Charge- and size-based separation of macromolecules u

Nature 445, 749-753 DOI: 10.1038/nature05532

Citation Report

#	Article	IF	CITATIONS
2	Literature Search and Review. Assay and Drug Development Technologies, 2007, 5, 163-180.	1.2	0
3	The Long Road to Wearable Blood-Cleansing Devices. Blood Purification, 2007, 25, 377-382.	1.8	10
4	Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 2007, 15, 7610.	3.4	748
5	Color Me Sensitive: Amplification and Discrimination in Photonic Silicon Nanostructures. ACS Nano, 2007, 1, 248-252.	14.6	54
6	General Method for Ultrathin Free-Standing Films of Nanofibrous Composite Materials. Journal of the American Chemical Society, 2007, 129, 8625-8633.	13.7	115
7	Two-dimensional Si photonic crystal microcavity for single particle detection. , 2007, , .		2
8	Fabrication of Cylindrical Nanopores and Nanopore Arrays in Silicon-On-Insulator Substrates. Journal of Microelectromechanical Systems, 2007, 16, 1419-1428.	2.5	19
10	Charge- and size-based separation of macromolecules using novel ultrathin silicon membranes. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	2
11	Single-Molecule Spectroscopy Using Nanoporous Membranes. Nano Letters, 2007, 7, 2901-2906.	9.1	110
12	Robust Inorganic Membranes from Detachable Ultrathin Tantalum Oxide Films. Nano Letters, 2007, 7, 2676-2683.	9.1	16
14	Cell fate in the mammary gland. Nature, 2007, 445, 724-726.	27.8	15
15	Silicon for the perfect membrane. Nature, 2007, 445, 726-726.	27.8	60
16	Surfactant-assisted fabrication of free-standing inorganic sheets covering an array of micrometre-sized holes. Nature Materials, 2007, 6, 686-691.	27.5	55
17	Will fluidic electronics take off?. Nature Nanotechnology, 2007, 2, 268-270.	31.5	28
18	Catalysts under the microscope. Nature Nanotechnology, 2007, 2, 270-271.	31.5	5
20	Modeling of structure and porosity in amorphous silicon systems using Monte Carlo methods. Journal of Chemical Physics, 2007, 126, 214705.	3.0	19
21	Effect of spacer arm length on the performance of charge-modified ultrafiltration membranes. Journal of Membrane Science, 2008, 313, 304-314.	8.2	32
22	Electrochemical pore formation onto semiconductor surfaces. Comptes Rendus Chimie, 2008, 11, 964-983.	0.5	36

ιτλτιώνι Ρερώ

#	Article	IF	CITATIONS
23	Nanoparticle-based lift-off technique for ultra-thin nanoporous film preparation. Science in China Series F: Information Sciences, 2008, 51, 819-824.	1.1	2
24	Nanoporous materials for biomedical devices. Jom, 2008, 60, 26-32.	1.9	58
25	Virus Filtration Membranes Prepared from Nanoporous Block Copolymers with Good Dimensional Stability under High Pressures and Excellent Solvent Resistance. Advanced Functional Materials, 2008, 18, 1371-1377.	14.9	222
26	Nanoporous Membranes of Hydrogenâ€bridged Smectic Networks with Nanometer Transverse Pore Dimensions. Advanced Materials, 2008, 20, 1246-1252.	21.0	67
27	Ultraâ€ŧhin and Conductive Nanomembrane Arrays for Nanomechanical Transducers. Advanced Materials, 2008, 20, 3131-3137.	21.0	10
28	Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers. Advanced Materials, 2008, 20, 4085-4090.	21.0	608
29	Fabrication of nanoporous silicon dioxide/silicon nitride membranes using etched ion track technique. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3166-3169.	1.4	21
30	Transport phenomena in nanofluidics. Reviews of Modern Physics, 2008, 80, 839-883.	45.6	1,587
31	Molecular sieving using nanofilters: Past, present and future. Lab on A Chip, 2008, 8, 23-33.	6.0	268
32	CARS diagnostics of molecular media under nanoporous confinement. Laser Physics, 2008, 18, 1451-1458.	1.2	29
33	Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discovery Today, 2008, 13, 1-13.	6.4	290
34	Synthesis of nanoporous conducting polyaniline using ternary surfactant. Materials Letters, 2008, 62, 882-885.	2.6	36
35	Artificial molecular sieves and filters: a new paradigm for biomolecule separation. Trends in Biotechnology, 2008, 26, 311-320.	9.3	80
36	Impermeable Atomic Membranes from Graphene Sheets. Nano Letters, 2008, 8, 2458-2462.	9.1	2,537
37	Nanoporous Si as an Efficient Thermoelectric Material. Nano Letters, 2008, 8, 3750-3754.	9.1	259
38	Knudsen Diffusion in Silicon Nanochannels. Physical Review Letters, 2008, 100, 064502.	7.8	103
39	Nanofabrication by Self-Assembly. , 2008, , 295-333.		0
40	Selective Ion Passage through Functionalized Graphene Nanopores. Journal of the American Chemical Society, 2008, 130, 16448-16449.	13.7	546

#	ARTICLE	IF	CITATIONS
41	A Structureâ^'Permeability Relationship of Ultrathin Nanoporous Silicon Membrane:  A Comparison with the Nuclear Envelope. Journal of the American Chemical Society, 2008, 130, 4230-4231.	13.7	52
42	Development of thick film PECVD amorphous silicon with low stress for MEMS applications. , 2008, , .		0
43	Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 2008, 37, 365-405.	38.1	965
44	Determination of Surface Area and Porosity of Small, Nanometer-Thick Films by Quartz Crystal Microbalance Measurement of Gas Adsorption. Journal of Physical Chemistry B, 2008, 112, 14578-14582.	2.6	5
45	Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 2008, 130, 8345-8350.	13.7	295
46	Perforated, Freely Suspended Layer-by-Layer Nanoscale Membranes. Langmuir, 2008, 24, 5996-6006.	3.5	67
47	Thick and low-stress PECVD amorphous silicon for MEMS applications. Journal of Micromechanics and Microengineering, 2008, 18, 015024.	2.6	28
48	Universal Method for the Fabrication of Detachable Ultrathin Films of Several Transition Metal Oxides. ACS Nano, 2008, 2, 2363-2373.	14.6	36
49	Preparation of dense, smooth and homogeneous amorphous silicon nitride films by nitrogen-ion-beam assisted evaporation. Journal Physics D: Applied Physics, 2008, 41, 175410.	2.8	4
50	Class-based nanofluidic device for biomolecule preconcentration study. EPJ Applied Physics, 2008, 44, 245-253.	0.7	8
51	Nanomembrane: A New MEMS/NEMS Building Block. , 0, , .		10
52	Analytical description of Ogston-regime biomolecule separation using nanofilters and nanopores. Physical Review E, 2009, 80, 041911.	2.1	7
53	Stimulated emission of near-infrared radiation by current injection into silicon (100) quantum well. Applied Physics Letters, 2009, 95, 241101.	3.3	31
54	Versatile ultrathin nanoporous silicon nitride membranes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21039-21044.	7.1	146
55	Effect of HF Concentration on Physical and Electronic Properties of Electrochemically Formed Nanoporous Silicon. Journal of Nanomaterials, 2009, 2009, 1-7.	2.7	36
56	Hybrid Polymer/Ultrathin Porous Nanocrystalline Silicon Membranes System for Flow-through Chemical Vapor and Gas Detection. Materials Research Society Symposia Proceedings, 2009, 1190, 196.	0.1	0
57	Fabrication of high density, high-aspect-ratio polyimide nanofilters. Journal of Vacuum Science & Technology B, 2009, 27, 2585.	1.3	6
58	Fabrication of nanopore arrays and ultrathin silicon nitride membranes by block-copolymer-assisted lithography. Nanotechnology, 2009, 20, 485303.	2.6	26

#	Article	IF	CITATIONS
59	Suspended nanostructured alumina membranes. Nanotechnology, 2009, 20, 075306.	2.6	15
60	Porous ultrathin silicon membranes for purification of nanoscale materials. Materials Research Society Symposia Proceedings, 2009, 1209, 1.	0.1	1
61	Modeling transport through synthetic nanopores. IEEE Nanotechnology Magazine, 2009, 3, 20-28.	1.3	43
62	One Nanometer Thin Carbon Nanosheets with Tunable Conductivity and Stiffness. Advanced Materials, 2009, 21, 1233-1237.	21.0	201
64	Functional Group Density and Recognition in Polymer Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 110-114.	13.8	22
65	Biomolecular Transport Through Hemofiltration Membranes. Annals of Biomedical Engineering, 2009, 37, 722-736.	2.5	28
66	Thin alumina nanoporous membranes for similar size biomolecule separation. Journal of Membrane Science, 2009, 343, 1-6.	8.2	104
67	Chemically Functionalized Carbon Nanosieves with 1â€nm Thickness. Small, 2009, 5, 2651-2655.	10.0	32
68	Real-time monitoring of enzyme activity in a mesoporous silicon double layer. Nature Nanotechnology, 2009, 4, 255-258.	31.5	195
69	Ultrafast permeation of water through protein-based membranes. Nature Nanotechnology, 2009, 4, 353-357.	31.5	312
70	Innovation in the Treatment of Uremia: Proceedings from the Cleveland Clinic Workshop: The Implantable Artificial Kidney. Seminars in Dialysis, 2009, 22, 665-670.	1.3	49
71	Directional ion selectivity in a biological nanopore with bipolar structure. Journal of Membrane Science, 2009, 331, 137-142.	8.2	38
72	Freestanding ultrathin nano-membranes via self-assembly. Nano Today, 2009, 4, 482-493.	11.9	147
73	Simple and reliable technology for manufacturing metal-composite nanomembranes with giant aspect ratio. Microelectronic Engineering, 2009, 86, 906-909.	2.4	17
74	The formation, imaging, and application of thin silicon-dioxide membrane. Electrochimica Acta, 2009, 54, 5998-6002.	5.2	0
75	Simulation of nanochannel membrane formation. Optoelectronics, Instrumentation and Data Processing, 2009, 45, 367-373.	0.6	0
76	Anti-infiltration for Fabrication of a Suspended Nanoparticle Layer on Porous Close-Packed Colloidal Arrays. ACS Applied Materials & amp; Interfaces, 2009, 1, 775-779.	8.0	2
77	Bi-directional Kirkendall Effect in Coaxial Microtube Nanolaminate Assemblies Fabricated by Atomic Layer Deposition. ACS Nano, 2009, 3, 546-554.	14.6	74

#	Article	IF	CITATIONS
78	Nanochannel Design by Molecular Imprinting on a Free-Standing Ultrathin Titania Membrane. Langmuir, 2009, 25, 11563-11568.	3.5	17
79	Size-Exclusion Properties of Nanoporous Films Derived from Polystyreneâ^'Poly(methylmethacrylate) Diblock Copolymers Assessed Using Direct Electrochemistry of Ferritin. Analytical Chemistry, 2009, 81, 851-855.	6.5	46
80	Composite Block Polymerâ^'Microfabricated Silicon Nanoporous Membrane. ACS Applied Materials & Interfaces, 2009, 1, 888-893.	8.0	55
81	Rapid Quantification of Disease-Marker Proteins Using Continuous-Flow Immunoseparation in a Nanosieve Fluidic Device. Analytical Chemistry, 2009, 81, 7067-7074.	6.5	19
82	Observation of Graphene Bubbles and Effective Mass Transport under Graphene Films. Nano Letters, 2009, 9, 332-337.	9.1	198
83	Fabrication, Self-Assembly, and Properties of Ultrathin AlN/GaN Porous Crystalline Nanomembranes: Tubes, Spirals, and Curved Sheets. ACS Nano, 2009, 3, 1663-1668.	14.6	91
84	Optical transmission and laser structuring of silicon membranes. Optics Express, 2009, 17, 15308.	3.4	22
85	Ionic Field Effect Transistors with Sub-10 nm Multiple Nanopores. Nano Letters, 2009, 9, 2044-2048.	9.1	248
86	Formation of Silicon Nanoporous Structures Induced by Colloidal Gold Nanoparticles in HF/H2O2 Solutions. Chemistry of Materials, 2009, 21, 2721-2726.	6.7	13
87	Nanoholes As Nanochannels: Flow-through Plasmonic Sensing. Analytical Chemistry, 2009, 81, 4308-4311.	6.5	264
88	Handbook of Single-Molecule Biophysics. , 2009, , .		70
89	Large Area High Density Sub-20 nm SiO ₂ Nanostructures Fabricated by Block Copolymer Template for Nanoimprint Lithography. ACS Nano, 2009, 3, 2601-2608.	14.6	83
90	Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab on A Chip, 2009, 9, 586-591.	6.0	72
91	Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chemistry, 2009, 11, 531.	9.0	100
92	Ceramic membranes for separation of proteins and DNA through in situ growth of alumina nanofibres inside porous substrates. Chemical Communications, 2009, , 1264.	4.1	23
93	Characterization of porous silicon integrated in liquid chromatography chips. Lab on A Chip, 2009, 9, 456-463.	6.0	30
94	Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane). Lab on A Chip, 2009, 9, 1962.	6.0	34
96	Literature Search and Review. Assay and Drug Development Technologies, 2010, 8, 526-541.	1.2	0

