Bright, multicoloured light-emitting diodes based on qu

Nature Photonics 1, 717-722 DOI: 10.1038/nphoton.2007.226

Citation Report

#	Article	IF	CITATIONS
3	Observation of GdBa2Cu3O7-δCeramic Microstructure. Japanese Journal of Applied Physics, 1988, 27, L529-L530.	0.8	5
4	A bright outlook for quantum dots. Nature Photonics, 2007, 1, 683-684.	15.6	14
5	Lightâ€Emitting Diodes with Semiconductor Nanocrystals. Angewandte Chemie - International Edition, 2008, 47, 6538-6549.	7.2	305
6	Controlling the Optical Properties of Inorganic Nanoparticles. Advanced Functional Materials, 2008, 18, 1157-1172.	7.8	221
7	Microwave Synthesis of Waterâ€Dispersed CdTe/CdS/ZnS Coreâ€Shellâ€Shell Quantum Dots with Excellent Photostability and Biocompatibility. Advanced Materials, 2008, 20, 3416-3421.	11.1	261
8	Smoothâ€Morphology Ultrasensitive Solutionâ€Processed Photodetectors. Advanced Materials, 2008, 20, 4398-4402.	11.1	49
10	Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS ₂ Nanocrystals. Chemistry of Materials, 2008, 20, 6434-6443.	3.2	519
11	Nanomaterials for textile processing and photonic applications. Coloration Technology, 2008, 124, 261-272.	0.7	22
12	Energy transfer in hybrid quantum dot light-emitting diodes. Journal of Applied Physics, 2008, 104, 013108.	1.1	46
13	Stable Binary Complementary White Light-Emitting Diodes Based on Quantum-Dot/Polymer-Bilayer Structures. IEEE Photonics Technology Letters, 2008, 20, 1998-2000.	1.3	32
14	Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots. Applied Physics Letters, 2008, 92, .	1.5	73
15	Efficient, visible organic light-emitting diodes utilizing a single polymer layer doped with quantum dots. Applied Physics Letters, 2008, 92, 043303.	1.5	29
16	Conjugating Luminescent CdTe Quantum Dots with Biomolecules. Journal of Physical Chemistry B, 2008, 112, 14482-14491.	1.2	57
17	Contact Printing of Quantum Dot Light-Emitting Devices. Nano Letters, 2008, 8, 4513-4517.	4.5	294
18	Two-photon-pumped lasing from colloidal nanocrystal quantum dots. Optics Letters, 2008, 33, 2437.	1.7	41
19	Preparation of CdSe Quantum Dots with Full Color Emission Based on a Room Temperature Injection Technique. Inorganic Chemistry, 2008, 47, 5022-5028.	1.9	81
20	Integration by self-aligned writing of nanocrystal/epoxy composites on InGaN micro-pixelated light-emitting diodes. Optics Express, 2008, 16, 18933.	1.7	18
21	Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. Journal of Materials Chemistry, 2008, 18, 1889.	6.7	183

#	Article	IF	CITATIONS
22	Cluster synthesis of branched CdTe nanocrystals for use in light-emitting diodes. Nanotechnology, 2008, 19, 205602.	1.3	22
23	High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics. Nanotechnology, 2008, 19, 355308.	1.3	75
24	Effect of surface passivating ligand on structural and optoelectronic properties of polymer : CdSe quantum dot composites. Journal Physics D: Applied Physics, 2008, 41, 235409.	1.3	44
25	Developing bright and color-saturated quantum dot light emitting diodes towards next generation displays and solid state lighting. , 2008, , .		Ο
26	Layer-by-layer assembly of multicolored semiconductor quantum dots towards efficient blue, green, red and full color optical films. Nanotechnology, 2008, 19, 435606.	1.3	12
27	Quantum efficiency of stimulated emission in colloidal semiconductor nanocrystal quantum dots. Physical Review B, 2009, 80, .	1.1	8
28	White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Applied Physics Letters, 2009, 94, 243506.	1.5	37
29	Shell-dependent electroluminescence from colloidal CdSe quantum dots in multilayer light-emitting diodes. Journal of Applied Physics, 2009, 105, .	1.1	39
30	Effects of surface ligands on the charge memory characteristics of CdSe/ZnS nanocrystals in TiO2 thin film. Applied Physics Letters, 2009, 95, 183111.	1.5	8
31	Efficient light harvesting in hybrid CdTe nanocrystal/bulk GaAs p-i-n photovoltaic devices. Applied Physics Letters, 2009, 94, .	1.5	23
32	Colloidal nanocrystal-based light-emitting diodes fabricated on plastic toward flexible quantum dot optoelectronics. Journal of Applied Physics, 2009, 105, .	1.1	43
33	Para-sexiphenyl-CdSe/ZnS nanocrystal hybrid light emitting diodes. Applied Physics Letters, 2009, 94, .	1.5	19
34	Para-sexiphenyl-CdSe Nanocrystals Hybrid Light Emitting Diodes with Optimized Layer Thickness and Interfaces. Materials Research Society Symposia Proceedings, 2009, 1154, 1.	0.1	0
35	Colloidal Nanocrystal-Based Light-Emitting Diodes Fabricated on Plastic – Towards Flexible Quantum Dot Optoelectronics. , 2009, , .		0
36	Nonthermal plasma synthesized freestanding silicon–germanium alloy nanocrystals. Nanotechnology, 2009, 20, 295602.	1.3	62
37	Observation of Uptake and Distribution of Quantum Dots in Plants. Materials Research Society Symposia Proceedings, 2009, 1209, 1.	0.1	0
38	Bright and color-saturated quantum dot light-emitting diodes: new star for next generation displays and solid state lighting. , 2009, , .		1
39	Highly Efficient Greenâ€Lightâ€Emitting Diodes Based on CdSe@ZnS Quantum Dots with a Chemicalâ€Composition Gradient. Advanced Materials, 2009, 21, 1690-1694.	11.1	265

		Report	
#	Article	IF	CITATIONS
40	Electroluminescent Cuâ€doped CdS Quantum Dots. Advanced Materials, 2009, 21, 2916-2920.	11.1	93
41	Characterization of Quantum Dot/Conducting Polymer Hybrid Films and Their Application to Lightâ€Emitting Diodes. Advanced Materials, 2009, 21, 5022-5026.	11.1	90
42	High-performance crosslinked colloidal quantum-dot light-emitting diodes. Nature Photonics, 2009, 3, 341-345.	15.6	505
43	Precisely voltage tunable polymeric light emitting diodes by controlling polymer chemical oxidation and adding inorganic semiconducting nanoparticles. From blue to red stopping at white in the same device. Organic Electronics, 2009, 10, 1606-1609.	1.4	3
44	Shell-dependent hole transport in highly luminescent CdSe-core CdS/ZnCdS/ZnS multi-shell nanocrystals. Journal of Luminescence, 2009, 129, 1410-1414.	1.5	7
45	Multicolored devices fabricated by direct lithography of colloidal nanocrystals. Microelectronic Engineering, 2009, 86, 1127-1130.	1.1	13
46	Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. Journal of Colloid and Interface Science, 2009, 330, 483-487.	5.0	109
47	Enhanced Optical Properties of Core/Shell/Shell CdTe/CdS/ZnO Quantum Dots Prepared in Aqueous Solution. Journal of Physical Chemistry C, 2009, 113, 19458-19467.	1.5	83
48	Band Gap Engineering of Quaternary-Alloyed ZnCdSSe Quantum Dots via a Facile Phosphine-Free Colloidal Method. Journal of the American Chemical Society, 2009, 131, 17744-17745.	6.6	127
49	Highly Efficient Quantum-Dot Light-Emitting Diodes with DNAâ^'CTMA as a Combined Hole-Transporting and Electron-Blocking Layer. ACS Nano, 2009, 3, 737-743.	7.3	121
50	Colloidal nanocrystal-based light-emitting diodes fabricated on plastic - Towards flexible quantum dot optoelectronics. , 2009, , .		0
51	Photoluminescence Quenching of CdSe Core/Shell Quantum Dots by Hole Transporting Materials. Journal of Physical Chemistry C, 2009, 113, 1886-1890.	1.5	43
52	Optical properties of different polymer thin films containing in situ synthesized Ag and Au nanoparticles. New Journal of Chemistry, 2009, 33, 1720.	1.4	39
53	Water-Based Route to Ligand-Selective Synthesis of ZnSe and Cd-Doped ZnSe Quantum Dots with Tunable Ultraviolet A to Blue Photoluminescence. Langmuir, 2009, 25, 434-442.	1.6	119
54	Temperature-Dependent Photoluminescence of CdSe-Core CdS/CdZnS/ZnS-Multishell Quantum Dots. Journal of Physical Chemistry C, 2009, 113, 13545-13550.	1.5	218
55	Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology, 2009, 20, 235201.	1.3	41
56	Electroactive micro and nanowells for optofluidic storage. Optics Express, 2009, 17, 21134.	1.7	4
57	Photoluminescence Up-conversion of CdSe/ZnS Core/shell Quantum Dots under High Pressure. Journal of Physical Chemistry C, 2009, 113, 4737-4740.	1.5	12

