Microfabrication meets microbiology

Nature Reviews Microbiology 5, 209-218

DOI: 10.1038/nrmicro1616

Citation Report

#	Article	IF	CITATIONS
1	Effects of Magnetic Field and Injected Current on dc SQUIDs with Dayem Bridges. Japanese Journal of Applied Physics, 1981, 20, 1311-1317.	0.8	6
2	A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab on A Chip, 2007, 7, 1515.	3.1	222
3	Building on basic metagenomics with complementary technologies. Genome Biology, 2007, 8, 231.	13.9	51
4	Can we build synthetic, multicellular systems by controlling developmental signaling in space and time?. Current Opinion in Chemical Biology, 2007, 11, 604-611.	2.8	13
5	Down the rabbit hole Nature Reviews Microbiology, 2007, 5, 164-164.	13.6	1
6	Recent advances in molecular techniques for the detection of phylogenetic markers and functional genes in microbial communities. FEMS Microbiology Letters, 2007, 275, 183-190.	0.7	14
7	Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomedical Microdevices, 2008, 10, 489-498.	1.4	84
8	Photo Gel–Sol/Sol–Gel Transition and Its Patterning of a Supramolecular Hydrogel as Stimuliâ€Responsive Biomaterials. Chemistry - A European Journal, 2008, 14, 3977-3986.	1.7	208
9	Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays, 2008, 30, 811-821.	1.2	181
10	Microwells with Patterned Proteins by a Selfâ€Assembly Process Using Honeycombâ€5tructured Porous Films. Advanced Materials, 2008, 20, 3550-3556.	11.1	114
11	Spatial localization of bacteria controls coagulation of human blood by 'quorum acting'. Nature Chemical Biology, 2008, 4, 742-750.	3.9	95
12	Laminar flow cells for single-molecule studies of DNA-protein interactions. Nature Methods, 2008, 5, 517-525.	9.0	85
13	Metagenomics. Letters in Applied Microbiology, 2008, 47, 361-366.	1.0	119
14	The Moore's Law of microbiology – towards bacterial culture miniaturization with the micro-Petri chip. Trends in Biotechnology, 2008, 26, 345-347.	4.9	22
15	Using Chemistry and Microfluidics To Understand the Spatial Dynamics of Complex Biological Networks. Accounts of Chemical Research, 2008, 41, 549-558.	7.6	23
16	Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab on A Chip, 2008, 8, 1265.	3.1	395
17	Experimental Verification of the Behavioral Foundation of Bacterial Transport Parameters Using Microfluidics. Biophysical Journal, 2008, 95, 4481-4493.	0.2	89
18	Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals. Chemistry of Materials, 2008, 20, 615-624.	3.2	240

#	Article	IF	CITATIONS
19	Nanostructured Plasmonic Sensors. Chemical Reviews, 2008, 108, 494-521.	23.0	2,245
20	Complex micropatterning of periodic structures on elastomeric surfaces. Soft Matter, 2008, 4, 2360.	1.2	115
21	Reconfigurable Microfluidics With Metallic Containers. Journal of Microelectromechanical Systems, 2008, 17, 265-271.	1.7	12
22	MEMS and the microbe. Lab on A Chip, 2008, 8, 1604.	3.1	54
23	Optical systems for single cell analyses. Expert Opinion on Drug Discovery, 2008, 3, 1323-1344.	2.5	12
24	Building communities one bacterium at a time. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18075-18076.	3.3	18
25	Precision patterning of PDMS membranes and applications. Journal of Micromechanics and Microengineering, 2008, 18, 037004.	1.5	37
26	A microfluidic chemotaxis assay to study microbial behavior in diffusing nutrient patches. Limnology and Oceanography: Methods, 2008, 6, 477-488.	1.0	44
27	Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18188-18193.	3.3	426
28	Elasticity-mediated nematiclike bacterial organization in model extracellular DNA matrix. Physical Review E, 2008, 78, 030701.	0.8	69
29	Vibrio fischeri /em> and Escherichia coli /em> adhesion tendencies towards photolithographically modified nanosmooth poly (tert /em>-butyl methacrylate) polymer surfaces. Nanotechnology, Science and Applications, 2008, Volume 1, 33-44.	4.6	6
30	Microfabricated Microbial Fuel Cell Arrays Reveal Electrochemically Active Microbes. PLoS ONE, 2009, 4, e6570.	1.1	134
31	Integration column: Artificial ECM: expanding the cell biology toolbox in 3D. Integrative Biology (United Kingdom), 2009, 1, 235.	0.6	70
32	Reporter Proteins in Whole-Cell Optical Bioreporter Detection Systems, Biosensor Integrations, and Biosensing Applications. Sensors, 2009, 9, 9147-9174.	2.1	90
33	Themes of nanoscience for the introductory physics course. European Journal of Physics, 2009, 30, S17-S31.	0.3	11
34	Bacterial Motility and Clustering Guided by Microcontact Printing. Nano Letters, 2009, 9, 4553-4557.	4.5	31
35	RNA–protein binding kinetics in an automated microfluidic reactor. Nucleic Acids Research, 2009, 37, e142-e142.	6.5	24
36	Establishing New Sites of Polarization by Microtubules. Current Biology, 2009, 19, 83-94.	1.8	82

#	Article	IF	CITATIONS
37	Mechanical Forces of Fission Yeast Growth. Current Biology, 2009, 19, 1096-1101.	1.8	156
38	Rapid Microfluidic Generation of Patterned Aldehydes from Hydroxyâ€Terminated Selfâ€Assembled Monolayers for Ligand and Cell Immobilization on Optically Transparent Indium Tin Oxide Surfaces. Advanced Materials, 2009, 21, 3082-3086.	11.1	15
39	"Remote―Fabrication via Threeâ€Dimensional Reactionâ€Diffusion: Making Complex Coreâ€andâ€Shell Particles and Assembling Them into Openâ€Lattice Crystals. Advanced Materials, 2009, 21, 1911-1915.	11.1	12
40	Fabrication of Advanced Functional Devices Combining Soft Chemistry with Xâ€ray Lithography in One Step. Advanced Materials, 2009, 21, 4932-4936.	11.1	63
41	Chemoselective ligand patterning of electroactive surfaces using microfluidics. Electrophoresis, 2009, 30, 3381-3385.	1.3	5
42	Micropatterned Fiber Scaffolds for Spatially Controlled Cell Adhesion. Macromolecular Rapid Communications, 2009, 30, 1638-1644.	2.0	27
44	Microfluidic Confinement of Single Cells of Bacteria in Small Volumes Initiates Highâ€Density Behavior of Quorum Sensing and Growth and Reveals Its Variability. Angewandte Chemie - International Edition, 2009, 48, 5908-5911.	7.2	282
45	Stem cells in microfluidics. Biotechnology Progress, 2009, 25, 52-60.	1.3	67
46	Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels. Acta Biomaterialia, 2009, 5, 589-596.	4.1	56
47	Patterned and switchable surfaces for biomolecular manipulation. Acta Biomaterialia, 2009, 5, 2350-2370.	4.1	88
48	Microfabricated Force Sensors and Their Applications in the Study of Cell Mechanical Response. Experimental Mechanics, 2009, 49, 135-151.	1.1	18
49	Cell microâ€arrays from surfaceâ€attached peptideâ€polymer monolayers. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 468-473.	0.8	15
50	Nanointersticeâ€Driven Microflow. Small, 2009, 5, 609-613.	5.2	30
51	Largeâ€Scale Ordered Plastic Nanopillars for Quantitative Liveâ€Cell Imaging. Small, 2009, 5, 449-453.	5. 2	23
52	Microreplication and Design of Biological Architectures Using Dynamicâ€Mask Multiphoton Lithography. Small, 2009, 5, 120-125.	5.2	131
53	Intracellular Polysilicon Barcodes for Cell Tracking. Small, 2009, 5, 2433-2439.	5.2	43
54	A shear gradient–dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 2009, 15, 665-673.	15.2	712
55	Microfluidic devices for measuring gene network dynamics in single cells. Nature Reviews Genetics, 2009, 10, 628-638.	7.7	224

#	Article	IF	CITATIONS
56	Lost Moldâ€Rapid Infiltration Forming of Mesoscale Ceramics: Part 2, Geometry and Strength Improvements. Journal of the American Ceramic Society, 2009, 92, S70-S78.	1.9	17
57	Translational nanomedicine: status assessment and opportunities. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 251-273.	1.7	114
58	Integration of ink jet and transfer printing for device fabrication using nanostructured materials. Carbon, 2009, 47, 321-324.	5.4	11
59	Combining nanosurface chemistry and microfluidics for molecular analysis and cell biology. Analytica Chimica Acta, 2009, 650, 98-105.	2.6	43
60	Micromachined Hydrogel Stamper for Soft Printing of Biomolecules with Adjustable Feature Dimensions. Analytical Chemistry, 2009, 81, 4551-4554.	3.2	2
61	Making Nanoflowerbeds: Reaction Pathways Involved in the Selective Chemical Bath Deposition of ZnS on Functionalized Alkanethiolate Self-Assembled Monolayers. ACS Nano, 2009, 3, 370-378.	7. 3	31
62	Fabrication of Microbial Biofilm Arrays by Geometric Control of Cell Adhesion. Langmuir, 2009, 25, 4643-4654.	1.6	43
63	Dissecting microbiological systems using materials science. Trends in Microbiology, 2009, 17, 100-108.	3.5	11
64	Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology, 2009, 87, 133-170.	2.8	356
65	Logarithmic Sensing in Escherichia coli Bacterial Chemotaxis. Biophysical Journal, 2009, 96, 2439-2448.	0.2	211
66	Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter, 2009, 5, 1174.	1.2	264
67	Introduction to Microfluidics. , 2008, , 1-34.		11
68	Integration column: microwell arrays for mammalian cell culture. Integrative Biology (United) Tj ETQq0 0 0 rgBT /	Overlock 0.6	10 Tf 50 262 ⁻ 125
69	On the Relationship between Jetted Inks and Printed Biopatterns: Molecular-Thin Functional Microarrays of Glucose Oxidase. Langmuir, 2009, 25, 6312-6318.	1.6	34
70	Nanoscale Patterning of Organic Monolayers by Catalytic Stamp Lithography: Scope and Limitations. ACS Applied Materials & Distributions (2009), 1, 2711-2720.	4.0	25
71	Isolation, incubation, and parallel functional testing and identification by FISH of rare microbial single-copy cells from multi-species mixtures using the combination of chemistrode and stochastic confinement. Lab on A Chip, 2009, 9, 2153.	3.1	98
72	Fabrication of reversibly adhesive fluidic devices using magnetism. Lab on A Chip, 2009, 9, 3016.	3.1	28
73	Mechanical self-assembly fabrication of gears. Soft Matter, 2009, 5, 3469.	1.2	40

