Resource-use efficiency and plant invasion in low-resource-

Nature 446, 1079-1081

DOI: 10.1038/nature05719

Citation Report

#	Article	IF	CITATIONS
1	Resourceful invaders. Nature, 2007, 446, 985-986.	13.7	3
2	The answer is blowing in the wind. Nature, 2007, 446, 986-987.	13.7	1
3	Leaf trait relationships of native and invasive plants: community―and globalâ€scale comparisons. New Phytologist, 2007, 176, 635-643.	3.5	368
4	Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 2007, 176, 256-273.	3.5	762
5	Leaf phenology and seasonal variation of photosynthesis of invasive Berberis thunbergii (Japanese) Tj ETQq0 0 0 forest. Oecologia, 2007, 154, 11-21.	rgBT /Ove 0.9	rlock 10 Tf 50 82
6	Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. Remote Sensing of Environment, 2008, 112, 1942-1955.	4.6	168
7	Declines in plant species richness and endemic plant species in longleaf pine savannas invaded by Imperata cylindrica. Biological Invasions, 2008, 10, 1257-1264.	1.2	57
8	Genetic variation in photosynthetic characteristics among invasive and native populations of reed canarygrass (Phalaris arundinacea). Biological Invasions, 2008, 10, 1317-1325.	1.2	38
9	Consistent performance of invasive plant species within and among islands of the Mediterranean basin. Biological Invasions, 2008, 10, 847-858.	1.2	58
10	Invasibility of grassland and heath communities exposed to extreme weather events – additive effects of diversity resistance and fluctuating physical environment. Oikos, 2008, 117, 1542-1554.	1.2	54
11	Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature, 2008, 456, 946-948.	13.7	238
12	Increased snow facilitates plant invasion in mixedgrass prairie. New Phytologist, 2008, 179, 440-448.	3.5	57
13	Differences in plasticity between invasive and native plants from a low resource environment. Journal of Ecology, 2008, 96, 1162-1173.	1.9	308
14	Landâ€use legacy and the persistence of invasive <i>Avena barbata</i> on abandoned farmland. Journal of Applied Ecology, 2008, 45, 1576-1583.	1.9	56
15	Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.). Journal of Environmental Sciences, 2008, 20, 739-744.	3.2	34
16	Physiological activity of Porphyra in relation to eulittoral zonation. Journal of Experimental Marine Biology and Ecology, 2008, 365, 75-85.	0.7	31
17	Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Applied Soil Ecology, 2008, 40, 210-217.	2.1	210
18	Restoration through reassembly: plant traits and invasion resistance. Trends in Ecology and Evolution, 2008, 23, 695-703.	4.2	570

#	ARTICLE	IF	CITATIONS
19	Effects of mulching on growth, foliar photosynthetic nitrogen and water use efficiency of hardwood plantations in subtropical Australia. Forest Ecology and Management, 2008, 255, 3447-3454.	1.4	21
20	Limited native plant regeneration in novel, exotic-dominated forests on Hawai'i. Forest Ecology and Management, 2008, 256, 593-606.	1.4	88
21	Variation in resource acquisition and utilization traits between native and invasive perennial forbs. American Journal of Botany, 2008, 95, 681-687.	0.8	86
22	Linking environmental gradients, species composition, and vegetation indicators of sugar maple health in the northeastern United States. Canadian Journal of Forest Research, 2008, 38, 1761-1774.	0.8	23
23	Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7899-7904.	3.3	210
24	Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12400-12405.	3.3	92
25	Hawaiian native forest conserves water relative to timber plantation: Species and stand traits influence water use. Ecological Applications, 2009, 19, 1429-1443.	1.8	64
26	Distribution patterns of plants explained by human movement behaviour. Ecological Modelling, 2009, 220, 1339-1346.	1.2	33
27	Carbohydrate supply limits invasion of natural communities by Argentine ants. Oecologia, 2009, 161, 161-171.	0.9	45
28	Native Cuscuta campestris restrains exotic Mikania micrantha and enhances soil resources beneficial to natives in the invaded communities. Biological Invasions, 2009, 11, 835-844.	1.2	34
29	Exotic shrub invasion in an undisturbed wetland has little community-level effect over a 15-year period. Biological Invasions, 2009, 11, 1803-1820.	1.2	21
30	Smallâ€scale disturbances spread along trophic chains: leafâ€cutting ant nests, plants, aphids, and tending ants. Ecological Research, 2009, 24, 139-145.	0.7	14
31	Wholeâ€canopy nitrogenâ€use efficiency of pioneer species in early secondary forest succession in Vietnam. Ecological Research, 2009, 24, 811-820.	0.7	7
32	Soil biota, but not soil nutrients, facilitate the invasion of <i>Bidens pilosa</i> relative to a native species <i>Saussurea deltoidea</i> Weed Research, 2009, 49, 201-206.	0.8	37
33	The relative generality of plant invasion mechanisms and predicting future invasive plants. Weed Research, 2009, 49, 449-460.	0.8	61
34	Phosphorus economics of tropical rainforest species and stands across soil contrasts in Queensland, Australia: understanding the effects of soil specialization and trait plasticity. Functional Ecology, 2009, 23, 1157-1166.	1.7	35
35	Faster returns on †leaf economics' and different biogeochemical niche in invasive compared with native plant species. Global Change Biology, 2010, 16, 2171-2185.	4.2	157
36	Plant invasions and the niche. Journal of Ecology, 2009, 97, 609-615.	1.9	379

#	Article	IF	Citations
37	Punching above their weight: lowâ€biomass nonâ€native plant species alter soil properties during primary succession. Oikos, 2009, 118, 1001-1014.	1.2	137
38	The invasive alien plant species <i>Solidago gigantea</i> alters ecosystem properties across habitats with differing fertility. Journal of Vegetation Science, 2009, 20, 1072-1085.	1.1	46
39	Properties of native plant communities do not determine exotic success during early forest succession. Ecography, 2009, 32, 449-458.	2.1	15
40	Gene Flow, Invasiveness, and Ecological Impact of Genetically Modified Crops. Annals of the New York Academy of Sciences, 2009, 1168, 72-99.	1.8	139
41	Effects of Nutrient Manipulations and Grass Removal on Cover, Species Composition, and Invasibility of a Novel Grassland in Colorado. Restoration Ecology, 2009, 17, 818-826.	1.4	24
42	Biological invasions and the neutral theory. Diversity and Distributions, 2009, 15, 547-553.	1.9	35
43	Dual purpose secondary compounds: phytotoxin of <i>Centaurea diffusa</i> also facilitates nutrient uptake. New Phytologist, 2009, 181, 424-434.	3.5	71
44	Restraints on (i) Mikania micrantha (i) by (i) Cuscuta campestris (i) facilitates restoration of the disturbed ecosystems. Biodiversity, 2009, 10, 72-78.	0.5	7
45	Evaluating barriers to native seedling establishment in an invaded Hawaiian lowland wet forest. Biological Conservation, 2009, 142, 2997-3004.	1.9	48
46	Impacts of woodchip amendments and soil nutrient availability on understory vegetation establishment following thinning of a ponderosa pine forest. Forest Ecology and Management, 2009, 258, 263-272.	1.4	33
47	Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon. Applied Soil Ecology, 2009, 42, 150-159.	2.1	53
48	A Habitat-Classification Framework and Typology for Understanding, Valuing, and Managing Invasive Species Impacts., 2009,, 77-101.		17
49	Plant Community Water Use and Invasibility of Semi-Arid Shrublands by Woody Species in Southern California. Madroñ0, 2009, 56, 213-220.	0.3	9
50	Cost-effectiveness of leaf energy and resource investment of invasive Berberis thunbergii and co-occurring native shrubs. Canadian Journal of Forest Research, 2009, 39, 2109-2118.	0.8	10
51	Indirect effects of invasive predators on litter decomposition and nutrient resorption on seabirdâ€dominated islands. Ecology, 2009, 90, 452-464.	1.5	51
52	Competitive advantage of Rumex obtusifolius L. might increase in intensively managed temperate grasslands under drier climate. Agriculture, Ecosystems and Environment, 2010, 135, 15-23.	2.5	44
53	Ecosystem Consequences of Biological Invasions. Annual Review of Ecology, Evolution, and Systematics, 2010, 41, 59-80.	3.8	867
54	Enemy release and plant invasion: patterns of defensive traits and leaf damage in Hawaii. Oecologia, 2010, 162, 815-823.	0.9	43

#	Article	IF	Citations
55	Immobilizing nitrogen to control plant invasion. Oecologia, 2010, 163, 13-24.	0.9	126
56	The demography of feral alfalfa (Medicago sativa L.) populations occurring in roadside habitats in Southern Manitoba, Canada: implications for novel trait confinement. Environmental Science and Pollution Research, 2010, 17, 1448-1459.	2.7	9
57	Foliar Mono- and Sesquiterpene Contents in Relation to Leaf Economic Spectrum in Native and Alien Species in Oahu (Hawai'i). Journal of Chemical Ecology, 2010, 36, 210-226.	0.9	15
58	Higher Allocation to Low Cost Chemical Defenses in Invasive Species of Hawaii. Journal of Chemical Ecology, 2010, 36, 1255-1270.	0.9	40
59	Reduced risk for positive soil-feedback on seedling regeneration by invasive trees on a very nutrient-poor soil in Seychelles. Biological Invasions, 2010, 12, 97-102.	1.2	19
60	The effects of eastern red cedar (Juniperus virginiana) invasion and removal on a dry bluff prairie ecosystem. Biological Invasions, 2010, 12, 241-252.	1.2	32
61	Physiological responses to short-term water and light stress in native and invasive plant species in southern California. Biological Invasions, 2010, 12, 1685-1694.	1.2	42
62	Weak effects of the exotic invasive Carpobrotus edulis on the structure and composition of Portuguese sand-dune communities. Biological Invasions, 2010, 12, 2117-2130.	1.2	21
63	Flexible N uptake and assimilation mechanisms may assist biological invasion by Alliaria petiolata. Biological Invasions, 2010, 12, 2639-2647.	1.2	24
64	Nitrogen-limitation and invasive sweetclover impacts vary between two Great Plains plant communities. Biological Invasions, 2010, 12, 2735-2749.	1.2	8
65	Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia, 2010, 655, 37-47.	1.0	49
66	Structure and species composition of novel forests dominated by an introduced species in northcentral Puerto Rico. New Forests, 2010, 39, 1-18.	0.7	23
67	High competitiveness of a resource demanding invasive acacia under low resource supply. Plant Ecology, 2010, 206, 83-96.	0.7	71
68	Water relations advantages for invasive RubusÂarmeniacus over two native ruderal congeners. Plant Ecology, 2010, 210, 169-179.	0.7	33
69	Not all forests are expanding over central Brazilian savannas. Plant and Soil, 2010, 333, 431-442.	1.8	24
70	Altering Light Availability to Restore Invaded Forest: The Predictive Role of Plant Traits. Restoration Ecology, 2010, 18, 865-872.	1.4	50
71	Can ecological stoichiometry help explain patterns of biological invasions?. Oikos, 2010, 119, 779-790.	1.2	139
72	Effects of resource availability on tolerance of herbivory in the invasive Alternanthera philoxeroides and the native Alternanthera sessilis. Weed Research, 2010, 50, 527-536.	0.8	40

#	Article	IF	Citations
73	Plant traits, leaf palatability and litter decomposability for coâ€occurring woody species differing in invasion status and nitrogen fixation ability. Functional Ecology, 2010, 24, 513-523.	1.7	104
74	Functional differences between native and alien species: a globalâ€scale comparison. Functional Ecology, 2010, 24, 1353-1361.	1.7	203
75	Functional traits of alien plants across contrasting climatic and landâ€use regimes: do aliens join the locals or try harder than them?. Journal of Ecology, 2010, 98, 17-27.	1.9	179
76	Native and exotic invasive plants have fundamentally similar carbon capture strategies. Journal of Ecology, 2010, 98, 28-42.	1.9	140
77	Divergence from the growth–survival tradeâ€off and extreme high growth rates drive patterns of exotic tree invasions in closed anopy forests. Journal of Ecology, 2010, 98, 778-789.	1.9	90
78	Effects of clonal integration and light availability on the growth and physiology of two invasive herbs. Journal of Ecology, 2010, 98, 833-844.	1.9	87
79	Functional composition controls invasion success in a California serpentine grassland. Journal of Ecology, 2010, 98, 764-777.	1.9	125
80	Phenology as a basis for management of exotic annual plants in desert invasions. Journal of Applied Ecology, 2010, 47, 1290-1299.	1.9	51
81	Invisible invaders: nonâ€pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecology Letters, 2010, 13, 1560-1572.	3.0	220
82	Does disturbance, competition or resource limitation underlie <i>Hieracium lepidulum </i> New Zealand? Mechanisms of establishment and persistence, and functional differentiation among invasive and native species. Austral Ecology, 2010, 35, 282-293.	0.7	14
83	Variation in ecophysiology and carbon economy of invasive and native woody vines of riparian zones in southâ€eastern Queensland. Austral Ecology, 2010, 35, 636-649.	0.7	25
84	Launching the Counterattack: Interdisciplinary Deployment of Native-Plant Functional Traits for Repair of Rangelands Dominated by Invasive Annual Grasses. Rangelands, 2010, 32, .	0.9	0
85	Launching the Counterattack: Interdisciplinary Deployment of Native-Plant Functional Traits for Repair of Rangelands Dominated by Invasive Annual Grasses. Rangelands, 2010, 32, 38-42.	0.9	20
86	Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species. Annals of Botany, 2010, 106, 371-380.	1.4	58
87	Dietary flexibility aids Asian earthworm invasion in North American forests. Ecology, 2010, 91, 2070-2079.	1.5	78
88	Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2072-2077.	3.3	84
89	Departure from naturalized to invasive stage: a disturbance-induced mechanism and associated interacting factors. Journal of Plant Ecology, 2010, 3, 231-242.	1.2	6
90	Exploitation of Nutrient-Rich Soil Patches by Invasive Annual and Native Perennial Grasses. Invasive Plant Science and Management, 2010, 3, 169-177.	0.5	12