#	Article	IF	CITATIONS
97	Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO ₂ capture. Nanotechnology, 2010, 21, 395301.	2.6	202
98	Simple fabrication of microfluidic channel with nanoporous membrane formed by conventional physical vapor deposition. , 2010, , .		0
99	Applications of Micro and Nano Technologies in the Oil and Gas Industry-An Overview of the Recent Progress. , 2010, , .		129
100	Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture. Biomaterials, 2010, 31, 5408-5417.	11.4	87
101	Incorporating ionic size in the transport equations for charged nanopores. Microfluidics and Nanofluidics, 2010, 9, 41-53.	2.2	57
102	Super permeable nano-channel membranes defined with laser interferometric lithography. Microfluidics and Nanofluidics, 2010, 8, 557-563.	2.2	4
103	Active and biomimetic nanofilters for selective protein separation. Biomedical Microdevices, 2010, 12, 317-324.	2.8	4
104	Dry etch fabrication of porous silicon using xenon difluoride. Micro and Nano Letters, 2010, 5, 63.	1.3	10
105	Spectral Reflectance Imaging for a Multiplexed, High-Throughput, Label-Free, and Dynamic Biosensing Platform. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 635-646.	2.9	12
107	Anomalous Diffusion of Electrically Neutral Molecules in Charged Nanochannels. Angewandte Chemie - International Edition, 2010, 49, 7943-7947.	13.8	69
108	Three-dimensional surface sculpting of freestanding metal-composite nanomembranes. Microelectronic Engineering, 2010, 87, 1487-1490.	2.4	4
109	Emerging synergy between nanotechnology and implantable biosensors: A review. Biosensors and Bioelectronics, 2010, 25, 1553-1565.	10.1	327
110	Surface deformation of amorphous silicon thin film on elastomeric substrate. Thin Solid Films, 2010, 519, 823-828.	1.8	6
111	Anomalous flow behavior in nanochannels: A molecular dynamics study. Chemical Physics Letters, 2010, 492, 285-289.	2.6	6
112	Intracellular Silicon Chips in Living Cells. Small, 2010, 6, 499-502.	10.0	35
113	Bacterial Nanofluidic Structures for Medicine and Engineering. Small, 2010, 6, 895-909.	10.0	2
116	Dry etch fabrication of ultra-thin porous silicon membranes. Proceedings of SPIE, 2010, , .	0.8	0
117	Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises. Journal of Diabetes Science and Technology, 2010, 4, 1540-1562.	2.2	219

#	Article	IF	CITATIONS
118	Nanostructured silicon membranes for control of molecular transport. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6P48-C6P52.	1.2	7
119	Microscopic properties of nanopore water from its time-dependent dielectric response. Physical Review B, 2010, 82, .	3.2	9
120	Effect of fluorescent tags on translocation through nanochannels. , 2010, 2010, 3736-8.		1
121	Chemically modified solid state nanopores for high throughput nanoparticle separation. Journal of Physics Condensed Matter, 2010, 22, 454107.	1.8	41
122	Functionalization of Artificial Freestanding Composite Nanomembranes. Materials, 2010, 3, 165-200.	2.9	33
123	Nanoperforated silicon membranes fabricated by UV-nanoimprint lithography, deep reactive ion etching and atomic layer deposition. Journal of Micromechanics and Microengineering, 2010, 20, 077001.	2.6	19
124	Single-step fabrication of microfluidic channels filled with nanofibrous membrane using femtosecond laser irradiation. Journal of Micromechanics and Microengineering, 2010, 20, 085016.	2.6	4
125	Tailoring morphology in free-standing anodic aluminium oxide: Control of barrier layer opening down to the sub-10 nm diameter. Nanoscale, 2010, 2, 778.	5.6	17
126	Stabilization of Ion Concentration Polarization Using a Heterogeneous Nanoporous Junction. Nano Letters, 2010, 10, 16-23.	9.1	94
127	Water Transport through Ultrathin Graphene. Journal of Physical Chemistry Letters, 2010, 1, 1590-1594.	4.6	484
128	Ion-Selective Permeability of an Ultrathin Nanoporous Silicon Membrane as Probed by Scanning Electrochemical Microscopy Using Micropipet-Supported ITIES Tips. Analytical Chemistry, 2010, 82, 7127-7134.	6.5	68
129	Single Molecule Imaging of Protein Molecules in Nanopores. Analytical Chemistry, 2010, 82, 478-482.	6.5	17
130	Single-File Diffusion of Protein Drugs through Cylindrical Nanochannels. ACS Nano, 2010, 4, 3817-3822.	14.6	187
131	Dynamics of porous silicon formation by etching in HF + V2O5solutions. Molecular Physics, 2010, 108, 1033-1043.	1.7	34
132	Photoluminescence and Raman properties of porous silicon at different etching times and current densities. , 2010, , .		0
133	Size-Selective Separation of Macromolecules by Nanochannel Titania Membrane with Self-Cleaning (Declogging) Ability. Journal of the American Chemical Society, 2010, 132, 7893-7895.	13.7	79
134	Design of symmetric planar fishnet metamaterials for optical wavelength range. , 2010, , .		0
135	High-Performance Separation of Nanoparticles with Ultrathin Porous Nanocrystalline Silicon Membranes. ACS Nano, 2010, 4, 6973-6981.	14.6	138

#	Article	IF	CITATIONS
136	Pore Size Control of Ultrathin Silicon Membranes by Rapid Thermal Carbonization. Nano Letters, 2010, 10, 3904-3908.	9.1	35
137	Characterization of fullerene colloidal suspension in a cell culture medium for in vitro toxicity assessment. Molecular BioSystems, 2010, 6, 1238.	2.9	15
138	Desalination of water by vapor-phase transport through hydrophobic nanopores. Journal of Applied Physics, 2010, 108, .	2.5	38
139	Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels. Lab on A Chip, 2010, 10, 173-178.	6.0	47
140	Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes. Journal of Physics Condensed Matter, 2010, 22, 454134.	1.8	31
141	Size-Dependent Infiltration and Optical Detection of Nucleic Acids in Nanoscale Pores. IEEE Nanotechnology Magazine, 2010, 9, 596-602.	2.0	36
142	Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale, 2010, 2, 468.	5.6	156
143	Wrinkling evolution of a growing bubble: the wonders of petal-like patterns in amorphous silicon membranes. Soft Matter, 2010, 6, 3249.	2.7	14
144	Microfluidic dialysis cell for characterization of macromolecule interactions. Soft Matter, 2011, 7, 4762.	2.7	13
145	Determination of surface protein coverage by composite waveguide based polarimetric interferometry. Analyst, The, 2011, 136, 5277.	3.5	8
146	Graphene oxide-mediated formation of freestanding, thickness controllable metal oxide films. Journal of Materials Chemistry, 2011, 21, 12889.	6.7	10
147	Raman spectroscopy probing of self-assembled monolayers inside the pores of gold nanotube membranes. Physical Chemistry Chemical Physics, 2011, 13, 19587.	2.8	30
148	Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles. Journal of Materials Chemistry, 2011, 21, 1684-1688.	6.7	62
149	Magnetic and mechanical properties of rolled-up Au/Co/Au nanomembranes with multiple windings. Journal of Applied Physics, 2011, 110, 044326.	2.5	7
150	Charge-Gated Transport of Proteins in Nanostructured Optical Films of Mesoporous Silica. Analytical Chemistry, 2011, 83, 7186-7193.	6.5	37
151	Electrophoretic Transport of Biomolecules through Carbon Nanotube Membranes. Langmuir, 2011, 27, 3150-3156.	3.5	32
152	Diffusion and Filtration Properties of Self-Assembled Gold Nanocrystal Membranes. Nano Letters, 2011, 11, 2430-2435.	9.1	121
153	Polymer-Based Photocoupling Agent for the Efficient Immobilization of Nanomaterials and Small Molecules. Langmuir, 2011, 27, 9372-9378.	3.5	39

#	Article	IF	CITATIONS
154	Molecule and Electron Transfer through Coordination-Based Molecular Assemblies. Journal of the American Chemical Society, 2011, 133, 14264-14266.	13.7	22
155	Epoxy-based permeable membrane fabrication for 3D microfluidic device. , 2011, , .		2
156	A wearable artificial kidney: technical requirements and potential solutions. Expert Review of Medical Devices, 2011, 8, 567-579.	2.8	29
157	Bionic (Nano) Membranes. Biological and Medical Physics Series, 2011, , 9-24.	0.4	2
158	Self-ordering Electrochemistry: A Simple Approach for Engineering Nanopore and Nanotube Arrays for Emerging Applications. Australian Journal of Chemistry, 2011, 64, 294.	0.9	48
159	Modified Mesoporous Silica Gas Separation Membranes on Polymeric Hollow Fibers. Chemistry of Materials, 2011, 23, 3025-3028.	6.7	92
160	Porous biomimetic membranes: fabrication, properties and future applications. Physical Chemistry Chemical Physics, 2011, 13, 10584.	2.8	16
161	Micro/Nano Fabrication of Nanopores Formed Through SiN. Procedia Engineering, 2011, 25, 884-887.	1.2	2
162	Field-effect control of electrokinetic ion transport in a nanofluidic channel. Journal of Applied Physics, 2011, 110, 084301.	2.5	17
163	Preparation of Ultrathin Films of Molecular Networks through Layer-by-Layer Cross-Linking Polymerization of Tetrafunctional Monomers. Macromolecules, 2011, 44, 7092-7095.	4.8	48
164	Subnanometer Porous Thin Films by the Co-assembly of Nanotube Subunits and Block Copolymers. ACS Nano, 2011, 5, 1376-1384.	14.6	104
165	Confined Diffusion in Periodic Porous Nanostructures. ACS Nano, 2011, 5, 4607-4616.	14.6	88
166	Macromolecular Diffusion in a Crowded Polymer Nanocomposite. Macromolecules, 2011, 44, 3494-3501.	4.8	124
168	Fabrication of Sub-5 nm Nanochannels in Insulating Substrates Using Focused Ion Beam Milling. Nano Letters, 2011, 11, 512-517.	9.1	163
169	Nanomembrane-based plasmonics. Journal of Nanophotonics, 2011, 5, 051818.	1.0	16
170	Formation of Submicrometer Pore Arrays by Electrochemical Etching of Silicon and Nanoimprint Lithography. Journal of the Electrochemical Society, 2011, 158, D10.	2.9	11
171	Metallized Ultrathin Nanocrystalline Si Membranes as Biochemical SPR Sensors. , 2011, , .		0
172	Advances in resistive pulse sensors: Devices bridging the void between molecular and microscopic detection. Nano Today, 2011, 6, 531-545.	11.9	154

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
173	Ultra-thin porous silicon membranes fabricated using dry etching. Micro and Nano Letters, 2011, 6, 226.	1.3	10
174	Manipulation of thin film assemblies: Recent progress and novel concepts. Current Opinion in Colloid and Interface Science, 2011, 16, 459-469.	7.4	19
175	Permeable porous 1–3nm thick overoxidized polypyrrole films on nanostructured carbon fiber microdisk electrodes. Electrochimica Acta, 2011, 56, 7651-7658.	5.2	5
176	Nanostructured materials for water desalination. Nanotechnology, 2011, 22, 292001.	2.6	543
177	Large three-dimensional mesocage pores tailoring silica nanotubes as membrane filters: nanofiltration and permeation flux of proteins. Journal of Materials Chemistry, 2011, 21, 5593.	6.7	150
178	Electrochemical heparin sensing at liquid/liquid interfaces and polymeric membranes. Analytical and Bioanalytical Chemistry, 2011, 399, 571-579.	3.7	55
179	Size-selective separations of biological macromolecules on mesocylinder silica arrays. Analytica Chimica Acta, 2011, 694, 151-161.	5.4	42
180	Tunnel current through virus particles between columnar structures in mesoporous silicon. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1683-1687.	1.8	2
181	Buildingâ€Blockâ€Based Mosaic Cage Silica Nanotubes for Molecular Transport and Separation. Small, 2011, 7, 62-65.	10.0	57
182	An Emerging Poreâ€Making Strategy: Confined Swellingâ€Induced Pore Generation in Block Copolymer Materials. Advanced Materials, 2011, 23, 2134-2148.	21.0	156
183	Electricâ€Fieldâ€Assisted Protein Transport, Capture, and Interferometric Sensing in Carbonized Porous Silicon Films. Advanced Materials, 2011, 23, 4537-4542.	21.0	24
184	Synthesis and Modification of Silicon Nanosheets and Other Silicon Nanomaterials. Chemistry - A European Journal, 2011, 17, 9864-9887.	3.3	147
185	Nano-model membrane filters for the well-controlled separation of biomolecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 44-53.	4.7	28
186	An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes. Journal of Membrane Science, 2011, 369, 119-129.	8.2	71
187	Biotechnical and other applications of nanoporous membranes. Trends in Biotechnology, 2011, 29, 259-266.	9.3	99
188	Designs for size-exclusion separation of macromolecules by densely-engineered mesofilters. TrAC - Trends in Analytical Chemistry, 2011, 30, 447-458.	11.4	43
189	Simulation of ionic current through the nanopore in a double-layered semiconductor membrane. Nanotechnology, 2011, 22, 165202.	2.6	22
190	Negative-photoresist mechanical property for nano-filtration membrane embedded in microfluidics. , 2011, , .		3