#	ARTICLE	IF	CITATIONS
74	Perturbation of single hematopoietic stem cell fates in artificial niches. Integrative Biology (United) Tj ETQq0 0 C	rgBT/Ove	erlock 10 Tf 50
7 5	Nanoimprint Lithography Materials Development for Semiconductor Device Fabrication. Annual Review of Materials Research, 2009, 39, 155-180.	4.3	132
76	Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties. Science, 2009, 324, 59-63.	6.0	1,541
77	Resource Patch Formation and Exploitation throughout the Marine Microbial Food Web. American Naturalist, 2009, 173, E15-E29.	1.0	71
78	Fabrication of platinum nanopillars on peptide-based soft structures using a focused ion beam. Biofabrication, 2009, 1 , 025002.	3.7	18
79	From Nanotechnology to Nanomedicine: Applications to Cancer Research. Current Molecular Medicine, 2010, 10, 640-652.	0.6	148
81	MICROPATTERNED POLYMER STRUCTURES FOR CELL AND TISSUE ENGINEERING. , 2010, , 101-120.		0
82	Surface Patterning Using Self Assembled Monolayers (SAMs). ACS Symposium Series, 2010, , 65-107.	0.5	5
83	Effects of ozone in surface modification and thermal stability of SEBS block copolymers. Polymer Degradation and Stability, 2010, 95, 975-986.	2.7	9
84	The renaissance of continuous culture in the post-genomics age. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 993-1021.	1.4	105
85	DNA technologies: what's next applied to microbiology research?. Antonie Van Leeuwenhoek, 2010, 98, 249-262.	0.7	11
86	Synthetic biology for biofuels: Building designer microbes from the scratch. Biotechnology and Bioprocess Engineering, 2010, 15, 11-21.	1.4	29
87	Silicon Based Nanocoatings on Metal Alloys and Their Role in Surface Engineering. Silicon, 2010, 2, 117-151.	1.8	18
88	Evanescent-Field Excitation of Fluophores in Cultured Neural Networks by Integrated Polymer Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 954-960.	1.9	1
89	Robust Growth of Escherichia coli. Current Biology, 2010, 20, 1099-1103.	1.8	859
90	Bacterial growth monitoring in a microfluidic device by confocal reflection microscopy. Journal of Bioscience and Bioengineering, 2010, 110, 130-133.	1.1	20
91	Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy. Journal of Bioscience and Bioengineering, 2010, 110, 377-380.	1.1	54
92	Inâ€Film Bioprocessing and Immunoanalysis with Electroaddressable Stimuliâ€Responsive Polysaccharides. Advanced Functional Materials, 2010, 20, 1645-1652.	7.8	36

#	Article	IF	CITATIONS
93	Patterning Colloidal Crystals and Nanostructure Arrays by Soft Lithography. Advanced Functional Materials, 2010, 20, 3411-3424.	7.8	133
94	Colloidal Selfâ€Assembly Meets Nanofabrication: From Twoâ€Dimensional Colloidal Crystals to Nanostructure Arrays. Advanced Materials, 2010, 22, 4249-4269.	11.1	577
96	Microtechnology meets systems biology: The small molecules of metabolome as next big targets. Journal of Biotechnology, 2010, 149, 33-51.	1.9	20
97	Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development. Acta Biomaterialia, 2010, 6, 1948-1957.	4.1	95
98	Intracellular Silicon Chips in Living Cells. Small, 2010, 6, 499-502.	5.2	35
99	Impact of Tumor Cell Cytoskeleton Organization on Invasiveness and Migration: A Microchannel-Based Approach. PLoS ONE, 2010, 5, e8726.	1.1	142
101	Microfabricated ratchet structures for concentrating and patterning motile bacterial cells. Journal of Micromechanics and Microengineering, 2010, 20, 095006.	1.5	13
102	Plasma directed assembly and organization: bottom-up nanopatterning using top-down technology. Nanotechnology, 2010, 21, 085302.	1.3	53
103	Application of microfluidic technology to pancreatic islet research: first decade of endeavor. Bioanalysis, 2010, 2, 1729-1744.	0.6	26
104	Engineering hydrogels as extracellular matrix mimics. Nanomedicine, 2010, 5, 469-484.	1.7	734
105	Hybrid strategies in nanolithography. Reports on Progress in Physics, 2010, 73, 036501.	8.1	150
106	Protein Immobilization on Ni(II) Ion Patterns Prepared by Microcontact Printing and Dip-Pen Nanolithography. ACS Nano, 2010, 4, 1083-1091.	7.3	31
107	Building Upon Patterned Organic Monolayers Produced via Catalytic Stamp Lithography. ACS Applied Materials & Diterfaces, 2010, 2, 2301-2307.	4.0	14
108	Direct Photolithographic Patterning of Electrospun Films for Defined Nanofibrillar Microarchitectures. Langmuir, 2010, 26, 2235-2239.	1.6	52
109	Catalytic Microcontact Printing on Chemically Functionalized H-Terminated Silicon. Langmuir, 2010, 26, 1449-1451.	1.6	25
110	Lithography-free production of stamps for microcontact printing of arrays. Analytical Methods, 2010, 2, 1180.	1.3	6
111	An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study. Lab on A Chip, 2010, 10, 2710.	3.1	24
112	In vitro and in vivo model systems to study microbial biofilm formation. Journal of Microbiological Methods, 2010, 83, 89-105.	0.7	362

#	ARTICLE	IF	CITATIONS
113	Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chemical Society Reviews, 2010, 39, 974.	18.7	97
114	Label-free biological and chemical sensors. Nanoscale, 2010, 2, 1544.	2.8	335
115	Bacteria Pattern Spontaneously on Periodic Nanostructure Arrays. Nano Letters, 2010, 10, 3717-3721.	4.5	265
116	Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold. Tissue Engineering - Part A, 2010, 16, 1469-1477.	1.6	49
117	Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab on A Chip, 2010, 10, 589-597.	3.1	219
118	A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab on A Chip, 2010, 10, 617-625.	3.1	102
119	Hydrodynamic gating for sample introduction on a microfluidic chip. Lab on A Chip, 2010, 10, 1472.	3.1	25
120	Organization of <i>Pseudomonas fluorescens </i> Organization of <i>Pseudomonas fluorescens </i> Surfaces. ACS Applied Materials & amp; Interfaces, 2010, 2, 2530-2539.	4.0	30
121	High-resolution microcontact printing and transfer of massive arrays of microorganisms on planar and compartmentalized nanoporous aluminium oxide. Lab on A Chip, 2010, 10, 1410.	3.1	30
122	Mechanically tunable multiphoton fabricated protein hydrogels investigated using atomic force microscopy. Soft Matter, 2010, 6, 2842.	1.2	40
123	Optofluidic platforms based on surface-enhanced Raman scattering. Analyst, The, 2010, 135, 837.	1.7	96
124	Orchestrated structure evolution: accelerating direct-write nanomanufacturing by combining top-down patterning with bottom-up growth. Nanotechnology, 2010, 21, 195306.	1.3	6
125	Electrochemical microsystem for continuous monitoring of nitrification activity of microbial complexes. , 2010, , .		0
126	Non-invasive microfluidic gap junction assay. Integrative Biology (United Kingdom), 2010, 2, 130.	0.6	23
127	A PDMS-based biochip with integrated sub-micrometre position control for TIRF microscopy of the apical cell membrane. Lab on A Chip, 2011, 11, 3064.	3.1	18
128	Photo-switchable polyelectrolyte brush for dual protein patterning. Journal of Materials Chemistry, 2011, 21, 13789.	6.7	13
129	A rapid and economical method for profiling feature heights during microfabrication. Lab on A Chip, 2011, 11, 974.	3.1	11
130	A microfluidic platform for high-sensitivity, real-time drug screening on C. elegans and parasitic nematodes. Lab on A Chip, 2011, 11, 2385.	3.1	78

#	Article	IF	CITATIONS
131	Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources. Analyst, The, 2011, 136, 3238.	1.7	25
132	Site-selective metal-coordination-based patterning of silane monolayers. Chemical Communications, 2011, 47, 2802.	2,2	6
133	Intracellular Protein Determination Using Droplet-Based Immunoassays. Analytical Chemistry, 2011, 83, 5361-5368.	3.2	52
134	Chemical Functionalization of Polysilicon Microparticles for Single-Cell Studies. Langmuir, 2011, 27, 8302-8308.	1.6	7
135	Scanning Thermal Lithography of Tailored <i>tert</i> -Butyl Ester Protected Carboxylic Acid Functionalized (Meth)acrylate Polymer Platforms. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3855-3865.	4.0	8
136	A scalable microfluidic chip for bacterial suspension culture. Lab on A Chip, 2011, 11, 4087.	3.1	18
137	Droplet Microfluidics for High-throughput Analysis of Cells and Particles. Methods in Cell Biology, 2011, 102, 23-48.	0.5	13
138	Approaches to Capturing and Designing Biologically Active Small Molecules Produced by Uncultured Microbes. Annual Review of Microbiology, 2011, 65, 431-453.	2.9	110
139	Quorum Sensing between <i>Pseudomonas aeruginosa</i> Biofilms Accelerates Cell Growth. Journal of the American Chemical Society, 2011, 133, 5966-5975.	6.6	73
140	MEMS sensors and microsystems for cell mechanobiology. Journal of Micromechanics and Microengineering, 2011, 21, 054002.	1.5	62
141	The Goldilocks Principle and Antibiotic Resistance in Bacteria. Molecular Pharmaceutics, 2011, 8, 2063-2068.	2.3	17
142	Stem Cells & Stem	0.1	6
143	Biomolecular modification of carbon nanotubes for studies of cell adhesion and migration. Nanotechnology, 2011, 22, 494019.	1.3	2
144	Nanoproteomics. Methods in Molecular Biology, 2011, , .	0.4	3
146	Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements. Lab on A Chip, 2011, 11, 2604.	3.1	75
147	A microfluidic concentrator array for quantitative predation assays of predatory microbes. Lab on A Chip, 2011, 11, 2916.	3.1	18
148	3D thermoplastic elastomer microfluidic devices for biological probe immobilization. Lab on A Chip, 2011, 11, 4099.	3.1	37
149	Microfluidics Using Spatially Defined Arrays of Droplets in One, Two, and Three Dimensions. Annual Review of Analytical Chemistry, 2011, 4, 59-81.	2.8	128

#	Article	IF	CITATIONS
150	Microfluidic Approach to Create Three-Dimensional Tissue Models for Biofilm-Related Infection of Orthopaedic Implants. Tissue Engineering - Part C: Methods, 2011, 17, 39-48.	1.1	42
151	Heterogeneous bacterial persisters and engineering approaches to eliminate them. Current Opinion in Microbiology, 2011, 14, 593-598.	2.3	175
152	Rapid Microfluidics-Based Measurement of CO ₂ Diffusivity in Bitumen. Energy & Diffusivit	2.5	82
153	Photoresponsive DNA-Cross-Linked Hydrogels for Controllable Release and Cancer Therapy. Langmuir, 2011, 27, 399-408.	1.6	165
154	Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Reviews of Modern Physics, 2011, 83, 647-704.	16.4	742
155	Micro-Nano Technologies for Cell Manipulation and Subcellular Monitoring. , 0, , .		2
156	Microfluidic Bioreactors for Cell Culturing: A Review. Micro and Nanosystems, 2011, 3, 137-160.	0.3	38
157	Evaluation of Multidrug Efflux Pump Inhibitors by a New Method Using Microfluidic Channels. PLoS ONE, 2011, 6, e18547.	1.1	95
158	Micro and nanotechnologies for bioengineering regenerative medicine scaffolds. International Journal of Biomedical Engineering and Technology, 2011, 5, 266.	0.2	5
159	Toy Story: what I have learned from playing with toys about the physics of living cells. , 2011, , .		0
160	MEMS in the Nervous System. , 2011, , 75-98.		0
161	Flux Control Analysis and Stoichiometric Network Modeling: Basic Principles and Industrial Applications. , 2011, , 185-220.		7
162	Miniaturizing microbial fuel cells. Trends in Biotechnology, 2011, 29, 62-69.	4.9	132
163	Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography. Lab on A Chip, 2011, 11, 1368.	3.1	48
164	Do bacteria differentiate between degrees of nanoscale surface roughness?. Biotechnology Journal, 2011, 6, 1103-1114.	1.8	86
165	A microsystem-based assay for studying pollen tube guidance in plant reproduction. Journal of Micromechanics and Microengineering, 2011, 21, 054018.	1.5	52
166	Studying transcriptional interactions in single cells at sufficient resolution. Current Opinion in Biotechnology, 2011, 22, 81-86.	3.3	11
167	Wallerian-Like Degeneration of Central Neurons After Synchronized and Geometrically Registered Mass Axotomy in a Three-Compartmental Microfluidic Chip. Neurotoxicity Research, 2011, 19, 149-161.	1.3	66

