1 Contributes to the Regulation of Naive Pluripotency by Interacting with Histone Citrullination. Cell Reports, 2017, 18, 3117-3128.	2.9	40
1053	Discrimination of Stem Cell Status after Subjecting Cynomolgus Monkey Pluripotent Stem Cells to NaÃ ⁻ ve Conversion. Scientific Reports, 2017, 7, 45285.	1.6	17
1054	Single-cell analysis reveals lineage segregation in early post-implantation mouse embryos. Journal of Biological Chemistry, 2017, 292, 9840-9854.	1.6	31
1055	Derivation of Transgene-Free Rat Induced Pluripotent Stem Cells Approximating the Quality of Embryonic Stem Cells. Stem Cells Translational Medicine, 2017, 6, 340-351.	1.6	5
1056	Charting Developmental Dissolution of Pluripotency. Journal of Molecular Biology, 2017, 429, 1441-1458.	2.0	9
1057	PHB Associates with the HIRA Complex to Control an Epigenetic-Metabolic Circuit in Human ESCs. Cell Stem Cell, 2017, 20, 274-289.e7.	5.2	41
1058	Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics, 2017, 18, 180-191.	7.7	131
1059	Derivation and Culture of Epiblast Stem Cell (EpiSC) Lines. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot093971.	0.2	2
1060	New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell, 2017, 20, 18-28.	5.2	210

		CITATION REPORT	
#	Article	IF	CITATIONS
1061	The Epigenetic Paradox of Pluripotent ES Cells. Journal of Molecular Biology, 2017, 429, 1476-1503	. 2.0	35
1062	Dormant Pluripotent Cells Emerge during Neural Differentiation of Embryonic Stem Cells in a FoxO3-Dependent Manner. Molecular and Cellular Biology, 2017, 37, .	1.1	7
1063	Functional Antagonism between OTX2 and NANOG Specifies a Spectrum ofÂHeterogeneous Identi Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 1642-1659.	ies in 2.3	20
1064	Nonintegrating Human Somatic Cell Reprogramming Methods. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 1-21.	0.6	6
1065	Regulation of X-chromosome dosage compensation in human: mechanisms and model systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160363.	1.8	29
1067	Tfcp2l1 represses multiple lineage commitment of mouse embryonic stem cells through MTA1 and Journal of Cell Science, 2017, 130, 3809-3817.	LEF1. 1.2	11
1068	Insulin fine-tunes self-renewal pathways governing naive pluripotency and extra-embryonic endoder Nature Cell Biology, 2017, 19, 1164-1177.	m. 4.6	67
1069	Stabilization of mouse haploid embryonic stem cells with combined kinase and signal modulation. Scientific Reports, 2017, 7, 13222.	1.6	14
1070	Rat embryonic stem cells produce fertile offspring through tetraploid complementation. Proceeding of the National Academy of Sciences of the United States of America, 2017, 114, 11974-11979.	S 3.3	15
1071	The transcription factor Gbx2 induces expression of Kruppel-like factor 4 to maintain and induce na pluripotency of embryonic stem cells. Journal of Biological Chemistry, 2017, 292, 17121-17128.	Ã⁻ve 1.6	21
1072	Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Krüppel-like factors. Stem Cell Research, 2017, 24, 106-117.	0.3	18
1073	Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cells. Developmental Cell, 2017, 42, 585-599.e4.	3.1	78
1074	Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. Laboratory Investigation, 2017, 97, 1133-1141.	1.7	33
1075	Interspecies chimeras for human stem cell research. Development (Cambridge), 2017, 144, 2544-2	547. 1.2	24
1076	At the base of colinear Hox gene expression: cis -features and trans -factors orchestrating the initial phase of Hox cluster activation. Developmental Biology, 2017, 428, 293-299.	0.9	29
1077	Epigenetic resetting of human pluripotency. Development (Cambridge), 2017, 144, 2748-2763.	1.2	225
1078	Transforming growth factor $\hat{a} \in \hat{I}^2$ in liver cancer stem cells and regeneration. Hepatology Communications, 2017, 1, 477-493.	2.0	30
1079	A Simple Method to Identify Kinases That Regulate Embryonic Stem Cell Pluripotency by High-throughput Inhibitor Screening. Journal of Visualized Experiments, 2017, , . ——————————————————————————————————	0.2	2

#	Article	IF	CITATIONS
1080	Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Molecular Biology of the Cell, 2017, 28, 2854-2874.	0.9	202
1081	The interplay of epigenetic marks during stem cell differentiation and development. Nature Reviews Genetics, 2017, 18, 643-658.	7.7	414
1082	Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. Cell Reports, 2017, 21, 2965-2977.	2.9	61
1083	CRISPR/Cas9-mediated genome editing in naà ve human embryonic stem cells. Scientific Reports, 2017, 7, 16650.	1.6	5
1085	Naive-like ESRRB+ iPSCs with the Capacity for Rapid Neural Differentiation. Stem Cell Reports, 2017, 9, 1825-1838.	2.3	16
1086	Single-cell transcriptome of early embryos and cultured embryonic stem cells of cynomolgus monkeys. Scientific Data, 2017, 4, 170067.	2.4	39
1087	Progress towards human primordial germ cell specification <i>in vitro</i> . Molecular Human Reproduction, 2017, 23, 4-15.	1.3	19
1088	Glycans define the stemness of naÃ ⁻ ve and primed pluripotent stem cells. Glycoconjugate Journal, 2017, 34, 737-747.	1.4	8
1089	Geminin Is Essential for Pluripotent Cell Viability During Teratoma Formation, but Not for Differentiated Cell Viability During Teratoma Expansion. Stem Cells and Development, 2017, 26, 285-302.	1.1	9
1090	Concise Review: Signaling Control of Early Fate Decisions Around the Human Pluripotent Stem Cell State. Stem Cells, 2017, 35, 277-283.	1.4	10
1091	Sirtuins in metabolism, stemness and differentiation. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3444-3455.	1.1	32
1092	Concise Review: Lessons from NaÃ ⁻ ve Human Pluripotent Cells. Stem Cells, 2017, 35, 35-41.	1.4	46
1093	Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells. Stem Cells, 2017, 35, 611-625.	1.4	41
1094	An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nature Genetics, 2017, 49, 97-109.	9.4	149
1095	Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development (Cambridge), 2017, 144, 4496-4509.	1.2	63
1096	Genomic and molecular control of cell type and cell type conversions. Cell Regeneration, 2017, 6, 1-7.	1.1	12
1097	Strategies for bringing stem cell-derived dopamine neurons to the clinic—The NYSTEM trial. Progress in Brain Research, 2017, 230, 191-212.	0.9	67
1098	Pluripotent Stem Cells to Model and Treat Huntingtonâ \in ™s Disease. , 2017, , .		2

ARTICLE IF CITATIONS Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells. Frontiers in Cell 1099 39 1.8 and Developmental Biology, 2017, 5, 7. Links between DNA Replication, Stem Cells and Cancer. Genes, 2017, 8, 45. 1.0 A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA 1101 2.8 35 methylation. ELife, 2017, 6, . Distinct SoxB1 networks are required for $na\tilde{A}$ ve and primed pluripotency. ELife, 2017, 6, . 1102 2.8 Pluripotent Stem Cell Microenvironment., 2017,, 33-49. 1103 0 Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition. Cell Reports, 2018, 22, 2615-2627. 99 The role of the reprogramming method and pluripotency state in gamete differentiation from 1105 1.314 patient-specific human pluripotent stem cells. Molecular Human Reproduction, 2018, 24, 173-184. Nascent Induced Pluripotent Stem Cells Efficiently Generate Entirely iPSC-Derived Mice while 1106 2.9 Expressing Differentiation-Associated Genes. Cell Reports, 2018, 22, 876-884. Identifying Human NaÃ⁻ve Pluripotent Stem Cells â^' Evaluating State‧pecific Reporter Lines and 1107 1.2 26 Cell‌urface Markers. BioEssays, 2018, 40, e1700239. Contrasting epigenetic states of heterochromatin in the different types of mouse pluripotent stem 1.6 34 cells. Scientific Reports, 2018, 8, 5776. Comparative analysis of naive, primed and ground state pluripotency in mouse embryonic stem cells 1109 54 1.6 originating from the same genetic background. Scientific Reports, 2018, 8, 5884. An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. Science Advances, 2018, 4, eaap8747. Roles of ZIC2 in Regulation of Pluripotent Stem Cells. Advances in Experimental Medicine and Biology, 1111 0.8 3 2018, 1046, 339-351. Modeling signalingâ€dependent pluripotency with Boolean logic to predict cell fate transitions. 3.2 49 Molecular Systems Biology, 2018, 14, e7952. Metabolism in Pluripotent Stem Cells and Early Mammalian Development. Cell Metabolism, 2018, 27, 1113 7.2 122 332-338. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. 1114 181 Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2090-2095. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human 1115 1.2 155 preimplantation epiblast. Development (Cambridge), 2018, 145, . Isl1Î² Overexpression With Key Î² Cell Transcription Factors Enhances Glucose-Responsive Hepatic Insulin 1.4 Production and Secretion. Endocrinology, 2018, 159, 869-882.

		CITATION REPORT		
#	Article		IF	CITATIONS
1117	Pluripotency Deconstructed. Development Growth and Differentiation, 2018, 60, 44-5	2.	0.6	72
1118	From Otic Induction to Hair Cell Production: Pax2 ^{EGFP} Cell Line Illuminate Development in Mouse Inner Ear Organoid Model. Stem Cells and Development, 2018,	s Key Stages of 27, 237-251.	1.1	32
1119	A Non-canonical BCOR-PRC1.1 Complex Represses Differentiation Programs in Human Cell, 2018, 22, 235-251.e9.	ESCs. Cell Stem	5.2	80
1120	XEN and the Art of Stem Cell Maintenance: Molecular Mechanisms Maintaining Cell Fa Self-Renewal in Extraembryonic Endoderm Stem (XEN) Cell Lines. Advances in Anatomy Cell Biology, 2018, 229, 69-78.	te and y, Embryology and	1.0	3
1121	Cell surface markers for the identification and study of human naive pluripotent stem of Research, 2018, 26, 36-43.	ells. Stem Cell	0.3	39
1122	Network Features and Dynamical Landscape of Naive and Primed Pluripotency. Biophys 2018, 114, 237-248.	sical Journal,	0.2	11
1123	Capturing Totipotent Stem Cells. Cell Stem Cell, 2018, 22, 25-34.		5.2	81
1124	TGF-β signaling pathway in early mouse development and embryonic stem c Biochimica Et Biophysica Sinica, 2018, 50, 68-73.	ells. Acta	0.9	27
1125	Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condit independent of LIF and b-FGF cytokines. Cell Death Discovery, 2018, 4, 21.	ion and	2.0	40
1126	The principles that govern transcription factor network functions in stem cells. Develo (Cambridge), 2018, 145, .	pment	1.2	64
1127	Specification of trophoblast from embryonic stem cells exposed to BMP4â \in . Biology of 2018, 99, 212-224.	Reproduction,	1.2	49
1128	Deconstructing the pluripotency gene regulatory network. Nature Cell Biology, 2018, 2	20, 382-392.	4.6	79
1129	Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Ce 2018, 28, 22-34.	ll Research,	5.7	43
1130	Small Molecule Antagonist of Cell Surface Glycosaminoglycans Restricts Mouse Embry Cells in a Pluripotent State. Stem Cells, 2018, 36, 45-54.	onic Stem	1.4	14
1131	Esrrb, an estrogenâ€related receptor involved in early development, pluripotency, and FEBS Letters, 2018, 592, 852-877.	reprogramming.	1.3	59
1132	Induced Pluripotent Stem Cells from a Marsupial, the Tasmanian Devil (Sarcophilus har into the Evolution of Mammalian Pluripotency. Stem Cells and Development, 2018, 27	risii): Insight , 112-122.	1.1	18
1133	Chromatin Regulation of Early Embryonic Lineage Specification. Advances in Anatomy, Cell Biology, 2018, , .	Embryology and	1.0	0
1134	Genetic engineering in nonhuman primates for human disease modeling. Journal of Hu 2018, 63, 125-131.	man Genetics,	1.1	21

