Quantum nature of a strongly coupled single quantum

Nature 445, 896-899 DOI: 10.1038/nature05586

Citation Report

#	Article	IF	CITATIONS
7	SiN photonic crystal cavities: promising tools for the manipulation of light in the visible. Proceedings of SPIE, 2007, 6645, 13.	0.8	0
8	In situ Tuning of Optical Modes in Single Semiconductor Microcavities by Laser Heating. , 2007, , .		0
9	Electrically probing photonic bandgap phenomena in contacted defect nanocavities. Applied Physics Letters, 2007, 91, 201111.	1.5	21
10	Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers. Physical Review B, 2007, 76, .	1.1	56
11	Evolution of the onset of coherence in a family of photonic crystal nanolasers. Applied Physics Letters, 2007, 91, .	1.5	38
12	Quantum-dot photon dynamics in a coupled-cavity waveguide: Observing band-edge quantum optics. Physical Review A, 2007, 76, .	1.0	14
13	Zero-Phonon Linewidth and Phonon Satellites in the Optical Absorption of Nanowire-Based Quantum Dots. Physical Review Letters, 2007, 99, 087401.	2.9	30
14	Local quantum dot tuning on photonic crystal chips. Applied Physics Letters, 2007, 90, 213110.	1.5	117
15	Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths. Applied Physics Letters, 2007, 91, .	1.5	38
16	Effective Spin Systems in Coupled Microcavities. Physical Review Letters, 2007, 99, 160501.	2.9	158
17	Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light. Physical Review Letters, 2007, 99, 173603.	2.9	254
18	Nanocrystals in silicon photonic crystal standing-wave cavities as spin-photon phase gates for quantum information processing. Applied Physics Letters, 2007, 91, 151105.	1.5	15
19	Entanglement and lasing with two quantum dots in a microcavity. Physical Review B, 2007, 76, .	1.1	17
20	Local On-Chip Temperature Tuning of InGaAs Quantum Dots. , 2007, , .		0
21	Coherent Optical Spectroscopy of a Strongly Driven Quantum Dot. Science, 2007, 317, 929-932.	6.0	314
22	Generalized Rotating-Wave Approximation for Arbitrarily Large Coupling. Physical Review Letters, 2007, 99, 173601.	2.9	257
23	High-Q nanocavity with a 2-ns photon lifetime. Optics Express, 2007, 15, 17206.	1.7	168
24	Polarized quantum dot emission from photonic crystal nanocavities studied under moderesonant enhanced excitation. Optics Express, 2007, 15, 17221.	1.7	41

#	Article	IF	CITATIONS
25	Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities. Optics Express, 2007, 15, 17231.	1.7	65
26	Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Optics Express, 2007, 15, 17458.	1.7	129
27	Resonance Fluorescence from a Coherently Driven Semiconductor Quantum Dot in a Cavity. Physical Review Letters, 2007, 99, 187402.	2.9	293
28	Single quantum-dot Purcell factor andβfactor in a photonic crystal waveguide. Physical Review B, 2007, 75, .	1.1	208
29	Formation mechanisms of self-assembled ZnSe nanostructures on Cl-doped ZnSe thin films grown on (100) GaAs substrates. Applied Physics Letters, 2007, 91, 141921.	1.5	0
30	Carrier transport mechanisms of the writing and the erasing processes for Alâ^•ZnO nanoparticles embedded in a polyimide layer/p-Si diodes. Applied Physics Letters, 2007, 91, 182107.	1.5	9
31	Role of Re-absorption Effect to Quality Factor in Quantum-Dot Photonic-Crystal Nanocavities. Indium Phosphide and Related Materials Conference (IPRM), IEEE International Conference on, 2007, , .	0.0	0
32	Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic Crystal Waveguide: Proposal for an Efficient "On Chip―Single Photon Gun. Physical Review Letters, 2007, 99, 193901.	2.9	124
33	Controlling the Fluorescence Resonant Energy Transfer by Photonic Crystal Band Gap Engineering. Chemistry of Materials, 2007, 19, 5547-5552.	3.2	59
34	Quantum information processing with quantum dots in photonic crystals. , 2007, , .		1
35	Light–matter interaction in photonic crystal slabs. Physica Status Solidi (B): Basic Research, 2007, 244, 3528-3539.	0.7	46
36	Dynamic control of the Q factor in a photonic crystal nanocavity. Nature Materials, 2007, 6, 862-865.	13.3	241
37	Spontaneous-emission control by photonic crystals and nanocavities. Nature Photonics, 2007, 1, 449-458.	15.6	842
38	Semiconductor quantum light sources. Nature Photonics, 2007, 1, 215-223.	15.6	759
39	Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450, 402-406.	13.7	1,307
40	Controlling cavity reflectivity with a single quantum dot. Nature, 2007, 450, 857-861.	13.7	580
41	Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature, 2007, 450, 862-865.	13.7	366
42	Vertical integration of ultrafast semiconductor lasers. Applied Physics B: Lasers and Optics, 2007, 88, 493-497.	1.1	161

	CITATION	Report	
#	Article	IF	CITATIONS
43	Quantenpunkte als Photonenquellen. Photonische Kristalle. Physik in Unserer Zeit, 2008, 39, 71-76.	0.0	0
44	Prerequisites of nanocavities for single artificial atom laser. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2831-2834.	0.8	0
45	Theoretical analysis of light emission from a coupled system of a photonic nanocavity and a quantum dot. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2828-2830.	0.8	9
46	Probing the interaction between a single quantum dot and a photonic crystal cavity. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2808-2815.	0.8	2
47	Ultralongâ€range radiative excitation transfer between quantum dots in a planar microcavity. Physica Status Solidi (B): Basic Research, 2008, 245, 1085-1088.	0.7	10
48	Quantum manyâ€body phenomena in coupled cavity arrays. Laser and Photonics Reviews, 2008, 2, 527-556.	4.4	399
49	Two-level anti-crossings high up in the single-particle energy spectrum of a quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1807-1810.	1.3	7
50	Near-field mapping of quantum dot emission from single-photonic crystal cavity modes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 1965-1967.	1.3	5
51	Optical emission of InAs/GaAs quantum rings coupled to a two-dimensional photonic crystal microcavity. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2156-2159.	1.3	1
52	Controlled optical switching based on dipole-induced transparency in a cavity–waveguide system. Optics Communications, 2008, 281, 4048-4053.	1.0	16
53	Formation and ordering of epitaxial quantum dots. Comptes Rendus Physique, 2008, 9, 788-803.	0.3	51
54	Cavity QED effects with single quantum dots. Comptes Rendus Physique, 2008, 9, 850-856.	0.3	8
55	Fluorescence correlation spectroscopy for diffusion of mobile quantum dots in dilute solutions. Chemical Physics Letters, 2008, 454, 257-261.	1.2	2
56	The steady state of two quantum dots in a cavity. Superlattices and Microstructures, 2008, 43, 465-469.	1.4	1
57	Photonic crystal slotted slab waveguides. Photonics and Nanostructures - Fundamentals and Applications, 2008, 6, 38-41.	1.0	63
58	High-spatial-resolution near-field photoluminescence and imaging of whispering-gallery modes in semiconductor microdisks with embedded quantum dots. Physical Review B, 2008, 77, .	1.1	25
59	The nonlinear Fano effect. Nature, 2008, 451, 311-314.	13.7	200
60	Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature, 2008, 454, 315-318.	13.7	414

#	Article	IF	CITATIONS
61	Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nature Photonics, 2008, 2, 688-692.	15.6	166
62	Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photonics, 2008, 2, 741-747.	15.6	395
63	Optical antennas direct single-molecule emission. Nature Photonics, 2008, 2, 234-237.	15.6	637
64	Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Physics, 2008, 4, 859-863.	6.5	515
65	Nonlinear spectroscopy of photons bound to one atom. Nature Physics, 2008, 4, 382-385.	6.5	166
66	Light Emission From Silicon in Photonic Crystal Nanocavity. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1090-1097.	1.9	51
67	Nonlinear optical tuning of photonic crystal microcavities by near-field probe. Applied Physics Letters, 2008, 93, .	1.5	16
68	Strong coupling between a metallic nanoparticle and a single molecule. Physical Review B, 2008, 77, .	1.1	205
69	Quantum Dot Spectroscopy Using Cavity Quantum Electrodynamics. Physical Review Letters, 2008, 101, 226808.	2.9	57
70	Experimental Realization of Highly Efficient Broadband Coupling of Single Quantum Dots to a Photonic Crystal Waveguide. Physical Review Letters, 2008, 101, 113903.	2.9	279
71	Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities. Physical Review B, 2008, 77, .	1.1	126
72	Nonlinear dispersive regime of cavity QED: The dressed dephasing model. Physical Review A, 2008, 77, .	1.0	68
73	Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic crystal nanocavity. Physical Review B, 2008, 78, .	1.1	57
74	Cavity Quantum Electrodynamics with Semiconductor Quantum Dots. , 2008, , 132-164.		0
75	Numerical study of exact Purcell factors in finite-size planar photonic crystal waveguides. Optics Letters, 2008, 33, 1587.	1.7	15
76	Scalable fabrication of optical resonators with embedded site-controlled quantum dots. Optics Letters, 2008, 33, 1759.	1.7	44
77	Strong exciton–photon coupling in semiconductor quantum dot systems. Semiconductor Science and Technology, 2008, 23, 123001.	1.0	59
78	Design of Photonic Crystal Nanocavity With \$Q\$-Factor of \${{sim}10^{9}}\$. Journal of Lightwave Technology, 2008, 26, 1532-1539.	2.7	112

#	Article	IF	CITATIONS
79	Towards a picosecond transform-limited nitrogen-vacancy based single photon source. Optics Express, 2008, 16, 6240.	1.7	76
80	Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots. Optics Express, 2008, 16, 9829.	1.7	13
81	Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Optics Express, 2008, 16, 10858.	1.7	257
82	Ultrahigh-Q Nanocavity with 1D Photonic Gap. Optics Express, 2008, 16, 11095.	1.7	225
83	Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities. Optics Express, 2008, 16, 16255.	1.7	87
84	Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics. Optics Express, 2008, 16, 18067.	1.7	69
85	On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning. Optics Express, 2008, 16, 18657.	1.7	57
86	Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. Optics Express, 2008, 16, 19136.	1.7	191
87	Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control. Optics Express, 2008, 16, 21721.	1.7	32
88	Parametric Normal-Mode Splitting in Cavity Optomechanics. Physical Review Letters, 2008, 101, 263602.	2.9	265
89	Quantum Control of a Trapped Electron Spin in a Quantum Dot Using Photon Polarization. Physical Review Letters, 2008, 101, 217403.	2.9	14
90	Quantum Optical-Effect-Based Tunable Switches and Delay Lines. IEEE Journal of Quantum Electronics, 2008, 44, 872-878.	1.0	4
91	Two-dimensionally relocatable microfiber-coupled photonic-crystal resonator. , 2008, , .		0
92	Observation of Dressed Excitonic States in a Single Quantum Dot. Physical Review Letters, 2008, 100, 177401.	2.9	75
93	Deterministic optical quantum computer using photonic modules. Physical Review A, 2008, 78, .	1.0	44
94	Simulation of high-spin Heisenberg models in coupled cavities. Physical Review A, 2008, 78, .	1.0	47
95	Modeling of three-dimensional photonic crystal lasers in a frequency domain: A scattering matrix solution. Physical Review B, 2008, 77, .	1.1	5

#	Article	IF	CITATIONS
97	Reflectivity tuning in coupled cavities considering dipole induced transparency and electromagnetic induced transparency. , 2008, , .		0
98	Detuning effect in quantum dynamics of a strongly coupled single quantum dot–cavity system. Journal of Physics Condensed Matter, 2008, 20, 325209.	0.7	7
99	Solving the electron-nuclear SchrĶdinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method. Journal of Chemical Physics, 2008, 128, 154107.	1.2	48
100	Influence of pure dephasing on emission spectra from single photon sources. Physical Review A, 2008, 78, .	1.0	83
101	InAs/GaAs nanostructures grown on patterned Si(001) by molecular beam epitaxy. Nanotechnology, 2008, 19, 455607.	1.3	8
102	Large Vacuum Rabi Splitting in Single Self-Assembled Quantum Dot-Nanocavity System. Applied Physics Express, 0, 1, 072102.	1.1	14
103	Tuning of spontaneous emission in photonic crystals by resonant energy transfer and magnetic fields. Proceedings of SPIE, 2008, , .	0.8	0
104	Green Photoluminescence from GaInN Photonic Crystals. Applied Physics Express, 0, 1, 032004.	1.1	30
105	Rabi oscillations in a quantum dot-cavity system coupled to a nonzero temperature phonon bath. Physica Scripta, 2008, 77, 065704.	1.2	5
106	Manipulating quantum-confined Stark shift in electroluminescence from quantum dots with side gates. New Journal of Physics, 2008, 10, 053036.	1.2	8
107	Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations. New Journal of Physics, 2008, 10, 123013.	1.2	30
108	Single-photon source in strong photon-atom interaction regime in quasiperiodic photonic crystals. Europhysics Letters, 2008, 84, 67003.	0.7	1
109	A polaritonic two-component Bose–Hubbard model. New Journal of Physics, 2008, 10, 033011.	1.2	30
110	Tunable single quantum dot nanocavities for cavity QED experiments. Journal of Physics Condensed Matter, 2008, 20, 454209.	0.7	4
111	Single photon nonlinear optics with quantum dots in photonic crystal resonators. , 2008, , .		0
112	Light-shift-induced photonic nonlinearities. New Journal of Physics, 2008, 10, 043010.	1.2	18
113	Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube. Physical Review B, 2008, 78, .	1.1	31
114	Characterization of Strong Light-Matter Coupling in Semiconductor Quantum-Dot Microcavities via Photon-Statistics Spectroscopy. Physical Review Letters, 2008, 101, 097401.	2.9	47

		CITATION R	EPORT	
#	Article		IF	Citations
115	Quantum-state tomography using a single apparatus. Physical Review A, 2008, 77, .		1.0	6
116	Low density InAs quantum dots with control in energy emission and top surface locati Physics Letters, 2008, 93, 183106.	on. Applied	1.5	34
117	Lithographic alignment to site-controlled quantum dots for device integration. Appliec Letters, 2008, 92, .	l Physics	1.5	96
118	Local nanofluidic light sources in silicon photonic crystal microcavities. Physical Reviev 045603.	v E, 2008, 78,	0.8	31
119	Entanglement-enhanced quantum key distribution. Physical Review A, 2008, 78, .		1.0	23
120	Spontaneous emission spectrum of a two-level atom in a very-high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>cavity. Physical Review A, 2008, 7</mml:math 	77,.	1.0	47
121	Investigations of a coherently driven semiconductor optical cavity QED system. Physic 2008, 78, .	al Review A,	1.0	19
122	Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot. Appli Letters, 2008, 93, 151109.	ed Physics	1.5	8
123	Polarization-switchable single photon source using the Stark effect. Applied Physics Le	2tters, 2008, 93, .	1.5	14
124	Integration of site-controlled pyramidal quantum dots and photonic crystal membrane Applied Physics Letters, 2008, 92, .	cavities.	1.5	89
125	Growth of high-uniformity InAsâ^•GaAs quantum dots with ultralow density below 107 emission above 1.3μm. Applied Physics Letters, 2008, 92, 163101.	cmâ^'2 and	1.5	17
126	Placing single quantum dots in INP photonic crystal microcavities - A route to single ar photon pair sources. , 2008, , .	nd entangled		0
127	Highly efficient single-photon emission from single quantum dots within a two-dimens band-gap. Physical Review B, 2008, 77, .	ional photonic	1.1	41
128	Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanoc Physics Letters, 2008, 92, 111111.	avity. Applied	1.5	28
129	Quasimode-projection approach to quantum-dot–photon interactions in photonic-c coupled-cavity systems. Physical Review A, 2008, 77, .	rystal-slab	1.0	12
130	Spectral tuning and near-field imaging of photonic crystal microcavities. Physical Revie	ew B, 2008, 78, .	1.1	60
131	Fractional Quantum Hall State in Coupled Cavities. Physical Review Letters, 2008, 101	., 246809.	2.9	158
132	Higher-order resonant modes in a photonic heterostructure nanocavity. Applied Physic 92, .	cs Letters, 2008,	1.5	24

#	Article	IF	CITATIONS
133	Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Physical Review B, 2008, 77, .	1.1	65
134	Entangled Photon Pairs Produced by a Quantum Dot Strongly Coupled to a Microcavity. Physical Review Letters, 2008, 100, 240404.	2.9	78
135	Generating entanglement between quantum dots with different resonant frequencies based on dipole-induced transparency. Physical Review A, 2008, 78, .	1.0	15
136	Transmission spectrum of a double quantum-dot–nanocavity system in photonic crystals. Physical Review A, 2008, 77, .	1.0	4
137	Extraction of Singlet States from Noninteracting High-Dimensional Spins. Physical Review Letters, 2008, 100, 150501.	2.9	31
138	Electron-photon interaction associated with uncertainty-based tunneling in a parallel double quantum dot. Physical Review B, 2008, 77, .	1.1	1
139	Optical spectra of a quantum dot in a microcavity in the nonlinear regime. Physical Review B, 2008, 78, .	1.1	12
140	Ultra-fast dynamic control of the Q factor in a photonic crystal nanocavity. , 2008, , .		0
141	Photonic crystal chips for optical communications and quantum information processing. Proceedings of SPIE, 2008, , .	0.8	0
142	Probing a quantum dot in the weak coupling regime. , 2008, , .		0
143			
	Design of single-photon Mach-Zehnder interferometer based devices for quantum information processing. Proceedings of SPIE, 2008, , .	0.8	1
144	Design of single-photon Mach-Zehnder interferometer based devices for quantum information processing. Proceedings of SPIE, 2008, , . Quantum dot-photonic crystal chips for quantum information processing. Proceedings of SPIE, 2008, , .	0.8 0.8	1 0
144 145	Design of single-photon Mach-Zehnder interferometer based devices for quantum information processing. Proceedings of SPIE, 2008, , . Quantum dot-photonic crystal chips for quantum information processing. Proceedings of SPIE, 2008, , . Applications of FDTD Analyses to Photonic Crystal Studies. The Review of Laser Engineering, 2008, 36, 614-620.	0.8 0.8 0.0	1 0 0
144 145 147	Design of single-photon Mach-Zehnder interferometer based devices for quantum information processing. Proceedings of SPIE, 2008, , . Quantum dot-photonic crystal chips for quantum information processing. Proceedings of SPIE, 2008, , . Applications of FDTD Analyses to Photonic Crystal Studies. The Review of Laser Engineering, 2008, 36, 614-620. Origins of nonzero multiple photon emission probability from single quantum dots embedded in photonic crystal nanocavities. Applied Physics Letters, 2009, 94, 163111.	0.8 0.8 0.0 1.5	1 0 0 3
144 145 147 148	 Design of single-photon Mach-Zehnder interferometer based devices for quantum information processing. Proceedings of SPIE, 2008, , . Quantum dot-photonic crystal chips for quantum information processing. Proceedings of SPIE, 2008, , . Applications of FDTD Analyses to Photonic Crystal Studies. The Review of Laser Engineering, 2008, 36, 614-620. Origins of nonzero multiple photon emission probability from single quantum dots embedded in photonic crystal nanocavities. Applied Physics Letters, 2009, 94, 163111. Single Quantum Dot Laser with Photonic Crystal Nanocavity. , 2009, , . 	0.8 0.8 0.0 1.5	1 0 0 3 0
144 145 147 148 148	 Design of single-photon Mach-Zehnder interferometer based devices for quantum information processing. Proceedings of SPIE, 2008, , . Quantum dot-photonic crystal chips for quantum information processing. Proceedings of SPIE, 2008, , . Applications of FDTD Analyses to Photonic Crystal Studies. The Review of Laser Engineering, 2008, 36, 614-620. Origins of nonzero multiple photon emission probability from single quantum dots embedded in photonic crystal nanocavities. Applied Physics Letters, 2009, 94, 163111. Single Quantum Dot Laser with Photonic Crystal Nanocavity. , 2009, , . Generation of entangled photon pairs from a single quantum dot embedded in a planar photonic-crystal cavity. Physical Review B, 2009, 79, . 	0.8 0.8 0.0 1.5	1 0 0 3 0 32
144 145 147 148 148 149	Design of single-photon Mach-Zehnder interferometer based devices for quantum information processing. Proceedings of SPIE, 2008, , . Quantum dot-photonic crystal chips for quantum information processing. Proceedings of SPIE, 2008, , . Applications of FDTD Analyses to Photonic Crystal Studies. The Review of Laser Engineering, 2008, 36, 614-620. Origins of nonzero multiple photon emission probability from single quantum dots embedded in photonic crystal nanocavities. Applied Physics Letters, 2009, 94, 163111. Single Quantum Dot Laser with Photonic Crystal Nanocavity. , 2009, , . Generation of entangled photon pairs from a single quantum dot embedded in a planar photonic-crystal cavity. Physical Review B, 2009, 79, . Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot. Physical Review B, 2009, 80, .	0.8 0.0 1.5 1.1	1 0 0 3 0 32 25

#	Article	IF	CITATIONS
152	Near-field control of optical bistability in a nanocavity. , 2009, , .		2
153	Dynamics of the inhomogeneous Dicke model for a single-boson mode coupled to a bath of nonidentical spin-1/2 systems. Physical Review A, 2009, 80, .	1.0	26
154	Semiconductor-cavity QED-based optical beam splitter. Physical Review A, 2009, 79, .	1.0	3
155	Site-controlled InAs quantum dots grown on a 55 nm thick GaAs buffer layer. Applied Physics Letters, 2009, 95, 243106.	1.5	15
156	Microscopic theory of squeezed-light emission in strong-coupling semiconductor quantum-dot systems. Physical Review A, 2009, 80, .	1.0	4
157	Broadband waveguide QED system on a chip. Physical Review A, 2009, 80, .	1.0	51
158	Two-Qubit Conditional Phase Gate in Laser-Excited Semiconductor Quantum Dots Using the Quantum Zeno Effect. Physical Review Letters, 2009, 103, 037401.	2.9	16
159	Detecting Bose-Einstein condensation of exciton-polaritons via electron transport. Physical Review B, 2009, 80, .	1.1	1
160	Controlling the charge environment of single quantum dots in a photonic-crystal cavity. Physical Review B, 2009, 80, .	1.1	55
161	Rising time of entanglement between scattering spins. Physical Review B, 2009, 80, .	1.1	9
162	Broadband Purcell factor enhancements in photonic-crystal ridge waveguides. Physical Review B, 2009, 80, .	1.1	17
163	Cavity-assisted fast generation of entangled photon pairs through the biexciton-exciton cascade. Physical Review B, 2009, 80, .	1.1	18
164	Control of the spontaneous emission from a single quantum dash using a slow-light mode in a two-dimensional photonic crystal on a Bragg reflector. Physical Review B, 2009, 80, .	1.1	15
165	Strong Coupling Theory for the Jaynes-Cummings-Hubbard Model. Physical Review Letters, 2009, 103, 086403.	2.9	105
166	Quantum-information transfer in a coupled resonator waveguide. Physical Review A, 2009, 79, .	1.0	57
167	Proposal for Pulsed On-Demand Sources of Photonic Cluster State Strings. Physical Review Letters, 2009, 103, 113602.	2.9	207
168	Manipulating emission of CdTeSe nanocrystals embedded in three-dimensional photonic crystals. Journal of Applied Physics, 2009, 105, .	1.1	27
169	Controlled cavity QED and single-photon emission using a photonic-crystal waveguide cavity system. Physical Review B, 2009, 80, .	1.1	25

#	Article	IF	CITATIONS
170	Continuous-wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities. Physical Review B, 2009, 80, .	1.1	39
171	Explanation of Photon Correlations in the Far-Off-Resonance Optical Emission from a Quantum-Dot–Cavity System. Physical Review Letters, 2009, 103, 207403.	2.9	182
172	Local temperature control of photonic crystal devices via micron-scale electrical heaters. Applied Physics Letters, 2009, 95, 043102.	1.5	45
173	Independent tuning of quantum dots in a photonic crystal cavity. Applied Physics Letters, 2009, 95, .	1.5	17
174	Externally Mode-Matched Cavity Quantum Electrodynamics with Charge-Tunable Quantum Dots. Physical Review Letters, 2009, 102, 097403.	2.9	67
175	Coherent Three-Level Mixing in an Electronic Quantum Dot. Physical Review Letters, 2009, 102, 026808.	2.9	24
176	Pulse shaping by coupled cavities: Single photons and qudits. Physical Review A, 2009, 80, .	1.0	12
177	Effect of Modified Growth Method on the Structural and Optical Properties of InAs/GaAs Quantum Dots for Controlling Density. Japanese Journal of Applied Physics, 2009, 48, 095506.	0.8	7
178	An effective spin-1 Heisenberg chain in coupled cavities. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 065502.	0.6	9
179	The generalized analytical approximation to the solution of the single-mode spin-boson model without rotating-wave approximation. Europhysics Letters, 2009, 86, 54003.	0.7	40
180	Fabrication of high quality factor photonic crystal microcavities in InAsPâ^InP membranes combining reactive ion beam etching and reactive ion etching. Journal of Vacuum Science & Technology B, 2009, 27, 1801.	1.3	15
181	Cavity-enhanced polarization control and observation of off-resonant coupling in quantum dot nanocavities. , 2009, , .		0
182	Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity. Applied Physics Letters, 2009, 95, 173101.	1.5	75
183	Fabrication and characterization of photonic crystal cavities in the visible range. Proceedings of SPIE, 2009, , .	0.8	0
184	Inductively coupled plasma etching of GaAs suspended photonic crystal cavities. Journal of Vacuum Science & Technology B, 2009, 27, 1909-1914.	1.3	14
185	Controlled coupling of nanoparticles to photonic crystal cavities. Proceedings of SPIE, 2009, , .	0.8	1
186	Efficient and selective cavity-resonant excitation for single photon generation. New Journal of Physics, 2009, 11, 013031.	1.2	19
187	Nonclassical emission from single colloidal nanocrystals in a microcavity: a route towards room temperature single photon sources. New Journal of Physics, 2009, 11, 033025.	1.2	29

