Molecular mechanism of the nuclear protein import cyc

Nature Reviews Molecular Cell Biology

8, 195-208

DOI: 10.1038/nrm2114

Citation Report

#	Article	IF	CITATIONS
1	Nuclear Import of c-Jun Is Mediated by Multiple Transport Receptors. Journal of Biological Chemistry, 2007, 282, 27685-27692.	1.6	65
2	Localization of AMP kinase is regulated by stress, cell density, and signaling through the MEK→ERK1/2 pathway. American Journal of Physiology - Cell Physiology, 2007, 293, C1427-C1436.	2.1	126
3	Msk is required for nuclear import of TGF-β/BMP-activated Smads. Journal of Cell Biology, 2007, 178, 981-994.	2.3	72
4	Nanomechanical Basis of Selective Gating by the Nuclear Pore Complex. Science, 2007, 318, 640-643.	6.0	277
5	Ebola Virus VP24 Proteins Inhibit the Interaction of NPI-1 Subfamily Karyopherin α Proteins with Activated STAT1. Journal of Virology, 2007, 81, 13469-13477.	1.5	226
6	Nuclear Import of the MUC1-C Oncoprotein Is Mediated by Nucleoporin Nup62. Journal of Biological Chemistry, 2007, 282, 19321-19330.	1.6	120
7	RCC1 isoforms differ in their affinity for chromatin, molecular interactions and regulation by phosphorylation. Journal of Cell Science, 2007, 120, 3436-3445.	1.2	29
8	Analysis of a predicted nuclear localization signal: implications for the intracellular localization and function of the Saccharomyces cerevisiae RNA-binding protein Scp160. Nucleic Acids Research, 2007, 35, 6862-6869.	6.5	5
9	The presence of a secretory phospholipase A2 in the nuclei of neuronal and glial cells of rat brain cortex. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1345-1352.	1.2	18
10	The DEAD-Box Protein Dbp5 Controls mRNA Export by Triggering Specific RNA:Protein Remodeling Events. Molecular Cell, 2007, 28, 850-859.	4.5	200
11	Mitosis, Not Just Open or Closed. Eukaryotic Cell, 2007, 6, 1521-1527.	3.4	131
12	Crossing the Nuclear Envelope: Hierarchical Regulation of Nucleocytoplasmic Transport. Science, 2007, 318, 1412-1416.	6.0	484
13	Pore puzzle. Nature, 2007, 450, 621-622.	13.7	5
14	Molecular basis for the functional interaction of dynein light chain with the nuclear-pore complex. Nature Cell Biology, 2007, 9, 788-796.	4.6	84
15	Exporting RNA from the nucleus to the cytoplasm. Nature Reviews Molecular Cell Biology, 2007, 8, 761-773.	16.1	644
16	The molecular architecture of the nuclear pore complex. Nature, 2007, 450, 695-701.	13.7	947
17	Cse1p-Binding Dynamics Reveal a Binding Pattern for FG-Repeat Nucleoporins on Transport Receptors. Structure, 2007, 15, 977-991.	1.6	54
18	Gate-Crashing the Nuclear Pore Complex. Structure, 2007, 15, 889-891.	1.6	3

		Citation Report	
#	Article	IF	Citations
19	Targeted delivery to the nucleusa~†. Advanced Drug Delivery Reviews, 2007, 59, 698-717.	6.6	223
20	Towards reconciling structure and function in the nuclear pore complex. Histochemistry and Ce Biology, 2008, 129, 105-116.	ll 0.8	115
21	<i>MSH2</i> missense mutations and HNPCC syndrome: pathogenicity assessment in a human system. Human Mutation, 2008, 29, E296-E309.	expression 1.1	21
22	At a glance: Cellular biology for engineers. Computational Biology and Chemistry, 2008, 32, 31	5-331. 1.1	10
23	A New Role for Nuclear Transport Factor 2 and Ran: Nuclear Import of CapG. Traffic, 2008, 9, 69	5-707. 1.3	30
24	The Structure and Function of the Retromer Protein Complex. Traffic, 2008, 9, 1811-1822.	1.3	87
25	Insights into interferon regulatory factor activation from the crystal structure of dimeric IRF5. Nature Structural and Molecular Biology, 2008, 15, 1213-1220.	3.6	109
27	Characterization of the nuclear localization signal of the hepatitis delta virus antigen. Virology, 2008, 370, 12-21.	1.1	30
28	Transcription-dependent nucleolar cap localization and possible nuclear function of DExH RNA helicase RHAU. Experimental Cell Research, 2008, 314, 1378-1391.	1.2	43
29	Joining the dots: Production, processing and targeting of U snRNP to nuclear bodies. Biochimica Biophysica Acta - Molecular Cell Research, 2008, 1783, 2137-2144.	i Et 1.9	23
30	Importin-β: Structural and Dynamic Determinants of a Molecular Spring. Structure, 2008, 16, 9	06-915. 1.6	49
31	The Crystal Structure of the Ran-Nup153ZnF2 Complex: a General Ran Docking Site at the Nucl Complex. Structure, 2008, 16, 1116-1125.	ear Pore 1.6	28
32	Interactions of Human Cytomegalovirus Proteins with the Nuclear Transport Machinery. Current Topics in Microbiology and Immunology, 2008, 325, 167-185.	t 0.7	7
33	Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimo cell. Biology Direct, 2008, 3, 31.	eric 1.9	29
34	Kap95p Binding Induces the Switch Loops of RanGDP to Adopt the GTP-Bound Conformation: Implications for Nuclear Import Complex Assembly Dynamics. Journal of Molecular Biology, 200 772-782.	8, 383, 2.0	32
35	Structural Basis of the Nic96 Subcomplex Organization in the Nuclear Pore Channel. Molecular 2008, 29, 46-55.	Cell, 4.5	83
36	Structural and Functional Studies of Nup107/Nup133 Interaction and Its Implications for the Architecture of the Nuclear Pore Complex. Molecular Cell, 2008, 30, 721-731.	4.5	97
37	Boys, girls and shuttling of SRY and SOX9. Trends in Endocrinology and Metabolism, 2008, 19, 2	213-222. 3.1	78

#	Article	IF	CITATIONS
38	Update:Peptide Motifs for Insertion of Radiolabeled Biomolecules into Cells and Routing to the Nucleus for Cancer Imaging or Radiotherapeutic Applications. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 3-24.	0.7	55
39	Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix. Biochemical and Biophysical Research Communications, 2008, 375, 303-307.	1.0	14
40	Differential subcellular localization of insulin receptor substrates depends on C-terminal regions and importin Î ² . Biochemical and Biophysical Research Communications, 2008, 377, 741-746.	1.0	8
41	The F-actin filament capping protein CapG is a bona fide nucleolar protein. Biochemical and Biophysical Research Communications, 2008, 377, 699-704.	1.0	15
42	Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication. Cell, 2008, 135, 49-60.	13.5	881
43	Decoding of Light Signals by Plant Phytochromes and Their Interacting Proteins. Annual Review of Plant Biology, 2008, 59, 281-311.	8.6	412
44	Chapter 20 Scanning Electron Microscopy of Nuclear Structure. Methods in Cell Biology, 2008, 88, 389-409.	0.5	13
45	Discovering Novel Interactions at the Nuclear Pore Complex Using Bead Halo. Molecular and Cellular Proteomics, 2008, 7, 121-131.	2.5	79
46	Biology and Biophysics of the Nuclear Pore Complex and Its Components. International Review of Cell and Molecular Biology, 2008, 267, 299-342.	1.6	70
47	The RanGTP gradient – a GPS for the mitotic spindle. Journal of Cell Science, 2008, 121, 1577-1586.	1.2	259
48	Nuclear Import of HSV-1 DNA Polymerase Processivity Factor UL42 Is Mediated by a C-Terminally Located Bipartite Nuclear Localization Signal. Biochemistry, 2008, 47, 13764-13777.	1.2	25
49	Individual binding pockets of importin-β for FG-nucleoporins have different binding properties and different sensitivities to RanGTP. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16101-16106.	3.3	61
50	Analysis of Signaling Events by Combining High-Throughput Screening Technology with Computer-Based Image Analysis. Science Signaling, 2008, 1, pl2.	1.6	28
51	Drosophila Importin α1 Performs Paralog-Specific Functions Essential For Gametogenesis. Genetics, 2008, 178, 839-850.	1.2	33
52	Structural basis for the nuclear import of the human androgen receptor. Journal of Cell Science, 2008, 121, 957-968.	1.2	193
53	Flexible Structures and Ligand Interactions of Tandem Repeats Consisting of Proline, Glycine, Asparagine, Serine, and/or Threonine Rich Oligopeptides in Proteins. Current Protein and Peptide Science, 2008, 9, 591-610.	0.7	44
54	Molecular Basis for the Recognition of Snurportin 1 by Importin β. Journal of Biological Chemistry, 2008, 283, 7877-7884.	1.6	65
55	Importin-β and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. Journal of Cell Biology, 2008, 180, 493-506.	2.3	53

#	Article	IF	CITATIONS
56	Anchoring Junctions As Drug Targets: Role in Contraceptive Development. Pharmacological Reviews, 2008, 60, 146-180.	7.1	140
57	A possible mechanism for self-coordination of bidirectional traffic across nuclear pores. Physical Biology, 2008, 5, 036001.	0.8	22
58	The Ty1 integrase protein can exploit the classical nuclear protein import machinery for entry into the nucleus. Nucleic Acids Research, 2008, 36, 4317-4326.	6.5	32
59	Single-molecule measurements of importin α/cargo complex dissociation at the nuclear pore. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8613-8618.	3.3	53
60	Nuclear Import of the Varicella-Zoster Virus Latency-Associated Protein ORF63 in Primary Neurons Requires Expression of the Lytic Protein ORF61 and Occurs in a Proteasome-Dependent Manner. Journal of Virology, 2008, 82, 8673-8686.	1.5	23
61	Protein Import into Hydrogenosomes and Mitosomes. , 2007, , 21-73.		1
62	Proteomics Identification of Nuclear Ran GTPase as an Inhibitor of Human VRK1 and VRK2 (Vaccinia-related Kinase) Activities. Molecular and Cellular Proteomics, 2008, 7, 2199-2214.	2.5	53
63	Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. Journal of Cell Biology, 2008, 183, 77-86.	2.3	86
64	Cell Penetrating Peptides for In Vivo Molecular Imaging Applications. Current Pharmaceutical Design, 2008, 14, 2415-2427.	0.9	62
65	Identification of a Short Basic Peptide Motif Able to Drive Copy-Number Dependent Nuclear Accumulation of a Linked Protein. Protein and Peptide Letters, 2008, 15, 397-401.	0.4	Ο
66	Structural Requirements for the Ubiquitin-associated Domain of the mRNA Export Factor Mex67 to Bind Its Specific Targets, the Transcription Elongation THO Complex Component Hpr1 and Nucleoporin FXFG Repeats. Journal of Biological Chemistry, 2009, 284, 17575-17583.	1.6	22
67	Importin-β Is a GDP-to-GTP Exchange Factor of Ran. Journal of Biological Chemistry, 2009, 284, 22549-22558.	1.6	27
68	Architectural Nucleoporins Nup157/170 and Nup133 Are Structurally Related and Descend from a Second Ancestral Element. Journal of Biological Chemistry, 2009, 284, 28442-28452.	1.6	75
69	Calmodulin-driven Nuclear Entry: Trigger for Sex Determination and Terminal Differentiation. Journal of Biological Chemistry, 2009, 284, 12593-12597.	1.6	47
70	Nuclear Import of the Glucocorticoid Receptor-hsp90 Complex through the Nuclear Pore Complex Is Mediated by Its Interaction with Nup62 and Importin β. Molecular and Cellular Biology, 2009, 29, 4788-4797.	1.1	132
71	The Classical Nuclear Localization Signal Receptor, Importin-α, Is Required for Efficient Transition Through the G1/S Stage of the Cell Cycle in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 181, 105-118.	1.2	13
72	Non-Globular Structures of Tandem Repeats in Proteins. Protein and Peptide Letters, 2009, 16, 1297-1322.	0.4	6
73	Functional targeting of the MUC1 oncogene in human cancers. Cancer Biology and Therapy, 2009, 8, 1197-1203.	1.5	99

#	Article	IF	CITATIONS
74	Global Motions of the Nuclear Pore Complex: Insights from Elastic Network Models. PLoS Computational Biology, 2009, 5, e1000496.	1.5	29
75	Transportin Regulates Major Mitotic Assembly Events: From Spindle to Nuclear Pore Assembly. Molecular Biology of the Cell, 2009, 20, 4043-4058.	0.9	53
76	Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14281-14286.	3.3	74
77	Kapl, a non-essential member of the Pse1p/Imp5 karyopherin family, controls colonial and asexual development in Aspergillus nidulans. Microbiology (United Kingdom), 2009, 155, 3934-3945.	0.7	19
78	Scaling and self-organized criticality in proteins II. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3113-3118.	3.3	23
79	Flexible Gates: Dynamic Topologies and Functions for FG Nucleoporins in Nucleocytoplasmic Transport. Eukaryotic Cell, 2009, 8, 1814-1827.	3.4	207
80	Avian Reovirus SigmaA Localizes to the Nucleolus and Enters the Nucleus by a Nonclassical Energy- and Carrier-Independent Pathway. Journal of Virology, 2009, 83, 10163-10175.	1.5	32
81	CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Human Molecular Genetics, 2009, 18, 3334-3343.	1.4	88
82	Structural analysis of the nuclear pore complex by integrated approaches. Current Opinion in Structural Biology, 2009, 19, 226-232.	2.6	63
83	The Nuclear Pore Complex Has Entered the Atomic Age. Structure, 2009, 17, 1156-1168.	1.6	167
84	Double duty for nuclear proteins – the price of more open forms of mitosis. Trends in Genetics, 2009, 25, 545-554.	2.9	40
85	Synergistic nuclear import of NeuroD1 and its partner transcription factor, E47, via heterodimerization. Experimental Cell Research, 2009, 315, 1639-1652.	1.2	17
86	RAN GTPase Is a RASSF1A Effector Involved in Controlling Microtubule Organization. Current Biology, 2009, 19, 1227-1232.	1.8	42
87	Functionalization of a nanopore: The nuclear pore complex paradigm. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1533-1539.	1.9	21
88	Nuclear localization signals and human disease. IUBMB Life, 2009, 61, 697-706.	1.5	88
89	Translocation through the nuclear pore: Kaps pave the way. BioEssays, 2009, 31, 466-477.	1.2	107
90	A complex of Shc and Ran-GTPase localises to the cell nucleus. Cellular and Molecular Life Sciences,	2.4	10
	2003, 00, 711 720.		

