Shear heating as the origin of the plumes and heat flux of

Nature 447, 289-291 DOI: 10.1038/nature05783

Citation Report

#	Article	IF	CITATIONS
1	Unified model of tectonics and heat transport in a frigid Enceladus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13578-13581.	3.3	40
2	An oceanic composition on early and today's Enceladus. Geophysical Research Letters, 2007, 34, n/a-n/a.	1.5	136
3	The global shape of Europa: Constraints on lateral shell thickness variations. Icarus, 2007, 191, 183-192.	1.1	83
4	Metasomatic clathrate xenoliths as a possible source for the south polar plumes of Enceladus. Icarus, 2007, 191, 743-748.	1.1	29
5	Cracks under stress. Nature, 2007, 447, 276-277.	13.7	6
6	Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature, 2007, 447, 292-294.	13.7	154
7	Association of the jets of Enceladus with the warmest regions on its south-polar fractures. Nature, 2007, 449, 695-697.	13.7	150
8	Unstable extension of Enceladus' lithosphere. Icarus, 2007, 192, 92-105.	1.1	47
9	Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus, 2008, 194, 675-689.	1.1	171
10	Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus, 2008, 196, 642-652.	1.1	124
11	Habitability of Enceladus: Planetary Conditions for Life. Origins of Life and Evolution of Biospheres, 2008, 38, 355-369.	0.8	67
12	Tectonic patterns on reoriented and despun planetary bodies. Icarus, 2008, 195, 459-473.	1.1	53
13	A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: Implications for Europa and Enceladus. Icarus, 2008, 195, 758-764.	1.1	37
14	The oxidation state of hydrothermal systems on early Enceladus. Icarus, 2008, 197, 157-163.	1.1	45
15	Tidally driven stress accumulation and shear failure of Enceladus's tiger stripes. Icarus, 2008, 198, 435-451.	1.1	87
16	Active hematite concretion formation in modern acid saline lake sediments, Lake Brown, Western Australia. Earth and Planetary Science Letters, 2008, 268, 52-63.	1.8	56
17	Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures. Nature, 2008, 451, 685-688.	13.7	162
18	Identification of Saturn's magnetospheric regions and associated plasma processes: Synopsis of Cassini observations during orbit insertion. Reviews of Geophysics, 2008, 46, .	9.0	23

#	Article	IF	CITATIONS
19	Nearâ€surface heating on Enceladus and the south polar thermal anomaly. Geophysical Research Letters, 2008, 35, .	1.5	29
20	Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophysical Research Letters, 2008, 35, .	1.5	78
21	Mobile lid convection beneath Enceladus' south polar terrain. Journal of Geophysical Research, 2008, 113, .	3.3	59
22	Is Enceladus' plume tidally controlled?. Geophysical Research Letters, 2008, 35, .	1.5	16
23	EnceladusOasis or Ice Ball?. Science, 2008, 320, 1432-1433.	6.0	17
24	The Possible Origin and Persistence of Life on Enceladus and Detection of Biomarkers in the Plume. Astrobiology, 2008, 8, 909-919.	1.5	166
25	Planetary structural mapping. , 0, , 351-396.		2
26	Physical properties: elasticity, friction and diffusivity. , 0, , 51-76.		0
27	The Communicating Pipe Model for Icy Plumes on Enceladus. Chinese Physics Letters, 2009, 26, 119601.	1.3	1
28	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	1.6	77
29	Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 2009, 459, 1098-1101.	13.7	435
30	No sodium in the vapour plumes of Enceladus. Nature, 2009, 459, 1102-1104.	13.7	41
31	Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 2009, 460, 487-490.	13.7	470
32	Volcanism in the Solar System. Nature Geoscience, 2009, 2, 389-397.	5.4	49
33	Endogenic heat from Enceladus' south polar fractures: New observations, and models of conductive surface heating. Icarus, 2009, 199, 189-196.	1.1	55
34	Modeling stresses on satellites due to nonsynchronous rotation and orbital eccentricity using gravitational potential theory. Icarus, 2009, 200, 188-206.	1.1	91
35	Origin of ice diapirism, true polar wander, subsurface ocean, and tiger stripes of Enceladus driven by compositional convection. Icarus, 2009, 202, 669-680.	1.1	21
36	Geological implications of a physical libration on Enceladus. Icarus, 2009, 203, 541-552.	1.1	35