#	Article	IF	Citations
91	Resource use efficiency and community effects of invasive Hypochaeris radicata (Asteraceae) during primary succession. American Journal of Botany, 2010, 97, 1772-1779.	0.8	43
92	Principles for Ecologically Based Invasive Plant Management. Invasive Plant Science and Management, 2010, 3, 229-239.	0.5	44
93	Large Herbivore Grazing and Non-Native Plant Invasions in Montane Grasslands of Central Argentina. Natural Areas Journal, 2010, 30, 148-155.	0.2	13
94	Comparative water use of native and invasive plants at multiple scales: a global metaâ€analysis. Ecology, 2010, 91, 2705-2715.	1.5	113
95	Can intensive management accelerate the restoration of Brazil's Atlantic forests?. Forest Ecology and Management, 2010, 259, 1808-1814.	1.4	50
96	Ecophysiology of the invader Pennisetum setaceum and three native grasses in the Canary Islands. Acta Oecologica, 2010, 36, 248-254.	0.5	18
97	Adaptive phenotypic plasticity and plant water use. Functional Plant Biology, 2010, 37, 117.	1.1	143
98	Responses of Native and Introduced Plant Species to Sucrose Addition in Puget Lowland Prairies. Northwest Science, 2011, 85, 255-268.	0.1	4
99	Carbon dioxide exchange of a pepperweed (Lepidium latifoliumL.) infestation: How do flowering and mowing affect canopy photosynthesis and autotrophic respiration?. Journal of Geophysical Research, $2011,116,\ldots$	3.3	20
100	Invasive knotweed affects native plants through allelopathy. American Journal of Botany, 2011, 98, 38-43.	0.8	133
101	A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 2011, 98, 539-548.	0.8	278
102	Remote analysis of biological invasion and the impact of enemy release. , 2011, 21, 2094-2104.		27
103	Impact of an exotic N2-fixing Acacia on composition and N status of a native Mediterranean community. Acta Oecologica, 2011, 37, 43-50.	0.5	69
104	Alien plant species dominate the vegetation in a city of Sub-Saharan Africa. Landscape and Urban Planning, 2011, 100, 251-267.	3.4	34
105	Expanding the conceptual frameworks of plant invasion ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13, 89-100.	1.1	44
106	Mechanisms of Plant Invasions of North American and European Grasslands. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 133-153.	3.8	84
107	The invasive grass Agropyron cristatum doubles belowground productivity but not soil carbon. Ecology, 2011, 92, 657-664.	1.5	29
108	Disturbance, resource pulses and invasion: short-term shifts in competitive effects, not growth responses, favour exotic annuals. Journal of Applied Ecology, 2011, 48, 998-1006.	1.9	65

#	ARTICLE	IF	CITATIONS
109	Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology, 2011, 25, 1248-1259.	1.7	168
110	Litter feedbacks, evolutionary change and exotic plant invasion. Journal of Ecology, 2011, 99, 503-514.	1.9	40
111	A quicker return energy-use strategy by populations of a subtropical invader in the non-native range: a potential mechanism for the evolution of increased competitive ability. Journal of Ecology, 2011, 99, 1116-1123.	1.9	66
112	Comparison of nutrient acquisition in exotic plant species and congeneric natives. Journal of Ecology, 2011, 99, 1308-1315.	1.9	33
113	Benefits of hyperspectral remote sensing for tracking plant invasions. Diversity and Distributions, 2011, 17, 381-392.	1.9	178
114	Ecophysiological traits associated with the competitive ability of invasive Australian acacias. Diversity and Distributions, 2011, 17, 898-910.	1.9	88
115	Alien Plant Invasions, Introduced Ungulates, and Alternative States in a Mesic Forest in Hawaii. Restoration Ecology, 2011, 19, 671-680.	1.4	39
116	Differentiating between effects of invasion and diversity: impacts of aboveground plant communities on belowground fungal communities. New Phytologist, 2011, 189, 526-535.	3.5	28
117	Invasive forbs differ functionally from native graminoids, but are similar to native forbs. New Phytologist, 2011, 189, 818-828.	3.5	74
118	Effect of segregation and genetic exchange on arbuscular mycorrhizal fungi in colonization of roots. New Phytologist, 2011, 189, 652-657.	3.5	39
119	Trait divergence and the ecosystem impacts of invading species. New Phytologist, 2011, 189, 649-652.	3.5	26
120	Araucaria Forest conservation: mechanisms providing resistance to invasion by exotic timber trees. Biological Invasions, 2011, 13, 189-202.	1.2	22
121	Inhibition of an invasive plant (Mikania micrantha H.B.K.) by soils of three different forests in lower subtropical China. Biological Invasions, 2011, 13, 381-391.	1.2	21
122	Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants?. Biological Invasions, 2011, 13, 869-881.	1.2	53
123	Differential growth patterns and fitness may explain contrasted performances of the invasive Prunus serotina in its exotic range. Biological Invasions, 2011, 13, 1341-1355.	1.2	26
124	The effects of arbuscular mycorrhizal (AM) fungal and garlic mustard introductions on native AM fungal diversity. Biological Invasions, 2011, 13, 1627-1639.	1.2	69
125	The effects of nitrogen addition on the growth of two exotic and two native forest understory plants. Biological Invasions, 2011, 13, 2203-2216.	1.2	20
126	Superior performance and nutrient-use efficiency of invasive plants over non-invasive congeners in a resource-limited environment. Biological Invasions, 2011, 13, 3005-3014.	1.2	79

#	Article	IF	CITATIONS
127	The roles of biotic resistance and nitrogen deposition in regulating non-native understory plant diversity. Plant and Soil, 2011, 345, 257-269.	1.8	14
128	Nitrogen acquisition by annual and perennial grass seedlings: testing the roles of performance and plasticity to explain plant invasion. Plant Ecology, 2011, 212, 1601-1611.	0.7	41
129	Eighty Years of Succession in a Noncommercial Plantation on Hawai'i Island: Are Native Species Returning?. Pacific Science, 2011, 65, 1-15.	0.2	24
130	Phylogenetic relatedness as a tool in restoration ecology: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1761-1767.	1.2	82
131	Trait convergence and plasticity among native and invasive species in resourceâ€poor environments. American Journal of Botany, 2012, 99, 629-639.	0.8	83
132	Sources and modes of action of invasive knotweed allelopathy: the effects of leaf litter and trained soil on the germination and growth of native plants. NeoBiota, 0, 13, 15-30.	1.0	20
133	The Role of Plants in the Effects of Global Change on Nutrient Availability and Stoichiometry in the Plant-Soil System Â. Plant Physiology, 2012, 160, 1741-1761.	2.3	279
134	Water and nitrogen use efficiency of common ragweed (Ambrosia artemisiifolia L.) at different nitrogen and water levels. Acta Agriculturae Slovenica, 2012, 99, .	0.2	0
135	Synergistic interactions of CO2 enrichment and nitrogen deposition promote growth and ecophysiological advantages of invading Eupatorium adenophorum in Southwest China. Planta, 2012, 236, 1205-1213.	1.6	31
136	Positive feedbacks to growth of an invasive grass through alteration of nitrogen cycling. Oecologia, 2012, 170, 457-465.	0.9	94
137	Variation in tissue stoichiometry and condition index of zebra mussels in invaded Swedish lakes. Biological Invasions, 2012, 14, 2117-2131.	1.2	12
138	Patterns and consequences of re-invasion into a Hawaiian dry forest restoration. Biological Invasions, 2012, 14, 2573-2586.	1.2	8
139	Ecology and Impacts of the Invasive Species, Lantana camara, in a Social-Ecological System in South India: Perspectives from Local Knowledge. Human Ecology, 2012, 40, 931-942.	0.7	39
140	The acclimation potential of Acacia longifolia to water stress: Implications for invasiveness. Plant Science, 2012, 196, 77-84.	1.7	13
141	Distribution of Invasive Plant Species in Relation to Environmental and Anthropogenic Factors in Five Nature Reserves in Northern China. Journal of Resources and Ecology, 2012, 3, 278-283.	0.2	0
142	The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 33-47.	1.1	509
143	Changes in non-symbiotic nitrogen-fixing bacteria inhabiting rhizosphere soils of an invasive plant Ageratina adenophora. Applied Soil Ecology, 2012, 54, 32-38.	2.1	53
144	Intraspecies differences in phenotypic plasticity: Invasive versus non-invasive populations of Ceratophyllum demersum. Aquatic Botany, 2012, 97, 49-56.	0.8	31

#	Article	IF	CITATIONS
145	Water Use Strategies of Plants Under Drought Conditions. , 2012, , 145-170.		32
146	The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 231-241.	1.1	271
147	Estrutura populacional de Pinus elliottii em áreas de regeneração florestal em Juiz de Fora, MG. Pesquisa Florestal Brasileira, 2012, 32, 367-372.	0.1	6
148	Integrated Pest Management integrated pest management. , 2012, , 5428-5460.		O
149	Novel forests maintain ecosystem processes after the decline of native tree species. Ecological Monographs, 2012, 82, 221-228.	2.4	94
150	Similarities in recruitment but differences in persistence in two related native and invasive trees: relevance of regenerative and vegetative attributes. Australian Journal of Botany, 2012, 60, 368.	0.3	7
151	Internal Combustion Engines internal combustion engine, Developments internal combustion engine developments in., 2012,, 5499-5547.		1
152	Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol. PLoS ONE, 2012, 7, e34577.	1.1	28
153	Trait Values, Not Trait Plasticity, Best Explain Invasive Species' Performance in a Changing Environment. PLoS ONE, 2012, 7, e48821.	1.1	87
154	Transitions of Mnemiopsis leidyi (Ctenophora: Lobata) from a native to an exotic species: a review. Hydrobiologia, 2012, 690, 21-46.	1.0	95
155	Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs, 2012, 82, 189-203.	2.4	128
156	The invasive New Zealand mudsnail, Potamopyrgus antipodarum, is an effective grazer of algae and altered the assemblage of diatoms more than native grazers. Hydrobiologia, 2012, 694, 143-151.	1.0	18
157	Photosynthetic nitrogen and water use efficiency of acacia and eucalypt seedlings as afforestation species. Photosynthetica, 2012, 50, 273-281.	0.9	30
158	Simulated nitrogen deposition enhances the performance of an exotic grass relative to native serpentine grassland competitors. Plant Ecology, 2012, 213, 1015-1026.	0.7	59
159	An invasive grass shows colonization advantages over native grasses under conditions of low resource availability. Plant Ecology, 2012, 213, 1117-1130.	0.7	17
160	Resource-use efficiencies of three indigenous tree species planted in resource islands created by shrubs: implications for reforestation of subtropical degraded shrublands. Plant Ecology, 2012, 213, 1177-1185.	0.7	10
161	Lantana camara invasion in a heterogeneous landscape: patterns of spread and correlation with changes in native vegetation. Biological Invasions, 2012, 14, 1127-1141.	1.2	80
162	Advantages and disadvantages of interferenceâ€competitive ability and resourceâ€use efficiency when invading established communities. Oikos, 2012, 121, 396-402.	1.2	20