#	Article	IF	CITATIONS
92	Protein unfolding is an essential requirement for transport across the parasitophorous vacuolar membrane of <i>Plasmodium falciparum</i> . Molecular Microbiology, 2009, 71, 613-628.	1.2	126
93	Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier. EMBO Journal, 2009, 28, 2697-2705.	3.5	68
94	How to grow a bud: an importin acts in asymmetric division. Nature Cell Biology, 2009, 11, 243-245.	4.6	3
95	Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nature Structural and Molecular Biology, 2009, 16, 1026-1035.	3.6	149
96	The Dynamics and Mechanisms of Interleukinâ€lα and β Nuclear Import. Traffic, 2009, 10, 16-25.	1.3	38
97	Exo70â€Mediated Recruitment of Nucleoporin Nup62 at the Leading Edge of Migrating Cells is Required for Cell Migration. Traffic, 2009, 10, 1257-1271.	1.3	28
98	Binding Site Distribution of Nuclear Transport Receptors and Transport Complexes in Single Nuclear Pore Complexes. Traffic, 2009, 10, 1228-1242.	1.3	18
99	Quantification of Nuclear Protein Transport using Induced Heterodimerization. Traffic, 2009, 10, 1221-1227.	1.3	9
100	Transportin Mediates Nuclear Entry of DNA in Vertebrate Systems. Traffic, 2009, 10, 1414-1428.	1.3	27
101	A Role for the Karyopherin Kap123p in Microtubule Stability. Traffic, 2009, 10, 1619-1634.	1.3	8
102	Dual functionality of interleukinâ€1 family cytokines: implications for antiâ€interleukinâ€1 therapy. British Journal of Pharmacology, 2009, 157, 1318-1329.	2.7	72
103	The microtubule interacting drug candidate NAP protects against kainic acid toxicity in a rat model of epilepsy. Journal of Neurochemistry, 2009, 111, 1252-1263.	2.1	26
104	Tissue-specific and transcription factor-mediated nuclear entry of DNA. Advanced Drug Delivery Reviews, 2009, 61, 603-613.	6.6	87
105	Near-Field Optical Study of Protein Transport Kinetics at a Single Nuclear Pore. Nano Letters, 2009, 9, 3330-3336.	4.5	44
106	Nucleocytoplasmic transport: A thermodynamic mechanism. HFSP Journal, 2009, 3, 130-141.	2.5	26
107	Border Control at the Nucleus: Biogenesis and Organization of the Nuclear Membrane and Pore Complexes. Developmental Cell, 2009, 17, 606-616.	3.1	124
108	The nuclear transport machinery as a regulator of Drosophila development. Seminars in Cell and Developmental Biology, 2009, 20, 582-589.	2.3	21
109	Nuclear transport factors in neuronal function. Seminars in Cell and Developmental Biology, 2009, 20, 20, 600-606.	2.3	44

#	Article	IF	CITATIONS
110	Nucleocytoplasmic transport as a driver of mammalian gametogenesis. Seminars in Cell and Developmental Biology, 2009, 20, 607-619.	2.3	17
111	Thermodynamic and Structural Investigation of Bispecificity in Protein–Protein Interactions. Journal of Molecular Biology, 2009, 389, 336-348.	2.0	14
112	Structural and Functional Analysis of the Globular Head Domain of p115 Provides Insight into Membrane Tethering. Journal of Molecular Biology, 2009, 391, 26-41.	2.0	34
113	A Nuclear Localization Signal at the SAM–SAM Domain Interface of AIDA-1 Suggests a Requirement for Domain Uncoupling Prior to Nuclear Import. Journal of Molecular Biology, 2009, 392, 1168-1177.	2.0	26
114	Protection from Isopeptidase-Mediated Deconjugation Regulates Paralog-Selective Sumoylation of RanGAP1. Molecular Cell, 2009, 33, 570-580.	4.5	65
115	The Intracellular Mobility of Nuclear Import Receptors and NLS Cargoes. Biophysical Journal, 2009, 96, 3840-3849.	0.2	35
116	Inhibition of HIV-1 integrase nuclear import and replication by a peptide bearing integrase putative nuclear localization signal. Retrovirology, 2009, 6, 112.	0.9	29
117	Therapeutic Targeting of Nuclear Protein Import in Pathological Cell Conditions. Pharmacological Reviews, 2009, 61, 358-372.	7.1	53
118	Nuclear Export of Small RNAs. Science, 2009, 326, 1195-1196.	6.0	12
120	Mechanisms and Signals for the Nuclear Import of Proteins. Current Genomics, 2009, 10, 550-557.	0.7	101
121	Near-field optical fluorescence correlation spectroscopy. , 2010, , .		0
122	Regulation of mRNA cap methylation. Biochemical Journal, 2010, 425, 295-302.	1.7	161
123	The Mechanism of Nucleocytoplasmic Transport through the Nuclear Pore Complex. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 567-584.	2.0	45
123 125	The Mechanism of Nucleocytoplasmic Transport through the Nuclear Pore Complex. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 567-584. Recognition of Nucleoplasmin by Its Nuclear Transport Receptor Importin $\hat{l} \pm / \hat{l}^2$: Insights into a Complete Import Complex. Biochemistry, 2010, 49, 9756-9769.	2.0 1.2	45 25
123 125 126	The Mechanism of Nucleocytoplasmic Transport through the Nuclear Pore Complex. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 567-584. Recognition of Nucleoplasmin by Its Nuclear Transport Receptor Importin α∫î²: Insights into a Complete Import Complex. Biochemistry, 2010, 49, 9756-9769. Dynamics and kinetics of nucleoâ€cytoplasmic mRNA export. Wiley Interdisciplinary Reviews RNA, 2010, 1, 388-401.	2.0 1.2 3.2	45 25 15
123 125 126 127	The Mechanism of Nucleocytoplasmic Transport through the Nuclear Pore Complex. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 567-584. Recognition of Nucleoplasmin by Its Nuclear Transport Receptor Importin α∫β: Insights into a Complete Import Complex. Biochemistry, 2010, 49, 9756-9769. Dynamics and kinetics of nucleoâ€cytoplasmic mRNA export. Wiley Interdisciplinary Reviews RNA, 2010, 1, 388-401. Importin-β2: a key to two gates?. Protein and Cell, 2010, 1, 791-792.	2.0 1.2 3.2 4.8	45 25 15 1
123 125 126 127 128	The Mechanism of Nucleocytoplasmic Transport through the Nuclear Pore Complex. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 567-584.Recognition of Nucleoplasmin by Its Nuclear Transport Receptor Importin α/β: Insights into a Complete Import Complex. Biochemistry, 2010, 49, 9756-9769.Dynamics and kinetics of nucleoâ€eytoplasmic mRNA export. Wiley Interdisciplinary Reviews RNA, 2010, 1, 388-401.Importin-β2: a key to two gates?. Protein and Cell, 2010, 1, 791-792.Quantitative Structural Analysis of Importin-β Flexibility: Paradigm for Solenoid Protein Structures. Structure, 2010, 18, 1171-1183.	2.0 1.2 3.2 4.8 1.6	45 25 15 1

#	Article	IF	Citations
130	Bioactive Cell-Penetrating Peptides: Kill Two Birds with One Stone. Chemistry and Biology, 2010, 17, 679-680.	6.2	3
131	Small molecule peptidomimetic inhibitors of importin α∕β mediated nuclear transport. Bioorganic and Medicinal Chemistry, 2010, 18, 7611-7620.	1.4	23
132	Phosphorylation meets nuclear import: a review. Cell Communication and Signaling, 2010, 8, 32.	2.7	196
133	Nap1 and Chz1 have Separate Htz1 Nuclear Import and Assembly Functions. Traffic, 2010, 11, 185-197.	1.3	43
134	Truncated Isoforms of Kap60 Facilitate Trafficking of Heh2 to the Nuclear Envelope. Traffic, 2010, 11, 1506-1518.	1.3	15
135	Yeast karyopherins Kap123 and Kap95 are related to the function of the cell integrity pathway. FEMS Yeast Research, 2010, 10, 28-37.	1.1	7
136	Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene, 2010, 29, 3997-4006.	2.6	199
137	An actin-regulated importin α/β-dependent extended bipartite NLS directs nuclear import of MRTF-A. EMBO Journal, 2010, 29, 3448-3458.	3.5	111
138	Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature, 2010, 467, 600-603.	13.7	140
139	Live imaging system for visualizing nuclear pore complex (NPC) formation during interphase in mammalian cells. Genes To Cells, 2010, 15, 647-660.	0.5	9
140	The Nup107-160 complex and Î ³ -TuRC regulate microtubule polymerization at kinetochores. Nature Cell Biology, 2010, 12, 164-169.	4.6	169
141	Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nature Cell Biology, 2010, 12, 703-710.	4.6	260
142	The nuclear pore complex: bridging nuclear transport and gene regulation. Nature Reviews Molecular Cell Biology, 2010, 11, 490-501.	16.1	473
143	In Vivo Imaging of Single-Molecule Translocation Through Nuclear Pore Complexes by Pair Correlation Functions. PLoS ONE, 2010, 5, e10475.	1.1	66
144	Drosophila Importin-α2 Is Involved in Synapse, Axon and Muscle Development. PLoS ONE, 2010, 5, e15223.	1.1	20
145	Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. Journal of Cell Biology, 2010, 188, 919-933.	2.3	137
146	Novel Binding of the Mitotic Regulator TPX2 (Target Protein for Xenopus Kinesin-like Protein 2) to Importin-α. Journal of Biological Chemistry, 2010, 285, 17628-17635.	1.6	79
147	Cryoelectron Tomography of Eukaryotic Cells. Methods in Enzymology, 2010, 483, 245-265.	0.4	16

#	Article	IF	CITATIONS
148	Integral membrane proteins Brr6 and Apq12 link assembly of the nuclear pore complex to lipid homeostasis in the endoplasmic reticulum. Journal of Cell Science, 2010, 123, 141-151.	1.2	72
149	Viral Oncolysis That Targets Raf-1 Signaling Control of Nuclear Transport. Journal of Virology, 2010, 84, 2090-2099.	1.5	32
150	Specific Nucleoporin Requirement for Smad Nuclear Translocation. Molecular and Cellular Biology, 2010, 30, 4022-4034.	1.1	46
151	Converging on the function of intrinsically disordered nucleoporins in the nuclear pore complex. Biological Chemistry, 2010, 391, 719-30.	1.2	43
152	Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein. Journal of Virology, 2010, 84, 1089-1096.	1.5	27
153	The Translocon Sec61β Localized in the Inner Nuclear Membrane Transports Membrane-embedded EGF Receptor to the Nucleus. Journal of Biological Chemistry, 2010, 285, 38720-38729.	1.6	107
154	Transportin Regulates Nuclear Import of CD44. Journal of Biological Chemistry, 2010, 285, 30548-30557.	1.6	39
155	A circadian-regulated gene, <i>Nocturnin</i> , promotes adipogenesis by stimulating PPAR-γ nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10508-10513.	3.3	136
156	Two Isoforms of Npap60 (Nup50) Differentially Regulate Nuclear Protein Import. Molecular Biology of the Cell, 2010, 21, 630-638.	0.9	27
157	Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7305-7310.	3.3	112
158	The Importin β Binding Domain Modulates the Avidity of Importin β for the Nuclear Pore Complex. Journal of Biological Chemistry, 2010, 285, 13769-13780.	1.6	38
159	Activation of the Ran GTPase Is Subject to Growth Factor Regulation and Can Give Rise to Cellular Transformation. Journal of Biological Chemistry, 2010, 285, 5815-5826.	1.6	54
160	Charge as a Selection Criterion for Translocation through the Nuclear Pore Complex. PLoS Computational Biology, 2010, 6, e1000747.	1.5	78
161	Influence of heart failure on nucleocytoplasmic transport in human cardiomyocytes. Cardiovascular Research, 2010, 85, 464-472.	1.8	33
162	Crowding effects in non-equilibrium transport through nano-channels. Journal of Physics Condensed Matter, 2010, 22, 454130.	0.7	14
163	The Arabidopsis Nuclear Pore and Nuclear Envelope. The Arabidopsis Book, 2010, 8, e0139.	0.5	25
164	Integrating complex functions. Nucleus, 2010, 1, 387-392.	0.6	12
165	Phosphorylation of nucleoporins. Nucleus, 2010, 1, 309-313.	0.6	17

#	Article	IF	CITATIONS
166	Transportin 3 and importin \hat{l}_{\pm} are required for effective nuclear import of HIV-1 integrase in virus-infected cells. Nucleus, 2010, 1, 422-431.	0.6	40
167	Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore. Nucleus, 2010, 1, 299-308.	0.6	97
168	Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking. Biophysical Journal, 2010, 98, 209a.	0.2	1
169	Hydrophilic Linkers and Polar Contacts Affect Aggregation of FG Repeat Peptides. Biophysical Journal, 2010, 98, 2653-2661.	0.2	13
170	An Unusual Hydrophobic Core Confers Extreme Flexibility to HEAT Repeat Proteins. Biophysical Journal, 2010, 99, 1596-1603.	0.2	66
171	An essential role for Ran GTPase in epithelial ovarian cancer cell survival. Molecular Cancer, 2010, 9, 272.	7.9	59
172	Conformational Selection in the Recognition of the Snurportin Importin β Binding Domain by Importin β. Biochemistry, 2010, 49, 5042-5047.	1.2	19
173	Identification of a Small Molecule Inhibitor of Importin β Mediated Nuclear Import by Confocal On-Bead Screening of Tagged One-Bead One-Compound Libraries. ACS Chemical Biology, 2010, 5, 967-979.	1.6	50
174	Systems Biology: Towards Realistic and Useful Models of Molecular Networks. , 2010, , 439-453.		2
175	Gene Regulation by Nucleoporins and Links to Cancer. Molecular Cell, 2010, 38, 6-15.	4.5	126
176	Specificity of Hexim1 and Hexim2 Complex Formation with Cyclin T1/T2, Importin \hat{I}_{\pm} and 7SK snRNA. Journal of Molecular Biology, 2010, 395, 28-41.	2.0	24
177	RCC1 Uses a Conformationally Diverse Loop Region to Interact with the Nucleosome: A Model for the RCC1–Nucleosome Complex. Journal of Molecular Biology, 2010, 398, 518-529.	2.0	44
178	Tyr39 of Ran Preserves the Ran·GTP Gradient by Inhibiting GTP Hydrolysis. Journal of Molecular Biology, 2010, 401, 1-6.	2.0	18
179	Molecular Basis for the Recognition of Phosphorylated STAT1 by Importin α5. Journal of Molecular Biology, 2010, 402, 83-100.	2.0	70
179 180	Molecular Basis for the Recognition of Phosphorylated STAT1 by Importin α5. Journal of Molecular Biology, 2010, 402, 83-100. The subcellular localization of MEK and ERK—A novel nuclear translocation signal (NTS) paves a way to the nucleus. Molecular and Cellular Endocrinology, 2010, 314, 213-220.	2.0 1.6	70 99
179 180 181	Molecular Basis for the Recognition of Phosphorylated STAT1 by Importin α5. Journal of Molecular Biology, 2010, 402, 83-100. The subcellular localization of MEK and ERKâ€"A novel nuclear translocation signal (NTS) paves a way to the nucleus. Molecular and Cellular Endocrinology, 2010, 314, 213-220. Nuclear Size Is Regulated by Importin α and Ntf2 in Xenopus. Cell, 2010, 143, 288-298.	2.0 1.6 13.5	70 99 234
179 180 181 182	Molecular Basis for the Recognition of Phosphorylated STAT1 by Importin α5. Journal of Molecular Biology, 2010, 402, 83-100. The subcellular localization of MEK and ERKâ€"A novel nuclear translocation signal (NTS) paves a way to the nucleus. Molecular and Cellular Endocrinology, 2010, 314, 213-220. Nuclear Size Is Regulated by Importin α and Ntf2 in Xenopus. Cell, 2010, 143, 288-298. Genetically Encoded Photocontrol of Protein Localization in Mammalian Cells. Journal of the American Chemical Society, 2010, 132, 4086-4088.	2.0 1.6 13.5 6.6	70 99 234 232