#	ARTICLE	IF	CITATIONS
37	Recent orbital evolution and the internal structures of Enceladus and Dione. Icarus, 2009, 204, 597-609.	1.1	37
38	Old Faithful model for radiolytic gas-driven cryovolcanism at Enceladus. Planetary and Space Science, 2009, 57, 1607-1620.	0.9	37
39	Velocity-dependent friction on Coulombic shear faults in ice. Acta Materialia, 2009, 57, 4382-4390.	3.8	17
40	Thermodynamics and Mass Transport in Multicomponent, Multiphase H ₂ O Systems of Planetary Interest. Annual Review of Earth and Planetary Sciences, 2009, 37, 449-477.	4.6	31
41	Ocean tides heat Enceladus. Geophysical Research Letters, 2009, 36, .	1.5	52
42	Tectonics of the outer planet satellites. , 2009, , 264-350.		30
43	Enceladus Plume Density Modeling and Reconstruction for Cassini Attitude Control System. , 2010, , .		4
44	Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites. Space Science Reviews, 2010, 153, 317-348.	3.7	52
45	Surface, Subsurface and Atmosphere Exchanges onÂtheÂSatellites ofÂtheÂOuter Solar System. Space Science Reviews, 2010, 153, 375-410.	3.7	19
46	Chemical Composition of Icy Satellite Surfaces. Space Science Reviews, 2010, 153, 113-154.	3.7	65
47	Interpretation and analysis of planetary structures. Journal of Structural Geology, 2010, 32, 855-875.	1.0	71
48	Subsurface heat transfer on Enceladus: Conditions under which melting occurs. Icarus, 2010, 206, 594-607.	1.1	58
49	The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nature Geoscience, 2010, 3, 88-91.	5.4	67
50	Enceladus plume variability and the neutral gas densities in Saturn's magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	93
51	Sodium chloride as a geophysical probe of a subsurface ocean on Enceladus. Geophysical Research Letters, 2010, 37, .	1.5	25
52	Limits of Enceladus's ice shell thickness from tidally driven tiger stripe shear failure. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	30
53	High heat flow from Enceladus' south polar region measured using 10–600 cm ^{â^'1} Cassini/CIRS data. Journal of Geophysical Research, 2011, 116, .	3.3	145
54	Joule heating of the south polar terrain on Enceladus. Journal of Geophysical Research, 2011, 116, .	3.3	8

#	ARTICLE	IF	Citations
55	Cryoclastic origin of particles on the surface of Enceladus. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	16
56	A fracture history on Enceladus provides evidence for a global ocean. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	74
57	Does the normal stress parallel to the sliding plane affect the friction of ice upon ice?. Journal of Glaciology, 2011, 57, 949-953.	1.1	1
59	<i>HUBBLE SPACE TELESCOPE</i> /ADVANCED CAMERA FOR SURVEYS OBSERVATIONS OF EUROPA'S ATMOSPHERIC ULTRAVIOLET EMISSION AT EASTERN ELONGATION. Astrophysical Journal, 2011, 738, 153.	1.6	34
60	Watery Enceladus. Physics Today, 2011, 64, 38-44.	0.3	19
61	Return to Europa: Overview of the Jupiter Europa orbiter mission. Advances in Space Research, 2011, 48, 629-650.	1.2	22
62	Tidal dynamical considerations constrain the state of an ocean on Enceladus. Icarus, 2011, 211, 770-779.	1.1	75
63	A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 2011, 474, 620-622.	13.7	394
64	Friction of ice on ice. Journal of Geophysical Research, 2012, 117, .	3.3	87
65	Modeling ammonia–ammonium aqueous chemistries in the Solar System's icy bodies. Icarus, 2012, 220, 932-946.	1.1	56
66	Tidal control of jet eruptions on Enceladus as observed by Cassini ISS between 2005 and 2007. Icarus, 2012, 220, 896-903.	1.1	22
67	Life in the Saturnian Neighborhood. Cellular Origin and Life in Extreme Habitats, 2012, , 485-522.	0.3	0
68	Effects of anisotropic viscosity and texture development on convection in ice mantles. Journal of Geophysical Research, 2012, 117, .	3.3	3
69	Enceladus: A hypothesis for bringing both heat and chemicals to the surface. Icarus, 2012, 221, 53-62.	1.1	46
70	Small Habitable Worlds. , 2012, , 201-228.		7
71	The impact of a weak south pole on thermal convection in Enceladus' ice shell. Icarus, 2012, 218, 320-330.	1.1	24
72	Shell tectonics: A mechanical model for strike-slip displacement on Europa. Icarus, 2012, 218, 297-307.	1.1	29
73	Tidally-induced melting events as the origin of south-pole activity on Enceladus. Icarus, 2012, 219, 655-664.	1.1	60

