Multimetal resistance and tolerance in microbial biofilm

Nature Reviews Microbiology 5, 928-938

DOI: 10.1038/nrmicro1774

Citation Report

#	Article	IF	CITATIONS
2	From the New Editors. Journal of Disability Policy Studies, 2000, 11, 3-3.	0.9	0
3	Responses of Azospirillum brasilense to Nitrogen Deficiency and to Wheat Lectin: A Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopic Study. Microbial Ecology, 2008, 56, 615-624.	1.4	39
4	Influence of uranium (VI) on the metabolic activity of stable multispecies biofilms studied by oxygen microsensors and fluorescence microscopy. Geochimica Et Cosmochimica Acta, 2008, 72, 5251-5265.	1.6	30
5	Arsenic-Hypertolerant <i>Pseudomonads</i> Isolated from Ancient Gold and Copper-Bearing Black Shale Deposits. Geomicrobiology Journal, 2008, 25, 357-362.	1.0	18
6	Copper and Quaternary Ammonium Cations Exert Synergistic Bactericidal and Antibiofilm Activity against <i>Pseudomonas aeruginosa</i> Antimicrobial Agents and Chemotherapy, 2008, 52, 2870-2881.	1.4	154
7	FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling. Spectroscopy, 2008, 22, 83-95.	0.8	71
8	The Chromosomal Toxin Gene <i>yafQ</i> Is a Determinant of Multidrug Tolerance for <i>Escherichia coli</i> Growing in a Biofilm. Antimicrobial Agents and Chemotherapy, 2009, 53, 2253-2258.	1.4	167
9	Silver doped perfluoropolyether-urethane coatings: Antibacterial activity and surface analysis. Colloids and Surfaces B: Biointerfaces, 2009, 72, 62-67.	2.5	38
10	Time to "go large―on biofilm research: advantages of an omics approach. Biotechnology Letters, 2009, 31, 477-485.	1.1	23
11	Effect of Ni2+, V4+ and Mo6+ concentration on iron oxidation by Acidithiobacillus ferrooxidans. Korean Journal of Chemical Engineering, 2009, 26, 736-741.	1.2	25
12	Cellular and biochemical response to Cr(VI) in <i>Stenotrophomonas</i> sp FEMS Microbiology Letters, 2009, 291, 162-168.	0.7	22
13	The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiology Reviews, 2009, 33, 704-717.	3.9	269
14	COEVOLUTION BETWEEN COOPERATORS AND CHEATS IN A MICROBIAL SYSTEM. Evolution; International Journal of Organic Evolution, 2009, 63, 2248-2256.	1,1	28
15	Chromosomal antioxidant genes have metal ionâ€specific roles as determinants of bacterial metal tolerance. Environmental Microbiology, 2009, 11, 2491-2509.	1.8	112
16	Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of Hazardous Materials, 2009, 162, 1551-1556.	6.5	244
17	The impact of toxicity of metals on the activity of ureolytic mixed culture during the precipitation of calcium. Journal of Hazardous Materials, 2009, 163, 1063-1067.	6.5	18
18	TELLURITE RESISTANCE AND REDUCTION BY A PAENIBACILLUS SP. ISOLATED FROM HEAVY METAL–CONTAMINATED SEDIMENT. Environmental Toxicology and Chemistry, 2009, 28, 1627.	2.2	18
19	Nanostructured TiO ₂ : Transport Behavior and Effects on Aquatic Microbial Communities under Environmental Conditions. Environmental Science & Environmental Science & 2009, 43, 8098-8104.	4.6	216

#	ARTICLE	IF	CITATIONS
20	Arsenic in contaminated waters: Biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie, 2009, 91, 1229-1237.	1.3	167
21	Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere, 2009, 77, 153-160.	4.2	351
22	Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Research in Microbiology, 2009, 160 , $259-266$.	1.0	95
24	Real-Time Chemical Imaging of Bacterial Activity in Biofilms Using Open-Channel Microfluidics and Synchrotron FTIR Spectromicroscopy. Analytical Chemistry, 2009, 81, 8564-8570.	3.2	128
25	The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 1 biofilms. Biofouling, 2009, 25, 711-725.	0.8	31
26	Characterization of cytochrome mutants for pellicle formation in Shewanella onedensis MR-1. Transactions of Nonferrous Metals Society of China, 2009, 19, 700-706.	1.7	4
27	Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chemistry, 2009, 11 , 492.	4.6	249
28	The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 2009, 34, 103-110.	1.1	665
29	Transcriptional Response of E. coli Upon FimH-mediated Fimbrial Adhesion. Gene Regulation and Systems Biology, 2010, 4, GRSB.S4525.	2.3	31
30	Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Applied Microbiology and Biotechnology, 2010, 85, 1095-1104.	1.7	115
31	Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics, 2010, 11, 587.	1.2	102
32	Pellicle formation in Shewanella oneidensis. BMC Microbiology, 2010, 10, 291.	1.3	55
33	Trichloroethene and <i>cis</i> â€1,2â€dichloroethene concentrationâ€dependent toxicity model simulates anaerobic dechlorination at high concentrations. II: Continuous flow and attached growth reactors. Biotechnology and Bioengineering, 2010, 107, 540-549.	1.7	12
34	A new microtitre plate screening method for evaluating the viability of aerobic respiring bacteria in high surface biofilms. Letters in Applied Microbiology, 2010, 51, 331-337.	1.0	23
35	Tolerance of Pseudomonas pseudoalcaligenes KF707 to metals, polychlorobiphenyls and chlorobenzoates: effects on chemotaxis-, biofilm- and planktonic-grown cells. FEMS Microbiology Ecology, 2010, 74, 291-301.	1.3	40
36	A bacterial extracellular DNA inhibits settling of motile progeny cells within a biofilm. Molecular Microbiology, 2010, 77, 815-829.	1.2	88
37	Culture dependent and independent analyses of bacterial communities involved in copper plumbing corrosion. Journal of Applied Microbiology, 2010, 109, 771-782.	1.4	48
38	Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nature Protocols, 2010, 5, 1236-1254.	5.5	262

3

#	Article	IF	CITATIONS
39	Phenotypic and metabolic profiling of colony morphology variants evolved from <i>Pseudomonas fluorescens</i> biofilms. Environmental Microbiology, 2010, 12, 1565-1577.	1.8	53
40	Needed, new paradigms in antibiotic development. Expert Opinion on Pharmacotherapy, 2010, 11, 1233-1237.	0.9	34
41	Phenotypic diversification in vivo: Pseudomonas aeruginosa gacSâ^' strains generate small colony variants in vivo that are distinct from in vitro variants. Microbiology (United Kingdom), 2010, 156, 3699-3709.	0.7	12
42	Quorum-Sensing Regulation of a Copper Toxicity System in <i>Pseudomonas aeruginosa</i> Journal of Bacteriology, 2010, 192, 2557-2568.	1.0	49
43	Effect of arsenite on swimming motility delays surface colonization in Herminiimonas arsenicoxydans. Microbiology (United Kingdom), 2010, 156, 2336-2342.	0.7	39
44	Structure, Function, and Evolution of the Thiomonas spp. Genome. PLoS Genetics, 2010, 6, e1000859.	1.5	123
45	Mycobacterial Biofilms Facilitate Horizontal DNA Transfer between Strains of <i>Mycobacterium smegmatis </i> . Journal of Bacteriology, 2010, 192, 5134-5142.	1.0	63
46	Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Research, 2010, 44, 6095-6103.	5.3	226
47	Escherichia coli heat-shock proteins IbpA and IbpB affect biofilm formation by influencing the level of extracellular indole. Microbiology (United Kingdom), 2010, 156, 148-157.	0.7	47
48	The diguanylate cyclase YddV controls production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) through regulation of the PNAG biosynthetic pgaABCD operon. Microbiology (United Kingdom), 2010, 156, 2901-2911.	0.7	37
49	The activity of silver against <i>Escherichia coli</i> biofilm is increased by a lipopeptide biosurfactant. Canadian Journal of Microbiology, 2010, 56, 272-278.	0.8	30
50	Immobilization of Cr(VI) and Its Reduction to Cr(III) Phosphate by Granular Biofilms Comprising a Mixture of Microbes. Applied and Environmental Microbiology, 2010, 76, 2433-2438.	1.4	86
51	Sorption and Distribution of Copper in Unsaturated Pseudomonas putida CZ1 Biofilms as Determined by X-Ray Fluorescence Microscopy. Applied and Environmental Microbiology, 2011, 77, 4719-4727.	1.4	33
52	Differences in Metabolism between the Biofilm and Planktonic Response to Metal Stress. Journal of Proteome Research, 2011, 10, 3190-3199.	1.8	136
53	Different Methods for Culturing Biofilms In Vitro. , 2011, , 251-266.		18
54	Microbial Remediation of Arsenic Contaminated Soil. Soil Biology, 2011, , 221-260.	0.6	5
55	Metabolomics and its application to studying metal toxicity. Metallomics, 2011, 3, 1142.	1.0	57
56	Biofilm Infections. , 2011, , .		37