#	Article	IF	CITATIONS
58	Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface. ACS Nano, 2009, 3, 1506-1512.	7.3	127
59	Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Letters, 2009, 9, 2532-2536.	4.5	796
60	Electrochemical hole injection into the valence band of thiol stabilised CdTe quantum dots. Physical Chemistry Chemical Physics, 2009, 11, 10080.	1.3	16
61	Poly(3-hexylthiophene)â^'CdSe Quantum Dot Bulk Heterojunction Solar Cells: Influence of the Functional End-Group of the Polymer. Macromolecules, 2009, 42, 3845-3848.	2.2	75
62	Deep blue light-emitting diodes based on Cd1â^'xZnxS@ZnS quantum dots. Nanotechnology, 2009, 20, 075202.	1.3	58
63	Tetrachromatic Hybrid White Light-Emitting Diodes and the Energy Transfer Between Conjugated Polymers and CdSe/ZnS Quantum Dots. Journal of the Electrochemical Society, 2009, 156, H625.	1.3	10
64	Structural Phase Behavior and Vibrational Spectroscopic Studies of Biofunctionalized CdS Nanoparticles. Langmuir, 2009, 25, 6334-6340.	1.6	8
65	Fluorescence Behavior of Cysteine-Mediated Ag@CdS Nanocolloids. Langmuir, 2009, 25, 6377-6384.	1.6	25
66	Frequency upconverted lasing of nanocrystal quantum dots in microbeads. Applied Physics Letters, 2009, 95, 183109.	1.5	15
67	21.1: <i>Invited Paper</i> : FullColor Quantum Dot Display. Digest of Technical Papers SID International Symposium, 2010, 41, 297-300.	0.1	1
69	Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chemical Reviews, 2010, 110, 389-458.	23.0	3,708
70	Intense nonclassical light: Controllable two-photon Talbot effect. Physical Review A, 2010, 81, .	1.0	18
71	Quantum Dots and Their Multimodal Applications: A Review. Materials, 2010, 3, 2260-2345.	1.3	986
72	Clycosylated Quantum Dots for the Selective Labelling of Kluyveromyces bulgaricus and Saccharomyces cerevisiae Yeast Strains. Journal of Fluorescence, 2010, 20, 591-597.	1.3	22
73	Increased Colorâ€Conversion Efficiency in Hybrid Lightâ€Emitting Diodes utilizing Nonâ€Radiative Energy Transfer. Advanced Materials, 2010, 22, 602-606.	11.1	121
74	Investigations of CdS and Ag–CdS nanoparticles by X-ray photoelectron spectroscopy. Applied Surface Science, 2010, 257, 1390-1394.	3.1	18
75	Reverse micelle-derived Cu-doped Zn1?xCdxS quantum dots and their core/shell structure. Journal of Colloid and Interface Science, 2010, 341, 59-63.	5.0	24
76	Facile synthesis of high-quality water-soluble N-acetyl-l-cysteine-capped Zn1â^'xCdxSe/ZnS core/shell quantum dots emitting in the violet–green spectral range. Journal of Colloid and Interface Science, 2010. 348. 369-376.	5.0	44

ARTICLE IF CITATIONS XAFS analysis and luminescent properties of ZnS:Mn2+ nanoparticles and nanorods with cubic and 1.7 16 77 hexagonal structure. Optical Materials, 2010, 32, 643-647. ELECTROMAGNETIC MODELING OF OUTCOUPLING EFFICIENCY AND LIGHT EMISSION IN NEAR-INFRARED QUANTUM DOT LIGHT EMITTING DEVICES. Progress in Electromagnetics Research B, 2010, 24, 263-284. Advances in Resist Materials and Processing Technology: Photonic Devices Fabricated by Direct 79 1 Lithography of Resist/Colloidal Nanocrystals Blend., 0, . 32.4: Quantum Dot Light Emitting Diodes for Fullâ€color Activeâ€matrix Displays. Digest of Technical Papers SID International Symposium, 2010, 41, 473-476. Fabrication and photoluminescence of ZnS:Mn2+ nanowires/ZnO quantum dots/SiO2 heterostructure. 81 1.1 14 Journal of Applied Physics, 2010, 108, 044304. One-pot synthesis and self-assembly of colloidal copper(I) sulfide nanocrystals. Nanotechnology, 2010, 21, 285602. 1.3 Synthesis of Ba[sub 2]Si[sub 3]O[sub 8]:Eu[sup 2+] Phosphor for Fabrication of White Light-Emitting 83 1.3 22 Diodes Assisted by ZnCdSe/ZnSe Quantum Dot. Journal of the Electrochemical Society, 2010, 157, J319. Growth mechanism and blue shift of Mn²⁺ luminescence for wurtzite 84 1.3 16 ZnS : Mn²⁺ nanowires. Journal Physics D: Applied Physics, 2010, 43, 075403. Luminescence dynamics of Te doped CdS quantum dots at different doping levels. Nanotechnology, 85 1.3 10 2010, 21, 265704. Quantum Dots with Multivalent and Compact Polymer Coatings for Efficient Fluorescence Resonance 3.2 Energy Transfer and Self-Assembled Biotagging. Chemistry of Materials, 2010, 22, 4372-4378. Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol. 87 1.5 46 Applied Physics Letters, 2010, 96, . Noninjection Gram-Scale Synthesis of Monodisperse Pyramidal CuInS₂ Nanocrystals and Their Size-Dependent Properties. ACS Nano, 2010, 4, 5253-5262. 386 Temperature Dependence of the Sole Mn<sup>2+</sup> Emissions in Manganese Doped 89 0.3 0 ZnS:Mn Quantum Dots. Advanced Materials Research, 0, 159, 572-577. Mn-doped nanocrystals in light-emitting diodes: Energy-transfer to obtain electroluminescence from quantum dots. Applied Physics Letters, 2010, 97, 113502. 1.5 39 Investigation on type-II Cu₂S–CdS core/shell nanocrystals: synthesis and 91 6.7 54 characterization. Journal of Materials Chemistry, 2010, 20, 923-928. Utilizing Self-Exchange To Address the Binding of Carboxylic Acid Ligands to CdSe Quantum Dots. Journal of the American Chemical Society, 2010, 132, 10195-10201. 320 Multicolored Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films Using Layer-by-Layer 93 4.5 216 Assembly Method. Nano Letters, 2010, 10, 2368-2373. Controlled Emission through Fluorescent Polymer Nanopigments. Macromolecules, 2010, 43, 94 2.2 8170-8176.

#	Article	IF	CITATIONS
95	Photoelectronic characterization of IgG antibody molecule–quantum dot hybrid as biosensing probe. Nanotechnology, 2010, 21, 425501.	1.3	5
96	Shell-Dependent Energy Transfer from 1,3,5-Tris(<i>N</i> -phenylbenzimidazol-2,yl) Benzene to CdSe Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2010, 114, 19256-19262.	1.5	22
97	Columnar Self-Assembly of Cu2S Hexagonal Nanoplates Induced by Tin(IV)â^'X Complex as Inorganic Surface Ligand. Journal of the American Chemical Society, 2010, 132, 12778-12779.	6.6	82
98	Inkjet Printed RGB Quantum Dot-Hybrid LED. Journal of Display Technology, 2010, 6, 87-89.	1.3	115
99	Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer. Optics Express, 2010, 18, 18303.	1.7	25
100	Photoluminescent spectroscopic and kinetic studies on green-emitting CdSeS quantum dot/polymethyl methacrylate composite. Journal of Non-Crystalline Solids, 2010, 356, 1016-1020.	1.5	4
101	Fabrication of Organic/Inorganic LED device using nanocrystal quantum dots as active layer. , 2010, , .		2
102	Multifunctional Fe ₃ O ₄ Cored Magnetic-Quantum Dot Fluorescent Nanocomposites for RF Nanohyperthermia of Cancer Cells. Journal of Physical Chemistry C, 2010, 114, 5020-5026.	1.5	91
103	Water-Based Route to Colloidal Mn-Doped ZnSe and Core/Shell ZnSe/ZnS Quantum Dots. Inorganic Chemistry, 2010, 49, 10940-10948.	1.9	107
104	Correlation between the Photoluminescence and Oriented Attachment Growth Mechanism of CdS Quantum Dots. Journal of the American Chemical Society, 2010, 132, 9528-9530.	6.6	54
105	Electroluminescence of green CdSe/ZnS quantum dots enhanced by harvesting excitons from phosphorescent molecules. Applied Physics Letters, 2010, 97, .	1.5	35
106	Full spin-coated multilayer structure hybrid light-emitting devices. Applied Physics Letters, 2010, 97, .	1.5	6
107	Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots. Chinese Physics Letters, 2010, 27, 127803.	1.3	6
108	Non-radiative energy-transfer-driven quantum dot LEDs. , 2010, , .		0
109	Ligand-Tuned Shape Control, Oriented Assembly, and Electrochemical Characterization of Colloidal ZnTe Nanocrystals. Chemistry of Materials, 2010, 22, 4632-4641.	3.2	33
110	Electrical modulation of static and dynamic spectroscopic properties of coupled nanoscale GaSe quantum dot assemblies. Physical Review B, 2010, 82, .	1.1	16
111	Band-level control for high-performance colloidal quantum-dot LED. , 2010, , .		0
112	Phosphine-free synthesis of Zn1â^'xCdxSe/ZnSe/ZnSexS1â^'x/ZnS core/multishell structures with bright	6.7	52