#	Article	IF	CITATIONS
74	Ice rheology and tidal heating of Enceladus. Icarus, 2013, 226, 10-19.	1.1	32
75	An observed correlation between plume activity and tidal stresses on Enceladus. Nature, 2013, 500, 182-184.	13.7	136
76	Static strengthening of frictional surfaces of ice. Acta Materialia, 2013, 61, 1616-1623.	3.8	21
77	The Science of Solar System Ices. Astrophysics and Space Science Library, 2013, , .	1.0	35
78	Space-Weathering of Solar System Bodies: A Laboratory Perspective. Chemical Reviews, 2013, 113, 9086-9150.	23.0	130
79	Flanking fractures and the formation of double ridges on Europa. Icarus, 2013, 223, 74-81.	1.1	46
80	Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System. Astrophysics and Space Science Library, 2013, , 409-454.	1.0	27
81	Atomistic simulations of friction at an ice-ice interface. Friction, 2013, 1, 242-251.	3.4	16
82	The shape of Enceladus as explained by an irregular core: Implications for gravity, libration, and survival of its subsurface ocean. Journal of Geophysical Research E: Planets, 2013, 118, 1775-1788.	1.5	19
83	Impact of tidal heating on the onset of convection in Enceladus's ice shell. Icarus, 2013, 226, 898-904.	1.1	25
84	Flexure on Dione: Investigating subsurface structure and thermal history. Icarus, 2013, 223, 418-422.	1.1	29
85	Enceladus: An Active Ice World in the Saturn System. Annual Review of Earth and Planetary Sciences, 2013, 41, 693-717.	4.6	142
86	Planetary Ices Attenuation Properties. Astrophysics and Space Science Library, 2013, , 183-225.	1.0	17
87	ON THE DIRECT IMAGING OF TIDALLY HEATED EXOMOONS. Astrophysical Journal, 2013, 769, 98.	1.6	70
88	The effect of an asymmetric core on convection in Enceladus' ice shell: Implications for south polar tectonics and heat flux. Geophysical Research Letters, 2013, 40, 5610-5614.	1.5	15
90	Geyser. , 2014, , 1-8.		0
91	Science goals and mission concept for the future exploration of Titan and Enceladus. Planetary and Space Science, 2014, 104, 59-77.	0.9	15
92	Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5123-32.	3.3	65