#	ARTICLE	IF	Citations
57	Liquid chromatography-inductively coupled plasma-based metallomic approaches to probe health-relevant interactions between xenobiotics and mammalian organisms. Metallomics, 2011, 3, 566.	1.0	43
58	Detoxification of Heavy Metals. Soil Biology, 2011, , .	0.6	12
59	Quick adaptation of Ralstonia Solanacearum to copper stress to recover culturability and growth in water and soil. Brazilian Journal of Microbiology, 2011, 42, 576-591.	0.8	2
60	Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta-and proteo-genomics. ISME Journal, 2011, 5, 1735-1747.	4.4	186
61	How prokaryotes deal with arsenic ^{â€} . Environmental Microbiology Reports, 2012, 4, 571-586.	1.0	136
62	Fungal growth in culture media simulating an extreme environment. Revista Iberoamericana De Micologia, 2011, 28, 159-165.	0.4	6
63	Characterization of bacterial communities exposed to Cr(III) and Pb(II) in submerged fixed-bed biofilms for groundwater treatment. Ecotoxicology, 2011, 20, 779-792.	1.1	16
64	Comparison of aerobic and anaerobic [³ H]leucine incorporation assays for determining pollutionâ€induced bacterial community tolerance in copperâ€polluted, irrigated soils. Environmental Toxicology and Chemistry, 2011, 30, 588-595.	2.2	8
65	Isolation and characterization of an environmental cadmium―and telluriteâ€resistant <i>Pseudomonas</i> strain. Environmental Toxicology and Chemistry, 2011, 30, 2202-2207.	2.2	16
66	Analysis of microbial communities developed on the fouling layers of a membrane-coupled anaerobic bioreactor applied to wastewater treatment. Bioresource Technology, 2011, 102, 4618-4627.	4.8	98
67	Real-Time Solvent Tolerance Analysis of <i>Pseudomonas </i> Sp. Strain VLB120Î"C Catalytic Biofilms. Applied and Environmental Microbiology, 2011, 77, 1563-1571.	1.4	54
68	Shedding Light on Selenium Biomineralization: Proteins Associated with Bionanominerals. Applied and Environmental Microbiology, 2011, 77, 4676-4680.	1.4	80
69	Investigation of the inhibitory effects of heavy metals on heterotrophic biomass activity and their mitigation through the use of natural minerals. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1992-1999.	0.9	10
70	Did Mineral Surface Chemistry and Toxicity Contribute to Evolution of Microbial Extracellular Polymeric Substances?. Astrobiology, 2012, 12, 785-798.	1.5	25
71	Mechanisms and Consequences of Intestinal Inflammation. , 2012, , 2075-2099.		1
72	Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 2012, 3, 399.	1.5	747
73	The genetic basis of cadmium resistance of <i><scp>B</scp>urkholderia cenocepacia</i> Environmental Microbiology Reports, 2012, 4, 562-568.	1.0	17
74	A novel approach combining the Calgary Biofilm Device and Phenotype MicroArray for the characterization of the chemical sensitivity of bacterial biofilms. Biofouling, 2012, 28, 1023-1032.	0.8	21

#	Article	IF	Citations
75	Microbial processing of tellurium as a tool in biotechnology. Biotechnology Advances, 2012, 30, 954-963.	6.0	116
76	Application of Adsorption and Ultrafiltration Processes for the Pre-treatment of Several Industrial Wastewater Streams. Water, Air, and Soil Pollution, 2012, 223, 5519-5534.	1.1	10
77	Pollution-induced community tolerance of freshwater biofilms: measuring heterotrophic tolerance to Pb using an enzymatic toxicity test. Ecotoxicology, 2012, 21, 2123-2131.	1.1	7
78	Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends in Microbiology, 2012, 20, 227-234.	3.5	179
79	Adaptation of copper community tolerance levels after biofilm transplantation in an urban river. Aquatic Toxicology, 2012, 106-107, 32-41.	1.9	18
80	Supergene gold transformation: Secondary and nano-particulate gold from southern New Zealand. Chemical Geology, 2012, 320-321, 32-45.	1.4	72
81	Supergene gold transformation: Biogenic secondary and nano-particulate gold from arid Australia. Chemical Geology, 2012, 320-321, 17-31.	1.4	79
82	Biofilms as living catalysts in continuous chemical syntheses. Trends in Biotechnology, 2012, 30, 453-465.	4.9	225
83	Identification of metal-tolerant organisms isolated from the Plankenburg River, Western Cape, South Africa. Water S A, 2012, 38, .	0.2	10
84	Bacterial stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 2012, 67, 2069-2089.	1.3	412
85	Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiology Ecology, 2012, 79, 240-250.	1.3	84
86	Pseudomonas putida NBRIC19 dihydrolipoamide succinyltransferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. Journal of Applied Microbiology, 2012, 112, 793-808.	1.4	18
87	Biofilm Formation in Milk Production and Processing Environments; Influence on Milk Quality and Safety. Comprehensive Reviews in Food Science and Food Safety, 2012, 11, 133-147.	5.9	251
88	Distribution of a dechlorinating community in relation to the distance from a trichloroethene dense nonaqueous phase liquid in a model aquifer. FEMS Microbiology Ecology, 2012, 81, 636-647.	1.3	12
89	Probing the bioinorganic chemistry of toxic metals in the mammalian bloodstream to advance human health. Journal of Inorganic Biochemistry, 2012, 108, 128-132.	1.5	25
90	Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie Van Leeuwenhoek, 2012, 101, 453-459.	0.7	31
91	Effect of aluminium and copper on biofilm development of Pseudomonas pseudoalcaligenes KF707 and P. fluorescens as a function of different media compositions. Metallomics, 2013, 5, 723.	1.0	25
92	Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. Applied Microbiology and Biotechnology, 2013, 97, 5659-5668.	1.7	41

#	ARTICLE	IF	CITATIONS
93	Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. Journal of Hazardous Materials, 2013, 262, 1039-1047.	6.5	142
94	Biofilm formation and heavy metal resistance by an environmental Pseudomonas sp Biochemical Engineering Journal, 2013, 78, 132-137.	1.8	90
95	Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Materials Science and Engineering C, 2013, 33, 4575-4581.	3.8	26
96	<scp>C</scp> d ²⁺ resistance mechanisms in <i><scp>M</scp>ethanosarcina acetivorans</i> involve the increase in the coenzyme <scp>M</scp> content and induction of biofilm synthesis. Environmental Microbiology Reports, 2013, 5, 799-808.	1.0	32
97	A spatiotemporal view of plasmid loss in biofilms and planktonic cultures. Biotechnology and Bioengineering, 2013, 110, 3071-3074.	1.7	9
98	DNA Damage and Transcriptional Changes in the Gills of Mytilus galloprovincialis Exposed to Nanomolar Doses of Combined Metal Salts (Cd, Cu, Hg). PLoS ONE, 2013, 8, e54602.	1.1	68
99	Effect of Periodic Disinfection on Persisters in a One-Dimensional Biofilm Model. Bulletin of Mathematical Biology, 2013, 75, 94-123.	0.9	21
100	Enhanced antimicrobial activities of 1-alkyl-3-methyl imidazolium ionic liquids based on silver or copper containing anions. New Journal of Chemistry, 2013, 37, 873.	1.4	45
101	Effects of silver nanoparticles on microbial growth dynamics. Journal of Applied Microbiology, 2013, 114, 25-35.	1.4	74
102	Biomineralization of Gold in Biofilms of <i>Cupriavidus metallidurans</i> . Environmental Science & Environmental & Env	4.6	70
103	Rhamnolipids Production by Multi-metal-Resistant and Plant-Growth-Promoting Rhizobacteria. Applied Biochemistry and Biotechnology, 2013, 170, 1038-1056.	1.4	39
104	Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 2013, 11, 371-384.	13.6	1,987
105	Mini-review: microbial problems in paper production. Biofouling, 2013, 29, 683-696.	0.8	34
106	The dynamic nature of bacterial surfaces: Implications for metal–membrane interaction. Critical Reviews in Microbiology, 2013, 39, 196-217.	2.7	37
107	Archaeal Diversity in Biofilm Technologies Applied to Treat Urban and Industrial Wastewater: Recent Advances and Future Prospects. International Journal of Molecular Sciences, 2013, 14, 18572-18598.	1.8	32
108	The Interaction of CuS and Halothiobacillus HT1 Biofilm in Microscale Using Synchrotron Radiation-Based Techniques. International Journal of Molecular Sciences, 2013, 14, 11113-11124.	1.8	9
109	Characterization of Pleurotus ostreatus Biofilms by Using the Calgary Biofilm Device. Applied and Environmental Microbiology, 2013, 79, 6083-6092.	1.4	10
110	Pleurotus ostreatusbiofilms exhibit higher tolerance to toxicants than free-floating counterparts. Biofouling, 2013, 29, 1043-1055.	0.8	7

