The machinery of colour vision

Nature Reviews Neuroscience 8, 276-286

DOI: 10.1038/nrn2094

Citation Report

#	Article	IF	CITATIONS
1	Amacrine cell contributions to red-green color opponency in central primate retina: A model study. Visual Neuroscience, 2007, 24, 535-547.	0.5	7
2	Specialized Color Modules in Macaque Extrastriate Cortex. Neuron, 2007, 56, 560-573.	3.8	238
3	Brain Responses to Violet, Blue, and Green Monochromatic Light Exposures in Humans: Prominent Role of Blue Light and the Brainstem. PLoS ONE, 2007, 2, e1247.	1.1	206
6	The midgetâ€parvocellular pathway of marmoset retina: A quantitative light microscopic study. Journal of Comparative Neurology, 2008, 510, 539-549.	0.9	27
7	Neural mechanisms of chromatic and achromatic vision. Color Research and Application, 2008, 33, 433-443.	0.8	21
9	Segregation of short-wavelength sensitive ("blueâ€) cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets. Vision Research, 2008, 48, 2604-2614.	0.7	16
10	Contrast salience across three-dimensional chromoluminance space. Vision Research, 2008, 48, 1812-1819.	0.7	26
11	The Color-Vision Circuit in the Medulla of Drosophila. Current Biology, 2008, 18, 553-565.	1.8	244
12	Visual Perception and Its Impairment in Schizophrenia. Biological Psychiatry, 2008, 64, 40-47.	0.7	378
13	The Smooth Monostratified Ganglion Cell: Evidence for Spatial Diversity in the Y-Cell Pathway to the Lateral Geniculate Nucleus and Superior Colliculus in the Macaque Monkey. Journal of Neuroscience, 2008, 28, 12654-12671.	1.7	85
14	Primate color vision: A comparative perspective. Visual Neuroscience, 2008, 25, 619-633.	0.5	195
15	Looking both ways through time: The Janus model of lateralized cognition. Brain and Cognition, 2008, 67, 292-323.	0.8	42
16	Acceleration. , 2008, , 4-4.		0
17	Color in Complex Scenes. Annual Review of Psychology, 2008, 59, 143-166.	9.9	196
18	The Orientation Selectivity of Color-Responsive Neurons in Macaque V1. Journal of Neuroscience, 2008, 28, 8096-8106.	1.7	160
19	Simple reaction times to chromatic stimuli: Luminance and chromatic contrast. Lighting Research and Technology, 2008, 40, 359-371.	1.2	17
20	fMRI measurements of color in macaque and human. Journal of Vision, 2008, 8, 6-6.	0.1	68
21	The neural pathways mediating color shifts induced by temporally varying light. Journal of Vision, 2009, 9, 26-26.	0.1	8

#	ARTICLE	IF	CITATIONS
22	Decoding and Reconstructing Color from Responses in Human Visual Cortex. Journal of Neuroscience, 2009, 29, 13992-14003.	1.7	480
24	The retina in Parkinson's disease. Brain, 2009, 132, 1128-1145.	3.7	327
25	Parallel ON and OFF Cone Bipolar Inputs Establish Spatially Coextensive Receptive Field Structure of Blue-Yellow Ganglion Cells in Primate Retina. Journal of Neuroscience, 2009, 29, 8372-8387.	1.7	112
26	1â^•f Noise Through Retino-Cortical Pathways Assessed By Reaction Times. , 2009, , .		1
27	Illusory position shift induced by plaid motion. Vision Research, 2009, 49, 2902-2910.	0.7	14
28	Implicit visual working memory. Scandinavian Journal of Psychology, 2009, 50, 535-542.	0.8	18
29	Activation of suprachiasmatic nuclei and primary visual cortex depends upon time of day. European Journal of Neuroscience, 2009, 29, 399-410.	1.2	35
30	Nasalâ€temporal differences in coneâ€opponency in the near peripheral retina. Ophthalmic and Physiological Optics, 2009, 29, 375-381.	1.0	9
31	Stimulus-Specific Delay Activity in Human Primary Visual Cortex. Psychological Science, 2009, 20, 207-214.	1.8	661
32	Parallel Processing in the Corticogeniculate Pathway of the Macaque Monkey. Neuron, 2009, 62, 135-146.	3.8	101
33	Why the carrot is more effective than the stick: Different dynamics of punishment memory and reward memory and its possible biological basis. Neurobiology of Learning and Memory, 2009, 92, 370-380.	1.0	54
34	Red Nucleus., 2009,, 3395-3395.		0
35	Value-Based Learning. , 2009, , 4158-4160.		0
36	VOR Suppression., 2009,, 4378-4386.		1
38	Absorption (Sound Absorption)., 2008,, 3-3.		0
39	Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2957-2967.	1.8	254
40	Organization of Color-Selective Neurons in Macaque Visual Area V4. Journal of Neurophysiology, 2009, 102, 15-27.	0.9	35
41	An integrated psychophysiological research on the intervention of red colour for the stress-induced bodily reaction. International Journal of Biometrics, 2010, 2, 173.	0.3	0