#	Article	IF	CITATIONS
163	Effects of native and exotic rangeâ€expanding plant species on taxonomic and functional composition of nematodes in the soil food web. Oikos, 2012, 121, 181-190.	1.2	26
164	Functional trait similarity of native and invasive herb species in subtropical Chinaâ€"Environment-specific differences are the key. Environmental and Experimental Botany, 2012, 83, 82-92.	2.0	13
165	Biogeographic constraints on the worldâ€wide leaf economics spectrum. Global Ecology and Biogeography, 2012, 21, 1137-1146.	2.7	48
166	Interactions between alien plant species traits and habitat characteristics in agricultural landscapes in Finland. Biological Invasions, 2012, 14, 47-63.	1.2	14
167	Contrasting functional trait syndromes underlay woody alien success in the same ecosystem. Austral Ecology, 2013, 38, 443-451.	0.7	42
168	Competitive interaction between the exotic plant Rhus typhina L. and the native tree Quercus acutissima Carr. in Northern China under different soil N:P ratios. Plant and Soil, 2013, 372, 389-400.	1.8	47
169	Ecosystem changes in $\text{Gal}\tilde{A}_i\text{pagos}$ highlands by the invasive tree Cinchona pubescens. Plant and Soil, 2013, 371, 629-640.	1.8	23
170	Soil microbial community structure of rangeâ€expanding plant species differs from coâ€occurring natives. Journal of Ecology, 2013, 101, 1093-1102.	1.9	39
171	Evolutionary responses of native plant species to invasive plants: a review. New Phytologist, 2013, 200, 986-992.	3.5	62
172	Fluctuating resources, disturbance and plant strategies: diverse mechanisms underlying plant invasions. Journal of Arid Land, 2013, 5, 284-297.	0.9	21
173	Functional morphology underlies performance differences among invasive and non-invasive ruderal Rubus species. Oecologia, 2013, 173, 363-374.	0.9	31
174	The native–invasive balance: implications for nutrient cycling in ecosystems. Oecologia, 2013, 173, 319-328.	0.9	26
175	Characteristics of transmembrane proton transport in the cells of Lupinus polyphyllus. Open Life Sciences, 2013, 8, 461-469.	0.6	1
176	High resource capture and use efficiency and prolonged growth season contribute to invasiveness of Eupatorium adenophorum. Plant Ecology, 2013, 214, 857-868.	0.7	26
177	Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biological Invasions, 2013, 15, 837-846.	1.2	149
178	Exotic species display greater germination plasticity and higher germination rates than native species across multiple cues. Biological Invasions, 2013, 15, 2253-2264.	1.2	99
179	Plant Invasions in Protected Areas., 2013,,.		83
180	Differences in leaf nitrogen content, photosynthesis, and resource-use efficiency between Eichhornia crassipes and a native plant Monochoria vaginalis in response to altered sediment nutrient levels. Hydrobiologia, 2013, 711, 129-137.	1.0	29

#	ARTICLE	IF	CITATIONS
181	Plantâ€parasitic nematodes as invasive species: characteristics, uncertainty and biosecurity implications. Annals of Applied Biology, 2013, 163, 323-350.	1.3	25
182	Restoring Native Forest Understory: The Influence of Ferns and Light in a Hawaiian Experiment. Sustainability, 2013, 5, 1317-1339.	1.6	4
183	Biology and Impacts of Pacific Island Invasive Species. 9. <i>Capra hircus</i> , the Feral Goat (Mammalia:) Tj ETQq0	0.0 rgBT /	/Overlock 10 43
184	Growth and Resource Use of the Invasive Grass, Pampasgrass (<i>Cortaderia selloana</i>), in Response to Nitrogen and Water Availability. Weed Science, 2013, 61, 117-125.	0.8	19
185	A fast-track for invasion: invasive plants promote the performance of an invasive herbivore. Biological Invasions, 2013, 15, 101-111.	1.2	7
186	The propagule supply, litter layers and canopy shade in the littoral community influence the establishment and growth of Myriophyllum aquaticum. Biological Invasions, 2013, 15, 113-123.	1.2	21
187	Phenolic inputs by invasive species could impart seasonal variations in nitrogen pools in the introduced soils: A case study with Polygonum cuspidatum. Soil Biology and Biochemistry, 2013, 57, 858-867.	4.2	57
188	Invasive Species. , 2013, , 161-178.		23
189	Simple plant traits explain functional group diversity decline in novel grassland communities of Texas. Plant Ecology, 2013, 214, 231-241.	0.7	9
190	Spatial Risk Assessment of Alien Invasive Plants in China. Environmental Science & Environmental Scien	4.6	42
191	Constraints and release at different scales – The role of adaptation in biological invasions. Basic and Applied Ecology, 2013, 14, 281-288.	1.2	12
192	Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biological Invasions, 2013, 15, 2403-2414.	1.2	62
193	Do alien plant species profit more from high resource supply than natives? A trait-based analysis. Global Ecology and Biogeography, 2013, 22, 648-658.	2.7	97
194	Resourceâ€use strategies of native and invasive plants in Eastern North American forests. New Phytologist, 2013, 200, 523-533.	3.5	113
195	Identities and distributions of the co-invading ectomycorrhizal fungal symbionts of exotic pines in the Hawaiian Islands. Biological Invasions, 2013, 15, 2373-2385.	1.2	56
196	Human usage in the native range may determine future genetic structure of an invasion: insights from Acacia pycnantha. BMC Ecology, 2013, 13, 37.	3.0	20
197	The physiology of invasive plants in low-resource environments. , 2013, 1, cot026-cot026.		182
198	Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species. Frontiers in Plant Science, 2013, 4, 486.	1.7	24

#	Article	IF	CITATIONS
199	Impact of nitrogen availability and soil communities on biomass accumulation of an invasive species. AoB PLANTS, 2013, 5, plt045-plt045.	1.2	13
200	Invasive Alien Plants Elicit Reduced Production of Flowers and Fruits in Various Native Forest Species on the Tropical Island of Mauritius (Mascarenes, Indian Ocean). Tropical Conservation Science, 2013, 6, 35-49.	0.6	44
202	Linking Trait Differences to Community Dynamics: Evidence from Eupatorium adenophorum and Co-Occurring Native Species during a Three-Year Succession. PLoS ONE, 2013, 8, e50247.	1.1	18
203	Long-Term Environmental Correlates of Invasion by Lantana camara (Verbenaceae) in a Seasonally Dry Tropical Forest. PLoS ONE, 2013, 8, e76995.	1.1	19
204	Comparative Patterns of Plant Invasions in the Mediterranean Biome. PLoS ONE, 2013, 8, e79174.	1.1	50
205	Stress Tolerance and Ecophysiological Ability of an Invader and a Native Species in a Seasonally Dry Tropical Forest. PLoS ONE, 2014, 9, e105514.	1.1	30
206	Light interception, leaf area and biomass production as a function of the density of maize plants analyzed using mathematical models. Acta Scientiarum - Agronomy, 2014, 36, 457.	0.6	13
207	Testing hypotheses about biological invasions and Charles Darwin's two-creators rumination. , 2014, , 1-20.		5
208	Linking rainforest ecophysiology and microclimate through fusion of airborne LiDAR and hyperspectral imagery. Ecosphere, 2014, 5, 1-37.	1.0	11
209	Increased nitrogen deposition alleviated the competitive effects of the introduced invasive plant Robinia pseudoacacia on the native tree Quercus acutissima. Plant and Soil, 2014, 385, 63-75.	1.8	45
210	High water-use efficiency and growth contribute to success of non-native Erodium cicutarium in a Sonoran Desert winter annual community., 2014, 2, cou006-cou006.		28
211	Resource competition in plant invasions: emerging patterns and research needs. Frontiers in Plant Science, 2014, 5, 501.	1.7	275
212	The Effect of Phosphorus Reduction and Competition on Invasive Lemnids: Life Traits and Nutrient Uptake. ISRN Botany, 2014, 2014, 1-9.	0.8	6
213	Responses to simulated nitrogen deposition in invasive and native or non-invasive clonal plants in China. Plant Ecology, 2014, 215, 1483-1492.	0.7	9
214	The imbalance of nature: revisiting a <scp>D</scp> arwinian framework for invasion biology. Global Ecology and Biogeography, 2014, 23, 1157-1166.	2.7	120
215	Nonâ€additive effects of invasive tree litter shift seasonal N release: a potential invasion feedback. Oikos, 2014, 123, 1101-1111.	1.2	22
216	Soil enzymes associated with carbon and nitrogen cycling in invaded and native secondary forests of northwestern Argentina. Plant and Soil, 2014, 384, 169-183.	1.8	24
217	Nonindigenous Marine Jellyfish: Invasiveness, Invasibility, and Impacts. , 2014, , 45-77.		27

#	Article	IF	CITATIONS
218	Do invasive freshwater fish species grow better when they are invasive?. Oikos, 2014, 123, 279-289.	1.2	35
219	Patterns in understory woody diversity and soil nitrogen across native- and non-native-urban tropical forests. Forest Ecology and Management, 2014, 318, 34-43.	1.4	14
220	Lack of superiority of invasive over co-occurring native riparian tree seedling species. Biological Invasions, 2014, 16, 269-281.	1.2	15
221	The physiological light response of two tree species across a hydrologic gradient in Brazilian savanna (Cerrado). Photosynthetica, 2014, 52, 22-35.	0.9	22
222	Responses to nitrogen pulses and growth under low nitrogen availability in invasive and native tree species with differing successional status. Journal of Plant Research, 2014, 127, 315-328.	1.2	6
223	Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biological Invasions, 2014, 16, 735-753.	1.2	214
224	Interactions in Soil: Promoting Plant Growth. Biodiversity Community and Ecosystems, 2014, , .	0.2	16
225	Plant neighbours rather than soil biota determine impact of an alien plant invader. Functional Ecology, 2014, 28, 1545-1555.	1.7	16
226	Hydraulic redistribution by plants and nutrient stoichiometry: Shifts under global change. Ecohydrology, 2014, 7, 1-20.	1.1	59
227	Persistence of Native Trees in an Invaded Hawaiian Lowland Wet Forest: Experimental Evaluation of Light and Water Constraints. Pacific Science, 2014, 68, 267-285.	0.2	13
228	Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants. Journal of Ecology, 2014, 102, 1451-1461.	1.9	54
229	Soil and plant changing after invasion: The case of Acacia dealbata in a Mediterranean ecosystem. Science of the Total Environment, 2014, 497-498, 491-498.	3.9	80
230	The Theoretical Limit to Plant Productivity. Environmental Science & Eamp; Technology, 2014, 48, 9471-9477.	4.6	41
231	Do alien and native tree species from Central Argentina differ in their water transport strategy?. Austral Ecology, 2014, 39, 984-991.	0.7	28
232	Lantana camara L. (Verbenaceae) invasion along streams in a heterogeneous landscape. Journal of Biosciences, 2014, 39, 717-726.	0.5	12
233	Invasive Populations of Elephantgrass Differ in Morphological and Growth Characteristics from Clones Selected for Biomass Production. Bioenergy Research, 2014, 7, 1382-1391.	2.2	11
234	Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems. New Phytologist, 2014, 203, 110-124.	3.5	120
235	Exotic plant invasions under enhanced rainfall are constrained by soil nutrients and competition. Ecology, 2014, 95, 682-692.	1.5	64

#	Article	IF	CITATIONS
236	Existing and emerging high impact invasive species are characterized by higher functional responses than natives. Biology Letters, 2014, 10, 20130946.	1.0	130
237	Impacts of Ageratina adenophora invasion on soil physical–chemical properties of Eucalyptus plantation and implications for constructing agro-forest ecosystem. Ecological Engineering, 2014, 64, 130-135.	1.6	20
238	Effects of native macroalgae and predators on survival, condition and growth of non-indigenous Pacific oysters (Crassostrea gigas). Journal of Experimental Marine Biology and Ecology, 2014, 451, 122-129.	0.7	11
239	Hierarchy of root functional trait values and plasticity drive earlyâ€stage competition for water and phosphorus among grasses. Functional Ecology, 2014, 28, 1030-1040.	1.7	77
240	Exotic species as modifiers of ecosystem processes: Litter decomposition in native and invaded secondary forests of NW Argentina. Acta Oecologica, 2014, 54, 21-28.	0.5	41
241	Functional Trait Differences Between Weedy And Non-Weedy Plants In Southern California. Madroño, 2014, 61, 328-338.	0.3	3
242	Species-specific effects of the invasive Hieracium pilosella in Magellanic steppe grasslands are driven by nitrogen cycle changes. Plant and Soil, 2015, 397, 175-187.	1.8	11
243	Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest. Ecology, 2016, 97, 874-884.	1.5	38
244	Establishment Stage Competition between Exotic Crimson Fountaingrass (<i>Pennisetum setaceum</i> ,) Tj ETQqC Science and Management, 2015, 8, 139-150.		/Overlock 1 5
245	On the analysis of phylogenetically paired designs. Ecology and Evolution, 2015, 5, 940-947.	0.8	14
246	The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin's naturalisation conundrum. Ecology Letters, 2015, 18, 1285-1292.	3.0	100
247	Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species. Frontiers in Plant Science, 2015, 6, 273.	1.7	43
248	Resource-use efficiency explains grassy weed invasion in a low-resource savanna in north Australia. Frontiers in Plant Science, 2015, 6, 560.	1.7	33
249	AVALIAÇÃO DE MÉTODOS DE RESTAURAÇÃO FLORESTAL DE MATA DE TABULEIROS-ES. Revista Arvore, 20 39, 69-79.	15 0.5	9
250	Influence of light on the initial growth of invasive <i>Cryptostegia madagascariensis</i> Bojer in the Brazilian semiarid region. Acta Scientiarum - Biological Sciences, 2015, 37, 385.	0.3	4
251	Grass invasion effects on forest soil carbon depend on landscape-level land use patterns. Ecology, 2015, 96, 2265-2279.	1.5	32
252	Interactions between seedlings of the invasive tree <i>Ailanthus altissima</i> and the native tree <i>Robinia pseudoacacia</i> under low nutrient conditions. Journal of Plant Interactions, 2015, 10, 173-184.	1.0	6
253	Does <i><scp>A</scp>cacia dealbata</i> express shade tolerance in <scp>M</scp> editerranean forest ecosystems of <scp>S</scp> outh <scp>A</scp> merica?. Ecology and Evolution, 2015, 5, 3338-3351.	0.8	13