#	Article	IF	CITATIONS
113	The generation of palladium silicide nanoalloy particles in a SiCN matrix and their catalytic applications. Journal of Materials Chemistry, 2011, 21, 18825.	6.7	47
114	Large scale synthesis of stable tricolor Zn1 â^'xCdxSe core/multishell nanocrystals via a facile phosphine-free colloidal method. Dalton Transactions, 2011, 40, 9180.	1.6	18
115	Fabrication of All-Inorganic Nanocrystal Solids through Matrix Encapsulation of Nanocrystal Arrays. Journal of the American Chemical Society, 2011, 133, 20488-20499.	6.6	50
116	Facile consecutive solvothermal growth of highly fluorescent InP/ZnS core/shell quantum dots using a safer phosphorus source. Nanotechnology, 2011, 22, 235605.	1.3	26
117	Controlled Morphogenesis of Organic Polyhedral Nanocrystals from Cubes, Cubooctahedrons, to Octahedrons by Manipulating the Growth Kinetics. Journal of the American Chemical Society, 2011, 133, 1895-1901.	6.6	103
118	Pâ€107: Colloidal Quantum Dot LED Transparent Display on Flexible Substrate. Digest of Technical Papers SID International Symposium, 2011, 42, 1505-1508.	0.1	6
119	Physiological responses induced in tomato plants by a two-component nanostructural system composed of carbon nanotubes conjugated with quantum dots and its <i>in vivo</i> multimodal detection. Nanotechnology, 2011, 22, 295101.	1.3	62
120	High-Efficiency Silicon Nanocrystal Light-Emitting Devices. Nano Letters, 2011, 11, 1952-1956.	4.5	337
121	Colloidal CuInSe ₂ Nanocrystals in the Quantum Confinement Regime: Synthesis, Optical Properties, and Electroluminescence. Journal of Physical Chemistry C, 2011, 115, 12396-12402.	1.5	176
122	Evidence for Multiple Trapping Mechanisms in Single CdSe/ZnS Quantum Dots from Fluorescence Intermittency Measurements over a Wide Range of Excitation Intensities. Journal of Physical Chemistry C, 2011, 115, 6341-6349.	1.5	45
123	12.2: <i>Invited Paper</i> : Quantum Dot Light Emitting Diodes for Nearâ€ŧoâ€eye and Direct View Display Applications. Digest of Technical Papers SID International Symposium, 2011, 42, 135-138.	0.1	21
124	Interstitial sulfur photoluminescence in thermochemically synthesized CdS nanocrystals (NCs). EPJ Applied Physics, 2011, 56, 10401.	0.3	7
125	Creating Ligand-Free Silicon Germanium Alloy Nanocrystal Inks. ACS Nano, 2011, 5, 7950-7959.	7.3	40
126	White light-emitting devices based on carbon dots' electroluminescence. Chemical Communications, 2011, 47, 3502.	2.2	450
127	Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots. ACS Nano, 2011, 5, 1328-1334.	7.3	66
128	Synthesis of CdS nanocrystals by a microwave activated method and investigation of the photoluminescence and electroluminescence properties. Applied Surface Science, 2011, 257, 9796-9801.	3.1	37
129	Extinction and luminescence coefficients of CdSe/CdTe, CdTe/CdSe, and CdTe/CdS heterostructures based on colloidal CdSe and CdTe nanocrystals. Journal of Optical Technology (A Translation of) Tj ETQq0 0 0 rgI	3T ØØverlog	ck
	High scotonic/photonic ratio white-light-emitting diodes integrated with semiconductor		

130	nanophosphors of colloidal quantum dots. Optics Letters, 2011, 36, 1893.	1.7

#	Article	IF	CITATIONS
131	Characterization of Primary Amine Capped CdSe, ZnSe, and ZnS Quantum Dots by FT-IR: Determination of Surface Bonding Interaction and Identification of Selective Desorption. Langmuir, 2011, 27, 8486-8493.	1.6	141
132	Heteroepitaxial Growth of Colloidal Nanocrystals onto Substrate Films via Hot-Injection Routes. ACS Nano, 2011, 5, 4953-4964.	7.3	32
133	Controlled synthesis of semiconductor nanostructures in the liquid phase. Chemical Society Reviews, 2011, 40, 5492.	18.7	199
134	InP@ZnSeS, Core@Composition Gradient Shell Quantum Dots with Enhanced Stability. Chemistry of Materials, 2011, 23, 4459-4463.	3.2	239
135	Radiative Recombination Mechanisms of Large InAs/GaAs Quantum Dots. World Journal of Condensed Matter Physics, 2011, 01, 161-166.	1.1	8
136	Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5, 176-182.	15.6	997
137	Annealing effects on the photoresponse properties of CdSe nanocrystal thin films. Materials Chemistry and Physics, 2011, 128, 483-488.	2.0	8
138	Synthesis and photoluminescence properties of high-quality CdSe quantum dot in liquid paraffin. Micro and Nano Letters, 2011, 6, 964.	0.6	3
139	Tunable photo-luminescent properties of novel transparent CdSe-QD/silicone nanocomposites. Composites Science and Technology, 2011, 71, 1652-1658.	3.8	26
140	Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photonics, 2011, 5, 543-548.	15.6	1,007
140 141	Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photonics, 2011, 5, 543-548. Spectral Properties of Multiply Charged Semiconductor Quantum Dots. Nano Letters, 2011, 11, 4425-4430.	15.6 4.5	1,007 33
140 141 142	Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photonics, 2011, 5, 543-548. Spectral Properties of Multiply Charged Semiconductor Quantum Dots. Nano Letters, 2011, 11, 4425-4430. Synthesis and Characterization of Organically Soluble Cu-Doped ZnS Nanocrystals with Br Co-activator. Journal of Physical Chemistry C, 2011, 115, 14559-14570.	15.6 4.5 1.5	1,007 33 25
140 141 142 143	Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photonics, 2011, 5, 543-548. Spectral Properties of Multiply Charged Semiconductor Quantum Dots. Nano Letters, 2011, 11, 4425-4430. Synthesis and Characterization of Organically Soluble Cu-Doped ZnS Nanocrystals with Br Co-activator. Journal of Physical Chemistry C, 2011, 115, 14559-14570. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals. Journal of Nanoparticle Research, 2011, 13, 3721-3729.	15.6 4.5 1.5 0.8	1,007 33 25 29
140 141 142 143 144	Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photonics, 2011, 5, 543-548.Spectral Properties of Multiply Charged Semiconductor Quantum Dots. Nano Letters, 2011, 11, 4425-4430.Synthesis and Characterization of Organically Soluble Cu-Doped ZnS Nanocrystals with Br Co-activator. Journal of Physical Chemistry C, 2011, 115, 14559-14570.Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals. Journal of Nanoparticle Research, 2011, 13, 3721-3729.One-pot synthesis, optical property and self-assembly of monodisperse silver nanospheres. Journal of Solid State Chemistry, 2011, 184, 1956-1962.	15.6 4.5 1.5 0.8 1.4	1,007 33 25 29 17
140 141 142 143 144 145	Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer Structures. Nature Photonics, 2011, 5, 543-548. Spectral Properties of Multiply Charged Semiconductor Quantum Dots. Nano Letters, 2011, 11, 4425-4430. Synthesis and Characterization of Organically Soluble Cu-Doped ZnS Nanocrystals with Br Co-activator. Journal of Physical Chemistry C, 2011, 115, 14559-14570. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals. Journal of Nanoparticle Research, 2011, 13, 3721-3729. One-pot synthesis, optical property and self-assembly of monodisperse silver nanospheres. Journal of Solid State Chemistry, 2011, 184, 1956-1962. Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Research Letters, 2011, 6, 199.	15.6 4.5 1.5 0.8 1.4 3.1	1,007 33 25 29 17 147
140 141 142 143 144 145	Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer Structures. Nature Photonics, 2011, 5, 543-548. Spectral Properties of Multiply Charged Semiconductor Quantum Dots. Nano Letters, 2011, 11, 4425-4430. Synthesis and Characterization of Organically Soluble Cu-Doped ZnS Nanocrystals with Br Co-activator. Journal of Physical Chemistry C, 2011, 115, 14559-14570. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals. Journal of Nanoparticle Research, 2011, 13, 3721-3729. One-pot synthesis, optical property and self-assembly of monodisperse silver nanospheres. Journal of Solid State Chemistry, 2011, 184, 1956-1962. Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Research Letters, 2011, 6, 199. InGaN quantum dot growth in the limits of Stranskiäć"Krastanov and spinodal decomposition. Physica	15.6 4.5 1.5 0.8 1.4 3.1 0.7	1,007 33 25 29 17 147 30
140 141 142 143 144 145 145 146	Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photonics, 2011, 5, 543-548. Spectral Properties of Multiply Charged Semiconductor Quantum Dots. Nano Letters, 2011, 11, 4425-4430. Synthesis and Characterization of Organically Soluble Cu-Doped ZnS Nanocrystals with Br Co-activator. Journal of Physical Chemistry C, 2011, 115, 14559-14570. Beneficial effect of tributy/lphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals. Journal of Nanoparticle Research, 2011, 13, 3721-3729. One-pot synthesis, optical property and self-assembly of monodisperse silver nanospheres. Journal of Solid State Chemistry, 2011, 184, 1956-1962. Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Research Letters, 2011, 6, 199. InGaN quantum dot growth in the limits of StranskiäC"Krastanov and spinodal decomposition. Physica Status Solid (B): Basic Research, 2011, 248, 1765-1776. Evolution of Light Absorption and Emission Characteristics of Organic Perylene Nanoparticles through Hydrothermal Process: Application to Solar Cells. Advanced Functional Materials, 2011, 21, 3056-3063.	15.6 4.5 1.5 0.8 1.4 3.1 0.7 7.8	1,007 33 25 29 17 147 30