#	Article	IF	Citations
42	Retinal connectivity and primate vision. Progress in Retinal and Eye Research, 2010, 29, 622-639.	7.3	126
43	The Verriest Lecture 2009: Recent progress in understanding mammalian color vision. Ophthalmic and Physiological Optics, 2010, 30, 422-434.	1.0	30
44	Colour vision deficiency. Eye, 2010, 24, 747-755.	1.1	146
45	Functional connectivity in the retina at the resolution of photoreceptors. Nature, 2010, 467, 673-677.	13.7	307
46	Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation. Nature Neuroscience, 2010, 13, 1059-1065.	7.1	43
47	Adaptable mechanisms sensitive to surface color in human vision. Journal of Vision, 2010, 10, 17-17.	0.1	14
48	Receptive field asymmetries produce color-dependent direction selectivity in primate lateral geniculate nucleus. Journal of Vision, 2010, 10, 1-1.	0.1	32
49	Statistics of natural scenes and cortical color processing. Journal of Vision, 2010, 10, 21-21.	0.1	12
50	Advances in Color Science: From Retina to Behavior. Journal of Neuroscience, 2010, 30, 14955-14963.	1.7	145
51	Genetic contribution to individual variation in binocular rivalry rate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2664-2668.	3.3	82
52	Number of discernible colors for color-deficient observers estimated from the MacAdam limits. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 2106.	0.8	14
54	How Are Lateral Chromatic Interactions Computed from Cone Signals?. Neural Computation, 2010, 22, 2763-2784.	1.3	2
55	Visual Impairment in Alzheimer's Disease: A Critical Review. Journal of Alzheimer's Disease, 2010, 21, 15-34.	1.2	99
56	A differential color flicker test for detecting acquired color vision impairment in multiple sclerosis and diabetic retinopathy. Journal of the Neurological Sciences, 2011, 300, 130-134.	0.3	16
57	Single-Pixel, Single-Layer Polymer Device as a Tricolor Sensor with Signals Mimicking Natural Photoreceptors. Journal of the American Chemical Society, 2011, 133, 17942-17949.	6.6	55
58	Variability in shortâ€wavelength automated perimetry among peri―or postmenopausal women: a dependence on phytoâ€oestrogen consumption?. Acta Ophthalmologica, 2011, 89, e217-24.	0.6	10
59	Response variability of the red-green color vision system using reaction times. Proceedings of SPIE, $2011, \ldots$	0.8	2
60	Temporal, Environmental, and Social Constraints of Word-Referent Learning in Young Infants: A Neurorobotic Model of Multimodal Habituation. IEEE Transactions on Autonomous Mental Development, 2011, 3, 129-145.	2.3	5

#	Article	IF	CITATIONS
61	The genetics of normal and defective color vision. Vision Research, 2011, 51, 633-651.	0.7	278
62	Color in the Cortex: single- and double-opponent cells. Vision Research, 2011, 51, 701-717.	0.7	285
63	New approach to metamerism measurement on halftone color images. Measurement: Journal of the International Measurement Confederation, 2011, 44, 1441-1447.	2.5	5
64	Horizontal Cell Feedback without Cone Type-Selective Inhibition Mediates "Red–Green―Color Opponency in Midget Ganglion Cells of the Primate Retina. Journal of Neuroscience, 2011, 31, 1762-1772.	1.7	91
65	Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 657.	0.8	47
66	1/f noise in human color vision: the role of S-cone signals. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A82.	0.8	7
68	Sexual selection and experimental evolution of chemical signals in <i><scp>D</scp>rosophila pseudoobscura</i> . Journal of Evolutionary Biology, 2012, 25, 2232-2241.	0.8	25
69	Toward a Unified Theory of Visual Area V4. Neuron, 2012, 74, 12-29.	3.8	291
70	Crb Apical Polarity Proteins Maintain Zebrafish Retinal Cone Mosaics via Intercellular Binding of Their Extracellular Domains. Developmental Cell, 2012, 22, 1261-1274.	3.1	82
71	The Evolution of Vertebrate Color Vision. Advances in Experimental Medicine and Biology, 2012, 739, 156-172.	0.8	31
72	Pain processing by spinal microcircuits: afferent combinatorics. Current Opinion in Neurobiology, 2012, 22, 631-639.	2.0	46
73	Lateral interactions in the outer retina. Progress in Retinal and Eye Research, 2012, 31, 407-441.	7.3	204
76	The retention and disruption of color information in human short-term visual memory. Journal of Vision, 2012, 12, 26-26.	0.1	37
77	On the relationship between wavelength and perceived hue. Color Research and Application, 2012, 37, 424-428.	0.8	7
78	The Mammalian Retina: Structure and Blood Supply. Neurophysiology, 2013, 45, 266-276.	0.2	11
80	Genetic Advances in Ophthalmology: The Role of Melanopsin-Expressing, Intrinsically Photosensitive Retinal Ganglion Cells in the Circadian Organization of the Visual System. Seminars in Ophthalmology, 2013, 28, 406-421.	0.8	12
81	A Color Constancy Model with Double-Opponency Mechanisms. , 2013, , .		39
82	Color coding in the cortex: a modified approach to bottom-up visual attention. Biological Cybernetics, 2013, 107, 39-47.	0.6	4