#	Article	IF	CITATIONS
111	Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter. Environmental Technology (United Kingdom), 2013, 34, 1117-1121.	1.2	3
112	Biofilms, Biomaterials, and Device-Related Infections. , 2013, , 77-101.		13
113	Biofilms, Biomaterials, and Device-Related Infections. , 2013, , 565-583.		7
114	Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling, 2013, 29, 917-928.	0.8	124
115	The Potent Pharmacological Mushroom Fomes fomentarius: Cultivation Processes and Biotechnological Uses., 2013,, 310-332.		0
116	Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere, 2014, 117, 462-470.	4.2	43
117	Developed fungal–bacterial biofilms as a novel tool for bioremoval of hexavelant chromium from wastewater. Chemistry and Ecology, 2014, 30, 418-427.	0.6	27
118	Association Between Toxin-Antitoxin Systems and Biofilm Formation. Jundishapur Journal of Microbiology, 2014, 8, e14540.	0.2	13
119	Influence of copper on Euplotes sp. and associated bacterial population. Latin American Journal of Aquatic Research, 2014, 42, 381-385.	0.2	3
120	Mixed-Species Biofilms Cultured from an Oil Sand Tailings Pond can Biomineralize Metals. Microbial Ecology, 2014, 68, 70-80.	1.4	32
121	Detecting the Nonviable and Heat-Tolerant Bacteria in Activated Sludge by Minimizing DNA from Dead Cells. Microbial Ecology, 2014, 67, 829-836.	1.4	22
122	Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere, 2014, 97, 78-85.	4.2	43
123	Disruption of Putrescine Biosynthesis in Shewanella oneidensis Enhances Biofilm Cohesiveness and Performance in Cr(VI) Immobilization. Applied and Environmental Microbiology, 2014, 80, 1498-1506.	1.4	101
125	New Copper Resistance Determinants in the Extremophile <i>Acidithiobacillus ferrooxidans</i> Quantitative Proteomic Analysis. Journal of Proteome Research, 2014, 13, 946-960.	1.8	64
126	The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by <i>Lactobacillus fermentum </i> . Biofouling, 2014, 30, 347-357.	0.8	98
127	Characterization of exopolymeric substances (EPS) produced by <i>Aeromonas hydrophila</i> vinder reducing conditions. Biofouling, 2014, 30, 501-511.	0.8	49
128	Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur. Research in Microbiology, 2014, 165, 761-772.	1.0	25
129	Inhibitory effect of skatole (3-methylindole) on enterohemorrhagic <i>Escherichia coli </i> O157:H7 ATCC 43894 biofilm formation mediated by elevated endogenous oxidative stress. Letters in Applied Microbiology, 2014, 58, 454-461.	1.0	17

#	Article	IF	CITATIONS
130	Selected metal ions protect Bacillus subtilis biofilms from erosion. Metallomics, 2014, 6, 1441.	1.0	48
131	A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Research in Microbiology, 2014, 165, 743-752.	1.0	48
132	Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms. Applied and Environmental Microbiology, 2014, 80, 6638-6646.	1.4	72
133	Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Applied Microbiology and Biotechnology, 2014, 98, 8133-8144.	1.7	106
134	Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SelTEO1 as a consequence of selenite reduction under aerobic conditions. Microbial Cell Factories, 2014, 13, 35.	1.9	133
135	Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems. Applied Microbiology and Biotechnology, 2014, 98, 8457-8468.	1.7	33
136	Diurnal Floc Generation from Neuston Biofilms in Two Contrasting Freshwater Lakes. Environmental Science & Environmental Scien	4.6	12
137	Surfactin restores and enhances swarming motility under heavy metal stress. Colloids and Surfaces B: Biointerfaces, 2014, 116, 26-31.	2.5	19
138	FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquatic Toxicology, 2014, 155, 15-23.	1.9	35
139	Persister Bacteria., 0,, 375-382.		0
140	Environmentally coâ€occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable contextâ€dependent fitness effects. Environmental Microbiology, 2015, 17, 5008-5022.	1.8	68
141	Application of Microbes for Metal Extraction from Mining Wastes. , 2015, , 227-246.		0
142	Role of Natural and Engineered Biofilms Composition in Toxic Inorganic Contaminants Immobilisation. , 2015, , 299-324.		2
143	Protocols for Harvesting a Microbial Community Directly as a Biofilm for the Remediation of Oil Sands Process Water. Springer Protocols, 2015, , 131-152.	0.1	2
144	Engineered catalytic biofilms: Siteâ€specific enzyme immobilization onto <i>E. coli</i> curli nanofibers. Biotechnology and Bioengineering, 2015, 112, 2016-2024.	1.7	112
145	Organic Matter Biodegradation by Bacterial Consortium under Metal Stress. , 0, , .		3
146	Antibiofilm Activity of the Brown Alga Halidrys siliquosa against Clinically Relevant Human Pathogens. Marine Drugs, 2015, 13, 3581-3605.	2.2	17
147	The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. Minerals (Basel, Switzerland), 2015, 5, 397-451.	0.8	73

#	Article	IF	CITATIONS
148	Nanosilver induces a non-culturable but metabolically active state in Pseudomonas aeruginosa. Frontiers in Microbiology, 2015, 06, 395.	1.5	38
149	Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. Journal of Environmental Sciences, 2015, 33, 203-210.	3.2	38
150	Biofilms in Infections of the Eye. Pathogens, 2015, 4, 111-136.	1.2	120
151	Impact of an urban multi-metal contamination gradient: Metal bioaccumulation and tolerance of river biofilms collected in different seasons. Aquatic Toxicology, 2015, 159, 276-289.	1.9	23
152	Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms. ACS Nano, 2015, 9, 7775-7782.	7.3	172
153	Determination of the accumulation, spatial distribution and reduction of Cr in unsaturated Pseudochrobactrum saccharolyticum LY10 biofilms by X-ray fluorescence and absorption methods. Chemical Engineering Journal, 2015, 280, 763-770.	6.6	13
154	Silver Oxynitrate, an Unexplored Silver Compound with Antimicrobial and Antibiofilm Activity. Antimicrobial Agents and Chemotherapy, 2015, 59, 4031-4039.	1.4	54
155	Mechanisms of Hexavalent Chromium Resistance and Removal by Microorganisms. Reviews of Environmental Contamination and Toxicology, 2015, 233, 45-69.	0.7	110
156	Reviews of Environmental Contamination and Toxicology Volume 233. Reviews of Environmental Contamination and Toxicology, 2015, , .	0.7	10
157	Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Research in Microbiology, 2015, 166, 764-773.	1.0	85
158	Changes in soil bacterial communities and diversity in response to long-term silver exposure. FEMS Microbiology Ecology, 2015, 91, fiv114.	1.3	67
159	Quick Discrimination of Heavy Metal Resistant Bacterial Populations Using Infrared Spectroscopy Coupled with Chemometrics. Analytical Chemistry, 2015, 87, 9653-9661.	3.2	27
160	Colonisation and succession of marine biofilm-dwelling ciliate assemblages on biocidal antifouling and fouling-release coatings in temperate Australia. Biofouling, 2015, 31, 709-720.	0.8	17
161	Evaluation of the sensitivity to zinc of ciliates Euplotes vannus and Euplotes crassus and their naturally associated bacteria isolated from a polluted tropical bay. Environmental Science and Pollution Research, 2015, 22, 6236-6245.	2.7	3
162	Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 886-891.	2.0	179
163	Expression of copper-resistance genes in microbial communities under copper stress and oxic/anoxic conditions. Environmental Science and Pollution Research, 2016, 23, 4013-4023.	2.7	20
164	Eye Coinfections. , 0, , .		1
165	Biofilm-Mediated Heavy Metals Bioremediation in PGPR Pseudomonas. Journal of Bioremediation & Biodegradation, 2016, 7, .	0.5	39

#	Article	IF	CITATIONS
166	EPSâ€"Then and Now. Microorganisms, 2016, 4, 41.	1.6	232
167	Bioreduction of [Co(III)â€EDTA] ^{â^'} by Denitrifying Granular Sludge Biofilms. Chemical Engineering and Technology, 2016, 39, 1669-1675.	0.9	5
168	Susceptibility of metallic magnesium implants to bacterial biofilm infections. Journal of Biomedical Materials Research - Part A, 2016, 104, 1489-1499.	2.1	39
170	Community Metabolomics in Environmental Microbiology. , 2016, , 199-224.		2
171	Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells. Journal of Biotechnology, 2016, 218, 1-12.	1.9	27
172	Sulfhydryl Binding Sites within Bacterial Extracellular Polymeric Substances. Environmental Science &	4.6	44
173	Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments. Journal of Environmental Management, 2016, 172, 151-161.	3.8	14
174	Bacterial biofilms on gold grains—implications for geomicrobial transformations of gold. FEMS Microbiology Ecology, 2016, 92, fiw082.	1.3	48
175	Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation. Science of the Total Environment, 2016, 565, 165-180.	3.9	10
176	Silver Nanoparticles and Nanocomposites. , 0, , 7275-7285.		0
177	Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 2016, 14, 563-575.	13.6	3,725
178	Inoculation of bacteria for the bioremediation of heavy metals contaminated soil by Agrocybe aegerita. RSC Advances, 2016, 6, 65816-65824.	1.7	40
182	Copper Resistance of the Emerging Pathogen Acinetobacter baumannii. Applied and Environmental Microbiology, 2016, 82, 6174-6188.	1.4	55
183	Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted		
	salt marshes: comparison of gram-positive and gram-negative strains. Environmental Science and Pollution Research, 2016, 23, 19825-19837.	2.7	40
184	Pollution Research, 2016, 23, 19825-19837. Microbial stress response to heavy metals in the environment. RSC Advances, 2016, 6, 109862-109877.	1.7	136
184	Pollution Research, 2016, 23, 19825-19837.		
	Pollution Research, 2016, 23, 19825-19837. Microbial stress response to heavy metals in the environment. RSC Advances, 2016, 6, 109862-109877. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.	1.7	136