#	Article	IF	CITATIONS
191	Chapter 1. Electrical Modifications of Biomaterials' Surfaces: Beyond Hydrophobicity and Hydrophilicity. RSC Nanoscience and Nanotechnology, 2011, , 3-14.	0.2	2
192	Stress-Induced Transfer of Ultrathin Silicon Layers onto Flexible Substrates. Electrochemical and Solid-State Letters, 2011, 14, H171.	2.2	0
194	Negative Refractive Index Metasurfaces for Enhanced Biosensing. Materials, 2011, 4, 1-36.	2.9	81
195	Theoretical Application of Irreversible (Nonequilibrium) Thermodynamic Principles to Enhance Solute Fluxes across Nanofabricated Hemodialysis Membranes. International Journal of Nephrology, 2012, 2012, 1-9.	1.3	4
196	Coarse-grained Brownian dynamics simulations of protein translocation through nanopores. Journal of Chemical Physics, 2012, 137, 145105.	3.0	16
197	Mode shape and dispersion relation of bending waves in thin silicon membranes. Physical Review B, 2012, 85, .	3.2	10
198	Synthesis and Characterization of High-Throughput Nanofabricated Poly(4-Hydroxy Styrene) Membranes for <i>In Vitro</i> Models of Barrier Tissue. Tissue Engineering - Part C: Methods, 2012, 18, 667-676.	2.1	11
199	Physiologically Based Pharmacokinetic Models: Integration of In Silico Approaches with Micro Cell Culture Analogues. Current Drug Metabolism, 2012, 13, 863-880.	1.2	12
200	Topical Developments of Nanoporous Membrane Filters for Ultrafine Noble Metal Nanoparticles. European Journal of Inorganic Chemistry, 2012, 2012, 5439-5450.	2.0	24
201	Thermoresponsive Ultrafiltration Membranes for the Switchable Transport and Fractionation of Nanoparticles. Procedia Engineering, 2012, 44, 49-50.	1.2	0
202	Porous TEM windows fabrication using CsCl self-assembly. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	5
203	Molecular transport through nanoporous silicon nitride membranes produced from self-assembling block copolymers. Nanoscale, 2012, 4, 5880.	5.6	37
204	Creating New Types of Carbon-Based Membranes. Science, 2012, 335, 413-414.	12.6	120
205	Voltage-Gated Ion Transport through Semiconducting Conical Nanopores Formed by Metal Nanoparticle-Assisted Plasma Etching. Nano Letters, 2012, 12, 3437-3442.	9.1	55
206	Carbon nanomembranes from self-assembled monolayers: Functional surfaces without bulk. Progress in Surface Science, 2012, 87, 108-162.	8.3	96
207	Fabrication of functional silicon-based nanoporous membranes. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2012, 11, 013012.	0.9	20
208	Assessing Graphene Nanopores for Sequencing DNA. Nano Letters, 2012, 12, 4117-4123.	9.1	237
209	Quantitative Imaging of Ion Transport through Single Nanopores by High-Resolution Scanning Electrochemical Microscopy. Journal of the American Chemical Society, 2012, 134, 9856-9859.	13.7	83

#	Article	IF	CITATIONS
210	Chemoselective Nanoporous Membranes via Chemically Directed Assembly of Nanoparticles and Dendrimers. Advanced Materials, 2012, 24, 5862-5866.	21.0	25
211	Malachite Green Derivative–Functionalized Single Nanochannel: Lightâ€andâ€pH Dualâ€Driven Ionic Gating. Advanced Materials, 2012, 24, 6193-6198.	21.0	75
212	NANOPOROUS MEMBRANE FOR BIOSENSING APPLICATIONS. Nano LIFE, 2012, 02, 1230003.	0.9	12
213	Hybrid Nanomembranes for High Power and High Energy Density Supercapacitors and Their Yarn Application. ACS Nano, 2012, 6, 327-334.	14.6	83
214	Simulation-Aided Design and Synthesis of Hierarchically Porous Membranes. Langmuir, 2012, 28, 7484-7491.	3.5	13
215	Large Apparent Electric Size of Solid-State Nanopores Due to Spatially Extended Surface Conduction. Nano Letters, 2012, 12, 4037-4044.	9.1	143
217	Ballistic and non-ballistic gas flow through ultrathin nanopores. Nanotechnology, 2012, 23, 145706.	2.6	20
218	Selective Separation of Similarly Sized Proteins with Tunable Nanoporous Block Copolymer Membranes. Procedia Engineering, 2012, 44, 461-463.	1.2	6
219	CO 2 absorption in a high efficiency silicon nitride mesh contactor. Chemical Engineering Journal, 2012, 207-208, 766-771.	12.7	15
220	Swelling-induced mesoporous block copolymer membranes with intrinsically active surfaces for size-selective separation. Journal of Materials Chemistry, 2012, 22, 20542.	6.7	89
221	Mechanically flexible optically transparent porous mono-crystalline silicon substrate. , 2012, , .		8
222	High-Performance Organic Nanomembrane Based Sensors for Rapid in Situ Acid Detection. Analytical Chemistry, 2012, 84, 8399-8406.	6.5	9
223	Luminescent Iridium(III)-Containing Block Copolymers: Self-Assembly into Biotin-Labeled Micelles for Biodetection Assays. ACS Macro Letters, 2012, 1, 954-959.	4.8	37
224	Direct Imaging of Atomic-Scale Ripples in Few-Layer Graphene. Nano Letters, 2012, 12, 2278-2282.	9.1	33
225	Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets. Science, 2012, 335, 444-447.	12.6	322
226	Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis, 2012, 33, 2253-2265.	2.4	45
227	Use of a Columnar Metal Thin Film as a Nanosieve with Subâ€10 nm Pores. Advanced Materials, 2012, 24, 4408-4413.	21.0	22
228	Functional nanoporous membranes for drug delivery. Journal of Materials Chemistry, 2012, 22, 14814.	6.7	148

#	Article	IF	CITATIONS
229	Mass transport in nanofluidic devices. Science China Chemistry, 2012, 55, 453-468.	8.2	22
230	Selective transport of single protein molecules inside gold nanotubes. Journal of Chromatography A, 2012, 1238, 11-14.	3.7	9
231	Chemical capacitive sensing using ultrathin flexible nanoporous electrodes. Sensors and Actuators B: Chemical, 2012, 162, 22-26.	7.8	22
232	Modification of ceramic membranes for pore structure tailoring: The atomic layer deposition route. Journal of Membrane Science, 2012, 397-398, 17-23.	8.2	80
233	Modeling and simulation of nanoparticle separation through a solidâ€state nanopore. Electrophoresis, 2012, 33, 325-333.	2.4	38
234	Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Research, 2012, 5, 99-108.	10.4	49
235	Refining the statistical model for quantitative immunostaining of surface-functionalized nanoparticles by AFM. Analytical and Bioanalytical Chemistry, 2013, 405, 8197-8206.	3.7	3
236	Large‣cale, Ultrapliable, and Free‣tanding Nanomembranes. Advanced Materials, 2013, 25, 2167-2173.	21.0	53
237	Filtering of Nanoparticles with Tunable Semiconductor Membranes. ACS Nano, 2013, 7, 7053-7061.	14.6	14
238	Differential Adsorption of Small Molecules in Spatially Functionalized Porous Silicon Nanostructures. Langmuir, 2013, 29, 11802-11808.	3.5	4
239	In vitro Clearance and Hemocompatibility Assessment of Ultrathin Nanoporous Silicon Membranes for Hemodialysis Applications Using Human Whole Blood. Blood Purification, 2013, 35, 305-313.	1.8	9
240	Fabrication of Ultrathin Silicon Nanoporous Membranes and Their Application in Filtering Industrially Important Biomolecules. IEEE Nanotechnology Magazine, 2013, 12, 583-588.	2.0	11
241	A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. ACS Nano, 2013, 7, 6489-6497.	14.6	141
242	Water permeation through single-layer graphyne membrane. Journal of Chemical Physics, 2013, 139, 064705.	3.0	58
243	Ultrathin Silicon Membranes for Wearable Dialysis. Advances in Chronic Kidney Disease, 2013, 20, 508-515.	1.4	46
244	High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18425-18430.	7.1	64
245	Ultrathin free-standing membranes from metal hydroxide nanostrands. Journal of Membrane Science, 2013, 448, 270-291.	8.2	31
246	Energy-saving, responsive membranes with sharp selectivity assembled from micellar nanofibers of amphiphilic block copolymers. Journal of Materials Chemistry A, 2013, 1, 7100.	10.3	11

ARTICLE IF CITATIONS # Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation. 247 5.6 38 Nanoscale, 2013, 5, 11028. Buckle-driven delamination of hydrophobic micro-, nano-, and heterostructured membranes without a 248 5.6 sacrificial layer. Nanoscale, 2013, 5, 10853. 249 Review article: Fabrication of nanofluidic devices. Biomicrofluidics, 2013, 7, 26501. 2.4 218 Dry adhesive bonding of nanoporous inorganic membranes to microfluidic devices using the OSTE(+) dual-cure polymer. Journal of Micromechanics and Microengineering, 2013, 23, 025021. Self-standing mesoporous membranes toward highly selective molecular transportation. Chemical 251 4.1 18 Communications, 2013, 49, 11424. lon concentration polarization in a single and open microchannel induced by a surface-patterned perm-selective film. Analyst, The, 2013, 138, 1370. 3.5 Molecular transport of proteins through nanoporous membranes fabricated by interferometric 253 2.8 13 lithography. Physical Chemistry Chemical Physics, 2013, 15, 965-971. Selective Molecular Permeability Induced by Glass Transition Dynamics of Semicrystalline Polymer 254 4.8 Ultrathin Films. Macromolecules, 2013, 46, 395-402. Electrochemical sensing and imaging based on ion transfer at liquid/liquid interfaces. Electrochimica 255 5.2 52 Acta, 2013, 110, 836-845. Selective Separation of Similarly Sized Proteins with Tunable Nanoporous Block Copolymer 14.6 240 Membranes. ACS Nano, 2013, 7, 768-776. SiO₂@Au Coreâ€"Shell Nanospheres Self-Assemble To Form Colloidal Crystals That Can Be 257 3.5 24 Sintered and Surface Modified To Produce pH-Controlled Membranes. Langmuir, 2013, 29, 3749-3756. Isoporous Micro/Nanoengineered Membranes. ACS Nano, 2013, 7, 1882-1904. 258 14.6 140 Ultrafast Separation of Emulsified Oil/Water Mixtures by Ultrathin Freeâ€Standing Singleâ€Walled 259 21.0 527 Carbon Nanotube Network Films. Advanced Materials, 2013, 25, 2422-2427. Charged Gold Nanoparticles with Essentially Zero Serum Protein Adsorption in Undiluted Fetal Bovine Serum. Journal of the American Chemical Society, 2013, 135, 7799-7802. 13.7 79 TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano 261 11.9 324 Today, 2013, 8, 235-264. Molecular and continuum hydrodynamics in graphene nanopores. RSC Advances, 2013, 3, 9365. 263 Fabrication of integrated porous glass for microfluidic applications. Lab on A Chip, 2013, 13, 3061. 6.0 8 Seeded growth, silylation, and organic/water separation properties of MCM-48 membranes. Journal of 264 8.2 Membrane Science, 2013, 427, 293-302.