#	Article	IF	Citations
83	Losses of functional opsin genes, short-wavelength cone photopigments, and color vision—A significant trend in the evolution of mammalian vision. Visual Neuroscience, 2013, 30, 39-53.	0.5	143
84	Color Vision. , 2013, , 550-554.		0
85	Color vision test for dichromatic and trichromatic macaque monkeys. Journal of Vision, 2013, 13, 1-1.	0.1	21
86	Foundations of enactive cognitive science. Adaptive Behavior, 2013, 21, 139-141.	1.1	0
87	Interactions between luminance and color signals: Effects on shape. Journal of Vision, 2013, 13, 16-16.	0.1	12
88	Improved visualisation of blood while wearing <scp>KTP</scp> laser protective eyewear using digital manipulation of endoscopic images: Seventeen surgeons experience on simulation testing. Clinical Otolaryngology, 2013, 38, 438-442.	0.6	1
89	Efficient Color Boundary Detection with Color-Opponent Mechanisms. , 2013, , .		45
90	The visual perception sensitivity for achromatic noise and chromatic noise. , 2013, , .		1
91	Comparison of SWAP and SAP on the point of glaucoma conversion. Clinical Ophthalmology, 2013, 7, 1805.	0.9	8
92	Adaptive Colour Contrast Coding in the Salamander Retina Efficiently Matches Natural Scene Statistics. PLoS ONE, 2013, 8, e79163.	1.1	4
93	A distributed code for color in natural scenes derived from center-surround filtered cone signals. Frontiers in Psychology, 2013, 4, 661.	1.1	10
94	The effect of background and illumination on color identification of real, 3D objects. Frontiers in Psychology, 2013, 4, 821.	1.1	8
95	Stimulus-specific variability in color working memory with delayed estimation. Journal of Vision, 2014, 14, 7-7.	0.1	64
96	Low number of luminance levels in the luminance noise increases color discrimination thresholds estimated with pseudoisochromatic stimuli. Frontiers in Psychology, 2014, 5, 1291.	1.1	7
97	Contribution of a luminance-dependent S-cone mechanism to non-assimilative color spreading in the watercolor configuration. Frontiers in Human Neuroscience, 2014, 8, 980.	1.0	2
98	Luminance and color inputs to mid-level and high-level vision. Journal of Vision, 2014, 14, 9-9.	0.1	15
99	Pain Processing Pathway Models. , 2014, , 1-7.		0
100	Color coding in the primate visual pathway: a historical view. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A103.	0.8	16