#	Article	IF	CITATIONS
188	Copper and lead removal from aqueous solutions by bacterial consortia acting as biosorbents. Marine Pollution Bulletin, 2016, 109, 386-392.	2.3	23
189	A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time. Applied Microbiology and Biotechnology, 2016, 100, 6361-6373.	1.7	9
190	Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environmental Microbiology, 2016, 18, 2565-2574.	1.8	97
191	Unraveling the antibacterial mode of action of a clay from the Colombian Amazon. Environmental Geochemistry and Health, 2016, 38, 363-379.	1.8	29
192	Recovery of Elemental Tellurium Nanoparticles by the Reduction of Tellurium Oxyanions in a Methanogenic Microbial Consortium. Environmental Science & Eamp; Technology, 2016, 50, 1492-1500.	4.6	63
193	Using the dehydrogenase activity for alert of activated sludge system under different copper concentrations. Desalination and Water Treatment, 2016, 57, 17836-17843.	1.0	9
194	Control of biofilm-associated infections by signaling molecules and nanoparticles. International Journal of Pharmaceutics, 2016, 510, 409-418.	2.6	30
195	The toxic effect of copper on the association between ciliates Euplotes vannus and Euplotes crassus and their naturally associated bacteria isolated from a polluted tropical bay. Regional Studies in Marine Science, 2016, 3, 25-32.	0.4	3
196	Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews, 2016, 80, 91-138.	2.9	864
197	Persistence Parameter: a Reliable Measurement for Behavioral Responses of Medaka (Oryzias latipes) to Environmental Stress. Environmental Modeling and Assessment, 2016, 21, 159-167.	1.2	14
198	Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITEO2: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. Journal of Hazardous Materials, 2017, 324, 3-14.	6.5	135
199	Biofilms: Microbial Shelters Against Antibiotics. Microbial Drug Resistance, 2017, 23, 147-156.	0.9	113
200	Comparison of the Rhodotorula mucilaginosa Biofilm and Planktonic Culture on Heavy Metal Susceptibility and Removal Potential. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	46
201	Fluorescent Lead(IV) Sulfide Nanoparticles Synthesized by Idiomarina sp. Strain PR58-8 for Bioimaging Applications. Applied and Environmental Microbiology, 2017, 83, .	1.4	33
202	DNA Modified Fe ₃ O ₄ @Au Magnetic Nanoparticles as Selective Probes for Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions. ACS Applied Materials & Simultaneous Detection of Heavy Metal Ions.	4.0	233
203	Antibacterial Activity of Aluminum in Clay from the Colombian Amazon. Environmental Science & Emp; Technology, 2017, 51, 2401-2408.	4.6	74
204	Removal of vanadium from wastewater by multi-walled carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 170-178.	1.0	10
205	Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicology and Environmental Safety, 2017, 140, 162-169.	2.9	89

#	Article	IF	CITATIONS
206	Developing microbial biofilm as a robust biocatalyst and its challenges. Biocatalysis and Biotransformation, 2017, 35, 86-95.	1.1	15
207	Comparison of biofilm formation and motility processes in arsenicâ€resistant <i>Thiomonas</i> spp. strains revealed divergent response to arsenite. Microbial Biotechnology, 2017, 10, 789-803.	2.0	12
208	Cytotoxicity of TiO2nanoparticles toward Escherichia coli in an aquatic environment: effects of nanoparticle structural oxygen deficiency and aqueous salinity. Environmental Science: Nano, 2017, 4, 1178-1188.	2,2	24
209	Heavy metal tolerance and removal potential in mixed-species biofilm. Water Science and Technology, 2017, 76, 806-812.	1.2	14
210	Silver oxynitrate $\hat{a}\in$ " an efficacious compound for the prevention and eradication of dual-species biofilms. Biofouling, 2017, 33, 460-469.	0.8	29
211	Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. International Journal of Biological Macromolecules, 2017, 103, 554-574.	3.6	74
212	Heterotrophic Bacterial Leaching of Zinc and Arsenic from Artificial Adamite. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	11
213	Phytoremediation of Heavy Metal-Contaminated Soil Using Bioenergy Crops., 2017,, 63-96.		16
214	Multiple stressors in sediments impact adjacent hard substrate habitats and across biological domains. Science of the Total Environment, 2017, 592, 295-305.	3.9	20
215	Phytoremediation Potential of Bioenergy Plants. , 2017, , .		23
216	Pesticides and antimicrobial resistance: from environmental compartments to animal and human infections., 2017,, 373-392.		11
217	Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials, 2017, 118, 27-50.	5.7	76
218	Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record. Geobiology, 2017, 15, 259-279.	1.1	40
219	Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Food Microbiology, 2017, 64, 23-32.	2.1	138
220	Response of Rhizobium to Cd exposure: A volatile perspective. Environmental Pollution, 2017, 231, 802-811.	3.7	22
221	Effect of copper on multiple successional stages of a marine fouling assemblage. Biofouling, 2017, 33, 904-916.	0.8	4
222	Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids and Surfaces B: Biointerfaces, 2017, 160, 639-648.	2.5	46
223	A novel cationic cobalt(III) Schiff base complex: Preparation, crystal structure, Hirshfeld surface analysis, antimicrobial activities and molecular docking. Microbial Pathogenesis, 2017, 113, 160-167.	1.3	14

#	ARTICLE	IF	CITATIONS
224	Metalâ€based antimicrobial strategies. Microbial Biotechnology, 2017, 10, 1062-1065.	2.0	153
225	Influence of zinc on biogas production and antibiotic resistance gene profiles during anaerobic digestion of swine manure. Bioresource Technology, 2017, 244, 63-70.	4.8	45
226	Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance. Future Microbiology, 2017, 12, 1087-1107.	1.0	25
227	Tolerance of Microorganisms in Soil Contaminated with Trace Metals: An Overview., 2017, , 165-193.		5
228	Encapsulation of Lethal, Functional, and Therapeutic Medicinal Nanoparticles and Quantum Dots for the Improved Diagnosis and Treatment of Infection., 2017,, 597-622.		5
229	Proteins in microbial synthesis of selenium nanoparticles. Talanta, 2017, 174, 539-547.	2.9	102
230	Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiology Reviews, 2017, 41, 219-251.	3.9	291
231	Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B. Archives of Microbiology, 2017, 199, 445-455.	1.0	14
232	Microbial copper resistance: importance in biohydrometallurgy. Microbial Biotechnology, 2017, 10, 279-295.	2.0	60
233	Microbes and Environment. , 2017, , 43-84.		55
234	A detailed <i>in vitro</i> study of naproxen metal complexes in quest of new therapeutic possibilities. Alexandria Journal of Medicine, 2017, 53, 157-165.	0.4	9
236	Copper Corrosion and Biocorrosion Events in Premise Plumbing. Materials, 2017, 10, 1036.	1.3	59
237	Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms. Frontiers in Environmental Science, 2017, 5, .	1.5	9
238	Archaeal Persisters: Persister Cell Formation as a Stress Response in Haloferax volcanii. Frontiers in Microbiology, 2017, 8, 1589.	1.5	64
239	Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. International Journal of Nanomedicine, 2017, Volume 12, 2813-2828.	3.3	54
240	Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host. PLoS Genetics, 2017, 13, e1006816.	1.5	16
241	Correlative Cryogenic Spectromicroscopy to Investigate Selenium Bioreduction Products. Environmental Science & Drock (2018, 52, 503-512.	4.6	24
242	Reusable and storable whole-cell microbial biosensors with a microchemostat platform for in situ on-demand heavy metal detection. Sensors and Actuators B: Chemical, 2018, 264, 372-381.	4.0	21

#	Article	IF	CITATIONS
243	The Potential of Metals in Combating Bacterial Pathogens. , 2018, , 129-150.		4
244	Productivity Contribution of Paleozoic Woodlands to the Formation of Shaleâ€Hosted Massive Sulfide Deposits in the Iberian Pyrite Belt (Tharsis, Spain). Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1017-1040.	1.3	4
245	Biomedical Applications of Metals., 2018,,.		6
246	Microbial Communities Inhabiting a Rare Earth Element Enriched Birnessite-Type Manganese Deposit in the Ytterby Mine, Sweden. Geomicrobiology Journal, 2018, 35, 657-674.	1.0	14
247	Facile one-pot multicomponent synthesis and molecular docking studies of steroidal oxazole/thiazole derivatives with effective antimicrobial, antibiofilm and hemolytic properties. Steroids, 2018, 134, 22-36.	0.8	35
248	Responses of wastewater biofilms to chronic CeO2 nanoparticles exposure: Structural, physicochemical and microbial properties and potential mechanism. Water Research, 2018, 133, 208-217.	5.3	64
249	Metal tolerance assisted antibiotic susceptibility profiling in Comamonas acidovorans. BioMetals, 2018, 31, 1-5.	1.8	11
250	Different efficiencies of the same mechanisms result in distinct Cd tolerance within Rhizobium. Ecotoxicology and Environmental Safety, 2018, 150, 260-269.	2.9	20
251	Highly efficient sunlight-driven photocatalytic degradation of organic pollutants and fluorescence detection of Hg2+ using multifunctional GO-Bi2S3 nanostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 545-555.	2.0	26
252	Effects of short- and long-term exposure of silver nanoparticles and silver ions to Nitrosomonas europaea biofilms and planktonic cells. Chemosphere, 2018, 206, 606-614.	4.2	30
253	Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano. Antonie Van Leeuwenhoek, 2018, 111, 1449-1465.	0.7	21
254	Influence of metal ions on biofilm formation by Arthrobacter sp. SUK 1205 and evaluation of their Cr(VI) removal efficacy. International Biodeterioration and Biodegradation, 2018, 132, 122-131.	1.9	39
255	Application of paraffin and silver coated titania nanoparticles in polyethylene nanocomposite food packaging films. Journal of Applied Polymer Science, 2018, 135, 45913.	1.3	11
256	A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. Journal of Cleaner Production, 2018, 171, 1532-1545.	4.6	99
257	Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 147, 175-191.	2.9	377
258	Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor. Environmental Science and Pollution Research, 2018, 25, 1969-1979.	2.7	21
259	Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products. Microbial Ecology in Health and Disease, 2018, 29, 1548248.	3.8	21
260	Inhibition and Inactivation of Escherichia coli O157:H7 Biofilms by Selenium. Journal of Food Protection, 2018, 81, 926-933.	0.8	12