#	Article	IF	CITATIONS
185	Improving <i>in Vivo</i> Hepatic Transfection Activity by Controlling Intracellular Trafficking: The Function of GALA and Maltotriose. Molecular Pharmaceutics, 2011, 8, 1436-1442.	2.3	30
186	Nuclear Pore Complex. International Review of Cell and Molecular Biology, 2011, 287, 233-286.	1.6	89
187	The Nuclear Transport Machinery Recognizes Nucleoplasmin–Histone Complexes. Biochemistry, 2011, 50, 7104-7110.	1.2	7
188	Delivery of Nucleic Acids and Gene Delivery. , 2011, , 411-444.		7
189	Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52). Current Opinion in Pharmacology, 2011, 11, 314-319.	1.7	73
190	Conformational dynamics of supramolecular protein assemblies. Journal of Structural Biology, 2011, 173, 261-270.	1.3	20
191	The 1.9Ã crystal structure of Prp20p from Saccharomyces cerevisiae and its binding properties to Gsp1p and histones. Journal of Structural Biology, 2011, 174, 213-222.	1.3	4
192	Conservation of Complex Nuclear Localization Signals Utilizing Classical and Non-Classical Nuclear Import Pathways in LANA Homologs of KSHV and RFHV. PLoS ONE, 2011, 6, e18920.	1.1	21
193	Common ground for protein translocation: access control for mitochondria and chloroplasts. Nature Reviews Molecular Cell Biology, 2011, 12, 48-59.	16.1	223
194	Biological hydrogels as selective diffusion barriers. Trends in Cell Biology, 2011, 21, 543-551.	3.6	305
195	A potential link between autoimmunity and neurodegeneration in immune-mediated neurological disease. Journal of Neuroimmunology, 2011, 235, 56-69.	1.1	48
196	Selective nuclear export mechanism of small RNAs. Current Opinion in Structural Biology, 2011, 21, 101-108.	2.6	31
197	Mechanism and Regulation of Nucleocytoplasmic Trafficking of Smad. Cell and Bioscience, 2011, 1, 40.	2.1	30
198	The importin β binding domain as a master regulator of nucleocytoplasmic transport. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1578-1592.	1.9	155
199	Single molecule studies of nucleocytoplasmic transport. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1607-1618.	1.9	32
200	Expression of nucleocytoplasmic transport machinery: Clues to regulation of spermatogenic development. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1668-1688.	1.9	44
201	Modeling the Early Steps of Cytoplasmic Trafficking in Viral Infection and Gene Delivery. SIAM Journal on Applied Mathematics, 2011, 71, 2334-2358.	0.8	13
202	The Structure of the Nuclear Pore Complex. Annual Review of Biochemistry, 2011, 80, 613-643.	5.0	461

#	Article	IF	CITATIONS
203	Flexibility of the exportins Cse1p and Xpot depicted by elastic network model. Journal of Molecular Modeling, 2011, 17, 1735-1741.	0.8	3
204	Small GTPases and cilia. Protein and Cell, 2011, 2, 13-25.	4.8	28
205	Calcium regulation of nucleocytoplasmic transport. Protein and Cell, 2011, 2, 291-302.	4.8	14
206	The Ran importin system in cilia trafficking. Organogenesis, 2011, 7, 147-153.	0.4	19
207	Sorting the nuclear proteome. Bioinformatics, 2011, 27, i7-i14.	1.8	18
208	Multiple mechanisms actively target the SUN protein UNC-84 to the inner nuclear membrane. Molecular Biology of the Cell, 2011, 22, 1739-1752.	0.9	39
209	KPNA6 (Importin α7)-Mediated Nuclear Import of Keap1 Represses the Nrf2-Dependent Antioxidant Response. Molecular and Cellular Biology, 2011, 31, 1800-1811.	1.1	73
210	Nuclear import of an intact preassembled proteasome particle. Molecular Biology of the Cell, 2011, 22, 880-891.	0.9	34
211	Electrostatic Interactions Involving the Extreme C Terminus of Nuclear Export Factor CRM1 Modulate Its Affinity for Cargo. Journal of Biological Chemistry, 2011, 286, 29325-29335.	1.6	26
212	Localization of retinitis pigmentosa 2 to cilia is regulated by Importin β2. Journal of Cell Science, 2011, 124, 718-726.	1.2	90
213	A Key Temporal Delay in the Circadian Cycle of <i>Drosophila</i> Is Mediated by a Nuclear Localization Signal in the Timeless Protein. Genetics, 2011, 188, 591-600.	1.2	31
214	Importin α/β mediates nuclear import of individual SUMO E1 subunits and of the holo-enzyme. Molecular Biology of the Cell, 2011, 22, 652-660.	0.9	19
215	The Ebola Virus VP24 Protein Prevents hnRNP C1/C2 Binding to Karyopherin α1 and Partially Alters its Nuclear Import. Journal of Infectious Diseases, 2011, 204, S904-S910.	1.9	45
216	Kinesin motors and primary cilia. Biochemical Society Transactions, 2011, 39, 1120-1125.	1.6	71
217	Role of the Nuclear Receptor Coactivator AIB1-Δ4 Splice Variant in the Control of Gene Transcription. Journal of Biological Chemistry, 2011, 286, 26813-26827.	1.6	17
218	Unexpected role of nucleoporins in coordination of cell cycle progression. Cell Cycle, 2011, 10, 425-433.	1.3	38
219	RanGAP2 Mediates Nucleocytoplasmic Partitioning of the NB-LRR Immune Receptor Rx in the Solanaceae, Thereby Dictating Rx Function Â. Plant Cell, 2011, 22, 4176-4194.	3.1	133
220	Importin α Protein Acts as a Negative Regulator for Snail Protein Nuclear Import. Journal of Biological Chemistry, 2011, 286, 15126-15131.	1.6	21

#	Article	IF	CITATIONS
221	A Minimal Nuclear Localization Signal (NLS) in Human Phospholipid Scramblase 4 That Binds Only the Minor NLS-binding Site of Importin α1. Journal of Biological Chemistry, 2011, 286, 28160-28169.	1.6	57
222	Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1763-1770.	3.3	91
223	Structure-function studies of nucleocytoplasmic transport of retroviral genomic RNA by mRNA export factor TAP. Nature Structural and Molecular Biology, 2011, 18, 990-998.	3.6	47
224	Nucleoporin NUP153 guards genome integrity by promoting nuclear import of 53BP1. Cell Death and Differentiation, 2012, 19, 798-807.	5.0	68
225	Specific Cooperation Between Imp-α2 and Imp-β/Ketel in Spindle Assembly During Drosophila Early Nuclear Divisions. G3: Genes, Genomes, Genetics, 2012, 2, 1-14.	0.8	3
226	The Bovine Immunodeficiency Virus Rev Protein: Identification of a Novel Nuclear Import Pathway and Nuclear Export Signal among Retroviral Rev/Rev-Like Proteins. Journal of Virology, 2012, 86, 4892-4905.	1.5	10
227	SUMO unloads the Kap114 cab. EMBO Journal, 2012, 31, 2439-2440.	3.5	1
228	Identification of a Nuclear Localization Sequence in β-Arrestin-1 and Its Functional Implications. Journal of Biological Chemistry, 2012, 287, 8932-8943.	1.6	48
229	Birth, Death, and Replacement of Karyopherins in Drosophila. Molecular Biology and Evolution, 2012, 29, 1429-1440.	3.5	17
230	Multifunctional Envelope-Type Nano Device (MEND) for Organelle Targeting Via a Stepwise Membrane Fusion Process. Methods in Enzymology, 2012, 509, 301-326.	0.4	38
231	Heat-shock stress activates a novel nuclear import pathway mediated by Hikeshi. Nucleus, 2012, 3, 422-428.	0.6	20
232	Genome-wide mapping of Myc binding and gene regulation in serum-stimulated fibroblasts. Oncogene, 2012, 31, 1695-1709.	2.6	90
233	Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20148-20153.	3.3	98
234	Characterization of a Novel Activated Ran GTPase Mutant and Its Ability to Induce Cellular Transformation. Journal of Biological Chemistry, 2012, 287, 24955-24966.	1.6	13
235	Nucleoporin Nup50 Stabilizes Closed Conformation of Armadillo repeat 10 in Importin α5. Journal of Biological Chemistry, 2012, 287, 2022-2031.	1.6	22
236	A Novel Nuclear Trafficking Module Regulates the Nucleocytoplasmic Localization of the Rabies Virus Interferon Antagonist, P Protein. Journal of Biological Chemistry, 2012, 287, 28112-28121.	1.6	37
237	Nucleocytoplasmic Transport: A Role for Nonspecific Competition in Karyopherin-Nucleoporin Interactions. Molecular and Cellular Proteomics, 2012, 11, 31-46.	2.5	56
238	Pathogenic mechanisms of neurodegeneration based on the phenotypic expression of progressive forms of immune-mediated neurologic disease. Degenerative Neurological and Neuromuscular Disease, 2012, 2, 175.	0.7	10

#	Article	IF	CITATIONS
239	Cellular Cofactors of Lentiviral Integrase: From Target Validation to Drug Discovery. Molecular Biology International, 2012, 2012, 1-16.	1.7	26
240	The distribution of phosphorylated SR proteins and alternative splicing are regulated by RANBP2. Molecular Biology of the Cell, 2012, 23, 1115-1128.	0.9	37
241	A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nature Cell Biology, 2012, 14, 431-437.	4.6	281
242	From Artificial Antibodies to Nanosprings. Advances in Experimental Medicine and Biology, 2012, 747, 153-166.	0.8	6
243	Mechanisms of Intracellular Scaling. Annual Review of Cell and Developmental Biology, 2012, 28, 113-135.	4.0	123
244	Structural Features Affecting Trafficking, Processing, and Secretion of Trypanosoma cruzi Mucins. Journal of Biological Chemistry, 2012, 287, 26365-26376.	1.6	25
245	Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16911-16916.	3.3	95
246	Histone chaperones link histone nuclear import and chromatin assembly. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 277-289.	0.9	64
247	Pleckstrin homology (PH) like domains – versatile modules in protein–protein interaction platforms. FEBS Letters, 2012, 586, 2662-2673.	1.3	115
248	Hikeshi, a Nuclear Import Carrier for Hsp70s, Protects Cells from Heat Shock-Induced Nuclear Damage. Cell, 2012, 149, 578-589.	13.5	131
249	Androgen receptor association with mitotic chromatin – analysis with introduced deletions and diseaseâ€inflicting mutations. FEBS Journal, 2012, 279, 4598-4614.	2.2	14
250	Sub-cellular localization analysis of MSH6 missense mutations does not reveal an overt MSH6 nuclear transport impairment. Familial Cancer, 2012, 11, 675-680.	0.9	2
251	Morphological control of grafted polymer films via attraction to small nanoparticle inclusions. Physical Review E, 2012, 86, 031806.	0.8	42
252	Proteomic analysis of the nuclear phosphorylated proteins in dairy cow mammary epithelial cells treated with estrogen. In Vitro Cellular and Developmental Biology - Animal, 2012, 48, 449-457.	0.7	18
253	Synchronizing Nuclear Import of Ribosomal Proteins with Ribosome Assembly. Science, 2012, 338, 666-671.	6.0	95
254	Analysis of DEAD-Box Proteins in mRNA Export. Methods in Enzymology, 2012, 511, 239-254.	0.4	17
255	Protein Dimerization and Oligomerization in Biology. Advances in Experimental Medicine and Biology, 2012, , .	0.8	40
256	Single-molecule studies of nucleocytoplasmic transport: from one dimension to three dimensions. Integrative Biology (United Kingdom), 2012, 4, 10-21.	0.6	29

ARTICLE IF CITATIONS # Nuclear Translocation of Type I Transforming Growth Factor Î² Receptor Confers a Novel Function in 257 1.1 32 RNA Processing. Molecular and Cellular Biology, 2012, 32, 2183-2195. Cilia functions in development. Current Opinion in Cell Biology, 2012, 24, 24-30. 2.6 Trafficking to uncharted territory of the nuclear envelope. Current Opinion in Cell Biology, 2012, 24, 259 2.6 40 341-349. Pyk2 cytonuclear localization: mechanisms and regulation by serine dephosphorylation. Cellular and 260 2.4 Molecular Life Sciences, 2013, 70, 137-152. Cargo Recognition Explains Nuclear Transport Regulation Induced by Nuclear Pore Complex 261 2.0 1 Reorganization. Journal of Molecular Biology, 2013, 425, 1849-1851. Tissue metabolite profiling identifies differentiating and prognostic biomarkers for prostate carcinoma. International Journal of Cancer, 2013, 133, 2914-2924. 2.3 Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. 263 1.7 156 Biochemical Journal, 2013, 454, 361-369. Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization. Journal 264 1.6 76 of Biological Chemistry, 2013, 288, 22621-22635. A Simple Kinetic Model with Explicit Predictions for Nuclear Transport. Biophysical Journal, 2013, 105, 266 0.2 24 565-569. Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiological Reviews, 2013, 93, 269-309. 13.1 The functional role of the novel biomarker karyopherin $\hat{l} \pm 2$ (KPNA2) in cancer. Cancer Letters, 2013, 331, 268 3.2 104 18-23. Structural Basis for Cell-Cycle-Dependent Nuclear Import Mediated by the Karyopherin Kap121p. 46 Journal of Molecular Biology, 2013, 425, 1852-1868. Exploration of Binary Virus–Host Interactions Using an Infectious Protein Complementation Assay. 270 2.5 46 Molecular and Cellular Proteomics, 2013, 12, 2845-2855. In the wrong place at the wrong time: does cyclin mislocalization drive oncogenic transformation?. Nature Reviews Cancer, 2013, 13, 201-208. 271 12.8 Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a 272 10.3 192 physicist's perspective. Physics Reports, 2013, 529, 1-197. Non-Interacting Molecules as Innate Structural Probes in Surface Plasmon Resonance. Langmuir, 2013, 29, 4068-4076. Calumenin-15 facilitates filopodia formation by promoting TGF-Î² superfamily cytokine GDF-15 274 2.7 22 transcription. Cell Death and Disease, 2013, 4, e870-e870. The distribution of different classes of nuclear localization signals (NLSs) in diverse organisms and the utilization of the minor NLS-binding site inplantnuclear import factor importin-î±. Plant Signaling 1.2 and Behavior, 2013, 8, e25976.