#	Article	IF	Citations
101	White lighting: A provisional model for predicting perceived tint in "white―illumination. Color Research and Application, 2014, 39, 466-479.	0.8	17
102	Achromatic luminance contrast sensitivity in X-linked color-deficient observers: An addition to the debate. Visual Neuroscience, 2014, 31, 99-103.	0.5	9
103	Effects of Luminance Contrast on the Color Selectivity of Neurons in the Macaque Area V4 and Inferior Temporal Cortex. Journal of Neuroscience, 2014, 34, 14934-14947.	1.7	36
104	Nitric oxide as a regulatory molecule in the processing of the visual stimulus. Nitric Oxide - Biology and Chemistry, 2014, 36, 44-50.	1.2	18
105	Normal and abnormal coding of somatosensory stimuli causing pain. Nature Neuroscience, 2014, 17, 183-191.	7.1	152
106	Colour vision impairment is associated with disease severity in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1207-1216.	1.4	35
107	Nature's Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angewandte Chemie - International Edition, 2014, 53, 7124-7143.	7.2	409
109	The Discovery of Spectral Opponency in Visual Systems and its Impact on Understanding the Neurobiology of Color Vision. Journal of the History of the Neurosciences, 2014, 23, 287-314.	0.1	18
110	Mapping the primate lateral geniculate nucleus: A review of experiments and methods. Journal of Physiology (Paris), 2014, 108, 3-10.	2.1	25
111	Shedding ultraviolet light on welfare in laboratory rodents: suggestions for further research and refinement. Animal Welfare, 2014, 23, 259-261.	0.3	0
112	Fundamentals of color vision I: color processing in the eye. , 2015, , 27-69.		2
113	Analysis of the lateral geniculate nucleus in dichromatic and trichromatic marmosets. Journal of Comparative Neurology, 2015, 523, 1948-1966.	0.9	5
114	Suppression effects in feature-based attention. Journal of Vision, 2015, 15, 15.	0.1	16
115	Functional magnetic resonance imaging adaptation reveals a noncategorical representation of hue in early visual cortex. Journal of Vision, 2015, 15, 18.	0.1	22
116	Chromatic contrast in luminance-defined images affects performance and neural activity during a shape classification task. Journal of Vision, 2015, 15, 21.	0.1	2
117	The Role of RPGR and Its Interacting Proteins in Ciliopathies. Journal of Ophthalmology, 2015, 2015, 1-10.	0.6	44
118	Color Constancy Using Double-Opponency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37, 1973-1985.	9.7	92
119	The Uses of Colour Vision: Ornamental, Practical, and Theoretical. Minds and Machines, 2015, 25, 213-229.	2.7	13

#	Article	IF	CITATIONS
120	Different Impacts of Luminosity on Contrast Vision in Eyes with Transparent Optic Media and with Cataract Simulation. Medical Principles and Practice, 2015, 24, 501-508.	1.1	2
121	Massively parallel neural circuits for stereoscopic color vision: Encoding, decoding and identification. Neural Networks, 2015, 63, 254-271.	3.3	7
122	Semantic impairment disrupts perception, memory, and naming of secondary but not primary colours Neuropsychologia, 2015, 70, 296-308.	0.7	11
123	The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Progress in Retinal and Eye Research, 2015, 48, 137-159.	7.3	81
124	Boundary Detection Using Double-Opponency and Spatial Sparseness Constraint. IEEE Transactions on Image Processing, 2015, 24, 2565-2578.	6.0	61
125	Hypoxia and Dark Adaptation in Diabetic Retinopathy: Interactions, Consequences, and Therapy. Current Diabetes Reports, 2015, 15, 118.	1.7	39
126	Residential area extraction based on saliency analysis for high spatial resolution remote sensing images. Journal of Visual Communication and Image Representation, 2015, 33, 273-285.	1.7	18
127	Color vision impairment in multiple sclerosis points to retinal ganglion cell damage. Journal of Neurology, 2015, 262, 2491-2497.	1.8	35
128	Reprint of: Semantic impairment disrupts perception, memory, and naming of secondary but not primary colours. Neuropsychologia, 2015, 76, 276-288.	0.7	3
130	Psychophysical measures of visual function and everyday perceptual experience in a case of congenital stationary night blindness. Clinical Ophthalmology, 2016, Volume 10, 1593-1606.	0.9	3
131	Selective Automated Perimetry Under Photopic, Mesopic, and Scotopic Conditions: Detection Mechanisms and Testing Strategies. Translational Vision Science and Technology, 2016, 5, 10.	1.1	29
132	Optical Coherence Tomography as a Biomarker for Diagnosis, Progression, and Prognosis of Neurodegenerative Diseases. Journal of Ophthalmology, 2016, 2016, 1-9.	0.6	7 5
133	The evolution of opsins and color vision: connecting genotype to a complex phenotype. Acta Biologica Colombiana, 2016, 21, 481.	0.1	9
134	Human Color Vision., 2016,,.		5
135	Interactions of Color Vision with Other Visual Modalities. , 2016, , 219-241.		2
136	Identifying Multisensory Dendritic Stimulus Processors. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2016, 2, 183-198.	1.4	2
137	A neuronal circuit for colour vision based on rod–cone opponency. Nature, 2016, 532, 236-239.	13.7	167
138	Noise-induced transition in human reaction times. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 093502.	0.9	4