#	Article	IF	CITATIONS
1135	Epigenetic differences between naÃ ⁻ ve and primed pluripotent stem cells. Cellular and Molecular Life Sciences, 2018, 75, 1191-1203.	2.4	84
1136	SMAD2/3, versatile molecular tools for cellular engineering. Stem Cell Investigation, 2018, 5, 24-24.	1.3	1
1138	Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis. Cell Research, 2018, 28, 126-129.	5.7	46
1139	BMI1 enables interspecies chimerism with human pluripotent stem cells. Nature Communications, 2018, 9, 4649.	5.8	38
1140	Human Pluripotent Stem Cell Culture: Current Status, Challenges, and Advancement. Stem Cells International, 2018, 2018, 1-17.	1.2	79
1141	Klf5 suppresses ERK signaling in mouse pluripotent stem cells. PLoS ONE, 2018, 13, e0207321.	1.1	17
1142	Comparison of in vitro Neuronal Differentiation Capacity Between Mouse Epiblast Stem Cells Derived From Nuclear Transfer and Naturally Fertilized Embryos. Frontiers in Molecular Neuroscience, 2018, 11, 392.	1.4	1
1143	Gain of CTCF-Anchored Chromatin Loops Marks the Exit from Naive Pluripotency. Cell Systems, 2018, 7, 482-495.e10.	2.9	62
1144	Transcriptional and epigenetic control of cell fate decisions in early embryos. Reproduction, Fertility and Development, 2018, 30, 73.	0.1	7
1145	Basic Characteristics of Muse Cells. Advances in Experimental Medicine and Biology, 2018, 1103, 13-41.	0.8	23
1146	A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nature Communications, 2018, 9, 5139.	5.8	149
1147	Analyzing bovine OCT4 and NANOG enhancer activity in pluripotent stem cells using fluorescent protein reporters. PLoS ONE, 2018, 13, e0203923.	1.1	2
1148	Isolation, Culture, and Functional Characterization of Human Embryonic Stem Cells: Current Trends and Challenges. Stem Cells International, 2018, 2018, 1-8.	1.2	30
1149	LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. Journal of Cell Science, 2018, 131, .	1.2	4
1150	Esrrb extinction triggers dismantling of naÃ ⁻ ve pluripotency and marks commitment to differentiation. EMBO Journal, 2018, 37, .	3.5	25
1151	Permissiveness to form pluripotent stem cells may be an evolutionarily derived characteristic in Mus musculus. Scientific Reports, 2018, 8, 14706.	1.6	11
1152	Metabolic and Mechanical Cues Regulating Pluripotent Stem Cell Fate. Trends in Cell Biology, 2018, 28, 1014-1029.	3.6	52
1153	The Long Noncoding RNA Lncenc1 Maintains Naive States of Mouse ESCs by Promoting the Glycolysis Pathway. Stem Cell Reports, 2018, 11, 741-755.	2.3	41

#	Article	IF	CITATIONS
1154	Transcriptional landscape changes during human embryonic stem cell derivation. Molecular Human Reproduction, 2018, 24, 543-555.	1.3	5
1155	Single-cell RNA-sequencing reveals the existence of naive and primed pluripotency in pre-implantation rhesus monkey embryos. Genome Research, 2018, 28, 1481-1493.	2.4	25
1156	Enigma of Retrotransposon Biology in Mammalian Early Embryos and Embryonic Stem Cells. Stem Cells International, 2018, 2018, 1-6.	1.2	20
1157	Reconstitution of Germ Cell Development In Vitro. , 2018, , 1-19.		0
1158	Metabolic plasticity during transition to naÃ ⁻ ve-like pluripotency in canine embryo-derived stem cells. Stem Cell Research, 2018, 30, 22-33.	0.3	8
1159	An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell Stem Cell, 2018, 22, 851-864.e5.	5.2	47
1160	Modulation of STAT3 phosphorylation by PTPN2 inhibits naÃ⁻ve pluripotency of embryonic stem cells. FEBS Letters, 2018, 592, 2227-2237.	1.3	8
1161	Pluripotent stem cells: induction and self-renewal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170213.	1.8	28
1162	Drug screening for human genetic diseases using iPSC models. Human Molecular Genetics, 2018, 27, R89-R98.	1.4	99
1163	Unique molecular events during reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) at naÃ ⁻ ve state. ELife, 2018, 7, .	2.8	35
1164	Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. ELife, 2018, 7, .	2.8	144
1165	FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest. ELife, 2018, 7, .	2.8	33
1166	Trans-spliced long non-coding RNA: an emerging regulator of pluripotency. Cellular and Molecular Life Sciences, 2018, 75, 3339-3351.	2.4	9
1167	States and Origins of Mammalian Embryonic Pluripotency In Vivo and in a Dish. Current Topics in Developmental Biology, 2018, 128, 151-179.	1.0	9
1168	Suppressing Nodal Signaling Activity Predisposes Ectodermal Differentiation of Epiblast Stem Cells. Stem Cell Reports, 2018, 11, 43-57.	2.3	16
1169	A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Developmental Biology, 2018, 441, 104-126.	0.9	45
1170	Capturing and Interconverting Embryonic Cell Fates in a Dish. Current Topics in Developmental Biology, 2018, 128, 181-202.	1.0	5
1171	Stem Cell-Derived Spermatozoa. , 2018, , 315-345.		2

ARTICLE IF CITATIONS # Deconstructing and reconstructing the mouse and human early embryo. Nature Cell Biology, 2018, 20, 1172 4.6 161 878-887. Mammalian embryo comparison identifies novel pluripotency genes associated with the na \tilde{A} ve or 1173 primed state. Biology Open, 2018, 7, . 1175 Stem Cells and Cell Conversion in Livestock., 2018, , 215-233. 0 Wnt Signaling and Its Impact on Mitochondrial and Cell Cycle Dynamics in Pluripotent Stem Cells. Genes, 2018, 9, 109. Lincu Preserves NaÃ-ve Pluripotency by Restricting ERK Activity in Embryonic Stem Cells. Stem Cell 1177 2.3 18 Reports, 2018, 11, 395-409. A Simplified and Efficient Protocol for Derivation and Maintenance of Highâ€Quality Mouse Primed Pluripotent Stem Cells Using Wnt Inhibition. Current Protocols in Stem Cell Biology, 2018, 46, e60. 3.0 1179 Embryonic Stem Cells., 2018, , 1-51. 1 Culture of haploid blastocysts in FGF4 favors the derivation of epiblast stem cells with a primed 1180 1.6 epigenetic and transcriptional landscape. Scientific Reports, 2018, 8, 10775. Cycling to Meet Fate: Connecting Pluripotency to the Cell Cycle. Frontiers in Cell and Developmental 1181 1.8 35 Biology, 2018, 6, 57. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and 2.4 primitive streak formation of the epiblast. Stem Cell Research and Therapy, 2018, 9, 2. JAK/STAT3 regulated global gene expression dynamics during late-stage reprogramming process. BMC 1183 1.2 22 Genomics, 2018, 19, 183. Pluripotencyâ€"What Does Cell Polarity Have to Do With It?., 2018, , 31-60. 1184 DICER1 Is Essential for Self-Renewal of Human Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 616-625. 1185 2.3 24 Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. Cell Stem Cell, 2018, 23, 412-425.e10. 5.2 59 1187 Pluripotency in avian species. International Journal of Developmental Biology, 2018, 62, 245-255. 0.3 4 Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proceedings 1188 29 of the National Academy of Sciences of the United States of America, 2018, 115, 6369-6374. Germline Stem Cells: A Useful Tool for Therapeutic Cloning. Current Stem Cell Research and Therapy, 1189 0.6 7 2018, 13, 236-242. Effect of exogenous transforming growth factor $\hat{1}^{21}$ (TGF- $\hat{1}^{21}$) on early bovine embryo development. 1190 Zygote, 2018, 26, 232-241.

# 1191	ARTICLE Oct4 regulates the embryonic axis and coordinates exit from pluripotency and germ layer specification in the mouse embryo. Development (Cambridge), 2018, 145, .	IF 1.2	CITATIONS 33
1192	Embryonic Stem Cells. , 2019, , 113-123.		0
1193	<i>Mettl14</i> is required for mouse postimplantation development by facilitating epiblast maturation. FASEB Journal, 2019, 33, 1179-1187.	0.2	60
1194	Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1464.	6.6	11
1195	Distinct Molecular Trajectories Converge to Induce Naive Pluripotency. Cell Stem Cell, 2019, 25, 388-406.e8.	5.2	33
1196	Animal Stem Cells—A Perspective on Their Use in Human Health. , 2019, , 265-282.		0
1197	Efficient establishment of induced pluripotent stem cells from various animals Journal of Animal Genetics, 2019, 47, 11-20.	0.5	0
1198	In vitro reconstitution of germ cell developmentâ€. Biology of Reproduction, 2019, 101, 567-578.	1.2	14
1199	High-content screen in human pluripotent cells identifies miRNA-regulated pathways controlling pluripotency and differentiation. Stem Cell Research and Therapy, 2019, 10, 202.	2.4	11
1200	Epigenetic Regulation of Transition Among Different Pluripotent States: Concise Review. Stem Cells, 2019, 37, 1372-1380.	1.4	24
1201	SMYD2 Drives Mesendodermal Differentiation of Human Embryonic Stem Cells Through Mediating the Transcriptional Activation of Key Mesendodermal Genes. Stem Cells, 2019, 37, 1401-1415.	1.4	14
1202	Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential. International Journal of Molecular Sciences, 2019, 20, 3643.	1.8	19
1203	Long noncoding RNA CCDC144NL-AS1 knockdown induces naÃ ⁻ ve-like state conversion of human pluripotent stem cells. Stem Cell Research and Therapy, 2019, 10, 220.	2.4	9
1204	Hurdles to Generating Human Islets in Animals via Blastocyst Complementation. Current Diabetes Reports, 2019, 19, 45.	1.7	3
1205	Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system. Stem Cell Research and Therapy, 2019, 10, 193.	2.4	50
1206	Defining Human Pluripotency. Cell Stem Cell, 2019, 25, 9-22.	5.2	67
1207	The Pluripotency Continuum and Interspecies Chimeras. Current Protocols in Stem Cell Biology, 2019, 50, e87.	3.0	4
1208	N-cadherin stabilises neural identity by dampening anti-neural signals. Development (Cambridge), 2019, 146, .	1.2	17