#	Article	IF	Citations
93	Transient Water Vapor at Europa's South Pole. Science, 2014, 343, 171-174.	6.0	401
94	Planetary habitability: lessons learned from terrestrial analogues. International Journal of Astrobiology, 2014, 13, 81-98.	0.9	107
95	Structural and tidal models of Titan and inferences on cryovolcanism. Journal of Geophysical Research E: Planets, 2014, 119, 1013-1036.	1.5	41
96	HOW THE GEYSERS, TIDAL STRESSES, AND THERMAL EMISSION ACROSS THE SOUTH POLAR TERRAIN OF ENCELADUS ARE RELATED. Astronomical Journal, 2014, 148, 45.	1.9	129
97	Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature, 2014, 514, 68-71.	13.7	85
98	Formation, Habitability, and Detection of Extrasolar Moons. Astrobiology, 2014, 14, 798-835.	1.5	120
99	Comparative estimates of the heat generated by ocean tides on icy satellites in the outer Solar System. Icarus, 2014, 243, 358-385.	1.1	47
100	TIDALLY MODULATED ERUPTIONS ON ENCELADUS: <i>CASSINI</i> ISS OBSERVATIONS AND MODELS. Astronomical Journal, 2014, 148, 46.	1.9	66
101	Non-steady state tidal heating of Enceladus. Icarus, 2014, 235, 75-85.	1.1	24
102	Selfâ€consistent generation of singleâ€plume state for Enceladus using nonâ€Newtonian rheology. Journal of Geophysical Research E: Planets, 2014, 119, 416-439.	1.5	13
103	Constraining the heat flux between Enceladus' tiger stripes: Numerical modeling of funiscular plains formation. Icarus, 2015, 260, 232-245.	1.1	27
104	Thermal Contraction Crack Polygons (Permafrost). , 2015, , 2126-2130.		0
105	Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn's moon Enceladus. Icarus, 2015, 260, 409-439.	1.1	30
106	Earth's rotation variability triggers explosive eruptions in subduction zones. Earth, Planets and Space, 2015, 67, .	0.9	13
107	Low-speed friction and brittle compressive failure of ice: fundamental processes in ice mechanics. International Materials Reviews, 2015, 60, 451-478.	9.4	24
108	Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations. Planetary and Space Science, 2015, 119, 208-221.	0.9	10
109	Interiors and Evolution of Icy Satellites. , 2015, , 605-635.		24
110	A unified nomenclature for tectonic structures on the surface of Enceladus. Icarus, 2015, 258, 67-81.	1.1	14

		CITATION REPORT		
#	Article		IF	CITATIONS
111	Linking Europa's plume activity to tides, tectonics, and liquid water. Icarus, 2015, 2	253, 169-178.	1.1	22
112	On understanding the physics of the Enceladus south polar plume via numerical simula 2015, 253, 205-222.	ation. Icarus,	1.1	34
113	Structural mapping of Enceladus and implications for formation of tectonized regions. Geophysical Research E: Planets, 2015, 120, 928-950.	Journal of	1.5	56
114	The pH of Enceladus' ocean. Geochimica Et Cosmochimica Acta, 2015, 162, 202-2	19.	1.6	205
115	Timing of water plume eruptions on Enceladus explained by interior viscosity structure Geoscience, 2015, 8, 601-604.	. Nature	5.4	41
116	ENCELADUS' GEYSERS: RELATION TO GEOLOGICAL FEATURES. Astronomical Jourr	nal, 2015, 150, 96.	1.9	27
117	Spatial distribution of ice blocks on Enceladus and implications for their origin and em Icarus, 2015, 245, 162-176.	placement.	1.1	20
118	Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environmental Microbiology, 2015, 17, 257-277.		1.8	131
119	Tectonic activity on Pluto after the Charon-forming impact. Icarus, 2015, 246, 146-15	5.	1.1	25
120	The interior and orbital evolution of Charon as preserved in its geologic record. Icarus, 11-20.	2015, 246,	1.1	19
121	Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and lil Geophysical Research Letters, 2016, 43, 5653-5660.	oration data.	1.5	141
122	An apparatus to measure frictional, anelastic, and viscous behavior in ice at temperate conditions. Review of Scientific Instruments, 2016, 87, 055112.	and planetary	0.6	11
123	The distribution and characterization of strikeâ€ s lip faults on Enceladus. Geophysical F 2016, 43, 2456-2464.	lesearch Letters,	1.5	19
124	Controlled boiling on Enceladus. 1. Model of the vapor-driven jets. Icarus, 2016, 272, 3	809-318.	1.1	30
125	On the restoration of strength through stress-driven healing of faults in ice. Acta Mate 117, 306-310.	rialia, 2016,	3.8	2
126	Enceladus's and Dione's floating ice shells supported by minimum stress isostasy. Geo Research Letters, 2016, 43, 10,088.	physical	1.5	126
127	New friction mechanisms revealed by ice crushing-friction tests on high-roughness sur Regions Science and Technology, 2016, 131, 1-9.	faces. Cold	1.6	9
128	Enceladus' Environment and the Design of the Enceladus Ice-Probe Navigation System	.,2016,,.		2