#	Article	IF	CITATIONS
254	Phylogenetic and ecological patterns in nighttime transpiration among five members of the genus Rubus coâ€occurring in western Oregon. Ecology and Evolution, 2015, 5, 3557-3569.	0.8	5
255	Native and exotic plant species show differential growth but similar functional trait responses to experimental rainfall. Ecosphere, 2015, 6, 1-14.	1.0	20
256	Exotic <i>Spartina alterniflora</i> invasion alters ecosystem–atmosphere exchange of <scp>CH</scp> ₄ and N ₂ O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 2015, 21, 1567-1580.	4.2	141
257	Potassium: a neglected nutrient in global change. Global Ecology and Biogeography, 2015, 24, 261-275.	2.7	354
258	Convergence in resource use efficiency across trees with differing hydraulic strategies in response to ecosystem precipitation manipulation. Functional Ecology, 2015, 29, 1125-1136.	1.7	35
259	Linking above- and belowground resource use strategies for native and invasive species of temperate deciduous forests. Biological Invasions, 2015, 17, 1545-1554.	1.2	74
260	Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (Rhamnus cathartica). Oecologia, 2015, 178, 219-230.	0.9	33
261	Nitrogen Uptake and Use Efficiency of Invasive <i>Spartina alterniflora</i> and Native <i>Phragmites australis</i> : Effect of Nitrogen Supply. Clean - Soil, Air, Water, 2015, 43, 305-311.	0.7	7
262	Late Pleistocene palaeoclimate based on vegetation of the Eastern Himalayan foothills in the Indo-Burma Range, India. Palynology, 2015, 39, 220-233.	0.7	6
263	Ecological stoichiometry of C, N, and P of invasive Phragmites australis and native Cyperus malaccensis species in the Minjiang River tidal estuarine wetlands of China. Plant Ecology, 2015, 216, 809-822.	0.7	61
264	Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil–plant system in the Minjiang River tidal estuarine wetlands of China. Wetlands Ecology and Management, 2015, 23, 865-880.	0.7	27
265	Interactive effects of source and recipient habitats on plant invasions: distribution of exotic species in Chile. Diversity and Distributions, 2015, 21, 609-619.	1.9	15
266	Impacts of alien plant invasion on native plant communities are mediated by functional identity of resident species, not resource availability. Oikos, 2015, 124, 298-306.	1.2	22
267	The role of resource limitation in restoration of sagebrush ecosystems dominated by cheatgrass (Bromus tectorum). Ecosphere, 2015, 6, art107.	1.0	21
268	Nutrient addition amplifies salinity-dependent differences in competitive ability of invasive and native vines. Biological Invasions, 2015, 17, 3479-3490.	1.2	3
269	The phenotypic response of co-occurring Banksia species to warming and drying. Plant Ecology, 2015, 216, 27-39.	0.7	11
270	Resource utilization capability of bacteria predicts their invasion potential in soil. Soil Biology and Biochemistry, 2015, 81, 287-290.	4.2	24
271	The relative importance of immediate allelopathy and allelopathic legacy in invasive plant species. Basic and Applied Ecology, 2015, 16, 28-35.	1.2	36

#	Article	IF	CITATIONS
272	Fast-growing and poorly shade-tolerant invasive species may exhibit higher physiological but not morphological plasticity compared with non-invasive species. Biological Invasions, 2015, 17, 1555-1567.	1.2	17
273	Nonâ€native plant species benefit from disturbance: a metaâ€analysis. Oikos, 2015, 124, 122-129.	1.2	160
274	Nutrient Dynamics and Decomposition of Riparian Arundinaria gigantea (Walt.) Muhl. Leaves in Southern Illinois. Environment and Natural Resources Research, 2016, 6, 106.	0.1	0
275	Differential plant invasiveness is not always driven by host promiscuity with bacterial symbionts. AoB PLANTS, 2016, 8, plw060.	1.2	15
276	Neighbour Origin and Ploidy Level Drive Impact of an Alien Invasive Plant Species in a Competitive Environment. PLoS ONE, 2016, 11, e0155712.	1.1	5
277	Plant–soil interactions regulate the identity of soil carbon in invaded ecosystems: implication for legacy effects. Functional Ecology, 2016, 30, 1227-1238.	1.7	48
278	Plant functional shifts in the invaded range: a test with reciprocal forest invaders of Europe and North America. Functional Ecology, 2016, 30, 875-884.	1.7	23
279	Exotic invasive plants increase productivity, abundance of ammoniaâ€oxidizing bacteria and nitrogen availability in intermountain grasslands. Journal of Ecology, 2016, 104, 994-1002.	1.9	66
280	Physiological and biochemical plasticity of <i>Lepidium latifolium</i> as â€~sleeper weed' in Western Himalayas. Physiologia Plantarum, 2016, 156, 278-293.	2.6	15
281	Sensitivity to dietary phosphorus limitation in native vs. invasive lineages of a New Zealand freshwater snail. Ecological Applications, 2016, 26, 2218-2224.	1.8	10
282	Ecophysiological performance of the rare terrestrial orchid Platanthera integrilabia across contrasting habitats. Plant Ecology, 2016, 217, 1259-1272.	0.7	3
283	Heterogeneous water supply affects growth and benefits of clonal integration between co-existing invasive and native Hydrocotyle species. Scientific Reports, 2016, 6, 29420.	1.6	13
284	Nutrient Dynamics as Determinants and Outcomes of Restoration. , 2016, , 333-364.		0
285	Field Performance and Common-Garden Differentiation in Response to Resource Availability inHelianthus porteri(A. Gray) Pruski, a Granite-Outcrop Endemic. Southeastern Naturalist, 2016, 15, 467-487.	0.2	2
286	Demographic mechanisms of disturbance and plant diversity promoting the establishment of invasive <i>Lupinus polyphyllus</i>). Journal of Plant Ecology, 0, , rtw049.	1.2	4
287	Mediterranean, invasive, woody species grow larger than their lessâ€invasive counterparts under potential global environmental change. American Journal of Botany, 2016, 103, 613-624.	0.8	18
288	Interactive effects of rising CO2 and elevated nitrogen and phosphorus on nitrogen allocation in invasive weeds Mikania micrantha and Chromolaena odorata. Biological Invasions, 2016, 18, 1391-1407.	1.2	15
289	Reductions in native grass biomass associated with drought facilitates the invasion of an exotic grass into a model grassland system. Oecologia, 2016, 181, 175-183.	0.9	36

#	Article	IF	Citations
290	Phragmites australis: How do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allocation and gas exchange?. Biological Invasions, 2016, 18, 2563-2576.	1.2	16
291	The superior re-sprouting performance of exotic grass species under different environmental conditions: the study case of Paspalum atratum (Swallen) and Urochloa brizantha (Hochst. ex A. Rich.) Tj ETQq1	1 0.7 8431	4 1 gBT /Ove
292	Community-level determinants of smooth brome (Bromus inermis) growth and survival in the aspen parkland. Plant Ecology, 2016, 217, 1395-1413.	0.7	11
293	An invasive benthic fish magnifies trophic cascades and alters pelagic communities in an experimental freshwater system. Freshwater Science, 2016, 35, 654-665.	0.9	12
294	Trait values and not invasive status determine competitive outcomes between native and invasive species under varying soil nutrient availability. Austral Ecology, 2016, 41, 875-885.	0.7	9
295	A comparative study of the nutrient responses of the invasive duckweed Lemna minuta, and the native, co-generic species Lemna minor. Aquatic Botany, 2016, 134, 47-53.	0.8	30
296	Measuring landscapeâ€scale spread and persistence of an invaded submerged plant community from airborne remote sensing. Ecological Applications, 2016, 26, 1733-1744.	1.8	22
297	Native species richness buffers invader impact in undisturbed but not disturbed grassland assemblages. Biological Invasions, 2016, 18, 3193-3204.	1.2	13
298	Response of an invasive plant, Flaveria bidentis, to nitrogen addition: a test of form-preference uptake. Biological Invasions, 2016, 18, 3365-3380.	1.2	39
299	Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics, 2016, 54, 523-610.	9.0	73
300	A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nature Communications, 2016, 7, 13432.	5.8	68
301	Timing is everything: does early and late germination favor invasions by herbaceous alien plants?. Journal of Plant Ecology, 0, , rtw105.	1.2	43
302	Influence of resource availability on J uniperus virginiana expansion in a forest–prairie ecotone. Ecosphere, 2016, 7, e01433.	1.0	7
303	Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Scientific Reports, 2016, 6, 18777.	1.6	28
304	Schima superba outperforms other tree species by changing foliar chemical composition and shortening construction payback time when facilitated by shrubs. Scientific Reports, 2016, 6, 19855.	1.6	7
305	How much do phenotypic plasticity and local genetic variation contribute to phenotypic divergences along environmental gradients in widespread invasive plants? A metaâ€analysis. Oikos, 2016, 125, 905-917.	1.2	51
306	Traits of an invasive grass conferring an early growth advantage over native grasses. Journal of Plant Ecology, 2016, 9, 672-681.	1.2	23
307	Multiple ecological strategies explain the distribution of exotic and native C4grasses in heterogeneous early successional sites in Hawai'i. Journal of Plant Ecology, 2016, , rtw056.	1.2	2

#	Article	IF	CITATIONS
308	Juvenile biological traits of Impatiens species are more strongly associated with naturalization in temperate climate than their adult traits. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 20, 1-10.	1.1	9
309	Functional Role of Bacteria from Invasive Phragmites australis in Promotion of Host Growth. Microbial Ecology, 2016, 72, 407-417.	1.4	35
310	Impact of Plant Invasion and Increasing Floods on Total Soil Phosphorus and its Fractions in the Minjiang River Estuarine Wetlands, China. Wetlands, 2016, 36, 21-36.	0.7	18
311	Plant functional diversity mediates the effects of vegetation and soil properties on community-level plant nitrogen use in the restoration of semiarid sandy grassland. Ecological Indicators, 2016, 64, 272-280.	2.6	30
312	The role of flood regime on invasive success of exotic species growing in riparian environments. Biological Invasions, 2016, 18, 793-808.	1.2	6
313	Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment. Oecologia, 2016, 180, 507-517.	0.9	16
314	Soil fertility and disturbance interact to drive contrasting responses of coâ€occurring native and nonnative species. Ecology, 2016, 97, 515-529.	1.5	21
315	N:P ratio of the grass Bothriochloa ischaemum mixed with the legume Lespedeza davurica under varying water and fertilizer supplies. Plant and Soil, 2016, 400, 67-79.	1.8	22
316	Plant functional traits of dominant native and invasive species in mediterraneanâ€climate ecosystems. Ecology, 2016, 97, 75-83.	1.5	123
317	Response of plant functional traits to species origin and adaptive reproduction in weeds. Plant Biosystems, 2017, 151, 323-330.	0.8	6
318	Plant invasion is associated with higher plant–soil nutrient concentrations in nutrientâ€poor environments. Global Change Biology, 2017, 23, 1282-1291.	4.2	147
319	Functional responses can unify invasion ecology. Biological Invasions, 2017, 19, 1667-1672.	1.2	86
320	Shifts in growth and competitive dominance of the invasive plant Alternanthera philoxeroides under different nitrogen and phosphorus supply. Environmental and Experimental Botany, 2017, 135, 118-125.	2.0	36
321	The tortoise and the hare: reducing resource availability shifts competitive balance between plant species. Journal of Ecology, 2017, 105, 999-1009.	1.9	27
322	Methods to test the interactive effects of drought and plant invasion on ecosystem structure and function using complementary common garden and field experiments. Ecology and Evolution, 2017, 7, 1442-1452.	0.8	20
323	Conversion of native terrestrial ecosystems in Hawai†i to novel grazing systems: a review. Biological Invasions, 2017, 19, 161-177.	1.2	25
324	Biological denitrification inhibition (BDI) with procyanidins induces modification of root traits, growth and N status in Fallopia x bohemica. Soil Biology and Biochemistry, 2017, 107, 41-49.	4.2	25
325	Responses of common and rare aliens and natives to nutrient availability and fluctuations. Journal of Ecology, 2017, 105, 1111-1122.	1.9	78