#	Article	IF	CITATIONS
168	A Portable, Benchtop Photolithography System Based on a Solid tate Light Source. Small, 2011, 7, 3144-3147.	5.2	35
169	Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications. Electrophoresis, 2011, 32, 2253-2273.	1.3	109
172	Chemistry and the Worm: <i>Caenorhabditis elegans</i> as a Platform for Integrating Chemical and Biological Research. Angewandte Chemie - International Edition, 2011, 50, 4774-4807.	7.2	115
173	Use of Thin Sectioning (Nanoskiving) to Fabricate Nanostructures for Electronic and Optical Applications. Angewandte Chemie - International Edition, 2011, 50, 8566-8583.	7.2	49
174	Kinetic control of preparing honeycomb patterned porous film by the method of breath figure. Reactive and Functional Polymers, 2011, 71, 964-971.	2.0	27
175	Microfluidic bioreactors for culture of non-adherent cells. Sensors and Actuators B: Chemical, 2011, 156, 1002-1008.	4.0	22
176	Fabrication and characterization of RF nanoantenna on a nanoliter-scale 3D microcontainer. Nanotechnology, 2011, 22, 455303.	1.3	5
177	Protein immobilization and detection on laser processed polystyrene surfaces. Journal of Applied Physics, 2011, 110, .	1.1	7
178	Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays. Nanotechnology, 2011, 22, 465601.	1.3	7
179	Honeycomb Structured Porous Films Prepared by the Method of Breath Figure: History and Development. Current Organic Chemistry, 2011, 15, 3706-3718.	0.9	16
180	Cardiolipin microdomains localize to negatively curved regions of <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6264-6269.	3.3	304
181	Physicochemical regulation of biofilm formation. MRS Bulletin, 2011, 36, 347-355.	1.7	457
182	Unidirectional, electrotactic-response valve for <i>Caenorhabditis elegans</i> in microfluidic devices. Applied Physics Letters, 2011, 98, .	1.5	13
183	Development and validation of a microfluidic reactor for biofilm monitoring via optical methods. Journal of Micromechanics and Microengineering, 2011, 21, 054023.	1.5	44
184	Continuous Monitoring of Ammonia Removal Activity and Observation of Morphology of Microbial Complexes in a Microdevice. Applied and Environmental Microbiology, 2011, 77, 4253-4255.	1.4	17
185	Micro-barcodes for biological applications. , 2011, , .		0
186	Amplification of chemotactic responses of motile bacterial cells for characterizing preferential chemotaxis toward carbon sources. , 2011 , , .		0
187	Electrokinetic and optical control of bacterial microrobots. Journal of Micromechanics and Microengineering, 2011, 21, 035001.	1.5	123

#	Article	IF	CITATIONS
188	Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in <i>Arabidopsis </i> . Applied Physics Letters, 2011, 98, .	1.5	60
189	3D Elastomeric Scaffolds Fabricated by Casting in Micro End Milled Moulds. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 2011, 9, 17-23.	0.7	1
191	Separation of distinct adhesion complexes and associated cytoskeleton by a micro-stencil-printing method. Cell Adhesion and Migration, 2012, 6, 471-475.	1,1	2
192	PROLIFERATION AND COLLECTIVE MIGRATION OF SMALL CELL GROUPS RELEASED FROM CIRCULAR PATCHES. Biophysical Reviews and Letters, 2012, 07, 15-28.	0.9	6
193	Development of a microbial high-throughput screening instrument based on elastic light scatter patterns. Review of Scientific Instruments, 2012, 83, 044304.	0.6	9
194	Handling and analysis of cells and bioparticles on centrifugal microfluidic platforms. Expert Review of Molecular Diagnostics, 2012, 12, 407-421.	1.5	48
195	Stress-Driven and Carbon-Assisted Growth of $\Phi_{s}^{SiO}_{x}\$ Nanowires on Photoresist-Derived Carbon Microelectrode. Journal of Microelectromechanical Systems, 2012, 21, 1445-1451.	1.7	3
196	Cross talk between cardiac myocytes and fibroblasts: from multiscale investigative approaches to mechanisms and functional consequences. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1385-H1396.	1.5	114
197	Protein Patterns Fabricated by Affinity-Based Surface Ligand Selection from Protein Solution Mixtures on a Polymer Hydrogel Substrate. ACS Symposium Series, 2012, , 781-807.	0.5	0
199	Microfluidics in the "Open Space―for Performing Localized Chemistry on Biological Interfaces. Angewandte Chemie - International Edition, 2012, 51, 11224-11240.	7.2	115
200	Surface topographical factors influencing bacterial attachment. Advances in Colloid and Interface Science, 2012, 179-182, 142-149.	7.0	285
201	A single-cell drug efflux assay in bacteria by using a directly accessible femtoliter droplet array. Lab on A Chip, 2012, 12, 3923.	3.1	48
202	An integrated fiber-optic microfluidic device for detection of muscular force generation of microscopic nematodes. Lab on A Chip, 2012, 12, 3458.	3.1	18
203	Patterned biocatalytic films via one-step self-assembly. Chemical Communications, 2012, 48, 4417.	2.2	50
204	Real-space studies of the structure and dynamics of self-assembled colloidal clusters. Faraday Discussions, 2012, 159, 211.	1.6	48
205	Accurate and effective live bacteria microarray patterning on thick polycationic polymer layers co-patterned with HMDS. RSC Advances, 2012, 2, 7673.	1.7	5
206	Microfabricated ratchet structure integrated concentrator arrays for synthetic bacterial cell-to-cell communication assays. Lab on A Chip, 2012, 12, 3914.	3.1	19
207	Unconventional methods for fabricating nanostructures toward high-fidelity sensors. Journal of Materials Chemistry, 2012, 22, 5900.	6.7	24

#	Article	IF	CITATIONS
208	Patterned Polymeric Multilayered Assemblies through Hydrogen Bonding and Metal Coordination. Langmuir, 2012, 28, 3279-3284.	1.6	12
209	Mussel-Inspired Anchoring for Patterning Cells Using Polydopamine. Langmuir, 2012, 28, 2131-2136.	1.6	84
210	Long-term retention of hydrophilic behavior of plasma treated polydimethylsiloxane (PDMS) surfaces stored under water and Luria-Bertani broth. Sensors and Actuators A: Physical, 2012, 181, 33-42.	2.0	36
211	Microfluidic mixing for sperm activation and motility analysis of pearl Danio zebrafish. Theriogenology, 2012, 78, 334-344.	0.9	22
212	Hydrodynamic trapping of Tetrahymena thermophila for the long-term monitoring of cell behaviors. Lab on A Chip, 2012, 12, 3451.	3.1	30
213	Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced Materials, 2012, 24, 5284-5318.	11.1	727
214	Patterning of Polymeric Materials for Biological Applications. , 2012, , 439-456.		4
215	Soft Lithographic Approaches to Nanofabrication. , 2012, , 211-231.		42
216	7.6 Biophysics of Bacterial Cell Growth and Division. , 2012, , 73-87.		1
217	Development and Prospect of Cell-electrofusion Chip Technology. Chinese Journal of Analytical Chemistry, 2012, 40, 331-338.	0.9	3
218	Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation. Research in Microbiology, 2012, 163, 619-629.	1.0	88
219	Inkjet printing of individual polymer micro parts self-shaped with hemispherical caps. Sensors and Actuators A: Physical, 2012, 188, 367-373.	2.0	8
220	Light-directed migration of D. discoideum slugs in microfabricated confinements. Sensors and Actuators A: Physical, 2012, 188, 312-319.	2.0	5
221	Efficient Biofunctionalization of Polysilicon Barcodes for Adhesion to the Zona Pellucida of Mouse Embryos. Bioconjugate Chemistry, 2012, 23, 2392-2402.	1.8	15
223	Application of nanotechnology to control bacterial adhesion and patterning on material surfaces. Journal of Experimental Nanoscience, 2012, 7, 634-651.	1.3	8
224	A droplet-based microfluidic device for long-term culture and longitudinal observation of Caenorhabditis elegans. Biochip Journal, 2012, 6, 197-205.	2.5	20
225	Biocompatible Microfabrication of 3D Isolation Chambers for Targeted Confinement of Individual Cells and Their Progeny. Analytical Chemistry, 2012, 84, 8985-8989.	3.2	26
227	A microfluidic system for long-term time-lapse microscopy studies of mycobacteria. Tuberculosis, 2012, 92, 489-496.	0.8	40

#	Article	IF	CITATIONS
228	Microfluidics in Single Cell Analysis. , 0, , .		1
229	Massively Parallel Bacterial and Yeast Suspension Culture on a Chip. Small, 2012, 8, 863-867.	5.2	9
230	Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Letters, 2012, 12, 3109-3114.	4.5	1,676
231	Droplet based microfluidics. Reports on Progress in Physics, 2012, 75, 016601.	8.1	813
232	Physics of Cancer: The Impact of Heterogeneity. Annual Review of Condensed Matter Physics, 2012, 3, 363-382.	5.2	23
233	Single-Cell Analysis in Microdroplets. , 2012, , 211-228.		1
234	Exploiting additive and subtractive patterning for spatially controlled and robust bacterial co-cultures. Soft Matter, 2012, 8, 9147.	1.2	8
235	Patterning Techniques for Metal Organic Frameworks. Advanced Materials, 2012, 24, 3153-3168.	11.1	111
236	Cell orientation of swimming bacteria: From theoretical simulation to experimental evaluation. Science China Life Sciences, 2012, 55, 202-209.	2.3	11
237	A lithography-free procedure for fabricating three-dimensional microchannels using hydrogel molds. Biomedical Microdevices, 2012, 14, 689-697.	1.4	22
238	Reverse contrast and substructures in protein micro-patterns on 3D polymer surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 90, 144-151.	2.5	3
239	Engineering microscale topographies to control the cell–substrate interface. Biomaterials, 2012, 33, 5230-5246.	5.7	568
240	Opportunistic routing through conjugation in bacteria communication nanonetwork. Nano Communication Networks, 2012, 3, 36-45.	1.6	223
241	Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria. Journal of Nanobiotechnology, 2013, 11, 12.	4.2	33
243	Bioelectrochemical probing of intracellular redox processes in living yeast cellsâ€"application of redox polymer wiring in a microfluidic environment. Analytical and Bioanalytical Chemistry, 2013, 405, 3847-3858.	1.9	29
244	Surface plasmon resonance imaging for nucleic acid detection. Analytical and Bioanalytical Chemistry, 2013, 405, 573-584.	1.9	56
245	Largeâ€Scale, Ultrapliable, and Freeâ€Standing Nanomembranes. Advanced Materials, 2013, 25, 2167-2173.	11.1	53
246	Current status and future developments in preparation and application of colloidal crystals. Chemical Society Reviews, 2013, 42, 7774.	18.7	183