#	Article	IF	CITATIONS
188	Quantum fluctuations in the mazer. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 044015.	0.6	8
189	Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology, 2009, 20, 434012.	1.3	71
190	Proposed triaxial atomic force microscope contact-free tweezers for nanoassembly. Nanotechnology, 2009, 20, 385302.	1.3	15
191	Doping Defects in Two-Dimensional Holographic Photonic Crystals Using a Continuous-Wave Visible Laser. Chinese Physics Letters, 2009, 26, 054201.	1.3	1
192	Ground State of Jaynes–Cummings Model: Comparison of Solutions with and without the Rotating-Wave Approximation. Chinese Physics Letters, 2009, 26, 044212.	1.3	5
193	A Scheme for Atomic Entangled States and Quantum Gate Operations in Cavity QED. Chinese Physics Letters, 2009, 26, 030301.	1.3	3
194	Investigation of the Spectral Triplet in Strongly Coupled Quantum Dot–Nanocavity System. Applied Physics Express, 2009, 2, 122301.	1.1	20
195	Monte Carlo model for the photoluminescence kinetics of a quantum dot embedded in a nanocavity. Journal of Physics: Conference Series, 2009, 193, 012124.	0.3	0
196	Manipulation of Photons by Photonic Crystals. MRS Bulletin, 2009, 34, 751-755.	1.7	3
197	Towards quantum optics and entanglement with electron spin ensembles in semiconductors. Solid State Sciences, 2009, 11, 935-941.	1.5	4
198	Directed selfâ€ e ssembly of single quantum dots for telecommunication wavelength optical devices. Laser and Photonics Reviews, 2010, 4, 283-299.	4.4	34
199	Dynamics of a quantum oscillator strongly and off-resonantly coupled with a two-level system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2753-2759.	0.9	6
200	Dynamics of 2-D one electron quantum dots in pulsed field: Influence of size. Journal of Physics and Chemistry of Solids, 2009, 70, 680-687.	1.9	1
201	Cluster State Entanglement of Semiconductor Quantum Dots Based on Faraday Rotation. International Journal of Theoretical Physics, 2009, 48, 1781-1789.	0.5	1
202	Dependence of optical gain and interband transitions on the CdTe well width and temperature for CdTe/ZnTe single quantum wells. Optical and Quantum Electronics, 2009, 41, 559-565.	1.5	6
203	Surface Localization of Buried III–V Semiconductor Nanostructures. Nanoscale Research Letters, 2009, 4, 873-877.	3.1	4
204	Properties and prospects of blue–green emitting Il–Vlâ€based monolithic microcavities. Physica Status Solidi (B): Basic Research, 2009, 246, 255-271.	0.7	18
205	A hybrid approach towards nanophotonic devices with enhanced functionality. Physica Status Solidi (B): Basic Research, 2009, 246, 298-301.	0.7	10

ARTICLE IF CITATIONS # Hybridization of Electron and Hole States in Semiconductor Quantumâ€Dot Molecules. Small, 2009, 5, 206 5.2 16 329-335. Siteâ€Controlled InGaAs Quantum Dots with Tunable Emission Energy. Small, 2009, 5, 938-943. 5.2 Characterization of strong lightmatter coupling in semiconductor quantum-dot microcavities. 208 0.8 2 Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 407-410. Sub-cycle switch-on of ultrastrong light–matter interaction. Nature, 2009, 458, 178-181. 209 498 Non-resonant dotâ€"cavity coupling and its potential for resonant single-quantum-dot spectroscopy. 210 15.6 163 Nature Photonics, 2009, 3, 724-728. Photonic quantum technologies. Nature Photonics, 2009, 3, 687-695. 15.6 1,743 212 The quantum-optical Josephson interferometer. Nature Physics, 2009, 5, 281-284. 6.5 171 Dynamics of 2-D one electron quantum dots in time-dependent magnetic field: Influence of size. 213 1.3 Physica B: Condensed Matter, 2009, 404, 3830-3838. Decay lifetime and evolution of semiconductor quantum dots in photonic crystals. Superlattices and 214 1.4 0 Micróstructures, 2009, 45, 65-72. Quantum dots in photonic crystals: From quantum information processing to single photon 1.0 nonlinear optics. Photonics and Nanostructures - Fundamentals and Applications, 2009, 7, 56-62. Optical properties of ZnO nanoparticles embedded in a silicon nitride layer formed by sputtering and 216 1.1 3 thermal treatment. Current Applied Physics, 2009, 9, e173-e175. Quantum theory of electron tunneling into intersubband cavity polariton states. Physical Review B, 1.1 2009, 79, . Excitonâ€"photon interaction in a quantum dot embedded in a photonic microcavity. Journal of Physics 218 0.6 7 B: Atomic, Molecular and Optical Physics, 2009, 42, 085402. Collective modes of quantum dot ensembles in microcavities. Journal of Experimental and Theoretical 0.2 28 Physics, 2009, 108, 8'36-844. Formation of Lateral Low Density In(Ga)As Quantum Dot Pairs in GaAs Nanoholes. Crystal Growth and 220 33 1.4 Design, 2009, 9, 2525-2528. Near-field control of optical bistability in a nanocavity. Physical Review B, 2009, 80, . 221 1.1 Demonstration of high-Qâ€^(>8600) three-dimensional photonic crystal nanocavity embedding 222 1.535 quantum dots. Applied Physics Letters, 2009, 94, . Origin of the Optical Emission within the Cavity Mode of Coupled Quantum Dot-Cavity Systems. Physical Review Letters, 2009, 103, 027401.

#	Article	IF	CITATIONS
224	Formation of Spatially Addressed Ga(As)Sb Quantum Rings on GaAs(001) Substrates by Droplet Epitaxy. Crystal Growth and Design, 2009, 9, 1216-1218.	1.4	10
225	Signatures of the ultrastrong light-matter coupling regime. Physical Review B, 2009, 79, .	1.1	268
226	Phonon-assisted transitions from quantum dot excitons to cavity photons. Physical Review B, 2009, 80, .	1.1	112
227	Dephasing of Exciton Polaritons in Photoexcited InGaAs Quantum Dots in GaAs Nanocavities. Physical Review Letters, 2009, 103, 087405.	2.9	104
228	Fermionized Photons in an Array of Driven Dissipative Nonlinear Cavities. Physical Review Letters, 2009, 103, 033601.	2.9	216
229	Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities. Physical Review B, 2009, 79, .	1.1	86
230	Thermal Properties of 12-Fold Quasi-Photonic Crystal Microcavity Laser With Size-Controlled Nano-Post for Electrical Driving. Journal of Lightwave Technology, 2009, 27, 5302-5307.	2.7	9
231	Numerical investigation of emission in finite-sized, three-dimensional photonic crystals with structural fluctuations. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1157.	0.9	20
232	Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system. Optics Express, 2009, 17, 3322.	1.7	53
233	Cavity mode emission in weakly coupled quantum dot - cavity systems. Optics Express, 2009, 17, 6643.	1.7	17
234	Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition. Optics Express, 2009, 17, 6790.	1.7	16
235	Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. Optics Express, 2009, 17, 9588.	1.7	94
236	Macroscopic entanglement and violation of Bell's inequalities between two spatially separated quantum dots in a planar photonic crystal system. Optics Express, 2009, 17, 11505.	1.7	59
237	Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder. Optics Express, 2009, 17, 12470.	1.7	26
238	Two-dimensionally relocatable microfiber-coupled photonic crystal resonator. Optics Express, 2009, 17, 13009.	1.7	13
239	High-brightness single photon source from a quantum dot in a directional-emission nanocavity. Optics Express, 2009, 17, 14618.	1.7	101
240	Photonic crystal nanocavity laser with a single quantum dot gain. Optics Express, 2009, 17, 15975.	1.7	110
241	Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity. Optics Express, 2009, 17, 17118.	1.7	37

#	Article	IF	CITATIONS
242	Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation. Optics Express, 2009, 17, 17570.	1.7	42
243	Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration. Optics Express, 2009, 17, 18093.	1.7	43
244	Epitaxial quantum dots in stretchable optical microcavities. Optics Express, 2009, 17, 22452.	1.7	41
245	Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED. Optics Express, 2009, 17, 22474.	1.7	11
246	Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity. Optics Express, 2009, 17, 22689.	1.7	42
247	Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure. Applied Optics, 2009, 48, 4899.	2.1	7
248	Pure emitter dephasing: A resource for advanced solid-state single-photon sources. Physical Review A, 2009, 79, .	1.0	102
249	Distributed quantum-information processing with fullerene-caged electron spins in distant nanotubes. Physical Review A, 2009, 80, .	1.0	7
250	Strong-coupling cavity QED using rare-earth-metal-ion dopants in monolithic resonators: What you can do with a weak oscillator. Physical Review A, 2009, 80, .	1.0	64
251	Electrical control of spontaneous emission and strong coupling for a single quantum dot. New Journal of Physics, 2009, 11, 023034.	1.2	130
252	Luminescence spectra of quantum dots in microcavities. II. Fermions. Physical Review B, 2009, 79, .	1.1	111
253	Luminescence spectra of quantum dots in microcavities. I. Bosons. Physical Review B, 2009, 79, .	1.1	81
254	Light scattering and Fano resonances in high-Q photonic crystal nanocavities. Applied Physics Letters, 2009, 94, .	1.5	250
255	High quality factor photonic crystal nanobeam cavities. Applied Physics Letters, 2009, 94, .	1.5	416
256	Coupled photonic crystal nanobeam cavities. Applied Physics Letters, 2009, 95, .	1.5	92
257	Entangled photons from a strongly coupled quantum dot-cavity system. Physical Review B, 2009, 79, .	1.1	19
258	Extracavity quantum vacuum radiation from a single qubit. Physical Review A, 2009, 80, .	1.0	174
259	Hybrid quantum devices and quantum engineering. Physica Scripta, 2009, T137, 014001.	1.2	243

#	Article	IF	CITATIONS
260	Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Applied Physics Letters, 2009, 94, .	1.5	112
261	Post-Selected Indistinguishable Photons from the Resonance Fluorescence of a Single Quantum Dot in a Microcavity. Physical Review Letters, 2009, 103, 167402.	2.9	226
262	Tunable All-Optical Filtering and Buffering in a Coupled Quantum Dot-Planar Photonic Crystal Structure. Chinese Physics Letters, 2009, 26, 084203.	1.3	3
263	Solitonic behaviour in coupled multi atom–cavity systems. New Journal of Physics, 2009, 11, 013059.	1.2	20
264	Photon creation from vacuum and interactions engineering in nonstationary circuit QED. Journal of Physics: Conference Series, 2009, 161, 012029.	0.3	25
265	Photon blockade in a photonic crystal cavity with a strongly coupled quantum dot. Proceedings of SPIE, 2009, , .	0.8	0
266	Deterministic coupling of site-selected InAs/InP quantum dots to 2D photonic crystal microcavities. , 2009, , .		0
267	Polarization-sensitive near-field investigation of photonic crystal microcavities. Applied Physics Letters, 2009, 94, 163102.	1.5	29
268	Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities. Applied Physics Letters, 2009, 95, 123113.	1.5	26
269	Dicke model: Entanglement as a finite size effect. Journal of Physics: Conference Series, 2009, 193, 012134.	0.3	6
270	Atomic decay rate enhancement inside a cylindrical quantum nanotube. International Journal of Nanomanufacturing, 2009, 4, 84.	0.3	1
271	Dipole emission rate inside a nano quantum dot resonator. International Journal of Nanomanufacturing, 2009, 4, 92.	0.3	2
273	Thermal activated carrier transfer between InAs quantum dots in very low density samples. Journal of Physics: Conference Series, 2010, 210, 012015.	0.3	0
275	A superconducting resonator designed for coupling to spin based qubits in quantum dots. Journal of Physics: Conference Series, 2010, 245, 012024.	0.3	1
276	Emission properties of single InAs/GaAs quantum dot pairs and molecules grown in GaAs nanoholes. Journal of Physics: Conference Series, 2010, 210, 012028.	0.3	1
277	Controlled placement of single photon sources for quantum integration. Proceedings of SPIE, 2010, , .	0.8	0
278	Non-resonant cavity-quantum dot coupling. Journal of Physics: Conference Series, 2010, 210, 012058.	0.3	0
279	Photoluminescence of single quantum dots in microcavities. Journal of Physics: Conference Series, 2010, 210, 012025.	0.3	3

ARTICLE IF CITATIONS # Advances in 3D photonic crystal nanocavity with quantum dots., 2010,,. 280 0 Integrated photonic crystal networks with coupled quantum dots., 2010,,. Recent advances on single photon sources based on single colloidal nanocrystals. Opto-electronics 282 2.4 28 Review, 2010, 18, 1-9. Quantum memories. European Physical Journal D, 2010, 58, 1-22. Dynamics of a two-level system coupled to a quantum oscillator: transformed rotating-wave 284 0.6 59 approximation. European Physical Journal D, 2010, 59, 473-478. Deterministic Coupling of a Single Nitrogen Vacancy Center to a Photonic Crystal Cavity. Nano 4.5 309 Letters, 2010, 10, 3922-3926. Proposal for high-speed and high-fidelity electron-spin initialization in a negatively charged quantum 286 1.0 6 dot coupled to a microcavity in a weak external magnetic field. Physical Review A, 2010, 82, . Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation. 287 1.0 79 Physical Review A, 2010, 82, . Master equation approach for interacting slow- and stationary-light polaritons. Physical Review A, 288 1.0 11 2010, 82, Zeno–anti-Zeno crossover via external fields in a one-dimensional coupled-cavity waveguide. Physical 289 1.0 Review A, 2010, 82, Probing long-lived dark excitons in self-assembled quantum dots. Physical Review B, 2010, 81, . 290 1.1 67 Manipulating light with strongly modulated photonic crystals. Reports on Progress in Physics, 2010, 8.1 325 73,096501 Quantum Plasmonics with Quantum Dot-Metal Nanoparticle Molecules: Influence of the Fano Effect 292 2.9 280 on Photon Statistics. Physical Review Letters, 2010, 105, 263601. Photonic crystal cavity modes in the visible range characterized by scattering spectroscopy. Physical 1.0 Review A, 2010, 82, . Anticrossing in the PL spectrum of light–matter coupling under incoherent continuous pumping. 294 1.4 4 Superlattices and Microstructures, 2010, 47, 16-18. Tunneling in 2-D quantum dots via quantum adiabatic switching route. Journal of Physics and 1.9 Chemistry of Solids, 2010, 71, 745-751. The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum 296 3.14 Dots. Nanoscale Research Letters, 2010, 5, 464-468. Generalised quantum weakest preconditions. Quantum Information Processing, 2010, 9, 441-449.

#	Article	IF	CITATIONS
298	A Polarization Diversity Two-Dimensional Photonic-Crystal Device. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 70-76.	1.9	5
301	Onâ€chip single photon sources using planar photonic crystals and single quantum dots. Laser and Photonics Reviews, 2010, 4, 499-516.	4.4	129
302	Entanglement and disentanglement in circuit QED architectures. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 363-368.	1.3	8
303	Experimental mapping of the spatial and angular emission patterns in photonic crystal microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1148-1150.	1.3	1
304	Sub-wavelength probing and modification of photonic crystal nano-cavities. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 78-85.	1.0	0
305	GaAs photonic crystal slab nanocavities: Growth, fabrication, and quality factor. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 1-6.	1.0	13
306	Design of microcavities in diamond-based photonic crystals by Fourier- and real-space analysis of cavity fields. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 150-162.	1.0	9
307	Room temperature single-photon sources based on single colloidal nanocrystals in microcavities. Superlattices and Microstructures, 2010, 47, 187-191.	1.4	5
308	Transmission electron microscopy study of vertical quantum dots molecules grown by droplet epitaxy. Applied Surface Science, 2010, 256, 5659-5661.	3.1	4
309	Record‣ow Inhomogeneous Broadening of Siteâ€Controlled Quantum Dots for Nanophotonics. Small, 2010, 6, 1268-1272.	5.2	77
310	Integration of a Closeâ€Packed Quantum Dot Monolayer with a Photonicâ€Crystal Cavity Via Interfacial Selfâ€Assembly and Transfer. Small, 2010, 6, 2126-2129.	5.2	13
311	Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system. Nature Physics, 2010, 6, 279-283.	6.5	300
312	Lasing under strong coupling. Nature Physics, 2010, 6, 244-245.	6.5	6
313	Half-flux redux. Nature Physics, 2010, 6, 245-246.	6.5	1
314	Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Physics, 2010, 6, 912-918.	6.5	142
315	Exact Calculation of Local Density of States in Two-Dimensional Photonic Crystals. Chinese Physics Letters, 2010, 27, 104213.	1.3	2
316	Nanofluidic control of coupled photonic crystal resonators. Applied Physics Letters, 2010, 96, 141114.	1.5	24
317	Science and Engineering of Photonic Crystals. Progress in Optics, 2010, , 271-317.	0.4	7

#	Article	IF	CITATIONS
318	Correlation of Dirac potentials and atomic inversion in cavity quantum electrodynamics. Journal of Mathematical Physics, 2010, 51, 072103.	0.5	5
319	Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide. Applied Physics Letters, 2010, 96, .	1.5	48
320	Quantum computation with doped silicon cavities. Physical Review B, 2010, 81, .	1.1	11
321	Semianalytical approach to the design of photonic crystal cavities. Physical Review B, 2010, 82, .	1.1	17
322	Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities. Physical Review B, 2010, 81, .	1.1	31
323	Coherent level mixing in dot energy spectra measured by magnetoresonant tunneling spectroscopy of vertical quantum dot molecules. Physical Review B, 2010, 81, .	1.1	4
324	Signatures of the superfluid-insulator phase transition in laser-driven dissipative nonlinear cavity arrays. Physical Review A, 2010, 81, .	1.0	111
325	Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer. Physical Review A, 2010, 81, .	1.0	15
326	Photon antibunching in strongly coupled exciton–semiconductor cavity systems: Role of off-resonant coupling to multiple excitons. Physical Review B, 2010, 81, .	1.1	9
327	Teleportation between distant qudits via scattering of mobile qubits. Physical Review A, 2010, 81, .	1.0	10
328	Polariton Crystallization in Driven Arrays of Lossy Nonlinear Resonators. Physical Review Letters, 2010, 104, 113601.	2.9	122
329	Characterization of electronic structure of silicon nanocrystals in silicon nitride by capacitance spectroscopy. Applied Physics Letters, 2010, 96, 223110.	1.5	11
330	Polychromatic Photonic Quasicrystal Cavities. Physical Review Letters, 2010, 104, 243901.	2.9	18
331	A scanning microcavity for in situ control of single-molecule emission. Applied Physics Letters, 2010, 97, 021107.	1.5	49
332	Quantum dot micropillars. Journal Physics D: Applied Physics, 2010, 43, 033001.	1.3	134
333	Strongly coupled single quantum dot in a photonic crystal waveguide cavity. Applied Physics Letters, 2010, 97, 111101.	1.5	40
334	Nanometer positioning of single quantum dots by flow control. , 2010, , .		0
335	Zero-cell photonic crystal nanocavity laser with quantum dot gain. Applied Physics Letters, 2010, 97, .	1.5	19

ARTICLE IF CITATIONS # Photon antibunching and nonlinear effects for a quantum dot coupled to a semiconductor cavity. 336 1.1 4 Physical Review B, 2010, 82, . Photoluminescence of photonic polaritons. Physical Review B, 2010, 81, . 1.1 338 Josephson Light-Emitting Diode. Physical Review Letters, 2010, 104, 156802. 2.9 40 Nonlinear photoluminescence spectra from a quantum-dot–cavity system: Interplay of pump-induced 1.1 stimulated emission and anharmonic cavity QED. Physical Review B, 2010, 81, . Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum 340 1.1 12 dots. Physical Review B, 2010, 82, . Linewidth broadening and emission saturation of a resonantly excited quantum dot monitored via an 1.1 off-resonant cavity mode. Physical Review B, 2010, 82, . 342 Excitations of Strongly Correlated Lattice Polaritons. Physical Review Letters, 2010, 104, 216402. 2.9 44 Two-photon lasing by a single quantum dot in a high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML 343 1.1 display="inline"><mml:mi>Q</mml:mi></mml:math>microcavity. Physical Review B, 2010, 81, . Temporal monitoring of nonresonant feeding of semiconductor nanocavity modes by quantum dot 344 1.1 50 multiexciton transitions. Physical Review B, 2010, 81, . Non-Markovian Model of Photon-Assisted Dephasing by Electron-Phonon Interactions in a Coupled 345 Quantum-Dotâ€"Cavity System. Physical Review Letters, 2010, 104, 157401. Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Physical Review B, 2010, 346 112 1.1 81,. Quantum interface between light and nuclear spins in quantum dots. Physical Review B, 2010, 81, . 1.1 Deterministic emitter-cavity coupling using a single-site controlled quantum dot. Physical Review B, 348 1.1 55 2010, 82, . Mutual coupling of two semiconductor quantum dots via an optical nanocavity. Physical Review B, 349 1.1 2010, 82, . One-step generation of cluster state by adiabatic passage in coupled cavities. Applied Physics Letters, 350 1.5 40 2010, 96, Photoluminescence of self-assembled InAs quantum dots embedded in photonic crystal nanocavities with shifted air holes. Nanotechnology, 2010, 21, 055201. A single-step electron beam lithography of buried nanostructures using cathodoluminescence 352 1.322 imaging and low temperature. Nanotechnology, 2010, 21, 375303. Mode hybridization in photonic crystal molecules. Applied Physics Letters, 2010, 97, 063101. 1.5

ARTICLE IF CITATIONS # Coherent control of long-distance steady-state entanglement in lossy resonator arrays. Europhysics 354 0.7 17 Letters, 2010, 91, 10003. On the spectroscopy of quantum dots in microcavities. Journal of Physics: Conference Series, 2010, 0.3 210, 012018. Interfacing nuclear spins in quantum dots to a cavity or traveling-wave fields. New Journal of 356 1.2 11 Physics, 2010, 12, 043026. Linewidth broadening of a quantum dot coupled to an off-resonant cavity. Physical Review B, 2010, 82, 1.1 Few-photon optical diode. Physical Review B, 2010, 81, . 358 1.1 112 Resonant Excitation of a Quantum Dot Strongly Coupled to a Photonic Crystal Nanocavity. Physical Review Letters, 2010, 104, 073904. Near field mapping of coupled photonic crystal microcavities. Journal of Physics: Conference Series, 360 0.3 0 2010, 210, 012059. Quantum computing by optical control of electron spins. Advances in Physics, 2010, 59, 703-802. 35.9 361 Nanopolaritons: Vacuum Rabi Splitting with a Single Quantum Dot in the Center of a Dimer 362 7.3 241 Nanoantenna. ACS Nano, 2010, 4, 6369-6376. Enhanced quantum confinement due to nonuniform composition in alloy quantum dots. 1.3 Nanotechnology, 2010, 21, 095401. Fast Electrical Control of a Quantum Dot Strongly Coupled to a Photonic-Crystal Cavity. Physical 364 2.9 84 Review Letters, 2010, 104, 047402. Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots. Chinese 0.6 Journal of Chemical Physics, 2010, 23, 195-200. Positioning and Immobilization of Individual Quantum Dots with Nanoscale Precision. Nano Letters, 366 4.5 39 2010, 10, 4673-4679. Manipulating Quantum Dots to Nanometer Precision by Control of Flow. Nano Letters, 2010, 10, 367 4.5 54 2525-2530. Quantum simulation of Heisenberg spin chains with next-nearest-neighbor interactions in coupled 368 1.0 40 cavities. Physical Review A, 2010, 81, . Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing 1.0 292 nonclassical states. Physical Review A, 2010, 81, . Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar 370 1.7 24 photonic-crystal cavity. Optics Express, 2010, 18, 2719. 371 One-dimensional parabolic-beam photonic crystal laser. Optics Express, 2010, 18, 5654.