#	Article	IF	CITATIONS
1209	Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics, 2019, 9, 6976-6990.	4.6	47
1210	Generation of Mouse Parthenogenetic Epiblast Stem Cells and Their Imprinting Patterns. International Journal of Molecular Sciences, 2019, 20, 5428.	1.8	3
1211	Genes essential for embryonic stem cells are associated with neurodevelopmental disorders. Genome Research, 2019, 29, 1910-1918.	2.4	19
1212	The underdeveloped innate immunity in embryonic stem cells: The molecular basis and biological perspectives from early embryogenesis. American Journal of Reproductive Immunology, 2019, 81, e13089.	1.2	16
1213	Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions. Biochemical and Biophysical Research Communications, 2019, 518, 506-512.	1.0	15
1214	The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Cell and Bioscience, 2019, 9, 71.	2.1	6
1215	The cell cycle in stem cell proliferation, pluripotency and differentiation. Nature Cell Biology, 2019, 21, 1060-1067.	4.6	233
1216	Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Scientific Reports, 2019, 9, 12719.	1.6	42
1217	A Chemically Defined Feeder-free System for the Establishment and Maintenance of the Human Naive Pluripotent State. Stem Cell Reports, 2019, 13, 612-626.	2.3	24
1218	Recent insights into the na \tilde{A} ve state of human pluripotency and its applications. Experimental Cell Research, 2019, 385, 111645.	1.2	30
1219	The TCL1 function revisited focusing on metabolic requirements of stemness. Cell Cycle, 2019, 18, 3055-3063.	1.3	3
1220	Transcriptional Heterogeneity in Naive and Primed Human Pluripotent Stem Cells at Single-Cell Resolution. Cell Reports, 2019, 26, 815-824.e4.	2.9	109
1221	Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Developmental Cell, 2019, 48, 135-150.	3.1	80
1222	Dgcr8 knockout approaches to understand microRNA functions in vitro and in vivo. Cellular and Molecular Life Sciences, 2019, 76, 1697-1711.	2.4	28
1223	ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state. Biochemical and Biophysical Research Communications, 2019, 510, 78-84.	1.0	7
1224	On Mammalian Totipotency: What Is the Molecular Underpinning for the Totipotency of Zygote?. Stem Cells and Development, 2019, 28, 897-906.	1.1	10
1225	Derivation of novel naiveâ€like porcine embryonic stem cells by a reprogramming factorâ€assisted strategy. FASEB Journal, 2019, 33, 9350-9361.	0.2	12
1226	Generation of ERKâ€Independent Human and Nonâ€Human Primate Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2019, 49, e85.	3.0	2

#		IF	CITATIONS
#	The bipartite TAD organization of the X-inactivation center ensures opposing developmental		CHATIONS
1227	regulation of Tsix and Xist. Nature Genetics, 2019, 51, 1024-1034.	9.4	60
1228	ld1 Stabilizes Epiblast Identity by Sensing Delays in Nodal Activation and Adjusting the Timing of Differentiation. Developmental Cell, 2019, 50, 462-477.e5.	3.1	12
1229	A Mass Spectrometry Survey of Chromatinâ€Associated Proteins in Pluripotency and Early Lineage Commitment. Proteomics, 2019, 19, 1900047.	1.3	16
1231	Frontiers of Pluripotency. Methods in Molecular Biology, 2019, 2005, 3-27.	0.4	3
1232	Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and Postimplantation Embryos in Serum-Free Conditions. Methods in Molecular Biology, 2019, 2005, 29-36.	0.4	1
1233	Pig Chimeric Model with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005, 101-124.	0.4	4
1234	Embryonic Chimeras with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005, 125-151.	0.4	1
1235	A boost towards totipotency for stem cells. Nature Cell Biology, 2019, 21, 671-673.	4.6	3
1236	Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Scientific Reports, 2019, 9, 8051.	1.6	22
1237	Genetic basis for primordial germ cells specification in mouse and human: Conserved and divergent roles of PRDM and SOX transcription factors. Current Topics in Developmental Biology, 2019, 135, 35-89.	1.0	31
1238	The depletion of p38alpha kinase upregulates NADPH oxidase 2/NOX2/gp91 expression and the production of superoxide in mouse embryonic stem cells. Archives of Biochemistry and Biophysics, 2019, 671, 18-26.	1.4	8
1239	Testis Development. Endocrine Reviews, 2019, 40, 857-905.	8.9	182
1240	Inhibition of transcription factor Tâ€cell factor 3 (TCF3) using the oligodeoxynucleotide strategy increases embryonic stem cell stemness: possible application in regenerative medicine. Cell Biology International, 2019, 43, 852-862.	1.4	10
1241	Intracellular Ca2+ Homeostasis and Nuclear Export Mediate Exit from Naive Pluripotency. Cell Stem Cell, 2019, 25, 210-224.e6.	5.2	24
1242	Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Systems, 2019, 8, 427-445.e10.	2.9	111
1243	Heterogeneity in Epiblast Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1123, 5-17.	0.8	3
1244	FGF/ERK signaling pathway: how it operates in mammalian preimplantation embryos and embryo-derived stem cells. International Journal of Developmental Biology, 2019, 63, 171-186.	0.3	14
1245	Activation-Induced Cytidine Deaminase Regulates Fibroblast Growth Factor/Extracellular Signal-Regulated Kinases Signaling to Achieve the NaÃ ⁻ ve Pluripotent State During Reprogramming. Stem Cells, 2019, 37, 1003-1017.	1.4	5

	СПАПС	IN REPORT	
#	Article	IF	Citations
1246	Pluripotent Stem Cell Heterogeneity. Advances in Experimental Medicine and Biology, 2019, 1123, 71-94.	0.8	34
1247	Increased Expression of Cell Surface SSEA-1 is Closely Associated with NaÃ ⁻ ve-Like Conversion from Human Deciduous Teeth Dental Pulp Cells-Derived iPS Cells. International Journal of Molecular Sciences, 2019, 20, 1651.	1.8	10
1248	Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma, 2019, 128, 423-441.	1.0	13
1249	Evolutionary view of pluripotency seen from early development of non-mammalian amniotes. Developmental Biology, 2019, 452, 95-103.	0.9	2
1250	<i>Slc25a36</i> modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level. Biochemical Journal, 2019, 476, 1585-1604.	1.7	12
1251	Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency. Cell Stem Cell, 2019, 24, 785-801.e7.	5.2	85
1252	Two decades of embryonic stem cells: a historical overview. Human Reproduction Open, 2019, 2019, hoy024.	2.3	59
1253	Dynamics of Wnt activity on the acquisition of ectoderm potency in epiblast stem cells. Development (Cambridge), 2019, 146, .	1.2	18
1254	WNT Inhibition and Increased FGF Signaling Promotes Derivation of Less Heterogeneous Primed Human Embryonic Stem Cells, Compatible with Differentiation. Stem Cells and Development, 2019, 28, 579-592.	1.1	9
1255	Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells International, 2019, 2019, 1-20.	1.2	20
1256	Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states. Epigenetics and Chromatin, 2019, 12, 14.	1.8	11
1258	The Pluripotent Microvascular Pericytes Are the Adult Stem Cells Even in the Testis. Advances in Experimental Medicine and Biology, 2019, 1122, 235-267.	0.8	17
1259	Capacitation of human naÃ ⁻ ve pluripotent stem cells for multi-lineage differentiation. Development (Cambridge), 2019, 146, .	1.2	83
1260	Proteotyping pluripotency with mass spectrometry. Expert Review of Proteomics, 2019, 16, 391-400.	1.3	0
1261	Hypoxia enhances buffalo adiposeâ€derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells. Journal of Cellular Physiology, 2019, 234, 17254-17268.	2.0	24
1262	Machine Learning of Stem Cell Identities From Single-Cell Expression Data via Regulatory Network Archetypes. Frontiers in Genetics, 2019, 10, 2.	1.1	14
1263	Combining CRISPR/Cas9-mediated knockout with genetic complementation for in-depth mechanistic studies in human ES cells. BioTechniques, 2019, 66, 23-27.	0.8	3
1264	The transcription factor TFCP2L1 induces expression of distinct target genes and promotes self-renewal of mouse and human embryonic stem cells. Journal of Biological Chemistry, 2019, 294, 6007-6016.	1.6	42

#	Article	IF	CITATIONS
1265	Acid stimulation-induced semi-pluripotent characteristics in human somatic cells. Acta Oto-Laryngologica, 2019, 139, 146-152.	0.3	0
1266	Loss of Emp2 compromises cardiogenic differentiation in mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2019, 511, 173-178.	1.0	4
1267	A gene regulatory network controls the balance between mesendoderm and ectoderm at pluripotency exit. Molecular Systems Biology, 2019, 15, e9043.	3.2	20
1268	NaÃ⁻ve human pluripotent stem cells respond to Wnt, Nodal, and LIF signalling to produce expandable naÃ⁻ve extra-embryonic endoderm. Development (Cambridge), 2019, 146, .	1.2	95
1269	TGFβ Family Signaling Pathways in Pluripotent and Teratocarcinoma Stem Cells' Fate Decisions: Balancing Between Self-Renewal, Differentiation, and Cancer. Cells, 2019, 8, 1500.	1.8	29
1270	Untargeted histone profiling during naive conversion uncovers conserved modification markers between mouse and human. Scientific Reports, 2019, 9, 17240.	1.6	14
1271	Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nature Cell Biology, 2019, 21, 1518-1531.	4.6	81
1272	Reprogramming: identifying the mechanisms that safeguard cell identity. Development (Cambridge), 2019, 146, .	1.2	45
1273	Stem Cell Biology. , 2019, , 135-155.		0
1274	Automated minute scale RNA-seq of pluripotent stem cell differentiation reveals early divergence of human and mouse gene expression kinetics. PLoS Computational Biology, 2019, 15, e1007543.	1.5	9
1275	Committing the primordial germ cell: An updated molecular perspective. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1436.	6.6	15
1276	In vitro breeding: application of embryonic stem cells to animal productionâ€. Biology of Reproduction, 2019, 100, 885-895.	1.2	39
1277	The Origin of a New Progenitor Stem Cell Group in Human Development. Advances in Anatomy, Embryology and Cell Biology, 2019, 230, 1-70.	1.0	1
1278	Dppa3 is critical for Lin28a-regulated ES cells naÃ⁻ve–primed state conversion. Journal of Molecular Cell Biology, 2019, 11, 474-488.	1.5	19
1279	Modern Ways of Obtaining Stem Cells. , 2019, , 17-36.		3
1280	Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cellular and Molecular Life Sciences, 2019, 76, 873-892.	2.4	29
1281	Extended pluripotent stem cells facilitate mouse model generation. Protein and Cell, 2019, 10, 5-7.	4.8	1
1282	A Rho-Associated Coiled-Coil Containing Kinase Inhibitor, Y-27632, Improves Viability of Dissociated Single Cells, Efficiency of Colony Formation, and Cryopreservation in Porcine Pluripotent Stem Cells. Cellular Reprogramming, 2019, 21, 37-50.	0.5	16

#	Article	IF	CITATIONS
1283	Arrayed functional genetic screenings in pluripotency reprogramming and differentiation. Stem Cell Research and Therapy, 2019, 10, 24.	2.4	3
1284	Creating Genetically Modified Marmosets. , 2019, , 335-353.		4
1286	A common molecular logic determines embryonic stem cell selfâ€renewal and reprogramming. EMBO Journal, 2019, 38, .	3.5	34
1287	In Vitro Spermatogenesis From Pluripotent Stem Cells. , 2019, , 105-128.		1
1288	Effects of ten–eleven translocation 1 (Tet1) on DNA methylation and gene expression in chicken primordial germ cells. Reproduction, Fertility and Development, 2019, 31, 509.	0.1	5
1289	Full of potential: Pluripotent stem cells for the systems biology of embryonic patterning. Developmental Biology, 2020, 460, 86-98.	0.9	17
1290	Current advances in haploid stem cells. Protein and Cell, 2020, 11, 23-33.	4.8	9
1291	Dynamic regulation of connexins in stem cell pluripotency. Stem Cells, 2020, 38, 52-66.	1.4	14
1292	Regulation of Cell Fate Decisions in Early Mammalian Embryos. Annual Review of Animal Biosciences, 2020, 8, 377-393.	3.6	23
1293	GP130 signaling and the control of naÃ ⁻ ve pluripotency in humans, monkeys, and pigs. Experimental Cell Research, 2020, 386, 111712.	1.2	6
1294	Specification of the First Mammalian Cell Lineages In Vivo and In Vitro. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035634.	2.3	18
1295	FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets. Nature Protocols, 2020, 15, 398-420.	5.5	17
1296	Livestock pluripotency is finally captured in vitro. Reproduction, Fertility and Development, 2020, 32, 11.	0.1	25
1297	Modification of stem cell states by alcohol and acetaldehyde. Chemico-Biological Interactions, 2020, 316, 108919.	1.7	10
1298	Pluripotent stem cell biology and engineering. , 2020, , 1-31.		0
1299	The application of cell surface markers to demarcate distinct human pluripotent states. Experimental Cell Research, 2020, 387, 111749.	1.2	9
1300	Standing on the shoulders of giants: The changing landscape of pluripotent stem cells in research. Anatomical Record, 2020, 303, 2597-2602.	0.8	1
1301	Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs. Protein and Cell, 2020, 11, 97-107.	4.8	33