#	Article	IF	CITATIONS
247	Nanotechnology tools for antibacterial materials. Nanomedicine, 2013, 8, 807-821.	1.7	148
248	Patterned Biofilm Formation Reveals a Mechanism for Structural Heterogeneity in Bacterial Biofilms. Langmuir, 2013, 29, 11145-11153.	1.6	59
249	Beyond the genome: community-level analysis of the microbial world. Biology and Philosophy, 2013, 28, 261-282.	0.7	72
252	Materiomics: Multiscale Mechanics of Biological Materials and Structures. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, , .	0.3	14
253	Deposition and characterization of lines printed through laser-induced forward transfer. Applied Physics A: Materials Science and Processing, 2013, 110, 751-755.	1.1	27
254	Combining UV Lithography and an Imprinting Technique for Patterning Metalâ€Organic Frameworks. Advanced Materials, 2013, 25, 4701-4705.	11.1	98
256	Biomimetic Coatings to Control Cellular Function through Cell Surface Engineering. Advanced Functional Materials, 2013, 23, 4437-4453.	7.8	106
257	Human Gametes and Preimplantation Embryos. , 2013, , .		8
258	Synthetic Biology and Microdevices. ACM Journal on Emerging Technologies in Computing Systems, 2013, 9, 1-22.	1.8	0
259	Generation and sensing of membrane curvature: Where materials science and biophysics meet. Current Opinion in Solid State and Materials Science, 2013, 17, 164-174.	5.6	19
260	Tunable and dynamic soft materials for three-dimensional cell culture. Soft Matter, 2013, 9, 6737-6746.	1.2	29
261	Lighting the path: photopatternable substrates for biological applications. Molecular BioSystems, 2013, 9, 559-564.	2.9	10
262	Microfabricated devices in microbial bioenergy sciences. Trends in Biotechnology, 2013, 31, 225-232.	4.9	59
263	Heterogeneity of intracellular replication of bacterial pathogens. Current Opinion in Microbiology, 2013, 16, 184-191.	2.3	56
264	Going local: technologies for exploring bacterial microenvironments. Nature Reviews Microbiology, 2013, 11, 337-348.	13.6	116
265	Addressable selfâ€immobilization of lactate dehydrogenase across multiple length scales. Biotechnology Journal, 2013, 8, 262-272.	1.8	13
266	Slotted Photonic Crystal Sensors. Sensors, 2013, 13, 3675-3710.	2.1	83
267	Microfluidic Platforms for Human Disease Cell Mechanics Studies. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, , 107-119.	0.3	2

#	ARTICLE	IF	CITATIONS
268	Microbial functioning on crude oil in a gas-permeable single microfluidic channel. Journal of Petroleum Science and Engineering, 2013, 104, 38-48.	2.1	4
269	Topographical control of ocular cell types for tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1571-1584.	1.6	18
270	Charting Microbial Phenotypes in Multiplex Nanoliter Batch Bioreactors. Analytical Chemistry, 2013, 85, 5892-5899.	3.2	40
271	Dynamic Dosing Assay Relating Real-Time Respiration Responses of Staphylococcus aureus Biofilms to Changing Microchemical Conditions. Analytical Chemistry, 2013, 85, 5411-5419.	3.2	26
272	Multichannel microfluidic chip for rapid and reliable trapping and imaging plant-parasitic nematodes. , 2013, , .		1
273	Is the Focus on "Molecules―Obsolete?. Annual Review of Analytical Chemistry, 2013, 6, 1-29.	2.8	16
274	Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresource Technology, 2013, 142, 672-682.	4.8	171
275	Arraying Cell Cultures Using PEGâ€DMA Micromolding in Standard Culture Dishes. Macromolecular Bioscience, 2013, 13, 595-602.	2.1	13
276	Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab on A Chip, 2013, 13, 947.	3.1	134
277	Erasable and Reversible Wrinkling of Halogenated Rubber Surfaces. Langmuir, 2013, 29, 15664-15672.	1.6	8
278	Single microbe trap and release in sub-microfluidics. RSC Advances, 2013, 3, 6343.	1.7	11
279	Shear stress tolerance of Streptococcus mutans aggregates determined by microfluidic funnel device (μFFD). Journal of Microbiological Methods, 2013, 93, 85-89.	0.7	14
280	Bitumen–Toluene Mutual Diffusion Coefficients Using Microfluidics. Energy & 2013, 2013, 27, 2042-2048.	2.5	64
281	Microwell fabrication methods and applications for cellular studies. Biomedical Engineering Letters, 2013, 3, 131-137.	2.1	41
282	Microfluidics for Manipulating Cells. Small, 2013, 9, 9-21.	5.2	175
283	Modular Multifunctional Poly(ethylene glycol) Hydrogels for Stem Cell Differentiation. Advanced Functional Materials, 2013, 23, 575-582.	7.8	50
284	Cell Signaling Experiments Driven by Optical Manipulation. International Journal of Molecular Sciences, 2013, 14, 8963-8984.	1.8	18
285	Design of a large-scale femtoliter droplet array for single-cell analysis of drug-tolerant and drug-resistant bacteria. Frontiers in Microbiology, 2013, 4, 300.	1.5	38

#	Article	IF	CITATIONS
286	Sex allocation pattern of the diatom Cyclotella meneghiniana. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130503.	1.2	6
287	High-Throughput Nano-Biofilm Microarray for Antifungal Drug Discovery. MBio, 2013, 4, .	1.8	37
288	CONTROLLED ASYMMETRICAL DIFFERENTIATION OF MOUSE EMBRYOID BODIES IN MICROWELLS WITH DESIGNED HETEROGENEOUS BIOCHEMICAL FEATURES. Journal of Mechanics in Medicine and Biology, 2013, 13, 1340003.	0.3	1
289	Microfluidics for monitoring and imaging pancreatic islet and \hat{l}^2 -cells for human transplant. , 2013, , 557-596e.		1
290	Precise Patterning of Silk Microstructures Using Photolithography. Advanced Materials, 2013, 25, 6207-6212.	11.1	116
291	Liveâ€cell analysis of plant reproduction: Liveâ€cell imaging, optical manipulation, and advanced microscopy technologies. Development Growth and Differentiation, 2013, 55, 462-473.	0.6	24
292	Concept design for a novel confined-bacterial-based biosensor for water quality control., 2013,,.		3
293	Nematic Liquid Crystalline Elastomer Grating and Microwire Fabricated by Microâ€Molding in Capillaries. Macromolecular Rapid Communications, 2013, 34, 330-334.	2.0	17
294	Selective modulation of cell response on engineered fractal silicon substrates. Scientific Reports, 2013, 3, 1461.	1.6	32
295	Microfluidics for Neuroscience: Novel Tools and Future Implications. , 2013, , 185-211.		2
298	Emergence of Bursting Activity in Connected Neuronal Sub-Populations. PLoS ONE, 2014, 9, e107400.	1.1	62
300	Structured attachment of bacterial molecular motors for defined microflow induction. Optofluidics, Microfluidics and Nanofluidics, 2014, 1 , .	0.5	7
301	Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells. Biotechnology and Bioengineering, 2014, 111, 597-607.	1.7	28
302	An electrostatic microwell–based biochip for phytoplanktonic cell trapping. Biomicrofluidics, 2014, 8, 034108.	1.2	5
304	Large area micropatterning of cells on polydimethylsiloxane surfaces. Journal of Biological Engineering, 2014, 8, 24.	2.0	17
305	Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Frontiers in Microbiology, 2014, 5, 489.	1.5	30
306	Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 1-14.	1.3	86
307	Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances. Frontiers of Chemical Science and Engineering, 2014, 8, 20-33.	2.3	59

#	Article	IF	CITATIONS
308	Mechanisms of synergy in polymicrobial infections. Journal of Microbiology, 2014, 52, 188-199.	1.3	149
309	Plasmonic Enhanced Optoelectronic Devices. Plasmonics, 2014, 9, 859-866.	1.8	100
310	Cell encapsulation via microtechnologies. Biomaterials, 2014, 35, 2651-2663.	5.7	209
311	Silk Protein Lithography as a Route to Fabricate Sericin Microarchitectures. Advanced Materials, 2014, 26, 4431-4437.	11.1	84
312	Microfluidics Expanding the Frontiers of Microbial Ecology. Annual Review of Biophysics, 2014, 43, 65-91.	4.5	167
313	High Fidelity Nanopatterning of Proteins onto Well-Defined Surfaces Through Subtractive Contact Printing. Methods in Cell Biology, 2014, 119, 277-292.	0.5	2
314	Microfabricated Chambers as Force Sensors for Probing Forces of Fungal Growth. Methods in Cell Biology, 2014, 120, 215-226.	0.5	3
315	"Stamp-off―to Micropattern Sparse, Multicomponent Features. Methods in Cell Biology, 2014, 119, 3-16.	0.5	11
316	A power-transformed-and-managed triboelectric nanogenerator and its applications in a self-powered wireless sensing node. Nanotechnology, 2014, 25, 225402.	1.3	89
317	Bacterial adherence and biofilm formation on medical implants: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 1083-1099.	1.0	376
318	Rate control of cell sheet recovery by incorporating hydrophilic pattern in thermoresponsive cell culture dish. Journal of Biomedical Materials Research - Part A, 2014, 102, 2849-2856.	2.1	16
319	â€~Clickable' hydrogels for all: facile fabrication and functionalization. Biomaterials Science, 2014, 2, 67-75.	2.6	57
320	Fast screening of bacterial suspension culture conditions on chips. Lab on A Chip, 2014, 14, 1162-1167.	3.1	13
321	Plant chip for high-throughput phenotyping of Arabidopsis. Lab on A Chip, 2014, 14, 1281-1293.	3.1	70
322	Bacterial Imprinting at Pickering Emulsion Interfaces. Angewandte Chemie - International Edition, 2014, 53, 10687-10690.	7.2	103
323	Probing bacterial–fungal interactions at the single cell level. Integrative Biology (United Kingdom), 2014, 6, 935-945.	0.6	73
325	Gradient Microfluidics Enables Rapid Bacterial Growth Inhibition Testing. Analytical Chemistry, 2014, 86, 3131-3137.	3.2	83
326	9.03 Organic Synthesis in Small Scale Continuous Flow: Flow Chemistry. , 2014, , 54-93.		2