#	Article	IF	CITATIONS
261	Is Silver the Ultimate Antimicrobial Bullet?. Antibiotics, 2018, 7, 112.	1.5	9
262	Heavy Metal Ion Stress on Halobacterium salinarum R1 Planktonic Cells and Biofilms. Frontiers in Microbiology, 2018, 9, 3157.	1.5	26
263	Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins. Biotechnology for Biofuels, 2018, 11, 315.	6.2	18
264	Reduction of Gold (III) and Tellurium (IV) by Enterobacter cloacae MF01 Results in Nanostructure Formation Both in Aerobic and Anaerobic Conditions. Frontiers in Microbiology, 2018, 9, 3118.	1.5	11
265	Chromate Resistance Mechanisms in Leucobacter chromiiresistens. Applied and Environmental Microbiology, 2018, 84, .	1.4	29
266	Resistance mechanism of Ni2+ ion individually and in combination with the Cr6+ ion in Staphylococcus aureus species to characterize the molecular changes studied using infrared spectroscopy coupled with chemometrics. Infrared Physics and Technology, 2018, 94, 126-133.	1.3	5
267	Microbiology of the Built Environment in Spacecraft Used for Human Flight. Methods in Microbiology, 2018, , 3-26.	0.4	9
268	Coatings as the useful drug delivery system for the prevention of implant-related infections. Journal of Orthopaedic Surgery and Research, 2018, 13, 220.	0.9	80
269	An integrative approach toward biosensing and bioremediation of metals and metalloids. International Journal of Environmental Science and Technology, 2018, 15, 2701-2712.	1.8	17
270	Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells. Science of the Total Environment, 2018, 645, 471-481.	3.9	40
271	Microbial-Based Bioremediation of Selenium and Tellurium Compounds. , 0, , .		9
272	The Glutaredoxin Gene, grxB, Affects Acid Tolerance, Surface Hydrophobicity, Auto-Aggregation, and Biofilm Formation in Cronobacter sakazakii. Frontiers in Microbiology, 2018, 9, 133.	1.5	36
273	Inhibition and Inactivation of Uropathogenic Escherichia coli Biofilms on Urinary Catheters by Sodium Selenite. International Journal of Molecular Sciences, 2018, 19, 1703.	1.8	20
274	Reduction of Hexavalent Chromium and Detection of Chromate Reductase (ChrR) in Stenotrophomonas maltophilia. Molecules, 2018, 23, 406.	1.7	93
275	Arsenic-hypertolerant and arsenic-reducing bacteria isolated from wells in Tucum \tilde{A}_i n, Argentina. Canadian Journal of Microbiology, 2018, 64, 876-886.	0.8	15
276	Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities. FEMS Microbiology Ecology, 2018, 94, .	1.3	18
277	<i>Thermodesulfobium</i> sp. strain 3baa, an acidophilic sulfate reducing bacterium forming biofilms triggered by mineral precipitation. Environmental Microbiology, 2018, 20, 3717-3731.	1.8	8
278	Using a Chemical Genetic Screen to Enhance Our Understanding of the Antibacterial Properties of Silver. Genes, 2018, 9, 344.	1.0	33

#	Article	IF	CITATIONS
279	Interaction between copper and extracellular nucleic acids in the EPS of unsaturated Pseudomonas putida CZ1 biofilm. Environmental Science and Pollution Research, 2018, 25, 24172-24180.	2.7	16
280	Bioaccumulation of potentially toxic elements by submerged plants and biofilms: A critical review. Environment International, 2019, 131, 105015.	4.8	65
281	Inherently self-sterilizing charged multiblock polymers that kill drug-resistant microbes in minutes. Materials Horizons, 2019, 6, 2056-2062.	6.4	50
282	Multimetal bioremediation and biomining by a combination of new aquatic strains of Mucor hiemalis. Scientific Reports, 2019, 9, 10318.	1.6	23
283	Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters, 2019, 1, 85-93.	2.4	62
284	Biofilms: The Microbial "Protective Clothing―in Extreme Environments. International Journal of Molecular Sciences, 2019, 20, 3423.	1.8	482
285	The Response of Cupriavidus metallidurans CH34 to Cadmium Involves Inhibition of the Initiation of Biofilm Formation, Decrease in Intracellular c-di-GMP Levels, and a Novel Metal Regulated Phosphodiesterase. Frontiers in Microbiology, 2019, 10, 1499.	1.5	22
286	Adaptively evolved Escherichia coli for improved ability of formate utilization as a carbon source in sugar-free conditions. Biotechnology for Biofuels, 2019, 12, 207.	6.2	41
287	Biofilm-Biology-Informed Biofilm Engineering for Environmental Biotechnology. ACS Symposium Series, 2019, , 59-82.	0.5	5
288	Optogenetic Modulation of a Catalytic Biofilm for the Biotransformation of Indole into Tryptophan. ChemSusChem, 2019, 12, 5142-5148.	3.6	19
289	Variability in cyanobacteria sensitivity to antibiotics and implications for environmental risk assessment. Science of the Total Environment, 2019, 695, 133804.	3.9	20
290	Influence of Extracellular Polymeric Substances on the Adsorption of Cadmium onto Three Bacterial Species. Geomicrobiology Journal, 2019, 36, 412-422.	1.0	8
291	Application of proteomics in studying bacterial persistence. Expert Review of Proteomics, 2019, 16, 227-239.	1.3	20
292	Microbial community activity in response to multiple contaminant exposure: a feasible tool for sediment quality assessment. Environmental Monitoring and Assessment, 2019, 191, 392.	1.3	7
293	Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant. Environmental Sustainability, 2019, 2, 135-144.	1.4	46
294	Nutrient Acquisition, Rather Than Stress Response Over Diel Cycles, Drives Microbial Transcription in a Hyper-Arid Namib Desert Soil. Frontiers in Microbiology, 2019, 10, 1054.	1.5	37
295	Whole Genome Sequencing-Based Comparison of Food Isolates of Cronobacter sakazakii. Frontiers in Microbiology, 2019, 10, 1464.	1.5	28
296	Regulating, Measuring, and Modeling the Viscoelasticity of Bacterial Biofilms. Journal of Bacteriology, 2019, 201, .	1.0	33

#	Article	IF	CITATIONS
297	Biogeochemical gold cycling selects metal-resistant bacteria that promote gold particle transformation. FEMS Microbiology Ecology, 2019, 95, .	1.3	14
298	A novel approach for new cost-saving durable anticorrosive and antibacterial coatings. Journal of Coatings Technology Research, 2019, 16, 1263-1281.	1.2	7
299	Specificity in the Susceptibilities of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus Clinical Isolates to Six Metal Antimicrobials. Antibiotics, 2019, 8, 51.	1.5	23
300	The electrifying physiology of Geobacter bacteria, 30 years on. Advances in Microbial Physiology, 2019, 74, 1-96.	1.0	92
301	Mesoporous Silicaâ€Based Materials with Bactericidal Properties. Small, 2019, 15, e1900669.	5. 2	125
302	Metal bioavailability and the soil microbiome. Advances in Agronomy, 2019, 155, 79-120.	2.4	31
303	Bactericidal ZnO glass-filled thermoplastic polyurethane and polydimethyl siloxane composites to inhibit biofilm-associated infections. Scientific Reports, 2019, 9, 2762.	1.6	8
304	Biology of Rhodococcus. Microbiology Monographs, 2019, , .	0.3	21
305	Interaction of Rhodococcus with Metals and Biotechnological Applications. Microbiology Monographs, 2019, , 333-357.	0.3	11
306	Single-species biofilms from autochthonous microorganisms: biotechnological potential in automotive wastewater treatment. International Journal of Environmental Science and Technology, 2019, 16, 6189-6198.	1.8	4
307	Comparative metatranscriptome analysis revealed broad response of microbial communities in two soil types, agriculture versus organic soil. Journal of Genetic Engineering and Biotechnology, 2019, 17, 6.	1.5	20
309	Metagenomic Resolution of Functional Diversity in Copper Surface-Associated Marine Biofilms. Frontiers in Microbiology, 2019, 10, 2863.	1.5	20
310	Metabolomic and proteomic changes induced by growth inhibitory concentrations of copper in the biofilm-forming marine bacterium <i>Pseudoalteromonas lipolytica</i> . Metallomics, 2019, 11, 1887-1899.	1.0	12
311	Shear Stress as a Major Driver of Marine Biofilm Communities in the NW Mediterranean Sea. Frontiers in Microbiology, 2019, 10, 1768.	1.5	33
312	Molecular characterization of acutely and gradually heavy metal acclimated aquatic bacteria by FTIR spectroscopy. Journal of Biophotonics, 2019, 12, e201800301.	1.1	20
313	Cycling of biogenic elements drives biogeochemical gold cycling. Earth-Science Reviews, 2019, 190, 131-147.	4.0	30
314	Variation in metal tolerance associated with population exposure history in Southern toads (Anaxyrus terrestris). Aquatic Toxicology, 2019, 207, 163-169.	1.9	5
315	Combating Microbial Contamination with Robust Polymeric Nanofibers: Elemental Effect on the Mussel-Inspired Cross-Linking of Electrospun Gelatin. ACS Applied Bio Materials, 2019, 2, 807-823.	2.3	13