#	Article	IF	CITATIONS
149	In vivo plant flow cytometry: A first proofâ€ofâ€concept. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 855-865.	1.1	28
150	Inorganic SnXâ€Complexâ€Induced 1D, 2D, and 3D Copper Sulfide Superstructures from Anisotropic Hexagonal Nanoplate Building Blocks. Chemistry - A European Journal, 2011, 17, 10357-10364.	1.7	17
151	A Facile "Dispersion–Decomposition―Route to Metal Sulfide Nanocrystals. Chemistry - A European Journal, 2011, 17, 10445-10452.	1.7	74
152	Optical analysis of lactate dehydrogenase and glucose by CdTe quantum dots and their dual simultaneous detection. Biosensors and Bioelectronics, 2011, 26, 3488-3493.	5.3	35
153	Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 269-277.	2.3	28
154	Facile capping CdS and ZnS shells by thermolysis of ethylxanthate precursors for CdSe/CdS/ZnS nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384, 574-579.	2.3	9
155	Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms. Biomaterials, 2011, 32, 5459-5470.	5.7	56
156	Photoluminescence quenching of CdTe/CdS core-shell quantum dots in aqueous solution by ZnO nanocrystals. Journal of Luminescence, 2011, 131, 1536-1540.	1.5	23
157	Effect of cathodes on high efficiency inorganic–organic hybrid LEDs based on CdSe/ZnS quantum dots. Journal of Crystal Growth, 2011, 326, 109-112.	0.7	12
158	Ionic liquid assisted electrospinning of quantum dots/elastomer composite nanofibers. Polymer, 2011, 52, 1954-1962.	1.8	67
159	The effect of annealing and photoactivation on the optical transitions of band–band and surface trap states of colloidal quantum dots in PMMA. Nanotechnology, 2011, 22, 125202.	1.3	34
160	Efficient energy transfer from hole transporting materials to CdSe-core CdS/ZnCdS/ZnS-multishell quantum dots in type II aligned blend films. Applied Physics Letters, 2011, 99, 093106.	1.5	19
161	Investigation of the photoluminescence properties of thermochemically synthesized CdS nanocrystals. AIP Advances, 2011, 1, 012113.	0.6	14
162	Color tunable light-emitting diodes based on copper doped semiconducting nanocrystals. Applied Physics Letters, 2011, 99, 083106.	1.5	22
163	Effect of CdS film thickness on the photoexcited carrier lifetime of TiO2/CdS core-shell nanowires. Applied Physics Letters, 2011, 99, .	1.5	17
164	Degradation Studies of Colloidal Quantum Dot Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 2011, 1286, 55.	0.1	1
165	Employing Photo-Assisted Ligand Exchange Technique in Layered Quantum Dot LEDs. Materials Research Society Symposia Proceedings, 2011, 1286, 54.	0.1	0
166	Two-photon excited fluorescence from colloidal quantum dots on SiN photonic crystals. Proceedings of SPIE, 2011, , .	0.8	0

#	Article	IF	CITATIONS
167	Improvement of Electroluminescence Properties in Polymer Light Emitting Devices by Post-Thermal Process. Molecular Crystals and Liquid Crystals, 2011, 543, 169/[935]-176/[942].	0.4	0
168	Rapid, Sensitive, and Simultaneous Detection of Three Foodborne Pathogens Using Magnetic Nanobead-Based Immunoseparation and Quantum Dot-Based Multiplex Immunoassay. Journal of Food Protection, 2011, 74, 2039-2047.	0.8	89
169	Nanocrystals for Electronic and Optoelectronic Applications. Journal of Nanomaterials, 2012, 2012, 1-2.	1.5	7
170	Developing Quantum Dot Phosphor-Based Light-Emitting Diodes for Aviation Lighting Applications. Journal of Nanomaterials, 2012, 2012, 1-5.	1.5	4
171	Solution-Processed White Light-Emitting Diode Utilizing Hybrid Polymer and Red–Green–Blue Quantum Dots. Japanese Journal of Applied Physics, 2012, 51, 09MH03.	0.8	1
172	Employing Photoassisted Ligand Exchange Technique in Layered Quantum Dot LEDs. Journal of Nanomaterials, 2012, 2012, 1-5.	1.5	3
173	On the way to wafer-level quantum dot light-emitting diodes. Journal of Photonics for Energy, 2012, 2, 021206.	0.8	2
174	White Hybrid Light-Emitting Devices Based on the Emission of Thermal Annealed Ternary CdSe/ZnS Quantum Dots. Chinese Physics Letters, 2012, 29, 097805.	1.3	3
175	Perspective on synthesis, device structures, and printing processes for quantum dot displays. Optical Materials Express, 2012, 2, 594.	1.6	120
176	Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs. Optics Express, 2012, 20, A333.	1.7	30
177	Hybrid light-emitting devices based on phosphorescent platinum(II) complex sensitized CdSe/ZnS quantum dots. Optics Letters, 2012, 37, 1109.	1.7	9
178	Characterization of nucleation and growth kinetics of the formation of water-soluble CdSe quantum dots by their optical properties. Journal Physics D: Applied Physics, 2012, 45, 435303.	1.3	9
179	INVESTIGATION OF THE PHOTOLUMINESCENCE PROPERTIES OF ZnSe and ZnSe:Cu NANAOCRYSTALS (NCs). Modern Physics Letters B, 2012, 26, 1250171.	1.0	6
180	White electroluminescence from hybrid organic inorganic LEDs based on thermally evaporated nanocrystals. Europhysics Letters, 2012, 99, 17003.	0.7	1
181	Highly efficient CdS-quantum-dot-sensitized GaAs solar cells. Optics Express, 2012, 20, A319.	1.7	37
182	A Full-Color, White Light Emission of Quantum-Dot-Based Display Technology Using Pulsed Spray Method with Distributed Bragg Reflector. , 2012, , .		0
183	Facile synthesis and characterization of highly fluorescent and biocompatible <i>N</i> -acetyl-l-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase. Nanotechnology, 2012, 23, 495717.	1.3	37
184	Synthesis and Structural, Optical, and Dynamic Properties of Core/Shell/Shell CdSe/ZnSe/ZnS Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 25065-25073.	1.5	80

#	Article	IF	CITATIONS
185	Tunable electroluminescence from polymer-passivated 3C-SiC quantum dot thin films. Applied Physics Letters, 2012, 101, 123110.	1.5	20
186	Photophysical studies of CdTe quantum dots in the presence of a zinc cationic porphyrin. Dalton Transactions, 2012, 41, 13159.	1.6	27
187	Thiolate-assisted cation exchange reaction for the synthesis of near-infrared photoluminescent HgxCd1â^'xTe nanocrystals. Dalton Transactions, 2012, 41, 12726.	1.6	11
188	The impact of chemical treatment on optical and electrical characteristics of multipod PbSe nanocrystal films. Journal of Materials Chemistry, 2012, 22, 21009.	6.7	26
189	Polymer/QDs Nanocomposites for Waveguiding Applications. Journal of Nanomaterials, 2012, 2012, 1-9.	1.5	43
190	A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization. Nanoscale, 2012, 4, 1328.	2.8	34
191	Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film. Solar Energy Materials and Solar Cells, 2012, 104, 92-96.	3.0	43
192	Electrical and interface characteristics of nanocrystalline n-Zn0.5Cd0.5S/p-Cu2S heterojunction structure prepared by dip coating. Superlattices and Microstructures, 2012, 52, 288-298.	1.4	2
193	Pure red emission hybrid light-emitting devices based on the blend of CdSe/ZnS quantum dots and an n-type polymer. Thin Solid Films, 2012, 520, 7153-7156.	0.8	3
194	Study of semiconductor quantum dots influence on photorefractivity of liquid crystals. Applied Physics Letters, 2012, 101, .	1.5	23
195	Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	37
196	Investigation of the Photoluminescence Properties and Nonlinear Optical Responses of CdTe/CdS Core/Shell Quantum Dots. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1060-1063.	0.6	10
197	Quantum dots for Luminescent Solar Concentrators. Journal of Materials Chemistry, 2012, 22, 16687.	6.7	169
198	The Application of Semiconductor Quantum Dots for Enhancing Peptide Desorption, Improving Peak Resolution and Sensitivity of Detection in Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. , 2012, 906, 211-217.		0
199	Optical properties and self-assembly of Ag2S nanoparticles synthesized by a one-pot method. Materials Letters, 2012, 88, 108-111.	1.3	15
200	Mn-Doped Multinary CIZS and AIZS Nanocrystals. Journal of Physical Chemistry Letters, 2012, 3, 2528-2534.	2.1	98
201	Pâ€70: The Effect of Orthogonal Solvent of Colloidal Quantum Dots on QDâ€LED device. Digest of Technical Papers SID International Symposium, 2012, 43, 1322-1325.	0.1	2
202	Structural variations of Si1â^'xCx and their light absorption controllability. Nanoscale Research Letters, 2012, 7, 503.	3.1	7