		CITATION REPORT	
#	Article	IF	Citations
372	Effect of pure dephasing on the Jaynes-Cummings nonlinearities. Optics Express, 2010, 18, 70)02. 1.7	28
373	High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity. Optics Express 18, 8144.	, 2010, 1. 7	43
374	Programmable photonic crystal nanobeam cavities. Optics Express, 2010, 18, 8705.	1.7	118
375	Time-resolved luminescence of the coupled quantum dot–microcavity system: general theo Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 045001.	ry. 0.7	4
376	Cavity-based single-photon sources. Contemporary Physics, 2010, 51, 289-313.	0.8	71
377	Many-body phenomena in QED-cavity arrays [Invited]. Journal of the Optical Society of Americ Optical Physics, 2010, 27, A130.	ca B: 0.9	112
378	Photonic crystal lasers—ultimate nanolasers and broad-area coherent lasers [Invited]. Journa Optical Society of America B: Optical Physics, 2010, 27, B1.	al of the 0.9	51
379	Photon absorption in interacting quantum dots doped in nanofibers. Journal of the Optical Sc America B: Optical Physics, 2010, 27, 2759.	ciety of 0.9	4
380	Mechanism of entanglement preservation. Physical Review A, 2010, 81, .	1.0	108
381	A review of the coherent optical control of the exciton and spin states of semiconductor quar dots. Semiconductor Science and Technology, 2010, 25, 103001.	itum 1.0	119
382	Emission characteristics of a highly correlated system of a quantum dot coupled to two distin micropillar cavity modes. Physical Review B, 2010, 82, .	.ct 1.1	5
383	Surface Plasmon Mediated Strong Excitonâ^ Photon Coupling in Semiconductor Nanocrystals Letters, 2010, 10, 274-278.	. Nano 4.5	264
384	Magnetic Imaging in Photonic Crystal Microcavities. Physical Review Letters, 2010, 105, 1239	902. 2.9	52
385	Dissipation-induced Tonks-Girardeau gas of polaritons. Physical Review A, 2010, 81, .	1.0	41
386	Cavity Quantum Electrodynamics with Anderson-Localized Modes. Science, 2010, 327, 1352-	-1355. 6.0	293
387	Structure and composition profile of InAs/GaAs quantum dots capped by an InGaAs and InAlA combination layer. Nanotechnology, 2010, 21, 255705.	S 1.3	5
388	Cavity quantum electrodynamics with semiconductor quantum dots: Role of phonon-assisted feeding. Physical Review B, 2010, 81, .	cavity 1.1	94
389	Linear spectrum of a quantum dot coupled to a nanocavity. Physical Review B, 2010, 81, .	1.1	32

	CITATION REPOR	Т	
Article	IF	Сіт	ATIONS
Quantum-Dot-Spin Single-Photon Interface. Physical Review Letters, 2010, 105, 033601.	2.9	74	
Light emission properties of planar source in multilayer structures with photonic crystal patterns Journal of Applied Physics, 2010, 108, 063103.	. 1.1	6	
Polarization-dependent strong coupling in elliptical high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>micropillar cavities. Physical Review B, 2010</mml:math 	1.1 9, 82, .	21	
Nonlinear emission spectra of quantum dots strongly coupled to a photonic mode. Physical Review 2010, 82, .	ew B, 1.1	25	
Optical manipulation of quantum dot excitons strongly coupled to photonic crystal cavities. Proceedings of SPIE, 2010, , .	0.8	1	
Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Physica Review A, 2010, 81, .	al 1. 0	51	
Optically controlled quantum dot gated transistors with high on/off ratio. Applied Physics Letters 2010, 96, 083503.	^{3,} 1.5	8	
Origin of the non-resonant quantum dot-cavity coupling. , 2010, , .		Ο	
Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Applied Physics Letters, 2010, 97, 14110	8. ^{1.5}	219)
A scanning fiber-based microcavity for controlling single molecule emission. , 2010, , .		0	
Different strategies towards the deterministic coupling of a single Quantum Dot to a photonic crystal cavity mode. , 2011, , .		0	
Selective nano-assembly of single quantum dots on a two dimensional surface. , 2011, , .		0	
Luminescence spectra of quantum dots in microcavities. III. Multiple quantum dots. Physical Revi 2011, 84, .	ew B, 1.1	32	
Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipula Q-factor and detuning. Physical Review B, 2011, 84, .	ting 1.1	12	
Deterministic nano-manipulation and immobilization of single quantum dots. , 2011, , .		0	
Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant ligh scattering. Physical Review B, 2011, 84, .	t 1.1	39	
Enhanced Fluorescence Emission from Single Molecules on a Two-Dimensional Photonic Crystal with Low Background Emission. Journal of Physical Chemistry Letters, 2011, 2, 1651-1656.	Slab 2.1	11	
Two-photon transport in a waveguide coupled to a cavity in a two-level system. Physical Review / 84, .	A, 2011, 1.0	119	
	ARTICLE Quantum-Dot Spin Single Photon Interface. Physical Review Letters, 2010, 105, 033601. Jight emission properties of planar source in multilayer structures with photonic crystal patterns Polarization-dependent strong coupling in elliptical high-combinath Synthesemils-"http://www.w3.org/1998/Math/MathML!" Optical manipulation of quantum dots strongly coupled to a photonic crystal cavities. Proceedings of SPIE, 2010, Transfer behavior of quantum dot excitons strongly coupled to photonic crystal cavities. Pytical manipulation of quantum dot excitons strongly coupled to photonic crystal cavities. Proceedings of SPIE, 2010, Transfer behavior of quantum states between atoms in photonic crystal coupled cavities. Optically controlled quantum dot gated transistors with high onloff ratio. Applied Physics Letters 2010, 95, 083503. Origin of the non-resonant quantum dot-cavity coupling., 2010, Ascanning fiber-based microcavity for controlling single molecule emission., 2010, Selective nano-assembly of single quantum dots on a two dimensional surface., 2011, Quinting the emission of quantum dots in microcavities. Ill. Multiple quantum dots. Physical Review R, 2011, 84. Conternistic nano-manipulation on alumobilization of single quantum dots., 2011, Luminescence spectra of quantum dots embedded in photonic crystal nanocavity by manipulation of duantum dots minecroc	Arricle IF Quantum-Dot-Spin Single-Photon Interface. Physical Review Letters, 2010, 105, 033601. 2.9 Light emission properties of planar source in multilayer structures with photonic crystal patterns. 1.1 Polarization-dependent strong coupling in elliptical high-commentation minimum. 1.1 MinimumTrap/loww.w3. 2019 (198). MolthMath MLT 1.1 Availation of pendent strong coupling in elliptical high-commentation minimum. 1.1 Nonlinear emission spectra of quantum dots strongly coupled to a photonic crystal Review B, 2010, 82, . 1.1 Optical manipulation of quantum dot excitons strongly coupled to photonic crystal cavities. 1.0 Optical manipulation of quantum dot excitons strongly coupled to photonic crystal cavities. 1.0 Optical manipulation of quantum dot excitons strongly coupled to photonic crystal cavities. 1.0 Optical manipulation of quantum dot excitons strongly coupled to photonic crystal cavities. 1.0 Optical manipulation of quantum dot cavity coupling., 2010, 1.1 Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodamond via coupling to a photonic crystal cavity. Applied Physics Letters, 2010, 97, 141108. 1.0 Selective nano assembly of single quantum dots on a two dimensional surface., 2011, 1.1 Controlling the emission of quantum dots in nicrocavities. III.	ARTICLE IF CITA Quantum-Dot-Spin Single-Photon Interface. Physical Review Letters, 2010, 105, 033601. 29 74 Light enticsion properties of planar source in multiblyer structures with photonic crystal patterns. 11 6 Pediratation dependent storage coupling in elliphyer structures with photonic crystal patterns. 11 21 Production of quantum dots strongly coupled to a photonic mode. Physical Review B, 2010, 82. 11 23 Optical manipulation of quantum dots strongly coupled to a photonic crystal cavities. Physical Review B, 2010, 82. 0.8 1 Transfer behavior of quantum dots strongly coupled to photonic crystal cavities. Physical Review B, 2010, 82. 0.8 1 Optical manipulation of quantum dots strongly coupled to photonic crystal cavities. Physical Review B, 2010, 82. 0.8 1 Optical manipulation of quantum dots strongly coupled to photonic crystal cavities. Physical Review B, 2010, 82. 0.8 1 Optical manipulation of quantum dots gated transistors with high onioff ratio. Applied Physics Letters, 2010, 96, 083503. 16 1 Otign of the non-resonant quantum dots cavity coupling. 2010, 0 0 1 20 Proceedings for SNR, 2011, 0 0 0 0 0 Selective neno-asseembily of single quant

ARTICLE IF CITATIONS Probing the statistical properties of Anderson localization with quantum emitters. New Journal of 408 1.2 40 Physics, 2011, 13, 063044. Few emitters in a cavity: from cooperative emission to individualization. New Journal of Physics, 2011, 409 1.2 13,093020. Phonon-Dressed Mollow Triplet in the Regime of Cavity Quantum Electrodynamics: Excitation-Induced 410 2.9 141 Dephasing and Nonperturbative Cavity Feeding Effects. Physical Review Letters, 2011, 106, 247403. Dephasing of Triplet-Sideband Optical Emission of a Resonantly Driven<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>InAs</mml:mi><mml:mo>/</mml:mo><mml:mi>GaAs</mml:mi></mml:math>Quantum Dot inside a Microcavity. Physical Review Letters. 2011. 106. 247402. Integrated quantum optical networks based on quantum dots and photonic crystals. New Journal of 412 1.2 92 Physics, 2011, 13, 055025. Near-field observations of light confinement in a two dimensional lithium niobate photonic crystal 1.1 cavity. Journal of Applied Physics, 2011, 110, . 414 Photonic Crystal Waveguides and Filters., 2011, , 509-539. 0 Deterministic nanoassembly of a coupled quantum emitter–photonic crystal cavity system. Applied 415 1.5 Physics Letters, 2011, 98, . 416 Ultrahigh-<i>Q</i> Nanocavities Written with a Nanoprobe. Nano Letters, 2011, 11, 3634-3642. 4.5 23 1.1 24 Nanotechnology Research Directions for Societal Needs in 2020., 2011, , . 418 202 Coherent generation of time-bin entangled photon pairs using the biexciton cascade and 419 1.1 cavity-assisted piecewise adiabatic passage. Physical Review B, 2011, 83, . Directed Placement of Gold Nanorods Using a Removable Template for Guided Assembly. Nano Letters, 420 4.5 72 2011, 11, 3957-3962. High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 265. 421 Unconventional geometric phase gate with two nonidentical quantum dots trapped in a photonic 422 0.9 6 crystal cavity. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1959. display="inline"> < mml:msub> < mml:mrow /></mml:mrow></mml:mn>1</mml:mn></mml:mo>â°`</mml:mo></mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:math>P<mr 423 xmlns:mml="http://www.w3.org/1998/Math/MathML' 1.1 display="inline"> < mml:mrow > < mml:msub > < mml:mrow Hybrid Solid-State Qubits: The Powerful Role of Electron Spins. Annual Review of Condensed Matter 424 5.267 Physics, 2011, 2, 189-212. Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot. Optics Express, 2011, 19, 4182.

ARTICLE IF CITATIONS # Observation of strong coupling through transmission modification of a cavity-coupled photonic 426 1.7 34 crystal waveguide. Optics Express, 2011, 19, 5398. Coupling slot-waveguide cavities for large-scale quantum optical devices. Optics Express, 2011, 19, 427 1.7 6354. Lifetime distribution of spontaneous emission from emitter(s) in three-dimensional woodpile 428 1.7 8 photonic crystals. Optics Express, 2011, 19, 11623. Statistical studies of photonic heterostructure nanocavities with an average Q factor of three 429 million. Optics Express, 2011, 19, 11916. Cavity formation on an optical nanofiber using focused ion beam milling technique. Optics Express, 430 1.7 99 2011, 19, 14040. Transfer of photonic crystal membranes to a transparent gel substrate. Optics Express, 2011, 19, 19532. 1.7 Finite-Difference Time-Domain Analysis of Photonic Crystal Slab Cavities with Two-Level Systems. 432 1.7 6 Optics Express, 2011, 19, 23067. Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity. 1.7 Optics Express, 2011, 19, 23377. 434 Nanobeam photonic bandedge lasers. Optics Express, 2011, 19, 24055. 1.7 28 Experimental investigation of thermo-optic effects in SiC and Si photonic crystal nanocavities. Optics 1.7 28 Letters, 2011, 36, 3981. Steady-state entanglement for distant atoms by dissipation in coupled cavities. Physical Review A, 2011, 436 1.0 65 84,. Coherent population trapping in intersubband photocurrent spectra. Physical Review B, 2011, 83, . 1.1 Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 2011, 480, 193-199. 438 13.7 327 Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons. Nature 15.6 140 Photonics, 2011, 5, 605-609. 440 Electrostatic tuning of optomechanical cavities to semiconductor quantum dots., 2011,,. 0 A hybrid quantum photonic interface for solid state qubits. Proceedings of SPIE, 2011, , . 441 Excitonâ€"polariton lightâ€"semiconductor coupling effects. Nature Photonics, 2011, 5, 273-273. 442 15.6 144 Strongly modified plasmon–matter interaction with mesoscopic quantum emitters. Nature Physics, 443 6.5 2011, 7, 215-218.

	CITATION RE	PORT	
#	Article	IF	Citations
444	Cavity quantum electrodynamics in the ultrastrong coupling regime. Scientia Iranica, 2011, 18, 820-826.	0.3	5
445	FDTD Simulation of Inverse 3-D Face-Centered Cubic Photonic Crystal Cavities. IEEE Journal of Quantum Electronics, 2011, 47, 1480-1492.	1.0	7
446	Electrically Driven Quantum Dot Micropillar Light Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1670-1680.	1.9	17
447	Spontaneous Two-Photon Emission from a Single Quantum Dot. Physical Review Letters, 2011, 107, 233602.	2.9	124
448	Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates. Nanotechnology, 2011, 22, 065302.	1.3	53
449	Narrow spectral linewidth from single site-controlled In(Ga)As quantum dots with high uniformity. Applied Physics Letters, 2011, 98, .	1.5	61
450	Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities. Nanotechnology, 2011, 22, 465203.	1.3	19
451	Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides. New Journal of Physics, 2011, 13, 103010.	1.2	55
452	Ultra-low threshold polariton lasing in photonic crystal cavities. Applied Physics Letters, 2011, 99, .	1.5	59
453	Localized defect modes in finite magnetic two-dimensional photonic crystals. European Physical Journal B, 2011, 81, 63-68.	0.6	0
454	Controlled cavity-assisted generation of single and entangled photons in semiconductor quantum dots. European Physical Journal B, 2011, 82, 29-35.	0.6	5
455	Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities. Physical Review A, 2011, 84, .	1.0	72
456	Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules. Physical Review A, 2011, 83, .	1.0	44
457	An Effective Heisenberg Spin Chain in a Fiber-Cavity System. Chinese Physics Letters, 2011, 28, 120303.	1.3	1
458	Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chemical Reviews, 2011, 111, 3669-3712.	23.0	2,410
459	Phonon-Mediated Coupling of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>InGaAs</mml:mi><mml:mo>/</mml:mo><mml:mi>GaAs</mml:mi></mml:math> Quant Excitons to Photonic Crystal Cavities. Physical Review Letters, 2011, 106, 227402.	u nD ot	85
460	Cavity linewidth narrowing by voltage-controlled induced transparency in asymmetry quantum dot molecules. Optics Communications, 2011, 284, 824-827.	1.0	23
461	Quantumâ€dot excitons in nanostructured environments. Physica Status Solidi (B): Basic Research, 2011, 248, 375-383.	0.7	2

#	Article	IF	CITATIONS
462	InGaN quantum dot growth in the limits of Stranski–Krastanov and spinodal decomposition. Physica Status Solidi (B): Basic Research, 2011, 248, 1765-1776.	0.7	30
463	WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser and Photonics Reviews, 2011, 5, 553-570.	4.4	246
464	Single quantum dot nanolaser. Laser and Photonics Reviews, 2011, 5, 607-633.	4.4	104
465	Semiconductor Selfâ€Assembled Quantum Dots: Present Status and Future Trends. Advanced Materials, 2011, 23, 2372-2376.	11.1	21
466	Double-state controllable optical switching through three tunnel-coupled quantum dots inside waveguide coupled photonic crystal microcavity. Optics Communications, 2011, 284, 1893-1900.	1.0	10
467	The simulation of XYZ-spin chain in coupled cavities. Optics Communications, 2011, 284, 2250-2253.	1.0	1
468	Influences of pure dephasing and incoherent pumping in a coupled quantum dot–cavity system and its application. Physica B: Condensed Matter, 2011, 406, 3805-3809.	1.3	2
469	Transmission-dispersion characteristics of waveguide-coupled photonic crystal two-mode nanocavity embedding three tunnel-coupled quantum dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 2738-2746.	0.9	10
470	Effective cavity pumping from weakly coupled quantum dots. Superlattices and Microstructures, 2011, 49, 241-245.	1.4	9
471	Chemical Composition and Thermal Stability of Atomic Force Microscope-Assisted Anodic Oxides as Nanomasks for Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2011, 50, 120205.	0.8	2
472	Detecting quantum phase transitions of photons through a defect cavity. New Journal of Physics, 2011, 13, 083036.	1.2	0
473	Transport spectroscopy of non-equilibrium many-particle spin states in self-assembled quantum dots. Nature Communications, 2011, 2, 209.	5.8	28
474	Arrays of waveguide-coupled optical cavities that interact strongly with atoms. New Journal of Physics, 2011, 13, 113002.	1.2	37
475	Directed self-assembly of InAs quantum dots on nano-oxide templates. Applied Physics Letters, 2011, 98, 141112.	1.5	11
476	Influence of Electron–Acoustic-Phonon Scattering on Intensity Power Broadening in a Coherently Driven Quantum-Dot–Cavity System. Physical Review X, 2011, 1, .	2.8	78
477	Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures. Physical Review B, 2011, 83, .	1.1	36
478	Phonon mediated off-resonant quantum dot–cavity coupling under resonant excitation of the quantum dot. Physical Review B, 2011, 84, .	1.1	85
479	Influence of electron-acoustic phonon scattering on off-resonant cavity feeding within a strongly coupled quantum-dot cavity system. Physical Review B, 2011, 83, .	1.1	75

ARTICLE IF CITATIONS # Room-temperature quantum-dot-like luminescence from site-controlled InGaN quantum disks. Applied 480 1.5 13 Physics Letters, 2011, 99, 263105. Quantum complementarity of cavity photons coupled to a three-level system. Physical Review A, 2011, 481 1.0 84,. Quantum phase transitions for two coupled cavities with dipole-interaction atoms. Physical Review A, 482 1.0 12 2011, 84, Few-photon transport in low-dimensional systems. Physical Review A, 2011, 83, . Resonant atom-field interaction in large-size coupled-cavity arrays. Physical Review A, 2011, 83, . 484 1.0 21 Emission characteristics of laser-driven dissipative coupled-cavity systems. Physical Review A, 2011, 83, . 1.0 A circular dielectric grating for vertical extraction of single quantum dot emission. Applied Physics 486 1.5 104 Letters, 2011, 99, . Imaging resonant modes in photonic crystal nanocavity by atomic force microscope nano-oxidation. 1.5 Applied Physics Letters, 2011, 98, 191110. Strong Purcell effect observed in single thick-shell CdSe/CdS nanocrystals coupled to localized 488 1.1 41 surface plasmons. Physical Review B, 2011, 84, . Strongly interacting photons in quantum dot cavity-QED., 2011, , . Dynamics of elastic and inelastic energy transfer between quantum dots in a microcavity. Physical 490 4 1.1 Réview B, 2011, 84, . Dislocation density-dependent quality factors in InGaN quantum dot containing microdisks. Applied 1.5 Physics Letters, 2011, 98, . Strongly Modified Spontaneous Emission Rates in Diamond-Structured Photonic Crystals. Physical 492 2.9 43 Review Letters, 2011, 107, 143902. All Optical Switch of Vacuum Rabi Oscillations: The Ultrafast Quantum Eraser. Physical Review 28 Letters, 2011, 106, 013601. Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk 494 1.1 15 microcavities. Physical Review B, 2011, 84, . Observation of Non-Markovian Dynamics of a Single Quantum Dot in a Micropillar Cavity. Physical 118 Review Letters, 2011, 106, 233601. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Applied 496 1.584 Physics Letters, 2011, 98, . Nonresonant feeding of photonic crystal nanocavity modes by quantum dots. Journal of Applied 497 1.1 Physics, 2011, 109, 102404.

#	Article	IF	CITATIONS
498	Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler. Applied Physics Letters, 2011, 99, .	1.5	47
499	Near-field control of optical bistability in a nanocavity. , 2011, , .		Ο
500	Addressable subwavelength grids of confined light in a multislotted nanoresonator. Applied Physics Letters, 2011, 98, 081101.	1.5	9
501	Metal Organic Chemical Vapor Deposition Growth of High Spectral Quality Site-Controlled InAs Quantum Dots Using <i>In situ</i> Patterning. Applied Physics Express, 2011, 4, 112001.	1.1	5
502	A tunable microcavity. Journal of Applied Physics, 2011, 110, 053107.	1.1	49
503	Role of the lightmatter coupling strength on non-Markovian phonon effects in semiconductor cavity QED. , 2011, , .		0
504	Three-dimensional nanometer-scale optical cavities of indefinite medium. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11327-11331.	3.3	126
505	Creation of a stop band by introducing parallel-hetero-perturbation in two-dimensional photonic crystal waveguides. Journal of Optics (United Kingdom), 2011, 13, 055101.	1.0	2
506	Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities. Chinese Physics B, 2011, 20, 110306.	0.7	2
507	A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity. Nanotechnology, 2011, 22, 055202.	1.3	18
508	Entanglement dynamics of two independent cavity-embedded quantum dots. Physica Scripta, 2011, T143, 014004.	1.2	26
509	Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane. , 2011, , .		0
510	Bichromatic driving of a solid-state cavity quantum electrodynamics system. New Journal of Physics, 2012, 14, 013028.	1.2	15
511	Non-equilibrium many-body effects in driven nonlinear resonator arrays. New Journal of Physics, 2012, 14, 103025.	1.2	52
512	Overcoming phonon-induced dephasing for indistinguishable photon sources. New Journal of Physics, 2012, 14, 113004.	1.2	8
513	Photon condensation in circuit quantum electrodynamics by engineered dissipation. New Journal of Physics, 2012, 14, 055005.	1.2	45
514	Light-mediated quantum phase transition and manipulations of the quantum states of arrayed two-level atoms. New Journal of Physics, 2012, 14, 073018.	1.2	3
515	Terahertz Characteristics of Two Dimensional Photonic Crystal Cavity Based on 3D Finite-Difference Time-Domain Method. Advanced Materials Research, 2012, 602-604, 809-812.	0.3	0

		CITATION R	EPORT	
# 516	ARTICLE Climbing the Jaynes–Cummings ladder by photon counting. Journal of Nanophotonics, 2012, 0	6, 061803.	IF 0.4	CITATIONS
517	Size-Limiting Effect of Site-Controlled InAs Quantum Dots Grown at High Temperatures by Mole Beam Epitaxy. Applied Physics Express, 2012, 5, 085501.	cular	1.1	3
518	Silicon emission in and out resonant coupling with high Q optical mode. , 2012, , .			1
519	One-dimensional photonic crystal nanobeam cavities. , 2012, , 421-446.			2
520	Quantum optics with single quantum dots in photonic crystal cavities. , 2012, , 46-78e.			2
521	Quantum optics with quantum-dot and quantum-well systems. , 2012, , 369-393e.			0
522	Nanostructures for surface plasmons. Advances in Optics and Photonics, 2012, 4, 157.		12.1	102
523	Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities. New Journal of Physics, 2012, 14, 103048.		1.2	28
524	Photonic crystal waveguides intersection for resonant quantum dot optical spectroscopy detect Optics Express, 2012, 20, 14130.	ion.	1.7	4
525	Semiclassical analysis of two-level collective population inversion using photonic crystals in three-dimensional systems. Optics Express, 2012, 20, 17201.		1.7	1
526	Tuning of split-ladder cavity by its intrinsic nano-deformation. Optics Express, 2012, 20, 27697.		1.7	14
527	Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation Optics Express, 2012, 20, 28437.	1.	1.7	3
528	Efficient photon collection from reconfigurable photonic crystal slab resonator operating at sho wavelengths. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2669.	t	0.9	5
529	Bipolar resistance effect observed in CdSe quantum-dots dominated structure of Zn/CdSe/Si. Op Letters, 2012, 37, 1814.	ptics	1.7	5
530	High Q H1 photonic crystal nanocavities with efficient vertical emission. Optics Express, 2012, 2 28292.	.0,	1.7	39
531	Position-independent normal-mode splitting in cavities filled with zero-index metamaterials. Opt Express, 2012, 20, 6348.	ics	1.7	4
532	Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands. Optics Expr 2012, 20, 22743.	ess,	1.7	33
533	Design and simulation of a dielectric planar antenna for semiconductor quantum dot single pho sources. , 2012, , .	ton		0

#	Article	IF	CITATIONS
534	Reduced temperature sensitivity of the polarization properties of hydrogenated InGaAsN V-groove quantum wires. Applied Physics Letters, 2012, 101, 151114.	1.5	8
535	Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation. Applied Physics Letters, 2012, 100, 033116.	1.5	27
536	Noncanonical statistics of a spin-boson model: Theory and exact Monte Carlo simulations. Physical Review E, 2012, 86, 021109.	0.8	48
537	Design and analysis of photonic crystal coupled cavity arrays for quantum simulation. Physical Review B, 2012, 86, .	1.1	70
538	Temporal Gap Solitons and All-Optical Control of Group Delay in Line-Defect Waveguides. Physical Review Letters, 2012, 109, 163902.	2.9	9
539	Phonon-mediated coupling between quantum dots through an off-resonant microcavity. Physical Review B, 2012, 85, .	1.1	30
540	Single-photon nonlinear optics with Kerr-type nanostructured materials. Physical Review B, 2012, 85, .	1.1	86
541	Measuring the mode volume of plasmonic nanocavities using coupled optical emitters. Physical Review B, 2012, 85, .	1.1	12
542	Non-Markovian dynamics and strong coupling between atomic transitions and a waveguide continuum edge. Physical Review A, 2012, 85, .	1.0	3
543	Dynamic quantum Kerr effect in circuit quantum electrodynamics. Physical Review A, 2012, 85, .	1.0	13
544	Back-reaction effects of quantum vacuum in cavity quantum electrodynamics. Physical Review A, 2012, 85, .	1.0	40
545	Orientation-dependent local density of states in three-dimensional photonic crystals. Physical Review A, 2012, 85, .	1.0	13
546	Photon–quantum-dot dynamics in coupled-cavity photonic crystal slabs. Physical Review A, 2012, 85, .	1.0	9
547	All-optical tuning of a quantum dot in a coupled cavity system. Applied Physics Letters, 2012, 100, 231107.	1.5	20
548	Wave-function Monte Carlo method for polariton condensates. Physical Review B, 2012, 85, .	1.1	6
549	A full free spectral range tuning of p-i-n doped gallium nitride microdisk cavity. Applied Physics Letters, 2012, 101, .	1.5	11
550	Broadband Purcell enhanced emission dynamics of quantum dots in linear photonic crystal waveguides. Journal of Applied Physics, 2012, 112, .	1.1	19
551	Mode characterization of sub-micron equilateral triangular microcavity including material's dispersion effects. Journal of Applied Physics, 2012, 111, 103111.	1.1	0