#	Article	IF	CITATIONS
1302	Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation. Experimental Cell Research, 2020, 387, 111747.	1.2	3
1303	Human Embryogenesis: A Comparative Perspective. Annual Review of Cell and Developmental Biology, 2020, 36, 411-440.	4.0	39
1304	Generation and trapping of a mesoderm biased state of human pluripotency. Nature Communications, 2020, 11, 4989.	5.8	14
1305	Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains. Mammalian Genome, 2020, 31, 263-286.	1.0	0
1306	<i>Sox2</i> gene regulation via the D1 enhancer in embryonic neural tube and neural crest by the combined action of SOX2 and ZIC2. Genes To Cells, 2020, 25, 242-256.	0.5	17
1307	IRF-1 expressed in the inner cell mass of the porcine early blastocyst enhances the pluripotency of induced pluripotent stem cells. Stem Cell Research and Therapy, 2020, 11, 505.	2.4	9
1308	The epigenetics of pluripotent stem cells. , 2020, , 25-74.		0
1309	Transcriptome Sequencing and Comparative Analysis of Amphoteric ESCs and PGCs in Chicken (Gallus) Tj ETQq1	1 0,78431 1.0	4 ₂ rgBT /Ove
1310	Trophoblast lineage specification in the mammalian preimplantation embryo. Reproductive Medicine and Biology, 2020, 19, 209-221.	1.0	10
1311	Inhibition of protein kinase D by CID755673 promotes maintenance of the pluripotency of embryonic stem cells. Development (Cambridge), 2020, 147, .	1.2	4
1312	Modelling human embryogenesis: embryo-like structures spark ethical and policy debate. Human Reproduction Update, 2020, 26, 779-798.	5.2	36
1313	Naive Pluripotent Stem Cells Exhibit Phenotypic Variability that Is Driven by Genetic Variation. Cell Stem Cell, 2020, 27, 470-481.e6.	5.2	38
1314	Mapping the Effects of Genetic Variation on Chromatin State and Gene Expression Reveals Loci That Control Ground State Pluripotency. Cell Stem Cell, 2020, 27, 459-469.e8.	5.2	31
1315	Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell Stem Cell, 2020, 27, 523-531.	5.2	602
1316	Wnt/Beta-catenin/Esrrb signalling controls the tissue-scale reorganization and maintenance of the pluripotent lineage during murine embryonic diapause. Nature Communications, 2020, 11, 5499.	5.8	35
1317	The Key Role of MicroRNAs in Self-Renewal and Differentiation of Embryonic Stem Cells. International Journal of Molecular Sciences, 2020, 21, 6285.	1.8	21
1318	From pluripotency to totipotency: an experimentalist's guide to cellular potency. Development (Cambridge), 2020, 147, .	1.2	47
1319	Temporal activation of LRHâ€1 and RARâ€Î³ in human pluripotent stem cells induces a functional naÃ⁻veâ€like state. EMBO Reports, 2020, 21, e47533.	2.0	6

#	Article	IF	Citations
1320	Drug-Induced NaÃ ⁻ ve iPS Cells Exhibit Better Performance than Primed iPS Cells with Respect to the Ability to Differentiate into Pancreatic Î ² -Cell Lineage. Journal of Clinical Medicine, 2020, 9, 2838.	1.0	5
1321	Pluripotent Stem Cells for Transgenesis in the Rabbit: A Utopia?. Applied Sciences (Switzerland), 2020, 10, 8861.	1.3	0
1322	In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nature Cell Biology, 2020, 22, 534-545.	4.6	91
1323	Bridging naÃ⁻ve and primed pluripotency. Nature Cell Biology, 2020, 22, 513-515.	4.6	6
1324	Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal. Nature Communications, 2020, 11, 2420.	5.8	29
1325	Conversion between porcine naÃ ⁻ ve-like and primed ESCs and specific pluripotency marker identification. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 412-423.	0.7	7
1326	BMP4 resets mouse epiblast stem cells to naive pluripotency through ZBTB7A/B-mediated chromatin remodelling. Nature Cell Biology, 2020, 22, 651-662.	4.6	34
1327	The transcriptional regulator ZNF398 mediates pluripotency and epithelial character downstream of TGF-beta in human PSCs. Nature Communications, 2020, 11, 2364.	5.8	20
1328	TATA box-binding protein-related factor 3 drives the mesendoderm specification of human embryonic stem cells by globally interacting with the TATA box of key mesendodermal genes. Stem Cell Research and Therapy, 2020, 11, 196.	2.4	3
1329	Differential regulation of lineage commitment in human and mouse primed pluripotent stem cells by the nucleosome remodelling and deacetylation complex. Stem Cell Research, 2020, 46, 101867.	0.3	11
1330	A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 416.	1.8	9
1331	DNA methylation and the core pluripotency network. Developmental Biology, 2020, 464, 145-160.	0.9	15
1332	Identification of ALPPL2 as a Naive Pluripotent State-Specific Surface Protein Essential for Human Naive Pluripotency Regulation. Cell Reports, 2020, 30, 3917-3931.e5.	2.9	28
1333	Energy Metabolism Regulates Stem Cell Pluripotency. Frontiers in Cell and Developmental Biology, 2020, 8, 87.	1.8	134
1334	Primed to Naive-Like Conversion of the Common Marmoset Embryonic Stem Cells. Stem Cells and Development, 2020, 29, 761-773.	1.1	14
1335	The effect of dual inhibition of Ras–MEK–ERK and GSK3β pathways on development of in vitro cultured rabbit embryos. Zygote, 2020, 28, 183-190.	0.5	4
1336	Stem metabolism: Insights from oncometabolism and vice versa. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165760.	1.8	5
1337	Histone Acetyltransferase MOF Blocks Acquisition of Quiescence in Ground-State ESCs through Activating Fatty Acid Oxidation. Cell Stem Cell, 2020, 27, 441-458.e10.	5.2	37
#	Article	IF	CITATIONS
------	--	------	-----------
1338	Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21, 571-584.	16.1	1,082
1339	X-Chromosome Inactivation during Preimplantation Development and in Pluripotent Stem Cells. Cytogenetic and Genome Research, 2020, 160, 283-294.	0.6	11
1341	Epithelial cadherin regulates transition between the naÃ ⁻ ve and primed pluripotent states in mouse embryonic stem cells. Stem Cells, 2020, 38, 1292-1306.	1.4	5
1342	FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Frontiers in Cell and Developmental Biology, 2020, 8, 79.	1.8	160
1343	Generating primed pluripotent epiblast stem cells: A methodology chapter. Current Topics in Developmental Biology, 2020, 138, 139-174.	1.0	6
1344	Chimeras for the twenty-first century. Critical Reviews in Biotechnology, 2020, 40, 283-291.	5.1	12
1345	Regulatory Dynamics of Tet1 and Oct4 Resolve Stages of Global DNA Demethylation and Transcriptomic Changes in Reprogramming. Cell Reports, 2020, 30, 2150-2169.e9.	2.9	9
1346	Overexpression of Nuclear Receptor 5A1 Induces and Maintains an Intermediate State of Conversion between Primed and Naive Pluripotency. Stem Cell Reports, 2020, 14, 506-519.	2.3	11
1347	Signal regulators of human naÃ ⁻ ve pluripotency. Experimental Cell Research, 2020, 389, 111924.	1.2	16
1348	Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nature Communications, 2020, 11, 810.	5.8	235
1349	Activin A and BMP4 Signaling Expands Potency of Mouse Embryonic Stem Cells in Serum-Free Media. Stem Cell Reports, 2020, 14, 241-255.	2.3	13
1350	Metabolic Control over mTOR-Dependent Diapause-like State. Developmental Cell, 2020, 52, 236-250.e7.	3.1	79
1351	Establishment of porcine nuclear transfer-derived embryonic stem cells using induced pluripotent stem cells as donor nuclei. Journal of Reproduction and Development, 2020, 66, 163-174.	0.5	1
1352	Zfp281 orchestrates interconversion of pluripotent states by engaging Ehmt1 and Zic2. EMBO Journal, 2020, 39, e102591.	3.5	20
1353	FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells. Nucleic Acids Research, 2020, 48, 2733-2748.	6.5	13
1354	Embryonic stem cells. , 2020, , 421-434.		3
1355	Distinct Processing of IncRNAs Contributes to Non-conserved Functions in Stem Cells. Cell, 2020, 181, 621-636.e22.	13.5	192
1356	Induction and maintenance of specific multipotent progenitor stem cells synergistically mediated by Activin A and BMP4 signaling. Journal of Cellular Physiology, 2020, 235, 8640-8652.	2.0	2

#	Article	IF	CITATIONS
1357	Modeling early stages of endoderm development in epiblast stem cell aggregates with supply of extracellular matrices. Development Growth and Differentiation, 2020, 62, 243-259.	0.6	5
1358	Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell, 2021, 28, 453-471.e8.	5.2	151
1359	Chromatin accessibility in canine stromal cells and its implications for canine somatic cell reprogramming. Stem Cells Translational Medicine, 2021, 10, 441-454.	1.6	6
1360	TRF2-independent chromosome end protection during pluripotency. Nature, 2021, 589, 103-109.	13.7	41
1361	Cell Surface Mechanics Gate Embryonic Stem Cell Differentiation. Cell Stem Cell, 2021, 28, 209-216.e4.	5.2	73
1362	Stem-cell-based embryo models for fundamental research and translation. Nature Materials, 2021, 20, 132-144.	13.3	86
1363	Generating liver using blastocyst complementation: Opportunities and challenges. Xenotransplantation, 2021, 28, e12668.	1.6	4
1364	Organization of the Pluripotent Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040204.	2.3	13
1365	Epigenetic regulation of adipose tissue expansion and adipogenesis by <i>N</i> ⁶ â€methyladenosine. Obesity Reviews, 2021, 22, e13124.	3.1	14
1366	Signaling pathways influencing stem cell self-renewal and differentiation. , 2021, , 69-87.		0
1367	Advances in Female Germ Cell Induction from Pluripotent Stem Cells. Stem Cells International, 2021, 2021, 1-13.	1.2	7
1368	Self-renewal in induced pluripotent stem cells. , 2021, , 179-207.		0
1370	Artificially produced gametes in mice, humans and other species. Reproduction, Fertility and Development, 2021, 33, 91.	0.1	6
1371	PiggyBac vectors in pluripotent stem cell research and applications. , 2021, , 55-78.		0
1372	Male germ cell derivation from PSCs. , 2021, , 133-165.		0
1373	Highâ€ŧhroughput screening in postimplantation haploid epiblast stem cells reveals Hs3st3b1 as a modulator for reprogramming. Stem Cells Translational Medicine, 2021, 10, 743-755.	1.6	13
1374	Evaluating totipotency using criteria of increasing stringency. Nature Cell Biology, 2021, 23, 49-60.	4.6	121
1375	Mature cystic teratoma mimicking meningomyelocele. Child's Nervous System, 2021, 37, 2245-2249.	0.6	1