#	Article	IF	CITATIONS
204	Solution processed multilayer cadmium-free blue/violet emitting quantum dots light emitting diodes. Applied Physics Letters, 2012, 101, 053303.	1.5	39
205	â€~Giant' CdSe/CdS Core/Shell Nanocrystal Quantum Dots As Efficient Electroluminescent Materials: Strong Influence of Shell Thickness on Light-Emitting Diode Performance. Nano Letters, 2012, 12, 331-336.	4.5	364
206	Facile synthesis of high-quality CuInZnxS2+x core/shell nanocrystals and their application for detection of C-reactive protein. Journal of Materials Chemistry, 2012, 22, 18623.	6.7	34
207	Plasmonic Manipulation of Color and Morphology of Single Silver Nanospheres. Nano Letters, 2012, 12, 5418-5421.	4.5	95
208	Microwave-assisted synthesis of CdSe quantum dots: can the electromagnetic field influence the formation and quality of the resulting nanocrystals?. Nanoscale, 2012, 4, 7435.	2.8	25
209	Lanthanum-doped ZnO quantum dots with greatly enhanced fluorescent quantum yield. Journal of Materials Chemistry, 2012, 22, 8221.	6.7	120
210	Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 98, 100-104.	2.0	15
211	One-pot synthesis of high quality CdE (EÂ=ÂTe, TexSe1â^'x, Se) nanocrystals without using pyrophoric reagents. Materials Chemistry and Physics, 2012, 135, 1122-1127.	2.0	6
212	Size-, shape-, and assembly-controlled synthesis of Cu2â^'xSe nanocrystalsvia a non-injection phosphine-free colloidal method. CrystEngComm, 2012, 14, 555-560.	1.3	35
213	Fabrication of "strong―columnar Cu2â^'xSe superstructures assisted by inorganic ligands. Nanoscale, 2012, 4, 2741.	2.8	12
214	Multifunctional Doped Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2012, 3, 2535-2540.	2.1	70
215	Facile synthesis and observation of discontinuous red-shift photoluminescence of CdTe/CdS core/shell nanocrystals. CrystEngComm, 2012, 14, 272-277.	1.3	5
216	Charge separation and ultraviolet photovoltaic conversion of ZnO quantum dots conjugated with graphene nanoshells. Nano Research, 2012, 5, 747-761.	5.8	40
217	Engineering of hybrid heterostructures from organic semiconductors and quantum dots for advanced photovoltaic applications. , 2012, , .		1
218	Temperature dependent synthesis and optical properties of CdSe quantum dots. Ceramics International, 2012, 38, 5575-5583.	2.3	30
219	Physicochemical properties and cellular toxicity of (poly)aminoalkoxysilanes-functionalized ZnO quantum dots. Nanotechnology, 2012, 23, 335101.	1.3	81
220	Highly Efficient White Light-Emitting Diodes Based on Quantum Dots and Polymer Interface. IEEE Photonics Technology Letters, 2012, 24, 1594-1596.	1.3	22
221	Quantum Dots as a Light Indicator for Emitting Diodes and Biological Coding. , 0, , .		3

#	Article	IF	CITATIONS
222	Fabrication and characterization of CdSe/ZnS quantumâ€dot LEDs. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1163-1167.	0.8	10
223	Quantum Dot Light-Emitting Diode Using Solution-Processable Graphene Oxide as the Anode Interfacial Layer. Journal of Physical Chemistry C, 2012, 116, 10181-10185.	1.5	31
224	Lattice Strain Controls the Carrier Relaxation Dynamics in Cd _{<i>x</i>} Zn _{1–<i>x</i>} S Alloy Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 15167-15173.	1.5	45
225	Picosecond to Millisecond Transient Absorption Spectroscopy of Broad-Band Emitting Chiral CdSe Quantum Dots. Journal of Physical Chemistry C, 2012, 116, 16226-16232.	1.5	15
226	Monodisperse inorganic supraparticles: formation mechanism, properties and applications. Chemical Communications, 2012, 48, 6320.	2.2	105
227	Bright and Efficient Full-Color Colloidal Quantum Dot Light-Emitting Diodes Using an Inverted Device Structure. Nano Letters, 2012, 12, 2362-2366.	4.5	817
228	Nanocrystals for Electronics. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 287-311.	3.3	67
229	Highly Emissive and Colorâ€Tunable CuInS ₂ â€Based Colloidal Semiconductor Nanocrystals: Offâ€Stoichiometry Effects and Improved Electroluminescence Performance. Advanced Functional Materials, 2012, 22, 2081-2088.	7.8	449
230	The Impact of Carrier Transport Confinement on the Energy Transfer Between InGaN/GaN Quantumâ€Well Nanorods and Colloidal Nanocrystals. Advanced Functional Materials, 2012, 22, 3146-3152.	7.8	17
231	Resonantâ€Enhanced Full olor Emission of Quantumâ€Dotâ€Based Display Technology Using a Pulsed Spray Method. Advanced Functional Materials, 2012, 22, 5138-5143.	7.8	107
232	Inorganic Solids of CdSe Nanocrystals Exhibiting High Emission Quantum Yield. Advanced Functional Materials, 2012, 22, 3714-3722.	7.8	36
233	Full Visible Range Covering InP/ZnS Nanocrystals with High Photometric Performance and Their Application to White Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 4180-4185.	11.1	283
234	Langmuir–Schaeffer Monolayers of Colloidal Nanocrystals for Costâ€Efficient Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 4414-4418.	11.1	20
235	High Performance AC Electroluminescence from Colloidal Quantum Dot Hybrids. Advanced Materials, 2012, 24, 4540-4546.	11.1	72
236	Inorganic ligand mediated synthesis of CuInS2 nanocrystals with tunable properties. CrystEngComm, 2012, 14, 3638.	1.3	15
237	Tunable photoluminescence of graphene oxide from near-ultraviolet to blue. Materials Letters, 2012, 74, 71-73.	1.3	62
238	Light-emitting diodes fabricated from small-size ZnO quantum dots. Materials Letters, 2012, 74, 104-106.	1.3	57
239	Near-white emitting QD-LED based on hydrophilic CdS nanocrystals. Journal of Luminescence, 2012, 132, 467-473.	1.5	93

#	Article	IF	CITATIONS
240	Copper- or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media. Journal of Luminescence, 2012, 132, 987-991.	1.5	99
241	Synthesis and characterization of CdSe nanocrystalline thin films deposited by chemical bath deposition. Materials Science in Semiconductor Processing, 2013, 16, 1592-1598.	1.9	40
242	Graphene as anode electrode for colloidal quantum dots based light emitting diodes. Applied Physics Letters, 2013, 103, 043124.	1.5	11
243	Determination of atropine using Mn-doped ZnS quantum dots as novel luminescent sensitizers. Journal of Luminescence, 2013, 144, 34-40.	1.5	41
244	Looking Inside a Working SiLED. Nano Letters, 2013, 13, 3539-3545.	4.5	30
245	Determination of sulfate-reducing bacteria with chemical conversion from ZnO nanorods arrays to ZnS arrays. Sensors and Actuators B: Chemical, 2013, 181, 274-279.	4.0	15
246	Quantum Dot Light-Emitting Diode with Quantum Dots Inside the Hole Transporting Layers. ACS Applied Materials & Interfaces, 2013, 5, 6535-6540.	4.0	42
247	Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices. ACS Nano, 2013, 7, 7295-7302.	7.3	279
248	Continuousâ€Flow Synthesis of CdSe Quantum Dots: A Sizeâ€Tunable and Scalable Approach. Chemistry - A European Journal, 2013, 19, 11629-11636.	1.7	40
249	One-pot synthesis of high quality CdS nanocrystals by microwave irradiation in an organic phase: a green route for mass production. Journal of Materials Chemistry C, 2013, 1, 4550.	2.7	16
250	Role of Bond Adaptability in the Passivation of Colloidal Quantum Dot Solids. ACS Nano, 2013, 7, 7680-7688.	7.3	69
251	Facile plasma-induced fabrication of fluorescent carbon dots toward high-performance white LEDs. Journal of Materials Science, 2013, 48, 6307-6311.	1.7	89
252	Highly-improved performance of TiO2 nanocrystal based quantum dot light emitting diodes. RSC Advances, 2013, 3, 12104.	1.7	14
253	Fabrication of Cd0.5Zn0.5S:Cu QDs incorporated organically modified SiO2 films showing entire visible colour emission with high quantum yield. Journal of Materials Chemistry C, 2013, 1, 4816.	2.7	13
254	High luminescence efficiency white light emitting diodes based on surface functionalized quantum dots dispersed in polymer matrices. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 428, 86-91.	2.3	38
255	Electron transfer from CdSe–ZnS core–shell quantum dots to cobalt(iii) complexes. Physical Chemistry Chemical Physics, 2013, 15, 15888.	1.3	32
256	A Brief Overview of Some Physical Studies on the Relaxation Dynamics and Förster Resonance Energy Transfer of Semiconductor Quantum Dots. ChemPhysChem, 2013, 14, 2641-2653.	1.0	27
257	Suppressed Carrier Scattering in CdS-Encapsulated PbS Nanocrystal Films. ACS Nano, 2013, 7, 6964-6977.	7.3	41