#	Article	IF	CITATIONS
552	Alignment between a single quantum dot and a photonic crystal nanocavity by a microscopic photoluminescence imaging. , 2012, , .		0
553	Nonequilibrum dynamics in the strongly excited inhomogeneous Dicke model. Physical Review B, 2012, 86, .	1.1	18
554	Controlling the properties of single photon emitters via the Purcell effect. Physical Review B, 2012, 86, .	1.1	7
555	Quantum dots in photonic crystal cavities. , 0, , 153-168.		0
556	Design of an ultracompact optical gas sensor based on a photonic crystal nanobeam cavity. Laser Physics Letters, 2012, 9, 875-878.	0.6	21
557	Luminescence spectra of quantum dots in microcavities. , 2012, , 293-331.		3
558	Signature of symmetry of laterally coupled quantum dots in far-infrared spectrum. Chinese Physics B, 2012, 21, 027301.	0.7	0
559	Non-Markovian Spontaneous Emission Dynamic Evolution of an Emitter in Woodpile Photonic Crystals. Journal of the Physical Society of Japan, 2012, 81, 114402.	0.7	0
560	Highly efficient quantum dot micropillar lasers. , 2012, , 117-153.		0
561	Resonance fluorescence emission from single semiconductor quantum dots coupled to high-quality microcavities. , 2012, , 3-45.		0
562	Single and coupled L3 photonic crystal cavities for cavity-QED experiments. , 2012, , .		0
563	Measurement of Accumulation of Semiconductor Nanocrystal Quantum Dots by <i>Pimephales Promelas</i> . Dose-Response, 2012, 10, dose-response.1.	0.7	8
564	Controlling spontaneous emission in bioreplica photonic crystals. Proceedings of SPIE, 2012, , .	0.8	1
565	Emission properties of photonic crystal nanolasers. , 2012, , 186-224.		0
566	Photoluminescence from a quantum dot-cavity system. , 2012, , 332-368.		0
567	All-solid-state quantum optics employing quantum dots in photonic crystals. , 2012, , 395-422e.		3
568	Influence of electron-phonon interaction on the optical spectrum and quantum statistics in a quantum-dot–cavity system: Master-equation approach. Physical Review A, 2012, 86, .	1.0	17
569	Semiconductor Quantum Dot–Microcavities for Quantum Optics in Solid State. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1733-1746.	1.9	36

#	Article	IF	CITATIONS
570	Theory of Frequency-Filtered and Time-Resolved <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi>-Photon Correlations. Physical Review Letters, 2012, 109, 183601.</mml:math 	2.9	108
571	Bright Single-Photon Emission From a Quantum Dot in a Circular Bragg Grating Microcavity. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1711-1721.	1.9	41
572	Site-controlled growth of InP/GaInP quantum dots on GaAs substrates. Nanotechnology, 2012, 23, 375301.	1.3	7
573	Polaron master equation theory of the quantum-dot Mollow triplet in a semiconductor cavity-QED system. Physical Review B, 2012, 85, .	1.1	63
574	Distributed entanglement induced by dissipative bosonic media. Europhysics Letters, 2012, 99, 20003.	0.7	18
575	Quantum magneto-electrodynamics of electrons embedded in a photon cavity. New Journal of Physics, 2012, 14, 013036.	1.2	21
576	Quantum-state transmission in a cavity array via two-photon exchange. Physical Review A, 2012, 85, .	1.0	19
577	Ultrafast all-optical switching by single photons. Nature Photonics, 2012, 6, 605-609.	15.6	349
578	Pronounced Purcell enhancement of spontaneous emission in CdTe/ZnTe quantum dots embedded in micropillar cavities. Applied Physics Letters, 2012, 101, 132105.	1.5	21
579	Double-heterostructure cavities: From theory to design. Physical Review A, 2012, 86, .	1.0	1
580	Polariton lasers. Hybrid light–matter lasers without inversion. Journal Physics D: Applied Physics, 2012, 45, 313001.	1.3	57
581	Cavity Quantum Electrodynamics and Lasing Oscillation in Single Quantum Dot-Photonic Crystal Nanocavity Coupled Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1818-1829.	1.9	31
582	Single quantum dot photocurrent spectroscopy in the cavity quantum electrodynamics regime. Physical Review B, 2012, 86, .	1.1	4
583	In(Ca)As/CaAs siteâ€controlled quantum dots with tailored morphology and high optical quality. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2379-2386.	0.8	19
584	Observation of entanglement between a quantum dot spin and a single photon. Nature, 2012, 491, 426-430.	13.7	380
585	Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New Journal of Physics, 2012, 14, 083001.	1.2	80
586	Engineered quantum dot single-photon sources. Reports on Progress in Physics, 2012, 75, 126503.	8.1	323
587	Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nature Physics, 2012, 8, 168-172.	6.5	79

		LFORT	
#	Article	IF	CITATIONS
588	Solitons in cavity-QED arrays containing interacting qubits. Physical Review A, 2012, 86, .	1.0	16
589	Interaction of a quantum-dot cavity system with acoustic phonons: Stronger light-matter coupling can reduce the visibility of strong coupling effects. Physical Review B, 2012, 86, .	1.1	23
590	Flow Control of Small Objects on Chip: Manipulating Live Cells, Quantum Dots, and Nanowires. IEEE Control Systems, 2012, 32, 26-53.	1.0	53
591	Dynamic control of Q factor in photonic crystal microcavity employing Kerr effect. Optics Communications, 2012, 285, 5508-5511.	1.0	2
592	Photonic crystal structure in Nd:YAG laser crystals. Optical Materials, 2012, 34, 1811-1814.	1.7	5
593	Anomalous phonon-mediated damping of a driven quantum dot embedded in a high-Q semiconductor microcavity. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 359-368.	1.0	5
594	Shaping an Itinerant Quantum Field into a Multimode Squeezed Vacuum by Dissipation. Physical Review Letters, 2012, 108, 043602.	2.9	41
595	Plasmon Blockade in Nanostructured Graphene. ACS Nano, 2012, 6, 1724-1731.	7.3	60
596	Correlations on a chip. Nature Photonics, 2012, 6, 75-76.	15.6	1
597	Coherent terahertz synthesizer. Nature Photonics, 2012, 6, 76-77.	15.6	4
598	Laser mode feeding by shaking quantum dots in a planar microcavity. Nature Photonics, 2012, 6, 30-34.	15.6	74
599	Strong coupling between distant photonic nanocavities and its dynamic control. Nature Photonics, 2012, 6, 56-61.	15.6	219
600	Evidence for the Role of Holes in Blinking: Negative and Oxidized CdSe/CdS Dots. ACS Nano, 2012, 6, 9125-9132.	7.3	92
601	Delayed-choice quantum control of light-matter interaction. Europhysics Letters, 2012, 99, 24003.	0.7	10
602	Dynamic and steady control of quantum coherence in photonic crystals via the Zeeman effect. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2300-2304.	2.0	3
603	Implementing a topological quantum model using a cavity lattice. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1549-1556.	2.0	12
604	Long-Range, Photon-Mediated Exciton Hybridization in an All-Organic, One-Dimensional Photonic Crystal. Physical Review Letters, 2012, 109, 096401.	2.9	12
605	Controllable operation for distant qubits in a two-dimensional quantum network. European Physical Journal D, 2012, 66, 1.	0.6	8

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
606	Photoluminescence dynamics in solid formulations of colloidal PbSe quantum dots: Three-dimensional versus two-dimensional films. Applied Physics Letters, 2012, 101, 121904.	1.5	11
607	Single electron transport through site-controlled InAs quantum dots. Applied Physics Letters, 2012, 101, 223115.	1.5	7
608	Effects of Exposure to Semiconductor Nanoparticles on Aquatic Organisms. Journal of Toxicology, 2012, 2012, 1-9.	1.4	18
609	Deterministic lightâ \in "matter coupling with single quantum dots. , 2012, , 137-152.		2
610	Deterministic single quantum dot cavities at telecommunication wavelengths. , 0, , 341-355.		0
611	HIGH-Q PHOTONIC CRYSTAL NANOBEAM CAVITY BASED ON A SILICON NITRIDE MEMBRANE INCORPORATING FABRICATION IMPERFECTIONS AND A LOW-INDEX MATERIAL LAYER. Progress in Electromagnetics Research B, 2012, 37, 191-204.	0.7	4
612	Remote on-chip coupling. Nature Photonics, 2012, 6, 7-8.	15.6	4
613	Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photonics, 2012, 6, 459-462.	15.6	360
614	Ultrastrong Coupling of the Cyclotron Transition of a 2D Electron Gas to a THz Metamaterial. Science, 2012, 335, 1323-1326.	6.0	452
615	Ultrastrong Coupling Regime and Plasmon Polaritons in Parabolic Semiconductor Quantum Wells. Physical Review Letters, 2012, 108, 106402.	2.9	165
616	Quantum Dynamics of Polariton Condensates. Springer Series in Solid-state Sciences, 2012, , 1-42.	0.3	4
617	Quantum Dot Nanoarrays: Selfâ€Assembly With Singleâ€Particle Control and Resolution. Advanced Materials, 2012, 24, 2207-2211.	11.1	32
618	Spin-Resolved Purcell Effect in a Quantum Dot Microcavity System. Nano Letters, 2012, 12, 3455-3459.	4.5	25
619	Terahertz Excitation of a CoherentΛ-Type Three-Level System of Exciton-Polariton Modes in a Quantum-Well Microcavity. Physical Review Letters, 2012, 108, 267402.	2.9	30
620	Strongly correlated photons on a chip. Nature Photonics, 2012, 6, 93-96.	15.6	293
621	Designs and experiments on infrared two-dimensional silicon photonic crystal slab devices. Frontiers of Optoelectronics, 2012, 5, 21-40.	1.9	4
622	Vertical-external-cavity surface-emitting lasers and quantum dot lasers. Frontiers of Optoelectronics, 2012, 5, 157-170.	1.9	9
623	Defect mode of one-dimensional holographic photonic crystals modulated by the intensity ratio of two constructive beams. Applied Physics B: Lasers and Optics, 2012, 107, 361-367.	1.1	1

#	Article	IF	CITATIONS
624	Light transmission by a three-level emitter embedded in a waveguide-coupled two-mode photonic crystal nanocavity. Optics Communications, 2012, 285, 680-685.	1.0	6
625	Genuine entanglement among coherent excitonic states of three quantum dots located individually in separated coupled QED cavities. European Physical Journal D, 2013, 67, 1.	0.6	1
626	Size-dependent properties of single InAs quantum dots grown in nanoimprint lithography patterned GaAs pits. Nanotechnology, 2013, 24, 235204.	1.3	18
627	Quantum Ising dynamics and Majorana-like edge modes in the Rabi lattice model. Physical Review A, 2013, 88, .	1.0	10
628	Strongly coupled slow-light polaritons in one-dimensional disordered localized states. Scientific Reports, 2013, 3, 1994.	1.6	22
629	Influence of the Purcell effect on the purity of bright single photon sources. Applied Physics Letters, 2013, 103, .	1.5	16
630	Photonic Crystal Nanocavities Containing Plasmonic Nanoparticles Assembled Using a Laserâ€Printing Technique. Advanced Optical Materials, 2013, 1, 946-951.	3.6	16
631	Calibrating and Controlling the Quantum Efficiency Distribution of Inhomogeneously Broadened Quantum Rods by Using a Mirror Ball. ACS Nano, 2013, 7, 5984-5992.	7.3	27
632	Slab thickness tuning approach for solid-state strong coupling between photonic crystal slab nanocavity and a quantum dot. Nanoscale Research Letters, 2013, 8, 187.	3.1	4
633	High quality factor GaAs-based photonic crystal microcavities by epitaxial re-growth. Optics Express, 2013, 21, 31615.	1.7	7
634	The photonic nanowire: an emerging platform for highly efficient single-photon sources for quantum information applications. Proceedings of SPIE, 2013, , .	0.8	0
635	Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons. Physical Review B, 2013, 88, .	1.1	54
636	Ultrafast optical control of individual quantum dot spin qubits. Reports on Progress in Physics, 2013, 76, 092501.	8.1	59
637	Fundamentals of Photonic Crystals for Telecom Applications—Photonic Crystal Lasers. , 2013, , 155-173.		1
638	Two-level system with broken inversion symmetry coupled to a quantum harmonic oscillator. Physical Review A, 2013, 88, .	1.0	6
639	Multi-photon Rabi model: Generalized parity and its applications. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3205-3208.	0.9	7
640	Aharonov-Bohm quantum rings in high-Qmicrocavities. Physical Review B, 2013, 88, .	1.1	25
641	Excitation-Induced Dephasing in a Resonantly Driven <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>InAs</mml:mi><mml:mo>/</mml:mo><mml:mi>GaAs</mml:mi>Quantum Dot. Physical Review Letters. 2013. 111. 026403.</mml:math 	2.9	47
#	Article	IF	CITATIONS
-----	--	-----	-----------
642	Narrow Optical Homogeneous Linewidths in Rare Earth Doped Nanocrystals. Physical Review Letters, 2013, 111, 203601.	2.9	44
643	Analytic Properties of Two-Photon Scattering Matrix in Integrated Quantum Systems Determined by the Cluster Decomposition Principle. Physical Review Letters, 2013, 111, 223602.	2.9	62
644	Exciton and multiexciton optical properties of single InAs/GaAs site-controlled quantum dots. Applied Physics Letters, 2013, 103, .	1.5	8
645	Phonon-mediated population inversion in a semiconductor quantum-dot cavity system. New Journal of Physics, 2013, 15, 053039.	1.2	41
646	Interaction between a semiconductor quantum dot microcavity and a squeezed vacuum in a cavity: effects on the photon statistics. Laser Physics, 2013, 23, 115202.	0.6	4
647	Temperature dependence of hole spin coherence in (In,Ga)As quantum dots measured by mode-locking and echo techniques. Physical Review B, 2013, 87, .	1.1	24
648	Photonic crystal slot-microcavity circuit implemented in silicon-on-insulator: High Q operation in solvent without undercutting. Applied Physics Letters, 2013, 102, .	1.5	36
649	Controlled coupling of photonic crystal cavities using photochromic tuning. Applied Physics Letters, 2013, 102, .	1.5	42
650	<i>Ab initio</i> determination of local coupling interaction in arbitrary nanostructures: Application to photonic crystal slabs and cavities. Physical Review B, 2013, 87, .	1.1	19
651	Coherent control of single photons in the cross resonator arrays via the dark state mechanism. European Physical Journal D, 2013, 67, 1.	0.6	7
652	Perfect transfer of coherent state-based qubits via coupled cavities. European Physical Journal D, 2013, 67, 1.	0.6	3
653	Photoluminescence decay rate engineering of CdSe quantum dots in ensemble arrays embedded with gold nano-antennae. Journal of Applied Physics, 2013, 114, 064305.	1.1	21
654	All-Optical Switching and Router via the Direct Quantum Control of Coupling between Cavity Modes. Physical Review X, 2013, 3, .	2.8	54
655	Bottomâ€up engineering of diamond micro―and nanoâ€structures. Laser and Photonics Reviews, 2013, 7, L61.	4.4	39
656	Rashba spin–orbit interaction effect on multiphoton optical transitions in a quantum dot. Physica Status Solidi (B): Basic Research, 2013, 250, 1585-1591.	0.7	11
657	Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation. Applied Physics Letters, 2013, 103, 251113.	1.5	4
658	Dynamical Properties of Nanolasers Based on Few Discrete Emitters. IEEE Journal of Quantum Electronics, 2013, 49, 945-954.	1.0	21
659	Decay dynamics and exciton localization in large GaAs quantum dots grown by droplet epitaxy. Physical Review B, 2013, 88, .	1.1	29

#	Article	IF	CITATIONS
660	Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity. Physical Review B, 2013, 87, .	1.1	14
661	Simulation of Multipartite Cavity Quantum Electrodynamics. IEEE Journal of Quantum Electronics, 2013, 49, 1066-1079.	1.0	5
662	Modeling and Design of High-Efficiency Single-Photon Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-16.	1.9	38
663	Lamb shift of a lossy two-level emitter inside a leaky cavity: A universal description based on an equivalent dissipative model. Physical Review A, 2013, 87, .	1.0	4
664	High fidelity and flexible quantum state transfer in the atom-coupled cavity hybrid system. Quantum Information Processing, 2013, 12, 189-204.	1.0	8
665	Directional emission of single photons from small atomic samples. Physical Review A, 2013, 87, .	1.0	30
666	Far-field emission profiles from L3 photonic crystal cavity modes. Photonics and Nanostructures - Fundamentals and Applications, 2013, 11, 37-47.	1.0	6
667	Lasing properties of non-polar GaN quantum dots in cubic aluminum nitride microdisk cavities. Applied Physics Letters, 2013, 103, .	1.5	28
668	Disorder-correlation-frequency-controlled diffusion in the Jaynes-Cummings–Hubbard model. Physical Review A, 2013, 88, .	1.0	8
669	The ultimate limit to the emission linewidth of single nanocrystals. Nanotechnology, 2013, 24, 465703.	1.3	12
670	Mesoscopic Entanglement Induced by Spontaneous Emission in Solid-State Quantum Optics. Physical Review Letters, 2013, 110, 080502.	2.9	112
671	Radiative coupling of quantum dots in photonic crystal structures. Physical Review B, 2013, 87, .	1.1	28
672	Weak and strong coupling regimes in plasmonic QED. Physical Review B, 2013, 87, .	1.1	131
673	Quantum fluids of light. Reviews of Modern Physics, 2013, 85, 299-366.	16.4	1,516
674	Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors. Science, 2013, 339, 1174-1179.	6.0	579
675	Quantum control of a spin qubit coupled to a photonic crystal cavity. Nature Photonics, 2013, 7, 329-334.	15.6	115
676	Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Reviews of Modern Physics, 2013, 85, 623-653.	16.4	1,212
677	A quantum logic gate between a solid-state quantum bit and a photon. Nature Photonics, 2013, 7, 373-377.	15.6	138

#	Article	IF	CITATIONS
678	Planar fabrication of arrays of ion-exfoliated single-crystal-diamond membranes with nitrogen-vacancy color centers. Optical Materials, 2013, 35, 361-365.	1.7	15
679	Coupling a Single Trapped Atom to a Nanoscale Optical Cavity. Science, 2013, 340, 1202-1205.	6.0	393
680	Magnetization-noise-induced collapse and revival of Rabi oscillations in circuit QED. Physical Review A, 2013, 87, .	1.0	7
681	First-order superfluid–Mott-insulator transition for quantum-optical switching in cavity-QED arrays with two cavity modes. Physical Review A, 2013, 87, .	1.0	9
682	Coupling effects in a photonic crystal microcavity with embedded semiconductor quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 17-24.	1.3	4
683	Ultrastrong light-matter coupling at terahertz frequencies with split ring resonators and inter-Landau level transitions. Journal of Applied Physics, 2013, 113, 136510.	1.1	29
684	Spontaneous emission in cavity QED with a terminated waveguide. Physical Review A, 2013, 87, .	1.0	25
685	Large vacuum Rabi splitting in an H0 photonic crystal nanocavity-quantum dot system. , 2013, , .		0
686	Enhanced trion emission from colloidal quantum dots with photonic crystals by two-photon excitation. Scientific Reports, 2013, 3, 3228.	1.6	13
687	Diamond lattice photonic crystals from rolled-up membranes. Physical Review A, 2013, 87, .	1.0	8
688	Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems. Optics Express, 2013, 21, 5643.	1.7	19
689	The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity. Optics Express, 2013, 21, 3809.	1.7	13
690	Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip. Optics Express, 2013, 21, 5014.	1.7	13
691	Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity. Optics Express, 2013, 21, 23130.	1.7	18
692	Vacuum Rabi splitting in a coupled system of single quantum dot and photonic crystal cavity: effect of local and propagation Green's functions. Optics Express, 2013, 21, 23486.	1.7	6
693	Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips. Optics Express, 2013, 21, 27602.	1.7	29
694	A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity. Optics Express, 2013, 21, 28507.	1.7	7
695	Controlled mode tuning in 1-D â€~RIM' plasmonic crystal trench cavities probed with coupled optical emitters. Optics Express, 2013, 21, 30074.	1.7	1

#	ARTICLE	IF	CITATIONS
696	High-quality Si_3N_4 circuits as a platform for graphene-based nanophotonic devices. Optics Express, 2013, 21, 31678.	1.7	45
697	Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. Optics Express, 2013, 21, 32468.	1.7	70
698	Single Emitters in Isolated Quantum Systems. Experimental Methods in the Physical Sciences, 2013, 45, 467-539.	0.1	4
699	Crystallographic dependence of the lateral undercut wet etch rate of Al0.5In0.5P in diluted HCl for Ill–V sacrificial release. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	0.6	4
700	Quantitative analysis of quantum dot dynamics and emission spectra in cavity quantum electrodynamics. New Journal of Physics, 2013, 15, 025013.	1.2	22
701	Lasing and antibunching of optical phonons in semiconductor double quantum dots. New Journal of Physics, 2013, 15, 083032.	1.2	10
702	Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity. New Journal of Physics, 2013, 15, 025014.	1.2	47
703	Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New Journal of Physics, 2013, 15, 025012.	1.2	98
704	GaAs-Based Quantum Well Exciton-Polaritons beyond 1 μm. Acta Physica Polonica A, 2013, 124, 817-820.	0.2	2
705	Distilling one, two and entangled pairs of photons from a quantum dot with cavity QED effects and spectral filtering. New Journal of Physics, 2013, 15, 025019.	1.2	40
706	Two-photon spectra of quantum emitters. New Journal of Physics, 2013, 15, 033036.	1.2	67
707	New symmetry in the Rabi model. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 265302.	0.7	9
708	Anisotropic strain-tuning of quantum dots inside a photonic crystal cavity. Semiconductor Science and Technology, 2013, 28, 122002.	1.0	9
709	Solid-state quantum optics with quantum dots in photonic nanostructures. Nanophotonics, 2013, 2, 39-55.	2.9	20
710	Spontaneous emission of two quantum dots in a single-mode cavity. Chinese Physics B, 2013, 22, 094207.	0.7	1
711	High Q silicon photonic crystal cavities for functional cladding materials. , 2013, , .		0
712	Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity. Physical Review B, 2013, 87, .	1.1	124
713	Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Optics Express, 2013, 21, 26721.	1.7	159

#	Article	IF	Citations
714	Auger Processes Mediating the Nonresonant Optical Emission from a Semiconductor Quantum Dot Embedded Inside an Optical Cavity. Physical Review Letters, 2013, 111, 067403.	2.9	9
715	Large-scale maximal entanglement and Majorana bound states in coupled circuit quantum electrodynamic systems. Physical Review B, 2013, 87, .	1.1	12
716	Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity. Physical Review Letters, 2013, 110, 243602.	2.9	163
717	Influence of the phonon-mediated coupling on the properties of a single quantum-dot laser. Physical Review A, 2013, 88, .	1.0	3
718	Femtojoule-Scale All-Optical Latching and Modulation via Cavity Nonlinear Optics. Physical Review Letters, 2013, 111, 203002.	2.9	30
719	Bichromatic dressing of a quantum dot detected by a remote second quantum dot. Physical Review B, 2013, 88, .	1.1	6
720	Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity. Applied Physics Letters, 2013, 103, .	1.5	40
721	Single Photon Delayed Feedback: A Way to Stabilize Intrinsic Quantum Cavity Electrodynamics. Physical Review Letters, 2013, 110, 013601.	2.9	70
722	Collective quantum dot inversion and amplification of photon and phonon waves. Physical Review B, 2013, 88, .	1.1	13
723	Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics. Physical Review B, 2013, 88, .	1.1	23
724	Frozen Gaussian quantum discord in photonic crystal cavity array system. Physical Review A, 2013, 88, .	1.0	18
725	Quantum transport with coupled cavities on an Apollonian network. Physical Review A, 2013, 87, .	1.0	18
726	Accurate alignment of a photonic crystal nanocavity with an embedded quantum dot based on optical microscopic photoluminescence imaging. Applied Physics Letters, 2013, 102, .	1.5	52
727	Electro-Mechanical Q Factor Control of Photonic Crystal Nanobeam Cavity. Japanese Journal of Applied Physics, 2013, 52, 04CG01.	0.8	6
728	Two-photon spectra of quantum systems. , 2013, , .		0
729	Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires. Applied Physics Letters, 2013, 102, 201105.	1.5	13
730	Strain analysis of highly scalable single InAs/InP quantum dots in a stress-sensitive environment. Applied Physics Letters, 2013, 103, 061901.	1.5	1
731	Photonic quantum technologies. , 2013, , .		0

	CITATION	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
732	Switching spontaneous emission in microcavities in the time domain. , 2013, , .		0
733	Ultrasmall modal volume and high <i>Q</i> factor optimization of a photonic crystal slab cavity. Journal of Optics (United Kingdom), 2013, 15, 125102.	1.0	10
734	Origins of Spectral Diffusion in the Micro-Photoluminescence of Single InGaN Quantum Dots. Japanese Journal of Applied Physics, 2013, 52, 08JE01.	0.8	15
735	Voltage-controlled optical precursors in quantum dot molecules. Journal of Modern Optics, 2013, 60, 1343-1348.	0.6	3
736	Ultrafast coherent nanoscopy. Molecular Physics, 2013, 111, 3003-3012.	0.8	8
737	Dispersion tomography of an organic photonic-wire microcavity. Applied Physics Letters, 2013, 103, .	1.5	15
738	Nanophotonic Filters and Integrated Networks in Flexible 2D Polymer Photonic Crystals. Scientific Reports, 2013, 3, 2145.	1.6	24
739	Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk. Scientific Reports, 2013, 3, 2150.	1.6	45
740	Probing light-matter interactions at the nanoscale with a deterministically positioned single quantum dot. , 2013, , .		0
741	Properties of a Single Photon Generated by a Solid-State Emitter: Effects of Pure Dephasing. Journal of the Physical Society of Japan, 2013, 82, 014301.	0.7	3
742	Goldstone and Higgs modes of photons inside a cavity. Scientific Reports, 2013, 3, 3476.	1.6	33
743	Silicon Photonic Crystals Towards Optical Integration. , 0, , .		0
744	Enhancement of Spontaneous Emission Rate in an InGaN Quantum Dot Coupled to a Plasmonic Cavity. , 2013, , .		1
745	Single and Coupled Nanobeam Cavities. , 0, , .		0
746	High-Q Defect-Free 2D Photonic Crystal Cavity from Random Localised Disorder. Crystals, 2014, 4, 342-350.	1.0	1
747	Nanoscale Tailoring of the Polarization Properties of Dilute-Nitride Semiconductors via H-Assisted Strain Engineering. Physical Review Applied, 2014, 2, .	1.5	10
748	Two-photon emission in coupled biexciton quantum dot—cavity system: Phonon-assisted model. Chinese Physics B, 2014, 23, 124204.	0.7	0
749	Quantum dot single photon sources: Blinking and deterministic device fabrication. , 2014, , .		0