#	Article	IF	CITATIONS
139	Extreme reaction times determine fluctuation scaling in human color vision. Physica A: Statistical Mechanics and Its Applications, 2016, 461, 125-132.	1.2	9
140	Fluctuation scaling in the visual cortex at threshold. Physical Review E, 2016, 93, 052403.	0.8	6
141	The elementary representation of spatial and color vision in the human retina. Science Advances, 2016, 2, e1600797.	4.7	87
142	Central Brain Circuitry for Color-Vision-Modulated Behaviors. Current Biology, 2016, 26, R981-R988.	1.8	17
143	Functional opsin retrogene in nocturnal moth. Mobile DNA, 2016, 7, 18.	1.3	14
144	The Relation of White-on-White Standard Automated Perimetry, Short Wavelength Perimetry, and Optic Coherence Tomography Parameters in Ocular Hypertension. Journal of Glaucoma, 2016, 25, 939-945.	0.8	2
145	Blind Image Quality Assessment Based on Multichannel Feature Fusion and Label Transfer. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26, 425-440.	5.6	137
146	Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems. Chemical Communications, 2016, 52, 1474-1477.	2.2	36
147	Acquired color vision deficiency. Survey of Ophthalmology, 2016, 61, 132-155.	1.7	98
148	Physiology of vision and the visual system. , 2016, , 269-337.e2.		11
149	A Fast Reliable Image Quality Predictor by Fusing Micro- and Macro-Structures. IEEE Transactions on Industrial Electronics, 2017, 64, 3903-3912.	5.2	202
150	<i>Rainbow</i> Enhancers Regulate Restrictive Transcription in Teleost Green, Red, and Blue Cones. Journal of Neuroscience, 2017, 37, 2834-2848.	1.7	9
151	Visual dysfunction and its correlation with retinal changes in patients with Alzheimer's disease. Eye, 2017, 31, 1034-1041.	1.1	62
153	Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina. Journal of Neuroscience, 2017, 37, 9498-9509.	1.7	35
154	Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex. Journal of Neuroscience, 2017, 37, 8014-8032.	1.7	59
155	Perceived Object Trajectory Is Influenced by Others' Tracking Movements. Current Biology, 2017, 27, 2169-2176.e4.	1.8	1
156	Color-blob-based COSFIRE filters for object recognition. Image and Vision Computing, 2017, 57, 165-174.	2.7	30
157	Neural Mechanisms of Saliency, Attention, and Orienting. Cognitive Science and Technology, 2017, , 1-23.	0.2	3

#	Article	IF	Citations
158	A cross-species comparison of corticogeniculate structure and function. Visual Neuroscience, 2017, 34, .	0.5	11
159	A new fusion method for remote sensing images based on salient region extraction. , 2017, , .		5
160	The Pattern of Retinal Ganglion Cell Loss in <i>OPA1</i> Inferred From Temporal, Spatial, and Chromatic Sensitivity Losses., 2017, 58, 502.		13
161	Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials. I-Perception, 2018, 9, 204166951775271.	0.8	17
162	Information Pattern in Imaging of a Rough Surface. IOP Conference Series: Materials Science and Engineering, 2018, 302, 012068.	0.3	9
164	Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: Unravelling the photosensitive system of the skin. European Journal of Cell Biology, 2018, 97, 150-162.	1.6	42
165	Links between global and local shape perception, coloured backgrounds, colour discrimination, and non-verbal IQ. Vision Research, 2018, 151, 31-40.	0.7	6
166	The M5 Cell: A Color-Opponent Intrinsically Photosensitive Retinal Ganglion Cell. Neuron, 2018, 97, 150-163.e4.	3.8	74
167	Measurements of neuronal color tuning: Procedures, pitfalls, and alternatives. Vision Research, 2018, 151, 53-60.	0.7	9
168	Computational Imaging Prediction of Starburst-Effect Diffraction Spikes. Scientific Reports, 2018, 8, 16919.	1.6	3
169	The effect of luminance differences on color assimilation. Journal of Vision, 2018, 18, 10.	0.1	8
170	Integration of color and intensity increases time signal stability for the human circadian system when sunlight is obscured by clouds. Scientific Reports, 2018, 8, 15214.	1.6	22
171	Are hue and saturation carried in different neural channels? Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, B299.	0.8	2
172	The Importance of Spatial Visual Scene Parameters in Predicting Optimal Cone Sensitivities in Routinely Trichromatic Frugivorous Old-World Primates. Frontiers in Computational Neuroscience, 2018, 12, 15.	1.2	3
173	A novel remote-sensing image fusion method based on hybrid visual saliency analysis. International Journal of Remote Sensing, 2018, 39, 7942-7964.	1.3	9
174	Cortical summation and attentional modulation of combined chromatic and luminance signals. Neurolmage, 2018, 176, 390-403.	2.1	13
175	Color encoding in biologically-inspired convolutional neural networks. Vision Research, 2018, 151, 7-17.	0.7	31
176	A tour of contemporary color vision research. Vision Research, 2018, 151, 2-6.	0.7	30