#	Article	IF	CITATIONS
1376	Induced pluripotent stem cells in intestinal diseases. , 2021, , 101-122.		0
1378	Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Frontiers in Cell and Developmental Biology, 2021, 9, 637309.	1.8	25
1379	Pluripotency state regulates cytoneme selectivity and self-organization of embryonic stem cells. Journal of Cell Biology, 2021, 220, .	2.3	8
1380	Activin A-derived human embryonic stem cells show increased competence to differentiate into primordial germ cell-like cells. Stem Cells, 2021, 39, 551-563.	1.4	11
1381	Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Research, 2021, 31, 526-541.	5.7	53
1382	Pluripotent stem cells in the research for extraembryonic cell differentiation. Development Growth and Differentiation, 2021, 63, 127-139.	0.6	3
1383	Pluripotent stem cells for the study of early human embryology. Development Growth and Differentiation, 2021, 63, 104-115.	0.6	13
1384	Gastruloid Development Competence Discriminates Different States of Pluripotency. Stem Cell Reports, 2021, 16, 354-369.	2.3	36
1385	Synthetic embryology: Early mammalian embryo modeling systems from cell cultures. Development Growth and Differentiation, 2021, 63, 116-126.	0.6	7
1386	From Snapshots to Development: Identifying the Gaps in the Development of Stem Cellâ€based Embryo Models along the Embryonic Timeline. Advanced Science, 2021, 8, 2004250.	5.6	5
1387	Developments in pluripotency: a new formative state. Cell Research, 2021, 31, 493-494.	5.7	8
1388	Mammalian primordial germ cell specification. Development (Cambridge), 2021, 148, .	1.2	40
1390	Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells. PLoS Computational Biology, 2021, 17, e1008778.	1.5	11
1391	LCDM medium supports the derivation of bovine extended pluripotent stem cells with embryonic and extraembryonic potency in bovine–mouse chimeras from iPSCs and bovine fetal fibroblasts. FEBS Journal, 2021, 288, 4394-4411.	2.2	16
1392	Human ES Cell Culture Conditions Fail to Preserve the Mouse Epiblast State. Stem Cells International, 2021, 2021, 1-12.	1.2	1
1394	Organoids in domestic animals: with which stem cells?. Veterinary Research, 2021, 52, 38.	1.1	5
1395	Endothelial Cells Differentiated from Porcine Epiblast Stem Cells. Cellular Reprogramming, 2021, 23, 89-98.	0.5	2
1396	Regenerative Medicine Approaches in Bioengineering Female Reproductive Tissues. Reproductive Sciences, 2021, 28, 1573-1595.	1.1	10

#	Article	IF	CITATIONS
1397	A preview of selected articles. Stem Cells Translational Medicine, 2021, 10, 643-646.	1.6	0
1398	Cadherins in early neural development. Cellular and Molecular Life Sciences, 2021, 78, 4435-4450.	2.4	13
1399	Establishment of bovine expanded potential stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
1400	Reprogramming: Emerging Strategies to Rejuvenate Aging Cells and Tissues. International Journal of Molecular Sciences, 2021, 22, 3990.	1.8	22
1401	Mammalian Germ Cell Development: From Mechanism to InÂVitro Reconstitution. Stem Cell Reports, 2021, 16, 669-680.	2.3	20
1402	Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells. Stem Cell Reports, 2021, 16, 1347-1362.	2.3	16
1403	Extracellular Vesicles of Pluripotent Stem Cells. Russian Journal of Developmental Biology, 2021, 52, 129-140.	0.1	1
1404	Simplification of culture conditions and feeder-free expansion of bovine embryonic stem cells. Scientific Reports, 2021, 11, 11045.	1.6	31
1405	Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton, 2021, 78, 249-276.	1.0	28
1407	Porcine <i>OCT4</i> Reporter System Can Monitor Species-Specific Pluripotency During Somatic Cell Reprogramming. Cellular Reprogramming, 2021, 23, 168-179.	0.5	5
1408	Induced Tissue-Specific Stem Cells (iTSCs): Their Generation and Possible Use in Regenerative Medicine. Pharmaceutics, 2021, 13, 780.	2.0	3
1409	Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports, 2021, 16, 1078-1092.	2.3	21
1410	All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports, 2021, 16, 1117-1141.	2.3	24
1411	Multivariate meta-analysis reveals global transcriptomic signatures underlying distinct human naive-like pluripotent states. PLoS ONE, 2021, 16, e0251461.	1.1	3
1412	A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell, 2021, 184, 2825-2842.e22.	13.5	114
1414	The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development (Cambridge), 2021, 148, .	1.2	25
1415	AP-1 activity is a major barrier of human somatic cell reprogramming. Cellular and Molecular Life Sciences, 2021, 78, 5847-5863.	2.4	4
1416	The FOXO signaling axis displays conjoined functions in redox homeostasis and stemness. Free Radical Biology and Medicine, 2021, 169, 224-237.	1.3	12

#	Article	IF	CITATIONS
1417	Biological importance of OCT transcription factors in reprogramming and development. Experimental and Molecular Medicine, 2021, 53, 1018-1028.	3.2	16
1418	INO80 promotes H2A.Z occupancy to regulate cell fate transition in pluripotent stem cells. Nucleic Acids Research, 2021, 49, 6739-6755.	6.5	15
1419	Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development. Frontiers in Cell and Developmental Biology, 2021, 9, 676998.	1.8	8
1420	Residual pluripotency is required for inductive germ cell segregation. EMBO Reports, 2021, 22, e52553.	2.0	5
1421	Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Reports, 2021, 35, 109233.	2.9	28
1422	Src-Yap1 signaling axis controls the trophectoderm and epiblast lineage differentiation in mouse embryonic stem cells. Stem Cell Research, 2021, 54, 102413.	0.3	4
1423	AMPK activation reverts mouse epiblast stem cells to naive state. IScience, 2021, 24, 102783.	1.9	6
1424	Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 708318.	1.8	11
1425	Continuous expression of reprogramming factors induces and maintains mouse pluripotency without specific growth factors and signaling inhibitors. Cell Proliferation, 2021, 54, e13090.	2.4	1
1427	Elevated retrotransposon activity and genomic instability in primed pluripotent stem cells. Genome Biology, 2021, 22, 201.	3.8	11
1428	The Presence or Absence of Alkaline Phosphatase Activity to Discriminate Pluripotency Characteristics in Porcine Epiblast Stem Cell-Like Cells. Cellular Reprogramming, 2021, 23, 221-238.	0.5	2
1429	Fitness selection in human pluripotent stem cells and interspecies chimeras: Implications for human development and regenerative medicine. Developmental Biology, 2021, 476, 209-217.	0.9	5
1430	Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids. Human Genetics, 2022, 141, 347-362.	1.8	10
1433	TGFβ signalling is required to maintain pluripotency of human naÃ⁻ve pluripotent stem cells. ELife, 2021, 10, .	2.8	24
1434	Derivation of Mouse Parthenogenetic Advanced Stem Cells. International Journal of Molecular Sciences, 2021, 22, 8976.	1.8	1
1435	Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells, 2021, 10, 2049.	1.8	6
1436	OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naÃ ⁻ ve and primed pluripotent states in human. Nature Communications, 2021, 12, 5123.	5.8	17
1437	Differential localization patterns of pyruvate kinase isoforms in murine naÃ ⁻ ve, formative, and primed pluripotent states. Experimental Cell Research, 2021, 405, 112714.	1.2	6

ARTICLE IF CITATIONS # Establishment of Mouse Primed Stem Cells by Combination of Activin and LIF Signaling. Frontiers in 1438 1.8 2 Cell and Developmental Biology, 2021, 9, 713503. The combined action of Esrrb and Nr5a2 is essential for murine naÃ⁻ve pluripotency. Development 1439 1.2 (Cambridge), 2021, 148, . The transcription factor Tfcp2l1 promotes primordial germ cell–like cell specification of pluripotent 1440 13 1.6 stem cells. Journal of Biological Chemistry, 2021, 297, 101217. Establishment of Bovine-Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 1441 1.8 2021, 22, 10489. Stepwise conversion methods between ground states pluripotency from naà ve to primed. Biochemical 1442 1.0 1 and Biophysical Research Communications, 2021, 574, 70-77. Mammalian in vitro gametogenesis. Science, 2021, 374, eaaz6830. 6.0 SOCS3/JAK2/STAT3 pathway in iPSCs., 2022, , 303-317. 1444 0 Auxiliary pluripotency-associated genes and their contributions in the generation of induced 1445 pluripotent stem cells. , 2022, , 29-94. Rabbit induced pluripotent stem cells: the challenges., 2021, , 187-203. 0 1446 Human ES and iPS cells display less drug resistance than differentiated cells, and $na\tilde{A}$ ve-state 1447 induction further decreases drug resistance. Journal of Toxicological Sciences, 2021, 46, 131-142. The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem 1448 2 1.8 Cells. International Journal of Molecular Sciences, 2021, 22, 1168. Glycans in stem cell regulation: from <i>Drosophila</i> tissue stem cells to mammalian pluripotent 1449 1.3 24 stem cells. FEBS Letters, 2018, 592, 3773-3790. Differentiation of Human Embryonic Stem Cells in Adherent and in Chemically Defined Culture 1451 3.0 13 Conditions. Current Protocols in Stem Cell Biology, 2008, 4, Unit 1D.4.1-1D.4.7. A glimpse into molecular mechanisms of embryonic stem cells pluripotency: Current status and future perspective. Journal of Cellular Physiology, 2020, 235, 6377-6392. 1452 Early Embryonic Cell Fate Decisions in the Mouse. Advances in Experimental Medicine and Biology, 1453 0.8 13 2010, 695, 1-13. Autosomal Lyonization of Replication Domains During Early Mammalian Development. Advances in 1454 Experimental Medicine and Biology, 2010, 695, 41-58. Transcriptional Regulation in Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 1455 0.8 16 2010, 695, 76-91. Conversion of Epiblast Stem Cells to Embryonic Stem Cells Using Growth Factors and Small Molecule 1456 0.4 Inhibitors. Methods in Molecular Biology, 2014, 1150, 215-226.