#	Article	IF	Citations
265	Propagating Nanocavity-Enhanced Rapid Crystallization of Silicon Thin Films. Nano Letters, 2013, 13, 5735-5739.	9.1	4
266	Investigation of the Extraction of Hemoglobin by Adsorption onto Nanocellulose-Based Superabsorbent Composite Having Carboxylate Functional Groups from Aqueous Solutions: Kinetic, Equilibrium, and Thermodynamic Profiles. Industrial & Engineering Chemistry Research, 2013, 52, 11016-11028.	3.7	22
267	Shrinking of silicon nanopore arrays by direct dry-oxygen oxidation. , 2013, , .		0
268	Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100). , 2013, , .		2
269	A resonant method for determining the residual stress and elastic modulus of a thin film. Applied Physics Letters, 2013, 103, .	3.3	32
270	Nernst-Planck model of photo-triggered, <i>p</i> H–tunable ionic transport through nanopores functionalized with "caged―lysine chains. Journal of Chemical Physics, 2013, 138, 034709.	3.0	21
271	Porous polyimide films obtained by using lithium chloride as pore-forming agent. Polymer International, 2013, 62, 1634-1643.	3.1	22
272	Edge-induced flattening in the fabrication of ultrathin freestanding crystalline silicon sheets. Applied Physics Letters, 2013, 102, .	3.3	15
273	Thermal fluctuations of hydrodynamic flows in nanochannels. Physical Review E, 2013, 88, 012106.	2.1	26
274	Fouling Characteristics and Electrochemical Recovery of Carbon Nanotube Membranes. Advanced Functional Materials, 2013, 23, 1500-1506.	14.9	71
275	Low nM Detection Limits at Porous 1–3 nm Thick Membraneâ€Coated Nanostructured Microdisk Electrodes. Electroanalysis, 2013, 25, 345-355.	2.9	5
276	Controllable shrinking of inverted-pyramid silicon nanopore arrays by dry-oxygen oxidation. Nanotechnology, 2013, 24, 505303.	2.6	14
277	Electrochemically deposited and etched membranes with precisely sized micropores for biological fluids microfiltration. Journal of Micromechanics and Microengineering, 2013, 23, 074007.	2.6	22
278	Solutionâ€pHâ€Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions. Advanced Functional Materials, 2013, 23, 3836-3844.	14.9	125
279	Ultrathin Porous Silicon Films. , 2014, , 143-151.		0
280	Fabrication of Perforated Isoporous Membranes via a Transfer-Free Strategy: Enabling High-Resolution Separation of Cells. ACS Applied Materials & amp; Interfaces, 2014, 6, 22400-22407.	8.0	46
281	Facile Fabrication, Structure, and Applications of Polyvinyl Chloride Mesoporous Membranes. Industrial & Engineering Chemistry Research, 2014, 53, 20068-20073.	3.7	13
282	Effect of hydrofluoric acid (HF) concentration to pores size diameter of silicon membrane. Bio-Medical Materials and Engineering, 2014, 24, 2203-2209.	0.6	5

#	Article	IF	CITATIONS
283	Fabrication and characterization of aluminum-molybdenum nanocomposite membranes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 052002.	1.2	3
284	Ion transport controlled by nanoparticle-functionalized membranes. Nature Communications, 2014, 5, 5847.	12.8	48
285	Nanomesh‣tructured Ultrathin Membranes Harnessing the Unidirectional Alignment of Viruses on a Grapheneâ€Oxide Film. Advanced Materials, 2014, 26, 3899-3904.	21.0	47
286	A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nanochannel. ACS Nano, 2014, 8, 12292-12299.	14.6	95
287	High Strength, Molecularly Thin Nanoparticle Membranes. Physical Review Letters, 2014, 113, 258301.	7.8	31
288	Pore-size reduction protocol for SiN membrane nanopore using the thermal reflow in nanoimprinting for nanobio-based sensing. Journal of Biomedical Optics, 2014, 19, 051211.	2.6	2
289	A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Advances in Materials Science and Engineering, 2014, 2014, 1-24.	1.8	501
290	Sub-additive ionic transport across arrays of solid-state nanopores. Physics of Fluids, 2014, 26, .	4.0	57
291	Preparation and characterization of negatively charged organic–inorganic hybrid ultrafiltration membranes for protein separation. Separation and Purification Technology, 2014, 130, 112-123.	7.9	42
292	Highly Porous Silicon Membranes Fabricated from Silicon Nitride/Silicon Stacks. Small, 2014, 10, 2946-2953.	10.0	15
293	Replication of flexible polymer membranes with geometry-controllable nano-apertures via a hierarchical mould-based dewetting. Nature Communications, 2014, 5, 3137.	12.8	59
294	Nanoscale semiconductor devices as new biomaterials. Biomaterials Science, 2014, 2, 619-626.	5.4	25
295	Surface-Modified Silica Colloidal Crystals: Nanoporous Films and Membranes with Controlled Ionic and Molecular Transport. Accounts of Chemical Research, 2014, 47, 440-449.	15.6	60
296	Required polymer lengths per precipitated protein molecule in protein-polymer interaction. Journal of Polymer Research, 2014, 21, 1.	2.4	2
297	Roll-to-Roll Preparation of Mesoporous Membranes by Nanoparticle Template Removal. Industrial & Engineering Chemistry Research, 2014, 53, 9214-9220.	3.7	24
298	Electrochemical engineering of hollow nanoarchitectures: pulse/step anodization (Si, Al, Ti) and their applications. Chemical Society Reviews, 2014, 43, 1476-1500.	38.1	105
299	Selfâ€Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes. Angewandte Chemie, 2014, 126, 10236-10240.	2.0	21
300	Dynamic Electrochemical Membranes for Continuous Affinity Protein Separation. Advanced Functional Materials, 2014, 24, 4317-4323.	14.9	19

#	Article	IF	CITATIONS
301	Porous Silicon Functionalities for BioMEMS. , 2014, , 1-9.		0
302	Porous Silicon in Immunoisolation and Bio-filtration. , 2014, , 1-8.		0
303	Ultrathin Porous Silicon Films. , 2014, , 1-7.		1
304	Polymer translocation: the first two decades and the recent diversification. Soft Matter, 2014, 10, 9016-9037.	2.7	171
305	Mechanical characteristics of porous silicon membrane for filtration in artificial kidney. , 2014, , .		5
306	Highly permeable silicon membranes for shear free chemotaxis and rapid cell labeling. Lab on A Chip, 2014, 14, 2456-2468.	6.0	47
307	Self-assembled nanopillar arrays by simple spin coating from blending systems comprising PC61BM and conjugated polymers with special structure. RSC Advances, 2014, 4, 24316-24319.	3.6	3
308	Silylated Mesoporous Silica Membranes on Polymeric Hollow Fiber Supports: Synthesis and Permeation Properties. ACS Applied Materials & Interfaces, 2014, 6, 17877-17886.	8.0	21
309	Molecular Beam Study of the Scattering Behavior of Water Molecules from a Graphite Surface. Journal of Physical Chemistry A, 2014, 118, 4611-4619.	2.5	13
310	Protein separation performance of self-assembled block copolymer membranes. RSC Advances, 2014, 4, 10252.	3.6	41
311	Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates. Nanoscale, 2014, 6, 10798-10805.	5.6	73
312	Photo-crosslinked nanofibers of poly(ether amine) (PEA) for the ultrafast separation of dyes through molecular filtration. Polymer Chemistry, 2014, 5, 2027-2034.	3.9	29
313	Criteria for the selection of a support material to fabricate coated membranes for a life support device. RSC Advances, 2014, 4, 38711-38717.	3.6	30
314	Size separation of biomolecules and bioparticles using micro/nanofabricated structures. Analytical Methods, 2014, 6, 27-37.	2.7	21
315	Nanoslitting of phase-separated block copolymers by solvent swelling for membranes with ultrahigh flux and sharp selectivity. Chemical Communications, 2014, 50, 12022-12025.	4.1	43
316	Endothelial vacuolization induced by highly permeable silicon membranes. Acta Biomaterialia, 2014, 10, 4670-4677.	8.3	11
317	Selfâ€Assembled Isoporous Block Copolymer Membranes with Tuned Pore Sizes. Angewandte Chemie - International Edition, 2014, 53, 10072-10076.	13.8	82
318	A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nature Chemistry, 2014, 6, 774-778.	13.6	406

#	Article	IF	CITATIONS
319	Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Materials Science and Engineering Reports, 2014, 86, 1-44.	31.8	142
320	Porous Membranes Promote Endothelial Differentiation of Adipose-Derived Stem Cells and Perivascular Interactions. Cellular and Molecular Bioengineering, 2014, 7, 369-378.	2.1	40
321	Tunable Swelling and Rolling of Microgel Membranes. Langmuir, 2014, 30, 7628-7634.	3.5	20
322	Understanding of Ion Transport in a Na–Mordenite Membrane: Use of Numerical Modeling To Estimate Surface–Solute Interactions in the Pore. Industrial & Engineering Chemistry Research, 2014, 53, 8221-8227.	3.7	6
323	Effects of Graphene Nanopore Geometry on DNA Sequencing. Journal of Physical Chemistry Letters, 2014, 5, 1602-1607.	4.6	54
324	Thermoplastic Polyurethane:Polythiophene Nanomembranes for Biomedical and Biotechnological Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 9719-9732.	8.0	45
325	Hierarchically-Structured NiO Nanoplatelets as Mesoscale p-Type Photocathodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 14177-14184.	3.1	49
326	Tailoring the Mechanics of Ultrathin Carbon Nanomembranes by Molecular Design. Langmuir, 2014, 30, 8221-8227.	3.5	42
327	Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO ₂ Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions. ACS Nano, 2014, 8, 6344-6352.	14.6	344
328	Air bubble-initiated biofabrication of freestanding, semi-permeable biopolymer membranes in PDMS microfluidics. Biochemical Engineering Journal, 2014, 89, 2-9.	3.6	24
329	Highly permeable cellulose acetate nanofibrous composite membranes by freeze-extraction. Journal of Membrane Science, 2014, 454, 339-345.	8.2	31
331	Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Materials, 2014, 6, e101-e101.	7.9	584
332	Ultraâ€Thin Selfâ€Assembled Proteinâ€Polymer Membranes: A New Pore Forming Strategy. Advanced Functional Materials, 2014, 24, 6762-6770.	14.9	34
333	Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles. Microscopy and Microanalysis, 2015, 21, 1017-1025.	0.4	7
334	Nanoscale Scanning Electrochemical Microscopy. Electroanalytical Chemistry, A Series of Advances, 2015, , 1-72.	1.7	10
335	Self-assembled Nanowire Arrays as Three-dimensional Nanopores for Filtration of DNA Molecules. Analytical Sciences, 2015, 31, 153-157.	1.6	13
336	Ligand structure and mechanical properties of single-nanoparticle-thick membranes. Physical Review E, 2015, 91, 062403.	2.1	19
337	Control and Manipulation of Nano Cracks Mimicking Optical Wave. Scientific Reports, 2015, 5, 17292.	3.3	14

#	Article		CITATIONS
338	Ultrathin Ceramic Membranes as Scaffolds for Functional Cell Coculture Models on a Biomimetic Scale. BioResearch Open Access, 2015, 4, 457-468.		12
339	Ultrathin and Switchable Nanoporous Catalytic Membranes of Polystyreneâ€ <i>b</i> â€polyâ€4â€Vinyl Pyridine Block Copolymer Spherical Micelles. Advanced Materials Interfaces, 2015, 2, 1500097.		23
340	Öl/Wasserâ€Trennung mit selektiven superabweisenden/superbenetzbaren Oberflähenmaterialien. Angewandte Chemie, 2015, 127, 2358-2368.	2.0	32
341	Ultrathin pH ensitive Nanoporous Membranes for Superfast Sizeâ€&elective Separation. Chemistry - an Asian Journal, 2015, 10, 1133-1137.		6
342	Nanomembrane Canister Architectures for the Visualization and Filtration of Oxyanion Toxins with One‧tep Processing. Chemistry - an Asian Journal, 2015, 10, 2467-2478.	3.3	25
343	Selfâ€Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra―to Nanofiltration. Angewandte Chemie - International Edition, 2015, 54, 13937-13941.	13.8	122
344	M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities. Mini-Reviews in Organic Chemistry, 2015, 12, 271-281.	1.3	42
345	Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 06FM03.	1.2	7
346	Functionalized Mesoporous Silica Membranes for CO ₂ Separation Applications. Journal of Chemistry, 2015, 2015, 1-9.		25
347	SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. Journal of Materials Chemistry A, 2015, 3, 6649-6654.	10.3	223
348	Polymer translocation into and out of an ellipsoidal cavity. Journal of Chemical Physics, 2015, 142, 174903.	3.0	26
349	Nanopore Fabrication by Heating Au Particles on Ceramic Substrates. Nano Letters, 2015, 15, 727-731.	9.1	55
350	Hydrogen Bonding in Supramolecular Nanoporous Materials. Lecture Notes in Quantum Chemistry II, 2015, , 43-67.	0.3	6
351	Thermally modulated biomolecule transport through nanoconfined channels. Nanoscale Research Letters, 2015, 10, 198.	5.7	3
352	Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes. Faraday Discussions, 2015, 181, 339-354.	3.2	12
353	Effect of doping to the pore structure and pore diameter on silicon membrane surface. , 2015, , .		1
354	Transport properties of track-etched membranes having variable effective pore-lengths. Nanotechnology, 2015, 26, 485502.	2.6	32
355	pH-Dependent Selective Protein Adsorption into Mesoporous Silica. Journal of Physical Chemistry C, 2015, 119, 27072-27079.	3.1	62