#	Article	IF	CITATIONS
258	Multicolor Emission of Hybrid Block Copolymer–Quantum Dot Microspheres by Controlled Spatial Isolation of Quantum Dots. Small, 2013, 9, 2667-2672.	5.2	65
259	Nonradiative Energy Transfer Between Colloidal Quantum-Dot Phosphors and Silicon Carbide Diodes. Journal of Electronic Materials, 2013, 42, 805-808.	1.0	1
260	The Solid-State Electrochemistry of CdS and Cu(I)-Doped CdS Nanocrystals. Journal of the Electrochemical Society, 2013, 160, H121-H125.	1.3	6
261	Synthesis and photoluminescence of semiconductor quantum dots/cetyltrimethylammonium bromide vesicle core/shell nanostructures. Applied Surface Science, 2013, 276, 359-362.	3.1	5
262	Improved luminescence from CdSe quantum dots with a strain-compensated shell. Applied Physics Letters, 2013, 102, 023106.	1.5	7
263	High-quality quantum-dot-based full-color display technology by pulsed spray method. Proceedings of SPIE, 2013, , .	0.8	0
264	Nanotechnology in Dermatology. , 2013, , .		8
265	Bright and stable quantum dots and their applications in full-color displays. MRS Bulletin, 2013, 38, 712-720.	1.7	82
266	Controllable synthesis of silver and silver sulfide nanocrystals via selective cleavage of chemical bonds. Nanotechnology, 2013, 24, 355602.	1.3	33
267	Efficient and Bright Colloidal Quantum Dot Light-Emitting Diodes via Controlling the Shell Thickness of Quantum Dots. ACS Applied Materials & amp; Interfaces, 2013, 5, 12011-12016.	4.0	78
268	Graded synthetic approach for the fabrication of nanocrystal quantum dots for enhanced carrier injection in light-emitting diodes. Nanotechnology, 2013, 24, 505601.	1.3	2
269	Color-Switchable Electroluminescence of Carbon Dot Light-Emitting Diodes. ACS Nano, 2013, 7, 11234-11241.	7.3	471
270	Fluorescent cellulose aerogels containing covalently immobilized (ZnS)x(CuInS2)1â^'x/ZnS (core/shell) quantum dots. Cellulose, 2013, 20, 3007-3024.	2.4	49
271	Sodium chloride protected CdTe quantum dot based solid-state luminophores with high color quality and fluorescence efficiency. Applied Physics Letters, 2013, 103, .	1.5	45
272	The role of surface chemistry in determining inÂvivo biodistribution and toxicity of CdSe/ZnS core–shell quantum dots. Biomaterials, 2013, 34, 8741-8755.	5.7	131
273	Efficient, air-stable quantum dots light-emitting devices with MoO3 modifying the anode. Journal of Luminescence, 2013, 143, 442-446.	1.5	8
274	Quantum dot light-emitting devices. MRS Bulletin, 2013, 38, 685-691.	1.7	127
275	Evolution of biofunctional semiconductor nanocrystals: a calorimetric investigation. Physical Chemistry Chemical Physics, 2013, 15, 20354.	1.3	6

CITATION REPORT ARTICLE IF CITATIONS Highly luminescent glutathione-capped ZnS : Mn/ZnS core/shell doped quantum dots for targeted 1.3 21 mannosyl groups expression on the cell surface. Analytical Methods, 2013, 5, 5929. Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast 2.2 cancer cells. Chemical Communications, 2013, 49, 624-626. Improving the efficiency and reducing efficiency roll-off in quantum dot light emitting devices by 2.7 33 utilizing plasmonic Au nanoparticles. Journal of Materials Chemistry C, 2013, 1, 470-476. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7, 13-23. 2,155 Inverted quantum-dot light-emitting diodes with solution-processed aluminium–zinc oxide as a 2.7 63 cathode buffer. Journal of Materials Chemistry C, 2013, 1, 1567-1573. Rational Tuning the Optical Properties of Metal Sulfide Nanocrystals and Their Applications. 3.2 164 Chemistry of Materials, 2013, 25, 1166-1178. Multicolor Silicon Light-Emitting Diodes (SiLEDs). Nano Letters, 2013, 13, 475-480. 4.5 273 Bright and Stable Alloy Core/Multishell Quantum Dots. Angewandte Chemie - International Edition, 7.2 2013, 52, 679-682. Preparation of Cr-doped ZnS nanosheets with room temperature ferromagnetism via a solvothermal 0.7 17 route. Journal of Crystal Growth, 2013, 372, 39-42. Structural, optical and vibrational studies of Na+ doped Cd0.8Zn0.2S semiconductor compounds. 2.8 Journal of Alloys and Compounds, 2013, 581, 805-811. Size tunability and optical properties of CdSe quantum dots for various growth conditions. Journal 3 0.3 of the Korean Physical Society, 2013, 62, 121-126. Clean Energy. Interface Science and Technology, 2013, 19, 279-383. 1.6 Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS 1.3 45 quantum-dot LEDs. Nanotechnology, 2013, 24, 115201. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer. Nanotechnology, 2013, 24, 175201. 1.3 Robust, processable, and bright quantum dot/organosilicate hybrid films with uniform QD distribution based on thiol-containing organosilicate ligands. Journal of Materials Chemistry C, 2013, 2.7 20 1, 1983.

293	Synthesis of highly luminescent CdTe/CdS/ZnS quantum dots by a one-pot capping method. Chemical Engineering Journal, 2013, 226, 416-422.	6.6	29
294	A tri-n-octylphosphine-assisted successive ionic layer adsorption and reaction method to synthesize multilayered core–shell CdSe–ZnS quantum dots with extremely high quantum yield. Chemical Communications, 2013, 49, 6346.	2.2	66
295	Semiconducting and Plasmonic Copper Phosphide Platelets. Angewandte Chemie - International Edition, 2013, 52, 6762-6766.	7.2	90

#

276

278

280

281

283

286

288

290

#	Article	IF	CITATIONS
296	Facile One-Step Synthesis and Transformation of Cu(I)-Doped Zinc Sulfide Nanocrystals to Cu _{1.94} S–ZnS Heterostructured Nanocrystals. Langmuir, 2013, 29, 8728-8735.	1.6	45
297	Inverted CdSe/CdS/ZnS quantum dot light emitting devices with titanium dioxide as an electron-injection contact. Nanoscale, 2013, 5, 3474.	2.8	47
298	Hybrid inorganic–organic composite nanoparticles from crosslinkable polyfluorenes. Journal of Materials Chemistry C, 2013, 1, 3297.	2.7	13
299	Quantum dot–phenanthroline dyads: detection of double-stranded DNA using a photoinduced hole transfer mechanism. Analyst, The, 2013, 138, 887-893.	1.7	10
300	Charge Separation by Indirect Bandgap Transitions in CdS/ZnSe Type-II Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2013, 117, 10901-10908.	1.5	71
301	Highly Efficient Blue–Green Quantum Dot Light-Emitting Diodes Using Stable Low-Cadmium Quaternary-Alloy ZnCdSSe/ZnS Core/Shell Nanocrystals. ACS Applied Materials & Interfaces, 2013, 5, 4260-4265.	4.0	86
302	Ethylenediamine-Assisted Ligand Exchange and Phase Transfer of Oleophilic Quantum Dots: Stripping of Original Ligands and Preservation of Photoluminescence. Chemistry of Materials, 2013, 25, 2193-2201.	3.2	57
303	Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness. Journal of Materials Chemistry C, 2013, 1, 3924.	2.7	39
304	Optical Properties and Exciton Dynamics of Alloyed Core/Shell/Shell Cd _{1–<i>x</i>} Zn _{<i>x</i>} Se/ZnSe/ZnS Quantum Dots. ACS Applied Materials & Interfaces, 2013, 5, 2893-2900.	4.0	82
305	Fabrication of fast and sensitive IRâ€detectors based on PbS quantum dots passivated by organic ligands. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 420-424.	0.8	9
306	Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions. Journal of Physical Chemistry C, 2013, 117, 14418-14426.	1.5	150
307	Synthesis and photoluminescence properties of zinc sulfide nanoparticles doped with copper using effective surfactants. Particuology, 2013, 11, 566-573.	2.0	36
308	Performance of light-emitting-diode based on quantum dots. Nanoscale, 2013, 5, 5205.	2.8	81
309	Analysis of Trap State Dynamics of Single CdSe/ZnS Quantum Dots on an Indium Tin Oxide Thin Film with Applying External Electric Field. Journal of Physical Chemistry C, 2013, 117, 2507-2510.	1.5	6
310	Molecular Construction Kit for Tuning Solubility, Stability and Luminescence Properties: Heteroleptic MePyrPHOS-Copper Iodide-Complexes and their Application in Organic Light-Emitting Diodes. Chemistry of Materials, 2013, 25, 3414-3426.	3.2	147
311	Simple and Accurate Quantification of Quantum Yield at the Single-Molecule/Particle Level. Analytical Chemistry, 2013, 85, 2000-2004.	3.2	36
312	Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor. Nanotechnology, 2013, 24, 475603.	1.3	14
313	QLEDs for displays and solid-state lighting. MRS Bulletin, 2013, 38, 703-711.	1.7	184