#	Article	IF	CITATIONS
1457	The Molecular Basis of Embryonic Stem Cell Self-Renewal. , 2009, , 3-12.		1
1458	Determinants of Pluripotency in Mouse and Human Embryonic Stem Cells. , 2009, , 27-36.		1
1459	Generation of Novel Rat and Human Pluripotent Stem Cells by Reprogramming and Chemical Approaches. Methods in Molecular Biology, 2010, 636, 293-300.	0.4	21
1460	Generation and Characterization of Induced Pluripotent Stem Cells from Pig. Pancreatic Islet Biology, 2011, , 413-425.	0.1	1
1461	Serum-Free and Feeder-Free Culture Conditions for Human Embryonic Stem Cells. Methods in Molecular Biology, 2011, 690, 57-66.	0.4	20
1462	Generation and Characterization of Epiblast Stem Cells from Blastocyst-Stage Mouse Embryos. Methods in Molecular Biology, 2013, 1074, 1-13.	0.4	6
1463	Reversion of Mouse Postimplantation Epiblast Stem Cells to a NaÃ ⁻ ve Pluripotent State by Modulation of Signalling Pathways. Methods in Molecular Biology, 2013, 1074, 15-29.	0.4	5
1464	Derivation and Culture of Canine Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1074, 69-83.	0.4	8
1465	Potential Clinical Applications of Stem Cells in Regenerative Medicine. Advances in Experimental Medicine and Biology, 2019, 1201, 1-22.	0.8	63
1466	Cell Dynamics in Early Embryogenesis and Pluripotent Embryonic Cell Lines: From Sea Urchin to Mammals. , 2009, , 215-244.		1
1467	Distinctively Expressed Cytokines by Three Different Inflammation Cells and Their Interaction with Keratinocytes in Wound Healing. Inflammation, 2017, 40, 2151-2162.	1.7	6
1471	Induced pluripotent stem cells from farm animals. Journal of Animal Science, 2020, 98, .	0.2	30
1489	Stem cells: roadmap to the clinic. Journal of Clinical Investigation, 2010, 120, 8-10.	3.9	65
1490	Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. Journal of Clinical Investigation, 2010, 120, 3127-3136.	3.9	534
1491	Recent advances in lineage differentiation from stem cells: hurdles and opportunities?. F1000Research, 2018, 7, 220.	0.8	16
1492	Assessing the bipotency of in vitro-derived neuromesodermal progenitors. F1000Research, 2015, 4, 100.	0.8	36
1493	Assessing the bipotency of in vitro-derived neuromesodermal progenitors. F1000Research, 2015, 4, 100.	0.8	32
1494	Pig Pluripotent Stem Cells as a Candidate for Biomedical Application. Journal of Animal Reproduciton and Biotechnology, 2019, 34, 139-147.	0.3	14

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1495	Albumin-Associated Lipids Regulate Human Embryonic Stem Cell Self-Renewal. PLoS ON	IE, 2008, 3, e1384.	1.1	158
1496	Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in PLoS ONE, 2009, 4, e6286.	the Embryo.	1.1	201
1497	E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular I Mouse Embryonic Stem Cells. PLoS ONE, 2011, 6, e21463.	Processes in	1.1	26
1498	Microfluidic Perfusion for Regulating Diffusible Signaling in Stem Cells. PLoS ONE, 2011	, 6, e22892.	1.1	78
1499	Feeder Cells Support the Culture of Induced Pluripotent Stem Cells Even after Chemical ONE, 2012, 7, e32707.	Fixation. PLoS	1.1	40
1500	Embryonic Diapause Is Conserved across Mammals. PLoS ONE, 2012, 7, e33027.		1.1	94
1501	Establishment of LIF-Dependent Human iPS Cells Closely Related to Basic FGF-Depender Cells. PLoS ONE, 2012, 7, e39022.	nt Authentic iPS	1.1	16
1502	Genome-Wide Profiling of Pluripotent Cells Reveals a Unique Molecular Signature of Hu Embryonic Germ Cells. PLoS ONE, 2012, 7, e39088.	man	1.1	23
1503	ZFX Controls the Self-Renewal of Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e42	2302.	1.1	46
1504	E-Cadherin Promotes Incorporation of Mouse Epiblast Stem Cells into Normal Developm 2012, 7, e45220.	ient. PLoS ONE,	1.1	59
1505	Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental P Early Stage of Embryos. PLoS ONE, 2012, 7, e51778.	otential in	1.1	65
1506	Sustained Levels of FGF2 Maintain Undifferentiated Stem Cell Cultures with Biweekly Fe ONE, 2013, 8, e56289.	eding. PLoS	1.1	96
1507	Demarcation of Stable Subpopulations within the Pluripotent hESC Compartment. PLoS e57276.	; ONE, 2013, 8,	1.1	15
1508	Ectopic Î ³ -catenin Expression Partially Mimics the Effects of Stabilized Î ² -catenin on Emb Differentiation. PLoS ONE, 2013, 8, e65320.	oryonic Stem Cell	1.1	18
1509	Erg Channel Is Critical in Controlling Cell Volume during Cell Cycle in Embryonic Stem C ONE, 2013, 8, e72409.	ells. PLoS	1.1	5
1510	Profiling of MicroRNA in Human and Mouse ES and iPS Cells Reveals Overlapping but Di MicroRNA Expression Patterns. PLoS ONE, 2013, 8, e73532.	stinct	1.1	28
1511	Striking Similarity in the Gene Expression Levels of Individual Myc Module Members amo EpiSCs, and Partial iPSCs. PLoS ONE, 2013, 8, e83769.	ong ESCs,	1.1	5
1512	A Modified EpiSC Culture Condition Containing a GSK3 Inhibitor Can Support Germline- Pluripotency in Mice. PLoS ONE, 2014, 9, e95329.	Competent	1.1	47

#	Article	IF	CITATIONS
1513	A Comparison of the Rest Complex Binding Patterns in Embryonic Stem Cells and Epiblast Stem Cells. PLoS ONE, 2014, 9, e95374.	1.1	15
1514	Aberrant DNA Methylation in ES Cells. PLoS ONE, 2014, 9, e96090.	1.1	11
1515	Establishment of Trophoblast Stem Cells under Defined Culture Conditions in Mice. PLoS ONE, 2014, 9, e107308.	1.1	57
1516	Evolution of the miR-290–295/miR-371–373 Cluster Family Seed Repertoire. PLoS ONE, 2014, 9, e108519.	1.1	27
1517	Culture Adaptation Alters Transcriptional Hierarchies among Single Human Embryonic Stem Cells Reflecting Altered Patterns of Differentiation. PLoS ONE, 2015, 10, e0123467.	1.1	18
1518	Doxorubicin-provoked increase of mitotic activity and concomitant drain of G0-pool in therapy-resistant BE(2)-C neuroblastoma. PLoS ONE, 2018, 13, e0190970.	1.1	8
1521	Self-Reprogramming of Spermatogonial Stem Cells into Pluripotent Stem Cells without Microenvironment of Feeder Cells. Molecules and Cells, 2018, 41, 631-638.	1.0	9
1522	Epigenetic reprogramming by naÃ ⁻ ve conditions establishes an irreversible state of partial X chromosome reactivation in female stem cells. Oncotarget, 2018, 9, 25136-25147.	0.8	5
1523	Oocytes, embryos and pluripotent stem cells from a biomedical perspective. Animal Reproduction, 2019, 16, 508-523.	0.4	4
1524	Protein Kinases and Associated Pathways in Pluripotent State and Lineage Differentiation. Current Stem Cell Research and Therapy, 2014, 9, 366-387.	0.6	9
1525	Patents on Technologies of Human Tissue and Organ Regeneration from Pluripotent Human Embryonic Stem Cells. Recent Patents on Regenerative Medicine, 2011, 1, 142-163.	0.4	16
1526	Culture of Chicken Embryonic Stem Cells in Buffalo Rat Liver 3A Cells (BRL-3A) Conditioned Medium. Journal of Animal and Veterinary Advances, 2011, 10, 791-795.	0.1	1
1527	Defining Conditions for Sustaining Epiblast Pluripotence Enables Direct Induction of Clinically-Suitable Human Myocardial Grafts from Biologics-Free Human Embryonic Stem Cells. Journal of Clinical & Experimental Cardiology, 2012, s9, .	0.0	16
1528	MicroRNA Profiling Reveals Distinct Mechanisms Governing Cardiac and Neural Lineage-Specification of Pluripotent Human Embryonic Stem Cells. Journal of Stem Cell Research & Therapy, 2012, 02, .	0.3	28
1529	Search for naÃ⁻ve human pluripotent stem cells. World Journal of Stem Cells, 2015, 7, 649.	1.3	11
1530	Common stemness regulators of embryonic and cancer stem cells. World Journal of Stem Cells, 2015, 7, 1150.	1.3	220
1531	Embryo-derived stem cells -a system is emerging. BMB Reports, 2009, 42, 72-80.	1.1	3
1532	Stem cells and reproduction. BMB Reports, 2019, 52, 482-489.	1.1	6

#	Article	IF	CITATIONS
1533	Characterization of the finch embryo supports evolutionary conservation of the naive stage of development in amniotes. ELife, 2015, 4, e07178.	2.8	18
1534	Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling. ELife, 2017, 6, .	2.8	26
1535	Cdon mutation and fetal alcohol converge on Nodal signaling in a mouse model of holoprosencephaly. ELife, 2020, 9, .	2.8	13
1536	Constraining the Pluripotent Fate of Human Embryonic Stem Cells for Tissue Engineering and Cell Therapy – The Turning Point of Cell-Based Regenerative Medicine. British Biotechnology Journal, 2013, 3, 424-457.	0.4	5
1537	Regulation of 3-O-Sulfation of Heparan Sulfate During Transition from the NaÃ⁻ve to the Primed State in Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2022, 2303, 443-452.	0.4	1
1538	StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nature Communications, 2021, 12, 6132.	5.8	22
1539	Inhibition of ubiquitin-specific protease 13-mediated degradation of Raf1 kinase by Spautin-1 has opposing effects in naĀ-ve and primed pluripotent stem cells. Journal of Biological Chemistry, 2021, 297, 101332.	1.6	6
1540	The exploration of pluripotency space: Charting cell state transitions in peri-implantation development. Cell Stem Cell, 2021, 28, 1896-1906.	5.2	41
1542	The pluripotent transcriptome. Stembook, 2008, , .	0.3	0
1543	The Human Embryonic Stem Cells Transcriptome: How Much Do We Know?. Open Biotechnology Journal, 2008, 2, 56-62.	0.6	0
1544	Signaling Pathways in Embryonic Stem Cells. , 2009, , 293-308.		2
1545	Isolation, Characterization and Maintenance of Primate Embryonic Stem Cells. , 2009, , 351-363.		0
1546	Transcriptional Networks Regulating Embryonic Stem Cell Fate Decisions. , 2009, , 87-100.		1
1547	Regulation of Primate Trophoblast Lineage Differentiation—Insights Learned from Human Embryonic Stem Cells. Reproductive Biology Insights, 0, 2, 11-21.	0.0	0
1548	Krüppel-like Factors in Stem Cell Biology. , 2009, , 131-138.		0
1550	Growth Factor Signaling in Germline Specification and Maintenance of Stem Cell Pluripotency. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 96-103.	0.1	0
1551	Models of Trophoblast Development and Embryo Implantation Using Human Embryonic Stem Cells. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 187-199.	0.1	0
1552	Growth Factor Signaling in Germline Specification and Maintenance of Stem Cell Pluripotency. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 96-103.	0.1	0

#	Article	IF	CITATIONS
1553	Models of Trophoblast Development and Embryo Implantation Using Human Embryonic Stem Cells. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 187-199.	0.1	0
1555	The Development of a Stem Cell Therapy for Deafness. , 2011, , 647-673.		0
1558	Human Amnion-derived Pluripotent Stem Cells as a Promising Source for Regenerative Medicine and Tissue Engineering. Journal of Bioengineering & Biomedical Science, 2011, 01, .	0.2	1
1559	Nuclear reprogramming to treat retinal degenerative diseases. Inflammation and Regeneration, 2011, 31, 33-49.	1.5	3
1560	Patents on Technologies of Human Tissue and Organ Regeneration from Pluripotent Human Embryonic Stem Cells. Recent Patents on Regenerative Medicine, 2011, 1, 142-163.	0.4	23
1561	Self-Renewal, Pluripotency and Tumorigenesis in Pluripotent Stem Cells Revisited. , 0, , .		0
1562	Surface Engineering to Control Embryonic Stem Cell Fate. , 0, , .		0
1563	The Function of E-cadherin in ES Cell Pluripotency. , 0, , .		0
1564	Embryonic Stem Cells and the Capture of Pluripotency. , 0, , .		0
1565	Dynamic Changes in Gene Expression during Early Trophoblast Differentiation from Human Embryonic Stem Cells Treated with BMP4. , 0, , .		1
1566	The Role of SOX2 in Maintaining Pluripotency and Differentiation of Human Embryonic Stem Cells. , 0, ,		2
1567	Embryonic Stem Cells - Basic Biology to Bioengineering. , 2011, , .		15
1568	Molecular Mechanisms Underlying Pluripotency and Lineage Commitment $\hat{a} \in \hat{~}$ The Role of GSK-3. , 0, , .		0
1569	Human Embryonic Stem Cells. Series in Medical Physics and Biomedical Engineering, 2011, , 1-30.	0.1	0
1571	Transgenic Livestock transgenic crop livestock Technologies transgenic crop livestock technologies. , 2012, , 10814-10839.		0
1572	Pluripotent Stem Cells of the Mammalian Early Embryo. , 2013, , 107-119.		0
1573	The Mechanism of Stem Cell Differentiation into Smooth Muscle Cells. , 2013, , 1-32.		0
1574	Isolation and Culture of Pig Epiblast Stem Cells. Methods in Molecular Biology, 2013, 1074, 97-110.	0.4	1