#	ARTICLE	IF	CITATIONS
356	A step toward next-generation nanoimprint lithography: extending productivity and applicability. Applied Physics A: Materials Science and Processing, 2015, 121, 343-356.	2.3	44
357	Controlled protein separation based on pressure–voltage (P–V) coupling effects in a nanopore based device. RSC Advances, 2015, 5, 98004-98009.	3.6	0
358	Lift-off of large-scale ultrathin nanomembranes. Journal of Micromechanics and Microengineering, 2015, 25, 015011.	2.6	22
359	Composite hydrogel-loaded alumina membranes for nanofluidic molecular filtration. Journal of Membrane Science, 2015, 477, 151-156.	8.2	15
360	Isoporous membranes with gradient porosity by selective swelling of UV-crosslinked block copolymers. Journal of Membrane Science, 2015, 476, 449-456.	8.2	32
361	Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. Journal of Physics Condensed Matter, 2015, 27, 103102.	1.8	205
362	Photoresistance Switching of Plasmonic Nanopores. Nano Letters, 2015, 15, 776-782.	9.1	38
363	Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both. Optics Express, 2015, 23, A92.	3.4	66
364	The electric field strength in orifice-like nanopores of ultrathin membranes. Nanotechnology, 2015, 26, 045704.	2.6	9
365	Influence of silicon dioxide capping layers on pore characteristics in nanocrystalline silicon membranes. Nanotechnology, 2015, 26, 055706.	2.6	4
366	Finite-Element Simulation and Verification of Nanoparticle Translocation Through Biogenic Diatom Shells. IEEE Sensors Journal, 2015, 15, 3921-3925.	4.7	0
367	Well-defined hollow nanochanneled-silica nanospheres prepared with the aid of sacrificial copolymer nanospheres and surfactant nanocylinders. Nanoscale, 2015, 7, 14774-14785.	5.6	18
368	Preparation and characterization of superior antifouling PVDF membrane with extremely ordered and hydrophilic surface layer. Journal of Membrane Science, 2015, 494, 48-56.	8.2	59
369	Propagation of Concentration Polarization Affecting Ions Transport in Branching Nanochannel Array. Analytical Chemistry, 2015, 87, 8194-8202.	6.5	41
370	Filtration-Based Synthesis of Micelle-Derived Composite Membranes for High-Flux Ultrafiltration. ACS Applied Materials & Interfaces, 2015, 7, 6974-6981.	8.0	27
371	Fabrication of Buckling Free Ultrathin Silicon Membranes by Direct Bonding with Thermal Difference. ACS Nano, 2015, 9, 3654-3663.	14.6	6
372	Molecular dynamics simulations indicate that DNA bases using graphene nanopores can be identified by their translocation times. RSC Advances, 2015, 5, 9389-9395.	3.6	12
373	An acid functionalized MWCNT/PVP nanocomposite as a new additive for fabrication of an ultrafiltration membrane with improved anti-fouling resistance. RSC Advances, 2015, 5, 95421-95432.	3.6	34

ARTICLE IF CITATIONS # Effectiveness of non-biodegradable poly(2-hydroxyethyl methacrylate)-based hydrogel particles as a 375 3.5 17 fibroblast growth factor-2 releasing carrier. Dental Materials, 2015, 31, 1406-1414. On-Chip Fabrication of Carbon Nanoparticle–Chitosan Composite Membrane. Journal of Materials 376 Science and Technology, 2015, 31, 1087-1093. Ultrathin Silica Membranes with Highly Ordered and Perpendicular Nanochannels for Precise and 377 14.6 133 Fast Molecular Separation. ACS Nano, 2015, 9, 11266-11277. Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of 378 140 oil-in-water nanoémulsions. Journal of Materials Chemistry A, 2015, 3, 2895-2902. Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials. Angewandte 379 13.8 1,078 Chemie - International Edition, 2015, 54, 2328-2338. Integration of lateral porous silicon membranes into planar microfluidics. Lab on A Chip, 2015, 15, 833-838. 380 6.0 Optical observation of DNA motion during and immediately after nanopore translocation. Applied 381 2.4 8 Physics Express, 2016, 9, 017001. Recent Advances in Unconventional Lithography for Challenging 3D Hierarchical Structures and 2.7 16 Their Applications. Journal of Nanomaterials, 2016, 2016, 1-17. Analytical and Finite Element Modeling of Nanomembranes for Miniaturized, Continuous 383 3.0 9 Hemodialysis. Membranes, 2016, 6, 6. The Semiflexible Polymer Translocation into Laterally Unbounded Region between Two Parallel Flat 384 4.5 Membranes. Polymers, 2016, 8, 332. Graphene Nanopores for Protein Sequencing. Advanced Functional Materials, 2016, 26, 4830-4838. 385 100 14.9 Carbon Nanomembranes. Advanced Materials, 2016, 28, 6075-6103. 386 21.0 133 Smart Gating Multiâ€Scale Pore/Channelâ€Based Membranes. Advanced Materials, 2016, 28, 7049-7064. 387 21.0 242 Investigating axial diffusion in cylindrical pores using confocal single \hat{e} particle fluorescence correlation spectroscopy. Electrophoresis, 2016, 37, 2129-2138. 2.4 389 Electrically Polarized Biomaterials. Advanced Materials, 2016, 28, 5470-5484. 21.0 63 Flow-induced polymer translocation through a nanopore from a confining nanotube. Journal of 3.0 Chemical Physics, 2016, 144, 174903. Ultrathin Silicon Membranes for Improving Extracorporeal Blood Therapies., 2016, 2016, . 391 1 Gated Molecular Transport in Highly Ordered Heterogeneous Nanochannel Array Electrode. ACS Applied Materials & amp; Interfaces, 2016, 8, 33343-33349.

#	Article	IF	CITATIONS
393	Nanoporous membrane robustness / stability in small form factor microfluidic filtration system. , 2016, 2016, 1955-1958.		0
394	Estimation of the porosity of a chitosan–carbon nanoparticle membrane fabricated on a chip: A solute transport-based study. International Journal of Heat and Mass Transfer, 2016, 99, 822-830.	4.8	5
395	Lateral porous silicon membranes with tunable pore size for on-chip separation. , 2016, , .		2
396	Microscopic Movement of Slow-Diffusing Nanoparticles in Cylindrical Nanopores Studied with Three-Dimensional Tracking. Analytical Chemistry, 2016, 88, 5122-5130.	6.5	18
397	Molecular Filtration by Ultrathin and Highly Porous Silica Nanochannel Membranes: Permeability and Selectivity. Analytical Chemistry, 2016, 88, 10252-10258.	6.5	49
398	Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation. Nanoscale, 2016, 8, 18428-18435.	5.6	26
399	Macromolecule and Particle Dynamics in Confined Media. Macromolecules, 2016, 49, 5755-5772.	4.8	105
400	One-step reduction and simultaneous decoration on various porous substrates: toward oil filtration from water. RSC Advances, 2016, 6, 86019-86024.	3.6	4
401	Flexible single-layer ionic organic–inorganic frameworks towards precise nano-size separation. Nature Communications, 2016, 7, 10742.	12.8	112
403	PSi-Based Ultrasound Emitters (Acoustic Emission). , 2016, , 213-222.		0
404	Polydimethysiloxane Modified Silica Nanochannel Membrane for Hydrophobicity-Based Molecular Filtration and Detection. Analytical Chemistry, 2016, 88, 7821-7827.	6.5	35
405	Electrically Mediated Interactions at the Materials/Biology Interface. , 2016, , 1-18.		1
406	Comparative Kinetic Analysis of Closed-Ended and Open-Ended Porous Sensors. Nanoscale Research Letters, 2016, 11, 395.	5.7	22
407	Porous Silicon in Micromachining Hotplates Aimed for Sensor Applications. , 2016, , 223-238.		0
408	Measuring stiffness and residual stress of thin films by contact resonance atomic force microscopy. Applied Physics Express, 2016, 9, 116601.	2.4	7
409	Fabrication and performance evaluation of Faujasite zeolite composite ultrafiltration membrane by separation of trivalent ions from aqueous solution. Environmental Progress and Sustainable Energy, 2016, 35, 1047-1054.	2.3	5
410	Nanoporous Gold Membranes as Robust Constructs for Selectively Tunable Chemical Transport. Journal of Physical Chemistry C, 2016, 120, 20929-20935.	3.1	8
411	Subâ€10 nm Wide Cellulose Nanofibers for Ultrathin Nanoporous Membranes with High Organic Permeation. Advanced Functional Materials, 2016, 26, 792-800.	14.9	85

#	Article	IF	CITATIONS
412	Selective transportation of charged ZnO nanoparticles and microorganism dialysis through silicon nanoporous membranes. Journal of Membrane Science, 2016, 503, 16-24.	8.2	11
413	Catalyst Self-Assembly for Scalable Patterning of Sub 10 nm Ultrahigh Aspect Ratio Nanopores in Silicon. ACS Applied Materials & Interfaces, 2016, 8, 8043-8049.	8.0	18
414	Detection of base-pair mismatches in DNA using graphene-based nanopore device. Nanotechnology, 2016, 27, 135101.	2.6	10
415	Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces. Journal of Bionic Engineering, 2016, 13, 1-29.	5.0	88
416	Microfabrication and in Vivo Performance of a Microdialysis Probe with Embedded Membrane. Analytical Chemistry, 2016, 88, 1230-1237.	6.5	63
417	Optical observation of DNA translocation through Al2O3 sputtered silicon nanopores in porous membrane. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	4
418	Multi-Dimensional Nanostructures for Microfluidic Screening of Biomarkers: From Molecular Separation to Cancer Cell Detection. Annals of Biomedical Engineering, 2016, 44, 847-862.	2.5	13
419	Free-standing few-layered graphene oxide films: selective, steady and lasting permeation of organic molecules with adjustable speeds. Nanoscale, 2016, 8, 2003-2010.	5.6	17
420	Membrane capacity and fouling mechanisms for ultrathin nanomembranes in dead-end filtration. Journal of Membrane Science, 2016, 499, 282-289.	8.2	28
421	Structural Characterization of Porous Materials Using SAS. , 2016, , 139-171.		2
422	MEMS design and modelling based on resonant gate transistor for cochlear biomimetical application. Microsystem Technologies, 2017, 23, 2329-2342.	2.0	4
423	Fouling mitigation on a woven fibre microfiltration membrane for the treatment of raw water. South African Journal of Chemical Engineering, 2017, 23, 1-9.	2.4	12
424	Optimization of nanoparticle focusing by coupling thermophoresis and engineered vortex in a microfluidic channel. Journal of Applied Physics, 2017, 121, .	2.5	6
425	Blocking effect of benzene-like fluid transport in nanoscale block-pores. Molecular Simulation, 2017, 43, 526-533.	2.0	5
426	Scale-dependent diffusion anisotropy in nanoporous silicon. Scientific Reports, 2017, 7, 40207.	3.3	43
427	Modification of Nanoporous Silicon Nitride with Stable and Functional Organic Monolayers. Chemistry of Materials, 2017, 29, 2294-2302.	6.7	9
428	Seeing the Stars in Broad Daylight—Nanotechnology Solutions To Reduce Noise in Chemical Sensing. ACS Sensors, 2017, 2, 190-190.	7.8	1
429	Ultrathin transparent membranes for cellular barrier and co-culture models. Biofabrication, 2017, 9, 015019.	7.1	63