	Сіта	TION REPORT	
#	Article	IF	Citations
129	Ocean worlds in the outer solar system. Journal of Geophysical Research E: Planets, 2016, 121, 1378-13	99. 1.5	149
130	Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophysical Research Letters, 2016, 43, 7417-7423.	1.5	26
131	Saturn's icy satellites investigated by Cassini-VIMS. IV. Daytime temperature maps. Icarus, 2016, 27 292-313.	l, 1,1	23
132	Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. Proceedings of the United States of America, 2016, 113, 3972-3975.	3.3	74
133	A 1-D evolutionary model for icy satellites, applied to Enceladus. Icarus, 2016, 268, 1-11.	1.1	17
134	Consequences of large impacts on Enceladus' core shape. Icarus, 2016, 264, 300-310.	1.1	31
135	The implications of tides on the Mimas ocean hypothesis. Journal of Geophysical Research E: Planets, 2017, 122, 400-410.	1.5	16
136	Ceres interaction with the solar wind. Geophysical Research Letters, 2017, 44, 2070-2077.	1.5	9
137	Active Cryovolcanism on Europa?. Astrophysical Journal Letters, 2017, 839, L18.	3.0	125
138	Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change. Geophysical Research Letters, 2017, 44, 4116-4123.	1.5	12
139	The impact of a pressurized regional sea or global ocean on stresses on Enceladus. Journal of Geophysical Research E: Planets, 2017, 122, 1258-1275.	1.5	12
140	Deciphering sub-micron ice particles on Enceladus surface. Icarus, 2017, 290, 183-200.	1.1	22
141	Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS. Icarus, 2017, 292, 1-12.	1.1	10
142	Pit chains on Enceladus signal the recent tectonic dissection of the ancient cratered terrains. Icarus, 2017, 294, 209-217.	1.1	20
143	Thermally anomalous features in the subsurface of Enceladus's south polar terrain. Nature Astronomy, 2017, 1, .	4.2	41
144	Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation. Celestial Mechanics and Dynamical Astronomy, 2017, 129, 359-396.	0.5	10
145	The Main Belt Comets and ice in the Solar System. Astronomy and Astrophysics Review, 2017, 25, 1.	9.1	60
146	Vital Signs: Seismology of Icy Ocean Worlds. Astrobiology, 2018, 18, 37-53.	1.5	31

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
147	Cold cases: What we don't know about Saturn's Moons. Planetary and Space Science,	2018, 155, 41-49.	0.9	5
148	Sea ice, extremophiles and life on extra-terrestrial ocean worlds. International Journal o Astrobiology, 2018, 17, 1-16.	f	0.9	62
149	Enceladus' near-surface CO2 gas pockets and surface frost deposits. Icarus, 2018,	302, 18-26.	1.1	8
150	Enceladus's crust as a non-uniform thin shell: I tidal deformations. Icarus, 2018, 30	2, 145-174.	1.1	36
151	Life in the Universe. , 2018, , .			23
153	Ocean Worlds in the Outer Regions of the Solar System (Review). Solar System Resear 371-381.	ch, 2018, 52,	0.3	10
154	Experimenting with Mixtures of Water Ice and Dust as Analogues for Icy Planetary Mat Science Reviews, 2019, 215, 1.	erial. Space	3.7	29
155	Peptide Synthesis under the Alkaline Hydrothermal Conditions on Enceladus. ACS Eartl Chemistry, 2019, 3, 2559-2568.	h and Space	1.2	20
156	Differentiation of Enceladus and Retention of a Porous Core. Astrophysical Journal, 201	19, 882, 47.	1.6	14
157	Implications of nonsynchronous rotation on the deformational history and ice shell pro the south polar terrain of Enceladus. Icarus, 2019, 321, 445-457.	operties in	1.1	12
158	Convection in Thin Shells of Icy Satellites: Effects of Latitudinal Surface Temperature V Journal of Geophysical Research E: Planets, 2019, 124, 2029-2053.	ariations.	1.5	7
159	Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Missions in High Speed Impacts?. Sci, 2019, 1, 53.	Space	1.8	4
160	Long-term stability of Enceladus' uneven ice shell. Icarus, 2019, 319, 476-484.		1.1	59
161	Tidal stress modeling of Ganymede: Strike-slip tectonism and Coulomb failure. Icarus, 2	2019, 319, 99-120.	1.1	13
162	Catastrophic disruption of icy bodies with sub-surface oceans. Icarus, 2020, 336, 1134	57.	1.1	2
163	Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influr rheology. Icarus, 2020, 338, 113448.	uence of	1.1	8
164	Rapid falling of an orbiting moon to its parent planet due to tidal-seismic resonance. Pl Space Science, 2020, 182, 104796.	anetary and	0.9	1
165	Cascading parallel fractures on Enceladus. Nature Astronomy, 2020, 4, 234-239.		4.2	18