#	Article	IF	CITATIONS
276	Large cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins. EMBO Journal, 2013, 32, 3220-3230.	3.5	80
277	Effects of Ligand Binding on the Mechanical Properties of Ankyrin Repeat Protein Gankyrin. PLoS Computational Biology, 2013, 9, e1002864.	1.5	18
278	Activation of Ran GTPase by a Legionella Effector Promotes Microtubule Polymerization, Pathogen Vacuole Motility and Infection. PLoS Pathogens, 2013, 9, e1003598.	2.1	94
279	Hop-on hop-off: importin-α-guided tours to the nucleus in innate immune signaling. Frontiers in Plant Science, 2013, 4, 149.	1.7	58
280	Interaction of Transportin-SR2 with Ras-related Nuclear Protein (Ran) GTPase. Journal of Biological Chemistry, 2013, 288, 25603-25613.	1.6	10
281	Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores. Proceedings of the United States of America, 2013, 110, E1584-93.	3.3	27
282	Porcine Reproductive and Respiratory Syndrome Virus Nsp1β Inhibits Interferon-Activated JAK/STAT Signal Transduction by Inducing Karyopherin-α1 Degradation. Journal of Virology, 2013, 87, 5219-5228.	1.5	98
283	New twist to nuclear import: When two travel together. Communicative and Integrative Biology, 2013, 6, e24792.	0.6	26
284	KPNA2 promotes cell proliferation and tumorigenicity in epithelial ovarian carcinoma through upregulation of c-Myc and downregulation of FOXO3a. Cell Death and Disease, 2013. 4, e745-e745.	2.7	85
285	STATs get their move on. Jak-stat, 2013, 2, e27080.	2.2	100
285 286	STATs get their move on. Jak-stat, 2013, 2, e27080. Involvement of Rab28 in NF-κB Nuclear Transport in Endothelial Cells. PLoS ONE, 2013, 8, e56076.	2.2 1.1	100
285 286 287	STATs get their move on. Jak-stat, 2013, 2, e27080. Involvement of Rab28 in NF-ΰB Nuclear Transport in Endothelial Cells. PLoS ONE, 2013, 8, e56076. Heat Shock Protein 70 Is Associated with Replicase Complex of Japanese Encephalitis Virus and Positively Regulates Viral Genome Replication. PLoS ONE, 2013, 8, e75188.	2.2 1.1 1.1	100 14 55
285 286 287 288	STATs get their move on. Jak-stat, 2013, 2, e27080. Involvement of Rab28 in NF-Î ^e B Nuclear Transport in Endothelial Cells. PLoS ONE, 2013, 8, e56076. Heat Shock Protein 70 Is Associated with Replicase Complex of Japanese Encephalitis Virus and Positively Regulates Viral Genome Replication. PLoS ONE, 2013, 8, e75188. Ran GTPase-Activating Protein 1 Is a Therapeutic Target in Diffuse Large B-Cell Lymphoma. PLoS ONE, 2013, 8, e79863.	2.2 1.1 1.1 1.1	100 14 55 14
285 286 287 288 288	STATs get their move on. Jak-stat, 2013, 2, e27080. Involvement of Rab28 in NF-ήB Nuclear Transport in Endothelial Cells. PLoS ONE, 2013, 8, e56076. Heat Shock Protein 70 Is Associated with Replicase Complex of Japanese Encephalitis Virus and Positively Regulates Viral Genome Replication. PLoS ONE, 2013, 8, e75188. Ran GTPase-Activating Protein 1 Is a Therapeutic Target in Diffuse Large B-Cell Lymphoma. PLoS ONE, 2013, 8, e79863. Thermodynamic Signatures of Macromolecular Complexes â€' Insights on the Stability and Interactions of Nucleoplasmin, a Nuclear Chaperone. , 0, , .	2.2 1.1 1.1 1.1	100 14 55 14 0
285 286 287 288 288 289	STATs get their move on. Jak-stat, 2013, 2, e27080. Involvement of Rab28 in NF-ήB Nuclear Transport in Endothelial Cells. PLoS ONE, 2013, 8, e56076. Heat Shock Protein 70 Is Associated with Replicase Complex of Japanese Encephalitis Virus and Positively Regulates Viral Genome Replication. PLoS ONE, 2013, 8, e75188. Ran GTPase-Activating Protein 1 Is a Therapeutic Target in Diffuse Large B-Cell Lymphoma. PLoS ONE, 2013, 8, e79863. Thermodynamic Signatures of Macromolecular Complexes â€' Insights on the Stability and Interactions of Nucleoplasmin, a Nuclear Chaperone., 0, RAN Nucleo-Cytoplasmic Transport and Mitotic Spindle Assembly Partners XPO7 and TPX2 Are New Prognostic Biomarkers in Serous Epithelial Ovarian Cancer. PLoS ONE, 2014, 9, e91000.	2.2 1.1 1.1 1.1 1.1	100 14 55 14 0 37
285 286 287 288 289 290	 STATs get their move on. Jak-stat, 2013, 2, e27080. Involvement of Rab28 in NF-¹/₂B Nuclear Transport in Endothelial Cells. PLoS ONE, 2013, 8, e56076. Heat Shock Protein 70 Is Associated with Replicase Complex of Japanese Encephalitis Virus and Positively Regulates Viral Genome Replication. PLoS ONE, 2013, 8, e75188. Ran GTPase-Activating Protein 1 Is a Therapeutic Target in Diffuse Large B-Cell Lymphoma. PLoS ONE, 2013, 8, e79863. Thermodynamic Signatures of Macromolecular Complexes â€' Insights on the Stability and Interactions of Nucleoplasmin, a Nuclear Chaperone. , 0, RAN Nucleo-Cytoplasmic Transport and Mitotic Spindle Assembly Partners XPO7 and TPX2 Are New Prognostic Biomarkers in Serous Epithelial Ovarian Cancer. PLoS ONE, 2014, 9, e91000. The Ran GTPase-Activating Protein (RanGAP1) Is Critically Involved in Smooth Muscle Cell Differentiation, Proliferation and Migration following Vascular Injury: Implications for Neointima Formation and Restenosis. PLoS ONE, 2014, 9, e101519. 	2.2 1.1 1.1 1.1 1.1	100 14 55 14 0 37
285 286 287 288 289 290 291	STATs get their move on. Jak-stat, 2013, 2, e27080. Involvement of Rab28 in NF-IPB Nuclear Transport in Endothelial Cells. PLoS ONE, 2013, 8, e56076. Heat Shock Protein 70 Is Associated with Replicase Complex of Japanese Encephalitis Virus and Positively Regulates Viral Genome Replication. PLoS ONE, 2013, 8, e75188. Ran GTPase-Activating Protein 1 Is a Therapeutic Target in Diffuse Large B-Cell Lymphoma. PLoS ONE, 2013, 8, e79863. Thermodynamic Signatures of Macromolecular Complexes â€' Insights on the Stability and Interactions of Nucleoplasmin, a Nuclear Chaperone. , 0, . RAN Nucleo-Cytoplasmic Transport and Mitotic Spindle Assembly Partners XPO7 and TPX2 Are New Prognostic Biomarkers in Serous Epithelial Ovarian Cancer. PLoS ONE, 2014, 9, e91000. The Ran GTPase-Activating Protein (RanGAP1) Is Critically Involved in Smooth Muscle Cell Differentiation, Proliferation and Migration following Vascular Injury: Implications for Neointima Formation and Restenosis. PLoS ONE, 2014, 9, e111687. Alteration in Endometrial Proteins during Early- and Mid-Secretory Phases of the Cycle in Women with Unexplained Infertility. PLoS ONE, 2014, 9, e111687.	2.2 1.1 1.1 1.1 1.1 1.1	100 14 55 14 0 37 37 31

		CITATION R	REPORT	
#	Article		IF	CITATIONS
294	Functional insights of nucleocytoplasmic transport in plants. Frontiers in Plant Science, 2	2014, 5, 118.	1.7	50
296	Structural Insights into How Yrb2p Accelerates the Assembly of the Xpo1p Nuclear Expo Cell Reports, 2014, 9, 983-995.	rt Complex.	2.9	33
297	Analysis of Nucleocytoplasmic Transport in Digitonin-Permeabilized Cells Under Different Conditions. Methods in Cell Biology, 2014, 122, 331-352.	: Cellular	0.5	2
298	Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. Biochemistry (Moscow), 2014, 79, 928-946.		0.7	15
299	<scp>NLS</scp> copyâ€number variation governs efficiency of nuclear import – case s d <scp>UTP</scp> ases. FEBS Journal, 2014, 281, 5463-5478.	study on	2.2	6
300	Icm/Dot-dependent inhibition of phagocyte migration byLegionellais antagonized by a tra GTPase activator. Cellular Microbiology, 2014, 16, n/a-n/a.	anslocated Ran	1.1	52
301	Dataâ€driven modeling reconciles kinetics of <scp>ERK</scp> phosphorylation, localizat activity states. Molecular Systems Biology, 2014, 10, 718.	ion, and	3.2	54
302	Structural Mechanism of Nuclear Transport Mediated by Importin \hat{I}^2 and Flexible Amphip Structure, 2014, 22, 1699-1710.	hilic Proteins.	1.6	27
303	Role of Î²â€łactamase residues in a common interface for binding the structurally unrelat proteins BLIP and BLIPâ€II. Protein Science, 2014, 23, 1235-1246.	ed inhibitory	3.1	13
304	Hypothalamic protein profiles associated with inhibited feed intake of ducks fed with ins dietary arginine. Animal, 2014, 8, 1113-1118.	ufficient	1.3	4
305	Structural basis for the selective nuclear import of the C2H2 zinc-finger protein Snail by Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1050-1060.	mportin β.	2.5	27
306	Perturbing microtubule integrity blocks AMP-activated protein kinase-induced meiotic re cultured mouse oocytes. Zygote, 2014, 22, 91-102.	sumption in	0.5	5
307	Beyond Rab GTPases Legionella activates the small GTPase Ran to promote microtubule pathogen vacuole motility, and infection. Small GTPases, 2014, 5, e972859.	polymerization,	0.7	12
308	Structure of transportin SR2, a karyopherin involved in human disease, in complex with F Crystallographica Section F, Structural Biology Communications, 2014, 70, 723-729.	lan. Acta	0.4	11
309	Crystallization and preliminary X-ray crystallographic study of human Hikeshi, a new nucl transport receptor for Hsp70. Acta Crystallographica Section F, Structural Biology Comm 2014, 70, 1646-1648.	ear nunications,	0.4	0
310	Arabidopsis thaliana Tic110, involved in chloroplast protein translocation, contains at lea highly divergent heat-like repeated motifs. Biologia (Poland), 2014, 69, 139-151.	st fourteen	0.8	1
311	Factors Affecting the Nuclear Localization of βâ€Catenin in Normal and Malignant Tissue Cellular Biochemistry, 2014, 115, 1351-1361.	e. Journal of	1.2	47
312	Nuclear Pores Protect Genome Integrity by Assembling a Premitotic and Mad1-Depender Inhibitor. Cell, 2014, 156, 1017-1031.	it Anaphase	13.5	152

#	ARTICLE	IF	Citations
313	Nucleocytoplasmic transport under stress conditions and its role in HSP70 chaperone systems. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2953-2960.	1.1	25
314	Prosurvival function of the cellular apoptosis susceptibility/importin-α1 transport cycle is repressed by p53 in liver cancer. Hepatology, 2014, 60, 884-895.	3.6	29
315	Biological Significance of the Importinâ€Î² Familyâ€Đependent Nucleocytoplasmic Transport Pathways. Traffic, 2014, 15, 727-748.	1.3	120
316	Disordered Proteinaceous Machines. Chemical Reviews, 2014, 114, 6806-6843.	23.0	109
317	Structural basis for nuclear import of splicing factors by human Transportin 3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2728-2733.	3.3	124
318	Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. Journal of Experimental Medicine, 2014, 211, 1937-1945.	4.2	94
319	Intracellular Trafficking Pathways for Nuclear Delivery of Plasmid DNA Complexed with Highly Efficient Endosome Escape Polymers. Biomacromolecules, 2014, 15, 3569-3576.	2.6	29
320	Cellâ€Permeant and Photocleavable Chemical Inducer of Dimerization. Angewandte Chemie - International Edition, 2014, 53, 4717-4720.	7.2	51
321	Regulation of Nucleocytoplasmic Transport by ADP-Ribosylation: The Emerging Role of Karyopherin-β1 Mono-ADP-Ribosylation by ARTD15. Current Topics in Microbiology and Immunology, 2014, 384, 189-209.	0.7	5
322	Intracellular calcium levels can regulate Importin-dependent nuclear import. Biochemical and Biophysical Research Communications, 2014, 450, 812-817.	1.0	6
323	Transportinâ€l and Transportinâ€2: Protein nuclear import and beyond. FEBS Letters, 2014, 588, 1857-1868.	1.3	96
324	Identification of a functional nuclear localization signal within the human USP22 protein. Biochemical and Biophysical Research Communications, 2014, 449, 14-18.	1.0	8
325	Targeting the β-catenin nuclear transport pathway in cancer. Seminars in Cancer Biology, 2014, 27, 20-29.	4.3	120
326	Karyopherin-Centric Control of Nuclear Pores Based on Molecular Occupancy and Kinetic Analysis of Multivalent Binding with FG Nucleoporins. Biophysical Journal, 2014, 106, 1751-1762.	0.2	116
327	A Code for RanGDP Binding in Ankyrin Repeats Defines a Nuclear Import Pathway. Cell, 2014, 157, 1130-1145.	13.5	67
328	KPNA2 is a promising biomarker candidate for esophageal squamous cell carcinoma and correlates with cell proliferation. Oncology Reports, 2014, 32, 1631-1637.	1.2	28
330	Probing formation of cargo/importinâ€Î± transport complexes in plant cells using a pathogen effector. Plant Journal, 2015, 81, 40-52.	2.8	48
331	Selective Targeting of the TPX2 Site of Importinâ€Î± Using Fragmentâ€Based Ligand Design. ChemMedChem, 2015, 10, 1232-1239.	1.6	11