ARTICLE IF CITATIONS # Quantum calculations on quantum dots in semiconductor microcavities. Part II. Russian 750 0.1 11 Microelectronics, 2014, 43, 377-387. Phonon-induced effects on exciton dynamics and photon emission from a semiconductor quantum 0.6 dot microcavity: phonon coherent state representation. Laser Physics, 2014, 24, 045201. Quantum calculations on quantum dots in semiconductor microcavities. Part I. Russian 752 0.1 16 Microelectronics, 2014, 43, 315-327. Ordering of low-density Ge quantum dot on patterned Si substrate. Journal Physics D: Applied Physics, 2014, 47, 485303. All-optical controlled phase gate in quantum dot molecules. Laser Physics Letters, 2014, 11, 105201. 754 0.6 15 Strong coupling of single emitters interacting with phononic infrared antennae. New Journal of Physics, 2014, 16, 013052. 1.2 Ordered array of Ga droplets on GaAs(001) by local anodic oxidation. Journal of Vacuum Science and 756 0.6 8 Technology B:Nanotechnology and Microelectronics, 2014, 32, . Single Color Centers in Diamond., 2014, , 469-491. 758 Quantum Polaritonics., 2014, , 257-282. 0 Tunneling control using classical non-linear oscillator. AIP Conference Proceedings, 2014, , . Si-based Microcavity Devices with Ge Quantum Dots., 2014,,. 760 0 Optical nonlinearity in a quantum dot–microcavity system under an external magnetic field. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 296. Plasmon-exciton coupling between silver nanowire and two quantum dots., 2014,,. 762 0 Systematic hole-shifting of L-type nanocavity with an ultrahigh Q factor. Optics Letters, 2014, 39, 5780. 1.7 Third-order antibunching from an imperfect single-photon source. Optics Express, 2014, 22, 3244. 764 40 1.7 Two-dimensional hybrid photonic/plasmonic crystal cavities. Optics Express, 2014, 22, 8219. Pulse capture without carrier absorption in dynamic Q photonic crystal nanocavities. Optics Express, 766 1.7 4 2014, 22, 15459. Direct measurement of light–matter energy exchange inside a microcavity. Optica, 2014, 1, 276. 4.8

#	Article	IF	CITATIONS
768	Temperature-Dependent Mollow Triplet Spectra from a Single Quantum Dot: Rabi Frequency Renormalization and Sideband Linewidth Insensitivity. Physical Review Letters, 2014, 113, 097401.	2.9	48
769	Adiabatic approximation for three qubits ultrastrongly coupled to a harmonic oscillator. Physical Review A, 2014, 89, .	1.0	3
770	Tunneling-assisted optical information storage with lattice polariton solitons in cavity-QED arrays. Physical Review A, 2014, 89, .	1.0	18
771	Controllable single-photon frequency converter via a one-dimensional waveguide. Physical Review A, 2014, 89, .	1.0	63
772	Long-distance radiative coupling between quantum dots in photonic crystal dimers. Physical Review B, 2014, 90, .	1.1	12
773	Deterministic generation of entanglement between a quantum-dot spin and a photon. Physical Review A, 2014, 90, .	1.0	18
774	Rotation-induced mode coupling in open wavelength-scale microcavities. Physical Review A, 2014, 90, .	1.0	17
775	Magnetopolariton in bilayer graphene: A tunable ultrastrong light-matter coupling. Physical Review B, 2014, 89, .	1.1	2
776	Enhanced optical nonlinearity and fiber-optical frequency comb controlled by a single atom in a whispering-gallery-mode microtoroid resonator. Physical Review A, 2014, 90, .	1.0	25
777	Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a weakly nonlinear cavity. Physical Review A, 2014, 90, .	1.0	32
778	Ultrafast Control and Rabi Oscillations of Polaritons. Physical Review Letters, 2014, 113, 226401.	2.9	66
779	Theory and design of quantum light sources from quantum dots embedded in semiconductor-nanowire photonic-crystal systems. Physical Review B, 2014, 90, .	1.1	7
780	Roles of the vacuum field bath in a cavity QED system beyond the Weisskopf-Wigner approximation: Coupling renormalization, off-resonance assisted feeding, and pure dephasing. Physical Review A, 2014, 89, .	1.0	2
781	Controlling a whispering-gallery-doublet-mode avoided frequency crossing: Strong coupling between photon bosonic and spin degrees of freedom. Physical Review A, 2014, 89, .	1.0	12
782	Dipole-induced high-order sideband comb employing a quantum dot strongly coupled to a photonic crystal cavity via a waveguide. Physical Review B, 2014, 89, .	1.1	12
783	Synchronized Switching in a Josephson Junction Crystal. Physical Review Letters, 2014, 112, 223603.	2.9	31
784	A small mode volume tunable microcavity: Development and characterization. Applied Physics Letters, 2014, 105, .	1.5	71
785	Planar photonic crystal nanocavities with symmetric cladding layers for integrated optics. Optical Engineering, 2014, 53, 127107.	0.5	7

#	Article	IF	CITATIONS
786	Room-temperature single-photon sources based on nanocrystal fluorescence in photonic/plasmonic nanostructures. Proceedings of SPIE, 2014, , .	0.8	2
787	Large and well-defined Rabi splitting in a semiconductor nanogap cavity. Optics Express, 2014, 22, 22470.	1.7	7
788	Rabi splitting in an acoustic cavity embedded plate. New Journal of Physics, 2014, 16, 043006.	1.2	2
789	Influence of a phonon bath in a quantum dot cavity QED system: Dependence of the shape. Chinese Physics B, 2014, 23, 094205.	0.7	4
790	Single Photons on Demand from Novel Site-Controlled GaAsN/GaAsN:H Quantum Dots. Nano Letters, 2014, 14, 1275-1280.	4.5	32
791	Collective coupling of randomly dispersed oscillators with cavities filled with zero-index metamaterials. European Physical Journal B, 2014, 87, 1.	0.6	1
792	Single photon sources with single semiconductor quantum dots. Frontiers of Physics, 2014, 9, 170-193.	2.4	33
793	Effects of dipole-dipole interaction on the transmitted spectrum of two-level atoms trapped in an optical cavity. Physical Review A, 2014, 89, .	1.0	25
794	Hydrogen effects in dilute III-N-V alloys: From defect engineering to nanostructuring. Journal of Applied Physics, 2014, 115, 012011.	1.1	9
795	Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 011204.	0.6	8
796	Generation of a multi-qubit W entangled state through spatially separated semiconductor quantum-dot-molecules in cavity-quantum electrodynamics arrays. Journal of Applied Physics, 2014, 115, 134312.	1.1	12
797	Resolving Single Plasmons Generated by Multiquantum-Emitters on a Silver Nanowire. Nano Letters, 2014, 14, 3358-3363.	4.5	64
798	Route to indistinguishable photons. Nature Photonics, 2014, 8, 427-429.	15.6	1
799	Antimatter creation in an X-ray bath. Nature Photonics, 2014, 8, 429-431.	15.6	6
800	Coherent Polariton Dynamics in Coupled Highly Dissipative Cavities. Physical Review Letters, 2014, 112, .	2.9	70
801	Nano-photonics in III-V Semiconductors for Integrated Quantum Optical Circuits. Springer Theses, 2014, , .	0.0	2
802	Quantum Dot Molecules. Lecture Notes in Nanoscale Science and Technology, 2014, , .	0.4	17
803	Tunable higher-order sideband spectra in a waveguide-coupled photonic crystal molecule beyond the weak-excitation approximation. Physical Review A, 2014, 89,	1.0	13

#	Article	IF	CITATIONS
804	Entanglement creation in a quantum-dot–nanocavity system by Fourier-synthesized acoustic pulses. Physical Review A, 2014, 89, .	1.0	36
805	Spectroscopy of single nanocrystals. Chemical Society Reviews, 2014, 43, 1311.	18.7	84
806	Two-Dimensional Metal–Chalcogenide Films in Tunable Optical Microcavities. Nano Letters, 2014, 14, 7003-7008.	4.5	129
807	Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity. Journal of Applied Physics, 2014, 116, 164306.	1.1	8
808	Normal mode splitting in hybrid BEC-optomechanical system. Optik, 2014, 125, 5455-5460.	1.4	10
809	Canonical versus noncanonical equilibration dynamics of open quantum systems. Physical Review E, 2014, 90, 022122.	0.8	28
810	All-optical coherent control of vacuum Rabi oscillations. Nature Photonics, 2014, 8, 858-864.	15.6	58
811	The role of phonons for exciton and biexciton generation in an optically driven quantum dot. Journal of Physics Condensed Matter, 2014, 26, 423203.	0.7	59
812	Improved quantum state transfer via quantum partially collapsing measurements. Annals of Physics, 2014, 349, 209-219.	1.0	12
813	Quantum-Memory Effects in the Emission of Quantum-Dot Microcavities. Physical Review Letters, 2014, 113, 093902.	2.9	17
814	Photonic Crystal Architecture for Room-Temperature Equilibrium Bose-Einstein Condensation of Exciton Polaritons. Physical Review X, 2014, 4, .	2.8	11
815	Zeno and anti-Zeno effects on dephasing. Physical Review A, 2014, 90, .	1.0	27
816	Nanophotonics and quantum optics. , 2014, , .		0
817	Quantum-confined single photon emission at room temperature from SiC tetrapods. Nanoscale, 2014, 6, 10027-10032.	2.8	18
818	Systematic analysis of whispering-gallery modes in planar silicon nitride microdisks. Optics Communications, 2014, 322, 188-197.	1.0	3
819	Generation of vector beams in planar photonic crystal cavities with multiple missing-hole defects. Optics Express, 2014, 22, 9360.	1.7	4
820	Cross Modulation of Two Laser Beams at the Individual-Photon Level. Physical Review Letters, 2014, 113, 113603.	2.9	8
821	Nonlinearity-induced entanglement stability in a qubit-oscillator system. Physical Review A, 2014, 90, .	1.0	10

#	Article	IF	CITATIONS
822	Competition between pure dephasing and photon losses in the dynamics of a dot-cavity system. Physical Review B, 2014, 90, .	1.1	13
823	Controlling single-photon transport with three-level quantum dots in photonic crystals. Physical Review A, 2014, 89, .	1.0	26
825	Local slow-light engineering: Correlating out-of-plane phenomena with in-plane optical processing. Proceedings of SPIE, 2014, , .	0.8	0
826	Controlling a photon with a solid-state quantum bit. , 2014, , .		0
827	Influence of the relative positions of quantum dots and nanocavities on the optical coupling strength. , 2015, , .		0
828	Entanglement dynamics and Mollow nonuplets between two coupled quantum dots in a nanowire photonic-crystal system. Physical Review A, 2015, 91, .	1.0	17
829	All-optical control of optical frequency combs via quantum interference effects in a single-emitter-microcavity system. Physical Review A, 2015, 91, .	1.0	14
830	Architecture dependence of photon antibunching in cavity quantum electrodynamics. Physical Review A, 2015, 92, .	1.0	8
831	Theory and experiments of disorder-induced resonance shifts and mode-edge broadening in deliberately disordered photonic crystal waveguides. Physical Review A, 2015, 92, .	1.0	25
832	Photonic-Fock-state scattering in a waveguide-QED system and their correlation functions. Physical Review A, 2015, 92, .	1.0	37
833	Twofold decoherence brought on by the phonon bath in a quantum-dot two-state system. Physical Review A, 2015, 92, .	1.0	1
834	Analytical study of quantum-feedback-enhanced Rabi oscillations. Physical Review A, 2015, 92, .	1.0	24
835	Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter. Physical Review B, 2015, 91, .	1.1	30
836	Towards high-cooperativity strong coupling of a quantum dot in a tunable microcavity. Physical Review B, 2015, 92, .	1.1	28
837	Detection of nonlocal spin entanglement by light emission from a superconductingpâ^'njunction. Physical Review B, 2015, 92, .	1.1	7
838	Theory of optical spin control in quantum dot microcavities. Physical Review B, 2015, 92, .	1.1	15
839	Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse. Physical Review B, 2015, 92, .	1.1	5
840	Coherent Generation of Nonclassical Light on Chip via Detuned Photon Blockade. Physical Review Letters, 2015, 114, 233601.	2.9	109

#	Article	IF	CITATIONS
841	Deterministic Writing and Control of the Dark Exciton Spin Using Single Short Optical Pulses. Physical Review X, 2015, 5, .	2.8	58
842	Effective bichromatic potential for ultra-high Q-factor photonic crystal slab cavities. Applied Physics Letters, 2015, 107, .	1.5	41
843	Efficient single photon source based on μ-fibre-coupled tunable microcavity. Scientific Reports, 2015, 5, 14309.	1.6	25
844	Quantum control of isomerization by robust navigation in the energy spectrum. Journal of Chemical Physics, 2015, 143, 214305.	1.2	6
845	Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity. Applied Physics Letters, 2015, 107, .	1.5	18
846	Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure. Scientific Reports, 2015, 5, 16812.	1.6	4
847	Vectorial near-field imaging of a GaN based photonic crystal cavity. Applied Physics Letters, 2015, 107, .	1.5	7
848	Site-controlled quantum dots coupled to a photonic crystal molecule. Applied Physics Letters, 2015, 107, .	1.5	16
849	Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system. Scientific Reports, 2015, 5, 14379.	1.6	12
850	Efficient single photon collection using a μ-fiber-coupled microcavity. , 2015, , .		0
851	Spectral signatures of high-symmetry quantum dots and effects of symmetry breaking. New Journal of Physics, 2015, 17, 103017.	1.2	10
852	Epitaxial lift-off for solid-state cavity quantum electrodynamics. Journal of Applied Physics, 2015, 118, .	1.1	5
853	Soft-mask fabrication of gallium arsenide nanomembranes for integrated quantum photonics. Nanotechnology, 2015, 26, 484002.	1.3	39
854	Optimization of High-Q Coupled Nanobeam Cavity for Label-Free Sensing. Sensors, 2015, 15, 25868-25881.	2.1	9
855	YBa2Cu3O7 microwave resonators for strong collective coupling with spin ensembles. Applied Physics Letters, 2015, 106, .	1.5	45
856	Coherent control of energy transfer in a quantum dot strongly coupled to a photonic crystal molecule. Proceedings of SPIE, 2015, , .	0.8	0
857	Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates. Journal of Applied Physics, 2015, 117, 164313.	1.1	10
858	Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nature Photonics, 2015, 9, 363-373.	15.6	208

#	Article	IF	CITATIONS
859	Input-output formalism for few-photon transport: A systematic treatment beyond two photons. Physical Review A, 2015, 91, .	1.0	89
860	Nonresonant Excitation Inside an Ultrahigh- <inline-formula> <tex-math notation="LaTeX">\$Q\$</tex-math </inline-formula> Nanocavity. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	3
861	Near-Field Fano-Imaging of TE and TM Modes in Silicon Microrings. ACS Photonics, 2015, 2, 1712-1718.	3.2	6
862	Ultrafast Polariton-Phonon Dynamics of Strongly Coupled Quantum Dot-Nanocavity Systems. Physical Review X, 2015, 5, .	2.8	41
863	Sub-Poissonian photon emission in coupled double quantum dots–cavity system. Chinese Physics B, 2015, 24, 114202.	0.7	1
864	Two-dimensional materials for nanophotonics application. Nanophotonics, 2015, 4, 128-142.	2.9	97
865	Multiphoton dynamics of qutrits in the ultrastrong coupling regime with a quantized photonic field. Journal of Experimental and Theoretical Physics, 2015, 121, 925-933.	0.2	1
866	Dynamics of bipartite and tripartite entanglement in a dissipative system of continuous variables. Physica A: Statistical Mechanics and Its Applications, 2015, 423, 80-96.	1.2	5
867	Precisely detecting atomic position of atomic intensity images. Ultramicroscopy, 2015, 150, 74-78.	0.8	3
868	Non-Gaussian features from excited squeezed vacuum state. Optics Communications, 2015, 345, 86-98.	1.0	3
869	Electromagnetic density of states in complex plasmonic systems. Surface Science Reports, 2015, 70, 1-41.	3.8	151
870	Coupled-qubit Tavis-Cummings scheme for prolonging quantum coherence. Physical Review A, 2015, 91,	1.0	1
871	Electrical control of optical emitter relaxation pathways enabled by graphene. Nature Physics, 2015, 11, 281-287.	6.5	99
872	Spontaneous emission of "polarized―V-type three-level atoms strongly coupled with an optical cavity. Chinese Physics B, 2015, 24, 034202.	0.7	0
873	Vacuum Rabi Spectra of a Single Quantum Emitter. Physical Review Letters, 2015, 114, 143603.	2.9	31
874	Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry–Pérot Resonator. Nano Letters, 2015, 15, 4423-4428.	4.5	26
875	Correlations between axial and lateral emission of coupled quantum dot–micropillar cavities. Physical Review B, 2015, 91, .	1.1	13
876	Coherent Population Trapping, Nuclear Spin Cooling, and Lévy Flights in Solid-State Atom-Like Systems. Advances in Atomic, Molecular and Optical Physics, 2015, 64, 273-327.	2.3	1

#	Article	IF	CITATIONS
877	Ultrafast spontaneous emission source using plasmonic nanoantennas. Nature Communications, 2015, 6, 7788.	5.8	345
878	Plasmonic Enhancement of Single Photon Emission from a Site-Controlled Quantum Dot. ACS Photonics, 2015, 2, 1065-1070.	3.2	22
880	CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform. Scientific Reports, 2015, 5, 11312.	1.6	46
881	Controlled optical high-order sidebands via bichromatic driving of a cavity mode detected by an undriven second cavity mode. Laser Physics Letters, 2015, 12, 085201.	0.6	5
882	Internal Josephson phenomena in a coupled two-component Bose condensate. Superlattices and Microstructures, 2015, 87, 12-18.	1.4	5
883	Entanglement-Enhanced Two-Photon Delocalization in a Coupled-Cavity Array. Chinese Physics Letters, 2015, 32, 040303.	1.3	7
884	Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system. Physical Review A, 2015, 91, .	1.0	16
885	Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. Physical Review Letters, 2015, 114, 157401.	2.9	419
886	Ultrafast optical switching using photonic molecules in photonic crystal waveguides. Optics Express, 2015, 23, 9211.	1.7	38
887	Structural and optical properties of position-retrievable low-density GaAs droplet epitaxial quantum dots for application to single photon sources with plasmonic optical coupling. Nanoscale Research Letters, 2015, 10, 114.	3.1	6
888	Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 2015, 87, 347-400.	16.4	1,014
889	Cavity-Funneled Generation of Indistinguishable Single Photons from Strongly Dissipative Quantum Emitters. Physical Review Letters, 2015, 114, 193601.	2.9	68
890	Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System. Scientific Reports, 2015, 5, 9252.	1.6	94
891	Nondestructive tribochemistry-assisted nanofabrication on GaAs surface. Scientific Reports, 2015, 5, 9020.	1.6	10
892	Ancillary Qubit Spectroscopy of Vacua in Cavity and Circuit Quantum Electrodynamics. Physical Review Letters, 2015, 114, 183601.	2.9	48
893	Trapped quantum light. Europhysics Letters, 2015, 110, 20001.	0.7	2
894	Optics and photonics at nanoscale: Principles and perspectives. Europhysics Letters, 2015, 110, 14001.	0.7	18
895	Nanophotonic control of circular dipole emission. Nature Communications, 2015, 6, 6695.	5.8	209

	Сіт	ation Report	
#	Article	IF	CITATIONS
896	Optimization of photon correlations by frequency filtering. Physical Review A, 2015, 91, .	1.0	24
897	Nanocrystal fluorescence in photonic bandgap microcavities and plasmonic nanoantennas. Journal of Physics: Conference Series, 2015, 594, 012005.	0.3	1
899	Fabrication and optical characterization of large scale membrane containing InP/AlGaInP quantum dots. Nanotechnology, 2015, 26, 235201.	1.3	1
900	Optical-Coupling of distant spins via collective enhancement in multi-mode whispering gallery resonators. Optics Express, 2015, 23, 2945.	1.7	0
901	Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity. Optics Express, 2015, 23, 13734.	1.7	12
902	Topographic control of open-access microcavities at the nanometer scale. Optics Express, 2015, 23, 17205.	1.7	51
903	Investigation of defect cavities formed in three-dimensional woodpile photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 639.	0.9	18
904	Tuning the quality factor of split nanobeam cavity by nanoelectromechanical systems. Optics Express, 2015, 23, 19338.	1.7	8
905	Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip. Optics Express, 2015, 23, 22250.	1.7	27
906	Spectral multiphoton effects and quantum anharmonicities in dissipative cavity-QED systems via off-resonant coherent excitation. Optica, 2015, 2, 689.	4.8	6
907	Nanophotonic quantum computer based on atomic quantum transistor. Quantum Electronics, 2015, 45, 937-941.	0.3	2
908	Control of the cavity reflectivity using a single quantum dot spin. Proceedings of SPIE, 2015, , .	0.8	1
909	Control of Light-Matter Interaction in 2D Atomic Crystals Using Microcavities. IEEE Journal of Quantum Electronics, 2015, 51, 1-8.	1.0	5
910	Coupling and single-photon purity of a quantum dot-cavity system studied using hydrostatic pressure. Journal of Applied Physics, 2015, 117, 014304.	1.1	6
911	Ultra-low threshold gallium nitride photonic crystal nanobeam laser. Applied Physics Letters, 2015, 106, .	1.5	25
912	Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nature Communications, 2015, 6, 7833.	5.8	231
913	Nanoscale Optical Positioning of Single Quantum Dots for Efficient Quantum Photonic Devices. , 2015 , .		0
914	Optical properties of point-defect nanocavity implemented in planar photonic crystal with various low refractive index cladding materials. Applied Physics B: Lasers and Optics, 2015, 121, 297-305.	1.1	15

ARTICLE IF CITATIONS # Design and optimizations of quasiperiodic microcavity with high-quality factor and its application in 915 0.5 1 quantum dot lasers. Optical Engineering, 2015, 54, 106102. Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz 1.5 cascade. Applied Physics Letters, 2015, 107, 101101. Real-time emission spectrum of a hybrid atom-optomechanical cavity. Journal of the Optical Society of 917 0.9 16 America B: Optical Physics, 2015, 32, 1604. Photonic Crystals: An Introductory Survey., 2015, , 3-29. Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes. Light: Science and 919 7.7 29 Applications, 2015, 4, e326-e326. Bright Phonon-Tuned Single-Photon Source. Nano Letters, 2015, 15, 6290-6294. 4.5 921 Clamp voltage and ideality factor in laser diodes. Microelectronics Reliability, 2015, 55, 1736-1740. 0.9 3 Polariton states of cavity coupled three-level atoms. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1208. Strong coupling between surface plasmon polaritons and emitters: a review. Reports on Progress in 923 8.1 1,109 Physics, 2015, 78, 013901. Study of s-exciton and p-exciton pump on the lasing generation of biexciton quantum dot–cavity 924 1.0 system. Journal of Optics (United Kingdom), 2015, 17, 015001. Qualitative evaluation of successful homeopathic treatment of individuals with chronic diseases: 925 0.1 5 descriptive phenomenology of patientsâ€[™] experiences. Journal of Medicine and the Person, 2015, 13, 23-35. Integration of multiple site-controlled pyramidal quantum dot systems with photonic-crystal membrane cavities. Journal of Crystal Growth, 2015, 414, 192-195. Selective Transfer of Superposition of Coherent States by Exploiting a Cavity QED System. 927 0.5 0 International Journal of Theoretical Physics, 2015, 54, 1604-1616. Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of 2.1 nanoemitters. Applied Optics, 2016, 55, 10263. Circumventing spontaneous Raman noise in a correlated photon pair source. APL Photonics, 2016, 1, 929 3.0 1 091301. Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators. 36 Micromachines, 2016, 7, 69. Semiconductor Three-Dimensional Photonic Crystals with Novel Layer-by-Layer Structures. Photonics, 931 0.9 6 2016, 3, 34. Strong coupling of localized surface plasmons and ensembles of dye molecules. Optics Express, 2016, 24, 25653.

ARTICLE IF CITATIONS # Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535, 933 13.7 213 401-405. Role of multilevel states on quantum-dot emission in photonic-crystal cavities. Physical Review B, 934 1.1 2016,94,. Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity 935 1.5 33 system. Applied Physics Letters, 2016, 109, . The colored Hanbury Brown–Twiss effect. Scientific Reports, 2016, 6, 37980. 936 Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. 937 4.7 90 Science Advances, 2016, 2, e1600987. Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors. Physical Review B, 2016, 94, . 938 1.1 Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity. Scientific Reports, 939 1.6 41 2016, 6, 25172. An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall 940 60 efficiency. APL Photonics, 2016, 1, . 941 Quantum correlations of light and matter through environmental transitions. Optica, 2016, 3, 207. 4.8 12 942 The World of Plasmons. Springer Series in Materials Science, 2016, , 11-57. 0.4 Single Defect Light-Emitting Diode in a van der Waals Heterostructure. Nano Letters, 2016, 16, 943 4.5115 3944-3948. Picosecond time of spontaneous emission in plasmonic patch nanoantennas. JETP Letters, 2016, 103, 944 0.4 82-86. Band structure and dispersion engineering of strongly coupled plasmon-phonon-polaritons in 945 1.7 2 graphene-integrated structures. Optics Express, 2016, 24, 1480. Polariton waveguides from a quantum dot chain in a photonic crystal waveguide: an architecture for 946 4.8 waveguide quantum electrodynamics. Optica, 2016, 3, 370. Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky 948 42 1.7 components. Optics Express, 2016, 24, 9541. On-demand single-photon sources via quantum blockade and applications in decoy-state quantum key 949 distribution. Optics Letters, 2016, 41, 1921. Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a 950 1.0 34 coupled quantum-dot–cavity system. Physical Review A, 2016, 94, . Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light. Comptes Rendus Physique, 2016, 17, 808-835.