#	Article	IF	CITATIONS
177	Color Vision in Aniridia., 2018, 59, 2142.		15
178	Parallel Processing of Rod and Cone Signals: Retinal Function and Human Perception. Annual Review of Vision Science, 2018, 4, 123-141.	2.3	44
179	Mitochondria as Potential Targets and Initiators of the Blue Light Hazard to the Retina. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-20.	1.9	59
180	A Mathematical Approach to Correlating Objective Spectro-Temporal Features of Non-linguistic Sounds With Their Subjective Perceptions in Humans. Frontiers in Neuroscience, 2019, 13, 794.	1.4	7
181	A Compound Computational Model for Filling-In Processes Triggered by Edges: Watercolor Illusions. Frontiers in Neuroscience, 2019, 13, 225.	1.4	3
182	Color and orientation are jointly coded and spatially organized in primate primary visual cortex. Science, 2019, 364, 1275-1279.	6.0	100
183	Growth hormone regulates opsin expression in the retina of a salmonid fish. Journal of Neuroendocrinology, 2019, 31, e12804.	1.2	7
185	Randomly weighted receptor inputs can explain the large diversity of colour-coding neurons in the bee visual system. Scientific Reports, 2019, 9, 8330.	1.6	7
186	Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiological Reviews, 2019, 99, 1527-1573.	13.1	88
187	Color vision study to assess the impaired retina-brain cortex pathway in type 2 diabetes: a pilot study in Calabria (Southern Italy). Neurological Sciences, 2019, 40, 1939-1942.	0.9	3
188	Electrostatic Spectral Tuning Maps for Biological Chromophores. Journal of Physical Chemistry B, 2019, 123, 4813-4824.	1.2	23
189	Feature-specific prediction errors for visual mismatch. Neurolmage, 2019, 196, 142-151.	2.1	14
190	The colors of natural scenes benefit dichromats. Vision Research, 2019, 158, 40-48.	0.7	9
191	Improved Color Opponent Contour Detection Model Based on Dark and Light Adaptation. Automatic Control and Computer Sciences, 2019, 53, 560-571.	0.4	5
192	A Neuronal Network Model of the Primate Visual System: Color Mechanisms in the Retina, LGN and V1. International Journal of Neural Systems, 2019, 29, 1850036.	3.2	4
193	Taurine Protects Retinal Cells and Improves Synaptic Connections in Early Diabetic Rats. Current Eye Research, 2020, 45, 52-63.	0.7	20
194	Colour in Theory and Practice. , 2020, , 83-107.		0
195	Modelling the effect of commercially available blueâ€blocking lenses on visual and nonâ€visual functions. Australasian journal of optometry, The, 2020, 103, 339-346.	0.6	17

#	Article	IF	CITATIONS
196	The biological basis of vision: the retina. , 2020, , 11-46.		2
197	The biological basis of vision: LGN, visual cortex and L+NL models. , 2020, , 47-63.		0
198	Open problems: an argument for new vision models rather than new algorithms. , 2020, , 295-300.		0
199	Spectral response properties of higher visual neurons in Drosophila melanogaster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 217-232.	0.7	6
200	Dyschromatopsia in multiple sclerosis reflects diffuse chronic neurodegeneration beyond anatomical landmarks. Acta Neurologica Belgica, 2020, 121, 1767-1775.	0.5	0
201	A Comparison of the Primary Sensory Neurons Used in Olfaction and Vision. Frontiers in Cellular Neuroscience, 2020, 14, 595523.	1.8	10
202	Computational cognitive modeling and validation of Dp140 induced alteration of working memory in Duchenne Muscular Dystrophy. Scientific Reports, 2020, 10, 11989.	1.6	11
203	Zebrafish Retinal Ganglion Cells Asymmetrically Encode Spectral and Temporal Information across Visual Space. Current Biology, 2020, 30, 2927-2942.e7.	1.8	37
204	Modeling bottom-up and top-down attention with a neurodynamic model of V1. Neurocomputing, 2020, 417, 270-289.	3.5	4
205	Changes in a Cone Opsin Repertoire Affect Color-Dependent Social Behavior in Medaka but Not Behavioral Photosensitivity. Frontiers in Genetics, 2020, $11,801$.	1.1	11
206	Color vision testing in children. Color Research and Application, 2020, 45, 775-781.	0.8	7
207	Dissociable effects of visual crowding on the perception of color and motion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8196-8202.	3.3	22
208	Color vision in insects: insights from Drosophila. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 183-198.	0.7	47
209	Artificial intelligence deciphers codes for color and odor perceptions based on large-scale chemoinformatic data. GigaScience, 2020, 9, .	3.3	11
210	Neural correlates of perceptual color inferences as revealed by #thedress. Journal of Vision, 2020, 20, 7.	0.1	5
211	KM <mml:math altimg="si2.svg" display="inline" id="d1e2545" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:math> : Visual reasoning via Knowledge Embedding Memory Model with Mutual Modulation. Information Fusion. 2021. 67. 14-28.	11.7	18
212	Phonological but not semantic influences on the speech-to-song illusion. Quarterly Journal of Experimental Psychology, 2021, 74, 585-597.	0.6	9
214	Optimization-Based Tone Mapping Evaluation. Communications in Computer and Information Science, 2021, , 331-347.	0.4	O