#	ARTICLE	IF	CITATIONS
326	Changes in Primary Production and Carbon Sequestration after Plant Invasions., 2017,, 17-31.		6
327	Soil type can determine invasion success of Eichhornia crassipes. Hydrobiologia, 2017, 788, 281-291.	1.0	14
328	Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biological Invasions, 2017, 19, 3301-3316.	1.2	79
329	Plant–microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils. Oecologia, 2017, 184, 583-596.	0.9	17
330	Change in disturbance regime facilitates invasion by Bellucia pentamera Naudin (Melastomataceae) at Gunung Palung National Park, Indonesia. Biological Invasions, 2017, 19, 1329-1337.	1.2	8
331	Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems. Global Change Biology, 2017, 23, 4002-4018.	4.2	77
332	Latitudinal variation of life-history traits of an exotic and a native impatiens species in Europe. Acta Oecologica, 2017, 81, 40-47.	0.5	3
333	Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China. Catena, 2017, 156, 281-289.	2.2	67
334	Soil nutrients influence the photosynthesis and biomass in invasive Panicum virgatum on the Loess Plateau in China. Plant and Soil, 2017, 418, 153-164.	1.8	9
335	Root Functional Diversity of Native and Nonnative C3 and C4 Grass Species in Hawaiâ€i1. Pacific Science, 2017, 71, 117.	0.2	5
336	Higher photosynthesis, nutrient―and energyâ€use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China. Physiologia Plantarum, 2017, 160, 373-382.	2.6	24
337	Response of soil bacterial communities to secondary compounds released from Eupatorium adenophorum. Biological Invasions, 2017, 19, 1471-1481.	1.2	17
338	Assessing the spatio-temporal variability of vegetation productivity in Africa: quantifying the relative roles of climate variability and human activities. International Journal of Digital Earth, 2017, 10, 879-900.	1.6	27
339	Limiting similarity and Darwin's naturalization hypothesis: understanding the drivers of biotic resistance against invasive plant species. Oecologia, 2017, 183, 775-784.	0.9	43
340	Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytologist, 2017, 216, 1072-1078.	3.5	152
341	Effects of a nonâ€native grass invasion decline over time. Journal of Ecology, 2017, 105, 1475-1484.	1.9	24
342	Biological invasions in forest ecosystems. Biological Invasions, 2017, 19, 3437-3458.	1.2	161
343	A watershed decision support tool for managing invasive species on Hawaiâ€ĩ Island, USA. Forest Ecology and Management, 2017, 400, 300-320.	1.4	16

#	Article	IF	CITATIONS
344	Role of intraspecific trait plasticity in Mikania micrantha Kunth growth and impact of its abundance on community composition. Journal of Asia-Pacific Biodiversity, 2017, 10, 237-249.	0.2	7
345	Predicting drought tolerance from slope aspect preference in restored plant communities. Ecology and Evolution, 2017, 7, 3123-3131.	0.8	22
346	How to Outgrow Your Native Neighbour? Belowground Changes under Native Shrubs at an Early Stage of Invasion. Land Degradation and Development, 2017, 28, 2380-2388.	1.8	9
347	Soil fertility regulates invasive herbivore performance and top-down control in tropical agroecosystems of Southeast Asia. Agriculture, Ecosystems and Environment, 2017, 249, 38-49.	2.5	20
348	A framework for understanding humanâ€driven vegetation change. Oikos, 2017, 126, 1687-1698.	1.2	12
349	Biological soil crusts determine the germination and growth of two exotic plants. Ecology and Evolution, 2017, 7, 9441-9450.	0.8	17
350	Functional shift of sycamore maple (Acer pseudoplatanus) towards greater plasticity and shade tolerance in its invasive range. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 29, 30-40.	1.1	15
351	Restoration islands: a tool for efficiently restoring dryland ecosystems?. Restoration Ecology, 2017, 25, S124.	1.4	60
352	Interactions Among Invasive Plants: Lessons from Hawaiâ€~i. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 521-541.	3.8	32
353	Production of phosphatase and extracellular stalks as adaptations to phosphorus limitation in Didymosphenia geminata (Bacillariophyceae). Hydrobiologia, 2017, 784, 51-63.	1.0	13
354	Global resource acquisition patterns of invasive and native plant species do not hold at the regional scale in Mediterranean type ecosystems. Biological Invasions, 2017, 19, 1143-1151.	1.2	15
355	Innovative biocatalytic production of soil substrate from green waste compost as a sustainable peat substitute. Journal of Environmental Management, 2017, 203, 670-678.	3.8	20
356	Landscapeâ€scale GPP and carbon density inform patterns and impacts of an invasive tree across wet forests of Hawaii. Ecological Applications, 2017, 27, 403-415.	1.8	10
357	Do invasive alien plants benefit more from global environmental change than native plants?. Global Change Biology, 2017, 23, 3363-3370.	4.2	226
358	Carbon isotopes of C3 herbs correlate with temperature on removing the influence of precipitation across a temperature transect in the agroâ€pastoral ecotone of northern China. Ecology and Evolution, 2017, 7, 10582-10591.	0.8	11
359	Traits and Resource Use of Co-Occurring Introduced and Native Trees in a Tropical Novel Forest. Forests, 2017, 8, 339.	0.9	2
360	Tropical and Highland Temperate Forest Plantations in Mexico: Pathways for Climate Change Mitigation and Ecosystem Services Delivery. Forests, 2017, 8, 489.	0.9	16
361	Gas exchanges and water use efficiency in the selection of tomato genotypes tolerant to water stress. Genetics and Molecular Research, 2017, 16, .	0.3	9

#	Article	IF	Citations
362	Effect of biological soil crusts on seed germination and growth of an exotic and two native plant species in an arid ecosystem. PLoS ONE, 2017, 12, e0185839.	1.1	34
363	Understanding plant drought resistance in a Mediterranean coastal sand dune ecosystem: differences between native and exotic invasive species. Journal of Plant Ecology, 2018, 11, 26-38.	1.2	29
364	Different traits predict competitive effect versus response by Bromus madritensis in its native and invaded ranges. Biological Invasions, 2018, 20, 2553-2565.	1.2	6
365	Transpiration and stomatal conductance in a young secondary tropical montane forest: contrasts between native trees and invasive understorey shrubs. Tree Physiology, 2018, 38, 1053-1070.	1.4	29
366	Component crop physiology and water use efficiency in response to intercropping. European Journal of Agronomy, 2018, 93, 27-39.	1.9	28
367	Phosphorus addition reduces the competitive ability of the invasive weed Solidago canadensis under high nitrogen conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2018, 240, 68-75.	0.6	24
368	Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology and Evolution, 2018, 2, 499-509.	3.4	116
369	A greater foraging scale, not a higher foraging precision, may facilitate invasion by exotic plants in nutrient-heterogeneous conditions. Annals of Botany, 2018, 121, 561-569.	1.4	17
370	Belowground competition drives invasive plant impact on native species regardless of nitrogen availability. Oecologia, 2018, 186, 577-587.	0.9	58
371	Comparison of defence and performance traits between one widespread clone and native populations in a major invasive plant species. Diversity and Distributions, 2018, 24, 297-312.	1.9	3
372	Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert. Plant Ecology, 2018, 219, 775-788.	0.7	47
373	Habitat properties and plant traits interact as drivers of nonâ€native plant species' seed production at the local scale. Ecology and Evolution, 2018, 8, 4209-4223.	0.8	12
374	Invasive Rhus typhina invests more in height growth and traits associated with light acquisition than do native and non-invasive alien shrub species. Trees - Structure and Function, 2018, 32, 1103-1112.	0.9	11
375	A reassessment of the genome size–invasiveness relationship in reed canarygrass (Phalaris) Tj ETQq1 1 0.7843	14 rgBT /0	Dvgrlock 10
376	Competition between invasive Lemna minuta and native L. minor in indoor and field experiments. Hydrobiologia, 2018, 812, 57-65.	1.0	14
377	Endemic trees in a tropical biodiversity hotspot imperilled by an invasive tree. Biological Conservation, 2018, 217, 47-53.	1.9	57
378	Dominant forest tree mycorrhizal type mediates understory plant invasions. Ecology Letters, 2018, 21, 217-224.	3.0	49
379	Early Acacia invasion in a sandy ecosystem enables shading mediated by soil, leaf nitrogen and facilitation. Biological Invasions, 2018, 20, 1567-1575.	1.2	17

#	ARTICLE	IF	CITATIONS
380	Effects of understory management on trade-offs and synergies between biomass carbon stock, plant diversity and timber production in eucalyptus plantations. Forest Ecology and Management, 2018, 410, 164-173.	1.4	41
381	Low resource availability limits weed invasion of tropical savannas. Biological Invasions, 2018, 20, 861-875.	1.2	9
382	Are endemics functionally distinct? Leaf traits of native and exotic woody species in a New Zealand forest. PLoS ONE, 2018, 13, e0196746.	1.1	7
383	Grass invasion and drought interact to alter the diversity and structure of native plant communities. Ecology, 2018, 99, 2692-2702.	1.5	38
384	Development of Techniques to Improve Coastal Prairie Restoration on the Clatsop Plains, Oregon. Natural Areas Journal, 2018, 38, 268-274.	0.2	1
385	The Distribution of an Invasive Species, <i>Clidemia hirta</i> Along Roads and Trails in Endau Rompin National Park, Malaysia. Tropical Conservation Science, 2018, 11, 194008291775281.	0.6	11
386	Divergent effects of land-use, propagule pressure, and climate on woody riparian invasion. Biological Invasions, 2018, 20, 3271-3295.	1.2	9
387	The effects of changes in water and nitrogen availability on alien plant invasion into a stand of a native grassland species. Oecologia, 2018, 188, 441-450.	0.9	28
388	Coverage of Native Plants Is Key Factor Influencing the Invasibility of Freshwater Ecosystems by Exotic Plants in China. Frontiers in Plant Science, 2018, 9, 250.	1.7	20
389	Do invasive exotic and native freshwater plant species respond similarly to low additional nitrate doses?. Aquatic Botany, 2018, 151, 1-8.	0.8	4
390	Native and Invasive Woody Species Differentially Respond to Forest Edges and Forest Successional Age. Forests, 2018, 9, 381.	0.9	10
391	Species-Specific Impacts of Invasive Plant Success on Vertical Profiles of Soil Carbon Accumulation and Nutrient Retention in the Minjiang River Tidal Estuarine Wetlands of China. Soil Systems, 2018, 2, 5.	1.0	10
392	Increases and fluctuations in nutrient availability do not promote dominance of alien plants in synthetic communities of common natives. Functional Ecology, 2018, 32, 2594-2604.	1.7	33
393	To spend or to save? Assessing energetic growth-storage tradeoffs in native and invasive woody plants. Oecologia, 2018, 188, 659-669.	0.9	13
394	Climate warming and the arrival of potentially invasive species into boreal forest and tundra in the Hudson Bay Lowlands, Canada. Polar Biology, 2018, 41, 2007-2022.	0.5	15
395	Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China. Journal of Ecology, 2019, 107, 372-386.	1.9	37
396	Enemy of my enemy: evidence for variable soil biota feedbacks of Vincetoxicum rossicum on native plants. Biological Invasions, 2019, 21, 67-83.	1.2	7
397	Ecological stoichiometry and invasive strategies of two alien species (<i>Bidens pilosa</i> and) Tj ETQq1 1 0.784	1314. ₇ gBT	/Oyerlock 10