#	Article	IF	CITATIONS
430	Polyacrylonitrile mesoporous composite membranes with high separation efficiency prepared by fast freeze-extraction process. Journal of Industrial and Engineering Chemistry, 2017, 49, 61-68.	5.8	2
431	Template-free Synthesis of Large-Pore-Size Porous Magnesium Silicate Hierarchical Nanostructures for High-Efficiency Removal of Heavy Metal Ions. ACS Sustainable Chemistry and Engineering, 2017, 5, 2774-2780.	6.7	51
432	Hierarchical Porous Structured SiO ₂ /SnO ₂ Nanofibrous Membrane with Superb Flexibility for Molecular Filtration. ACS Applied Materials & Interfaces, 2017, 9, 18966-18976.	8.0	94
433	Fabrication techniques enabling ultrathin nanostructured membranes for separations. Electrophoresis, 2017, 38, 2374-2388.	2.4	28
434	Niobate nanosheet membranes with enhanced stability for nanofiltration. Chemical Communications, 2017, 53, 7929-7932.	4.1	14
435	Selective protein transport through ultra-thin suspended reduced graphene oxide nanopores. Nanoscale, 2017, 9, 13457-13464.	5.6	17
436	Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture. Journal of Micromechanics and Microengineering, 2017, 27, 075021.	2.6	7
437	Highly permeable nanoporous block copolymer membranes by machine-casting on nonwoven supports: An upscalable route. Journal of Membrane Science, 2017, 533, 201-209.	8.2	20
438	Design and function of biomimetic multilayer water purification membranes. Science Advances, 2017, 3, e1601939.	10.3	221
439	Modulation of Molecular Flux Using a Graphene Nanopore Capacitor. Journal of Physical Chemistry B, 2017, 121, 3724-3733.	2.6	14
440	Copolymer Nanofilters with Charge-Patterned Domains for Enhanced Electrolyte Transport. Chemistry of Materials, 2017, 29, 762-772.	6.7	15
441	A 150 nm ultraviolet excitation volume on a porous silicon membrane for direct optical observation of DNA coil relaxation during capture into nanopores. Nano Futures, 2017, 1, 011001.	2.2	4
442	Rational design of hierarchical macroporous–mesoporous magnesium silicate for highly efficient removal of organic dye and Pb ²⁺ . RSC Advances, 2017, 7, 47225-47234.	3.6	16
443	Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles. Nanoscale, 2017, 9, 15056-15061.	5.6	33
444	Fabrication of Nanoporous Alumina Ultrafiltration Membrane with Tunable Pore Size Using Block Copolymer Templates. Advanced Functional Materials, 2017, 27, 1701756.	14.9	87
445	A predictive model of separations in dead-end filtration with ultrathin membranes. Separation and Purification Technology, 2017, 189, 40-47.	7.9	14
446	Electro-osmotic flow through nanopores in thin and ultrathin membranes. Physical Review E, 2017, 95, 063105.	2.1	34
447	Structure-correlated diffusion anisotropy in nanoporous channel networks by Monte Carlo simulations and percolation theory. European Physical Journal B, 2017, 90, 1.	1.5	1

#	Article	IF	CITATIONS
448	Modeling Multiple Chemical Equilibrium in Single-Stage Extraction of Atenolol Enantiomers with Tartrate and Boric Acid as Chiral Selector. Journal of Chemical & Engineering Data, 2017, 62, 4344-4355.	1.9	11
449	Through a Window, Brightly: A Review of Selected Nanofabricated Thin-Film Platforms for Spectroscopy, Imaging, and Detection. Applied Spectroscopy, 2017, 71, 2051-2075.	2.2	36
450	Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 224-227.	1.4	1
451	Predicting the failure of ultrathin porous membranes in bulge tests. Thin Solid Films, 2017, 631, 152-160.	1.8	16
452	High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal. Journal of Membrane Science, 2017, 523, 173-184.	8.2	111
453	Surface wettability effect on fluid transport in nanoscale slit pores. AICHE Journal, 2017, 63, 1704-1714.	3.6	50
454	Fabrication of lateral porous silicon membranes for planar microfluidics by means of ion implantation. Sensors and Actuators B: Chemical, 2017, 239, 628-634.	7.8	21
455	Nanofabrication by Self-Assembly. , 2017, , 365-399.		0
456	Lateral porous silicon membranes with size and charge selectivity. , 2017, , .		3
457	Mechanical strength of 2.5D parylene C micropore-arrayed filtration membrane. , 2017, , .		1
458	Simulation on mechanical properties of porous nanocrystalline silicon membrane for artificial kidney. , 2017, , .		2
459	Self-Adjusting Electrochemical Etching Technique for Producing Nanoporous Silicon Membrane. , 0, , .		6
461	The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes. Membranes, 2017, 7, 42.	3.0	5
462	Chemically Modified Nanopores in Colloidal Crystals. , 2017, , 103-129.		0
463	Non-biodegradable polymer particles for drug delivery: A new technology for "bio-active―restorative materials. Dental Materials Journal, 2017, 36, 524-532.	1.8	23
464	Porous PVdF/GO Nanofibrous Membranes for Selective Separation and Recycling of Charged Organic Dyes from Water. Environmental Science & Technology, 2018, 52, 4265-4274.	10.0	144
465	Large-scale fabrication of free-standing and sub-μm PDMS through-hole membranes. Nanoscale, 2018, 10, 7711-7718.	5.6	39
466	Nanoporous Hydrogels for the Observation of Anthrax Exotoxin Translocation Dynamics. ACS Applied Materials & mp; Interfaces, 2018, 10, 13342-13349.	8.0	2

		CITATION R	EPORT	
#	Article		IF	Citations
467	Reversible Immobilization of Proteins in Sensors and Solidâ \in State Nanopores. Small, 2018, 14, 6	21703357.	10.0	30
468	Freely suspended perforated polymer nanomembranes for protein separations. Scientific Report 8, 4410.	s, 2018,	3.3	18
469	Carrier dynamics and surface vibration-assisted Auger recombination in porous silicon. Physical Review B, 2018, 97, .		3.2	14
470	Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltrat application. Chemical Engineering Journal, 2018, 347, 12-18.	ion	12.7	143
471	Microfabricated Probes for Studying Brain Chemistry: A Review. ChemPhysChem, 2018, 19	1128-1142.	2.1	36
472	Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. Journal o Materials Chemistry A, 2018, 6, 2908-2913.	Ĩ	10.3	33
473	An engineering insight into block copolymer self-assembly: Contemporary application from bion research to nanotechnology. Chemical Engineering Journal, 2018, 342, 71-89.	redical	12.7	28
474	Polymer brushes in solid-state nanopores form an impenetrable entropic barrier for proteins. Nanoscale, 2018, 10, 4663-4669.		5.6	34
475	Surprising transformation of a block copolymer into a high performance polystyrene ultrafiltrati membrane with a hierarchically organized pore structure. Journal of Materials Chemistry A, 2018 4337-4345.	on 8, 6,	10.3	23
476	General Strategy To Make an On-Demand Library of Structurally and Functionally Diverse SERS Substrates. ACS Applied Nano Materials, 2018, 1, 960-968.		5.0	11
478	Nanopore Membranes for Separation and Sensing. Integrated Analytical Systems, 2018, , 1-23.		0.4	2
479	Porous Substrates Promote Endothelial Migration at the Expense of Fibronectin Fibrillogenesis. Biomaterials Science and Engineering, 2018, 4, 222-230.	ACS	5.2	15
480	Fabrication of mechanically stable AAO membrane with improved fluid permeation properties. Microelectronic Engineering, 2018, 187-188, 95-100.		2.4	10
481	Finite element modeling to analyze TEER values across silicon nanomembranes. Biomedical Microdevices, 2018, 20, 11.		2.8	16
482	Centimeter-scale continuous silica isoporous membranes for molecular sieving. Journal of Memb Science, 2018, 558, 86-93.	rane	8.2	19
483	Vapor-defect-solid growth mechanism for NanoNets utilizing natural defect networks in polycrystals. Materials and Design, 2018, 150, 206-214.		7.0	1
484	Ultrathin nanoporous membranes for insulator-based dielectrophoresis. Nanotechnology, 2018, 235704.	29,	2.6	8
485	Hyperbranched Poly(ether amine)@Poly(vinylidene fluoride) Hybrid Membrane with Oriented Nanostructures for Fast Molecular Filtration. Langmuir, 2018, 34, 3787-3796.		3.5	2

# 486	ARTICLE Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Progress in Materials Science, 2018, 92, 258-283.	IF 32.8	CITATIONS
487	Low fouling ultrathin nanocomposite membranes for efficient removal of manganese. Journal of Membrane Science, 2018, 549, 205-216.	8.2	30
488	Sterilization effects on ultrathin film polymer coatings for siliconâ€based implantable medical devices. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2327-2336.	3.4	12
489	Removal of Organic Pollutants from Water Using Superwetting Materials. Chemical Record, 2018, 18, 118-136.	5.8	61
490	Silk-Based Hierarchical Materials for High Mechanical Performance at the Interface of Modeling, Synthesis, and Characterization. , 2018, , 1-28.		1
491	Scalable fabrication of nanopores in membranes via thermal annealing of Au nanoparticles. Nanoscale, 2018, 10, 22623-22634.	5.6	7
492	Fabrication and design of mechanically stable and free-standing polymeric membrane with two-level apertures. Soft Matter, 2018, 14, 9522-9527.	2.7	5
493	Thermal Atomic Layer Etching of Silicon Using O ₂ , HF, and Al(CH ₃) ₃ as the Reactants. Chemistry of Materials, 2018, 30, 8465-8475.	6.7	49
494	Protein Separation and Hemocompatibility of Nitride Membranes in Microfluidic Filtration Systems. , 2018, 2018, 5814-5817.		1
495	Self-assembled membrane composed of amyloid-like proteins for efficient size-selective molecular separation and dialysis. Nature Communications, 2018, 9, 5443.	12.8	84
496	Polarity governs atomic interaction through two-dimensional materials. Nature Materials, 2018, 17, 999-1004.	27.5	182
497	Osmotic-Stress-Mediated Control of Membrane Permeability of Polymeric Microcapsules. Chemistry of Materials, 2018, 30, 7211-7220.	6.7	8
498	Membrane innovation: closer to native kidneys. Nephrology Dialysis Transplantation, 2018, 33, iii22-iii27.	0.7	26
499	Influence of Titanium Oxide Coating on Mechanical Properties of Porous Nanocrystalline Silicon Membrane. , 2018, , .		0
500	Nanoporous silicon nitride-based membranes of controlled pore size, shape and areal density: Fabrication as well as electrophoretic and molecular filtering characterization. Beilstein Journal of Nanotechnology, 2018, 9, 1390-1398.	2.8	5
501	Freestanding ultrathin films for separation of small molecules in an aqueous environment. Journal of Biotechnology, 2018, 288, 48-54.	3.8	4
502	Rationally Fabricated Nanomaterials for Desalination and Water Purification. , 0, , .		6
503	Ultralarge Single-Layer Porous Protein Nanosheet for Precise Nanosize Separation. Nano Letters, 2018, 18, 6563-6569.	9.1	44

#	Article	IF	CITATIONS
504	Retention mechanisms of 1.7†nm ZnS quantum dots and sub-20†nm Au nanoparticles in ultrafiltration membranes. Journal of Membrane Science, 2018, 567, 58-67.	8.2	12
505	Functionalized Silicon Nanoporous Membranes for Efficient Dialysis. , 2018, , .		1
506	Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nature Communications, 2018, 9, 2004.	12.8	457
507	Use of porous membranes in tissue barrier and co-culture models. Lab on A Chip, 2018, 18, 1671-1689.	6.0	97
508	Atomic-Layer Deposition into 2- versus 3-Dimensionally Ordered Nanoporous Media: Pore Size or Connectivity?. Chemistry of Materials, 2018, 30, 4748-4754.	6.7	14
509	The morphological study of porous silicon formed by electrochemical anodization method. IOP Conference Series: Materials Science and Engineering, 2018, 333, 012034.	0.6	4
510	Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chemical Reviews, 2018, 118, 6766-6843.	47.7	579
511	Bioinspired dual stimuli-responsive membranes with enhanced gating ratios and reversible performances for water gating. Journal of Membrane Science, 2018, 564, 53-61.	8.2	31
512	Gating Protein Transport in Solid State Nanopores by Single Molecule Recognition. ACS Central Science, 2018, 4, 1007-1014.	11.3	31
513	Porous Silicon. , 0, , .		19
514	On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membrane cale Osmotic Energy Conversion. Advanced Functional Materials, 2018, 28, 1804189.	14.9	101
515	TEM Tomography of Pores with Application to Computational Nanoscale Flows in Nanoporous Silicon Nitride (NPN). Membranes, 2018, 8, 26.	3.0	7
516	A Novel Architecture for Carbon Nanotube Membranes towards Fast and Efficient Oil/water Separation. Scientific Reports, 2018, 8, 7418.	3.3	50
517	Isoporous membranes with sub-10â€ ⁻ nm pores prepared from supramolecular interaction facilitated block copolymer assembly and application for protein separation. Journal of Membrane Science, 2018, 566, 25-34.	8.2	31
518	Diffusion of Proteins across Silica Colloidal Crystals. Langmuir, 2018, 34, 10333-10339.	3.5	7
519	Nanoporous Silicon-Assisted Patterning of Monolayer MoS ₂ with Thermally Controlled Porosity: A Scalable Method for Diverse Applications. ACS Applied Nano Materials, 2018, 1, 3548-3556.	5.0	3
520	Hydrophobic Modification of Copper Nanospheres for Incorporation into Poloxamer Micelles, Aggregated Micellar Nanocages and Supramolecular Assemblies. Current Nanomedicine, 2019, 9, 108-127.	0.6	1
521	Tangential Flow Microfluidics for the Capture and Release of Nanoparticles and Extracellular Vesicles on Conventional and Ultrathin Membranes. Advanced Materials Technologies, 2019, 4,	5.8	53