#		IF	CITATIONS
332	Formation of a pathogen vacuole according to <i>Legionella pneumophila</i> : how to kill one	11	139
002	bird with many stones. Cellular Microbiology, 2015, 17, 935-950.	1,1	107
333	Conformational flexibility of the oncogenic protein LMO2 primes the formation of the multi-protein transcription complex. Scientific Reports, 2014, 4, 3643.	1.6	17
334	Karyopherin alpha 2 is a novel prognostic marker and a potential therapeutic target for colon cancer. Journal of Experimental and Clinical Cancer Research, 2015, 34, 145.	3.5	35
336	Direct Modulation of Small GTPase Activity and Function. Angewandte Chemie - International Edition, 2015, 54, 13516-13537.	7.2	63
337	The Ran Pathway in Drosophila melanogaster Mitosis. Frontiers in Cell and Developmental Biology, 2015, 3, 74.	1.8	15
338	Misdelivery at the Nuclear Pore Complex—Stopping a Virus Dead in Its Tracks. Cells, 2015, 4, 277-296.	1.8	38
339	Nuclear Export of Messenger RNA. Genes, 2015, 6, 163-184.	1.0	78
340	Effect of the Compaction and the Size of DNA on the Nuclear Transfer Efficiency after Microinjection in Synchronized Cells. Pharmaceutics, 2015, 7, 64-73.	2.0	22
341	Subversion of Cell-Autonomous Immunity and Cell Migration by Legionella pneumophila Effectors. Frontiers in Immunology, 2015, 6, 447.	2.2	21
342	Respiratory virus modulation of host nucleocytoplasmic transport; target for therapeutic intervention?. Frontiers in Microbiology, 2015, 6, 848.	1.5	13
343	An Importin Code in neuronal transport from synapse-to-nucleus?. Frontiers in Molecular Neuroscience, 2015, 8, 33.	1.4	14
344	The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes. PLoS ONE, 2015, 10, e0127271.	1.1	18
345	Akt-mediated phosphorylation increases the binding affinity of hTERT for importin \hat{I}_{\pm} to promote nuclear translocation. Journal of Cell Science, 2015, 128, 2287-2301.	1.2	31
346	Endogenous ADP-Ribosylation. Current Topics in Microbiology and Immunology, 2015, , .	0.7	6
347	Bipartite Nuclear Localization Signal Controls Nuclear Import and DNA-Binding Activity of IFN Regulatory Factor 3. Journal of Immunology, 2015, 195, 289-297.	0.4	40
348	Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box. Biochemical and Biophysical Research Communications, 2015, 462, 201-207.	1.0	12
349	Molecular mechanism by which acyclic retinoid induces nuclear localization of transglutaminase 2 in human hepatocellular carcinoma cells. Cell Death and Disease, 2015, 6, e2002-e2002.	2.7	27
350	NTF2-like domain of Tap plays a critical role in cargo mRNA recognition and export. Nucleic Acids Research, 2015, 43, 1894-1904.	6.5	23

#	Article	IF	CITATIONS
351	Nuclear Pore Complexes and Nucleocytoplasmic Transport. International Review of Cell and Molecular Biology, 2015, 320, 171-233.	1.6	68
352	Promiscuous Binding of Karyopherin \hat{I}^2 1 Modulates FG Nucleoporin Barrier Function and Expedites NTF2 Transport Kinetics. Biophysical Journal, 2015, 108, 918-927.	0.2	67
353	Diversification of importin- \hat{l} ± isoforms in cellular trafficking and disease states. Biochemical Journal, 2015, 466, 13-28.	1.7	187
354	Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization. Biochemical and Biophysical Research Communications, 2015, 457, 589-594.	1.0	3
355	Molecular Determinants for Nuclear Import of Influenza A PB2 by Importin $\hat{I}\pm$ Isoforms 3 and 7. Structure, 2015, 23, 374-384.	1.6	87
356	Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. Scientific Reports, 2015, 5, 7929.	1.6	58
357	The nuclear pore complex – structure and function at a glance. Journal of Cell Science, 2015, 128, 423-429.	1.2	153
358	Distinctive Properties of the Nuclear Localization Signals of Inner Nuclear Membrane Proteins Heh1 and Heh2. Structure, 2015, 23, 1305-1316.	1.6	31
359	A Polymer-Brush-Based Nanovalve Controlled by Nanoparticle Additives: Design Principles. Journal of Physical Chemistry B, 2015, 119, 11858-11866.	1.2	26
360	MD Simulations and FRET Reveal an Environment-Sensitive Conformational Plasticity of Importin-β. Biophysical Journal, 2015, 109, 277-286.	0.2	23
361	Drosophila TIM Binds Importin $\hat{I}\pm1$, and Acts as an Adapter to Transport PER to the Nucleus. PLoS Genetics, 2015, 11, e1004974.	1.5	72
362	A nuclear odyssey: fibroblast growth factor-2 (FGF-2) as a regulator of nuclear homeostasis in the nervous system. Cellular and Molecular Life Sciences, 2015, 72, 1651-1662.	2.4	17
363	High expression of KPNA2 defines poor prognosis in patients with upper tract urothelial carcinoma treated with radical nephroureterectomy. BMC Cancer, 2015, 15, 380.	1.1	25
364	Structural and functional analysis of Hikeshi, a new nuclear transport receptor of Hsp70s. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 473-483.	2.5	9
366	Nup2 requires a highly divergent partner, NupA, to fulfill functions at nuclear pore complexes and the mitotic chromatin region. Molecular Biology of the Cell, 2015, 26, 605-621.	0.9	22
367	Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export. Cell Reports, 2015, 13, 690-702.	2.9	84
368	Catalysis of GTP Hydrolysis by Small GTPases at Atomic Detail by Integration of X-ray Crystallography, Experimental, and Theoretical IR Spectroscopy. Journal of Biological Chemistry, 2015, 290, 24079-24090.	1.6	20
369	Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Molecular Cancer, 2015, 14, 160.	7.9	30

#	Article	IF	CITATIONS
370	Changing expression and subcellular distribution of karyopherins during murine oogenesis. Reproduction, 2015, 150, 485-496.	1.1	27
371	Importin β1 mediates nuclear factor-βB signal transduction into the nuclei of myeloma cells and affects their proliferation and apoptosis. Cellular Signalling, 2015, 27, 851-859.	1.7	32
372	Disruption of the Ran System by Cysteine Oxidation of the Nucleotide Exchange Factor RCC1. Molecular and Cellular Biology, 2015, 35, 566-581.	1.1	14
373	At the centre: influenza A virus ribonucleoproteins. Nature Reviews Microbiology, 2015, 13, 28-41.	13.6	337
374	Use of Xenopus cell-free extracts to study size regulation of subcellular structures. International Journal of Developmental Biology, 2016, 60, 277-288.	0.3	3
375	Inhibition of Nuclear Transport of NF-Äß p65 by the Salmonella Type III Secretion System Effector SpvD. PLoS Pathogens, 2016, 12, e1005653.	2.1	72
376	The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination. PLoS Biology, 2016, 14, e1002467.	2.6	31
377	Identification of a bipartite nuclear localization signal in the silkworm Masc protein. FEBS Letters, 2016, 590, 2256-2261.	1.3	11
378	Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential. IUBMB Life, 2016, 68, 268-280.	1.5	47
379	Nuclear import of prototype foamy virus transactivator Bel1 is mediated by KPNA1, KPNA6 and KPNA7. International Journal of Molecular Medicine, 2016, 38, 399-406.	1.8	1
380	Transcriptional regulation of importin-α ₁ by JunD modulates subcellular localization of RNA-binding protein HuR in intestinal epithelial cells. American Journal of Physiology - Cell Physiology, 2016, 311, C874-C883.	2.1	4
381	Precise control of polymer coated nanopores by nanoparticle additives: Insights from computational modeling. Journal of Chemical Physics, 2016, 145, .	1.2	17
382	The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nature Communications, 2016, 7, 11482.	5.8	79
383	Triple targeting of Auger emitters using octreotate conjugated to a DNA-binding ligand and a nuclear localizing signal. International Journal of Radiation Biology, 2016, 92, 707-715.	1.0	9
384	The importin protein karyopherin-β1 regulates the mice fibroblast-like synoviocytes inflammation via facilitating nucleus transportation of STAT3 transcription factor. Biochemical and Biophysical Research Communications, 2016, 471, 553-559.	1.0	5
385	Aberrant localization of lamin B receptor (LBR) in cellular senescence in human cells. Biochemical and Biophysical Research Communications, 2016, 473, 1078-1083.	1.0	11
386	Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2489-97.	3.3	85
387	Factors influencing the nuclear targeting ability of nuclear localization signals. Journal of Drug Targeting, 2016, 24, 927-933.	2.1	35

#	Article	IF	CITATIONS
388	Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence. Journal of Structural Biology, 2016, 195, 273-281.	1.3	4
389	The development of a single molecule fluorescence standard and its application in estimating the stoichiometry of the nuclear pore complex. Biochemical and Biophysical Research Communications, 2016, 478, 1694-1699.	1.0	10
390	Hsp90-binding immunophilin FKBP52 modulates telomerase activity by promoting the cytoplasmic retrotransport of hTERT. Biochemical Journal, 2016, 473, 3517-3532.	1.7	28
391	Sorting of lipidated cargo by the Arl2/Arl3 system. Small GTPases, 2016, 7, 222-230.	0.7	38
392	The ciliary membrane targeting by a ternary complex comprising transportin1, Rab8 and the ciliary targeting signal. Journal of Cell Science, 2016, 129, 3922-3934.	1.2	31
393	Distinct hydrophobic "patches―in the N- and C-tails of beta-catenin contribute to nuclear transport. Experimental Cell Research, 2016, 348, 132-145.	1.2	10
395	Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit. Nature Structural and Molecular Biology, 2016, 23, 1074-1082.	3.6	36
396	Cell surface localization of importin α1/KPNA2 affects cancer cell proliferation by regulating FGF1 signalling. Scientific Reports, 2016, 6, 21410.	1.6	33
397	Cellular growth defects triggered by an overload of protein localization processes. Scientific Reports, 2016, 6, 31774.	1.6	47
398	Generation of a transgenic medaka (<i>Oryzias latipes</i>) strain for visualization of nuclear dynamics in early developmental stages. Development Growth and Differentiation, 2016, 58, 679-687.	0.6	10
399	Transportin-1-dependent YB-1 nuclear import. Biochemical and Biophysical Research Communications, 2016, 480, 629-634.	1.0	22
400	Rapid Brownian Motion Primes Ultrafast Reconstruction of Intrinsically Disordered Phe-Gly Repeats Inside the Nuclear Pore Complex. Scientific Reports, 2016, 6, 29991.	1.6	28
401	Cigarette Smoke Mediates Nuclear to Cytoplasmic Trafficking of Transcriptional Inhibitor Kaiso through MUC1 and P120-Catenin. American Journal of Pathology, 2016, 186, 3146-3159.	1.9	9
402	HEAT repeats – versatile arrays of amphiphilic helices working in crowded environments?. Journal of Cell Science, 2016, 129, 3963-3970.	1.2	109
403	RUNX2 controls human IPO8 basal transcription in Saos-2 cells. Molecular Medicine Reports, 2016, 14, 1418-1424.	1.1	3
404	Importins promote high-frequency NF-ήB oscillations increasing information channel capacity. Biology Direct, 2016, 11, 61.	1.9	15
405	Roles of Cross-Membrane Transport and Signaling in the Maintenance of Cellular Homeostasis. Cellular and Molecular Bioengineering, 2016, 9, 234-246.	1.0	10
406	Metabolic Enzymes Moonlighting in the Nucleus: Metabolic Regulation of Gene Transcription. Trends in Biochemical Sciences, 2016, 41, 712-730.	3.7	227

#	Article	IF	CITATIONS
407	Impact of the crystallization condition on importin-β conformation. Acta Crystallographica Section D: Structural Biology, 2016, 72, 705-717.	1.1	12
408	Dissecting functions of the N-terminal domain and GAS-site recognition in STAT3 nuclear trafficking. Cellular Signalling, 2016, 28, 810-825.	1.7	12
409	The Structure Inventory of the Nuclear Pore Complex. Journal of Molecular Biology, 2016, 428, 1986-2000.	2.0	82
410	Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nature Structural and Molecular Biology, 2016, 23, 239-247.	3.6	58
411	mTORC1 alters the expression of glycolytic genes by regulating KPNA2 abundances. Journal of Proteomics, 2016, 136, 13-24.	1.2	11
412	Nuclear size is sensitive to NTF2 protein levels dependent on Ran binding. Journal of Cell Science, 2016, 129, 1115-27.	1.2	39
413	Fas-Associated Factor 1 Negatively Regulates the Antiviral Immune Response by Inhibiting Translocation of Interferon Regulatory Factor 3 to the Nucleus. Molecular and Cellular Biology, 2016, 36, 1136-1151.	1.1	19
414	Importin α1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal. Journal of Biological Chemistry, 2016, 291, 7926-7937.	1.6	39
415	Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs. Journal of Molecular Biology, 2016, 428, 2025-2039.	2.0	51
416	Cellular apoptosis susceptibility (CAS) is overexpressed in thyroid carcinoma and maintains tumor cell growth: A potential link to the BRAFV600E mutation. International Journal of Oncology, 2016, 48, 1679-1687.	1.4	11
417	Deciphering the Structure and Function of Nuclear Pores Using Single-Molecule Fluorescence Approaches. Journal of Molecular Biology, 2016, 428, 2091-2119.	2.0	30
418	Leukoencephalopathy and early death associated with an Ashkenazi-Jewish founder mutation in the Hikeshi gene. Journal of Medical Genetics, 2016, 53, 132-137.	1.5	21
419	Nuclear import of the thyroid hormone receptor α1 is mediated by importin 7, importin β1, and adaptor importin α1. Molecular and Cellular Endocrinology, 2016, 419, 185-197.	1.6	18
420	Cellular and viral determinants of retroviral nuclear entry. Canadian Journal of Microbiology, 2016, 62, 1-15.	0.8	40
421	Introduction to Transcription Factor Structure and Function. , 2016, , 3-11.		31
422	Structures of the Karyopherins Kap121p and Kap60p Bound to the Nuclear Pore-Targeting Domain of the SUMO Protease Ulp1p. Journal of Molecular Biology, 2017, 429, 249-260.	2.0	9
423	Nuclear import of prototype foamy virus transactivator Bel1 is mediated by KPNA1, KPNA6 and KPNA7. International Journal of Molecular Medicine, 2017, 39, 771-771.	1.8	1
424	SUMO and Nucleocytoplasmic Transport. Advances in Experimental Medicine and Biology, 2017, 963, 111-126.	0.8	31