#	Article	IF	CITATIONS
398	Lessons on direct seeding to restore Neotropical savanna. Ecological Engineering, 2019, 138, 148-154.	1.6	36
399	Invasive knotweed has greater nitrogen-use efficiency than native plants: evidence from a 15N pulse-chasing experiment. Oecologia, 2019, 191, 389-396.	0.9	18
400	Enhanced activity of soil nutrientâ€releasing enzymes after plant invasion: a metaâ€analysis. Ecology, 2019, 100, e02830.	1.5	89
401	Looks can be deceiving: ecologically similar exotics have different impacts on a native competitor. Oecologia, 2019, 190, 927-940.	0.9	2
402	Advanced Aboveground Spatial Analysis as Proxy for the Competitive Environment Affecting Sapling Development. Frontiers in Plant Science, 2019, 10, 690.	1.7	6
403	Global warming likely to enhance black locust (Robinia pseudoacacia L.) growth in a Mediterranean riparian forest. Forest Ecology and Management, 2019, 449, 117448.	1.4	23
404	Global change stressors alter resources and shift plant interactions from facilitation to competition over time. Ecology, 2019, 100, e02859.	1.5	28
405	Associations among species traits, distribution, and demographic performance after typhoon disturbance for 22 co-occurring woody species in a mesic forest on a subtropical oceanic island. Oecologia, 2019, 191, 897-907.	0.9	5
406	Invasive Hedychium coronarium inhibits native seedling growth through belowground competition. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 261, 151479.	0.6	3
407	Rapid nitrogen and phosphorus homeostasis transformation in <i>Eupatorium adenophorum</i> during invasion. Weed Research, 2019, 59, 387-395.	0.8	5
408	Invasive alien clonal plants are competitively superior over co-occurring native clonal plants. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125484.	1.1	55
409	Environmental gradients influence differences in leaf functional traits between native and non-native plants. Oecologia, 2019, 191, 397-409.	0.9	19
410	A multi-species comparison of selective placement patterns of ramets in invasive alien and native clonal plants to light, soil nutrient and water heterogeneity. Science of the Total Environment, 2019, 657, 1568-1577.	3.9	51
411	Reciprocal interactions between the native Mentha aquatica and the invasive Ludwigia hexapetala in an outdoor experiment. Aquatic Botany, 2019, 157, 17-23.	0.8	8
412	Alien plant species invade by occupying similar functional spaces to native species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 257, 151419.	0.6	28
413	Aspects of Invasiveness of Ludwigia and Nelumbo in Shallow Temperate Fluvial Lakes. Frontiers in Plant Science, 2019, 10, 647.	1.7	13
414	Functional diversity promotes phytoplankton resource use efficiency. Journal of Ecology, 2019, 107, 2353-2363.	1.9	36
415	Functional and phylogenetic consequences of plant invasion for coastal native communities. Journal of Vegetation Science, 2019, 30, 510-520.	1.1	25

#	Article	IF	CITATIONS
416	Herbaceous Encroachment from Mountain Birch Forests to Alpine Tundra Plant Communities Through Above- and Belowground Competition. Forests, 2019, 10, 170.	0.9	6
417	Belowground Consequences of Intracontinental Range-Expanding Plants and Related Natives in Novel Environments. Frontiers in Microbiology, 2019, 10, 505.	1.5	5
418	Do invasive alien plants differ from non-invasives in dominance and nitrogen uptake in response to variation of abiotic and biotic environments under global anthropogenic change?. Science of the Total Environment, 2019, 672, 634-642.	3.9	32
419	Elevated nitrogen deposition may advance invasive weed, Solidago canadensis, in calcareous soils. Journal of Plant Ecology, 2019, 12, 846-856.	1.2	18
420	Plant invasion correlation with climate anomaly: an Indian retrospect. Biodiversity and Conservation, 2019, 28, 2049-2062.	1.2	16
421	Tradeoffs between growth rate and water-use efficiency in seedlings of native perennials but not invasive annuals. Plant Ecology, 2019, 220, 361-369.	0.7	12
422	Make it simpler: Alien species decrease functional diversity of coastal plant communities. Journal of Vegetation Science, 2019, 30, 498-509.	1.1	52
423	Characterizing the Spatial Distribution of Eragrostis Curvula (Weeping Lovegrass) in New Jersey (United States of America) Using Logistic Regression. Environments - MDPI, 2019, 6, 125.	1.5	3
424	Responses of soil bacterial compositions to concentrations of nitrogen forms in the process of Moso bamboo invasion. Ecological Research, 2019, 34, 743-752.	0.7	3
425	Wet tropical soils and global change. Developments in Soil Science, 2019, 36, 131-169.	0.5	6
426	<i>Pennisetum ciliare</i> : a review of treatment efficacy, competitive traits, and restoration opportunities. Invasive Plant Science and Management, 2019, 12, 203-213.	0.5	17
427	Priority effects: Emerging principles for invasive plant species management. Ecological Engineering, 2019, 127, 48-57.	1.6	82
428	Explaining the larger seed bank of an invasive shrub in non-native versus native environments by differences in seed predation and plant size. Annals of Botany, 2019, 123, 917-927.	1.4	3
429	Enhanced shoot investment makes invasive plants exhibit growth advantages in high nitrogen conditions. Brazilian Journal of Biology, 2019, 79, 15-21.	0.4	4
430	The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Global Change Biology, 2019, 25, 733-743.	4.2	72
431	Clonal integration benefits invasive alien plants under water variability in a native community. Journal of Plant Ecology, 2019, 12, 574-582.	1.2	15
432	Photosynthesis in co-occurring invasive <i>Acacia</i> spp. and native Bornean heath forest trees at the post-establishment invasion stage. Journal of Sustainable Forestry, 2019, 38, 230-243.	0.6	11
433	The Shifting Role of mRUE for Regulating Ecosystem Production. Ecosystems, 2020, 23, 359-369.	1.6	3

#	Article	IF	Citations
434	Litter accumulation and biomass dynamics in riparian zones in tropical South America of the Asian invasive plant <i>Hedychium coronarium</i> J. König (Zingiberaceae). Plant Ecology and Diversity, 2020, 13, 47-59.	1.0	9
435	Ecophysiological traits of invasive alien <i>Acacia cyclops</i> compared to coâ€occuring native species in Strandveld vegetation of the Cape Floristic Region. Austral Ecology, 2020, 45, 48-59.	0.7	9
436	Bacterial Succession in Salt Marsh Soils Along a Short-term Invasion Chronosequence of Spartina alterniflora in the Yellow River Estuary, China. Microbial Ecology, 2020, 79, 644-661.	1.4	33
437	A subtle threat: behavioral and phenotypic consequences of invasive mosquitofish on a native paedomorphic newt. Biological Invasions, 2020, 22, 1299-1308.	1.2	3
438	Photosynthesis and photosynthetic efficiencies along the terrestrial plant's phylogeny: lessons for improving crop photosynthesis. Plant Journal, 2020, 101, 964-978.	2.8	73
439	Invasive lianas are drivers of and passengers to altered soil nutrient availability in urban forests. Biological Invasions, 2020, 22, 935-955.	1.2	15
440	Functional Traits Plasticity of the Invasive Herb Argemone ochroleuca Sweet in Different Arid Habitats. Plants, 2020, 9, 1268.	1.6	7
441	Competitive ability and plasticity of Wedelia trilobata (L.) under wetland hydrological variations. Scientific Reports, 2020, 10, 9431.	1.6	18
442	Consequences of pine colonization in dry oak woodlands: effects on water stress. European Journal of Forest Research, 2020, 139, 817-828.	1.1	7
443	Differences in growth-economics of fast vs. slow growing grass species in response to temperature and nitrogen limitation individually, and in combination. BMC Ecology, 2020, 20, 63.	3.0	2
445	Ecophysiological Traits of Invasive C3 Species Calotropis procera to Maintain High Photosynthetic Performance Under High VPD and Low Soil Water Balance in Semi-Arid and Seacoast Zones. Frontiers in Plant Science, 2020, 11, 717.	1.7	14
446	Home-field advantage: native gecko exhibits improved exertion capacity and locomotor ability in structurally complex environments relative to its invasive counterpart. Frontiers in Zoology, 2020, 17, 23.	0.9	3
447	Plant–soil feedbacks under resource limitation may not contribute to the invasion by annual Asteraceae plants. Oecologia, 2020, 194, 165-176.	0.9	3
448	A preliminary assessment of the presence and distribution of invasive and potentially invasive alien plant species in Laikipia County, Kenya, a biodiversity hotspot. Koedoe, 2020, 62, .	0.3	4
449	A theorem for the invasion triangle and its applicability for invasion biology. Ecological Complexity, 2020, 44, 100875.	1.4	0
450	An experimental study on potential changes in plant community evapotranspiration due to the invasion of Hydrocotyle vulgaris. Journal of Hydro-Environment Research, 2020, 30, 63-70.	1.0	6
451	Darwin's naturalization conundrum can be explained by spatial scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10904-10910.	3.3	58
452	Woody invaders do not alter rhizosphere microbial activity in a temperate deciduous forest. Biological Invasions, 2020, 22, 2599-2608.	1.2	1

#	Article	IF	CITATIONS
453	Humans and Succession. , 2020, , 7-19.		0
456	Terrestrial Biomes., 2020,, 20-50.		1
458	Comparative Approach. , 2020, , 53-59.		0
459	Volcanoes., 2020,, 60-76.		O
460	Glaciers. , 2020, , 77-88.		0
461	Cyclones. , 2020, , 89-102.		0
462	Dunes. , 2020, , 103-119.		0
463	Landslides. , 2020, , 120-139.		0
464	Floods., 2020,, 140-158.		0
466	Clearcuts. , 2020, , 171-183.		0
467	Plowed Fields., 2020,, 184-201.		0
468	Mines. , 2020, , 202-218.		0
469	Other Disturbances. , 2020, , 219-226.		0
472	Conclusions and Future Research Challenges. , 2020, , 275-284.		0
477	Biotic interactions drive ecosystem responses to exotic plant invaders. Science, 2020, 368, 967-972.	6.0	59
478	Plant response to water stress of native and non-native Oenothera drummondii populations. Plant Physiology and Biochemistry, 2020, 154, 219-228.	2.8	13
479	Diversity within mutualist guilds promotes coexistence and reduces the risk of invasion from an alien mutualist. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192312.	1.2	8
480	Resprouting trees drive understory vegetation dynamics following logging in a temperate forest. Scientific Reports, 2020, 10, 9231.	1.6	14

#	ARTICLE	IF	CITATIONS
481	Current vegetation structure and composition of woody species in communityâ€derived categories of land degradation in a semiarid rangeland in Kunene region, Namibia. Land Degradation and Development, 2020, 31, 2996-3013.	1.8	8
482	Competition between the invasive Impatiens glandulifera and UK native species: the role of soil conditioning and pre-existing resident communities. Biological Invasions, 2020, 22, 1527-1537.	1.2	8
483	Interactions between nurse plants and parasitic beneficiaries: A theoretical approach to indirect facilitation. Journal of Theoretical Biology, 2020, 494, 110238.	0.8	5
484	Warmer and less variable temperatures favour an accelerated plant phenology of two invasive weeds across subâ€Antarctic Macquarie Island. Austral Ecology, 2020, 45, 572-585.	0.7	13
485	Friends of mine: An invasive freshwater mussel facilitates growth of invasive macrophytes and mediates their competitive interactions. Freshwater Biology, 2020, 65, 1063-1072.	1.2	21
486	Disentangling the effects of plant species invasion and urban development on arthropod community composition. Global Change Biology, 2020, 26, 3294-3306.	4.2	16
487	Testing invasion filters for the alpine: the roles of temperature, nitrogen deposition and soil. Biological Invasions, 2020, 22, 1889-1901.	1.2	4
488	Leaf functional traits at home and abroad: A community perspective of sycamore maple invasion. Forest Ecology and Management, 2020, 464, 118061.	1.4	11
489	Functional similarity and dissimilarity facilitate alien plant invasiveness along biotic and abiotic gradients in an arid protected area. Biological Invasions, 2020, 22, 1997-2016.	1.2	15
490	Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biology and Biochemistry, 2020, 144, 107775.	4.2	42
491	Asymmetric climate warming does not benefit plant invaders more than natives. Science of the Total Environment, 2020, 742, 140624.	3.9	13
492	Classifying Hawaiian plant species along a habitat generalist-specialist continuum: Implications for species conservation underAclimate change. PLoS ONE, 2020, 15, e0228573.	1.1	21
493	The evolutionary diversity of urban forests depends on their land-use history. Urban Ecosystems, 2020, 23, 631-643.	1.1	15
494	High photosynthetic capacity and energy-use efficiency benefit both growth and chemical defense in invasive plants. Chemoecology, 2020, 30, 69-78.	0.6	8
495	Impact of invasive species on soil hydraulic properties: importance of functional traits. Biological Invasions, 2020, 22, 1849-1863.	1.2	10
496	Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable light. Annals of Botany, 2020, 125, 691-700.	1.4	11
497	Towards a mechanistic understanding of individualâ€level functional responses: Invasive crayfish as model organisms. Freshwater Biology, 2020, 65, 657-673.	1.2	7
498	Invader presence disrupts the stabilizing effect of species richness in plant community recovery after drought. Global Change Biology, 2020, 26, 3539-3551.	4.2	20