#	Article	IF	CITATIONS
314	Paper No 5.4: Highly Colorâ€Saturated Quantum Dot Lightâ€Emitting Devices Using Cadmiumâ€Free Quantum Dots. Digest of Technical Papers SID International Symposium, 2013, 44, 160-162.	0.1	2
315	68.1:Invited Paper: Quantum Dot Manufacturing Requirements for the High Volume LCD Market. Digest of Technical Papers SID International Symposium, 2013, 44, 943-945.	0.1	20
316	Synthesis of Waterâ€Soluble, Multicolored Fluorescent Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} Se Quantum Dots for Developing Latent Fingerprints. ChemPlusChem, 2013, 78, 244-249.	1.3	3
317	Enhanced Charge Transfer of QDs/Polymer Hybrid LED by Interface Controlling. IEEE Electron Device Letters, 2013, 34, 656-658.	2.2	17
318	ONE-POT SYNTHESIS OF Sb2Se3 NANOWIRES USING SELENIUM DIOXIDE AS THE SELENIUM PRECURSOR IN AIR AND THEIR CHARACTERIZATION. International Journal of Nanoscience, 2013, 12, 1350040.	0.4	0
319	Investigation of pure green-colour emission from inorganic-organic hybrid LEDs based on colloidal CdSe/ZnS quantum dots. International Journal of Nanotechnology, 2013, 10, 304.	0.1	1
321	CHALLENGES IN APPLICATION OF LUMINESCENT MATERIALS, A TUTORIAL OVERVIEW (Invited Review). Progress in Electromagnetics Research, 2014, 147, 81-93.	1.6	24
322	Efficient energy transfer from 1,3,5-tris(N-phenylbenzimidazol-2,yl) benzene to Mn:CdS quantum dots. Japanese Journal of Applied Physics, 2014, 53, 04EG07.	0.8	1
323	Remote excitation and remote detection of a single quantum dot using propagating surface plasmons on silver nanowire. Chinese Physics B, 2014, 23, 097302.	0.7	14
324	The Research of the Structure and Performance Based on Quantum Dot Light Emitting Devices. Applied Mechanics and Materials, 2014, 668-669, 107-111.	0.2	0
325	Study on Photoluminescence Quenching of CdSe Core/Shell Quantum Dots with Organic Charge Transferring Material. Advanced Materials Research, 2014, 981, 883-886.	0.3	0
326	Solid-state lighting with wide band gap semiconductors. MRS Energy & Sustainability, 2014, 1, 1.	1.3	11
327	Characterization of a Yellow Emitting QD-LED. , 2014, , .		0
328	Controllable synthesis of zinc tetraphenylporphyrin microcrystals by a facile, fast and surfactantâ€free process. Micro and Nano Letters, 2014, 9, 797-799.	0.6	0
329	Ultralong Homogeneously Alloyed CdSe _x S _{1â€x} Nanowires with Highly Polarized and Colorâ€Tunable Emissions. Advanced Optical Materials, 2014, 2, 885-891.	3.6	18
330	Pâ€88: Allâ€Inorganic Quantumâ€Dot Lightâ€Emitting Devices Prepared by Solutionâ€Process Route. Digest of Technical Papers SID International Symposium, 2014, 45, 1315-1318.	0.1	Ο
331	7.3: Influence of Layer Thickness on the Performance of Quantum Dots Light Emitting Devices. Digest of Technical Papers SID International Symposium, 2014, 45, 63-66.	0.1	2
332	Multicolored Cd1â^xZnxSe quantum dots with type-I core/shell structure: single-step synthesis and their use as light emitting diodes. Nanoscale, 2014, 6, 3881.	2.8	64

#	Article	IF	CITATIONS
333	Enhanced electroluminescence of allâ€inorganic colloidal quantum dot lightâ€emitting diode by optimising the MoO 3 intermediate layer. Micro and Nano Letters, 2014, 9, 421-424.	0.6	6
334	AgInS ₂ –ZnS nanocrystals: Evidence of bistable states using lightâ€induced electron paramagnetic resonance and photoluminescence. Physica Status Solidi - Rapid Research Letters, 2014, 8, 349-352.	1.2	3
335	7.4: <i>Invited Paper</i> : Highâ€Efficiency Inverted Quantumâ€dot Light Emitting Diodes for Display. Digest of Technical Papers SID International Symposium, 2014, 45, 67-70.	0.1	8
336	High color rendering index of remote-type white LEDs with multi-layered quantum dot-phosphor films and short-wavelength pass dichroic filters. Proceedings of SPIE, 2014, , .	0.8	1
337	Fabrication of p–i–n devices consisting of ZnO quantum dots embedded in Ga2ZnO4film. Japanese Journal of Applied Physics, 2014, 53, 06JG09.	0.8	0
338	Effect of Structure and Thickness on the Electrical Characteristics of QLED Device. Applied Mechanics and Materials, 0, 705, 214-218.	0.2	0
339	Stretchable optical device with electrically tunable absorbance and fluorescence. Smart Materials and Structures, 2014, 23, 015009.	1.8	5
340	Controlled Synthesis and Optical Properties of CuInS ₂ Nanocrystals. Applied Mechanics and Materials, 0, 716-717, 175-179.	0.2	0
341	Charge Transport Dilemma of Solution-Processed Nanomaterials. Chemistry of Materials, 2014, 26, 134-152.	3.2	106
342	Quasiâ€⊉D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence. Advanced Functional Materials, 2014, 24, 295-302.	7.8	208
343	Highly luminescent undoped and Mn-doped ZnS nanoparticles by liquid phase pulsed laser ablation. Applied Physics A: Materials Science and Processing, 2014, 116, 1085-1089.	1.1	13
344	Semi-transparent quantum-dot light emitting diodes with an inverted structure. Journal of Materials Chemistry C, 2014, 2, 2259.	2.7	34
345	Highâ€Efficient Deepâ€Blue Lightâ€Emitting Diodes by Using High Quality Zn _{<i>x</i>} Cd _{1â€<i>x</i>} S/ZnS Core/Shell Quantum Dots. Advanced Functional Materials, 2014, 24, 2367-2373.	7.8	151
346	Enhanced color-conversion efficiency between colloidal quantum dot-phosphors and nitride LEDs by using nano-patterned p-GaN. Journal of Electroceramics, 2014, 33, 2-6.	0.8	3
347	Effect of zinc oxide concentration in fluorescent ZnS:Mn/ZnO core–shell nanostructures. Journal of Materials Science: Materials in Electronics, 2014, 25, 1716-1723.	1.1	27
348	Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale, 2014, 6, 4966-4984.	2.8	89
349	Nanoscale engineering facilitated by controlled synthesis: From structure to function. Coordination Chemistry Reviews, 2014, 263-264, 197-216.	9.5	8
350	Stable, Efficient, and All-Solution-Processed Quantum Dot Light-Emitting Diodes with Double-Sided Metal Oxide Nanoparticle Charge Transport Layers. ACS Applied Materials & amp; Interfaces, 2014, 6, 495-499	4.0	66

#	Article	IF	CITATIONS
351	Facile and shape-controlled growth of the wurtzite ZnS:Ni2+ nanoparticles and nanowires. Superlattices and Microstructures, 2014, 71, 217-224.	1.4	7
352	Nanosecond colloidal quantum dot lasers for sensing. Optics Express, 2014, 22, 7308.	1.7	29
353	Over 40 cd/A Efficient Green Quantum Dot Electroluminescent Device Comprising Uniquely Large-Sized Quantum Dots. ACS Nano, 2014, 8, 4893-4901.	7.3	305
354	Ligand displacement-induced fluorescence switch of quantum dots for ultrasensitive detection of cadmium ions. Analytica Chimica Acta, 2014, 812, 191-198.	2.6	32
355	Charge Transport in Light Emitting Devices Based on Colloidal Quantum Dots and a Solution-Processed Nickel Oxide Layer. ACS Applied Materials & Interfaces, 2014, 6, 7286-7291.	4.0	29
356	Hybrid Optoelectronic Devices with Colloidal Quantum Dots. Lecture Notes in Nanoscale Science and Technology, 2014, , 67-90.	0.4	1
357	The Role of Ligands in Determining the Exciton Relaxation Dynamics in Semiconductor Quantum Dots. Annual Review of Physical Chemistry, 2014, 65, 317-339.	4.8	193
358	Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chemical Society Reviews, 2014, 43, 2680-2700.	18.7	360
359	Double shell CdTe/CdS/ZnS quantum dots as a fluorescence probe for quetiapine determination in fumarate quetiapine tablets. Analytical Methods, 2014, 6, 482-489.	1.3	19
361	Enhancing the device performance of a blue lightâ€emitting copolymer using CdSe/ZnS quantum dots. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 147-156.	2.4	5
362	Investigation of the Effect of Capping Agent Molecule Type on the Nonlinear Optical Responses of CdS Nanocrystals. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 247-250.	0.6	4
363	DOX-CONJUGATED HIGH-QUALITY AgZnInS QDs FOR REVERSAL OF MULTIDRUG RESISTANCE. Journal of Innovative Optical Health Sciences, 2014, 07, 1350043.	0.5	0
364	Variation of the coordination environment and its effect on the white light emission properties in a Mn-doped ZnO–ZnS complex structure. Physical Chemistry Chemical Physics, 2014, 16, 4544.	1.3	12
365	Core–shell ZnSe–CdSe quantum dots: a facile approach via decomposition of cyclohexeno-1,2,3-selenadiazole. RSC Advances, 2014, 4, 17526-17532.	1.7	17
366	Generation of Reactive Oxygen Species, Electrons/Holes, and Photocatalytic Degradation of Rhodamine B by Photoexcited CdS and Ag ₂ S Micro-Nano Structures. Journal of Physical Chemistry C, 2014, 118, 21447-21456.	1.5	106
367	Improving Polymer/Nanocrystal Hybrid Solar Cell Performance via Tuning Ligand Orientation at CdSe Quantum Dot Surface. ACS Applied Materials & Interfaces, 2014, 6, 19154-19160.	4.0	30
368	Size- and Composition-Dependent Radio Frequency Magnetic Permeability of Iron Oxide Nanocrystals. ACS Nano, 2014, 8, 12323-12337.	7.3	44
369	Self-assembly of single-crystalline α-Fe2O3nanoplates into columnar superstructures: controllable synthesis, growth mechanism, and properties. CrystEngComm, 2014, 16, 6873.	1.3	20