#	Article	IF	CITATIONS
1575	Transgenic Livestock transgenic crop livestock Technologies transgenic crop livestock technologies. , 2013, , 1717-1741.		0
1576	The Development of a Stem Cell Therapy for Deafness. , 2013, , 793-821.		0
1577	Disease Modeling and Drug Discovery Using Human Pluripotent Stem Cells. Pancreatic Islet Biology, 2013, , 317-340.	0.1	0
1578	Meet the Stem Cells. Contemporary Food Engineering, 2013, , 111-142.	0.2	0
1579	Self-Renewal of NaÃ ⁻ ve State Mouse Embryonic Stem Cells: Role of LacdiNAc in LIF/STAT3 Signaling. Stem Cells and Cancer Stem Cells, 2014, , 41-49.	0.1	0
1580	Towards the use of human embryonic stem cells in the clinical setting: recent progress. Postdoc Journal, 0, , .	0.4	0
1581	Large Animal Induced Pluripotent Stem Cells as Models of Human Diseases. Pancreatic Islet Biology, 2014, , 49-68.	0.1	0
1582	Direct Reprogramming of Amniotic Cells into Endothelial Cells. , 2014, , 67-85.		0
1583	Molecular Signature of Very Small Embryonic-like Stem Cells. Pancreatic Islet Biology, 2014, , 211-229.	0.1	0
1585	Advances in Stem Cell Research for Parkinson Disease. , 2014, , 653-690.		0
1586	Function of Heparan Sulfate in Pluripotent Stem Cells. Trends in Glycoscience and Glycotechnology, 2014, 26, 149-157.	0.0	0
1587	Novel Therapeutic Approaches in Regenerative Medicine—Adult Tissue-Derived Very Small Embryonic-like Stem Cells and Harnessing Paracrine Signals of Adult Stem Cells. Pancreatic Islet Biology, 2014, , 19-33.	0.1	0
1588	The Minipig $\hat{a} \in$ " A New Tool in Stem Cell Research. , 0, , .		0
1589	Estudio de la inactivación filogenética de los genes Nanog postembrionario en comparación con el Ambystoma mexicanum. Revista Biociencias, 2015, 10, 17-25.	0.2	0
1591	Forming Embryonic-Like Nervous Tissues and Organs by Muscle-Derived Neuroepithelial Myogenic Progenitors. American Journal of Psychiatry and Neuroscience, 2016, 4, 79.	0.0	0
1593	Dental application of the induced pluripotent stem cells in stomatology. Economy of Region, 2017, 10, 49.	0.1	0
1594	Generation and Application of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Cardiac and Vascular Biology, 2017, , 67-106.	0.2	0
1595	Induced Pluripotent Stem Cells (iPSCs) and Nuclear Reprogramming. , 2017, , 71-91.		0

		CITATION REPORT	ſ
#	Article	IF	CITATIONS
1603	Single-Cell Rna-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X-Chromos Dynamics During Early Postimplantation Mouse Development. SSRN Electronic Journal, 0, , .	some 0.4	0
1604	Neutralizing Gatad2a-Chd4-Mbd3 Axis within the NuRD Complex Facilitates Deterministic In Naive Pluripotency. SSRN Electronic Journal, 0, , .	duction of 0.4	Ο
1608	Células troncales y reprogramación celular. Ambiociencias, 0, , 25-37.	0.0	0
1609	The past, present and future of bovine pluripotent stem cells: a brief overview. Frontiers of Agricultural Science and Engineering, 2019, 6, 3.	0.9	1
1610	CITED Proteins in the Heart of Pluripotent Cells and in Heart $\hat{a} \in \mathbb{M}$ s Full Potential. , 0, , .		1
1611	Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of Cardio Systems. , 2019, , 1-67.	ovascular	1
1612	Temporal Dynamics of Tet1 and Oct4 Gene Activation Resolve Distinct Stages of Global DN/ Demethylation and Transcriptomic Changes in the Final Phases of Induced Pluripotency. SSF Electronic Journal, 0, , .	ν N 0.4	0
1613	Understanding Cancer Stem Cells Biology to Get Rid of Tumours. , 2019, , 17-32.		Ο
1617	Porcine pluripotent stem cells and their differentiation. Bioscientifica Proceedings, 0, , .	1.0	0
1618	The Functions of <i>O</i> -GlcNAc in Pluripotent Stem Cells. Trends in Glycoscience and Glycotechnology, 2019, 31, E69-E75.	0.0	1
1619	The Functions of <i>O</i> -GlcNAc in Pluripotent Stem Cells. Trends in Glycosciend Glycotechnology, 2019, 31, J69-J75.	e and 0.0	0
1631	<i>In Vivo</i> Generation of Organs by Blastocyst Complementation: Advances and Challen International Journal of Stem Cells, 2022, 15, 113-121.	ges. 0.8	9
1634	microRNA regulation of pluripotent state transition. Essays in Biochemistry, 2020, 64, 947-9	54. 2.1	2
1635	Origins of Pluripotency: From Stem Cells to Germ Cells. Learning Materials in Biosciences, 20 29-55.)20, , 0.2	0
1636	Embryonic Stem Cells. , 2020, , 315-365.		0
1637	Embryonic and Pluripotent Stem Cells. Learning Materials in Biosciences, 2020, , 37-65.	0.2	1
1638	Derivation of Maternal Epiblast Stem Cells from Haploid Embryos. Methods in Molecular Bio 2020, 2117, 219-227.	ogy, 0.4	0
1639	Regulation of pluripotency and reprogramming by RNA binding proteins. Current Topics in Developmental Biology, 2020, 138, 113-138.	1.0	6

#	Article	IF	CITATIONS
1640	Preimplantation Development: From Germ Cells to Blastocyst. Learning Materials in Biosciences, 2020, , 11-27.	0.2	0
1641	Stem Cell Approaches and Small Molecules. , 2020, , 945-961.		0
1642	A change in culture: Modeling human germ cell development in vitro. , 2020, , 75-91.		1
1644	MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Reports, 2021, 37, 109949.	2.9	4
1645	Generation of Primordial Germ Cell-like Cells on Small and Large Scales. Methods in Molecular Biology, 2021, 2214, 75-89.	0.4	2
1649	Key players in the gene networks guiding ESCs toward mesoderm. Journal of Stem Cells, 2009, 4, 147-60.	1.0	1
1653	Advances in retinal stem cell biology. Journal of Ophthalmic and Vision Research, 2013, 8, 147-59.	0.7	13
1654	Experimental approaches to derive CD34+ progenitors from human and nonhuman primate embryonic stem cells. American Journal of Stem Cells, 2015, 4, 32-7.	0.4	5
1656	Generating Human Organs via Interspecies Chimera Formation: Advances and Barriers. Yale Journal of Biology and Medicine, 2018, 91, 333-342.	0.2	22
1657	A Case for Revisiting Nodal Signaling in Human Pluripotent Stem Cells. Stem Cells, 2021, 39, 1137-1144.	1.4	9
1658	Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 2022, 32, 383-400.	5.7	48
1660	Glycolytic Profiling of Mouse Embryonic Stem Cells (mESCs). Methods in Molecular Biology, 2021, , 1.	0.4	0
1661	Lactate enhances mouse ES cell differentiation towards XEN cells in vitro. Stem Cells, 2022, , .	1.4	8
1662	Research Advances in Gametogenesis and Embryogenesis Using Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 801468.	1.8	10
1663	DNA Replication Licensing Factors: Novel Targets for Cancer Therapy via Inhibiting the Stemness of Cancer Cells. International Journal of Biological Sciences, 2022, 18, 1211-1219.	2.6	5
1664	Î ² -catenin perturbations control differentiation programs in mouse embryonic stem cells. IScience, 2022, 25, 103756.	1.9	2
1665	Analysis of chromatin accessibility in <i>p53</i> deficient spermatogonial stem cells for high frequency transformation into pluripotent state. Cell Proliferation, 2022, 55, e13195.	2.4	5
1668	Label-Free and Non-Destructive Identification of NaÃ ⁻ ve and Primed Embryonic Stem Cells Based on Differences in Cellular Metabolism. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1671	From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Frontiers in Cell and Developmental Biology, 2022, 10, 838356.	1.8	6
1672	Timely stimulation of early embryo promotes the acquisition of pluripotency. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 682-691.	1.1	0
1673	In vitro investigation of mammalian peri-implantation embryogenesis. Biology of Reproduction, 2022, , .	1.2	0
1674	Cnot8 eliminates naìve regulation networks and is essential for naìve-to-formative pluripotency transition. Nucleic Acids Research, 2022, , .	6.5	1
1675	KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. Science China Life Sciences, 2022, 65, 1985-1997.	2.3	6
1676	Pluripotency Dynamics during Embryogenesis and in Cell Culture. Russian Journal of Developmental Biology, 2021, 52, 379-389.	0.1	4
1677	N6-methyladenosine (m ⁶ A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
1678	Genetic control of the pluripotency epigenome determines differentiation bias in mouse embryonic stem cells. EMBO Journal, 2022, 41, e109445.	3.5	5
1679	Capturing Pluripotency and Beyond. Cells, 2021, 10, 3558.	1.8	4
1680	Maintenance of Human NaÃ⁻ve Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2416, 73-90.	0.4	4
1681	Pluripotent stem cells related to embryonic disc exhibit common self-renewal requirements in diverse livestock species. Development (Cambridge), 2021, 148, .	1.2	35
1683	Deriving Human NaÃ⁻ve Embryonic Stem Cell Lines from Donated Supernumerary Embryos Using Physical Distancing and Signal Inhibition. Methods in Molecular Biology, 2022, 2416, 1-12.	0.4	2
1684	Porcine OCT4 reporter system as a tool for monitoring pluripotency states. Journal of Animal Reproduciton and Biotechnology, 2021, 36, 175-182.	0.3	1
1685	Induction of Human NaÃ⁻ve Pluripotency Using 5i/L/A Medium. Methods in Molecular Biology, 2022, 2416, 13-28.	0.4	8
1686	Genomic stability of mouse spermatogonial stem cells in vitro. Scientific Reports, 2021, 11, 24199.	1.6	0
1687	Generating functional cells through enhanced interspecies chimerism withÂhuman pluripotent stem cells. Stem Cell Reports, 2022, 17, 1059-1069.	2.3	5
1689	Amniogenesis occurs in two independent waves in primates. Cell Stem Cell, 2022, 29, 744-759.e6.	5.2	48
1690	Stem cell biology. , 0, , 93-108.		0