#	Article	IF	CITATIONS
952	Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities. Chinese Physics Letters, 2016, 33, 074204.	1.3	1
953	Compact resonant electro-optic modulator using randomness of a photonic crystal waveguide. Optics Express, 2016, 24, 11199.	1.7	8
954	Atom–atom interactions around the band edge of a photonic crystal waveguide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10507-10512.	3.3	163
955	Quasinormal mode theory and design of on-chip single photon emitters in photonic crystal coupled-cavity waveguides. Optics Express, 2016, 24, 13574.	1.7	6
956	Collective phases of strongly interacting cavity photons. Physical Review A, 2016, 94, .	1.0	45
957	Quantum Zeno dynamics in atoms and cavities. Comptes Rendus Physique, 2016, 17, 685-692.	0.3	1
958	Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Optics Express, 2016, 24, 8539.	1.7	143
959	Color-tunable emission of quantum dots via strong exciton-plasmon coupling in nanoporous gold structure at room temperature. Optics Express, 2016, 24, 20219.	1.7	3
960	Quantum nondestructive determination of qubit states in low-Q cavities via single-photon input-output process. Optics Express, 2016, 24, 5487.	1.7	1
961	Parity oscillations and photon correlation functions in theZ2â^'U(1)Dicke model at a finite number of atoms or qubits. Physical Review A, 2016, 94, .	1.0	4
962	Effect of Pure Dephasing and Phonon Scattering on the Coupling of Semiconductor Quantum Dots to Optical Cavities. Physical Review Letters, 2016, 117, 076801.	2.9	25
963	Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nature Communications, 2016, 7, ncomms11823.	5.8	371
964	GaAs integrated quantum photonics: Towards compact and multiâ€functional quantum photonic integrated circuits. Laser and Photonics Reviews, 2016, 10, 870-894.	4.4	165
965	Strong light-matter interactions in plasmonic lattices. , 2016, , .		0
966	Light propagation in tunable exciton-polariton one-dimensional photonic crystals. Physical Review B, 2016, 94, .	1.1	13
967	Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system. Optics Letters, 2016, 41, 3313.	1.7	44
968	Toward optical quantum information processing with quantum dots coupled to microstructures [Invited]. Journal of the Optical Society of America B: Optical Physics, 2016, 33, C160.	0.9	42
969	Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Physical Review A, 2016, 93, .	1.0	72

#	Article	IF	CITATIONS
970	Optimal conditions for high-fidelity dispersive readout of a qubit with a photon-number-resolving detector. Physical Review A, 2016, 93, .	1.0	5
971	Ground-state cooling of micromechanical oscillators in the unresolved-sideband regime induced by a quantum well. Physical Review A, 2016, 93, .	1.0	27
972	Strong coupling regime in coherent electron transport in periodic quantum nanostructures. Physical Review B, 2016, 93, .	1.1	0
973	Entanglement properties of quantum polaritons. Physical Review B, 2016, 93, .	1.1	5
974	Electronic Enhancement of the Exciton Coherence Time in Charged Quantum Dots. Physical Review Letters, 2016, 116, 037402.	2.9	18
975	Anticoherence in cavity QED systems: Influence from the associated baths beyond a Born approximation. Physical Review A, 2016, 93, .	1.0	0
976	All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap. Physical Review B, 2016, 93, .	1.1	13
977	Steady-state entanglement between distant quantum dots in photonic crystal dimers. Physical Review B, 2016, 94, .	1.1	11
978	High-Q Micro/Nanoresonators for Nonlinear/Quantum Photonics and Sensing. , 2016, , .		0
979	Photoswitchable Rabi Splitting in Hybrid Plasmon–Waveguide Modes. Nano Letters, 2016, 16, 7655-7663.	4.5	52
980	Manipulating and trapping light with photonic crystals from fundamental studies to practical applications. Journal of Materials Chemistry C, 2016, 4, 11032-11049.	2.7	15
981	Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation. Scientific Reports, 2016, 6, 26058.	1.6	1
982	Preparation of vibrational quantum states in nanomechanical graphene resonator. Laser Physics, 2016, 26, 115204.	0.6	5
983	Sensitive temperature measurements based on Lorentzian and Fano resonance lineshapes of a silicon photonic crystal cavity. Proceedings of SPIE, 2016, , .	0.8	0
984	Wiring up pre-characterized single-photon emitters by laser lithography. Scientific Reports, 2016, 6, 31135.	1.6	41
985	Spatially relocatable and spectrally tunable photonic crystal cavity by using a microsphere. Journal of Nanophotonics, 2016, 10, 030501.	0.4	1
986	High-energy side-peak emission of exciton-polariton condensates in high density regime. Scientific Reports, 2016, 6, 25655.	1.6	27
987	Position dependent optical coupling between single quantum dots and photonic crystal nanocavities. Applied Physics Letters, 2016, 109	1.5	23

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
988	Landauer formulation of photon transport in driven systems. Physical Review B, 2016, 94, .	1.1	8
989	Bohr's Legacy in Cavity QED. Progress in Mathematical Physics, 2016, , 103-146.	0.4	0
990	Classical oscillators in the control of quantum tunneling: Numerical experiments. Chemical Physics, 2016, 472, 185-197.	0.9	2
991	Coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires. Journal of Physics: Conference Series, 2016, 673, 012019.	0.3	0
992	Single Photons from a Hot Solid-State Emitter at 350 K. ACS Photonics, 2016, 3, 543-546.	3.2	73
993	Threshold for formation of atom-photon bound states in a coherent photonic band-gap reservoir. Optics Communications, 2016, 366, 431-441.	1.0	4
994	Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature. ACS Nano, 2016, 10, 4806-4815.	7.3	48
995	Strong coupling of surface plasmon polaritons and ensembles of dye molecules. Optics Express, 2016, 24, 3921.	1.7	18
996	Waveguide Integrated Superconducting Nanowire Single Photon Detectors on Silicon. Quantum Science and Technology, 2016, , 85-105.	1.5	0
997	Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates. Journal of Physical Chemistry Letters, 2016, 7, 354-362.	2.1	132
998	Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. Nano Letters, 2016, 16, 270-275.	4.5	333
999	Constructing Robust Entangled Coherent GHZ and W States via a Cavity QED System. International Journal of Theoretical Physics, 2016, 55, 1577-1592.	0.5	6
1000	Telecom wavelength emitting single quantum dots coupled to InP-based photonic crystal microcavities. Applied Physics Letters, 2017, 110, .	1.5	26
1001	Fabrication methods of plasmonic and magnetoplasmonic crystals: a review. European Physical Journal Plus, 2017, 132, 1.	1.2	17
1002	A lithographic approach for quantum dot-photonic crystal nanocavity coupling in dilute nitrides. Microelectronic Engineering, 2017, 174, 16-19.	1.1	10
1003	Influence of phonons on solid-state cavity-QED investigated using nonequilibrium Green's functions. Physical Review B, 2017, 95, .	1.1	14
1004	Laboratory Scale Microbial Food Chain To Study Bioaccumulation, Biomagnification, and Ecotoxicity of Cadmium Telluride Quantum Dots. Environmental Science & amp; Technology, 2017, 51, 1695-1706.	4.6	37
1005	Enhancing the optical cross section of quantum antenna. Physical Review A, 2017, 95, .	1.0	8

#	Article	IF	CITATIONS
1006	Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy. Scientific Reports, 2017, 7, 39916.	1.6	57
1007	High- <i>Q</i> Microcavity Enhanced Optical Properties of CuInS ₂ /ZnS Colloidal Quantum Dots toward Non-Photodegradation. ACS Photonics, 2017, 4, 369-377.	3.2	9
1008	Pulse, polarization and topology shaping of polariton fluids. , 2017, , .		0
1009	Theory of few-photon quantum scattering in nanophotonic structures. Proceedings of SPIE, 2017, , .	0.8	0
1010	Coherent control of the dynamics of a single quantum-dot exciton qubit in a cavity. Physical Review B, 2017, 95, .	1.1	7
1011	Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities. Optics Communications, 2017, 396, 239-248.	1.0	10
1012	Realization of high- <i>Q</i> / <i>V</i> photonic crystal cavities defined by an effective Aubry-André-Harper bichromatic potential. APL Photonics, 2017, 2, .	3.0	31
1013	All-optical control of weak-light transport and Fano-like resonance using control-probe technique in a quantum-dot-pillar microcavity system. Journal of Applied Physics, 2017, 121, 144303.	1.1	8
1014	Mid-infrared coincidence measurements on twin photons at room temperature. Nature Communications, 2017, 8, 15184.	5.8	58
1015	Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Review of Scientific Instruments, 2017, 88, 023116.	0.6	48
1016	Strong Coupling Between Organic Molecules and Plasmonic Nanostructures. Springer Series in Solid-state Sciences, 2017, , 121-150.	0.3	7
1017	DNA-Mediated Patterning of Single Quantum Dot Nanoarrays: A Reusable Platform for Single-Molecule Control. Scientific Reports, 2017, 7, 45591.	1.6	19
1018	Manipulating Coherent Plasmon–Exciton Interaction in a Single Silver Nanorod on Monolayer WSe ₂ . Nano Letters, 2017, 17, 3809-3814.	4.5	270
1019	Enhanced optical Stark shifts in a single quantum dot embedded in an H1 photonic crystal nanocavity. Applied Physics Express, 2017, 10, 062002.	1.1	3
1020	Improving the Radiative Efficiency of InGaN Quantum Dots via an Open Top Cavity. ACS Photonics, 2017, 4, 795-799.	3.2	8
1022	Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Scientific Reports, 2017, 7, 45582.	1.6	40
1023	Defects in III-nitride microdisk cavities. Semiconductor Science and Technology, 2017, 32, 033002.	1.0	5
1024	Semiconductor devices for entangled photon pair generation: a review. Reports on Progress in Physics, 2017, 80, 076001.	8.1	117

#	Article	IF	CITATIONS
1025	Strain-Gradient Position Mapping of Semiconductor Quantum Dots. Physical Review Letters, 2017, 118, 117401.	2.9	21
1026	Universal non-adiabatic holonomic quantum computation in decoherence-free subspaces with quantum dots inside a cavity. Laser Physics Letters, 2017, 14, 055202.	0.6	7
1027	Atom-light interactions in quasi-one-dimensional nanostructures: A Green's-function perspective. Physical Review A, 2017, 95, .	1.0	100
1028	Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots. Journal of Crystal Growth, 2017, 464, 69-74.	0.7	9
1029	Input-Output Formalism for Few-Photon Transport. Springer Series in Solid-state Sciences, 2017, , 1-23.	0.3	1
1030	Quantum speedup of an atom coupled to a photonic-band-gap reservoir. Quantum Information Processing, 2017, 16, 1.	1.0	4
1031	Real-time path-integral approach for dissipative quantum dot-cavity quantum electrodynamics: impure dephasing-induced effects. Journal of Physics Condensed Matter, 2017, 29, 055701.	0.7	7
1032	Density of optical states in rolled-up photonic crystals and quasi crystals. Computer Physics Communications, 2017, 214, 117-127.	3.0	5
1033	A deterministic quantum dot micropillar single photon source with >65% extraction efficiency based on fluorescence imaging method. Scientific Reports, 2017, 7, 13986.	1.6	20
1034	Optical sensing with Anderson-localised light. Applied Physics Letters, 2017, 111, .	1.5	7
1035	Ordered Superparticles with an Enhanced Photoelectric Effect by Subâ€Nanometer Interparticle Distance. Advanced Functional Materials, 2017, 27, 1701982.	7.8	32
1036	Split-disk micro-lasers: Tunable whispering gallery mode cavities. APL Photonics, 2017, 2, 096103.	3.0	13
1037	Fano resonance in a cavity-reflector hybrid system. Physical Review B, 2017, 95, .	1.1	11
1038	Quantum Phase Transition of Polaritonic Excitations in a Multi-Excitation Coupled Array. International Journal of Theoretical Physics, 2017, 56, 3667-3689.	0.5	0
1039	High-fidelity spin measurement on the nitrogen-vacancy center. New Journal of Physics, 2017, 19, 103002.	1.2	16
1040	Inkjetâ€Printed Nanocavities on a Photonic Crystal Template. Advanced Materials, 2017, 29, 1704425.	11.1	19
1041	Anderson Localization of Visible Light on a Nanophotonic Chip. ACS Photonics, 2017, 4, 2274-2280.	3.2	21
1042	High-Q/V photonic crystal cavities realized by an effective Aubry-André-Harper bichromatic potential. , 2017, , .		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1043	Fano resonance Rabi splitting of surface plasmons. Scientific Reports, 2017, 7, 8010.		1.6	57
1044	Conductance and Kondo Interference beyond Proportional Coupling. Physical Review I 116801.	etters, 2017, 119,	2.9	10
1045	Resonance optimization of polychromatic light in disordered structures. Scientific Rep 8042.	orts, 2017, 7,	1.6	1
1046	Optical source of individual pairs of colour-conjugated photons. Scientific Reports, 20	17, 7, 11418.	1.6	0
1047	Emergent equilibrium in many-body optical bistability. Physical Review A, 2017, 95, .		1.0	91
1048	Strong cavity-pseudospin coupling in monolayer transition metal dichalcogenides. Phy 2017, 96, .	sical Review B,	1.1	4
1049	Vibrational Strong Light–Matter Coupling Using a Wavelength-Tunable Mid-infrared Microcavity. Journal of Physical Chemistry C, 2017, 121, 18845-18853.	Open	1.5	24
1050	Combined atomic force microscopy and photoluminescence imaging to select single In quantum dots for quantum photonic devices. Scientific Reports, 2017, 7, 6205.	nAs/CaAs	1.6	15
1051	Deterministic coupling of a system of multiple quantum dots to a single photonic cavi Physics Letters, 2017, 111, .	ty mode. Applied	1.5	4
1052	Cascaded Kerr photon-blockade sources and applications in quantum key distribution. Reports, 2017, 7, 7309.	Scientific	1.6	1
1053	Undamped trace distance and coherence preservation of quantum bit in photonic crys Communications, 2017, 403, 385-390.	tal. Optics	1.0	0
1054	A few-emitter solid-state multi-exciton laser. Scientific Reports, 2017, 7, 7420.		1.6	10
1055	Cavity-Enhanced Transport of Charge. Physical Review Letters, 2017, 119, 223601.		2.9	109
1056	Few-Electron Ultrastrong Light-Matter Coupling at 300 GHz with Nanogap Hybrid LC N Nano Letters, 2017, 17, 7410-7415.	licrocavities.	4.5	57
1057	Voltage ontrolled Switching of Strong Light–Matter Interactions using Liquid Cry A European Journal, 2017, 23, 18166-18170.	rstals. Chemistry -	1.7	50
1058	Nonlinear cavity feeding and unconventional photon statistics in solid-state cavity QEI many-level real-time path-integral calculations. Physical Review B, 2017, 96, .	D revealed by	1.1	32
1059	Controlled Radiative Dynamics Using Plasmonic Nanocavities. World Scientific Series i and Nanotechnology, 2017, , 113-152.	n Nanoscience	0.1	0
1060	High-performance semiconductor quantum-dot single-photon sources. Nature Nanote 12, 1026-1039.	chnology, 2017,	15.6	741

#	Article	IF	CITATIONS
1061	Dissipation-induced photonic-correlation transition in waveguide-QED systems. Physical Review A, 2017, 96, .	1.0	34
1062	Hidden Vacuum Rabi Oscillations: Dynamical Quantum Superpositions of On/Off Interaction between a Single Quantum Dot and a Microcavity. Communications in Theoretical Physics, 2017, 67, 661.	1.1	0
1063	Enhanced generation of higher-order sidebands in a single-quantum-dot–cavity system coupled to a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> -symmetric double cavity. Physical Review A, 2017, 96, .	1.0	34
1064	Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity. Physical Review B, 2017, 96, .	1.1	8
1065	Phase-modulated photon antibunching in a two-level system coupled to two cavities. Physical Review A, 2017, 96, .	1.0	24
1066	Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides. Physical Review B, 2017, 95, .	1.1	21
1067	Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit. Physical Review Letters, 2017, 118, 237401.	2.9	207
1068	<i>Colloquium</i> : Strongly interacting photons in one-dimensional continuum. Reviews of Modern Physics, 2017, 89, .	16.4	313
1069	Exciton-polariton trapping and potential landscape engineering. Reports on Progress in Physics, 2017, 80, 016503.	8.1	157
1070	Quantum Plasmonics. Springer Series in Solid-state Sciences, 2017, , .	0.3	41
1071	Deterministic quantum state transfer between remote qubits in cavities. Quantum Science and Technology, 2017, 2, 045003.	2.6	22
1072	Sharp phase variations from the plasmon mode causing the Rabi-analogue splitting. Nanophotonics, 2017, 6, 1101-1107.	2.9	2
1073	Coherent control in quantum open systems: An approach for accelerating dissipation-based quantum state generation. Physical Review A, 2017, 96, .	1.0	16
1074	Stability of fractional quantum Hall states in disordered photonic systems. New Journal of Physics, 2017, 19, 115004.	1.2	0
1075	Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities. Scientific Reports, 2017, 7, 14905.	1.6	22
1076	Analysis of high-Q photonic crystal L3 nanocavities designed by visualization of the leaky components. Optics Express, 2017, 25, 367.	1.7	37
1077	Thresholdless quantum dot nanolaser. Optics Express, 2017, 25, 19981.	1.7	53
1078	Bistable four-wave mixing response in a semiconductor quantum dot coupled to a photonic crystal nanocavity. Optics Express, 2017, 25, 25663.	1.7	8

		I KEPORT	
#	Article	IF	CITATIONS
1079	Ultrahigh-Q photonic crystal cavities in silicon rich nitride. Optics Express, 2017, 25, 27334.	1.7	10
1080	Hybrid metal-dielectric nanocavity for enhanced light-matter interactions. Optical Materials Express, 2017, 7, 231.	1.6	13
1081	Hyperradiance from collective behavior of coherently driven atoms. Optica, 2017, 4, 779.	4.8	34
1082	Photonic crystal nanocavity with a Q factor exceeding eleven million. Optics Express, 2017, 25, 1769.	1.7	156
1083	Surfaceâ€Plasmonâ€Polariton Diode by Asymmetric Plano oncave Nanocavities. Advanced Optical Materials, 2018, 6, 1701226.	3.6	7
1084	Photonic coherent perfect transmission, absorption, and synthesis in a bimodal cavity quantum electrodynamics system. Optik, 2018, 161, 293-300.	1.4	1
1085	Reshaping the phonon energy landscape of nanocrystals inside a terahertz plasmonic nanocavity. Nature Communications, 2018, 9, 763.	5.8	30
1086	Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity. Applied Physics Letters, 2018, 112, .	1.5	27
1087	Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 075505.	0.6	9
1088	Ultrafast control of strong light–matter coupling. New Journal of Physics, 2018, 20, 013032.	1.2	5
1089	Analytical solution and applications of three qubits in three coupled modes without rotating wave approximation. Quantum Information Processing, 2018, 17, 1.	1.0	1
1090	Siteâ€Controlled Singleâ€Photon Emitters Fabricated by Nearâ€Field Illumination. Advanced Materials, 2018, 30, e1705450.	11.1	23
1091	Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Science and Applications, 2018, 7, 17172-17172.	7.7	257
1092	Explanation of the quantum phenomenon of off-resonant cavity-mode emission. Physical Review A, 2018, 97, .	1.0	10
1093	Entanglement dynamics of two Ising-coupled qubits with nonperpendicular local driving fields. Physical Review B, 2018, 97, .	1.1	6
1094	Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity. Scientific Reports, 2018, 8, 2566.	1.6	12
1095	Transport of Photonic Bloch Wave in Arrayed Two-Level Atoms. Scientific Reports, 2018, 8, 1519.	1.6	2
1096	Strong coupling-like phenomenon in single metallic nanoparticle embedded in molecular J-aggregates. Modern Physics Letters B, 2018, 32, 1850046.	1.0	2

#	Article	IF	CITATIONS
1097	Normal-Mode Splitting in a Weakly Coupled Optomechanical System. Physical Review Letters, 2018, 120, 073601.	2.9	45
1098	Anderson light localization in biological nanostructures of native silk. Nature Communications, 2018, 9, 452.	5.8	83
1099	Large Excitonic Reflectivity of Monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoSe</mml:mi></mml:mrow><mml:mrow>< in Hexagonal Boron Nitride. Physical Review Letters, 2018, 120, 037402.</mml:mrow></mml:msub></mml:mrow></mml:math 	mmt:mn>2	2 165<br mml:mn><
1100	Steady State Entanglement beyond Thermal Limits. Physical Review Letters, 2018, 120, 063604.	2.9	48
1101	Light–matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale, 2018, 10, 3589-3605.	2.8	179
1102	Robust lanthanide emitters in polyelectrolyte thin films for photonic applications. Nanotechnology, 2018, 29, 075302.	1.3	8
1103	Unconventional photon blockade from bimodal driving and dissipations in coupled semiconductor microcavities. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 035503.	0.6	22
1104	Fiber-Coupled Cavity-QED Source of Identical Single Photons. Physical Review Applied, 2018, 9, .	1.5	47
1105	The dynamics of a polariton dimer in a disordered coupled array of cavities. European Physical Journal B, 2018, 91, 1.	0.6	0
1106	Strong Exciton–Plasmon Coupling in Silver Nanowire Nanocavities. Journal of Physical Chemistry Letters, 2018, 9, 1676-1681.	2.1	35
1107	Measurement-device-independent quantum key distribution via quantum blockade. Scientific Reports, 2018, 8, 4115.	1.6	4
1108	Strong Coupling in the Structure of Single Metallic Nanoparticle Partially Buried in Molecular J-Aggregates. Plasmonics, 2018, 13, 743-747.	1.8	4
1109	Anomalous dispersion of microcavity trion-polaritons. Nature Physics, 2018, 14, 130-133.	6.5	48
1110	Exciton-plasmon coupling interactions: from principle to applications. Nanophotonics, 2018, 7, 145-167.	2.9	164
1111	Parameter estimation in plasmonic QED. Optics Communications, 2018, 411, 119-125.	1.0	13
1112	Single photon emissions from InAs/GaAs quantum dots embedded in GaAs/SiO 2 hybrid microdisks. Optics Communications, 2018, 411, 114-118.	1.0	3
1113	Molecular spin qudits for quantum algorithms. Chemical Society Reviews, 2018, 47, 501-513.	18.7	254
1114	Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Letters, 2018, 18, 405-411.	4.5	126

#	Article	IF	CITATIONS
1115	Optical remote control of a single charge qubit. Physical Review B, 2018, 98, .	1.1	0
1116	Vacuum-dressed cavity magnetotransport of a two-dimensional electron gas. Physical Review B, 2018, 98, .	1.1	34
1117	Controlling the gain contribution of background emitters in few-quantum-dot microlasers. New Journal of Physics, 2018, 20, 023036.	1.2	3
1118	Photodetection probability in quantum systems with arbitrarily strong light-matter interaction. Scientific Reports, 2018, 8, 17825.	1.6	19
1119	Probing higher-order transitions through scattering of microwave photons in the ultrastrong-coupling regime of circuit QED. Physical Review A, 2018, 98, .	1.0	2
1120	Angle-Independent Polariton Emission Lifetime Shown by Perylene Hybridized to the Vacuum Field Inside a Fabry–Pérot Cavity. Journal of Physical Chemistry C, 2018, 122, 24917-24923.	1.5	22
1121	Steady-states of out-of-equlibrium inhomogeneous Richardson–Gaudin quantum integrable models in quantum optics. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 083102.	0.9	3
1122	Quantum-optical influences in optoelectronics—An introduction. Applied Physics Reviews, 2018, 5, .	5.5	32
1123	Anomalous zero-group-velocity photonic bonding states with local chirality. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2356.	0.9	12
1124	Numerical design and investigation of an optically pumped 1.55 μm single quantum dot photonic crystal-based laser. Photonics and Nanostructures - Fundamentals and Applications, 2018, 32, 42-46.	1.0	11
1125	Exciton behavior under the influence of metal nanoparticle near fields: Significance of nonlocal effects. Physical Review B, 2018, 98, .	1.1	19
1126	A Charge-Tunable Quantum Dot Deep in The Strong Coupling Regime of Cavity QED. , 2018, , .		0
1127	Enabling Lasing Action in Hybrid Atomic–Nanophotonic Integrated Structures. Annalen Der Physik, 2018, 530, 1800203.	0.9	1
1128	Effect of phonon coupling on the cooperative two-photon emission from two quantum dots. Physical Review B, 2018, 98, .	1.1	4
1129	Increasing Light Absorption and Collection Using Engineered Structures. , 0, , .		0
1130	Quantum Rings in Electromagnetic Fields. Nanoscience and Technology, 2018, , 347-409.	1.5	1
1131	Polarization switch in an elliptical micropillar – quantum dot system induced by a magnetic field in Faraday configuration. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 3216-3219.	0.9	1
1132	Interfacing quantum emitters with propagating surface acoustic waves. Journal Physics D: Applied Physics, 2018, 51, 373001.	1.3	41

#	Article	IF	CITATIONS
1133	Coherent perfect absorption in a quantum nonlinear regime of cavity quantum electrodynamics. Physical Review A, 2018, 97, .	1.0	11
1134	Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews, 2018, 118, 5539-5580.	23.0	80
1135	Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes. Physical Review Letters, 2018, 120, 213901.	2.9	53
1136	Controllable growth of GeSi nanostructures by molecular beam epitaxy. Journal of Semiconductors, 2018, 39, 061004.	2.0	1
1137	Engineering of Hybrid Nanoporous Anodic Alumina Photonic Crystals by Heterogeneous Pulse Anodization. Scientific Reports, 2018, 8, 9455.	1.6	24
1138	Engineering optical emission in sub-diffraction hyperbolic metamaterial resonators. Optics Express, 2018, 26, 4382.	1.7	12
1139	Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavities. Optics Express, 2018, 26, 11366.	1.7	16
1140	Optical trapping of single quantum dots for cavity quantum electrodynamics. Photonics Research, 2018, 6, 182.	3.4	33
1141	Dynamic tuning of the Q factor in a photonic crystal nanocavity through photonic transitions. Optics Letters, 2018, 43, 3945.	1.7	5
1142	Photon statistics of radiation emitted by two quantum wells embedded in two optically coupled semiconductor microcavities. Optik, 2018, 172, 588-595.	1.4	5
1143	Filtering multiphoton emission from state-of-the-art cavity quantum electrodynamics. Optica, 2018, 5, 14.	4.8	46
1144	Bright and pure single-photons from quantum dots in micropillar cavities under up-converted excitation. Science Bulletin, 2018, 63, 739-742.	4.3	7
1145	Site-Controlled Quantum Emitters in Dilute Nitrides and their Integration in Photonic Crystal Cavities. Photonics, 2018, 5, 10.	0.9	12
1146	Time-resolved vacuum Rabi oscillations in a quantum-dot–nanocavity system. Physical Review B, 2018, 97, .	1.1	11
1147	Entanglement of remote material qubits through nonexciting interaction with single photons. Physical Review A, 2018, 97, .	1.0	5
1148	Photonic Crystal Devices in Silicon Photonics. Proceedings of the IEEE, 2018, 106, 2183-2195.	16.4	26
1149	Fully embedded photonic crystal cavity with Q=06 million fabricated within a full-process CMOS multiproject wafer. Optics Express, 2018, 26, 20868.	1.7	12
1150	Exact approach for spatiotemporal dynamics of spontaneous emissions in waveguide quantum electrodynamic systems. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 607.	0.9	10