#	Article	IF	CITATIONS
166	Heat and charge transport in H2O at ice-giant conditions from ab initio molecular dynamics simulations. Nature Communications, 2020, 11, 3605.	5.8	20
167	Tectonics of Enceladus' South Pole: Block Rotation of the Tiger Stripes. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006471.	1.5	8
168	On the Habitability and Future Exploration of Ocean Worlds. Space Science Reviews, 2020, 216, 1.	3.7	36
169	Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High-Speed Impacts?. Sci, 2020, 2, 56.	1.8	3
170	Organic Molecules: Is It Possible To Distinguish Aromatics From Aliphatics Collected By Space Missions in High-Speed Impacts. Sci, 2020, 2, 12.	1.8	0
171	Ganymede, Then and Now: How Past Eccentricity May Have Altered Tidally Driven Coulomb Failure. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE005995.	1.5	5
172	Forecasting Rates of Volcanic Activity on Terrestrial Exoplanets and Implications for Cryovolcanic Activity on Extrasolar Ocean Worlds. Publications of the Astronomical Society of the Pacific, 2020, 132, 084402.	1.0	19
173	The formation of Enceladus' Tiger Stripe Fractures from eccentricity tides. Earth and Planetary Science Letters, 2020, 544, 116389.	1.8	11
174	Organic Molecules: Is It Possible to Distinguish Aromatics from Aliphatics Collected by Space Missions in High-Speed Impacts?. Sci, 2020, 2, 41.	1.8	0
175	Estimating the Magnitude of Cyclic Slip on Strikeâ€5lip faults on Europa. Journal of Geophysical Research E: Planets, 2020, 125, no.	1.5	10
176	Identification of Possible Heat Sources for the Thermal Output of Enceladus. Planetary Science Journal, 2021, 2, 29.	1.5	1
177	Sampling Plume Deposits on Enceladus' Surface to Explore Ocean Materials and Search for Traces of Life or Biosignatures. Planetary Science Journal, 2021, 2, 100.	1.5	8
178	Breaking the symmetry by breaking the ice shell: An impact origin for the south polar terrain of Enceladus. Icarus, 2021, 359, 114302.	1.1	8
179	Propagation of Vertical Fractures through Planetary Ice Shells: The Role of Basal Fractures at the Ice–Ocean Interface and Proximal Cracks. Planetary Science Journal, 2021, 2, 135.	1.5	8
180	Salt grains in hypervelocity impacts in the laboratory: Methods to sample plumes from the ice worlds Enceladus and Europa. Meteoritics and Planetary Science, 2021, 56, 1652-1668.	0.7	4
181	Convection in a mushy layer along a vertical heated wall. Journal of Fluid Mechanics, 2021, 926, .	1.4	3
182	Tiger: Concept Study for a New Frontiers Enceladus Habitability Mission. Planetary Science Journal, 2021, 2, 195.	1.5	5
183	Strike-slip faulting on Titan: Modeling tidal stresses and shear failure conditions due to pore fluid interactions. Icarus, 2022, 371, 114700.	1.1	3