#	Article	IF	CITATIONS
316	Antibacterial efficiency of alkali-free bio-glasses incorporating ZnO and/or SrO as therapeutic agents. Ceramics International, 2019, 45, 4368-4380.	2.3	27
317	Metagenomic Analysis of Zinc Surface–Associated Marine Biofilms. Microbial Ecology, 2019, 77, 406-416.	1.4	25
318	Using a Chemical Genetic Screen to Enhance Our Understanding of the Antimicrobial Properties of Gallium against Escherichia coli. Genes, 2019, 10, 34.	1.0	16
319	Accumulation of lead (Pb II) metal ions by Bacillus toyonensis SCE1 species, innate to industrial-area ground water and nanoparticle synthesis. Applied Nanoscience (Switzerland), 2019, 9, 49-66.	1.6	7
320	Crustin-capped selenium nanowires against microbial pathogens and Japanese encephalitis mosquito vectors $\hat{\mathbf{a}} \in \mathbb{C}^m$ Insights on their toxicity and internalization. Journal of Trace Elements in Medicine and Biology, 2019, 51, 191-203.	1.5	20
321	d-Cysteine functionalised silver nanoparticles surface with a "disperse-then-kill―antibacterial synergy. Chemical Engineering Journal, 2020, 381, 122662.	6.6	29
322	Cross-resistance between biocides and antimicrobials., 2020,, 327-333.		0
323	Privatization of Biofilm Matrix in Structurally Heterogeneous Biofilms. MSystems, 2020, 5, .	1.7	27
324	Inhibitory Effect of Copper and Zinc Ions on the Growth of Streptococcus pyogenes and Escherichia coli Biofilms. Bulletin of Experimental Biology and Medicine, 2020, 169, 648-652.	0.3	11
325	Climbing the hill: The implications of a two-step adaptation on biooxidation of ferrous ion at high total iron concentrations by At. ferrooxidans. Hydrometallurgy, 2020, 197, 105486.	1.8	4
326	Monitoring of bacterial community structure and growth: An alternative tool for biofilm microanalysis. Biofilm, 2020, 2, 100034.	1.5	1
327	Automated quantification of Candida albicans biofilm-related phenotypes reveals additive contributions to biofilm production. Npj Biofilms and Microbiomes, 2020, 6, 36.	2.9	12
328	Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed. Journal of Environmental Management, 2020, 272, 111109.	3.8	66
329	Discrimination of heavy metal acclimated environmental strains by chemometric analysis of FTIR spectra. Ecotoxicology and Environmental Safety, 2020, 202, 110953.	2.9	14
330	Recent advances in the application of biofilm in bioremediation of industrial wastewater and organic pollutants., 2020,, 81-118.		16
331	Microbial community shift under exposure of dredged sediments from a eutrophic bay. Environmental Monitoring and Assessment, 2020, 192, 539.	1.3	7
332	Unveiling the role of bioturbation on bacterial activity in metal-contaminated sediments. Science of the Total Environment, 2020, 744, 140988.	3.9	2
333	Algae Polyphenolic Compounds and Modern Antibacterial Strategies: Current Achievements and Immediate Prospects. Biomedicines, 2020, 8, 342.	1.4	42

#	Article	IF	CITATIONS
334	Developments in the study and applications of bacterial transformations of selenium species. Critical Reviews in Biotechnology, 2020, 40, 1250-1264.	5.1	44
335	Atomic differentiation of silver binding preference in protein targets: <i>Escherichia coli</i> malate dehydrogenase as a paradigm. Chemical Science, 2020, 11, 11714-11719.	3.7	14
336	Microbial Activities Response to Contamination in Soil and Sediments Rich in As Surrounding an Industrial Gold Mine. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	5
337	Determinants of Copper Resistance in Acidithiobacillus Ferrivorans ACH Isolated from the Chilean Altiplano. Genes, 2020, 11, 844.	1.0	10
338	The Role of DNA in the Extracellular Environment: A Focus on NETs, RETs and Biofilms. Frontiers in Plant Science, 2020, 11, 589837.	1.7	19
339	Supramolecular gels of gluconamides derived from renewable resources: Antibacterial and antiâ€biofilm applications. Nano Select, 2020, 1, 510-524.	1.9	5
340	Non-Destructive Monitoring of P. fluorescens and S. epidermidis Biofilm under Different Media by Fourier Transform Infrared Spectroscopy and Other Corroborative Techniques. Coatings, 2020, 10, 930.	1.2	4
341	Evolutionary causes and consequences of bacterial antibiotic persistence. Nature Reviews Microbiology, 2020, 18, 479-490.	13.6	113
342	Conformable self-assembling amyloid protein coatings with genetically programmable functionality. Science Advances, 2020, 6, eaba1425.	4.7	36
343	Cation exchange membrane behaviour of extracellular polymeric substances (EPS) in salt adapted granular sludge. Water Research, 2020, 178, 115855.	5.3	26
344	11Synthesis, crystal structures, electrochemistry and biological evaluation of tris(quinolin-8-olato) Mn(III) and Co(III) complexes methanol solvate. Journal of Molecular Structure, 2020, 1219, 128585.	1.8	5
345	9. Sicherheit und Schutz vor Krankheitserregern durch multiple Barrierensysteme. , 2020, , 713-796.		0
346	A genomic perspective of metal-resistant bacteria from gold particles: Possible survival mechanisms during gold biogeochemical cycling. FEMS Microbiology Ecology, 2020, 96, .	1.3	11
348	Function and mechanism of polysaccharide on enhancing tolerance of Trichoderma asperellum under Pb2+ stress. International Journal of Biological Macromolecules, 2020, 151, 509-518.	3.6	13
349	Biofilm architecture: An emerging synthetic biology target. Synthetic and Systems Biotechnology, 2020, 5, 1-10.	1.8	66
350	Tolerance mechanism of <i>Trichoderma asperellum</i> to Pb ²⁺ : response changes of related active ingredients under Pb ²⁺ stress. RSC Advances, 2020, 10, 5202-5211.	1.7	6
352	How to Cope With Heavy Metal Ions: Cellular and Proteome-Level Stress Response to Divalent Copper and Nickel in Halobacterium salinarum R1 Planktonic and Biofilm Cells. Frontiers in Microbiology, 2020, 10, 3056.	1.5	15
353	Designing a multi-species inoculant of phosphate rock-solubilizing bacteria compatible with arbuscular mycorrhizae for plant growth promotion in low-P soil amended with PR. Biology and Fertility of Soils, 2020, 56, 521-536.	2.3	35

#	Article	IF	CITATIONS
354	A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms. Environmental Pollution, 2020, 263, 114485.	3.7	46
355	Impacts of copper and lead exposure on prokaryotic communities from contaminated contrasted coastal seawaters: the influence of previous metal exposure. FEMS Microbiology Ecology, 2020, 96, .	1.3	9
356	Antibiofilm activity and cytotoxicity of silk sericin against <i>Streptococcus mutans</i> biofilm: an <i>in vitro</i> study. Journal of Wound Care, 2020, 29, S25-S35.	0.5	12
357	Roles of nitrite in mediating the composition and metacommunity of multispecies biofilms. Journal of Water Process Engineering, 2021, 40, 101764.	2.6	12
358	Mass spectrometry based targeted metabolomics precisely characterized new functional metabolites that regulate biofilm formation in Escherichia coli. Analytica Chimica Acta, 2021, 1145, 26-36.	2.6	17
359	Recent advances in exploring the heavy metal(loid) resistant microbiome. Computational and Structural Biotechnology Journal, 2021, 19, 94-109.	1.9	69
360	Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks. Environmental Pollution, 2021, 268, 115834.	3.7	19
361	Photodynamic Coatings on Polymer Microfibers for Pathogen Inactivation: Effects of Application Method and Composition. ACS Applied Materials & Samp; Interfaces, 2021, 13, 155-163.	4.0	20
362	Precipitation of low-temperature disordered dolomite induced by extracellular polymeric substances of methanogenic Archaea <i>Methanosarcina barkeri</i> Implications for sedimentary dolomite formation. American Mineralogist, 2021, 106, 69-81.	0.9	18
364	Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms?. Nanomaterials, 2021, 11, 82.	1.9	26
365	The role of ecotones in the dehalogenation of chloroethenes in alluvial fan aquifers. Environmental Science and Pollution Research, 2021, 28, 26871-26884.	2.7	2
366	Concepts for flow chemistry with whole-cell biocatalysts. Reaction Chemistry and Engineering, 2021, 6, 977-988.	1.9	11
367	Oxidative Imbalance in Candida tropicalis Biofilms and Its Relation With Persister Cells. Frontiers in Microbiology, 2020, 11, 598834.	1.5	9
368	Trace Metal Contamination Impacts Predicted Functions More Than Structure of Marine Prokaryotic Biofilm Communities in an Anthropized Coastal Area. Frontiers in Microbiology, 2021, 12, 589948.	1.5	21
369	Exopolysaccharide Carbohydrate Structure and Biofilm Formation by Rhizobium leguminosarum bv. trifolii Strains Inhabiting Nodules of Trifoliumrepens Growing on an Old Zn–Pb–Cd-Polluted Waste Heap Area. International Journal of Molecular Sciences, 2021, 22, 2808.	1.8	11
370	The Effect of Metal lons on the Growth and Ferrous IronOxidation by Leptospirillum ferriphilum CC Isolated from Armenia Mine Sites. Metals, 2021, 11, 425.	1.0	6
371	Local Adaptation of Legionella pneumophila within a Hospital Hot Water System Increases Tolerance to Copper. Applied and Environmental Microbiology, 2021, 87, .	1.4	8
372	Nanomaterials in Wound Healing and Infection Control. Antibiotics, 2021, 10, 473.	1.5	63