#	Article	IF	Citations
1151	Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves. Physical Review B, 2018, 97, .	1.1	19
1152	Driving-induced population trapping and linewidth narrowing via the quantum Zeno effect. Physical Review A, 2018, 97, .	1.0	1
1153	Tunable single photon and two-photon emission in a four-level quantum dot-bimodal cavity system. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 234-238.	1.3	0
1154	Tip-enhanced strong coupling spectroscopy, imaging, and control of a single quantum emitter. Science Advances, 2019, 5, eaav5931.	4.7	107
1155	Squeezingâ€Enhanced Atom–Cavity Interaction in Coupled Cavities with High Dissipation Rates. Annalen Der Physik, 2019, 531, 1900220.	0.9	11
1156	Non-Gaussian bosonic channels in the Tavis–Cummings model. Quantum Information Processing, 2019, 18, 1.	1.0	0
1157	Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures. Nanoscale Advances, 2019, 1, 3225-3231.	2.2	10
1158	Shortening time scale to reduce thermal effects in quantum transistors. Scientific Reports, 2019, 9, 10470.	1.6	6
1159	Broadband photonic structures for quantum light sources. Journal of Semiconductors, 2019, 40, 071905.	2.0	3
1160	Ill–V compounds as single photon emitters. Journal of Semiconductors, 2019, 40, 071906.	2.0	6
1161	Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot. Scientific Reports, 2019, 9, 10151.	1.6	18
1162	Strain-Tunable Single-Photon Source Based on a Quantum Dot–Micropillar System. ACS Photonics, 2019, 6, 2025-2031.	3.2	20
1163	Mahaux-Weidenmüller approach to cavity quantum electrodynamics and complete resonant down-conversion of the single-photon frequency. Physical Review A, 2019, 100, .	1.0	6
1164	Ultrasmall Mode Volume Hyperbolic Nanocavities for Enhanced Light–Matter Interaction at the Nanoscale. ACS Nano, 2019, 13, 11770-11780.	7.3	32
1165	Demonstration of Optical Frequency Combs in Photonic Crystal Cavities. , 2019, , .		1
1166	Strong Photon Blockade Mediated by Optical Stark Shift in a Single-Atom–Cavity System. Physical Review Applied, 2019, 12, .	1.5	17
1167	A Spin–Photon Interface Using Charge-Tunable Quantum Dots Strongly Coupled to a Cavity. Nano Letters, 2019, 19, 7072-7077.	4.5	22
1168	Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots. Advances in Physics: X, 2019, 4, 1655478.	1.5	37

#	Article	IF	CITATIONS
1169	Double Rabi Splitting in a Strongly Coupled System of Core–Shell Au@Ag Nanorods and J-Aggregates of Multiple Fluorophores. Journal of Physical Chemistry Letters, 2019, 10, 6137-6143.	2.1	30
1170	Splitting in lateral shift induced by strong coupling in Kretschmann configuration involving molecular J-aggregates. Modern Physics Letters B, 2019, 33, 1950370.	1.0	5
1171	Phonon-induced dephasing in quantum-dotâ \in "cavity QED. Physical Review B, 2019, 100, .	1.1	10
1172	Strong light–matter interactions: a new direction within chemistry. Chemical Society Reviews, 2019, 48, 937-961.	18.7	260
1173	Enhanced Kerr nonlinearity with a single quantum dot coupled to a gain cavity under weak-excitation limitation. Laser Physics Letters, 2019, 16, 025204.	0.6	1
1174	Quantum Rabi Model with Two-Photon Relaxation. Physical Review Letters, 2019, 122, 043601.	2.9	17
1175	Cost-Effective Realization of Multimode Exciton–Polaritons in Single-Crystalline Microplates of a Layered Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 7288-7295.	4.0	12
1176	Thermal Redistribution of Exciton Population in Monolayer Transition Metal Dichalcogenides Probed with Plasmon–Exciton Coupling Spectroscopy. ACS Photonics, 2019, 6, 411-421.	3.2	42
1177	Deterministic fabrication of circular Bragg gratings coupled to single quantum emitters via the combination of <i>in-situ</i> optical lithography and electron-beam lithography. Journal of Applied Physics, 2019, 125, .	1.1	27
1178	Resonance coupling in hybrid gold nanohole–monolayer WS2 nanostructures. Applied Materials Today, 2019, 15, 145-152.	2.3	23
1179	Tunable strong plasmon-exciton coupling between single silver nanocube dimer and J-aggregates. Physica B: Condensed Matter, 2019, 569, 40-47.	1.3	9
1180	Integration of Nanoemitters onto Photonic Structures by Guided Evanescent-Wave Nano-Photopolymerization. Journal of Physical Chemistry C, 2019, 123, 14669-14676.	1.5	18
1181	Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures. ACS Nano, 2019, 13, 8303-8311.	7.3	24
1182	Linear acene molecules in plasmonic cavities: mapping evolution of optical absorption spectra and electric field intensity enhancements. New Journal of Chemistry, 2019, 43, 10774-10783.	1.4	13
1183	A quantum dot as a source of time-bin entangled multi-photon states. Quantum Science and Technology, 2019, 4, 025011.	2.6	22
1184	Single-photon controlled switch based on the giant Kerr nonlinearity in the single-spin coupled to levitated nanodiamonds. Optics Communications, 2019, 450, 236-240.	1.0	5
1185	An array of SiGe nanodisks with Ge quantum dots on bulk Si substrates demonstrating a unique light–matter interaction associated with dual coupling. Nanoscale, 2019, 11, 15487-15496.	2.8	18
1186	Comparison of semiclassical and quantum models of a two-level atom-cavity QED system in the strong coupling regime. Journal of Modern Optics, 2019, 66, 1273-1281.	0.6	2

#		IE	CITATIONS
#	AKTICLE	IF	CHAHONS
1187	assisted by quantum dots. Quantum Information Processing, 2019, 18, 1.	1.0	12
1188	Control of the Magnon-Photon Level Attraction in a Planar Cavity. Physical Review Applied, 2019, 11, .	1.5	58
1189	Observation of a Topological Edge State in the Xâ€ray Band. Laser and Photonics Reviews, 2019, 13, 1800339.	4.4	31
1190	Strong coupling between weakly guided semiconductor nanowire modes and an organic dye. Physical Review B, 2019, 99, .	1.1	8
1191	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials, 2019, 31, e1806671.	11.1	134
1192	Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nature Materials, 2019, 18, 799-810.	13.3	139
1193	Fast two-quadrature adiabatic quantum gates for weakly nonlinear qubits: a tight-binding approach. Quantum Information Processing, 2019, 18, 1.	1.0	2
1194	High-Q photonic crystal heterostructure microcavities by tuning air holes. Optics Communications, 2019, 446, 88-92.	1.0	3
1195	Exciton–Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime. Nano Letters, 2019, 19, 3273-3279.	4.5	26
1196	Emission spectrum in dissipative cavities coupled with quantum dots. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 125502.	0.6	0
1197	Optical detection and storage of entanglement in plasmonically coupled quantum-dot qubits. Physical Review A, 2019, 99, .	1.0	5
1198	Strongly Coupled Single-Quantum-Dot–Cavity System Integrated on a CMOS-Processed Silicon Photonic Chip. Physical Review Applied, 2019, 11, .	1.5	38
1199	Few-photon Fock-state wave packet interacting with a cavity-atom system in a waveguide: Exact quantum state dynamics. Physical Review A, 2019, 99, .	1.0	15
1200	Multiphoton Jaynes-Cummings Model: Arbitrary Rotations in Fock Space and Quantum Filters. Physical Review Letters, 2019, 122, 123604.	2.9	27
1201	Real-Time Tunable Strong Coupling: From Individual Nanocavities to Metasurfaces. ACS Photonics, 2019, 6, 838-843.	3.2	30
1202	Multiphoton nonclassical state generated by hyperradiance originating from a quasi-subradiant state. Physical Review A, 2019, 99, .	1.0	5
1203	The strange attraction phenomenon in cQED: The intermediate quantum coupling regime. Optik, 2019, 183, 389-394.	1.4	5
1204	Dipolariton Formation in Quantum Dot Molecules Strongly Coupled to Optical Resonators. Journal of Nanomaterials, 2019, 2019, 1-6.	1.5	1

#	Article	IF	CITATIONS
1205	Cavity-enhanced harmonic generation in silicon rich nitride photonic crystal microresonators. Applied Physics Letters, 2019, 114, 131103.	1.5	11
1206	Nanophotonic Advances for Room-Temperature Single-Photon Sources. Springer Series in Optical Sciences, 2019, , 103-178.	0.5	10
1207	Coupled Photonic Crystal Nanocavities as a Tool to Tailor and Control Photon Emission. Ceramics, 2019, 2, 34-55.	1.0	2
1208	Enhanced Strong Interaction between Nanocavities and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi> -shell Excitons Beyond the Dipole Approximation. Physical Review Letters, 2019, 122, 087401.</mml:math 	2.9	34
1209	Polaritonics: from microcavities to sub-wavelength confinement. Nanophotonics, 2019, 8, 641-654.	2.9	47
1210	Making Diamond Qubits Talk to Light. Physics Magazine, 0, 12, .	0.1	1
1211	Properties of quantum dots coupled to plasmons and optical cavities. Journal of Chemical Physics, 2019, 151, 210901.	1.2	19
1212	A gated quantum dot strongly coupled to an optical microcavity. Nature, 2019, 575, 622-627.	13.7	145
1213	The mixed quantum Rabi model. Scientific Reports, 2019, 9, 18353.	1.6	12
1214	Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity. Physical Review Letters, 2019, 123, 233604.	2.9	59
1215	Micropatterning and defect engineering of colloidal photonic crystals <i>via</i> laser direct writing. Journal of Materials Chemistry C, 2019, 7, 13410-13414.	2.7	21
1216	Dual effects of disorder on the strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	4
1217	Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Lightâ€Emitting Diodes for Display Applications. Advanced Materials, 2019, 31, e1804294.	11.1	445
1218	Quantitative analysis of nonlinear dynamics of quantum light transmission in strongly coupled quantum dot-cavity systems. Optics Communications, 2019, 436, 146-150.	1.0	1
1219	Impact of dipole orientation on strongly-coupled system composed of a single quantum dot and a photonic crystal L3 cavity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 035503.	0.6	1
1220	Silicon Nitride Photonics for the Near-Infrared. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-13.	1.9	40
1221	Advanced Technologies for Quantum Photonic Devices Based on Epitaxial Quantum Dots. Advanced Quantum Technologies, 2020, 3, 1900034.	1.8	11
1222	Elucidating Energy Pathways through Simultaneous Measurement of Absorption and Transmission in a Coupled Plasmonic–Photonic Cavity. Nano Letters, 2020, 20, 50-58.	4.5	20

#	Article	IF	CITATIONS
1223	Opticalâ€Mode Structure of Micropillar Microcavities Containing a Fluorescent Conjugated Polymer. Advanced Quantum Technologies, 2020, 3, 1900067.	1.8	3
1224	Ultrastrong coupling of CdZnS/ZnS quantum dots to bonding breathing plasmons of aluminum metal–insulator–metal nanocavities in near-ultraviolet spectrum. Nanoscale, 2020, 12, 3112-3120.	2.8	9
1225	Pure dephasing vs. Phonon mediated off-resonant coupling in a quantum-dot-cavity system. Optics Communications, 2020, 460, 125115.	1.0	4
1226	Light emission properties in a double quantum dot molecule immersed in a cavity: Phonon-assisted tunneling. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126076.	0.9	4
1227	Coherent and incoherent coupling dynamics in a two-dimensional atomic crystal embedded in a plasmon-induced magnetic resonator. Physical Review B, 2020, 101, .	1.1	20
1228	Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity*. Chinese Physics B, 2020, 29, 010305.	0.7	6
1229	Lifetimes and Quantum Efficiencies of Quantum Dots Deterministically Positioned in Photonicâ€Crystal Waveguides. Advanced Quantum Technologies, 2020, 3, 2000026.	1.8	4
1230	Enhanced coherent interaction between monolayer WS2 and film-coupled nanocube open cavity with suppressed incoherent damping pathway. Physical Review B, 2020, 102, .	1.1	14
1232	Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition. Physical Review X, 2020, 10, .	2.8	72
1233	Atomic force microscopy for nanoscale mechanical property characterization. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	22
1234	Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI ₃ Perovskite Nanocrystals Coupled to Hyperbolic Metamaterials. ACS Photonics, 2020, 7, 3152-3160.	3.2	22
1235	Scheme for Bidirectional Quantum Teleportation of Unknown Electron-Spin States of Quantum Dots within Single-Sided Cavities. International Journal of Theoretical Physics, 2020, 59, 3705-3720.	0.5	3
1236	Telecom wavelength InP-based L3 photonic crystal cavities: Properties of the cavity ground mode. AIP Conference Proceedings, 2020, , .	0.3	2
1237	Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states. Scientific Reports, 2020, 10, 15334.	1.6	7
1238	Dissipative generation of steady-state entanglement of two separated SiV\$\$^{-}\$\$ centers coupled to photonic crystal cavities. Quantum Information Processing, 2020, 19, 1.	1.0	2
1239	Hydrodynamical self-interference of a scattered polariton quanta. Light: Science and Applications, 2020, 9, 154.	7.7	1
1240	Circuit Modularization of Quantum Optical Systems. Physical Review Applied, 2020, 14, .	1.5	2
1241	Topologically Protected Strong Coupling and Entanglement Between Distant Quantum Emitters. Physical Review Applied, 2020, 14	1.5	10

		CITATION REPORT		
#	Article		IF	CITATIONS
1242	Exciton-induced transparency in hybrid plasmonic systems. Physical Review B, 2020, 1	02, .	1.1	9
1243	Model of thermo-optic nonlinear dynamics of photonic crystal cavities. Physical Review	B, 2020, 102, .	1.1	8
1244	Broadband enhancement of light-matter interaction in photonic crystal cavities integra site-controlled quantum dots. Physical Review B, 2020, 101, .	ating	1.1	14
1245	Continuous two-photon source using a single quantum dot in a photonic crystal cavity Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 155503.	v. Journal of	0.6	0
1246	Interactions between a single metallic nanoparticle and chiral molecular J-aggregates in coupling regime and the weak coupling regime. Nanotechnology, 2020, 31, 345202.	1 the strong	1.3	15
1247	Mode properties of telecom wavelength InP-based high-(Q/V) L4/3 photonic crystal ca Nanotechnology, 2020, 31, 315703.	vities.	1.3	9
1248	Surface-passivated high- <i>Q</i> GaAs photonic crystal nanocavity with quantum dot: 2020, 5, .	3. APL Photonics,	3.0	29
1249	Precisely ordered Ge quantum dots on a patterned Si microring for enhanced light-emi Nanotechnology, 2020, 31, 385603.	ssion.	1.3	6
1250	Controllable bistable optical switch and normal mode splitting in hybrid optomechanic semiconductor microcavity containing single quantum dot driven by amplitude modul Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 155402.	al ated field.	0.6	15
1251	Strongly Coupled Exciton–Surface Lattice Resonances Engineer Long-Range Energy Letters, 2020, 20, 5043-5049.	Propagation. Nano	4.5	30
1252	Cavity Quantum Electrodynamics with Secondâ€Order Topological Corner State. Lase Reviews, 2020, 14, 1900425.	r and Photonics	4.4	65
1253	Progress in quantum-dot single photon sources for quantum information technologies spectrum overview. Applied Physics Reviews, 2020, 7, .	: A broad	5.5	184
1254	Faraday-cage-assisted etching of suspended gallium nitride nanostructures. AIP Advan 055319.	ces, 2020, 10,	0.6	2
1255	Three-Electrode Device for Applying Two-Dimensional Vector Electric Fields to Single Ir Dots. Physical Review Applied, 2020, 13, .	As Quantum	1.5	Ο
1256	Deterministically fabricated solid-state quantum-light sources. Journal of Physics Cond 2020, 32, 153003.	ensed Matter,	0.7	41
1257	Ensemble-Induced Strong Light-Matter Coupling of a Single Quantum Emitter. Physica 2020, 124, 113602.	Review Letters,	2.9	40
1258	Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum nois leakage. Scientific Reports, 2020, 10, 5123.	e and sideband	1.6	14
1259	Fabrication and optical characterization of photonic crystal nanocavities with electrod gate-defined quantum dots. Japanese Journal of Applied Physics, 2020, 59, SGGI05.	es for	0.8	6

#	Article	IF	CITATIONS
1260	Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics. Journal of Physical Chemistry B, 2020, 124, 6321-6340.	1.2	90
1261	Influence of the Chemical Structure on Molecular Light Emission in Strongly Localized Plasmonic Fields. Journal of Physical Chemistry C, 2020, 124, 4674-4683.	1.5	16
1262	Controlling Excitons in an Atomically Thin Membrane with a Mirror. Physical Review Letters, 2020, 124, 027401.	2.9	55
1263	Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional Semiconductors at Ambient Conditions. Physical Review Letters, 2020, 124, 063902.	2.9	85
1264	Radiative coupling and decay dynamics of two two-level quantum emitters in arbitrary dielectric nanostructures. Physical Review A, 2020, 101, .	1.0	1
1265	Magnetically controllable photon blockade under a weak quantum-dot–cavity coupling condition. Physical Review A, 2020, 101, .	1.0	12
1266	Plasmon-Mediated Coherent Superposition of Discrete Excitons under Strong Exciton–Plasmon Coupling in Few-Layer MoS ₂ at Room Temperature. ACS Photonics, 2020, 7, 1129-1134.	3.2	15
1267	Hybrid integrated quantum photonic circuits. Nature Photonics, 2020, 14, 285-298.	15.6	411
1268	Monolithic Silicon-Based Nanobeam Cavities for Integrated Nonlinear and Quantum Photonics. Physical Review Applied, 2020, 13, .	1.5	9
1269	Generation of large-scale W states in a cavity–quantum dot system. Laser Physics Letters, 2020, 17, 055204.	0.6	1
1270	General Quantum Entanglement Purification Protocol using a Controlledâ€Phaseâ€Flip Gate. Annalen Der Physik, 2020, 532, 2000011.	0.9	7
1271	Cooperative emission spectra as an efficient key probe of qubits pair entanglement along with field state tomography: an effective response to nonlinearity and classical drive power. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 145001.	0.6	2
1272	Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nature Photonics, 2021, 15, 197-202.	15.6	90
1274	Non-classical computing problems: Toward novel type of quantum computing problems. Results in Physics, 2021, 21, 103536.	2.0	22
1275	Enhanced Light–Matter Interaction in ¹⁰ 8 Monoisotopic Boron Nitride Infrared Nanoresonators. Advanced Optical Materials, 2021, 9, 2001958.	3.6	24
1276	One-dimensional photonic waveguide for filtering and demultiplexing. , 2021, , 373-391.		0
1277	Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes. Nanoscale, 2021, 13, 2792-2800.	2.8	13
1278	Coupling Silver Iodide Emitters to Aluminum Plasmons. Journal of Physical Chemistry C, 2021, 125, 2519-2523.	1.5	1

		Citation Report		
#	Article		IF	CITATIONS
1279	Theory of Fano effect in cavity quantum electrodynamics. Physical Review Research, 20)21, 3, .	1.3	8
1280	Fluctuation-enhanced Kerr nonlinearity in an atom-assisted optomechanical system wir interactions. Optics Express, 2021, 29, 5367.	th atom-cavity	1.7	4
1281	Absolute and arbitrary orientation of single-molecule shapes. Science, 2021, 371, .		6.0	54
1282	Ultrastrong time-dependent light-matter interactions are gauge relative. Physical Revie 2021, 3, .	w Research,	1.3	11
1283	High-performance deterministic in situ electron-beam lithography enabled by cathodol spectroscopy. Nano Express, 2021, 2, 014007.	uminescence	1.2	12
1284	Plasmonic hybrids of two-dimensional transition metal dichalcogenides and nanoscale Architectures, enhanced optical properties and devices. Materials Today Physics, 2021	metals: , 17, 100343.	2.9	18
1285	Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vac in diamond. Optics Express, 2021, 29, 9174.	cancy centers	1.7	8
1287	Enhanced emission from a single quantum dot in a microdisk at a deterministic diaboli Express, 2021, 29, 14231.	cal point. Optics	1.7	7
1288	Quantum computing: A measurement and analysis review. Concurrency Computation Experience, 2021, 33, e6344.	Practice and	1.4	2
1289	Enhanced circular dichroism of plasmonic system in the strong coupling regime*. Chin 2021, 30, 047304.	ese Physics B,	0.7	0
1290	Strong photon blockade in an all-fiber emitter-cavity quantum electrodynamics system Review A, 2021, 103, .	. Physical	1.0	14
1291	Quantum Plasmonics: Energy Transport Through Plasmonic Gap. Advanced Materials, 2 e2006606.	2021, 33,	11.1	19
1292	Unconventional Photon Blockade in Quantumâ€Well Microcavities with Squeezed Lig Solidi (B): Basic Research, 2021, 258, 2100094.	nt. Physica Status	0.7	1
1293	Quantum Embedded Superstates. Advanced Quantum Technologies, 2021, 4, 200012	1.	1.8	7
1294	Vacuum Field Photonic Trap for Excitons. Advanced Quantum Technologies, 2021, 4, 2	2100046.	1.8	1
1295	Combining density functional theory with macroscopic QED for quantum light-matter 2D materials. Nature Communications, 2021, 12, 2778.	interactions in	5.8	14
1296	Global optimization of an encapsulated Si/SiO\$\$_2\$\$ L3 cavity with a 43 million quali Scientific Reports, 2021, 11, 10121.	ty factor.	1.6	8
1297	Relativity and diversity of strong coupling in coupled plasmon-exciton systems. Physica 2021, 103, .	al Review B,	1.1	12
#	Article	IF	CITATIONS	
------	---	-----	-----------	
1298	Tunable photon blockade with a single atom in a cavity under electromagnetically induced transparency. Photonics Research, 2021, 9, 1226.	3.4	11	
1299	Combining Optical Strong Mode Coupling with Polaritonic Coupling in a λ/2 Fabry–Pérot Microresonator. Journal of Physical Chemistry C, 2021, 125, 13024-13032.	1.5	3	
1300	Photonic-plasmonic hybrid microcavities: Physics and applications*. Chinese Physics B, 2021, 30, 117801.	0.7	7	
1301	Deterministic generation of multidimensional photonic cluster states using time-delay feedback. Physical Review A, 2021, 104, .	1.0	13	
1302	Double degeneracy associated with hidden symmetries in the asymmetric two-photon Rabi model. Physical Review Research, 2021, 3, .	1.3	7	
1303	Transition to strong coupling regime in hybrid plasmonic systems: exciton-induced transparency and Fano interference. Nanophotonics, 2021, 10, 3735-3744.	2.9	5	
1304	Ultranarrow spectral line of the radiation in double qubit-cavity ultrastrong coupling system. Optics Express, 2021, 29, 23939.	1.7	1	
1305	Exciton–Photonics: From Fundamental Science to Applications. ACS Nano, 2021, 15, 12628-12654.	7.3	47	
1306	Study of single photon source efficiency based on cavity quantum electrodynamics. Physica B: Condensed Matter, 2021, 612, 412945.	1.3	2	
1307	Exact k -body representation of the Jaynes-Cummings interaction in the dressed basis: Insight into many-body phenomena with light. Physical Review A, 2021, 104, .	1.0	7	
1308	Three-Dimensional Photoluminescent Crypto-Images Doped with (CdSe)ZnS Quantum Dots by One-Photon and Two-Photon Polymerization. ACS Applied Nano Materials, 2021, 4, 6916-6927.	2.4	15	
1309	Unified treatment of scattering, absorption, and luminescence spectra from a plasmon–exciton hybrid by temporal coupled-mode theory. Journal of Chemical Physics, 2021, 155, 074104.	1.2	6	
1310	Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami. Nano Research, 2022, 15, 1327-1337.	5.8	6	
1311	Multistability and Fano resonances in a hybrid optomechanical photonic crystal microcavity. Journal of Modern Optics, 2021, 68, 975-983.	0.6	7	
1312	Transition to strong coupling regime for a quantum emitter coupled to a plasmonic resonator. , 2021,		0	
1313	Nanoscale Positioning Approaches for Integrating Single Solidâ€6tate Quantum Emitters with Photonic Nanostructures. Laser and Photonics Reviews, 2021, 15, 2100223.	4.4	27	
1314	Defect Polaritons from First Principles. ACS Nano, 2021, 15, 15142-15152.	7.3	7	
1315	Wave Transport and Localization in Prime Number Landscapes. Frontiers in Physics, 2021, 9, .	1.0	0	

ARTICLE IF CITATIONS # Photon blockade in a coupled double quantum dotâ€"nonlinear optomechanical system. Physica 1316 1.2 0 Scripta, 2021, 96, 125108. Computational Materials Insights Into Solid-State Multiqubit Systems. PRX Quantum, 2021, 2, . 3.5 Fundamental Limits to the Refractive Index of Transparent Optical Materials. Advanced Materials, 2021, 1318 26 11.1 33, e2103946. Bright Purcell Enhanced Single-Photon Source in the Telecom O-Band Based on a Quantum Dot in a 39 Circular Bragg Grating. Nano Letters, 2021, 21, 7740-7745. Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2021, 2, . 1320 5.5 28 Entanglement instability in the interaction of two qubits with a common non-Markovian 1321 1.0 environment. Quantum Information Processing, 2021, 20, 1. Deterministic coupling of quantum emitter to surface plasmon polaritons, Purcell enhanced generation of indistinguishable single photons and quantum information processing. Optics Communications, 2021, 496, 127139. 1322 1.0 5 Chaotic spin-photonic quantum states in an open periodically modulated cavity. Chaos, 2021, 31, 013112. 1.0 Enhanced Photon-Emitter Coupling in Micro/Nano Photonic Structures. IEEE Journal of Selected 1324 1.9 6 Topics in Quantum Electronics, 2021, 27, 1-10. Strong plasmon–exciton coupling in transition metal dichalcogenides and plasmonic 2.8 44 nanostructures. Nanoscale, 2021, 13, 4408-4419. Nanostructured Semiconductor Materials For Optoelectronic Applications. NATO Science for Peace 1326 3 0.2 and Security Series B: Physics and Biophysics, 2009, , 447-476. Deterministic Quantum Devices for Optical Quantum Communication. Springer Series in Solid-state 0.3 Sciences, 2020, , 285-359. Engineering of Quantum Dot Photon Sources via Electro-elastic Fields. Nano-optics and 1328 0.2 6 Nanophotonics, 2015, , 277-302. The Mesoscopic Nature of Quantum Dots in Photon Emission. Nano-optics and Nanophotonics, 2017, , 1329 0.2 165-198. 1330 Quantum Dot Single-Photon Sources. Nanoscience and Technology, 2009, , 185-225. 1.5 5 Physics and Applications of Quantum Dots in Photonic Crystals. Nanoscience and Technology, 2009, , 299-329. Quantum optics with interacting polaritons. Nanoscience and Technology, 2010, , 215-263. 1332 1.51 Applications: Nanophotonics and Plasmonics., 2011, , 417-444.