#	Article	IF	CITATIONS
184	Hydrothermal Processes and Systems on Other Planets and Satellites: Clues for the Search of Extraterrestrial Life. , 2009, , 1131-1211.		1
185	Icy Satellites: Geological Evolution and Surface Processes. , 2009, , 637-681.		34
186	Enceladus: An Active Cryovolcanic Satellite. , 2009, , 683-724.		65
187	Origin of the Saturn System. , 2009, , 55-74.		3
189	Moons of Exoplanets: Habitats for Life?. , 2008, , 285-303.		24
191	Two-dimensional Wrinkle Resonators for Random Lasing in Organic Glasses. Scientific Reports, 2020, 10, 2434.	1.6	8
192	Exploring Deep-Sea Brines as Potential Terrestrial Analogues of Oceans in the Icy Moons of the Outer Solar System. Current Issues in Molecular Biology, 2020, 38, 123-162.	1.0	16
193	Geodynamics of Europa's Icy Shell. , 0, , 381-404.		5
194	Exploration of Enceladus^ ^apos; Water-Rich Plumes toward Understanding of Chemistry and Biology of the Interior Ocean. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2014, 12, Tk_7-Tk_11.	0.1	5
195	The Geochemistry of Enceladus: Composition and Controls. , 2018, , .		35
196	Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites. Space Sciences Series of ISSI, 2010, , 315-346.	0.0	0
197	Chemical Composition of Icy Satellite Surfaces. Space Sciences Series of ISSI, 2010, , 111-152.	0.0	0
198	Surface, Subsurface and Atmosphere Exchanges onÂtheÂSatellites ofÂtheÂOuter Solar System. Space Sciences Series of ISSI, 2010, , 373-408.	0.0	1
199	Tiger Stripe Fractures (Enceladus). , 2014, , 1-4.		0
200	Tiger Stripe Fractures (Enceladus). , 2015, , 2148-2150.		0
201	Geyser. , 2015, , 835-841.		0
202	Evidence of Electron Density Enhancements in the Postâ€Apoapsis Sector of Enceladus' Orbit. Journal of Geophysical Research: Space Physics, 2020, 125, .	0.8	0
203	UV exploration of the solar system. Experimental Astronomy, 2022, 54, 1169-1186.	1.6	1

#	Article	IF	CITATIONS
204	Do Oceanic Convection and Clathrate Dissociation Drive Europa's Geysers?. Planetary Science Journal, 2021, 2, 221.	1.5	3
205	Enceladus as a potential oasis for life: Science goals and investigations for future explorations. Experimental Astronomy, 2022, 54, 809-847.	1.6	5
206	Saturn's icy satellites investigated by Cassini - VIMS. V. Spectrophotometry. Icarus, 2022, 375, 114803.	1.1	3
207	Single―and Multiâ€Pass Magnetometric Subsurface Ocean Detection and Characterization in Icy Worlds Using Principal Component Analysis (PCA): Application to Triton. Earth and Space Science, 2022, 9, .	1.1	9
208	Cryovolcanism. , 2022, , 161-234.		3
209	Oscillatory Loading Can Alter the Velocity Dependence of Iceâ€onâ€Rock Friction. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	2
210	VIS spectroscopy of NaCl – water ice mixtures irradiated with 1 and 5ÂkeV electrons under Europa's conditions: Formation of colour centres and Na colloids. Icarus, 2022, 379, 114977.	1.1	0
211	Catastrophic disruption by hypervelocity impact of multi-layered spherical ice targets. International Journal of Impact Engineering, 2022, 168, 104294.	2.4	1
212	Chemical Fractionation Modeling of Plumes Indicates a Gas-rich, Moderately Alkaline Enceladus Ocean. Planetary Science Journal, 2022, 3, 191.	1.5	15
213	Tidal drag in exoplanet oceans. , 2023, , 417-439.		0
214	Tidal insights into rocky and icy bodies: an introduction and overview. Advances in Geophysics, 2022, , 231-320.	1.1	12
215	Ocean dynamics and tracer transport over the south pole geysers of Enceladus. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3485-3494.	1.6	9
216	Surviving in Ocean Worlds: Experimental Characterization of Fiber Optic Tethers across Europa-like Ice Faults and Unraveling the Sliding Behavior of Ice. Planetary Science Journal, 2023, 4, 1.	1.5	3
217	Simulating spatial variations of lithospheric folding in the south polar terrain of Enceladus. Icarus, 2023, 394, 115431.	1.1	0
218	Salty ocean and submarine hydrothermal vents on Saturn's Moon Enceladus—Tall plume of gas, jets of water vapor & organic-enriched ice particles spewing from its south pole. , 2023, , 583-616.		0
219	Study of the eruption mechanism of Saturn's moon Enceladus plume using the mathematical model of a geyser (periodic bubbling spring). , 2022, , .		0