#	Article	IF	Citations
373	Assessing biofilm inhibition and immunomodulatory activity of small amounts of synthetic host defense peptides synthesized using SPOT-array technology. Nature Protocols, 2021, 16, 1850-1870.	5.5	5
374	Lichens and biofilms: Common collective growth imparts similar developmental strategies. Algal Research, 2021, 54, 102217.	2.4	13
375	Genetic analysis of electroactive biofilms. International Microbiology, 2021, 24, 631-648.	1.1	7
377	Prevalence of blaVEB and blaTEM genes, antimicrobial resistance pattern and biofilm formation in clinical isolates of Pseudomonas aeruginosa from burn patients in Isfahan, Iran. Gene Reports, 2021, 23, 101157.	0.4	4
378	Near-Infrared Light Enhanced Peroxidase-Like Activity of PEGylated Palladium Nanozyme for Highly Efficient Biofilm Eradication. Journal of Biomedical Nanotechnology, 2021, 17, 1131-1147.	0.5	9
380	Keystone species determine the "selection mechanism―of multispecies biofilms for bacteria from soil aggregates. Science of the Total Environment, 2021, 773, 145069.	3.9	11
381	Genome Annotation of Poly(lactic acid) Degrading Pseudomonas aeruginosa, Sphingobacterium sp. and Geobacillus sp International Journal of Molecular Sciences, 2021, 22, 7385.	1.8	5
382	Disruption of Metallostasis in the Anaerobic Human Pathogen <i>Fusobacterium nucleatum</i> by the Zinc Ionophore PBT2. ACS Infectious Diseases, 2021, 7, 2285-2298.	1.8	6
383	High-Density Three-Dimensional Network of Covalently Linked Nitric Oxide Donors to Achieve Antibacterial and Antibiofilm Surfaces. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33745-33755.	4.0	12
384	Recent development in Se-enriched yeast, lactic acid bacteria and bifidobacteria. Critical Reviews in Food Science and Nutrition, 2023, 63, 411-425.	5.4	30
385	Reviews on mechanisms of in vitro antioxidant, antibacterial and anticancer activities of water-soluble plant polysaccharides. International Journal of Biological Macromolecules, 2021, 183, 2262-2271.	3.6	109
386	Recent Advances in Research on Antibacterial Metals and Alloys as Implant Materials. Frontiers in Cellular and Infection Microbiology, 2021, 11, 693939.	1.8	37
387	Applying enzymatic biomarkers of the in situ microbial community to assess the sediment risk from Sepetiba Bay (Brazil). Marine Pollution Bulletin, 2021, 169, 112547.	2.3	4
388	Coprinus comatus endophytic bacteria characteristics and mechanisms for the cadmium resistance. Environmental Science and Pollution Research, 2022, 29, 584-593.	2.7	3
389	Performance Evaluation of Selenite (SeO32â^') Reduction by Enterococcus spp Catalysts, 2021, 11, 1024.	1.6	6
390	Bacterial Exposure to Nickel: Influence on Adhesion and Biofilm Formation on Orthodontic Archwires and Sensitivity to Antimicrobial Agents. Materials, 2021, 14, 4603.	1.3	4
391	Planktonic cells of Staphylococcus and Bacillus species capable of faster chromium reduction in short incubation times as compared to their biofilms. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
392	Isolation, Characterization and Identification of a New Lysinibacillus fusiformis Strain ZC from Metlaoui Phosphate Laundries Wastewater: Bio-Treatment Assays. Sustainability, 2021, 13, 10072.	1.6	4

#	Article	IF	CITATIONS
393	Biofilm-Mediated Immobilization of a Multienzyme Complex for Accelerating Inositol Production from Starch. Bioconjugate Chemistry, 2021, 32, 2032-2042.	1.8	6
394	Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Critical Reviews in Microbiology, 2022, 48, 327-355.	2.7	63
395	Role of intertidal microbial communities in carbon dioxide sequestration and pollutant removal: A review. Marine Pollution Bulletin, 2021, 170, 112626.	2.3	18
396	Nanoparticleâ€stabilized encapsulation of borneol and citral: Physicochemical characteristics, storage stability, and enhanced antibacterial activities. Journal of Food Science, 2021, 86, 4554-4565.	1.5	10
397	The structural appeal of metal–organic frameworks in antimicrobial applications. Coordination Chemistry Reviews, 2021, 442, 214007.	9.5	51
398	Graphene quantum dot formulation for cancer imaging and redox-based drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102408.	1.7	32
399	Application of a Spiral Symmetric Stream Anaerobic Bioreactor for treating saline heparin sodium pharmaceutical wastewater: Reactor operating characteristics, organics degradation pathway and salt tolerance mechanism. Water Research, 2021, 205, 117671.	5.3	33
400	Biomineralization of Cd2+ and inhibition on rhizobacterial Cd mobilization function by Bacillus Cereus to improve safety of maize grains. Chemosphere, 2021, 283, 131095.	4.2	16
401	The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. Chemosphere, 2021, 282, 131048.	4.2	29
402	Variable metal resistance of P. putida CZ1 biofilms in different environments suggests its remediation application scope. Journal of Environmental Management, 2021, 298, 113458.	3.8	2
403	Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Environmental Pollution, 2021, 289, 117851.	3.7	49
404	Competitive advantage of oxygen-tolerant bioanodes of Geobacter sulfurreducens in bioelectrochemical systems. Biofilm, 2021, 3, 100052.	1.5	6
406	Spatial Structure of Microbes in Nature and the Biophysics of Cell–Cell Communication. Biological and Medical Physics Series, 2015, , 53-81.	0.3	3
407	Bioremediation Strategies Employed by Pseudomonas Species. Sustainable Development and Biodiversity, 2015, , 351-383.	1.4	3
408	Microbacterium telephonicum sp. nov., isolated from the screen of a cellular phone. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1052-1058.	0.8	19
414	The Pyrimidine Nucleotide Biosynthetic Pathway Modulates Production of Biofilm Determinants in Escherichia coli. PLoS ONE, 2012, 7, e31252.	1.1	97
415	Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas. PLoS ONE, 2015, 10, e0139011.	1.1	24
416	Evaluating the Metal Tolerance Capacity of Microbial Communities Isolated from Alberta Oil Sands Process Water. PLoS ONE, 2016, 11, e0148682.	1.1	9

#	Article	IF	CITATIONS
417	Current Research Approaches to Target Biofilm Infections Postdoc Journal, 2015, 3, 36-49.	0.4	20
419	Screening, Characterization and Biofilm Formation of Nickel Resistant Bacteria Isolated from Indigenous Environment. Polish Journal of Microbiology, 2013, 62, 411-418.	0.6	5
420	Microbial Response against Metal Toxicity. Advances in Environmental Engineering and Green Technologies Book Series, 2016, , 75-96.	0.3	5
421	Detection of Enterococcus faecalis and Candida albicans in previously root-filled teeth in a population of Gujarat with polymerase chain reaction. Contemporary Clinical Dentistry, 2013, 4, 62.	0.2	21
422	Difference in influence of commercial industrial paints on microbial biofilms and planktonic cells. Kragujevac Journal of Science, 2017, , 145-156.	0.1	1
423	The influence of environmental factors on the planktonic growth and biofilm formation of Escherichia coli. Kragujevac Journal of Science, 2018, , 205-216.	0.1	4
424	Dynamics of Soil Microbial N-Cycling Strategies in Response to Cadmium Stress. Environmental Science &	4.6	39
425	Differential Responses of Emiliania huxleyi (Haptophyta) Strains to Copper Excess. Cryptogamie, Algologie, 2018, 39, 481.	0.3	7
426	Optimization the Removal of Nickel from Simulated Wastewater by A Pseudomonas aeruginosa Biofilm Supported on Clinoptilolite. MuhandisÄ«-i BihdÄsht-i Muá,¥Ä«á¹, 2018, 6, 27-41.	0.1	1
427	Biofilms in Antimicrobial Activity and Drug Resistance. , 2019, , 109-139.		0
429	Protective effects of zinc ions towards <i>Staphylococcus aureus</i> bacteria exposed with antibiotics. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2019, 96, 5-12.	0.3	1
430	Functionalized polyamide membranes yield suppression of biofilm and planktonic bacteria while retaining flux and selectivity. Separation and Purification Technology, 2022, 282, 119981.	3.9	8
431	Improving the Strength and Leaching Characteristics of Pb-Contaminated Silt through MICP. Crystals, 2021, 11, 1303.	1.0	9
433	Potential application of Pseudomonas stutzeri W228 for removal of copper and lead from marine environments. PLoS ONE, 2020, 15, e0240486.	1.1	8
434	Quick adaptation of Ralstonia Solanacearum to copper stress to recover culturability and growth in water and soil. Brazilian Journal of Microbiology, 2011, 42, 576-91.	0.8	0
435	Time dependent enhanced resistance against antibiotics & metal salts by planktonic & biofilm form of Acinetobacter haemolyticus MMC 8 clinical isolate. Indian Journal of Medical Research, 2014, 140, 665-71.	0.4	11
437	The multifactorial resistance of. EXCLI Journal, 2020, 19, 813-816.	0.5	0
438	Regulation of photo triggered cytotoxicity in electrospun nanomaterials: role of photosensitizer binding mode and polymer identity. Nanoscale Advances, 0, , .	2.2	5