	CITATION	Report	
#	Article	IF	CITATIONS
425	The G2 checkpoint—a nodeâ€based molecular switch. FEBS Open Bio, 2017, 7, 439-455.	1.0	36
426	Selective biomolecular separation system inspired by the nuclear pore complex and nuclear transport. Molecular Systems Design and Engineering, 2017, 2, 149-158.	1.7	11
427	Visualization of PML nuclear import complexes reveals FG-repeat nucleoporins at cargo retrieval sites. Nucleus, 2017, 8, 404-420.	0.6	11
428	Viral mechanisms for docking and delivering at nuclear pore complexes. Seminars in Cell and Developmental Biology, 2017, 68, 59-71.	2.3	33
429	Time-resolved biophysical approaches to nucleocytoplasmic transport. Computational and Structural Biotechnology Journal, 2017, 15, 299-306.	1.9	3
430	Karyopherin alpha 2 expression is a novel diagnostic and prognostic factor for colorectal cancer. Oncology Letters, 2017, 13, 1194-1200.	0.8	14
431	Structural dynamics of the nuclear pore complex. Seminars in Cell and Developmental Biology, 2017, 68, 27-33.	2.3	32
432	Crystal structure of importinâ€Î± bound to the nuclear localization signal of Epsteinâ€Barr virus EBNA‣P protein. Protein Science, 2017, 26, 1231-1235.	3.1	14
433	Nup358 binds to <scp>AGO</scp> proteins through its <scp>SUMO</scp> â€interacting motifs and promotes the association of target <scp>mRNA</scp> with miRISC. EMBO Reports, 2017, 18, 241-263.	2.0	43
434	Proteomic Analysis Reveals GMP Synthetase as p53 Repression Target in Liver Cancer. American Journal of Pathology, 2017, 187, 228-235.	1.9	26
435	Nucleoporin Nup358 facilitates nuclear import of Methoprene-tolerant (Met) in an importin β- and Hsp83-dependent manner. Insect Biochemistry and Molecular Biology, 2017, 81, 10-18.	1.2	14
436	Lost in Transportation: Nucleocytoplasmic Transport Defects in ALS and Other Neurodegenerative Diseases. Neuron, 2017, 96, 285-297.	3.8	208
437	Three-dimensional context rather than NLS amino acid sequence determines importin $\hat{I}\pm$ subtype specificity for RCC1. Nature Communications, 2017, 8, 979.	5.8	54
438	Karyopherins regulate nuclear pore complex barrier and transport function. Journal of Cell Biology, 2017, 216, 3609-3624.	2.3	82
439	The truncated NLR protein TIRâ€NBS13 is a MOS6/IMPORTINâ€∔±3 interaction partner required for plant immunity. Plant Journal, 2017, 92, 808-821.	2.8	43
440	Karyopherin α-2 is a reliable marker for identification of patients with high-risk stage II colorectal cancer. Journal of Cancer Research and Clinical Oncology, 2017, 143, 2493-2503.	1.2	17
441	Thermodynamic Paradigm for Solution Demixing Inspired by Nuclear Transport in Living Cells. Physical Review Letters, 2017, 118, 158101.	2.9	4
442	Exploring the role of peptides in polymer-based gene delivery. Acta Biomaterialia, 2017, 60, 23-37.	4.1	21

#	Article	IF	CITATIONS
443	Crystal structure of importin-α3 bound to the nuclear localization signal of Ran-binding protein 3. Biochemical and Biophysical Research Communications, 2017, 491, 609-613.	1.0	9
444	In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7301-E7310.	3.3	88
445	Crystal structure of the Xpo1p nuclear export complex bound to the Sx <scp>FG</scp> /Px <scp>FG</scp> repeats of the nucleoporin Nup42p. Genes To Cells, 2017, 22, 861-875.	0.5	8
446	EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nature Communications, 2017, 8, 2035.	5.8	23
447	Prolines in the α-helix confer the structural flexibility and functional integrity of importin β. Journal of Cell Science, 2018, 131, .	1.2	10
448	Xeroderma Pigmentosa Group A (XPA), Nucleotide Excision Repair and Regulation by ATR in Response to Ultraviolet Irradiation. Advances in Experimental Medicine and Biology, 2017, 996, 41-54.	0.8	22
449	Charge Influences Substrate Recognition and Self-Assembly of Hydrophobic FG Sequences. Biophysical Journal, 2017, 113, 2088-2099.	0.2	11
450	Alterations of the nuclear transport system in hepatocellular carcinoma – New basis for therapeutic strategies. Journal of Hepatology, 2017, 67, 1051-1061.	1.8	25
451	Heat shock-induced HIKESHI protects cell viability via nuclear translocation of heat shock protein 70. Oncology Reports, 2017, 38, 1500-1506.	1.2	9
452	Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123. ELife, 2017, 6, .	2.8	18
453	The molecular mechanism for nuclear transport and its application. Anatomy and Cell Biology, 2017, 50, 77.	0.5	56
454	KPNB1-mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells. Oncotarget, 2017, 8, 32833-32847.	0.8	23
455	A novel heterozygous germline deletion in MSH2 gene in a five generation Chinese family with Lynch syndrome. Oncotarget, 2017, 8, 55194-55203.	0.8	9
456	Protoparvovirus Knocking at the Nuclear Door. Viruses, 2017, 9, 286.	1.5	6
457	Nearâ€Infrared Lightâ€Controlled Gene Expression and Protein Targeting in Neurons and Nonâ€neuronal Cells. ChemBioChem, 2018, 19, 1334-1340.	1.3	22
458	Heat stress-induced nuclear transport mediated by Hikeshi confers nuclear function of Hsp70s. Current Opinion in Cell Biology, 2018, 52, 82-87.	2.6	11
459	Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins. Scientific Reports, 2018, 8, 3932.	1.6	6
460	Influence of acute promyelocytic leukemia therapeutic drugs on nuclear pore complex density and integrity. Biochemical and Biophysical Research Communications, 2018, 499, 570-576.	1.0	2

#	Article	IF	CITATIONS
461	Y-box protein-associated acidic protein (YBAP1/C1QBP) affects the localization and cytoplasmic functions of YB-1. Scientific Reports, 2018, 8, 6198.	1.6	15
462	Roles of the CSE1L-mediated nuclear import pathway in epigenetic silencing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4013-E4022.	3.3	21
463	Karyopherin Alpha 6 Is Required for Replication of Porcine Reproductive and Respiratory Syndrome Virus and Zika Virus. Journal of Virology, 2018, 92, .	1.5	23
464	RAS-Like Protein. , 2018, , 4497-4497.		0
465	RhoGEF Kinase. , 2018, , 4699-4699.		0
466	Rotamase. , 2018, , 4752-4752.		0
468	Nuclear Pore Complexes: Fascinating Nucleocytoplasmic Checkpoints. , 2018, , 63-86.		3
469	Ramp. , 2018, , 4433-4438.		0
470	Protein Transport Between the Nucleus and Cytoplasm. , 2018, , 387-403.		4
471	Myosinâ€∎C uses a novel phosphoinositideâ€dependent pathway for nuclear localization. EMBO Reports, 2018, 19, 290-304.	2.0	19
472	Importins Î \pm and Î ² signaling mediates endothelial cell inflammation and barrier disruption. Cellular Signalling, 2018, 44, 103-117.	1.7	15
473	Depletion of nuclear import protein karyopherin alpha 7 (KPNA7) induces mitotic defects and deformation of nuclei in cancer cells. BMC Cancer, 2018, 18, 325.	1.1	14
474	MOS6 and TN13 in plant immunity. Plant Signaling and Behavior, 2018, 13, e1454816.	1.2	2
475	Structural and mechanistic insights into nuclear transport and delivery of the critical pluripotency factor Oct4 to DNA. Journal of Biomolecular Structure and Dynamics, 2018, 36, 767-778.	2.0	2
476	Structural insights into the nuclear import of the histone acetyltransferase malesâ€absentâ€onâ€theâ€first by importin α1. Traffic, 2018, 19, 19-28.	1.3	6
477	Transcription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions. FEBS Letters, 2018, 592, 878-887.	1.3	40
478	Mechanisms of ciliary targeting: entering importins and Rabs. Cellular and Molecular Life Sciences, 2018, 75, 597-606.	2.4	14
479	Intertwined control of the cell cycle and nucleocytoplasmic transport by the cyclin-dependent kinase Pho85 and RanGTPase Gsp1 in Saccharomyces cerevisiae. Microbiological Research, 2018, 206, 168-176.	2.5	6

#	Article	IF	CITATIONS
480	DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway. Biochimie, 2018, 146, 87-96.	1.3	18
481	A fastâ€evolving Xâ€ŀinked duplicate of <i>importinâ€Î±2 </i> is overexpressed in <i>sexâ€ratio </i> drive in <i>Drosophila neotestacea</i> . Molecular Ecology, 2018, 27, 5165-5179.	2.0	17
482	Nup2 performs diverse interphase functions inAspergillus nidulans. Molecular Biology of the Cell, 2018, 29, 3144-3154.	0.9	7
483	Structural basis for importin alpha 3 specificity of W proteins in Hendra and Nipah viruses. Nature Communications, 2018, 9, 3703.	5.8	50
484	Protein Phosphatase 1α and Cofilin Regulate Nuclear Translocation of NF-κB and Promote Expression of the Anti-Inflammatory Cytokine Interleukin-10 by T Cells. Molecular and Cellular Biology, 2018, 38, .	1.1	9
485	Nuclear transport adapts to varying heat stress in a multistep mechanism. Journal of Cell Biology, 2018, 217, 2341-2352.	2.3	12
486	Orientia tsutsugamushi uses two Ank effectors to modulate NF-κB p65 nuclear transport and inhibit NF-κB transcriptional activation. PLoS Pathogens, 2018, 14, e1007023.	2.1	35
487	The transmembrane nucleoporin Pom121 ensures efficient HIV-1 pre-integration complex nuclear import. Virology, 2018, 521, 169-174.	1.1	14
488	Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei. Frontiers in Plant Science, 2018, 9, 461.	1.7	18
489	Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 61.	1.8	101
490	Nucleocytoplasmic shuttling: The ins and outs of quantitative imaging. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 1087-1094.	0.9	5
491	Chromosomes trapped in micronuclei are liable to segregation errors. Journal of Cell Science, 2018, 131, .	1.2	59
492	mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway. Parasites and Vectors, 2018, 11, 62.	1.0	7
493	Structural Basis for Selective Binding of Export Cargoes by Exportin-5. Structure, 2018, 26, 1393-1398.e2.	1.6	12
494	Importin α: functions as a nuclear transport factor and beyond. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 259-274.	1.6	87
495	New Insights into GFAP Negative Astrocytes in Calbindin D28k Immunoreactive Astrocytes. Brain Sciences, 2018, 8, 143.	1.1	13
496	Nuclear apoptotic volume decrease in individual cells: Confocal microscopy imaging and kinetic modeling. Journal of Theoretical Biology, 2018, 454, 60-69.	0.8	1
497	Piwi Nuclear Localization and Its Regulatory Mechanism in Drosophila Ovarian Somatic Cells. Cell Reports, 2018, 23, 3647-3657.	2.9	45

# 498	ARTICLE Subcellular localization and stability of <scp>MITF</scp> are modulated by the <scp>bHLH</scp> â€Zip domain. Pigment Cell and Melanoma Research, 2019, 32, 41-54.	IF 1.5	Citations 23
499	Protein Import into Hydrogenosomes and Mitosomes. Microbiology Monographs, 2019, , 31-84.	0.3	2
500	The Quest for the Blueprint of the Nuclear Pore Complex. Protein Journal, 2019, 38, 363-376.	0.7	3
501	PML Bodies in Mitosis. Cells, 2019, 8, 893.	1.8	20
502	Identification of a functional nuclear localization signal in 3Dpol/3CD of duck hepatitis A virus 1. Virus Research, 2019, 270, 197670.	1.1	1
503	Subclonal cooperation rewrites metastasis. Nature Cell Biology, 2019, 21, 797-798.	4.6	2
504	Mechanical regulation of nucleocytoplasmic translocation in mesenchymal stem cells: characterization and methods for investigation. Biophysical Reviews, 2019, 11, 817-831.	1.5	22
505	SV40 Hijacks Cellular Transport, Membrane Penetration, and Disassembly Machineries to Promote Infection. Viruses, 2019, 11, 917.	1.5	23
506	Taking a holistic view of PESTâ€containing nuclear protein (PCNP) in cancer biology. Cancer Medicine, 2019, 8, 6335-6343.	1.3	9
507	TNPO2 operates downstream of DYNC111 and promotes gastric cancer cell proliferation and inhibits apoptosis. Cancer Medicine, 2019, 8, 7299-7312.	1.3	11
508	Research on Evaluation Method of LDA Topic Model in Mail Classification. Journal of Physics: Conference Series, 2019, 1302, 032001.	0.3	1
509	Confinement hinders motility by inducing RhoA-mediated nuclear influx, volume expansion, and blebbing. Journal of Cell Biology, 2019, 218, 4093-4111.	2.3	64
510	Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light. ACS Chemical Biology, 2019, 14, 2206-2214.	1.6	15
511	Light-inducible activation of cell cycle progression in Xenopus egg extracts under microfluidic confinement. Lab on A Chip, 2019, 19, 3499-3511.	3.1	3
512	Structural and biochemical characterization of the recognition of the 53BP1 nuclear localization signal by importin- $\hat{1}$. Biochemical and Biophysical Research Communications, 2019, 510, 236-241.	1.0	11
513	Polyadenylation and nuclear export of mRNAs. Journal of Biological Chemistry, 2019, 294, 2977-2987.	1.6	90
514	Ran1 is essential for parental macronuclear import of apoptosisâ€inducing factor and programmed nuclear death in TetrahymenaÂthermophila. FEBS Journal, 2019, 286, 913-929.	2.2	5
515	The Immune Escape Mechanisms of Mycobacterium Tuberculosis. International Journal of Molecular Sciences, 2019, 20, 340.	1.8	217

	CHAILON N		
#	Article	IF	CITATIONS
516	Entropic Trapping of DNA with a Nanofiltered Nanopore. ACS Applied Nano Materials, 2019, 2, 4773-4781.	2.4	22
517	Ran promotes membrane targeting and stabilization of RhoA to orchestrate ovarian cancer cell invasion. Nature Communications, 2019, 10, 2666.	5.8	35
518	Nuclear CD44 Mediated by Importin β Participated in NaÃ ⁻ ve Genes Transcriptional Regulation in C3A-iCSCs. International Journal of Biological Sciences, 2019, 15, 1252-1260.	2.6	11
519	An ARF6–Exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nature Cell Biology, 2019, 21, 856-866.	4.6	101
520	Tumour vesicular micromachinery uncovered. Nature Cell Biology, 2019, 21, 795-797.	4.6	5
521	Quantification of Biomolecular Dynamics Inside Real and Synthetic Nuclear Pore Complexes Using Time-Resolved Atomic Force Microscopy. ACS Nano, 2019, 13, 7949-7956.	7.3	14
522	Viral Appropriation: Laying Claim to Host Nuclear Transport Machinery. Cells, 2019, 8, 559.	1.8	20
523	The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Reports, 2019, 20, .	2.0	52
524	Identification of a nuclear localization signal and importin beta members mediating NUAK1 nuclear import inhibited by oxidative stress. Journal of Cellular Biochemistry, 2019, 120, 16088-16107.	1.2	12
525	Elucidating the Host Interactome of EV-A71 2C Reveals Viral Dependency Factors. Frontiers in Microbiology, 2019, 10, 636.	1.5	4
526	Drugging the Small GTPase Pathways in Cancer Treatment: Promises and Challenges. Cells, 2019, 8, 255.	1.8	58
527	Fuzzy Interactions Form and Shape the Histone Transport Complex. Molecular Cell, 2019, 73, 1191-1203.e6.	4.5	21
528	Nuclear proteasomal degradation of Saccharomyces cerevisiae inorganic pyrophosphatase lpp1p, a nucleocytoplasmic protein whose stability depends on its subcellular localization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1019-1033.	1.9	5
529	Structure and Assembly of the Nuclear Pore Complex. Annual Review of Biophysics, 2019, 48, 515-536.	4.5	205
530	Extensive Reduction of the Nuclear Pore Complex in Nucleomorphs. Genome Biology and Evolution, 2019, 11, 678-687.	1.1	4
531	The role of nucleocytoplasmic transport in mechanotransduction. Experimental Cell Research, 2019, 377, 86-93.	1.2	29
532	Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiae. Fungal Biology and Biotechnology, 2019, 6, 2.	2.5	11
533	Altering the levels of nuclear import factors in early Xenopus laevis embryos affects later development. PLoS ONE, 2019, 14, e0215740.	1.1	9