#	Article	IF	Citations
499	Increased soil moisture aggravated the competitive effects of the invasive tree Rhus typhina on the native tree Cotinus coggygria. BMC Ecology, 2020, 20, 17.	3.0	15
500	Functional Divergence Drives Invasibility of Plant Communities at the Edges of a Resource Availability Gradient. Diversity, 2020, 12, 148.	0.7	12
501	Contrasting patterns of intraspecific trait variability in native and non-native plant species along an elevational gradient on Tenerife, Canary Islands. Annals of Botany, 2021, 127, 565-576.	1.4	24
502	Intraspecific trait variation and reversals of trait strategies across key climate gradients in native Hawaiian plants and non-native invaders. Annals of Botany, 2021, 127, 553-564.	1.4	20
503	Effects of Grazing, Wind Erosion, and Dust Deposition on Plant Community Composition and Structure in a Temperate Steppe. Ecosystems, 2021, 24, 403-420.	1.6	18
504	Seasonal variation in the leaf physiology of co-occurring invasive (Hakea sericea) and native (Pinus) Tj ETQq1 1 118662.	0.784314	rgBT /Overloc 8
505	Patterns of invasive plant abundance in disturbed versus undisturbed forests within three land types over 16 years. Diversity and Distributions, 2021, 27, 130-143.	1.9	12
506	Success of native and invasive plant congeners depends on inorganic nitrogen compositions and levels. Journal of Plant Ecology, 2021, 14, 202-212.	1.2	8
507	Resource allocation strategies among vegetative growth, sexual reproduction, asexual reproduction and defense during growing season of <i>Aconitum kusnezoffii</i> Reichb Plant Journal, 2021, 105, 957-977.	2.8	14
508	Arbuscular mycorrhizal fungi improve the growth and disease resistance of the invasive plant <i>>Wedelia trilobata</i> >. Journal of Applied Microbiology, 2021, 130, 582-591.	1.4	25
509	Towards global dominance of invasive alien plants in freshwater ecosystems: the dawn of the Exocene?. Hydrobiologia, 2021, 848, 2259-2279.	1.0	28
510	Rapid functional response tests for assessing impacts of alien snails on food crops. Ecological Indicators, 2021, 121, 107138.	2.6	1
511	Challenges for the management of the invasive blackberry (<i>Rubus niveus</i>) in the restoration of the Scalesia forest in the Galapagos Islands. Invasive Plant Science and Management, 2021, 14, 20-28.	0.5	4
512	Resource conservation strategy helps explain patterns of biological invasion in a low-N environment. Biochemical Systematics and Ecology, 2021, 94, 104205.	0.6	10
513	The role of disturbance in invasive plant establishment in a changing climate: insights from a drought experiment. Biological Invasions, 2021, 23, 1877-1890.	1.2	16
514	The role of competition on invader colonization along stress gradients in the Fuegian steppe. Oecologia, 2021, 195, 1031-1040.	0.9	3
515	Interactive effects of shading and disturbance on plant invasion in an arid shrubland: Assembly processes and CSRâ€strategies. Journal of Ecology, 2021, 109, 2405-2420.	1.9	9
516	Alien plant invasion hotspots and invasion debt in European woodlands. Journal of Vegetation Science, 2021, 32, e13014.	1.1	19

#	Article	IF	CITATIONS
517	Abundance and distribution of invasive woody shrub, Mahonia bealei, in the urban forest fragments of the southern Piedmont, USA. Urban Ecosystems, 0 , 1 .	1.1	O
518	Landscape level effects of invasive plants and animals on water infiltration through Hawaiian tropical forests. Biological Invasions, 2021, 23, 2155-2172.	1.2	3
519	Universal rules of life: metabolic rates, biological times and the equal fitness paradigm. Ecology Letters, 2021, 24, 1262-1281.	3.0	38
520	Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India. Plant Ecology, 2021, 222, 723-735.	0.7	21
521	A traitâ€based approach across the native and invaded range to understand plant invasiveness and community impact. Oikos, 2021, 130, 1001-1013.	1.2	9
522	Better left alone: Trying to control pasture grasses in untended rainforest plantings incurs multiple costs and delivers few benefits. Ecological Solutions and Evidence, 2021, 2, e12062.	0.8	2
523	Plant trait-environment trends and their conservation implications for riparian wetlands in the Yellow River. Science of the Total Environment, 2021, 767, 144867.	3.9	20
524	Restoration benefits of soil nutrient manipulation and weeding in invaded dry and wet tropical ecosystems in Hawaiʻi. Restoration Ecology, 2021, 29, e13390.	1.4	5
525	Nutrientâ€use strategy and not competition determines native and invasive species response to changes in soil nutrient availability. Restoration Ecology, 2021, 29, e13374.	1.4	11
526	Influence of Light and Substrate Conditions on Regeneration of Native Tree Saplings in the Hawaiian Lowland Wet Forest1. Pacific Science, 2021, 75, .	0.2	4
527	Interactive effects of nutrient availability, fluctuating supply, and plant parasitism on the post-invasion success of Bidens pilosa. Biological Invasions, 2021, 23, 3035-3046.	1.2	9
528	Assessing vulnerability and resistance to plant invasions: a native community perspective. Invasive Plant Science and Management, 2021, 14, 64-74.	0.5	12
529	Nitrogen availability modulates the impacts of plant invasion on the chemical composition of soil organic matter. Soil Biology and Biochemistry, 2021, 156, 108195.	4.2	14
530	Soil nutrients and variation in biomass rather than native species richness influence introduced plant richness in a semi-arid grassland. Basic and Applied Ecology, 2021, 53, 62-73.	1.2	5
531	Foreseeing reed invasions: European genotypes of common reed (Phragmites australis) grow equally well in China as in their native environment and show similar performance as native Chinese genotypes. Aquatic Botany, 2021, 172, 103398.	0.8	1
532	Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2021, 29, 119-141.	2.1	98
533	Soil texture and other site-level factors differentially affect growth of Scotch broom (Cytisus) Tj ETQq0 0 0 rgBT / Canadian Journal of Forest Research, 0, , .	Overlock 1 0.8	10 Tf 50 107 1
534	Native plant species show evolutionary responses to invasion by <i>Parthenium hysterophorus</i> in an African savanna. New Phytologist, 2022, 233, 983-994.	3.5	17

#	ARTICLE	IF	CITATIONS
535	Novel plant-soil feedbacks drive adaption of invasive plants to soil legacies of native plants under nitrogen deposition. Plant and Soil, 2021, 467, 47-65.	1.8	18
536	Effects of water and nitrogen on growth and relative competitive ability of introduced versus native C4 grass species in the semi-arid Loess Plateau of China. Journal of Arid Land, 2021, 13, 730-743.	0.9	0
537	Functional differentiation of invasive and native plants along a leaf efficiency/safety trade-off. Environmental and Experimental Botany, 2021, 188, 104518.	2.0	14
539	Arbuscular Mycorrhizal Fungi Compete Asymmetrically for Amino Acids with Native and Invasive Solidago. Microbial Ecology, 2022, 84, 131-140.	1.4	6
541	Novel chemicals engender myriad invasion mechanisms. New Phytologist, 2021, 232, 1184-1200.	3.5	18
542	Invasive Grass Dominance over Native Forbs Is Linked to Shifts in the Bacterial Rhizosphere Microbiome. Microbial Ecology, 2022, 84, 496-508.	1.4	6
543	Hawai i forest review: Synthesizing the ecology, evolution, and conservation of a model system. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 52, 125631.	1.1	23
544	Coordination of nitrogen uptake and assimilation favours the growth and competitiveness of moso bamboo over native tree species in high-NH4+ environments. Journal of Plant Physiology, 2021, 266, 153508.	1.6	17
546	Impacts of Invasive Species on Forest and Grassland Ecosystem Processes in the United States. , 2021, , 41-55.		3
547	Effects of Opuntia stricta on floristic composition and diversity within Broughton Island Nature Reserve, North Coast, New South Wales. Pacific Conservation Biology, 2021, 27, 267.	0.5	1
548	Invasive Species invasive species. , 2012, , 5547-5560.		6
549	Ecological Genetics, Local Adaptation, and Phenotypic Plasticity in Bromus tectorum in the Context of a Changing Climate. Springer Series on Environmental Management, 2016, , 133-154.	0.3	5
550	Transitions of Mnemiopsis leidyi (Ctenophora: Lobata) from a native to an exotic species: a review. , 2012, , 21-46.		2
551	Invasive Plant Species in Indian Protected Areas: Conserving Biodiversity in Cultural Landscapes. , 2013, , 241-266.		15
552	Soils Suppressing and Promoting Non-native Plant Invasions. Biodiversity Community and Ecosystems, 2014, , 181-202.	0.2	6
553	Functional traits indicate faster resource acquisition for alien herbs than native shrubs in an urban Mediterranean shrubland. Biological Invasions, 2020, 22, 2699-2712.	1.2	9
555	Geographically distinct Ceratophyllum demersum populations differ in growth, photosynthetic responses and phenotypic plasticity to nitrogen availability. Functional Plant Biology, 2012, 39, 774.	1.1	8
558	Functional basis for geographical variation in growth among invasive plants. , 2013, , 29-44.		2

#	Article	IF	Citations
559	Marine Macroalgae and the Assessment of Ecological Conditions. , 2014, , 105-147.		2
560	A Congeneric Comparison Shows That Experimental Warming Enhances the Growth of Invasive Eupatorium adenophorum. PLoS ONE, 2012, 7, e35681.	1.1	18
561	Plastic Traits of an Exotic Grass Contribute to Its Abundance but Are Not Always Favourable. PLoS ONE, 2012, 7, e35870.	1.1	23
562	Links between Belowground and Aboveground Resource-Related Traits Reveal Species Growth Strategies that Promote Invasive Advantages. PLoS ONE, 2014, 9, e104189.	1.1	21
563	Experimental Tests of Priority Effects and Light Availability on Relative Performance of Myriophyllum spicatum and Elodea nuttallii Propagules in Artificial Stream Channels. PLoS ONE, 2015, 10, e0120248.	1.1	12
564	Comparative Functional Responses Predict the Invasiveness and Ecological Impacts of Alien Herbivorous Snails. PLoS ONE, 2016, 11, e0147017.	1.1	26
565	Different Growth Responses of an Invasive Weed and a Native Crop to Nitrogen Pulse and Competition. PLoS ONE, 2016, 11, e0156285.	1.1	7
566	Functional Response (FR) and Relative Growth Rate (RGR) Do Not Show the Known Invasiveness of Lemna minuta (Kunth). PLoS ONE, 2016, 11, e0166132.	1.1	13
567	Dominance of an alien shrub Rhus typhina over a native shrub Vitex negundo var. heterophylla under variable water supply patterns. PLoS ONE, 2017, 12, e0176491.	1.1	10
568	Interaction Milieu Explains Performance of Species in Simple Food Webs along an Environmental Gradient. Open Ecology Journal, 2011, 3, 12-21.	2.0	13
569	Morphology of the Invasive Amphiphyte Alternanthera Philoxeroides Under Different Water Levels and Nitrogen Concentrations. Acta Biologica Cracoviensia Series Botanica, 2015, 56, 136-147.	0.5	5
571	ECOPHYSIOLOGICAL TRAITS OF INVASIVE AND NON-INVASIVE INTRODUCED <i>IMPATIENS</i> SPECIES. Biology and Environment, 2012, 111, 1-14.	0.2	5
572	Effect of water column phosphorus reduction on competitive outcome and traits of Ludwigia grandiflora and L. peploides, invasive species in Europe. Aquatic Invasions, 2014, 9, 157-166.	0.6	20
573	Effects of different nitrogen regimes on competition between <l>Ambrosia artemisiifolia</l> , an invasive species, and two native species, <l>Artemisia annua</l> and <l>Artemisia mongolica</l> . Biodiversity Science, 2012, 20, 3-11.	0.2	5
574	Heterogeneity in patterns of survival of the invasive species Ipomoea carnea in urban habitats along the Egyptian Nile Delta. NeoBiota, 0, 33, 1-17.	1.0	8
575	Eco-physiological performance may contribute to differential success of two forms of an invasive vine, Dolichandra unguis-cati, in Australia. NeoBiota, 0, 46, 23-50.	1.0	3
576	On the RIP: using Relative Impact Potential to assess the ecological impacts of invasive alien species. NeoBiota, 0, 55, 27-60.	1.0	40
577	On the relevance of floristic and quantitative studies to the restoration of degraded areas: the case of the Atlantic Forest hotspotRunning title: Insights for restoration in Atlantic Forest. AIMS Environmental Science, 2017, 4, 42-53.	0.7	4