#	Article	IF	CITATIONS
439	Multifunctional Antibiotic–Host Defense Peptide Conjugate Kills Bacteria, Eradicates Biofilms, and Modulates the Innate Immune Response. Journal of Medicinal Chemistry, 2021, 64, 16854-16863.	2.9	18
440	Acquisition of ionic copper by the bacterial outer membrane protein OprC through a novel binding site. PLoS Biology, 2021, 19, e3001446.	2.6	14
441	Multiplexed detection of aqueous Cd2+, Pb2+ and Cu2+ ions at mercury-on-graphene film modified electrode by DPASV. Sensing and Bio-Sensing Research, 2021, 34, 100464.	2.2	5
442	Synergistic Interactions Among Microbial Communities. , 2021, , 1-37.		2
444	Mucilaginibacter sp. Strain Metal(loid) and Antibiotic Resistance Isolated from Estuarine Soil Contaminated Mine Tailing from the Fundão Dam. Genes, 2022, 13, 174.	1.0	4
445	Different Impact of Suspended Al2O3 Nanoparticles on Microbial Communities: Formation of 2D-Networks (Without Humic Acids) or 3D-Colonies (With Humic Acids). Microbial Ecology, 2023, 85, 137-145.	1.4	1
446	Co-Selection of Heavy Metal and Antibiotic Resistance in Soil Bacteria from Agricultural Soils in New Zealand. Sustainability, 2022, 14, 1790.	1.6	6
447	Applying enzymatic biomarkers of the in situ microbial community to assess the risk of coastal sediment., 2022,, 305-335.		0
448	Impacts of UV-C Irradiation on Marine Biofilm Community Succession. Applied and Environmental Microbiology, 2022, 88, aem0229821.	1.4	3
449	Cupriavidus metallidurans CH34 Possesses Aromatic Catabolic Versatility and Degrades Benzene in the Presence of Mercury and Cadmium. Microorganisms, 2022, 10, 484.	1.6	7
450	Synergism inhibition and eradication activity of silver nitrate/potassium tellurite combination against <i>Pseudomonas aeruginosa </i> biofilm. Journal of Antimicrobial Chemotherapy, 2022, , .	1.3	4
451	Combined utilization of metabolic inhibitors to prevent synergistic multi-species biofilm formation. AMB Express, 2022, 12, 32.	1.4	0
452	Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Frontiers in Medicine, 2022, 9, 793615.	1.2	44
453	Tellurite and Selenite: how can these two oxyanions be chemically different yet so similar in the way they are transformed to their metal forms by bacteria?. Biological Research, 2022, 55, 17.	1.5	14
454	Bacteriophage-Mediated Control of Biofilm: A Promising New Dawn for the Future. Frontiers in Microbiology, 2022, 13, 825828.	1.5	30
455	Fungal-bacterial biofilm mediated heavy metal rhizo-remediation. World Journal of Microbiology and Biotechnology, 2022, 38, 85.	1.7	7
456	The growthâ€survival tradeâ€off is hardâ€wired in the <i>Lactococcus lactis</i> gene regulation network. Environmental Microbiology Reports, 2022, 14, 632-636.	1.0	6
486	Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp Marine Biotechnology, 2022, 24, 431-447.	1.1	2

#	Article	IF	CITATIONS
487	Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. Nano Research, 2022, 15, 6220-6242.	5.8	33
488	Mercury drives microbial community assembly and ecosystem multifunctionality across a Hg contamination gradient in rice paddies. Journal of Hazardous Materials, 2022, 435, 129055.	6.5	23
490	Recent technological advances in the management of chronic wounds:ÂA literature review. Health Science Reports, 2022, 5, .	0.6	25
491	Response of selected microbial strains and their consortia to the presence of automobile paints: Biofilm growth, matrix protein content and hydrolytic enzyme activity. Saudi Journal of Biological Sciences, 2022, 29, 103347.	1.8	2
492	Algal Phlorotannins as Novel Antibacterial Agents with Reference to the Antioxidant Modulation: Current Advances and Future Directions. Marine Drugs, 2022, 20, 403.	2.2	17
493	3D hierarchical Cu-MOF nanosheets-based antibacterial mesh. Chemical Engineering Journal, 2022, 446, 137381.	6.6	18
494	Modification of material surface to regulate biofilm formation. , 2022, , 307-327.		3
495	Antibacterial silver and gold complexes of imidazole and 1,2,4-triazole derived N-heterocyclic carbenes. Dalton Transactions, 2022, 51, 12056-12070.	1.6	6
496	Effects of Heavy Metal Ions on Microbial Reductive Dechlorination of 1, 2-Dichloroethane and Tetrachloroethene. Frontiers in Marine Science, 0, 9, .	1.2	1
497	MRG Chip: A High-Throughput qPCR-Based Tool for Assessment of the Heavy Metal(loid) Resistome. Environmental Science & Environ	4.6	10
498	Growth and biofilm formation of <i>Cupriavidus metallidurans</i> CH34 on different metallic and polymeric materials used in spaceflight applications. Biofouling, 2022, 38, 643-655.	0.8	2
499	Machine learning–based inverse design for electrochemically controlled microscopic gradients of O ₂ and H ₂ O ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
500	Biofilm as an adaptation strategy to extreme conditions. Rendiconti Lincei, 2022, 33, 527-536.	1.0	18
501	Microbial community metabolic alterations and resistance to metals and antibiotics driven by chronic exposition to multiple pollutants in a highly impacted tropical coastal bay. Chemosphere, 2022, 307, 135928.	4.2	4
502	Antimicrobial and Innate Immune Tolerance Mechanisms in Biofilms. Springer Series on Biofilms, 2022, , 17-35.	0.0	1
503	Physiological changes and growth behavior of Corynebacterium glutamicum cells in biofilm. Frontiers in Microbiology, $0,13,1$	1.5	0
504	Biofilm formation is not an independent risk factor for mortality in patients with Acinetobacter baumannii bacteremia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
506	Visualized Gallium/Lyticaseâ€Integrated Antifungal Strategy for Fungal Keratitis Treatment. Advanced Materials, 2022, 34, .	11.1	12

#	Article	IF	CITATIONS
507	<i>c</i> -Type Cytochromes Facilitated Cd(II) Complexation by an Electrochemically Active Bacterium <i>Shewanella oneidensis</i> MR-1. ACS ES&T Water, 2022, 2, 1697-1706.	2.3	0
508	Multiple Antimicrobial Resistance and Heavy Metal Tolerance of Biofilm-Producing Bacteria Isolated from Dairy and Non-Dairy Food Products. Foods, 2022, 11, 2728.	1.9	8
509	Finding the best combination of autochthonous microorganisms with the most effective biosorption ability for heavy metals removal from wastewater. Frontiers in Microbiology, 0, 13 , .	1.5	5
510	Immobilization of Cd2+ and Pb2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1. Environmental Science and Pollution Research, 2023, 30, 22471-22482.	2.7	6
511	A cryptic transcription factor regulates Caulobacter adhesin development. PLoS Genetics, 2022, 18, e1010481.	1.5	6
512	Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release. International Journal of Environmental Research and Public Health, 2022, 19, 14146.	1.2	3
513	Widespread bacterial responses and their mechanism of bacterial metallogenic detoxification under high concentrations of heavy metals. Ecotoxicology and Environmental Safety, 2022, 246, 114193.	2.9	10
514	Microbial indicators along a metallic contamination gradient in tropical coastal sediments. Journal of Hazardous Materials, 2023, 443, 130244.	6.5	6
515	Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain. Pathogens, 2022, 11, 1416.	1.2	9
516	Iron restriction induces the small-colony variant phenotype in Staphylococcus aureus. Frontiers in Microbiology, 0, 13, .	1.5	4
517	Antibacterial and Antibiofilm Activity of Nanostructured Copper Films Prepared by Ionized Jet Deposition. Antibiotics, 2023, 12, 55.	1.5	4
518	Pseudomonas putida biofilm: development and dynamics. , 2022, , 25-49.		0
519	Microbial biofilms: Unravel their potential for agricultural applications under agro-ecosystem. , 2023, , 59-70.		1
520	Biofilms and their role in corrosion in marine environments. , 2023, , 173-185.		2
521	Multiple mechanisms collectively mediate tungsten homeostasis and resistance in Citrobacter sp. Lzp2. Journal of Hazardous Materials, 2023, 448, 130877.	6.5	2
522	Biofilm-mediated wastewater treatment: a comprehensive review. Materials Advances, 2023, 4, 1415-1443.	2.6	15
523	Nanotechnology in combating biofilm: A smart and promising the rapeutic strategy. Frontiers in Microbiology, 0, 13, .	1.5	14
524	Customized biofilm device for antibiofilm and antibacterial screening of newly developed nanostructured silver and zinc coatings. Journal of Biological Engineering, 2023, 17, .	2.0	4

#	ARTICLE	IF	CITATIONS
525	The High Penetrability of Nanoparticles into Bacterial Membranes: A Key of a Potential Application. Postepy Mikrobiologii, 2023, 62, 3-11.	0.1	0
526	Exploration of Plant Growth Promoting Rhizobacteria (PGPRs) for Heavy Metal Bioremediation and Environmental Sustainability: Recent Advances and Future Prospects. , 2023, , 29-55.		4
527	Co-Selection of Bacterial Metal and Antibiotic Resistance in Soil Laboratory Microcosms. Antibiotics, 2023, 12, 772.	1.5	0
540	The good, the bad, and the ugly of metals as antimicrobials. BioMetals, 0, , .	1.8	0