#	Article	IF	Citations
215	Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 2091-2106.	5.6	72
216	Working Memory Alterations Plays an Essential Role in Developing Global Neuropsychological Impairment in Duchenne Muscular Dystrophy. Frontiers in Psychology, 2020, 11, 613242.	1.1	5
217	Oxysterols and retinal degeneration. British Journal of Pharmacology, 2021, 178, 3205-3219.	2.7	17
218	A distinct population of heterogeneously color-tuned neurons in macaque visual cortex. Science Advances, 2021, 7, .	4.7	7
219	PupilEXT: Flexible Open-Source Platform for High-Resolution Pupillometry in Vision Research. Frontiers in Neuroscience, 2021, 15, 676220.	1.4	12
220	Resolution acuity and spatial summation of chromatic mechanisms in the peripheral retina. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 1003.	0.8	1
221	Colour Discrimination From Perceived Differences by Birds. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
222	How does the skin sense sun light? An integrative view of light sensing molecules. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100403.	5.6	37
224	Electrophysiological evidence for higher-level chromatic mechanisms in humans. Journal of Vision, 2021, 21, 12.	0.1	10
225	A quadratic model captures the human V1 response to variations in chromatic direction and contrast. ELife, $2021,10,.$	2.8	3
226	Adding colour-realistic video images to audio playbacks increases stimulus engagement but does not enhance vocal learning in zebra finches. Animal Cognition, 2022, 25, 249-274.	0.9	7
227	Pluripotent stem cell therapy for retinal diseases. Annals of Translational Medicine, 2021, 9, 1279-1279.	0.7	12
228	Ecoâ€Friendly Colorimetric Nanofiber Design: Halochromic Sensors with Tunable pHâ€Sensing Regime Based on 2â€Ethylâ€2â€Oxazoline and 2â€ <i>n</i> à6EButylâ€2â€Oxazoline Statistical Copolymers Functionalized Alizarin Yellow R. Advanced Functional Materials, 2022, 32, 2106859.	lwath	3
229	A mathematical approach to assess the ability of light filters to improve color discriminability of color vision deficient persons. Heliyon, 2021, 7, e08058.	1.4	0
230	Serous business: Delineating the broad spectrum of diseases with subretinal fluid in the macula. Progress in Retinal and Eye Research, 2021, 84, 100955.	7.3	37
231	Retinal Color Vision in Primates. , 2009, , 3497-3501.		1
232	The Biology of Variations in Mammalian Color Vision. Research and Perspectives in Neurosciences, 2009, , 53-68.	0.4	1
233	Color Information Processing in Higher Brain Areas. Lecture Notes in Computer Science, 2009, , 1-11.	1.0	1

#	Article	IF	CITATIONS
234	The Visual System. , 2011, , 331-365.		3
235	â€~Yellow' or â€~Gold'?: Neural Processing of Gloss Information. Lecture Notes in Computer Science, 2013 1-12.	1.0	3
236	Chlorophyll does not reflect green light – how to correct a misconception. Journal of Biological Education, 2022, 56, 552-559.	0.8	13
238	New Insights in the Optic Radiations Connectivity in the Human Brain. , 2016, 57, 1-5.		5
239	Anomalous pupillary responses to M-cone onsets are linked to \${m L}{:}{m M}\$L:M ratio. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, A163.	0.8	3
240	Synaesthetic Colour in the Brain: Beyond Colour Areas. A Functional Magnetic Resonance Imaging Study of Synaesthetes and Matched Controls. PLoS ONE, 2010, 5, e12074.	1.1	55
241	A shallow convolutional neural network for blind image sharpness assessment. PLoS ONE, 2017, 12, e0176632.	1.1	39
242	Representation of Perceptual Color Space in Macaque Posterior Inferior Temporal Cortex (the V4) Tj ETQq1 1 0.78	43]4 rgB 0.9	T / Gverlock
244	Neurophysiological correlates of color vision: A model Psychology and Neuroscience, 2013, 6, 213-218.	0.5	4
245	Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations. ELife, 2019, 8, .	2.8	70
246	Structural and Functional Characteristics of Color Vision Changes in Choroideremia. Frontiers in Neuroscience, 2021, 15, 729807.	1.4	6
247	Loss of Melanopsin (OPN4) Leads to a Faster Cell Cycle Progression and Growth in Murine Melanocytes. Current Issues in Molecular Biology, 2021, 43, 1436-1450.	1.0	9
248	Neurophysiology of integrated behaviour. , 2009, , 361-373.		0
249	Neurophysiology of integrated behaviour Basant K Puri. , 2009, , 373-385.		O
250	Colour vision: From sensation to science (in Norwegian). Scandinavian Journal of Optometry and Visual Science, 2010, 3, 1-6.	0.5	0
251	Color Vision. , 2011, , 648-654.		3
252	Time and Motion. , 2013, , 287-302.		0
254	Pain Processing Pathway Models. , 2015, , 2181-2187.		2