#	Article	IF	Citations
522	Metal-assisted chemical etching of silicon and achieving pore sizes as small as 30 nm by altering gold thickness. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, 061402.	2.1	7
523	Development of PVDF Ultrafiltration Membrane with Zwitterionic Block Copolymer Micelles as a Selective Layer. Membranes, 2019, 9, 93.	3.0	9
524	Overview of the State-of-the-Art on Using Alumina-Based Nanoporous Membranes for Adsorptive Enrichment and Phase Separation. Petroleum Chemistry, 2019, 59, 822-830.	1.4	3
525	Rapid Size-Based Protein Discrimination inside Hybrid Isoporous Membranes. ACS Applied Materials & Interfaces, 2019, 11, 8507-8516.	8.0	28
526	Forefronts in structure–performance models of separation membranes. Journal of Membrane Science, 2019, 588, 117166.	8.2	35
527	An in vitro platform for elucidating the molecular genetics of S. aureus invasion of the osteocyte lacuno-canalicular network during chronic osteomyelitis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102039.	3.3	28
529	Monolithic Fabrication of NPN/SiN x Dual Membrane Cavity for Nanoporeâ€Based DNA Sensing. Advanced Materials Interfaces, 2019, 6, 1900684.	3.7	10
530	3D Printing of an Oil/Water Mixture Separator with In Situ Demulsification and Separation. Polymers, 2019, 11, 774.	4.5	21
531	Brownian dynamics of a neutral protein moving through a nanopore in an electrically biased membrane. Journal of Chemical Physics, 2019, 150, 115103.	3.0	6
532	Adsorption of Bovine Hemoglobin by Sulfonated Polystyrene Nanospheres. ChemistrySelect, 2019, 4, 2874-2880.	1.5	6
533	Ultrathin Dualâ€6cale Nano―and Microporous Membranes for Vascular Transmigration Models. Small, 2019, 15, e1804111.	10.0	30
534	A tri-layer approach to controlling nanopore formation in oxide supports. Nano Research, 2019, 12, 1223-1228.	10.4	3
535	Nanoenabled Bioseparations: Current Developments and Future Prospects. BioMed Research International, 2019, 2019, 1-15.	1.9	21
536	Hierarchically Structured Nanoparticle Monolayers for the Tailored Etching of Nanoporous Silicon. ACS Applied Nano Materials, 2019, 2, 1146-1151.	5.0	4
537	Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation. ACS Applied Materials & amp; Interfaces, 2019, 11, 11006-11027.	8.0	452
538	Deformation induced complete amorphization at nanoscale in a bulk silicon. AIP Advances, 2019, 9, .	1.3	5
539	Sensor for Continuous and Real-Time Monitoring of Biomolecule Permeation Through Ultrathin Silicon Nanoporous Membranes. IEEE Sensors Journal, 2019, 19, 4419-4427.	4.7	6
540	Optical properties of plasmonic nanopore arrays prepared by electron beam and colloidal lithography. Nanoscale Advances, 2019, 1, 4282-4289.	4.6	10

#	ARTICLE	IF	Citations
541	Quantitative Assessment of Molecular Transport through Sub-3 nm Silica Nanochannels by Scanning Electrochemical Microscopy. Analytical Chemistry, 2019, 91, 1548-1556.	6.5	15
542	Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 2019, 213, 465-499.	7.9	346
543	Direct 3D printing of monolithic ion exchange adsorbers. Journal of Chromatography A, 2019, 1587, 119-128.	3.7	47
544	Printing Reinforcing Structures onto Microsieves That Are Floating on a Water Surface. Langmuir, 2019, 35, 2196-2208.	3.5	4
545	Mechanisms of pressure-induced water infiltration process through graphene nanopores. Molecular Simulation, 2019, 45, 518-524.	2.0	3
546	A silicon nanomembrane platform for the visualization of immune cell trafficking across the human blood–brain barrier under flow. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 395-410.	4.3	57
547	Graphene quantum dots engineered nanofiltration membrane for ultrafast molecular separation. Journal of Membrane Science, 2019, 572, 504-511.	8.2	69
548	Trapped and non-trapped polymer translocations through a spherical pore. Journal of Chemical Physics, 2019, 150, 024904.	3.0	14
549	Ultrathin nanoporous membrane fabrication based on block copolymer micelles. Journal of Membrane Science, 2019, 570-571, 427-435.	8.2	12
550	Improved manufacture of hybrid membranes with bionanopore adapters capable of self-luting. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 47-71.	0.9	2
551	3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li-O2 batteries. Energy Storage Materials, 2019, 16, 155-162.	18.0	49
552	Separation techniques with nanomaterials. , 2020, , 99-158.		3
553	Recent Progress of Microfluidic Devices for Hemodialysis. Small, 2020, 16, e1904076.	10.0	24
554	Visible light mediated PVA-tyramine hydrogels for covalent incorporation and tailorable release of functional growth factors. Biomaterials Science, 2020, 8, 5005-5019.	5.4	27
555	Critical flux behavior of ultrathin membranes in protein-rich solutions. Separation and Purification Technology, 2020, 251, 117342.	7.9	9
556	Microfluidic Isolation and Enrichment of Nanoparticles. ACS Nano, 2020, 14, 16220-16240.	14.6	59
557	Nano-confinement-inspired metal organic framework/polymer composite separation membranes. Journal of Materials Chemistry A, 2020, 8, 17212-17218.	10.3	18
558	Grand Challenges in Emerging Separation Technologies. Frontiers in Environmental Chemistry, 2020, 1,	1.6	6

# 559	ARTICLE Ultrathin Free-Standing Oxide Membranes for Electron and Photon Spectroscopy Studies of Solid–Gas and Solid–Liquid Interfaces. Nano Letters, 2020, 20, 6364-6371.	IF 9.1	Citations 24
560	Multiscale simulations of charge and size separation of nanoparticles with a solid-state nanoporous membrane. Physical Review E, 2020, 102, 063104.	2.1	3
561	Silicon Nanomembrane Filtration and Imaging for the Evaluation of Microplastic Entrainment along a Municipal Water Delivery Route. Sustainability, 2020, 12, 10655.	3.2	1
562	Addressing challenges in the ultrafiltration of biomolecules from complex aqueous environments. Current Opinion in Colloid and Interface Science, 2020, 46, 52-64.	7.4	7
563	Chemically tailoring nanopores for single-molecule sensing and glycomics. Analytical and Bioanalytical Chemistry, 2020, 412, 6639-6654.	3.7	22
564	Investigation of Structural Stability for Monolithic Nano Bridges on Micro Apertures. Applied Sciences (Switzerland), 2020, 10, 2922.	2.5	2
565	Preparation and characterization of cellulose nanofiber cryogels as oil absorbents and enzymatic lipolysis scaffolds. Carbohydrate Research, 2020, 493, 108020.	2.3	4
566	Rectified Ion Transport in Ultraâ€thin Membrane Governed by Outer Membrane Electric Double Layer. Chinese Journal of Chemistry, 2020, 38, 1757-1761.	4.9	8
567	Use of nanosphere self-assembly to pattern nanoporous membranes for the study of extracellular vesicles. Nanoscale Advances, 2020, 2, 4427-4436.	4.6	8
568	Tailored pore gradient in phenolic membranes for adjustable permselectivity by leveraging different poloxamers. Separation and Purification Technology, 2020, 242, 116818.	7.9	2
569	High water permeating thin film composite polyamide nanofiltration membranes showing thermal responsive gating properties. Journal of Water Process Engineering, 2020, 36, 101355.	5.6	7
570	The controlled large-area synthesis of two dimensional metals. Materials Today, 2020, 36, 30-39.	14.2	23
571	A 3D nm-thin biomimetic membrane for ultimate molecular separation. Materials Horizons, 2020, 7, 2422-2430.	12.2	1
572	Free Standing, Large-Area Silicon Nitride Membranes for High Toxin Clearance in Blood Surrogate for Small-Format Hemodialysis. Membranes, 2020, 10, 119.	3.0	2
573	Ultrafast Ion Sieving from Honeycomb-like Polyamide Membranes Formed Using Porous Protein Assemblies. Nano Letters, 2020, 20, 5821-5829.	9.1	46
574	Effects of filter structure, flow velocity, particle concentration and fouling on the retention efficiency of ultrafiltration for sub-20Anm gold nanoparticles. Separation and Purification Technology, 2020, 241, 116689.	7.9	7
575	Three-Dimensional Single Particle Tracking and Its Applications in Confined Environments. Annual Review of Analytical Chemistry, 2020, 13, 381-403.	5.4	20
576	Ultrathin Membranes: A New Opportunity for Ultrafast and Efficient Separation. Advanced Materials Technologies, 2020, 5, 1901069.	5.8	37

#	Article	IF	CITATIONS
577	Microvascular Mimetics for the Study of Leukocyte–Endothelial Interactions. Cellular and Molecular Bioengineering, 2020, 13, 125-139.	2.1	16
578	Second Generation Nanoporous Silicon Nitride Membranes for High Toxin Clearance and Small Format Hemodialysis. Advanced Healthcare Materials, 2020, 9, e1900750.	7.6	21
579	Direct electrophoretic microRNA preparation from clinical samples using nanofilter membrane. Nano Convergence, 2020, 7, 1.	12.1	62
580	Regulating the morphology of nanofiltration membrane by thermally induced inorganic salt crystals for efficient water purification. Journal of Membrane Science, 2021, 617, 118645.	8.2	20
581	Effective clearance of uremic toxins using functionalised silicon Nanoporous membranes. Biomedical Microdevices, 2021, 23, 4.	2.8	4
582	Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Advanced Healthcare Materials, 2021, 10, e2001545.	7.6	15
583	Hierarchically Structured Microsieves Produced via Float-Casting. Langmuir, 2021, 37, 2040-2055.	3.5	1
584	Development of a Mechanically Strong Nondegradable Protein Hydrogel with a Spongeâ€Like Morphology. Macromolecular Bioscience, 2021, 21, e2000396.	4.1	9
585	Interference-free Detection of Caffeine in Complex Matrices Using a Nanochannel Electrode Modified with Binary Hydrophilic–Hydrophobic PDMS. ACS Sensors, 2021, 6, 1604-1612.	7.8	13
586	Preparation of high-performance nanocomposite membranes with hydroxylated graphene and graphene oxide. Journal of Water Process Engineering, 2021, 40, 101945.	5.6	21
587	Study on the mechanism of water transport near the surface of pristine and nitrogen-doped β-graphyne. International Journal of Modern Physics B, 2021, 35, 2150152.	2.0	2
588	Design and application of ion concentration polarization for preconcentrating charged analytes. Physics of Fluids, 2021, 33, .	4.0	14
589	Optimizing oxide capping layer for tuning pore formation in silicon nanoporous membranes. ISSS Journal of Micro and Smart Systems, 2021, 10, 51.	2.0	2
590	Collagen fiber membrane-derived chemically and mechanically durable superhydrophobic membrane for high-performance emulsion separation. Journal of Leather Science and Engineering, 2021, 3, .	6.0	33
591	Methods for immobilizing receptors in microfluidic devices: A review. Micro and Nano Engineering, 2021, 11, 100085.	2.9	25
592	Advances of Adsorption and Filtration Techniques in Separating Highly Viscous Crude Oil/Water Mixtures. Advanced Materials Interfaces, 2021, 8, 2100061.	3.7	52
593	Molecular Mechanistic Insights into the Ionic-Strength-Controlled Interfacial Behavior of Proteins on a TiO2 Surface. Langmuir, 2021, 37, 11499-11507.	3.5	3
594	A predictive model of nanoparticle capture on ultrathin nanoporous membranes. Journal of Membrane Science, 2021, 633, 119357.	8.2	3