#	Article	IF	CITATIONS
328	A massively parallel microfluidic device for long-term visualization of isolated motile cells. Microfluidics and Nanofluidics, 2014, 17, 821-829.	1.0	3
329	Integration of microfluidics into the synthetic biology design flow. Lab on A Chip, 2014, 14, 3459-3474.	3.1	27
330	Conditions of lateral surface confinement that promote tissue-cell integration and inhibit biofilm growth. Biomaterials, 2014, 35, 5446-5452.	5.7	34
331	Growing Yeast into Cylindrical Colonies. Biophysical Journal, 2014, 106, 2214-2221.	0.2	22
332	Ordered manufactured bacterial cellulose as biomaterial of tissue engineering. Materials Letters, 2014, 128, 314-318.	1.3	29
333	Development of cell metabolite analysis on microfluidic platform. Journal of Pharmaceutical Analysis, 2015, 5, 337-347.	2.4	23
334	Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth. Physical Review E, 2015, 92, 052706.	0.8	1
335	New Technologies for Studying Biofilms. Microbiology Spectrum, 2015, 3, .	1.2	83
336	A nanoliter microfluidic serial dilution bioreactor. Biomicrofluidics, 2015, 9, 044126.	1.2	7
337	Ordered patterns formed on polymer film through trapping and locking. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1701-1705.	2.4	0
338	New Technologies for Studying Biofilms. , 2015, , 1-32.		5
339	Nano-bioelectronics via dip-pen nanolithography. Journal of Materials Chemistry C, 2015, 3, 6431-6444.	2.7	23
340	Dynamic obstacle avoidance for bacteria-powered microrobots. , 2015, , .		1
341	Live from under the lens: exploring microbial motility with dynamic imaging and microfluidics. Nature Reviews Microbiology, 2015, 13, 761-775.	13.6	134
342	Injectable shear-thinning xanthan gum hydrogel reinforced by mussel-inspired secondary crosslinking. RSC Advances, 2015, 5, 103292-103301.	1.7	35
343	Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications. Tissue Engineering - Part B: Reviews, 2015, 21, 288-297.	2.5	5
344	Measurement and manipulation of cell size parameters in fission yeast. Methods in Cell Biology, 2015, 125, 423-436.	0.5	19
345	Biosensing platform on a flexible substrate. Sensors and Actuators B: Chemical, 2015, 210, 197-203.	4.0	20

#	Article	lF	Citations
346	Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biology and Biochemistry, 2015, 83, 116-124.	4.2	102
347	Artificial Surfaces in Phyllosphere Microbiology. Phytopathology, 2015, 105, 1036-1042.	1.1	41
348	Single Bacteria Studies Using Microfluidics. Springer Protocols, 2015, , 37-55.	0.1	1
349	Investigation of bacterial chemotaxis using a simple three-point microfluidic system. Biochip Journal, 2015, 9, 50-58.	2.5	7
350	Bio-functional nano-coatings on metallic biomaterials. Materials Science and Engineering C, 2015, 55, 227-251.	3.8	100
351	Microscale microbial culture. Future Microbiology, 2015, 10, 143-146.	1.0	6
352	Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level. Lab on A Chip, 2015, 15, 4177-4186.	3.1	34
353	Microfluidic singleâ€eell analysis links boundary environments and individual microbial phenotypes. Environmental Microbiology, 2015, 17, 1839-1856.	1.8	41
354	Using confined bacteria as building blocks to generate fluid flow. Lab on A Chip, 2015, 15, 4555-4562.	3.1	19
355	Stochastic Switching of Cell Fate in Microbes. Annual Review of Microbiology, 2015, 69, 381-403.	2.9	157
356	Patterning of supported lipid bilayers and proteins using material selective nitrodopamine-mPEG. Biomaterials Science, 2015, 3, 94-102.	2.6	7
357	Platforms for Engineering Biomedical Experiments. IEEE Systems Journal, 2015, 9, 1218-1228.	2.9	2
358	Technological development of intracellular polysiliconâ€"chromiumâ€"gold chips for orthogonal chemical functionalization. Sensors and Actuators B: Chemical, 2015, 209, 212-224.	4.0	7
359	Review of methods to probe single cell metabolism and bioenergetics. Metabolic Engineering, 2015, 27, 115-135.	3.6	82
360	Surface chemistry of nanobiomaterials with antimicrobial activity**In memoriam of Professor Dr. Luis Diaz, 2016, , 135-162.		10
361	Microfluidic Device to Measure the Speed of C. elegans Using the Resistance Change of the Flexible Electrode. Micromachines, 2016, 7, 50.	1.4	13
362	Backfillingâ€Free Strategy for Biopatterning on Intrinsically Dualâ€Functionalized Poly[2â€Aminoethyl Methacrylateâ€ <i>co</i> â€Oligo(Ethylene Glycol) Methacrylate] Films. Chemistry - an Asian Journal, 2016, 11, 2057-2064.	1.7	7
363	An optical microfluidic platform for spatiotemporal biofilm treatment monitoring. Journal of Micromechanics and Microengineering, 2016, 26, 015013.	1.5	12

#	Article	IF	CITATIONS
364	Microfluidic Screening of Electric Fields for Electroporation. Scientific Reports, 2016, 6, 21238.	1.6	64
365	Spatial Control of Bacteria Using Screen Printing. 3D Printing and Additive Manufacturing, 2016, 3, 194-203.	1.4	6
366	Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Mikrochimica Acta, 2016, 183, 1521-1542.	2.5	110
367	Urethane–acrylate polymers in high-resolution contact printing. Journal of Materials Chemistry C, 2016, 4, 4155-4165.	2.7	33
368	Density-Dependent Differentiation of Bacteria in Spatially Structured Open Systems. Biophysical Journal, 2016, 110, 1648-1660.	0.2	10
369	Principles for designing synthetic microbial communities. Current Opinion in Microbiology, 2016, 31, 146-153.	2.3	218
370	The physics of biofilmsâ€"an introduction. Journal Physics D: Applied Physics, 2016, 49, 203001.	1.3	57
371	A protocol for the systematic and quantitative measurement of protein–lipid interactions using the liposome-microarray-based assay. Nature Protocols, 2016, 11, 1021-1038.	5.5	24
372	Investigation of the antimicrobial activity of soy peptides by developing a high throughput drug screening assay. Biochemistry and Biophysics Reports, 2016, 6, 149-157.	0.7	22
373	Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers. Colloids and Surfaces B: Biointerfaces, 2016, 145, 46-54.	2.5	14
374	Heparin micropatterning onto fouling-release perfluoropolyether-based polymers via photobiotin activation. Colloids and Surfaces B: Biointerfaces, 2016, 146, 250-259.	2.5	7
375	Subcellular cell geometry on micropillars regulates stem cell differentiation. Biomaterials, 2016, 111, 27-39.	5.7	88
376	Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Materials, 2016, 15, 1203-1211.	13.3	290
377	Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles. Analytica Chimica Acta, 2016, 933, 196-206.	2.6	5
378	The <i>MOX </i> promoter in <i>Hansenula polymorpha </i> is ultrasensitive to glucose-mediated carbon catabolite repression. FEMS Yeast Research, 2016, 16, fow 067.	1.1	13
379	Microfluidic platforms for DNA methylation analysis. Lab on A Chip, 2016, 16, 3631-3644.	3.1	29
380	Phenotypic Heterogeneity in <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2016, 4, .	1.2	55
381	Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis. Analytical Chemistry, 2016, 88, 11791-11798.	3.2	44

#	ARTICLE	IF	Citations
382	New Approaches for Bringing the Uncultured into Culture. , 2016, , 401-434.		2
383	Microfluidic systems for stem cell-based neural tissue engineering. Lab on A Chip, 2016, 16, 2551-2571.	3.1	100
384	Determination of Factors Influencing the Wet Etching of Polydimethylsiloxane Using Tetraâ€ <i>n</i> à€butylammonium Fluoride. Macromolecular Chemistry and Physics, 2016, 217, 284-291.	1.1	23
385	A New Method for Real-Time Measuring the Temperature-Dependent Dielectric Constant of the Silicone Oil. IEEE Sensors Journal, 2016, 16, 8792-8797.	2.4	8
386	Temperature-induced behavioral switches in a bacterial coral pathogen. ISME Journal, 2016, 10, 1363-1372.	4.4	54
387	Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. Journal of Molecular and Cellular Cardiology, 2016, 94, 22-31.	0.9	122
388	Flexible Plasmonic Sensors. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 12-20.	1.9	15
389	Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology, 2016, 27, 115305.	1.3	61
390	Bacterial viability on chemically modified silicon nanowire arrays. Journal of Materials Chemistry B, 2016, 4, 3104-3112.	2.9	37
391	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137
392	Single-Cell Detection and Collection of Persister Bacteria in a Directly Accessible Femtoliter Droplet Array. Methods in Molecular Biology, 2016, 1333, 101-109.	0.4	2
393	Polymeric-Based In Vitro Diagnostic Devices. , 2016, , 15-58.		1
394	Microfluidics., 2016,, 310-334.		8
395	Bacterial Persistence. Methods in Molecular Biology, 2016, , .	0.4	10
396	Microfluidic technologies for yeast replicative lifespan studies. Mechanisms of Ageing and Development, 2017, 161, 262-269.	2.2	65
397	Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Review of Molecular Diagnostics, 2017, 17, 351-366.	1.5	196
398	Fabrication methods of plasmonic and magnetoplasmonic crystals: a review. European Physical Journal Plus, 2017, 132, 1.	1.2	17
399	Droplet motion driven by tensotaxis. Extreme Mechanics Letters, 2017, 13, 10-16.	2.0	32

#	Article	IF	CITATIONS
400	AAO Templates with Different Patterns and Channel Shapes. , 2017, , 107-156.		8
402	High Definition Method for Imaging Bacteria in Microconfined Environments on Solid Media. Lecture Notes in Computer Science, 2017, , 726-736.	1.0	0
403	Toward high-resolution NMR spectroscopy of microscopic liquid samples. Physical Chemistry Chemical Physics, 2017, 19, 14256-14261.	1.3	6
404	"Living―dynamics of filamentous bacteria on an adherent surface under hydrodynamic exposure. Biointerphases, 2017, 12, 02C410.	0.6	6
405	Biofilm disruption by an air bubble reveals heterogeneous age-dependent detachment patterns dictated by initial extracellular matrix distribution. Npj Biofilms and Microbiomes, 2017, 3, 6.	2.9	45
406	Single-Molecule Arrays for Protein and Nucleic Acid Analysis. Annual Review of Analytical Chemistry, 2017, 10, 345-363.	2.8	101
407	Device and programming abstractions for spatiotemporal control of active micro-particle swarms. Lab on A Chip, 2017, 17, 1442-1451.	3.1	25
408	Bacterial Networks on Hydrophobic Micropillars. ACS Nano, 2017, 11, 675-683.	7.3	25
409	Controlling self-patterning of acrylate films by photopolymerization. Polymer Chemistry, 2017, 8, 1129-1137.	1.9	17
410	A 3D-printed microbial cell culture platform with <i>in situ</i> PEGDA hydrogel barriers for differential substrate delivery. Biomicrofluidics, 2017, 11, 054109.	1.2	12
411	Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiology Reviews, 2017, 41, 751-780.	3.9	38
412	Long-Term and Programmable Bacterial Subculture in Completely Automated Microchemostats. Analytical Chemistry, 2017, 89, 9676-9684.	3.2	12
413	Nanoscale Hydrodynamic Film for Diffusive Mass Transport Control in Compartmentalized Microfluidic Chambers. Analytical Chemistry, 2017, 89, 10286-10295.	3.2	9
414	Mechanical strain sensing implicated in cell shape recovery in Escherichia coli. Nature Microbiology, 2017, 2, 17115.	5 . 9	52
415	Miniaturization and microfluidics. , 2017, , 619-636.		2
416	SoilChip-XPS integrated technique to study formation of soil biogeochemical interfaces. Soil Biology and Biochemistry, 2017, 113, 71-79.	4.2	15
417	Parallel Self-Assembly of Polyominoes under Uniform Control Inputs. IEEE Robotics and Automation Letters, 2017, , 1-1.	3.3	11
418	Decoding of position in the developing neural tube from antiparallel morphogen gradients. Science, 2017, 356, 1379-1383.	6.0	144