#	Article	IF	CITATIONS
534	Tat basic domain: A "Swiss army knife―of HIVâ€1 Tat?. Reviews in Medical Virology, 2019, 29, e2031.	3.9	17
535	Karyopherin Alpha 2 Is an Adverse Prognostic Factor in Clear-Cell and Papillary Renal-Cell Carcinoma. Clinical Genitourinary Cancer, 2019, 17, e167-e175.	0.9	10
536	The catalytic subunit of DNA polymerase δ is a nucleocytoplasmic shuttling protein. Experimental Cell Research, 2019, 375, 36-40.	1.2	5
537	Ubiquitin-dependent protein degradation at the endoplasmic reticulum and nuclear envelope. Seminars in Cell and Developmental Biology, 2019, 93, 111-124.	2.3	98
538	Nucleus–cytoplasm crossâ€ŧalk in the aging brain. Journal of Neuroscience Research, 2020, 98, 247-261.	1.3	3
539	Disease related single point mutations alter the global dynamics of a tetratricopeptide (TPR) α-solenoid domain. Journal of Structural Biology, 2020, 209, 107405.	1.3	7
540	Mediator subunit MED1 modulates intranuclear dynamics of the thyroid hormone receptor. Journal of Cellular Biochemistry, 2020, 121, 2909-2926.	1.2	6
541	The Severe Fever with Thrombocytopenia Syndrome Virus NSs Protein Interacts with CDK1 To Induce G ₂ Cell Cycle Arrest and Positively Regulate Viral Replication. Journal of Virology, 2020, 94,	1.5	22
542	Identification of a novel splice variant isoform of interferon regulatory factor 10, IRF10, in orange spotted grouper Epinephelus coioides. Fish and Shellfish Immunology, 2020, 97, 637-647.	1.6	5
543	Cytoplasmic Parvovirus Capsids Recruit Importin Beta for Nuclear Delivery. Journal of Virology, 2020, 94, .	1.5	4
544	Nanocompartmentalization of the Nuclear Pore Lumen. Biophysical Journal, 2020, 118, 219-231.	0.2	28
545	PHYTOCHEMICAL TO INTERACT WITH NLS BINDING SITE ON IMA3 TO INHIBIT IMPORTIN \hat{i}/\hat{l}^{2} 1 MEDIATED NUCLEAI IMPORT OF SARS-COV-2 CARGO. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 30-35.	₹ 0.3	0
546	Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Frontiers in Neurology, 2020, 11, 1056.	1.1	23
547	Eukaryotic Translation Elongation Factor 1 Delta Inhibits the Nuclear Import of the Nucleoprotein and PA-PB1 Heterodimer of Influenza A Virus. Journal of Virology, 2020, 95, .	1.5	19
548	A Method to Quantify Molecular Diffusion within Thin Solvated Polymer Films: A Case Study on Films of Natively Unfolded Nucleoporins. ACS Nano, 2020, 14, 9938-9952.	7.3	2
549	Phosphorylation within the bipartite NLS alters the localization and toxicity of the ER stress response factor DDIT3/CHOP. Cellular Signalling, 2020, 74, 109713.	1.7	5
550	A nuclear transport-related gene signature combined with IDH mutation and 1p/19q codeletion better predicts the prognosis of glioma patients. BMC Cancer, 2020, 20, 1072.	1.1	4
551	Evolution and function of bacterial <scp>RCC1</scp> repeat effectors. Cellular Microbiology, 2020, 22, e13246.	1.1	18

#	Article	IF	CITATIONS
552	Dissecting the roles of Cse1 and Nup2 in classical <scp>NLS argo</scp> release in vivo. Traffic, 2020, 21, 622-635.	1.3	12
553	The Intrinsically Disordered W Protein Is Multifunctional during Henipavirus Infection, Disrupting Host Signalling Pathways and Nuclear Import. Cells, 2020, 9, 1913.	1.8	12
554	Zika virus NS2A protein induces the degradation of KPNA2 (karyopherin subunit alpha 2) via chaperone-mediated autophagy. Autophagy, 2020, 16, 2238-2251.	4.3	14
555	A Phosphorylation-Induced Switch in the Nuclear Localization Sequence of the Intrinsically Disordered NUPR1 Hampers Binding to Importin. Biomolecules, 2020, 10, 1313.	1.8	13
556	Strength in Diversity: Nuclear Export of Viral RNAs. Viruses, 2020, 12, 1014.	1.5	17
557	Time-Resolved Observation of the Destination of Microinjected Potato Spindle Tuber Viroid (PSTVd) in the Abaxial Leaf Epidermal Cells of Nicotiana benthamiana. Microorganisms, 2020, 8, 2044.	1.6	7
558	More than a zip code: global modulation of cellular function by nuclear localization signals. FEBS Journal, 2021, 288, 5569-5585.	2.2	13
559	The Paralogue of the Intrinsically Disordered Nuclear Protein 1 Has a Nuclear Localization Sequence that Binds to Human Importin α3. International Journal of Molecular Sciences, 2020, 21, 7428.	1.8	7
560	Divergent Evolution of <i>Legionella</i> RCC1 Repeat Effectors Defines the Range of Ran GTPase Cycle Targets. MBio, 2020, 11, .	1.8	11
561	Nuclear import of LIKE HETEROCHROMATIN PROTEIN1 is redundantly mediated by importins αâ€1, αâ€2 and αa Plant Journal, 2020, 103, 1205-1214.	â€ 3 . 2.8	10
562	Modulation of innate immune signaling by a <i>Coxiella burnetii</i> eukaryotic-like effector protein. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13708-13718.	3.3	26
563	Ran GTPase: A Key Player in Tumor Progression and Metastasis. Frontiers in Cell and Developmental Biology, 2020, 8, 345.	1.8	59
564	GPCRs, G Proteins, and Their Impact on $\hat{l}^2 \hat{a} \in \mathfrak{e}$ ell Function. , 2020, 10, 453-490.		18
565	RanBP1 controls the Ran pathway in mammalian cells through regulation of mitotic RCC1 dynamics. Cell Cycle, 2020, 19, 1899-1916.	1.3	14
566	Legionella pneumophila. , 2020, , .		0
567	The Hitchhiker's Guide to Nucleocytoplasmic Trafficking in Neurodegeneration. Neurochemical Research, 2020, 45, 1306-1327.	1.6	22
569	Organelle-specific targeting of polymersomes into the cell nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2770-2778.	3.3	58
570	Differential Influence of Sample Sex and Neuronal Maturation on mRNA and Protein Transport in Induced Human Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 46.	1.4	13

\mathbf{c}	 0.11	DEDO	DT
			ועו
<u> </u>		ILLI C	

#	Article	IF	CITATIONS
571	Role of Nucleoporins and Transport Receptors in Cell Differentiation. Frontiers in Physiology, 2020, 11, 239.	1.3	20
572	Human importin α3 and its N-terminal truncated form, without the importin-β-binding domain, are oligomeric species with a low conformational stability in solution. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129609.	1.1	11
573	Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine and Growth Factor Reviews, 2021, 57, 93-111.	3.2	18
574	Importin β1 regulates cell growth and survival during adult T cell leukemia/lymphoma therapy. Investigational New Drugs, 2021, 39, 317-329.	1.2	5
575	Functional requirement of the <i>Arabidopsis</i> importinâ€Î± nuclear transport receptor family in autoimmunity mediated by the NLR protein SNC1. Plant Journal, 2021, 105, 994-1009.	2.8	20
576	Unconventional Secretion of PKCδExerts Tumorigenic Function via Stimulation of ERK1/2 Signaling in Liver Cancer. Cancer Research, 2021, 81, 414-425.	0.4	18
577	Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Research, 2021, 49, 621-635.	6.5	17
578	Ran-GTP Is Non-essential to Activate NuMA for Mitotic Spindle-Pole Focusing but Dynamically Polarizes HURP Near Chromosomes. Current Biology, 2021, 31, 115-127.e3.	1.8	16
579	African Swine Fever Virus MGF360-12L Inhibits Type I Interferon Production by Blocking the Interaction of Importin α and NF-κB Signaling Pathway. Virologica Sinica, 2021, 36, 176-186.	1.2	59
580	Multifaceted Effects of Ligand on Nuclear Receptor Mobility. , 2021, , 37-66.		0
581	Domain in Fiber-2 interacted with KPNA3/4 significantly affects the replication and pathogenicity of the highly pathogenic FAdV-4. Virulence, 2021, 12, 754-765.	1.8	25
581 582	Domain in Fiber-2 interacted with KPNA3/4 significantly affects the replication and pathogenicity of the highly pathogenic FAdV-4. Virulence, 2021, 12, 754-765. Antivirals that target the host $IMP\hat{1}\pm/\hat{I}^21$ -virus interface. Biochemical Society Transactions, 2021, 49, 281-295.	1.8 1.6	25 25
581 582 583	Domain in Fiber-2 interacted with KPNA3/4 significantly affects the replication and pathogenicity of the highly pathogenic FAdV-4. Virulence, 2021, 12, 754-765.Antivirals that target the host IMPα/β1-virus interface. Biochemical Society Transactions, 2021, 49, 281-295.Effects of transforming growth factor-β1 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochemical and Biophysical Research Communications, 2021, 545, 105-111.	1.8 1.6 1.0	25 25 7
581 582 583 584	Domain in Fiber-2 interacted with KPNA3/4 significantly affects the replication and pathogenicity of the highly pathogenic FAdV-4. Virulence, 2021, 12, 754-765.Antivirals that target the host IMPα/Î21-virus interface. Biochemical Society Transactions, 2021, 49, 281-295.Effects of transforming growth factor-Î21 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochemical and Biophysical Research Communications, 2021, 545, 105-111.Importin-αs are required for the nuclear localization and function of the Plasmopara viticola effector PvAVH53. Horticulture Research, 2021, 8, 46.	1.8 1.6 1.0 2.9	25 25 7 15
581 582 583 584 585	Domain in Fiber-2 interacted with KPNA3/4 significantly affects the replication and pathogenicity of the highly pathogenic FAdV-4. Virulence, 2021, 12, 754-765.Antivirals that target the host IMPαſl²1-virus interface. Biochemical Society Transactions, 2021, 49, 281-295.Effects of transforming growth factor-β1 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochemical and Biophysical Research Communications, 2021, 545, 105-111.Importin-αs are required for the nuclear localization and function of the Plasmopara viticola effector PVAVH53. Horticulture Research, 2021, 8, 46.Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. International Journal of Molecular Sciences, 2021, 22, 4165.	1.8 1.6 1.0 2.9 1.8	25 25 7 15 25
581 582 583 584 585	Domain in Fiber-2 interacted with KPNA3/4 significantly affects the replication and pathogenicity of the highly pathogenic FAdV-4. Virulence, 2021, 12, 754-765.Antivirals that target the host IMPα/β1-virus interface. Biochemical Society Transactions, 2021, 49, 281-295.Effects of transforming growth factor-β1 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochemical and Biophysical Research Communications, 2021, 545, 105-111.Importin-αs are required for the nuclear localization and function of the Plasmopara viticola effector PVAVH53. Horticulture Research, 2021, 8, 46.Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. International Journal of Molecular Sciences, 2021, 22, 4165.On the asymmetric partitioning of nucleocytoplasmic transport – recent insights and open questions. Journal of Cell Science, 2021, 134, .	1.8 1.6 1.0 2.9 1.8 1.2	25 25 7 15 25 23
581 582 583 584 585 585	Domain in Fiber-2 interacted with KPNA3/4 significantly affects the replication and pathogenicity of the highly pathogenic FAdV-4. Virulence, 2021, 12, 754-765.Antivirals that target the host IMPα/l²1-virus interface. Biochemical Society Transactions, 2021, 49, 281-295.Effects of transforming growth factor-l²1 on odontoblastic differentiation in dental papilla cells is determined by IPO7 expression level. Biochemical and Biophysical Research Communications, 2021, 545, 105-111.Importin-l±s are required for the nuclear localization and function of the Plasmopara viticola effector PvAVH53. Horticulture Research, 2021, 8, 46.Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. International Journal of Molecular Sciences, 2021, 22, 4165.On the asymmetric partitioning of nucleocytoplasmic transport – recent insights and open questions. Journal of Cell Science, 2021, 134, .Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Frontiers in Cellular Neuroscience, 2021, 15, 664151.	1.8 1.6 1.0 2.9 1.8 1.2 1.8	25 25 7 15 25 23 18

#	Article	IF	CITATIONS
589	Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Communication and Signaling, 2021, 19, 60.	2.7	155
590	Role of Transportin-SR2 in HIV-1 Nuclear Import. Viruses, 2021, 13, 829.	1.5	6
591	Rational design and optimization of synthetic gene switches for controlling cell-fate decisions in pluripotent stem cells. Metabolic Engineering, 2021, 65, 99-110.	3.6	7
592	Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. ELife, 2021, 10, .	2.8	12
593	Bi-allelic variants in IPO8 cause a connective tissue disorder associated with cardiovascular defects, skeletal abnormalities, and immune dysregulation. American Journal of Human Genetics, 2021, 108, 1126-1137.	2.6	14
594	KPNA4 is involved in cataract formation via the nuclear import of p53. Gene, 2021, 786, 145621.	1.0	6
595	Duality of glucocorticoid action in cancer: tumor-suppressor or oncogene?. Endocrine-Related Cancer, 2021, 28, R157-R171.	1.6	31
596	The Viral Capsid: A Master Key to Access the Host Nucleus. Viruses, 2021, 13, 1178.	1.5	9
597	Targeting WEE1 Inhibits Growth of Breast Cancer Cells That Are Resistant to Endocrine Therapy and CDK4/6 Inhibitors. Frontiers in Oncology, 2021, 11, 681530.	1.3	15
598	Cytoplasmic and nuclear Swâ€5b NLR act both independently and synergistically to confer full host defense against tospovirus infection. New Phytologist, 2021, 231, 2262-2281.	3.5	15
599	UBQLN proteins in health and disease with a focus on UBQLN2 in ALS/FTD. FEBS Journal, 2022, 289, 6132-6153.	2.2	19
600	Physics of the nuclear pore complex: Theory, modeling and experiment. Physics Reports, 2021, 921, 1-53.	10.3	44
601	<i>Orientia tsutsugamushi</i> Nucleomodulin Ank13 Exploits the RaDAR Nuclear Import Pathway To Modulate Host Cell Transcription. MBio, 2021, 12, e0181621.	1.8	11
602	The nuclear localization sequence of the epigenetic factor RYBP binds to human importin α3. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140670.	1.1	6
603	Free energy calculations shed light on the nuclear pore complex's selective barrier nature. Biophysical Journal, 2021, 120, 3628-3640.	0.2	10
604	Interaction of spindle assembly factor TPX2 with importins-α/β inhibits protein phase separation. Journal of Biological Chemistry, 2021, 297, 100998.	1.6	21
605	Polyomavirus Life Cycle. , 2009, , 1-24.		6
606	Wnt Signaling Proteins Associate with the Nuclear Pore Complex: Implications for Cancer. Advances in Experimental Medicine and Biology, 2014, 773, 353-372.	0.8	11