#	Article	IF	CITATIONS
1699	Grafting of Epiblast Stem Cell into the Epiblast and Whole-Embryo Imaging to Unveil Lineage Competence. Methods in Molecular Biology, 2022, 2490, 269-279.	0.4	0
1700	In Vitro Differentiation of Murine Embryonic Stem Cells (ESCs) into Primordial Germ Cell-like Cells (PGCLCs). Methods in Molecular Biology, 2022, 2490, 213-233.	0.4	1
1701	Establishment of Mouse Epiblast Stem Cells. Methods in Molecular Biology, 2022, 2490, 3-9.	0.4	0
1702	L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. Methods in Molecular Biology, 2022, 2490, 11-24.	0.4	4
1703	Feeding role of mouse embryonic fibroblast cells is influenced by genetic background, cell passage and day of isolation. Zygote, 2022, , 1-11.	0.5	0
1704	Autophagy and pluripotency: self-eating your way to eternal youth. Trends in Cell Biology, 2022, 32, 868-882.	3.6	8
1706	Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Research and Therapy, 2022, 13, 169.	2.4	5
1707	Functional Characterization of Endothelial Cells Differentiated from Porcine Epiblast Stem Cells. Cells, 2022, 11, 1524.	1.8	3
1708	Activation of Xist by an evolutionarily conserved function of KDM5C demethylase. Nature Communications, 2022, 13, 2602.	5.8	16
1709	Preventing erosion of X-chromosome inactivation in human embryonic stem cells. Nature Communications, 2022, 13, 2516.	5.8	13
1710	BMP4 drives primed to naÃ ⁻ ve transition through PGC-like state. Nature Communications, 2022, 13, 2756.	5.8	2
1711	Induced Pluripotent Stem Cells. , 2022, , 1-25.		16
1713	Polycomb repressive complex 2 shields naÃ ⁻ ve human pluripotent cells from trophectoderm differentiation. Nature Cell Biology, 2022, 24, 845-857.	4.6	26
1714	DRP1 levels determine the apoptotic threshold during embryonic differentiation through a mitophagy-dependent mechanism. Developmental Cell, 2022, 57, 1316-1330.e7.	3.1	15
1716	Role of heat shock protein 60 in primed and naÃ ⁻ ve states of human pluripotent stem cells. PLoS ONE, 2022, 17, e0269547.	1.1	0
1717	Research progress and application prospects of stable porcine pluripotent stem cells. Biology of Reproduction, 2022, 107, 226-236.	1.2	5
1718	Emerging interplay of cytoskeletal architecture, cytomechanics and pluripotency. Journal of Cell Science, 2022, 135, .	1.2	2
1719	A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes. Nature Communications, 2022, 13, .	5.8	14

#	Article	IF	CITATIONS
1720	The functional diversity of the POUV-class proteins across vertebrates. Open Biology, 2022, 12, .	1.5	3
1721	Epigenetics as "conductor―in "orchestra―of pluripotent states. Cell and Tissue Research, 2022, 390, 141-172.	1.5	4
1722	Capturing Transitional Pluripotency through Proline Metabolism. Cells, 2022, 11, 2125.	1.8	4
1723	SmcHD1 underlies the formation of H3K9me3 blocks on the inactive X chromosome in mice. Development (Cambridge), 2022, 149, .	1.2	9
1724	Cell competition and the regulative nature of early mammalian development. Cell Stem Cell, 2022, 29, 1018-1030.	5.2	11
1725	The human amniotic epithelium confers a bias to differentiate toward the neuroectoderm lineage in human embryonic stem cells. ELife, 0, 11, .	2.8	1
1726	Succinate as a New Actor in Pluripotency and Early Development?. Metabolites, 2022, 12, 651.	1.3	3
1727	The role of BMP4 signaling in trophoblast emergence from pluripotency. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	12
1728	An Updated View of the Roles of p53 in Embryonic Stem Cells. Stem Cells, 2022, 40, 883-891.	1.4	8
1729	Regulation of Embryonic Stem Cell Self-Renewal. Life, 2022, 12, 1151.	1.1	4
1730	Bilineage embryo-like structure from EPS cells can produce live mice with tetraploid trophectoderm. Protein and Cell, 0, , .	4.8	3
1731	Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development (Cambridge), 2022, 149, .	1.2	3
1732	Stepwise pluripotency transitions in mouse stem cells. EMBO Reports, 2022, 23, .	2.0	9
1734	The Divergent Pluripotent States in Mouse and Human Cells. Genes, 2022, 13, 1459.	1.0	1
1735	Xenotransplantation and interspecies organogenesis: current status and issues. Frontiers in Endocrinology, 0, 13, .	1.5	12
1737	Major transcriptomic, epigenetic and metabolic changes underlie the pluripotency continuum in rabbit preimplantation embryos. Development (Cambridge), 2022, 149, .	1.2	7
1739	Interspecies Chimeric Barriers for Generating Exogenic Organs and Cells for Transplantation. Cell Transplantation, 2022, 31, 096368972211105.	1.2	1
1740	Chimpanzee and pig-tailed macaque iPSCs: Improved culture and generation of primate cross-species embryos. Cell Reports, 2022, 40, 111264.	2.9	7

#	Article	IF	Citations
1741	Progesterone Receptor Modulates Extraembryonic Mesoderm and Cardiac Progenitor Specification during Mouse Gastrulation. International Journal of Molecular Sciences, 2022, 23, 10307.	1.8	2
1742	The Divergent and Conserved Expression Profile of Turtle Nanog Gene Comparing with Fish and Mammals. Biology, 2022, 11, 1342.	1.3	1
1743	Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investigation, 0, 9, 4-4.	1.3	5
1745	Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency. Nature Communications, 2022, 13, .	5.8	9
1746	Stem cell-based models of early mammalian development. Development (Cambridge), 2022, 149, .	1.2	8
1747	NaÃ ⁻ ve pluripotent-like characteristics of non-tumorigenic Muse cells isolated from human amniotic membrane. Scientific Reports, 2022, 12, .	1.6	5
1748	Chromatin as a sensor of metabolic changes during early development. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1749	New insights into the epitranscriptomic control of pluripotent stem cell fate. Experimental and Molecular Medicine, 2022, 54, 1643-1651.	3.2	4
1750	Self-organizing <i>in vitro</i> mouse neural tube organoids mimic embryonic development. Development (Cambridge), 2022, 149, .	1.2	7
1751	Differentiation of human induced pluripotent stem cells into hypothalamic vasopressin neurons with minimal exogenous signals and partial conversion to the naive state. Scientific Reports, 2022, 12, .	1.6	3
1752	Stabilization of hESCs in two distinct substates along the continuum of pluripotency. IScience, 2022, 25, 105469.	1.9	2
1753	Induced Pluripotent Stem Cells. , 2022, , 895-919.		0
1754	Increased expression of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase-3 is required for growth of mouse embryonic stem cells that are undergoing differentiation. Cytotechnology, 0, , .	0.7	0
1755	Podocalyxinâ€Like Protein 1 Regulates Pluripotency through the Cholesterol Biosynthesis Pathway. Advanced Science, 2023, 10, .	5.6	4
1756	Transforming growth factor beta (TGFβ) pathway is essential for hypoblast and epiblast development in ovine post-hatching embryos. Theriogenology, 2023, 196, 112-120.	0.9	2
1757	Laminin111-based defined culture promoting self-renewing human pluripotent stem cells with properties of the early post-implantation epiblast. Stem Cell Reports, 2022, 17, 2643-2660.	2.3	3
1758	Transplantable human thyroid organoids generated from embryonic stem cells to rescue hypothyroidism. Nature Communications, 2022, 13, .	5.8	21
1760	Label-free and non-destructive identification of naÃ ⁻ ve and primed embryonic stem cells based on differences in cellular metabolism. Biomaterials, 2023, 293, 121939.	5.7	3

#	Article	IF	CITATIONS
1761	Attempts for deriving extended pluripotent stem cells from common marmoset embryonic stem cells. Genes To Cells, 0, , .	0.5	0
1762	Requirement for STAT3 and its target, TFCP2L1, in self-renewal of naÃ ⁻ ve pluripotent stem cells <i>in vivo</i> and <i>in vitro</i> . Biology Open, 0, , .	0.6	6
1763	Retention of ERK in the cytoplasm mediates the pluripotency of embryonic stem cells. Stem Cell Reports, 2023, 18, 305-318.	2.3	3
1764	In vitro cellular reprogramming to model gonad development and its disorders. Science Advances, 2023, 9, .	4.7	7
1765	A chemically defined system supports two distinct types of stem cell from a single blastocyst and their selfâ€assembly to generate blastoid. Cell Proliferation, 2023, 56, .	2.4	6
1766	Molecular versatility during pluripotency progression. Nature Communications, 2023, 14, .	5.8	6
1767	Reduced Cell–ECM Interactions in the EpiSC Colony Center Cause Heterogeneous Differentiation. Cells, 2023, 12, 326.	1.8	1
1768	Epigenetic and transcriptional regulations prime cell fate before division during human pluripotent stem cell differentiation. Nature Communications, 2023, 14, .	5.8	8
1769	Wnt signaling and the regulation of pluripotency. Current Topics in Developmental Biology, 2023, , 95-119.	1.0	1
1770	Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nature Cell Biology, 2023, 25, 579-591.	4.6	2
1771	Metabolism-based cardiomyocytes production for regenerative therapy. Journal of Molecular and Cellular Cardiology, 2023, 176, 11-20.	0.9	1
1772	Species-specific regulation of <i>XIST</i> by the <i>JPX/FTX</i> orthologs. Nucleic Acids Research, 2023, 51, 2177-2194.	6.5	8
1773	Modeling Nonalcoholic Fatty Liver Disease in the Dish Using Human-Specific Platforms: Strategies and Limitations. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1135-1145.	2.3	4
1774	Transcription factor SOX15 regulates stem cell pluripotency and promotes neural fate during differentiation by activating the neurogenic gene Hes5. Journal of Biological Chemistry, 2023, 299, 102996.	1.6	1
1775	Characterization of a Distinct State in the Continuum of Pluripotency Facilitated by Inhibition of PKCζ in Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 2023, 19, 1098-1115.	1.7	2
1776	Comprehensive chromatin proteomics resolves functional phases of pluripotency and identifies changes in regulatory components. Nucleic Acids Research, 2023, 51, 2671-2690.	6.5	2
1777	Opening the "Black Box―Underlying Barriers to the Use of Canine Induced Pluripotent Stem Cells: A Narrative Review. Stem Cells and Development, 0, , .	1.1	0
1778	Conservation and divergence of canonical and non-canonical imprinting in murids. Genome Biology, 2023, 24, .	3.8	7

#	Article	IF	CITATIONS
1780	ZBTB7A regulates primedâ€toâ€naÃ⁻ve transition of pluripotent stem cells via recognition of the PNTâ€associated sequence by zinc fingers 1–2 and recognition of γâ€globin â°'200 gene element by zinc fingers 1–4. FEBS Journal, 2023, 290, 3896-3909.	2.2	0
1781	Induction and application of human naive pluripotency. Cell Reports, 2023, 42, 112379.	2.9	7
1782	Derivation of new pluripotent stem cells from human extended pluripotent stem cells with formative features and trophectoderm potential. Cell Proliferation, 2023, 56, .	2.4	0
1783	Pluripotent Stem Cells as a Model for Human Embryogenesis. Cells, 2023, 12, 1192.	1.8	0
1784	In vitro spermatogenesis from pluripotent stem cells. , 2023, , 119-143.		0
1790	Stammzellen und Reprogrammierung somatischer Zellen bei Nutztieren. , 2023, , 241-261.		0
1798	Derivation and Primordial Germ Cell Induction of Intermediate Pluripotent Stem Cells. Methods in Molecular Biology, 2023, , 269-280.	0.4	0
1806	A new era of stem cell and developmental biology: from blastoids to synthetic embryos and beyond. Experimental and Molecular Medicine, 0, , .	3.2	1
1807	Stem cell epigenetics in development and disease. , 2024, , 1113-1139.		0
1819	Chemical approaches to stem cell and signaling pathways for therapeutics. , 2024, , 309-321.		0
1828	Transformation of Pluripotency States during Morphogenesis of Mouse and Human Epiblast. Russian Journal of Developmental Biology, 2023, 54, 276-291.	0.1	0