#	Article	IF	CITATIONS
419	New experimental models of the blood-brain barrier for CNS drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 89-103.	2.5	96
420	Patterning Electrospun Nanofibers via Agarose Hydrogel Stamps to Spatially Coordinate Cell Orientation in Microfluidic Device. Small, 2017, 13, 1602610.	5. 2	25
421	Automated microfluidic plant chips-based plant phenotyping system. , 2017, , .		4
422	AC electrokinetics based capture of yeast cells from ultraâ€fast throughâ€flow for sensitive detection. Micro and Nano Letters, 2017, 12, 901-906.	0.6	4
423	Phenotypic Heterogeneity in <i>Mycobacterium tuberculosis </i> ., 0,, 671-697.		1
424	Physically Triggered Morphology Changes in a Novel Acremonium Isolate Cultivated in Precisely Engineered Microfabricated Environments. Frontiers in Microbiology, 2017, 8, 1269.	1.5	4
425	Microfluidics and single-cell microscopy to study stochastic processes in bacteria. Current Opinion in Microbiology, 2018, 43, 186-192.	2.3	60
426	Microstructured Photoâ€Crosslinked Poly(Trimethylene Carbonate) for Use in Soft Lithography Applications: A Biodegradable Alternative for Poly(Dimethylsiloxane). ChemPhysChem, 2018, 19, 2085-2092.	1.0	2
427	The interfacial behaviours of all-solid-state lithium ion batteries. Ceramics International, 2018, 44, 7319-7328.	2.3	42
428	Single-cell Microfluidic Analysis of Bacillus subtilis . Journal of Visualized Experiments, 2018, , .	0.2	6
429	Multiple single cell screening and DNA MDA amplification chip for oncogenic mutation profiling. Lab on A Chip, 2018, 18, 723-734.	3.1	6
430	Fabrication of nanocomposites and hybrid materials using microbial biotemplates. Advanced Composites and Hybrid Materials, 2018, 1, 79-93.	9.9	21
431	Microanalysis using surface modification and biphasic droplets. Polymer Journal, 2018, 50, 699-709.	1.3	4
432	Micropatterning of reagentâ€free, high energy crosslinked gelatin hydrogels for bioapplications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 320-330.	1.6	4
433	From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. Trends in Microbiology, 2018, 26, 538-554.	3. 5	86
434	Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	16
435	MICROBIOREACTORS AS ENGINEERING TOOLS FOR BIOPROCESS DEVELOPMENT. Brazilian Journal of Chemical Engineering, 2018, 35, 1163-1182.	0.7	14
437	On-Chip Isoniazid Exposure of Mycobacterium smegmatis Penicillin-Binding Protein (PBP) Mutant Using Time-Lapse Fluorescent Microscopy. Micromachines, 2018, 9, 561.	1.4	4

#	Article	IF	Citations
438	Surface Modification by Combination of Dip-Pen Nanolithography and Soft Lithography for Reduction of Bacterial Adhesion. Journal of Nanotechnology, 2018, 2018, 1-10.	1.5	5
439	Correlative light and electron microscopy for complex cellular structures on PDMS substrates with coded micro-patterns. Lab on A Chip, 2018, 18, 3840-3848.	3.1	4
440	Engineering Bacterial Shape Using Soft Matter Microchambers. Current Protocols in Chemical Biology, 2019, 11, e59.	1.7	2
441	Role of Biomacromolecules in Biomedical Engineering. Current Topics in Medicinal Chemistry, 2018, 18, 1171-1187.	1.0	3
442	A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. Scientific Reports, 2018, 8, 15818.	1.6	36
443	Real-Time Study of Rapid Spread of Antibiotic Resistance Plasmid in Biofilm Using Microfluidics. Environmental Science & Environmental Science & Envir	4.6	59
444	Flat and microstructured polymeric membranes in organs-on-chips. Journal of the Royal Society Interface, 2018, 15, 20180351.	1.5	66
445	A soft lithography method to generate arrays of microstructures onto hydrogel surfaces. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1144-1157.	2.4	8
446	Route to one-step microstructure mold fabrication for PDMS microfluidic chip. AIP Advances, 2018, 8, .	0.6	2
447	Bacterial Sexuality at the Nanoscale. Nano Letters, 2018, 18, 5821-5826.	4.5	11
448	Lift-off cell lithography for cell patterning with clean background. Lab on A Chip, 2018, 18, 3074-3078.	3.1	24
449	A novel dual-well array chip for efficiently trapping single-cell in large isolated micro-well without complicated accessory equipment. Biomicrofluidics, 2018, 12, 034103.	1.2	4
450	Point-of-care microfluidic devices for pathogen detection. Biosensors and Bioelectronics, 2018, 117, 112-128.	5.3	292
451	Simple and Precise Counting of Viable Bacteria by Resazurin-Amplified Picoarray Detection. Analytical Chemistry, 2018, 90, 9449-9456.	3.2	65
452	Multiple microarrays of non-adherent cells on a single 3D stimuli-responsive binary polymer-brush pattern. Journal of Materials Chemistry B, 2018, 6, 4792-4798.	2.9	11
453	Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces. International Journal of Dentistry, 2018, 2018, 1-5.	0.5	4
454	Microfluidics and Interfacial Chemistry in the Atmosphere. , 2018, , 245-270.		4
455	A bacterial antibiotic resistance accelerator and applications. Methods in Cell Biology, 2018, 147, 41-57.	0.5	4

#	Article	IF	CITATIONS
456	Alternative Strategy Based on Scanning Probe Lithography for Patterning Complex Metallic Nanostrutures on Rigid or Flexible Substrates. Advanced Materials Technologies, 2018, 3, 1800134.	3.0	6
457	A self-sufficient pressure pump using latex balloons for microfluidic applications. Lab on A Chip, 2018, 18, 2730-2740.	3.1	32
458	Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Frontiers in Cellular and Infection Microbiology, 2018, 8, 143.	1.8	29
459	Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial. Frontiers in Microbiology, 2018, 9, 496.	1.5	27
460	Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices. Frontiers in Microbiology, 2018, 9, 871.	1.5	63
462	"Do-it-in-classroomâ€-fabrication of microfluidic systems by replica moulding of pasta structures. Biomicrofluidics, 2018, 12, 044115.	1.2	15
463	Formation of Liquid–Liquid Micropatterns through Guided Liquid Displacement on Liquidâ€Infused Surfaces. Advanced Materials Interfaces, 2018, 5, 1800852.	1.9	24
464	Internalization of subcellular-scale microfabricated chips by healthy and cancer cells. PLoS ONE, 2018, 13, e0194712.	1.1	5
465	Electromagnetic fields alter the motility of metastatic breast cancer cells. Communications Biology, 2019, 2, 303.	2.0	24
466	Nanoarchitectonics of Biofunctionalized Metal–Organic Frameworks with Biological Macromolecules and Living Cells. Small Methods, 2019, 3, 1900213.	4.6	76
467	Microfluidics and Microanalytics to Facilitate Quantitative Assessment of Human Embryo Physiology. , 2019, , 557-566.		1
468	Microfluidic epigenomic mapping technologies for precision medicine. Lab on A Chip, 2019, 19, 2630-2650.	3.1	11
469	Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. Micromachines, 2019, 10, 408.	1.4	51
470	Fully Automated Microsystem for Unmediated Electrochemical Characterization, Visualization and Monitoring of Bacteria on Solid Media; E. coli K-12: A Case Study. Biosensors, 2019, 9, 131.	2.3	7
471	Engineering High-Resolution Micropatterns Directly onto Titanium with Optimized Contact Guidance to Promote Osteogenic Differentiation and Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 43888-43901.	4.0	35
472	Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Progress in Polymer Science, 2019, 98, 101147.	11.8	120
473	Plant miniature greenhouse. Sensors and Actuators A: Physical, 2019, 298, 111572.	2.0	4
474	DropSOAC: Stabilizing Microfluidic Drops for Time-Lapse Quantification of Single-Cell Bacterial Physiology. Frontiers in Microbiology, 2019, 10, 2112.	1.5	24

#	Article	IF	CITATIONS
475	Continuous focusing, fractionation and extraction of anionic analytes in a microfluidic chip. Lab on A Chip, 2019, 19, 3238-3248.	3.1	10
476	How Functionalized Surfaces Can Inhibit Bacterial Adhesion and Viability. ACS Biomaterials Science and Engineering, 2019, 5, 4920-4936.	2.6	48
477	30 years of microfluidics. Micro and Nano Engineering, 2019, 2, 76-91.	1.4	357
478	A skin-over-liquid platform with compliant microbumps actuated by pyro-EHD pressure. NPG Asia Materials, 2019, 11 , .	3.8	132
479	Pd-Catalyzed carboannulation of \hat{i}^3 , \hat{i}' -alkenyl oximes: efficient access to 5-membered cyclic nitrones and dihydroazines. Organic Chemistry Frontiers, 2019, 6, 388-392.	2.3	21
480	Invariance properties of bacterial random walks in complex structures. Nature Communications, 2019, 10, 2442.	5.8	28
481	Advances in Geotechnical Sensors and Monitoring. Springer Series in Geomechanics and Geoengineering, 2019, , 29-65.	0.0	6
482	Design of Sealable Custom-Shaped Cell Mimicries Based on Self-Assembled Monolayers on CYTOP Polymer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21372-21380.	4.0	8
483	Using Wool Keratin as a Basic Resist Material to Fabricate Precise Protein Patterns. Advanced Materials, 2019, 31, e1900870.	11.1	54
484	Integrating Microfabrication into Biological Investigations: the Benefits of Interdisciplinarity. Micromachines, 2019, 10, 252.	1.4	14
485	Diagnosis of feline filariasis assisted by a novel semi-automated microfluidic device in combination with high resolution melting real-time PCR. Parasites and Vectors, 2019, 12, 159.	1.0	11
486	Functionalization and Patterning of Self-Assembled Monolayers and Polymer Brushes Using Microcontact Chemistry. Accounts of Chemical Research, 2019, 52, 1336-1346.	7.6	35
487	Coins in microfluidics: From mere scale objects to font of inspiration for microchannel circuits. Biomicrofluidics, 2019, 13, 024106.	1.2	1
488	Online Monitoring of Cell Growth on PDMS-PDMS Reversible Microfluidic Bioreactor Integrated to Optical Fiber Sensor. , 2019, , .		2
489	Frontiers in Microfluidics, a Teaching Resource Review. Bioengineering, 2019, 6, 109.	1.6	19
490	A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP). Geotechnique, 2019, 69, 1086-1094.	2.2	90
491	Functional detection of the original generation of hippocampal cells planted on to the micro-fluidic chip with artificial neuronal network using the patch clamp recording technique: a preliminary study. International Journal of Neuroscience, 2019, 129, 430-437.	0.8	0
492	Efficiency of the flagellar propulsion of <i>Escherichia coli</i> in confined microfluidic geometries. Physical Review E, 2019, 99, 012408.	0.8	7