#	Article	IF	CITATIONS
595	Dialysis/adsorption bifunctional thin-film nanofibrous composite membrane for creatinine clearance in portable artificial kidney. Journal of Membrane Science, 2021, 636, 119550.	8.2	21
596	Graphene nanopore devices for DNA sequencing: A tight-binding model study. Physica B: Condensed Matter, 2021, 623, 413334.	2.7	4
597	Improve pineapples growth by nano-membranes accessory and under stress condition in far north of Taiwan. AIMS Agriculture and Food, 2021, 6, 799-817.	1.6	0
598	The kinetic models in electron transfer processes in colloidal semiconductor photocatalysis. Interface Science and Technology, 2021, , 375-441.	3.3	1
599	Nanopores: Generation, Engineering, and Single-Molecule Applications. , 2009, , 293-339.		11
601	CHAPTER 3. Superwetting Nanomaterials for Advanced Oil/Water Separation: From Absorbing Nanomaterials to Separation Membranes. RSC Smart Materials, 2016, , 51-90.	0.1	4
602	Large-area freestanding gold nanomembranes with nanoholes. Materials Horizons, 2019, 6, 1005-1012.	12.2	20
603	A study of dopant affects the silicon pore formation using electrochemical etching process. AIP Conference Proceedings, 2020, , .	0.4	1
605	Scanning Electrochemical Microscopy of Nanopores, Nanocarbons, and Nanoparticles. , 2015, , 636-669.		5
606	A review of nanomaterials based membranes for removal of contaminants from polluted waters. Membrane Water Treatment, 2014, 5, 123-146.	0.5	15
607	Electric Field Effect on Nanochannel Formation in Electrochemical Porous Structures of Alumina. Transactions on Electrical and Electronic Materials, 2010, 11, 230-233.	1.9	4
608	Effect of Polyvinyl Pyrolidone on Morphology and Performance of Cellulose Acetate Based Dialysis Membrane. Engineering, Technology & Applied Science Research, 2019, 9, 3744-3749.	1.9	7
609	Highly ordered anodic porous alumina membrane and its surface modification approaches for biomedical application. IOSR Journal of Applied Chemistry, 2014, 7, 17-34.	0.2	5
610	Release of an Encapsulated Peptide from Carbon Nanotubes Driven by Electric Fields: A Molecular Dynamics Study. ACS Omega, 2021, 6, 27485-27490.	3.5	4
611	High Purity of α-Lactalbumin from Binary Protein Mixture by Charged UF Membrane Far from the Isoelectric Point to Limit Fouling. Applied Sciences (Switzerland), 2021, 11, 9167.	2.5	4
612	Metallized Ultrathin Porous Membranes for Biological and Chemical Sensing. , 2010, , .		0
613	Ion-Selective Biomimetic Membranes. Biological and Medical Physics Series, 2011, , 63-86.	0.4	0
614	Nano-holes and Slot Effect. , 2012, , .		0

#	Article	IF	CITATIONS
615	Photonic crystals in biosensing. , 2012, , .		0
618	Applications of Nanotechnology to Bioprocessing. , 2012, , 323-366.		0
619	Microfilters. , 2014, , 1-11.		0
620	Porous Silicon Functionalities for BioMEMS. , 2014, , 787-796.		0
621	Surface Analysis of Etched Silicon. Journal of Surface Engineered Materials and Advanced Technology, 2014, 04, 98-104.	0.2	0
622	Porous Silicon in Immunoisolation and Bio-filtration. , 2014, , 937-944.		0
623	Microfilters. , 2015, , 1845-1853.		0
624	Template-Directed Controlled Electrodeposition of Nanostructure and Composition. , 2015, , 372-409.		0
625	Porous Silicon and Microfluidics. , 2016, , 1-12.		1
626	Chapter 15 Biological Applications of Silicon Nanostructures. , 2016, , 457-494.		0
627	Mesoporous Silicon. , 2017, , 1-15.		0
628	Porous Silicon in Immunoisolation and Bio-filtration. , 2018, , 1471-1478.		0
629	Porous Silicon Functionalities for BioMEMS. , 2018, , 1169-1178.		0
630	Mesoporous Silicon. , 2018, , 133-147.		0
631	Ultrathin Porous Silicon Films. , 2018, , 157-165.		1
632	Porous Silicon and Microfluidics. , 2018, , 1189-1200.		0
633	Analysis of Protein Separation Mechanism in Charged Ultrafiltration Membrane. Journal of Engineering and Technological Sciences, 2018, 50, 202-223.	0.6	2
634	DNA-sandwich Gated Membranes. RSC Smart Materials, 2019, , 60-82.	0.1	0

#	Article	IF	CITATIONS
635	Migration Behavior of Bio-materials in Ice Grain Boundary Channels. Springer Theses, 2019, , 41-63.	0.1	0
639	Silk-Based Hierarchical Materials for High Mechanical Performance at the Interface of Modeling, Synthesis, and Characterization. , 2020, , 1547-1574.		0
640	Facile fabrication of sponge-like porous micropillar arrays <i>via</i> an electrochemical process. Nanoscale, 2020, 12, 10565-10572.	5.6	1
642	Design Rule for Constructing Buckling-Free Polymeric Stencil with Microdot Apertures. Polymers, 2021, 13, 4361.	4.5	2
643	Rapid and specific detection of intact viral particles using functionalized microslit silicon membranes as a fouling-based sensor. Analyst, The, 2022, 147, 213-222.	3.5	3
644	Design of an efficient, tunable and scalable freestanding flexible membrane for filter application. RSC Advances, 2022, 12, 1550-1562.	3.6	6
646	Preparation of Go/Goh/Mofs Ternary Blend Membrane and its Application for Enhanced Dye Wastewater Purification. SSRN Electronic Journal, 0, , .	0.4	0
647	Effects of Benzalkonium Chloride Contents on Structures, Properties, and Ultrafiltration Performances of Chitosan-Based Nanocomposite Membranes. Membranes, 2022, 12, 268.	3.0	4
648	Selective Separation of Highly Similar Proteins on Ionic Liquid-Loaded Mesoporous TiO ₂ . Langmuir, 2022, 38, 3202-3211.	3.5	2
649	Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS Applied Materials & Interfaces, 2022, 14, 12011-12037.	8.0	36
651	Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. Advanced Materials, 2022, 34, e2108457.	21.0	58
652	Flexible Zr-MOF anchored polymer nanofiber membrane for efficient removal of creatinine in uremic toxins. Journal of Membrane Science, 2022, 648, 120369.	8.2	15
653	Design of the micropump and mass-transfer compartment of a microfluidic system for regular nonenzymatic glucose measurement. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00723.	4.4	4
654	Zwitterionic microgel based anti(-bio)fouling smart membranes for tunable water filtration and molecular separation. Materials Today Chemistry, 2022, 24, 100779.	3.5	16
655	Preparation of GO/GOH/MOFs ternary blend membrane and its application for enhanced dye wastewater purification. Journal of Solid State Chemistry, 2022, 310, 123028.	2.9	6
656	Sustainable membranes with FNs: Current and emerging research trends. , 2022, , 159-183.		2
657	Universal Rapid Demulsification by Vacuum Suction Using Superamphiphilic and Underliquid Superamphiphobic Polyurethane/Diatomite Composites. ACS Applied Materials & Interfaces, 2022, 14, 24775-24786.	8.0	9
658	Anti(-bio)fouling Nanostructured Membranes Based on the Cross-Linked Assembly of Stimuli-Responsive Zwitterionic Microgels. ACS Applied Polymer Materials, 2022, 4, 4719-4733.	4.4	10

#	Article	IF	CITATIONS
659	Nanoporous Titanate Nanosheet-Based Membranes for Water Treatment and Molecular Separations. SSRN Electronic Journal, 0, , .	0.4	0
661	The Modular µSiM: A Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro. Advanced Healthcare Materials, 2022, 11, .	7.6	9
662	Double-sided plasmonic metasurface for simultaneous biomolecular separation and SERS detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 285, 121801.	3.9	2
663	Probing the separation efficiency of sulfur-doped graphitic carbon nitride (g-C3N4)/polysulfone low-pressure ultrafiltration mixed matrix membranes. Polymer Bulletin, 2023, 80, 8759-8782.	3.3	2
664	Facile Fabrication of Flexible Polymeric Membranes with Micro and Nano Apertures over Large Areas. Polymers, 2022, 14, 4228.	4.5	2
665	Freestanding Metal Nanomembranes and Nanowires by Template Transfer with a Soluble Adhesive. Nanomaterials, 2022, 12, 3988.	4.1	0
666	A photonic biosensor-integrated tissue chip platform for real-time sensing of lung epithelial inflammatory markers. Lab on A Chip, 2023, 23, 239-250.	6.0	8
667	Ultra-hydrophilic nanofiltration membranes fabricated via punching in the HTO nanosheets. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	4
668	Synthesis of reverse-selective nanoporous ultrafiltration membranes using dual phase separations of ionic liquid and Poly(ethylene glycol) from the gelating urea-linked covalent network. Journal of Membrane Science, 2023, 669, 121341.	8.2	2
669	Comprehensive review of polymeric nanocomposite membranes application for water treatment. AEJ - Alexandria Engineering Journal, 2023, 72, 307-321.	6.4	7
670	Ultrathin membranes composed of branched polyethylenimine and poly[(o-cresyl glycidyl) Tj ETQq0 0 0 rgBT /Ov Technology, 2023, 316, 123738.	erlock 10 ⁻ 7.9	Tf 50 347 Td 1
671	Ultrathin bimodal porous membranes with uniform small pores separated by laminated large pores for efficient water separation. Materials and Design, 2023, 227, 111809.	7.0	2
672	Bio-inspired and metal-derived superwetting surfaces: Function, stability and applications. Advances in Colloid and Interface Science, 2023, 314, 102879.	14.7	12
673	Modelling a Human Blood-Brain Barrier Co-Culture Using an Ultrathin Silicon Nitride Membrane-Based Microfluidic Device. International Journal of Molecular Sciences, 2023, 24, 5624.	4.1	1
675	Role of nanomaterials in the separation step. , 2023, , 97-122.		0
676	Bio-magnetic separation of different nanomaterials and their applications. , 2023, , 197-216.		0
677	Anomalous Colloidal Motion under Strong Confinement. Small, 0, , .	10.0	0
678	Tuning Structural Defects on a Nominal Single-Layered Graphene Oxide Membrane for Selective Separation of Biomolecules. ACS Applied Materials & amp; Interfaces, 2023, 15, 32066-32073.	8.0	0

#	Article	IF	CITATIONS
679	Numerical Study on Ionic Transport through Micro- Nanochannel Systems. International Journal of Electrochemical Science, 2012, 7, 12159-12180.	1.3	5
680	Study on the preparation method of porous membranes with single pore size distribution and tailored pore sizes by the induced swelling effect of pre-set graft side chains. Journal of Membrane Science, 2023, 685, 121902.	8.2	1
681	Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chemical Communications, 0, , .	4.1	1
682	Silk nanofibrils-MOF composite membranes for pollutant removal from water. IScience, 2023, 26, 107290.	4.1	3
683	Continuous-flow macromolecular sieving in slanted nanofilter array: stochastic model and coupling effect of electrostatic and steric hindrance. Lab on A Chip, 2023, 23, 4422-4433.	6.0	0
684	Rechargeable Multifunctional Antiâ€Bacterial AEMs for Electrodialysis: Improving Antiâ€Biological Performance via Synergistic Antibacterial Mechanism. Advanced Science, 2023, 10, .	11.2	1
685	Synthesis and Characterization of Carbon Microbeads. ACS Omega, 2023, 8, 34034-34043.	3.5	1
686	Smart Antifouling and Selfâ€Cleaning Membrane for Effective Oil/Water Separation. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	0
689	Selfâ€Healing Porous Microneedles Fabricated Via Cryogenic Micromoulding and Phase Separation for Efficient Loading and Sustained Delivery of Diverse Therapeutics. Small, 0, , .	10.0	0
690	Porous membranes integrated into electrochemical systems for bioanalysis. Electrochemical Science Advances, 0, , .	2.8	0
691	Highly Localized Chemical Sampling at Subsecond Temporal Resolution Enabled with a Silicon Nanodialysis Platform at Nanoliter per Minute Flows. ACS Nano, 2024, 18, 6963-6974.	14.6	0
692	Porous Polymeric Nanofilms for Recreating the Basement Membrane in an Endothelial Barrier-on-Chip. ACS Applied Materials & Interfaces, 2024, 16, 13006-13017.	8.0	0