#		IF	CITATIONS
607	Mechanisms of Nuclear Size Regulation in Model Systems and Cancer. Advances in Experimental Medicine and Biology, 2014, 773, 537-569.	0.8	71
608	Reconstitution of Nucleocytoplasmic Transport Using Digitonin-Permeabilized Cells. Methods in Molecular Biology, 2015, 1262, 291-303.	0.4	3
609	The Ras Superfamily of Small GTPases: The Unlocked Secrets. Methods in Molecular Biology, 2014, 1120, 1-18.	0.4	138
610	Structure and Function of the TREX-2 Complex. Sub-Cellular Biochemistry, 2019, 93, 461-470.	1.0	15
611	Ran in Nucleocytoplasmic Transport. , 2014, , 109-124.		1
612	Modeling the nucleoporins that form the hairy pores. Biochemical Society Transactions, 2020, 48, 1447-1461.	1.6	11
615	Crystallization and preliminary X-ray diffraction analysis of human importin β–Snail zinc finger domain complex. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1049-1051.	0.7	1
616	The Emerging Role of TPR-Domain Immunophilins in the Mechanism of Action of Steroid Receptors. Nuclear Receptor Research, 2014, 1, 1-17.	2.5	8
617	Filoviruses. , 0, , 229-246.		1
618	ZZW-115–dependent inhibition of NUPR1 nuclear translocation sensitizes cancer cells to genotoxic agents. JCl Insight, 2020, 5, .	2.3	24
619	Stimulated nuclear import by \hat{I}^2 -like importins. F1000prime Reports, 2013, 5, 41.	5.9	32
620	NINL and DZANK1 Co-function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish. PLoS Genetics, 2015, 11, e1005574.	1.5	23
621	XPA-Mediated Regulation of Global Nucleotide Excision Repair by ATR Is p53-Dependent and Occurs Primarily in S-Phase. PLoS ONE, 2011, 6, e28326.	1.1	29
622	UV-Induced Nuclear Import of XPA Is Mediated by Importin-α4 in An ATR-Dependent Manner. PLoS ONE, 2013, 8, e68297.	1.1	29
623	A Masked PY-NLS in Drosophila TIS11 and Its Mammalian Homolog Tristetraprolin. PLoS ONE, 2013, 8, e71686.	1.1	21
624	Overexpression of the Transcriptional Repressor Complex BCL-6/BCoR Leads to Nuclear Aggregates Distinct from Classical Aggresomes. PLoS ONE, 2013, 8, e76845.	1.1	10
625	High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells. PLoS ONE, 2014, 9, e93305.	1.1	62
626	Inter-Cellular Transport of Ran GTPase. PLoS ONE, 2015, 10, e0125506.	1.1	15

#	Article	IF	CITATIONS
627	Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal. PLoS ONE, 2015, 10, e0128687.	1.1	12
628	N-terminally truncated POM121C inhibits HIV-1 replication. PLoS ONE, 2017, 12, e0182434.	1.1	14
629	Emerging biological functions of the vaccinia-related kinase (VRK) family. Histology and Histopathology, 2009, 24, 749-59.	0.5	51
630	Nucleocytoplasmic shuttling of SOX14A and SOX14B transcription factors. Oncotarget, 2017, 8, 46955-46968.	0.8	4
631	Cellular apoptosis susceptibility (CAS) is linked to integrin \hat{I}^21 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC). Oncotarget, 2016, 7, 22883-22892.	0.8	18
632	LEDGF/p75 and transportin-SR2 are cellular cofactors of HIV integrase and novel targets for antiviral therapy. HIV Therapy, 2009, 3, 171-188.	0.6	4
633	Beyond Rab GTPases: Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection. Small GTPases, 2014, 5, .	0.7	17
634	RanGTPase: A Key Regulator of Nucleocytoplasmic Trafficking. Molecular and Cellular Pharmacology, 2009, 1, 148-156.	1.7	31
635	Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner. ELife, 2015, 4, .	2.8	102
636	Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the Nuclear Pore Complex. ELife, 2016, 5, .	2.8	69
637	A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins. ELife, 2015, 4, .	2.8	124
638	Investigating molecular crowding within nuclear pores using polarization-PALM. ELife, 2017, 6, .	2.8	14
639	Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins, 2021, 13, 713.	1.5	6
641	AMPK Localization: A Key to Differential Energy Regulation. International Journal of Molecular Sciences, 2021, 22, 10921.	1.8	15
642	Nuclear Pores in Plant Cells: Structure, Composition, and Functions. Plant Cell Monographs, 2008, , 29.	0.4	2
643	SUMO and Nucleocytoplasmic Transport. , 2009, , 97-116.		0
644	Folding of Proteins. , 2009, , 113-114.		0
645	The Biosynthesis of Proteins. , 2009, , 75-94.		0

#	ARTICLE The Ran GTPase. , 2010, , 1763-1771.	IF	CITATIONS
647	Proteinstoffwechsel. Springer-Lehrbuch, 2011, , 1409-1472.	0.1	0
648	Structural Biology of Macromolecular Transport into and out of the Cell Nucleus. Seibutsu Butsuri, 2011, 51, 208-213.	0.0	0
649	Ran. , 2012, , 1574-1581.		0
650	Interference with Cellular Gene Expression. , 0, , 163-180.		0
653	Ran. , 2018, , 4438-4445.		0
667	Influenza A Virus–Host Specificity: An Ongoing Cross-Talk Between Viral and Host Factors. Frontiers in Microbiology, 2021, 12, 777885.	1.5	10
669	Nap1 and Chz1 have Separate Htz1 Nuclear Import and Assembly Functions. Traffic, 2010, 11, 185-197.	1.3	25
670	Nuclear Pores in Plant Cells: Structure, Composition, and Functions. Plant Cell Monographs, 2009, , 29-53.	0.4	0
673	The interaction between S100A2 and KPNA2 mediates NFYA nuclear import and is a novel therapeutic target for colorectal cancer metastasis. Oncogene, 2022, 41, 657-670.	2.6	14
674	Nuclear pore complex maintenance and implications for age-related diseases. Trends in Cell Biology, 2021, , .	3.6	10
675	The importin FgPse1 is required for vegetative development, virulence and DON production by interacting with the nuclear polyadenylated RNA-binding protein FgNab2 in Fusarium graminearum. Phytopathology, 2021, , .	1.1	0
677	Biochemical propensity mapping for structural and functional anatomy of importin α IBB domain. Genes To Cells, 2022, 27, 173-191.	0.5	4
678	The role of RNA binding proteins in hepatocellular carcinoma. Advanced Drug Delivery Reviews, 2022, 182, 114114.	6.6	9
679	Assembly principle of a membrane-anchored nuclear pore basket scaffold. Science Advances, 2022, 8, eabl6863.	4.7	15
680	Structural and functional insights into nucleocytoplasmic transport. Histology and Histopathology, 2008, 23, 1025-33.	0.5	12
681	Ubiquitin Ligase Redundancy and Nuclear-Cytoplasmic Localization in Yeast Protein Quality Control. Biomolecules, 2021, 11, 1821.	1.8	22
682	Function of the Nuclear Transport Machinery in Maintaining the Distinctive Compositions of the Nucleus and Cytoplasm. International Journal of Molecular Sciences, 2022, 23, 2578.	1.8	15

#	Article	IF	CITATIONS
683	Regulation of antiviral immune response by African swine fever virus (ASFV). Virologica Sinica, 2022, 37, 157-167.	1.2	31
684	Differential recognition of canonical NF-κB dimers by Importin α3. Nature Communications, 2022, 13, 1207.	5.8	23
685	Importin KPNA2 confers HIV-1 pre-integration complex nuclear import by interacting with the capsid protein. Antiviral Research, 2022, 200, 105289.	1.9	6
687	Purification of Cdk-CyclinB-Kinase–Targeted Phosphopeptides from Nuclear Envelope. Methods in Molecular Biology, 2022, 2502, 271-282.	0.4	1
692	An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes, 2022, 58, 255-269.	0.7	22
694	Nup50 plays more than one instrument. Cell Cycle, 2022, 21, 1785-1794.	1.3	1
695	The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Research, 2022, 50, 5424-5442.	6.5	8
696	G Protein Subunit β1 Facilitates Influenza A Virus Replication by Promoting the Nuclear Import of PB2. Journal of Virology, 2022, 96, .	1.5	4
699	Human Enzyme PADI4 Binds to the Nuclear Carrier Importin $\hat{1}\pm 3$. Cells, 2022, 11, 2166.	1.8	7
700	Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. Biology, 2022, 11, 1009.	1.3	4
701	Transport receptor occupancy in nuclear pore complex mimics. Nano Research, 2022, 15, 9689-9703.	5.8	12
702	An introduction to dynamic nucleoporins in Leishmania species: Novel targets for tropical-therapeutics. Journal of Parasitic Diseases, 0, , .	0.4	0
703	Binding stoichiometry and structural model of the HIV-1 Rev/importin Î ² complex. Life Science Alliance, 2022, 5, e202201431.	1.3	3
704	IPO7 Promotes Odontoblastic Differentiation and Inhibits Osteoblastic Differentiation Through Regulation of RUNX2 Expression and Translocation. Stem Cells, 2022, 40, 1020-1030.	1.4	3
705	Nuclear dynamics: Formation of bodies and trafficking in plant nuclei. Frontiers in Plant Science, 0, 13,	1.7	7
706	Domain-Based Protein Docking with Extremely Large Conformational Changes. Journal of Molecular Biology, 2022, 434, 167820.	2.0	6
707	The multifaceted role of micronuclei in tumour progression: A whole organism perspective International Journal of Biochemistry and Cell Biology, 2022, 152, 106300.	1.2	2
709	Pitstopâ€2 and its novel derivative <scp>RVD</scp> â€127 disrupt global cell dynamics and nuclear pores integrity by direct interaction with small <scp>GTPases</scp> . Bioengineering and Translational Medicine, 2023, 8, .	3.9	4

#	Article	IF	CITATIONS
710	Expression of Karyopherin Alpha 2 and Karyopherin Beta 1 Correlate with Poor Prognosis in Gastric Cancer. Oncology, 2022, 100, 685-695.	0.9	1
711	Nuclear mRNA metabolism drives selective basket assembly on a subset of nuclear pore complexes in budding yeast. Molecular Cell, 2022, 82, 3856-3871.e6.	4.5	13
712	Suppression of classical nuclear import pathway by importazole and ivermectin inhibits rotavirus replication. Journal of Antimicrobial Chemotherapy, 0, , .	1.3	0
715	Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. International Journal of Molecular Sciences, 2022, 23, 14103.	1.8	2
716	Tough Way In, Tough Way Out: The Complex Interplay of Host and Viral Factors in Nucleocytoplasmic Trafficking during HIV-1 Infection. Viruses, 2022, 14, 2503.	1.5	5
717	Conservation of Importin α Function in Apicomplexans: Ivermectin and GW5074 Target Plasmodium falciparum Importin α and Inhibit Parasite Growth in Culture. International Journal of Molecular Sciences, 2022, 23, 13899.	1.8	2
718	SOTIP is a versatile method for microenvironment modeling with spatial omics data. Nature Communications, 2022, 13, .	5.8	10
719	Editing of the rice importin gene IMP $\hat{1}\pm1b$ results in sequestration of TAL effectors from plant cell nuclei. Phytopathology Research, 2022, 4, .	0.9	3
720	Porcine Circovirus Type 2 Hijacks Host IPO5 to Sustain the Intracytoplasmic Stability of Its Capsid Protein. Journal of Virology, 2022, 96, .	1.5	1
721	Deciphering the Binding of the Nuclear Localization Sequence of Myc Protein to the Nuclear Carrier Importin α3. International Journal of Molecular Sciences, 2022, 23, 15333.	1.8	0
722	Dysregulation of the immune response in TGF- \hat{l}^2 signalopathies. Frontiers in Immunology, 0, 13, .	2.2	4
723	Molecular basis of C9orf72 poly-PR interference with the β-karyopherin family of nuclear transport receptors. Scientific Reports, 2022, 12, .	1.6	11
724	Identification of Small GTPases That Phosphorylate IRF3 through TBK1 Activation Using an Active Mutant Library Screen. Biomolecules and Therapeutics, 2023, 31, 48-58.	1.1	3
725	Morphology of Polymer Brushes in the Presence of Attractive Nanoparticles: Effects of Temperature. International Journal of Molecular Sciences, 2023, 24, 832.	1.8	0
726	Interdependent Nuclear Co-Trafficking of ASPP1 and p53 Aggravates Cardiac Ischemia/Reperfusion Injury. Circulation Research, 2023, 132, 208-222.	2.0	7
727	Importin alpha family NAAT/IBB domain: Functions of a pleiotropic long chameleon sequence. Advances in Protein Chemistry and Structural Biology, 2023, , .	1.0	0
728	Ran GTPase and Its Importance in Cellular Signaling and Malignant Phenotype. International Journal of Molecular Sciences, 2023, 24, 3065.	1.8	11
729	Progress in the study of parvovirus entry pathway. Virology Journal, 2023, 20, .	1.4	2

#	Article	IF	CITATIONS
730	Rab8 and TNPO1 are ciliary transport adaptors for GTPase Arl13b by interacting with its RVEP motif containing ciliary targeting sequence. Journal of Biological Chemistry, 2023, 299, 104604.	1.6	1
731	Nuclear import of IRF11 via the importin $\hat{l} \pm / \hat{l}^2$ pathway is essential for its antiviral activity. Developmental and Comparative Immunology, 2023, 141, 104649.	1.0	0
732	Lamprey prohibitin 2 inhibits non-small cell lung carcinoma cell proliferation by down-regulating the expression and phosphorylation levels of cell cycle-associated proteins. Fish and Shellfish Immunology, 2023, 134, 108560.	1.6	1
733	Structures of importin-α bound to the wild-type and an internal deletion mutant of the bipartite nuclear localization signal of HIF-1α. Biochemical and Biophysical Research Communications, 2023, 652, 1-5.	1.0	0
734	Are we ready to fight the Nipah virus pandemic? An overview of drug targets, current medications, and potential leads. Structural Chemistry, 2023, 34, 2119-2137.	1.0	3
735	Nuclear effectors of plant pathogens: Distinct strategies to be one step ahead. Molecular Plant Pathology, 2023, 24, 637-650.	2.0	3
737	Phase separation of the nuclear pore complex facilitates selective nuclear transport to regulate plant defense against pathogen and pest invasion. Molecular Plant, 2023, 16, 1016-1030.	3.9	4
738	Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability. Molecules and Cells, 2023, 46, 374-386.	1.0	Ο
748	Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. , 0, , .		1
751	Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
755	Assembly and Disassembly of the Nuclear Pore Complex: A View from the Structural Side. Molecular Biology, 2023, 57, 572-583.	0.4	0