#	Article	IF	CITATIONS
1334	Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nature Communications, 2020, 11, 487.	5.8	47
1335	Monolithic integration of quantum dot containing microdisk microcavities coupled to air-suspended waveguides. Applied Physics Letters, 2009, 94, .	1.5	32
1336	Highly nonclassical phonon emission statistics through two-phonon loss of van der Pol oscillator. Journal of Applied Physics, 2020, 128, 234302.	1.1	5
1337	Plasmonic enhancement of a silicon-vacancy center in a nanodiamond crystal. Physical Review Materials, 2017, 1, .	0.9	11
1338	Decay suppression of spontaneous emission of a single emitter in a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Q </mml:mi> cavity at exceptional points. Physical Review Research, 2020, 2, .</mml:math 	1.3	25
1339	Theory of intrinsic propagation losses in topological edge states of planar photonic crystals. Physical Review Research, 2020, 2, .	1.3	31
1340	Coupling of a single photon source based on a colloidal semiconductor nanocrystal into polymer-based photonic structures. , 2018, , .		1
1341	Deterministic two-photon controlled phase gate by exploiting nonlinear pi-phase shift in photonic molecule generations. , 2019, , .		2
1342	Single-Atom Transistors for Light. , 2013, , 635-654.		2
1343	Generation of two-photon noon state and polarization-entangled state from a single quantum dot embedded inside a microcavity. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1200.	0.9	2
1344	Mach–Zehnder interferometer with quantum beamsplitters. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 3357.	0.9	2
1345	Photonic molecules defined by SU-8 photoresist strips on a photonic crystal waveguide. Optics Express, 2018, 26, 32332.	1.7	2
1346	Strong and weak couplings in molecular vibration–plasmon hybrid structures. Optics Express, 2019, 27, 1479.	1.7	4
1347	Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS ₂ . Optics Express, 2019, 27, 22951.	1.7	39
1348	Deterministic single-photon subtraction based on a coupled single quantum dot-cavity system. Optics Express, 2020, 28, 6835.	1.7	6
1349	Optical materials for maximal nanophotonic response [Invited]. Optical Materials Express, 2020, 10, 1561.	1.6	14
1350	Compact design of a gallium phosphide nanobeam cavity for coupling to diamond germanium-vacancy centers. Optical Materials Express, 2019, 9, 1678.	1.6	3
1351	Self-homodyne-enabled generation of indistinguishable photons. Optica, 2016, 3, 931.	4.8	19

#	Article	IF	CITATIONS
1352	Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system. Photonics Research, 2020, 8, 343.	3.4	13
1353	Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity. Photonics Research, 2018, 6, 1171.	3.4	18
1354	Microcavity-coupled emitters in hexagonal boron nitride. Nanophotonics, 2020, 9, 2937-2944.	2.9	37
1356	Quantum Electrodynamics in Photonic Crystal Nanocavities towards Quantum Information Processing. , 0, , .		1
1357	Electrical control of semiconductor quantum dot single photon sources. Frontiers of Nanoscience, 2021, 20, 295-317.	0.3	0
1358	Envisioning Quantum Electrodynamic Frameworks Based on Bio-Photonic Cavities. Photonics, 2021, 8, 470.	0.9	4
1359	Zero-index and hyperbolic metacavities: fundamentals and applications. Journal Physics D: Applied Physics, 2022, 55, 083001.	1.3	33
1360	Integrated Whispering-Gallery-Mode Resonator for Solid-State Coherent Quantum Photonics. Nano Letters, 2021, 21, 8707-8714.	4.5	7
1361	Slotted Photonic Crystal Waveguides and Cavities. , 2008, , .		0
1362	Influence of Pure Dephasing on Emission Spectra from Quantum Dot-Cavity Systems. , 2008, , .		0
1363	Coherent optical spectroscopy of a semiconductor quantum dot cavity QED system in the strong coupling regime. , 2008, , .		0
1364	Single quantum dot spectroscopy in a cavity. , 2008, , .		0
1365	Achievement of ultra-low threshold excitation power (8 nW) in a nearly-single quantum dot nanocavity laser. , 2008, , .		0
1366	Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities. , 2008, , .		1
1367	Growth and control of optically active quantum dots. Nanoscience and Technology, 2009, , 31-69.	1.5	3
1368	Photon Correlations in Systems with Strong Light-Matter Coupling. , 2009, , .		0
1369	Cavity-Enhanced Two-Photon Processes in Quantum Dots and Quantum Science Applications. , 2009, , .		0
1370	Impact of anti-Zeno Effect on a Coupled Nanocavity-Quantum-Dot System. , 2009, , .		0

#	Article	IF	CITATIONS
1371	Deterministic Nano-manipulation of Single Photon Sources for Integration. , 2010, , .		0
1372	Cavity Quantum Electrodynamics in the Anderson-localized Regime. , 2010, , .		0
1373	Cavity Quantum Electrodynamics with Quantum Dots. , 2010, , .		0
1374	Nitrogen-Vacancy Centers Optically Coupled to Hybrid Microcavities. , 2010, , .		0
1375	Fiber-coupled waveguides for strong resonant interactions with single semiconductor quantum dots. , 2010, , .		0
1376	Phonon-Induced Asymmetry in Vacuum Rabi Doublet for Coupled Quantum Dot-Cavity System. , 2010, , .		0
1377	Deterministic Nano-manipulation of Single Photon Sources for Integration. , 2011, , .		0
1378	Studys of characteristics for pump-induced emission and anharmonic cavity-QED in quantum dot-cavity systems. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 044202.	0.2	1
1379	Characteristics of spontaneous emission from a two-level atom in a very high Q cavity. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 104204.	0.2	2
1380	Chemical Composition and Thermal Stability of Atomic Force Microscope-Assisted Anodic Oxides as Nanomasks for Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2011, 50, 120205.	0.8	0
1381	Fabrication and spectra-measurement of high Q photonic crystal cavity on silicon slabs. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 014214.	0.2	2
1382	Photoluminescence Measurement of Quantum Dot Photonic Crystal Cavity with Curved-microfiber. , 2012, , .		0
1383	Cavity Quantum Electrodynamics in Semiconductors: Quantum Dot-Photonic Crystal Nanocavity Coupled Systems. The Review of Laser Engineering, 2013, 41, 485.	0.0	0
1384	Nonlinear Response Amplification Mechanisms for Low Doses of Natural Product Nanomedicines: Dynamical Interactions with the Recipient Complex Adaptive System. Journal of Nanomedicine & Nanotechnology, 2013, 04, .	1.1	8
1385	Cavity Quantum Electrodynamics with Epitaxial Quantum Dots. , 2013, , .		0
1386	Cooling distant atoms into steady entanglement via coupled cavities. Quantum Information and Computation, 2013, 13, 281-289.	0.1	7
1387	Development of Additional Technological Approaches. Springer Theses, 2014, , 101-119.	0.0	0
1388	Fabrication of Semiconductor Quantum Dot Molecules: Droplet Epitaxy and Local Oxidation Nanolithography Techniques. Lecture Notes in Nanoscale Science and Technology, 2014, , 1-28.	0.4	0

#	Article	IF	CITATIONS
1389	Ultra-strongly sub-Poissonian photon generation in three coupled microcavities containing a quantum dot. , 2014, , .		0
1390	Strongly sub-Poissonian photon generation in three coupled ring-microcavities containing a quantum dot. , 2015, , .		0
1391	Scalable Cavity Quantum Electrodynamics System for Quantum Computing. Journal of Modern Physics, 2015, 06, 1467-1477.	0.3	4
1392	Stoichiometry of Nitrogen–Hydrogen Complexes in Dilute Nitrides. , 2015, , 217-236.		0
1393	Technological Applications of Hydrogenated Dilute Nitrides and Perspectives. , 2015, , 237-274.		0
1395	Precise Coupling of Single Germanium Quantum Dot to Silicon Photonic Crystal Nanocavity. , 2015, , .		0
1396	Controlling the Biexciton-Exciton Cascade Kinetics in a Quantum Dot via Coupling to a Microcavity Optical Mode. Acta Physica Polonica A, 2016, 129, A-44-A-47.	0.2	1
1397	Towards high-cooperativity strong coupling of a quantum-dot in a tunable microcavity: the role of emitter broadening. , 2016, , .		0
1398	Effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 134206.	0.2	1
1399	Optical positioning of single-photon emitters for quantum information technology applications. , 2017, , .		1
1400	Time-Domain Observation of Vacuum Rabi Oscillations in a Strongly Coupled Quantum Dot-Nanocavity System. , 2017, , .		0
1401	Strong coupling in the novel dye / alumina membrane metamaterial. , 2017, , .		0
1402	Interfacing Single Quantum Dot Spins with Photons Using a Nanophotonic Cavity. Nano-optics and Nanophotonics, 2017, , 359-378.	0.2	1
1403	Strongly Correlated Photons in Nonlinear Nanophotonic Platforms. Quantum Science and Technology, 2017, , 123-151.	1.5	0
1404	Polarization Entangled Photons from Semiconductor Quantum Dots. Nano-optics and Nanophotonics, 2017, , 235-266.	0.2	0
1405	Coupled photonic crystal cavity-waveguide structures incorporating site-controlled semiconductor quantum dots. , 2018, , .		0
1406	Controlling light with quantum dot spin on-a-chip. , 2018, , .		0
1407	Three-photon molecule generation through coherent scattering process in nonlinear quantum nanophotonics. , 2018, , .		0

#	Article	IF	CITATIONS
1408	Tuning the coupling between quantum dot and microdisk with photonic crystal nanobeam cavity. Optics Express, 2019, 27, 20211.	1.7	5
1409	Creation of superposition of arbitrary states encoded in two high-Q cavities. Optics Express, 2019, 27, 27168.	1.7	1
1410	Stressor-Induced Site Control of Quantum Dots for Single-Photon Sources. Springer Series in Solid-state Sciences, 2020, , 53-90.	0.3	2
1411	Strong coupling between a single quantum dot and an L4/3 photonic crystal nanocavity. Applied Physics Express, 2020, 13, 082009.	1.1	2
1412	Cavity-mediated electron hopping in disordered quantum Hall systems. Physical Review B, 2021, 104, .	1.1	26
1413	Molecular Cavity QED. Biological and Medical Physics Series, 2020, , 345-383.	0.3	0
1414	Strong coupling between distant photonic nanocavities via dark whispering gallery modes. Optics Express, 2020, 28, 9384.	1.7	3
1415	Auxiliary cavity enhanced dipole induced transparency and fast to slow light using cavity quantum electrodynamics in a photonic crystal nanocavity. OSA Continuum, 2020, 3, 929.	1.8	1
1416	Chiral modes near exceptional points in symmetry broken H1 photonic crystal cavities. Physical Review Research, 2021, 3, .	1.3	10
1417	Probing quantum nonlinearity of cavity-QED systems with quantum light. Physical Review B, 2021, 104, .	1.1	0
1418	Quantum Coupling in Quantum Dot Molecules. , 2008, , 239-266.		0
1419	CQED. , 2008, , 213-229.		0
1420	Monitoring and manipulation of vacuum-induced coherences in frequency-resolved correlation. Physical Review A, 2020, 102, .	1.0	1
1421	All-optical analog to electromagnetically induced transparency with coupled nanobeam cavities and Mach–Zehnder interferometer. , 2020, , .		0
1422	Free-standing silicon nitride nanobeams with an efficient fiber-chip interface for cavity QED. Optical Materials Express, 2020, 10, 3192.	1.6	4
1423	Heterogeneously Integrated Photonic Chip on Lithium Niobate Thin-Film Waveguide. Crystals, 2021, 11, 1376.	1.0	1
1424	Dispersive coupling between MoSe ₂ and an integrated zero-dimensional nanocavity. Optical Materials Express, 2022, 12, 59.	1.6	5
1425	Observing 0D subwavelength-localized modes at ~100 THz protected by weak topology. Science Advances, 2021, 7, eabl3903.	4.7	7

		CITATION REPORT		
#	Article		IF	CITATIONS
1426	A thin-film optical filter with in-cavity strongly-coupled silver nanoparticles. , 2021, , .			1
1427	Photonic rogue waves in a strongly dispersive coupled-cavity array involving self-attractive nonlinearity. Physical Review A, 2022, 105, .	ve Kerr	1.0	7
1428	Analytical Model and Solution Illustrating Classical Optical Contribution to Giant Spectra in Strongly-Coupled Micro/nanocavity-atom System. Frontiers in Physics, 2022, 10, .	l Splitting	1.0	2
1429	Integration of Highly Luminescent Lead Halide Perovskite Nanocrystals on Transparent L Nanowire Waveguides through Morphological Transformation and Spontaneous Growth Small, 2022, 18, e2105009.	ead Halide in Water.	5.2	11
1430	Deterministic Photon Storage and Readout in a Semimagnetic QuantumÂDot–CavityÂ Single Mn Ion. Advanced Quantum Technologies, 2022, 5, .	System Doped with a	1.8	1
1431	Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafa single-photon emission. Nanoscale, 2022, 14, 2287-2295.	ast chiral	2.8	5
1432	Plexcitonic strong coupling: unique features, applications, and challenges. Journal Physic Physics, 2022, 55, 203002.	s D: Applied	1.3	31
1433	Photonic schemes of distribution and reconstruction of an entangled state from hybrid entanglement between polarization and time-bin via quantum dot. Physica Scripta, 0, , .		1.2	1
1434	Quantum Switchboard with Coupled-Cavity Array. Entropy, 2022, 24, 136.		1.1	0
1435	A Si dTe Composite Quantum Dots Probe with Dualâ€Wavelength Emission for Sensi Intracellular H ₂ O ₂ . Advanced Functional Materials, 2022, 32,	tively Monitoring	7.8	18
1436	Direct Visualization of Ultrastrong Coupling between Luttinger-Liquid Plasmons and Pho Polaritons. Nano Letters, 2022, 22, 3495-3502.	non	4.5	2
1437	Gauge-independent emission spectra and quantum correlations in the ultrastrong coupli open system cavity-QED. Nanophotonics, 2022, 11, 1573-1590.	ng regime of	2.9	18
1438	Quantum mechanical solution to spectral lineshape in strongly-coupled atom–nanoca Chinese Physics B, 2022, 31, 043202.	vity system.	0.7	0
1439	Strong Light–Matter Interactions between Gap Plasmons and Two-Dimensional Excito Ambient Conditions in a Deterministic Way. Nano Letters, 2022, 22, 2177-2186.	ns under	4.5	24
1440	Analytical solution and hidden symmetry operators of asymmetric two-mode quantum R Journal of Physics A: Mathematical and Theoretical, 2022, 55, 155303.	abi model.	0.7	2
1441	Generation and modulation of non-classical light in a strongly coupled photon–emitter Photonics Research, 2022, 10, 989.	system.	3.4	4
1442	Demonstration of entanglement and coherence in GHZ-like state when exposed to class environments with power-law noise. European Physical Journal Plus, 2022, 137, 1.	cal	1.2	14
1443	Bi-directional photonic switch and optical data storage in a hybrid optomechanical syste Nonlinear Optical Physics and Materials, 2022, 31, .	m. Journal of	1.1	3

ARTICLE IF CITATIONS Magnetic-field-engineered optical nonlinearity and optical high-order sideband. Physical Review A, 1.0 2 1444 2021, 104, . Optimal condition to probe strong coupling of two-dimensional excitons and zero-dimensional cavity 1445 1.1 modes. Physical Review B, 2021, 104, . Photonic scheme of quantum phase estimation for quantum algorithms via quantum dots. Quantum 1446 1.0 1 Information Processing, 2022, 21, 1. Environment-assisted strong coupling regime. Quantum - the Open Journal for Quantum Science, 0, 6, 1447 0.0 684. General symmetry operators of the asymmetric quantum Rabi model. Journal of Physics A: 1448 0.7 4 Mathematical and Theoretical, 2022, 55, 225306. Time-resolved physical spectrum in cavity quantum electrodynamics. Physical Review Research, 2022, 4, 1449 1.3 Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film. 1453 1.9 2 Nanomaterials, 2022, 12, 1440. Direct Measurement of Atomic Entanglement via Cavity Photon Statistics. Annalen Der Physik, O, , 1454 2100395. Numerical Optimization of a Nanophotonic Cavity by Machine Learning for Near-Unity Photon 1455 3.2 9 Indistinguishability at Room Temperature. ACS Photonics, 2022, 9, 1926-1935. Interaction of an array of single-electron quantum dots with a microcavity field with allowance for 1456 Coulomb correlations. Quantum Electronics, 2022, 52, 474-481. A Review on Materials and Methods for the Fabrication of Microcavity Laser. International Journal of 1457 0 0.0 Applied Engineering and Management Letters, 0, , 27-42. Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime. Journal of Chemical Physics, 2022, 156, . 1.2 Investigation of the Dynamic Features of a Moveable Ultrahigh-Q Nanocavity. SSRN Electronic Journal, 1459 0.4 0 0, , . Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle. Nano Letters, 2022, 22, 4686-4693. 1460 4.5 A Theoretical Perspective on Molecular Polaritonics. ACS Photonics, 2022, 9, 1830-1841. 1461 3.2 22 xmlns:mml="http://www.w3.org/1998/Math/MathML' display="inline"><mml:mrow></mml:mi>Q</mml:mrow></mml:math> Beam Nanocavities with 1463 2.9 Encapsulated <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:r Non-Markovian effects for hybrid plasmonic systems in the strong coupling regime. Physical Review B, 1464 1.1 4 2022, 105, . Optical response in a double quantum dot molecule inside a nonlinear photonic crystal cavity. 1465 Photonics and Nanostructures - Fundamentals and Applications, 2022, 51, 101043.

# 1466	ARTICLE Phase-space dynamics of a single-atom laser: Nonclassicality and bistability. Physical Review A, 2022, 105, .	IF 1.0	CITATIONS
1467	Strong coupling with directional scattering features of metal nanoshells with monolayer WS2 heterostructures. Applied Physics Letters, 2022, 121, .	1.5	3
1468	Quantum Fourier transform on photonic qubits using cavity QED. Physical Review A, 2022, 106, .	1.0	5
1470	Cavity magnonics. Physics Reports, 2022, 979, 1-61.	10.3	140
1471	Investigation of the dynamic features of a moveable ultrahigh-Q nanocavity. Results in Physics, 2022, 40, 105796.	2.0	1
1472	Strong light-matter interactions in hybrid nanostructures with transition metal dichalcogenides. Journal of Optics (United Kingdom), 2022, 24, 093001.	1.0	5
1473	Quantum Dot Molecule Devices with Optical Control of Charge Status and Electronic Control of Coupling. Advanced Quantum Technologies, 2022, 5, .	1.8	5
1474	Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters. Nanomaterials, 2022, 12, 2800.	1.9	2
1475	GENERATION AND ROBUSTNESS OF QUANTUM MEMORY-ASSISTED ENTROPIC UNCERTAINTY AND UNCERTAINTY-INDUCED NONLOCALITY OF TWO NITROGEN-VACANCY CENTERS COUPLED BY OPEN TWO NANOCAVITIES. Fractals, 2022, 30, .	1.8	3
1476	Plexciton modes guided by an exciton slab in a columnar thin film. Optik, 2022, 268, 169850.	1.4	Ο
1477	Molecular Cavity QED. , 2022, , 399-446.		0
1478	A review on quantum information processing in cavities. European Physical Journal Plus, 2022, 137, .	1.2	11
1479	Transverseâ€Electricâ€Polarized Polaritons Propagating in a WS ₂ /Si ₃ N ₄ /Ag Heterostructure. Laser and Photonics Reviews, 2022, 16, .	4.4	2
1480	Controlled-phase gate by dynamic coupling of photons to a two-level emitter. Npj Quantum Information, 2022, 8, .	2.8	4
1481	Quantum phase transition in the one-dimensional Dicke-Hubbard model with coupled qubits. Physical Review A, 2022, 106, .	1.0	0
1482	Optical bistability and absorption characteristic of an optomechanical system embedded with double quantum dot and nonlinear medium. Optical and Quantum Electronics, 2022, 54, .	1.5	1
1483	Overcoming the Diffraction Limit on the Size of Dielectric Resonators Using an Amplifying Medium. Physical Review Letters, 2022, 129, .	2.9	1
1484	GaAs membrane PhC lasers threshold reduction using AlGaAs barriers and improved processing. Nanotechnology, 0, , .	1.3	0

#	Article	IF	CITATIONS
1485	Weak and strong coupling regimes in a topological photonic crystal bowtie cavity. Journal of Applied Physics, 2022, 132, 133104.	1.1	3
1486	Symmetry operators of the asymmetric two-photon quantum Rabi model. Journal of Physics A: Mathematical and Theoretical, 0, , .	0.7	0
1487	High Optical Reflection in Two-dimensional ZnO-Si Photonic Crystals Induced by Coupled Optical Micro-cavities. Journal of Photonic Materials and Technology, 2021, 7, 8.	0.7	0
1488	Multiband tunable exciton-induced transparencies: Exploiting both strong and intermediate coupling in a nanocube-hexagonal-nanoplate heterodimer J-aggregates hybrid. Optics Express, 0, , .	1.7	0
1489	Entanglement between optical and mechanical modes in a hybrid optomechanical system. Journal of Optics (India), 0, , .	0.8	0
1490	Fabrication of quantum dot and ring arrays by direct laser interference patterning for nanophotonics. Nanophotonics, 2023, 12, 1469-1479.	2.9	4
1492	Quantum sensing of strongly coupled light-matter systems using free electrons. Science Advances, 2023, 9, .	4.7	4
1493	Holstein–Primakoff (Hâ€P) Approach to Determine the Optical Response of Hybrid Optomechanical System Containing Multiple Quantum Dots. Annalen Der Physik, 0, , 2200484.	0.9	0
1494	Purcell enhanced single-photon emission from a quantum dot coupled to a truncated Gaussian microcavity. Applied Physics Letters, 2023, 122, .	1.5	3
1495	Optical Analogs of Rabi Splitting in Integrated Waveguideâ€Coupled Resonators. , 2023, 2, .		4
1496	Highly Efficient Single-Exciton Strong Coupling with Plasmons by Lowering Critical Interaction Strength at an Exceptional Point. Physical Review Letters, 2023, 130, .	2.9	4
1497	Optical bistability and four-wave mixing response of a quantum dot coupled to an optomechanical photonic crystal nanocavity. Photonics and Nanostructures - Fundamentals and Applications, 2023, 54, 101129.	1.0	1
1498	Effect of cavity leakage on time-dependent spectrum of two atoms Tavis-Cummings model. Results in Physics, 2023, 45, 106231.	2.0	0
1499	Cavity-assisted boosting of self-hybridization between excitons and photonic bound states in the continuum in multilayers of transition metal dichalcogenides. Physical Review B, 2023, 107, .	1.1	5
1500	Enhanced photon polarization rotation by critical coupling in cavity QED. European Physical Journal D, 2023, 77, .	0.6	0
1501	Exciton-polariton dynamics of the single site-controlled quantum dot-nanocavity in the coexisting strong-weak coupling regime. New Journal of Physics, 2023, 25, 033015.	1.2	1
1502	Strong coupling between a plasmon mode and multiple different exciton states. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	4
1503	Vacuum Rabi Splitting and Kerr Effect of a Hybrid Spin–Magnon–Photon System. Annalen Der Physik, 2023, 535, .	0.9	2

#	Article	IF	Citations
1504	Quantum switching between nonclassical correlated single photons and two-photon bundles in a two-photon Jaynes-Cummings model. Optics Express, 2023, 31, 12471.	1.7	1
1505	Mid-Infrared Intersubband Cavity Polaritons in Flexible Single Quantum Well. Nano Letters, 2023, 23, 2890-2897.	4.5	2
1506	Single SiGe quantum dot emission deterministically enhanced in a high-Q photonic crystal resonator. Optics Express, 2023, 31, 15564.	1.7	2
1507	Inverse Design Local-Density-of-States via Deep Learning in Quantum Nanophotonics. , 2022, , .		0
1508	Inverse design in quantum nanophotonics: combining local-density-of-states and deep learning. Nanophotonics, 2023, 12, 1943-1955.	2.9	5
1510	Molecular Energy Transfer under the Strong Light–Matter Interaction Regime. Chemical Reviews, 2023, 123, 8044-8068.	23.0	5
1518	From Spintronic Memristors to Quantum Computing. , 2023, 5, 2197-2215.		4
1536	Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. Light: Science and Applications, 2024, 13, .	7.7	0
1537	Light–matter interactions in quantum nanophotonic devices. Nature Reviews Physics, 2024, 6, 166-179.	11.9	1
1551	Coherent Dynamics ofÂOptical Excitation. Graduate Texts in Physics, 2024, , 239-278.	0.1	0