#	Article	IF	CITATIONS
578	Weeds and Wildlife: Perceptions and Practices of Weed Managers. Conservation and Society, 2014, 12, 54.	0.4	11
579	Do Higher Resource Capture Ability and Utilization Efficiency Facilitate the Successful Invasion of Exotic Plant? A Case Study of & Ditional Sciences, 2013, 04, 1839-1845.	0.3	7
580	Insights into Ecological Effects of Invasive Plants on Soil Nitrogen Cycles. American Journal of Plant Sciences, 2015, 06, 34-46.	0.3	25
581	Invasiveness, ecological impacts and control of acacias in southwestern Europe – a review. Web Ecology, 2020, 20, 33-51.	0.4	15
582	Plant Invasion and N ₂ O Emission in Forest Ecosystems., 0,,.		2
583	Functional responses of a cosmopolitan invader demonstrate intraspecific variability in consumer-resource dynamics. Peerl, 2018, 6, e5634.	0.9	24
584	Potential invasive plant expansion in global ecoregions under climate change. PeerJ, 2019, 7, e6479.	0.9	15
586	Current and future plant invasions in protected areas: Does clonality matter?. Diversity and Distributions, 2021, 27, 2465-2478.	1.9	10
588	Effects of light regimes on photosynthetic characteristics and antioxidant system in seedlings of two alder species. Chinese Journal of Plant Ecology, 2013, 36, 1062-1074.	0.3	5
589	Study on Innovative Use of Resources. , 2015, , .		O
590	Mechanism of Eutrophication Affecting Salt Marsh Soil Organic Carbon Sequestration Potential. Hans Journal of Soil Science, 2017, 05, 53-60.	0.0	0
594	Gas exchanges and photosynthetic efficiency in sub-forest species from Atlantic Forest. Research, Society and Development, 2020, 9, e43952870.	0.0	O
595	Simulated nitrogen deposition induces shifts in growth and resource-use strategies during range expansion of an invasive plant. Biological Invasions, 0 , 1 .	1.2	5
596	Grazing Effects on Plant Nitrogen use in a Temperate Grassland. Rangeland Ecology and Management, 2020, 73, 482-490.	1.1	3
598	Invasive plants in the Brazilian Caatinga: a scientometric analysis with prospects for conservation. Neotropical Biology and Conservation, 2020, 15, 503-520.	0.4	6
599	Impacts of drought and native grass competition on buffelgrass (Pennisetum ciliare). Biological Invasions, 2022, 24, 697-708.	1.2	7
600	Photosynthetic Properties of Co-Occurring Pioneer Species on Volcanically Devastated Sites in Miyake-jima Island, Japan. Plants, 2021, 10, 2500.	1.6	2
601	Effects of perceived competition and water temperature on the functional responses of invasive and native crabs. Marine Ecology - Progress Series, 2022, 684, 69-78.	0.9	5

#	Article	IF	CITATIONS
602	Species divergence in seedling leaf traits and tree growth response to nitrogen and phosphorus additions in an evergreen broadleaved forest of subtropical China. Journal of Forestry Research, 2023, 34, 137-150.	1.7	7
603	Resistance of plant communities to invasion by tall fescue: An experimental study combining species diversity, functional traits and nutrient levels. Basic and Applied Ecology, 2022, 58, 39-49.	1.2	3
604	A global meta-analysis of the impacts of exotic plant species invasion on plant diversity and soil properties. Science of the Total Environment, 2022, 810, 152286.	3.9	42
606	Invasive success of exotic wild oat depends on nutrient availability and competition in temperate grasslands of southern Australia. Plant and Soil, 2022, 472, 465-478.	1.8	3
607	Is intraspecific variability an advantage in mountain invasions? Comparing functional trait variation in an invasive and a native woody species along multiple environmental gradients. Biological Invasions, 2022, 24, 1393-1412.	1.2	6
608	Fast but steady: An integrated leafâ€stemâ€root trait syndrome for woody forest invaders. Ecology Letters, 2022, 25, 900-912.	3.0	12
609	Trade-off between shade tolerance and chemical resistance of invasive Phytolacca americana under different light levels compared with its native and exotic non-invasive congeners. Environmental and Experimental Botany, 2022, 196, 104809.	2.0	4
610	The Matthew effect: Common species become more common and rare ones become more rare in response to artificial light at night. Global Change Biology, 2022, 28, 3674-3682.	4.2	11
611	Composition, Distribution, and Factors Affecting Invasive Plants in Grasslands of Guizhou Province of Southwest China. Diversity, 2022, 14, 167.	0.7	5
612	Increased precipitation and nitrogen addition accelerate the temporal increase in soil respiration during 8â€year oldâ€field grassland succession. Global Change Biology, 2022, 28, 3944-3959.	4.2	18
613	Thermodynamic selection: mechanisms and scenarios. New Journal of Physics, 2022, 24, 053006.	1.2	2
614	Dark diversity at home describes the success of crossâ€continent tree invasions. Diversity and Distributions, 2022, 28, 1202-1213.	1.9	3
615	Woody invaders are more highly colonized by arbuscular mycorrhizal fungi than congeneric native species. American Journal of Botany, 2022, 109, 655-663.	0.8	8
616	Stronger ability to absorb nitrate and associated transporters in the invasive plant Xanthium strumarium compared with its native congener. Environmental and Experimental Botany, 2022, 198, 104851.	2.0	8
617	Impact of Spartina alterniflora invasion on evapotranspiration water loss in Phragmites australis dominated coastal wetlands of east China. Ecological Engineering, 2022, 179, 106605.	1.6	6
618	Evidence of facilitation between earlyâ€successional tree species and the regenerating plant community in a tropical seasonally dry environment. Austral Ecology, 2022, 47, 541-556.	0.7	2
619	Invasion at the Edge: The Case of Rosa rugosa (Rosaceae) in Italy. Diversity, 2021, 13, 645.	0.7	1
620	Clonality in invasive alien macrophytes in Kashmir Himalaya: a stage-based approach. Aquatic Sciences, 2022, 84, 1.	0.6	1

#	Article	IF	CITATIONS
621	Warming and Labile Substrate Addition Alter Enzyme Activities and Composition of Soil Organic Carbon. Frontiers in Forests and Global Change, 2021, 4, .	1.0	1
630	Temporal dynamics of range expander and congeneric native plant responses during and after extreme drought events. Ecological Monographs, 2022, 92, .	2.4	5
631	Leaf morpho-physiological comparison between native and non-native plant species in a Mediterranean island. Biological Invasions, 0 , , .	1.2	0
632	Scale-dependent changes in species richness caused by invader competition. Ecological Modelling, 2022, 469, 109996.	1.2	3
633	Variation, coordination, and trade-offs between needle structures and photosynthetic-related traits across five Picea species: consequences on plant growth. BMC Plant Biology, 2022, 22, 242.	1.6	4
634	Alien invasive <i>Leucaena leucocephala</i> successfully acquires nutrients by investing in below ground biomass compared to native <i>Vachellia nilotica</i> in nutrient amended soils in South Africa. AoB PLANTS, 0, , .	1.2	0
635	Positive effects of exotic species dampened by neighborhood heterogeneity. Ecology, 2022, 103, .	1.5	2
636	Nitrogen addition, but not pulse frequency, shifts competitive interactions in favor of exotic invasive plant species. Biological Invasions, 2022, 24, 3109-3118.	1.2	5
637	Quantification of Carbon-Water Dynamics in Plant – Soil Feedbacks Under Drought Stress Following a Double Isotope-Labelled Pulse Experiment. SSRN Electronic Journal, 0, , .	0.4	0
638	Postâ€fire restoration seeding success increases with early fall seeding and simulated precipitation in the Great Basin Desert of North America. Restoration Ecology, 0, , .	1.4	1
639	Functional trait-based potential invasiveness of exotic submerged macrophytes and their effects on sediment bacterial community. Hydrobiologia, 2022, 849, 3061-3077.	1.0	3
641	Water use partitioning of native and nonâ€native tree species in riparian ecosystems under contrasting climatic conditions. Functional Ecology, 2022, 36, 2480-2492.	1.7	4
642	Synergistic effects of soil nutrient level and native species identity and diversity on biotic resistance to Sicyos angulatus, an invasive species. Oecologia, 2022, 200, 221-230.	0.9	4
643	Invasive woody legumes: Climatic range shifts and their relationships to functional traits. Global Ecology and Biogeography, 2022, 31, 2397-2409.	2.7	2
644	Opposite effects of nutrient enrichment and an invasive snail on the growth of invasive and native macrophytes. Ecological Applications, 2024, 34, .	1.8	2
645	A general hypothesis of forest invasions by woody plants based on wholeâ€plant carbon economics. Journal of Ecology, 2023, 111, 4-22.	1.9	12
646	Clonal functional traits favor the invasive success of alien plants into native communities. Ecological Applications, 2024, 34, .	1.8	17
647	Variation in plant traits and phylogenetic structure associated with native and nonnative species in an industrialized flora. NeoBiota, 0, 77, 101-123.	1.0	0

#	Article	IF	CITATIONS
648	Why are some plant species missing from restorations? A diagnostic tool for temperate grassland ecosystems. Frontiers in Conservation Science, 0, 3, .	0.9	5
649	Use of support influences height and above-ground allometry but not biomass allocation to different aerial organs of an invasive vine. Trees - Structure and Function, 0, , .	0.9	1
650	Belowground bud bank of invasive plants contributes to their successful invasion in coastal wetlands. Restoration Ecology, 2023, 31, .	1.4	1
651	Functional assembly of grassland plant species in native communities in Spain and recipient communities in California. Journal of Ecology, 2023, 111, 214-226.	1.9	2
652	Adaptive divergence for a drought resistance related trait among invasive Saltcedar (Tamarix L.) populations in southwestern US: Inferences from QCT - FCT. Frontiers in Plant Science, 0, 13, .	1.7	0
653	Quantification of carbon-water dynamics in soil-perennial grass (Bothriochloa ischaemum) feedbacks under drought stress following a double isotope-labelled pulse experiment. Agricultural and Forest Meteorology, 2023, 329, 109270.	1.9	0
656	Bacillus benefits the competitive growth of Ambrosia artemisiifolia by increasing available nutrient levels. Frontiers in Plant Science, $0,13,.$	1.7	2
657	Evaluating Restoration Techniques for a Coastal Fen on Lake Ontario Degraded by Shrub Encroachment. Ecological Restoration, 2022, 40, 229-233.	0.5	0
659	Island plant functional syndromes and competition with invasive species. Journal of Biogeography, 2023, 50, 641-653.	1.4	7
660	Alien palm invasion leads to selective biotic filtering of resident plant communities towards competitive functional traits. Biological Invasions, 2023, 25, 1489-1508.	1.2	2
662	Asymmetric inter-specific competition between invasive Phytolacca americana and its native congener. Plant Ecology, 2023, 224, 315-324.	0.7	0
663	Plant–soil interactions in the native range of two congeneric species with contrasting invasive success. Oecologia, 2023, 201, 461-477.	0.9	3
664	Why Are Invasive Plants Successful?. Annual Review of Plant Biology, 2023, 74, 635-670.	8.6	19
665	Effects of Nutrient Addition on Pedicularis kansuensis Invasion of Alpine Grassland. Atmosphere, 2023, 14, 367.	1.0	0
666	Phenotypic Plasticity Drives the Successful Expansion of the Invasive Plant Pedicularis kansuensis in Bayanbulak, China. Diversity, 2023, 15, 313.	0.7	0
667	Four Invasive Plant Species in Southwest Saudi Arabia Have Variable Effects on Soil Dynamics. Plants, 2023, 12, 1231.	1.6	0
668	Effect of Water Deficit on Germination, Growth and Biochemical Responses of Four Potentially Invasive Ornamental Grass Species. Plants, 2023, 12, 1260.	1.6	4
669	High interspecific competitiveness of the invasive plant Xanthium italicum Moretti severely reduces the yield and quality of Carthamus tinctorius L Scientific Reports, 2023, 13, .	1.6	1

#	Article	IF	CITATIONS
670	Metabolic groups of plants in neotropical hyperseasonal savannas threatened by Australian Acacia invasion. Wetlands Ecology and Management, 0 , , .	0.7	0
671	Microbiota-mediated nitrogen fixation and microhabitat homeostasis in aerial root-mucilage. Microbiome, 2023, 11 , .	4.9	7
672	Predicting vulnerability of forest patches to invasion by nonâ€native plants for landscape scale management. Ecological Applications, 0, , .	1.8	1
676	Biological invasions in the twenty-first century: a global risk. , 2023, 78, 1211-1218.		3
702	Bamboo Expansion and Soil Ecological Stoichiometry. , 2023, , 97-109.		0