#	Article	IF	CITATIONS
493	Interference Disturbance Analysis Enables Single-Cell Level Growth and Mobility Characterization for Rapid Antimicrobial Susceptibility Testing. Nano Letters, 2019, 19, 643-651.	4.5	8
494	Chemotactic screening of imidazolinone-degrading bacteria by microfluidic SlipChip. Journal of Hazardous Materials, 2019, 366, 512-519.	6.5	20
495	Ocean In Situ Sensors. , 2019, , 27-80.		0
496	Microfluidic immobilized enzyme reactors for continuous biocatalysis. Reaction Chemistry and Engineering, 2020, 5, 9-32.	1.9	82
497	Droplet and Microchamberâ€Based Digital Loopâ€Mediated Isothermal Amplification (dLAMP). Small, 2020, 16, e1904469.	5.2	53
498	Engineering Strategies to Improve Islet Transplantation for Type 1 Diabetes Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 2543-2562.	2.6	14
499	Rapid Assessment of Water Toxicity by Plasmonic Nanomechanical Sensing. Analytical Chemistry, 2020, 92, 1309-1315.	3.2	14
500	Lab-on-a-Chip for Cardiovascular Physiology and Pathology. Micromachines, 2020, 11, 898.	1.4	12
501	A novel photolithographic method for fabrication of flexible micro-patterned glucose sensors. Journal of Electroanalytical Chemistry, 2020, 876, 114720.	1.9	17
502	Micro and nanoscale technologies in oral drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 37-62.	6.6	123
503	Trends in biomaterials for three-dimensional cancer modeling. , 2020, , 3-41.		3
504	Polydimethylsiloxane chemistry for the fabrication of microfluidics—Perspective on its uniqueness, limitations and alternatives. Materials Today: Proceedings, 2022, 48, 88-95.	0.9	3
505	Microenvironment-Controlled Micropatterned Microfluidic Model (MMMM) for Biomimetic <i>In Situ</i> Studies. ACS Nano, 2020, 14, 9861-9872.	7.3	37
506	How single-cell immunology is benefiting from microfluidic technologies. Microsystems and Nanoengineering, 2020, 6, 45.	3.4	41
507	Scalable and High-Throughput Top-Down Manufacturing of Optical Metasurfaces. Sensors, 2020, 20, 4108.	2.1	22
508	An Integrated, Optofluidic System With Aligned Optical Waveguides, Microlenses, and Coupling Prisms for Fluorescence Sensing. Journal of Microelectromechanical Systems, 2020, 29, 600-609.	1.7	6
509	Biofilm Structure Promotes Coexistence of Phage-Resistant and Phage-Susceptible Bacteria. MSystems, 2020, 5, .	1.7	52
510	Advanced Fabrication Techniques of Microengineered Physiological Systems. Micromachines, 2020, 11, 730.	1.4	26

#	Article	IF	Citations
511	Thermophoretic Micron-Scale Devices: Practical Approach and Review. Entropy, 2020, 22, 950.	1.1	16
512	New method for arbuscular mycorrhizal fungus spore separation using a microfluidic device based on manual temporary flow diversion. Mycorrhiza, 2020, 30, 789-796.	1.3	8
513	Single-Cell Technologies to Understand the Mechanisms of Cellular Adaptation in Chemostats. Frontiers in Bioengineering and Biotechnology, 2020, 8, 579841.	2.0	3
514	Simultaneous measurement of surface and bilayer tension in a microfluidic chip. Biomicrofluidics, 2020, 14, 024117.	1.2	10
515	Development of a Microfluidic Droplet-Based Microbioreactor for Microbial Cultivation. ACS Biomaterials Science and Engineering, 2020, 6, 3630-3637.	2.6	14
516	Droplet encapsulation of electrokinetically-focused analytes without loss of resolution. Lab on A Chip, 2020, 20, 2209-2217.	3.1	2
517	Synthetic polymer-based membranes for lithium-ion batteries. , 2020, , 383-415.		1
518	Free Flow Ion Concentration Polarization Focusing (FF-ICPF). Analytical Chemistry, 2020, 92, 4866-4874.	3.2	18
519	Mosaic Immunoassays Integrated with Microfluidic Channels for High-Throughput Parallel Detection. Analytical Chemistry, 2020, 92, 5688-5694.	3.2	1
520	Assessment of Streptococcus Mutans Adhesion to the Surface of Biomimetically-Modified Orthodontic Archwires. Coatings, 2020, 10, 201.	1.2	7
521	MapA, a Second Large RTX Adhesin Conserved across the Pseudomonads, Contributes to Biofilm Formation by Pseudomonas fluorescens. Journal of Bacteriology, 2020, 202, .	1.0	18
522	Cytoskeletal organization in isolated plant cells under geometry control. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17399-17408.	3.3	37
523	Prototyping a Versatile Two-Layer Multi-Channel Microfluidic Device for Direct-Contact Cell-Vessel Co-Culture. Micromachines, 2020, 11, 79.	1.4	14
524	Patterning and applications of nanoporous structures in organic electronics. Nano Today, 2020, 31, 100843.	6.2	22
525	A Highâ€Performance Membraneless Microfluidic Microbial Fuel Cell for Stable, Longâ€Term Benchtop Operation Under Strong Flow. ChemElectroChem, 2020, 7, 2227-2235.	1.7	19
526	An array microhabitat device with dual gradients revealed synergistic roles of nitrogen and phosphorous in the growth of microalgae. Lab on A Chip, 2020, 20, 798-805.	3.1	5
527	Fabrication, Characterization and Application of Biomolecule Micropatterns on Cyclic Olefin Polymer (COP) Surfaces with Adjustable Contrast. Biosensors, 2020, 10, 3.	2.3	5
528	A High-Throughput Single-Clone Phage Fluorescence Microwell Immunoassay and Laser-Driven Clonal Retrieval System. Biomolecules, 2020, 10, 517.	1.8	4

#	ARTICLE	IF	CITATIONS
529	Selective factors in the evolution of multicellularity in choanoflagellates. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 315-326.	0.6	14
530	Single catalyst particle diagnostics in a microreactor for performing multiphase hydrogenation reactions. Faraday Discussions, 2021, 229, 267-280.	1.6	5
531	Toward lowâ€voltage dielectrophoresisâ€based microfluidic systems: A review. Electrophoresis, 2021, 42, 565-587.	1.3	25
532	Microfluidic microbial fuel cells: Recent advancements and future prospects. International Journal of Hydrogen Energy, 2021, 46, 3105-3123.	3.8	50
533	A manual and portable centrifuge combined with a paper-based immunoassay for myocardial infarction diagnosis. Chemical Engineering Journal, 2021, 409, 128131.	6.6	11
534	Microfluidic Evolutionâ€Onâ€Aâ€Chip Reveals New Mutations that Cause Antibiotic Resistance. Small, 2021, 17, e2007166.	5.2	11
535	Fabrication of Brain-on-a-Chip Devices. , 2021, , 1-31.		0
536	In vitro models of intestinal epithelium: Toward bioengineered systems. Journal of Tissue Engineering, 2021, 12, 204173142098520.	2.3	33
537	An interdisciplinary and application-oriented approach to teach microfluidics. Biomicrofluidics, 2021, 15, 014104.	1.2	3
538	Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse. Methods in Molecular Biology, 2021, 2314, 205-229.	0.4	2
539	Bacterial classification and antibiotic susceptibility testing on an integrated microfluidic platform. Lab on A Chip, 2021, 21, 4208-4222.	3.1	23
540	Technology Development for MEMS: A Tutorial. IEEE Sensors Journal, 2022, 22, 10106-10125.	2.4	2
541	<i>Pseudomonas aeruginosa</i> Uses c-di-GMP Phosphodiesterases RmcA and MorA To Regulate Biofilm Maintenance. MBio, 2021, 12, .	1.8	25
542	Recent Advances in Patterning Natural Polymers: From Nanofabrication Techniques to Applications. Small Methods, 2021, 5, e2001060.	4.6	29
543	Biopolymer Patterning-Directed Secretion in Mucoid and Nonmucoid Strains of <i>Pseudomonas aeruginosa</i> Revealed by Multimodal Chemical Imaging. ACS Infectious Diseases, 2021, 7, 598-607.	1.8	4
545	Rapid Formation of Selfâ€Supporting Polydimethylsiloxane Sheets with Periodic Clusters of Embedded Nickel Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2002216.	1.9	1
546	Microfluidic devices for studying bacterial taxis, drug testing and biofilm formation. Microbial Biotechnology, 2022, 15, 395-414.	2.0	27
547	Exploiting Substrate Cues for Co-Culturing Cells in a Micropattern. Langmuir, 2021, 37, 4933-4942.	1.6	5

#	Article	IF	CITATIONS
548	Antimicrobial Susceptibility Testing in a Rapid Single Test via an Egg-like Multivolume Microchamber-Based Microfluidic Platform. ACS Applied Materials & Egg-like Multivolume 19581-19592.	4.0	7
549	Design and fabrication of drugâ€delivery systems toward adjustable release profiles for personalized treatment. View, 2021, 2, 20200126.	2.7	49
550	Encapsulation Strategies for Pancreatic Islet Transplantation without Immune Suppression. Current Stem Cell Reports, 2021, 7, 49-71.	0.7	2
551	Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Advanced Healthcare Materials, 2021, 10, e2100371.	3.9	11
552	Microelectromechanical Organs-on-Chip., 2021,,.		3
553	A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromolecular Bioscience, 2021, 21, e2100022.	2.1	20
554	Bacterial predation transforms the landscape and community assembly of biofilms. Current Biology, 2021, 31, 2643-2651.e3.	1.8	29
555	Simple Preparation of Polydimethylsiloxane and Polyurethane Blend Film for Marine Antibiofouling Application. Polymers, 2021, 13, 2242.	2.0	9
556	Architecture of cell–cell junctions in situ reveals a mechanism for bacterial biofilm inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
557	Understanding Beta-Lactam-Induced Lysis at the Single-Cell Level. Frontiers in Microbiology, 2021, 12, 712007.	1.5	16
559	Microfluidic systems to study tissue barriers to immunotherapy. Drug Delivery and Translational Research, 2021, 11, 2414-2429.	3.0	2
560	Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy. Applied Nano, 2021, 2, 289-302.	0.9	0
561	Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. International Journal of Molecular Sciences, 2021, 22, 9587.	1.8	22
562	Analysis of Actin and Focal Adhesion Organisation in U2OS Cells on Polymer Nanostructures. Nanoscale Research Letters, 2021, 16, 143.	3.1	6
564	Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: A review. Journal of Hazardous Materials, 2021, 420, 126602.	6.5	92
565	Microfabricated Devices for Confocal Microscopy on Biological Samples. Methods in Molecular Biology, 2021, 2304, 93-109.	0.4	1
566	Microfluidic applications on pancreatic islets and \hat{l}^2 -cells study for human islet transplant., 2021,, 617-658.		1
567	Microfluidic Devices for the Analysis of Gamete and Embryo Physiology. , 2013, , 281-299.		4