#	Article	IF	CITATIONS
255	Magno-, Parvo-, Koniocellular Pathways. , 2015, , 1-5.		1
257	Magno-, Parvo-, Koniocellular Pathways. , 2016, , 893-896.		1
258	Farbe in Theorie und Praxis. , 2018, , 87-113.		0
262	Magno-, Parvo-, and Koniocellular Pathways. , 2019, , 1-5.		O
266	Ozone measurement practice in the laboratory using Schönbein's method. Geoscience Communication, 2020, 3, 99-108.	0.5	3
267	The Visual System. , 2020, , 409-453.		2
268	The Primary Visual Cortex., 2020,, 392-412.		0
269	Colour in Theory and Practice. , 2021, , 83-108.		0
271	Subcortical Color Pathways in Mammals. , 2020, , 508-523.		0
272	Contour detection based on the interactive response and fusion model of bilateral attention pathways. Signal, Image and Video Processing, 2022, 16, 1379-1387.	1.7	1
273	Vision at the limits: Absolute threshold, visual function, and outcomes in clinical trials. Survey of Ophthalmology, 2022, 67, 1270-1286.	1.7	6
274	Visual and semantic similarity norms for a photographic image stimulus set containing recognizable objects, animals and scenes. Behavior Research Methods, 2022, 54, 2364-2380.	2.3	3
276	B cell-dependent EAE induces visual deficits in the mouse with similarities to human autoimmune demyelinating diseases. Journal of Neuroinflammation, 2022, 19, 54.	3.1	6
277	A simple method for comparing peripheral and central color vision by means of two smartphones. Behavior Research Methods, 2023, 55, 38-57.	2.3	0
279	Photoreceptor, Variety and Occurence., 2009, , 3151-3155.		0
284	Discrimination of natural colors in anomalous trichromacy and the effects of EnChroma and Vino filters. Optics Express, 2023, 31, 18075.	1.7	2
285	Pain Processing Pathway Models. , 2022, , 2567-2573.		0
286	How We See Black and White: The Role of Midget Ganglion Cells. Frontiers in Neuroanatomy, $0,16,.$	0.9	1

#	Article	IF	CITATIONS
287	Solution-processed colloidal quantum dots for light emission. Materials Advances, 2022, 3, 6773-6790.	2.6	22
288	The mechanism of orientation detection based on color-orientation jointly selective cells. Knowledge-Based Systems, 2022, 254, 109715.	4.0	1
289	Visual mode switching: Improved general compensation for environmental color changes requires only one exposure per day. Journal of Vision, 2022, 22, 12.	0.1	1
290	Dispersion-free highly accurate color recognition using excitonic 2D materials and machine learning. Materials Today, 2022, 59, 18-24.	8.3	4
291	Evidence for human-centric in-vehicle lighting: Part $2\hat{a}\in$ "Modeling illumination based on color-opponents. Frontiers in Neuroscience, 0, 16, .	1.4	2
292	Towards intelligent illumination systems: from the basics of light science to its application. Zeitschrift FÃ $^1\!\!/\!\!4$ r Arbeitswissenschaft, 0, , .	0.7	1
293	The spectral composition of a white light influences its attractiveness to <i>Culex pipiens</i> mosquitoes. Ecology and Evolution, 2023, 13, .	0.8	2
294	Reaction time measures of non-chromatic contamination in opponent stimuli Journal of the Optical Society of America A: Optics and Image Science, and Vision, 0, , .	0.8	0
295	Joint representations of color and form in mouse visual cortex described by random pooling from rods and cones. Journal of Neurophysiology, 2023, 129, 619-634.	0.9	2
296	Design Parameters and Human Biocompatibility Assessment Protocols for Organic Semiconducting Neural Interfaces: Toward a Printed Artificial Retina with Color Vision. Advanced Materials Interfaces, 2023, 10, .	1.9	0
303	Magno-, Parvo-, and Koniocellular Pathways. , 2023, , 1126-1131.		0