#	Article	IF	Citations
568	Planar Patch Clamp for Neuronal Networksâ€"Considerations and Future Perspectives. Methods in Molecular Biology, 2014, 1183, 93-113.	0.4	5
569	Spatial Structure of Microbes in Nature and the Biophysics of Cell–Cell Communication. Biological and Medical Physics Series, 2015, , 53-81.	0.3	3
570	Single-Cell Analysis of Mycobacteria Using Microfluidics and Time-Lapse Microscopy. Methods in Molecular Biology, 2015, 1285, 241-256.	0.4	18
571	Protein Nanoarrays for High-Resolution Patterning of Bacteria on Gold Surfaces. Methods in Molecular Biology, 2011, 790, 191-200.	0.4	4
572	Microfluidics. , 2020, , 493-526.		8
573	3D capillary stop valves for versatile patterning inside microfluidic chips. Analytica Chimica Acta, 2018, 1000, 232-238.	2.6	17
580	Bacterial adherence and biofilm formation on medical implants: A review. , 0, .		1
581	Recent advances in understanding how rod-like bacteria stably maintain their cell shapes. F1000Research, 2018, 7, 241.	0.8	26
582	Rapid Identification of ESKAPE Bacterial Strains Using an Autonomous Microfluidic Device. PLoS ONE, 2012, 7, e41245.	1.1	20
583	Easy Fabrication of Thin Membranes with Through Holes. Application to Protein Patterning. PLoS ONE, 2012, 7, e44261.	1.1	38
584	Microfabricated Polyacrylamide Devices for the Controlled Culture of Growing Cells and Developing Organisms. PLoS ONE, 2013, 8, e75537.	1.1	25
585	Deformation of Filamentous Escherichia coli Cells in a Microfluidic Device: A New Technique to Study Cell Mechanics. PLoS ONE, 2014, 9, e83775.	1.1	21
586	Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature. PLoS ONE, 2013, 8, e84143.	1.1	35
587	Recent Developments in Polymer Microfluidic Devices with Capillary Electrophoresis and Electrochemical Detection. Micro and Nanosystems, 2010, 2, 108-136.	0.3	8
588	The Biophysics of Cell Migration: Biasing Cell Motion with Feynman Ratchets. The Biophysicist, 2020, 1 , .	0.1	9
589	Quantifying Biofilm Formation of <i>Sinorhizobium meliloti</i> Bacterial Strains in Microfluidic Platforms by Measuring the Diffusion Coefficient of Polystyrene Beads. Open Journal of Biophysics, 2017, 07, 157-173.	0.7	1
590	Microbial linguistics: perspectives and applications of microbial cell-to-cell communication. BMB Reports, 2011, 44, 1-10.	1.1	24
592	The Diguanylate Cyclase YfiN of Pseudomonas aeruginosa Regulates Biofilm Maintenance in Response to Peroxide. Journal of Bacteriology, 2022, 204, JB0039621.	1.0	8

#	Article	IF	CITATIONS
593	Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. Applied Sciences (Switzerland), 2021, 11, 9182.	1.3	5
594	Template-directed growth of nanostructures. SPIE Newsroom, 2008, , .	0.1	0
595	Title is missing!. Journal of the Society of Mechanical Engineers, 2008, 111, 650-651.	0.0	0
596	Microtechnology for Stem Cell Culture. Pancreatic Islet Biology, 2011, , 465-482.	0.1	O
597	Microfluidic Applications in Vascular Bioengineering. Advances in Bioinformatics and Biomedical Engineering Book Series, 2011, , 1-30.	0.2	0
598	On-Chip Living-Cell Microarrays for Network Biology. , 0, , .		0
599	Microtechnological Approaches in Stem Cell Science. , 2012, , 135-165.		0
601	Polymer Gradient Surfaces for Biomedical Applications. , 2015, , 93-122.		0
602	MICROFABRICATED ORAL DRUG DELIVERY SYSTEMS. Indian Drugs, 2015, 52, 5-13.	0.1	0
605	Point-of-Care Diagnostic Systems. , 2020, , 211-274.		0
608	3D photolithography through light field projections. Applied Optics, 2020, 59, 8071.	0.9	1
610	Vibrio fischeri and Escherichia coli adhesion tendencies towards photolithographically modified nanosmooth poly (tert-butyl methacrylate) polymer surfaces. Nanotechnology, Science and Applications, 2008, 1, 33-44.	4.6	2
612	Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms, 2021, 9, 2330.	1.6	8
613	Advanced detection and sensing strategies of Pseudomonas aeruginosa and quorum sensing biomarkers: A review. Talanta, 2022, 240, 123210.	2.9	14
614	Water drop impacts on regular micropillar arrays: The impact region. Physics of Fluids, 2022, 34, .	1.6	11
615	Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments. Frontiers in Microbiology, 2021, 12, 745835.	1.5	3
616	Revealing spatio-temporal dynamics with long-term trypanosomatid live-cell imaging. PLoS Pathogens, 2022, 18, e1010218.	2.1	4
617	Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. Environmental Science & E	4.6	29

#	Article	IF	CITATIONS
618	Advances in microfluidic 3D cell culture for preclinical drug development. Progress in Molecular Biology and Translational Science, 2022, 187, 163-204.	0.9	8
619	Controlling Microbial Dynamics through Selective Solute Transport across Functional Nanocultures. ACS Applied Polymer Materials, 2022, 4, 2999-3012.	2.0	1
620	Effect of Controlled Microtopography on Osteogenic Differentiation of Mesenchymal Stem Cells. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	3
621	Solution processing of piezoelectric unconventional structures. , 2022, , 375-439.		3
622	Fabrication of Brain-on-a-Chip Devices. , 2022, , 601-630.		1
623	Advances in the Rapid Diagnostic of Viral Respiratory Tract Infections. Frontiers in Cellular and Infection Microbiology, 2022, 12, 807253.	1.8	14
624	Properties and Applications of PDMS for Biomedical Engineering: A Review. Journal of Functional Biomaterials, 2022, 13, 2.	1.8	216
625	Microfluidics in Biotechnology: Overview and Status Quo. Advances in Biochemical Engineering/Biotechnology, 2022, , 1.	0.6	1
626	Signal enhancement strategies. , 2022, , 123-168.		0
628	Overview and Future Perspectives of Microfluidic Digital Recombinase Polymerase Amplification (dRPA). Critical Reviews in Analytical Chemistry, 2022, 52, 1969-1989.	1.8	10
629	Microfluidic systems for modeling human development. Development (Cambridge), 2022, 149, .	1.2	5
630	Low-Cost Resin 3-D Printing for Rapid Prototyping of Microdevices: Opportunities for Supporting Aquatic Germplasm Repositories. Fishes, 2022, 7, 49.	0.7	11
631	Inverse design of a highâ€quality factor multiâ€purpose optical biosensor. IET Optoelectronics, 2022, 16, 266-276.	1.8	0
632	A fully integrated rapid on-chip antibiotic susceptibility test $\hat{a} \in A$ case study for Mycobacterium smegmatis. Sensors and Actuators A: Physical, 2022, 339, 113515.	2.0	7
633	Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chemical Reviews, 2022, 122, 6938-6985.	23.0	23
647	Viable protoplast formation of the coral endosymbiont alga <i>Symbiodinium</i> spp. in a microfluidics platform. Lab on A Chip, 2022, 22, 2986-2999.	3.1	4
648	Mixing in small scale fluidic systems swayed by rotationality effects. Physics of Fluids, 2022, 34, .	1.6	8
651	Material Engineering in Gut Microbiome and Human Health. Research, 2022, 2022, .	2.8	3

#	Article	IF	CITATIONS
652	Microengineered devices enable long-term imaging of the ventral nerve cord in behaving adult Drosophila. Nature Communications, 2022, 13 , .	5.8	9
653	Multifunctional surface coating using chitosan and its chemical functionalization. Bulletin of the Korean Chemical Society, 0 , , .	1.0	1
654	Microfluidics in vascular biology research: a critical review for engineers, biologists, and clinicians. Lab on A Chip, 2022, 22, 3618-3636.	3.1	6
655	Microcapsule production by droplet microfluidics: A review from the material science approach. Materials and Design, 2022, 223, 111230.	3.3	14
656	Microfluidics for long-term single-cell time-lapse microscopy: Advances and applications. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	7
657	Two-Layered Microfluidic Devices for High-Throughput Dynamic Analysis of Synthetic Gene Circuits in <i>E. coli</i> . ACS Synthetic Biology, 2022, 11, 3954-3965.	1.9	2
658	Flexible and mountable microfluidics for wearable biosensors. , 2023, , 107-157.		1
659	Low-cost gel-filled microwell array device for screening marine microbial consortium. Frontiers in Microbiology, $0,13,.$	1.5	1
660	An RNA sponge controls quorum sensing dynamics and biofilm formation in Vibrio cholerae. Nature Communications, 2022, 13 , .	5.8	19
661	Hierarchical encapsulation of bacteria in functional hydrogel beads for inter- and intra- species communication. Acta Biomaterialia, 2023, 158, 203-215.	4.1	4
662	A â€~print–pause–print' protocol for 3D printing microfluidics using multimaterial stereolithography. Nature Protocols, 2023, 18, 1243-1259.	5.5	18
663	Progress of Microfluidic Hydrogelâ€Based Scaffolds and Organâ€onâ€Chips for the Cartilage Tissue Engineering. Advanced Materials, 2023, 35, .	11.1	26
664	A Smartphone-Based Disposable Hemoglobin Sensor Based on Colorimetric Analysis. Sensors, 2023, 23, 394.	2.1	3
665	Single-Cell Confinement Methods to Study Plant Cytoskeleton. Methods in Molecular Biology, 2023, , 63-75.	0.4	0
666	Angiogenesis driven extracellular matrix remodeling of 3D bioprinted vascular networks. Bioprinting, 2023, 30, e00258.	2.9	1
667	Single-cell pathogen diagnostics for combating antibiotic resistance. Nature Reviews Methods Primers, 2023, 3, .	11.8	9
668	Cellular Contact Guidance on Liquid Crystalline Networks with Anisotropic Roughness. ACS Applied Materials & Samp; Interfaces, O, , .	4.0	1
669	Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization. Small, 2023, 19, .	5.2	4

#	Article	IF	CITATIONS
670	Microbial Fuel Cell–Based Biosensors and Applications. Applied Biochemistry and Biotechnology, 2023, 195, 3508-3531.	1.4	2
671	AC-electric-field-controlled multi-component droplet coalescence at microscale. Lab on A Chip, 2023, 23, 2341-2355.	3.1	2
672	Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review. International Journal of Environmental Research and Public Health, 2023, 20, 5471.	1.2	2
674	Methods for studying biofilms: Microfluidics and translation in the clinical context. Methods in Microbiology, 2023, , 195-233.	0.4	1
683	Breast tumor-on-chip: from the tumor microenvironment to medical applications. Analyst, The, 0, , .	1.7	0
685	Microfluidics-integrated biosensor platform for modern clinical analysis. , 2024, , 153-179.		0
693	Biochip-PUF: Physically Unclonable Function for Microfluidic Biochips., 2023,,.		0
695	Microfluidics for adaptation of microorganisms to stress: design and application. Applied Microbiology and Biotechnology, 2024, 108, .	1.7	O