#	Article	IF	CITATIONS
370	Solar Cells Based on Inks of n-Type Colloidal Quantum Dots. ACS Nano, 2014, 8, 10321-10327.	7.3	158
371	Effect of oxygen plasma treatment on CdSe/CdZnS quantum-dot light-emitting diodes. Japanese Journal of Applied Physics, 2014, 53, 032101.	0.8	8
372	Controlled formation of GeSi nanostructures on periodic Si (001) sub-micro pillars. Nanoscale, 2014, 6, 3925-3929.	2.8	9
373	Single-step direct fabrication of luminescent Cu-doped ZnxCd1â^'xS quantum dot thin films via a molecular precursor solution approach and their application in luminescent, transparent, and conductive thin films. Nanoscale, 2014, 6, 9640-9645.	2.8	19
374	Analysis of Trap-State Dynamics of Single CdSe/ZnS Quantum Dots on a TiO ₂ Substrate with Different Nb Concentrations. Journal of Physical Chemistry C, 2014, 118, 20571-20575.	1.5	10
375	Efficient Quantum Dot Light-Emitting Diodes by Controlling the Carrier Accumulation and Exciton Formation. ACS Applied Materials & amp; Interfaces, 2014, 6, 14001-14007.	4.0	68
376	Effects of ZnO and SiO2 shell thickness on the structure and optical properties of ZnS:Mn2+ nanowires/ZnO quantum dots/SiO2 core/shell nanocomposites. Materials Letters, 2014, 135, 71-74.	1.3	5
377	Electrochemistry of Cu(I) doped CdS nanoparticles hosted by DNA–CTMA in aqueous electrolyte. Materials Chemistry and Physics, 2014, 147, 1074-1078.	2.0	2
378	Vivid, full-color aluminum plasmonic pixels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14348-14353.	3.3	269
379	Facile synthesis of gradient alloyed ZnxCd1â^'xS nanocrystals using a microwave-assisted method. Journal of Alloys and Compounds, 2014, 586, 380-384.	2.8	21
380	Investigation of electroluminescence properties of CdTe@CdS core-shell nanocrystals (NCs). Bulletin of Materials Science, 2014, 37, 9-13.	0.8	9
381	The effect of CdS QDs structure on the InGaP/GaAs/Ge triple junction solar cell efficiency. Electronic Materials Letters, 2014, 10, 457-460.	1.0	5
382	Modulation of the Band Gap Increase in Nanocrystals by Surface Passivation. Journal of Physical Chemistry C, 2014, 118, 14026-14030.	1.5	2
383	Cu Doping in Ligand Free CdS Nanocrystals: Conductivity and Electronic Structure Study. Journal of Physical Chemistry Letters, 2014, 5, 2382-2389.	2.1	21
384	Molecularly imprinted polymer based on CdTe@SiO ₂ quantum dots as a fluorescent sensor for the recognition of norepinephrine. Analyst, The, 2014, 139, 5785-5792.	1.7	50
385	Effect of ligand self-assembly on nanostructure and carrier transport behaviour in CdSe quantum dots. Materials Chemistry and Physics, 2014, 148, 253-261.	2.0	6
386	Fluorescent nanomaterial-derived white light-emitting diodes: what's going on. Journal of Materials Chemistry C, 2014, 2, 4358-4373.	2.7	106
387	Fluorescent quantum dots: Synthesis, biomedical optical imaging, and biosafety assessment. Colloids and Surfaces B: Biointerfaces, 2014, 124, 132-139.	2.5	75

	Стат	CITATION REPORT		
#	Article		IF	CITATIONS
388	Cu ²⁺ Ion Responsive Solventâ€Free Quantum Dots. Small, 2014, 10, 3901-3906.	;	5.2	11
389	Fluorescent recognition of deoxyribonucleic acids by a quantum dot/meso-tetrakis(N-methylpyridinium-4-yl)porphyrin complex based on a photo induced electron-transfer mechanism. Analytica Chimica Acta, 2014, 812, 199-205.		2.6	11
390	Saturated and Multiâ€Colored Electroluminescence from Quantum Dots Based Light Emitting Electrochemical Cells. Advanced Functional Materials, 2014, 24, 4484-4490.	r	7.8	80
391	CdSe/ZnS Quantum Dot Thin Film Formation by an Electrospray Deposition Process for Lightâ€Emitting Devices. Small, 2014, 10, 4142-4146.		5.2	12
392	Metalâ€Oxideâ€Free Methylammonium Lead Iodide Perovskiteâ€Based Solar Cells: the Influence of Orga Charge Transport Layers. Advanced Energy Materials, 2014, 4, 1400345.	nic	10.2	164
393	PVA Hydrogel Embedded with Quantum Dots: A Potential Scalable and Healable Display Medium for Holographic 3D Applications. Advanced Optical Materials, 2014, 2, 338-342.		3.6	23
394	Emerging Quantum-Dots-Enhanced LCDs. Journal of Display Technology, 2014, 10, 526-539.	:	1.3	139
395	Highly fluorescence-stable blue CdZnS/ZnS quantum dots against degradable environmental conditions. Journal of Alloys and Compounds, 2014, 610, 511-516.		2.8	34
396	Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser and Photonics Reviews, 2014, 8, 73-93.		4.4	67
397	Two-dimensional spectroscopy: An approach to distinguish Förster and Dexter transfer processes in coupled nanostructures. Physical Review B, 2015, 91, .		1.1	14
398	Influence of dimensionality and interface type on optical and electronic properties of CdS/ZnS core-shell nanocrystals—A first-principles study. Journal of Chemical Physics, 2015, 143, 164701.	:	1.2	7
399	Quantum-dot light-emitting diodes with a double-layer structured hole injection layer. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 062401.		0.6	2
400	Pâ€84: A Lowâ€Cost, Highâ€Throughput Procedure Synthesize of Pureâ€Green Coreâ€Multishell Quantu by using Modified Triâ€nâ€Octylphosphineâ€Assisted SILAR Method. Digest of Technical Papers SID International Symposium, 2015, 46, 1465-1468.	ım Dots	0.1	4
401	Heterogeneously Integrated Optoelectronic Devices Enabled by Microâ€Transfer Printing. Advanced Optical Materials, 2015, 3, 1313-1335.		3.6	127
402	Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Advanced Functional Materials, 2015, 25, 4929-4947.		7.8	1,072
403	Paper No S2.2: Ecofriendly Quantum Dot Light-Emitting Diode With Inorganic Charge Transport Layer. Digest of Technical Papers SID International Symposium, 2015, 46, 10-10.		0.1	0
404	A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe ₃ O ₄ magnetic and fluorescent nanocrystals. Beilstein Journal of Nanotechnology, 2015, 6, 1743-1751.	:	1.5	12
405	Facile synthesis of CdTe-based quantum dots promoted by mercaptosuccinic acid and hydrazine. New Journal of Chemistry, 2015, 39, 4488-4493.		1.4	14

#	Article	IF	CITATIONS
406	Size-dependent surface photovoltage in CdSe nanocrystal-based thin films. RSC Advances, 2015, 5, 39714-39718.	1.7	4
407	Room temperature ferromagnetism and optical property of Zn1â^'xCoxS nanorods. Superlattices and Microstructures, 2015, 82, 75-81.	1.4	3
408	Emulsion Synthesis of Size-Tunable CH ₃ NH ₃ PbBr ₃ Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7, 28128-28133.	4.0	429
409	Temperature-dependent photoluminescence of cadmium-free Cu–Zn–In–S quantum dot thin films as temperature probes. Dalton Transactions, 2015, 44, 20763-20768.	1.6	8
410	Tolerance of Intrinsic Defects in PbS Quantum Dots. Journal of Physical Chemistry Letters, 2015, 6, 4711-4716.	2.1	44
411	Silica-coated gradient alloy quantum dots with high luminescence for converter materials in white light-emitting diodes. RSC Advances, 2015, 5, 107585-107590.	1.7	12
412	Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications. Nanoscale Research Letters, 2015, 10, 469.	3.1	73
413	Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale, 2015, 7, 2951-2959.	2.8	163
414	Solution-processed quantum dot light-emitting diodes with PANI:PSS hole-transport interlayers. Organic Electronics, 2015, 19, 131-139.	1.4	43
415	Microwave-Assisted Synthesis of CdS/ZnS:Cu Quantum Dots for White Light-Emitting Diodes with High Color Rendition. Chemistry of Materials, 2015, 27, 1187-1193.	3.2	122
416	High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot-Based Light-Emitting Diodes. Nano Letters, 2015, 15, 1211-1216.	4.5	383
417	One-step hydrothermal synthesis of shape-controlled ZnS–graphene oxide nanocomposites. Journal of Materials Science: Materials in Electronics, 2015, 26, 646-650.	1.1	8
418	Classification of Zinc Sulfide Quantum Dots by Size: Insights into the Particle Surface–Solvent Interaction of Colloids. Journal of Physical Chemistry C, 2015, 119, 4009-4022.	1.5	24
419	Performance Improvement of Quantum Dot-Light-Emitting Diodes Enabled by an Alloyed ZnMgO Nanoparticle Electron Transport Layer. Chemistry of Materials, 2015, 27, 197-204.	3.2	152
420	Determining the fate of fluorescent quantum dots on surface of engineered budding S. cerevisiae cell molecular landscape. Biosensors and Bioelectronics, 2015, 69, 26-33.	5.3	3
421	Tuning emission and Stokes shift of CdS quantum dots via copper and indium co-doping. RSC Advances, 2015, 5, 628-634.	1.7	17
422	Enhancement of CdSe/ZnS quantum dot-based LED by core-shell modification. Journal of the Korean Physical Society, 2015, 66, 82-86.	0.3	5
423	Interfacial Emission Adjustment in ZnO Quantum Dots/p-GaN Heterojunction Light-Emitting Diodes. Journal of Physical Chemistry C, 2015, 119, 2798-2803.	1.5	24

#	Article	IF	CITATIONS
424	Localized surface plasmon-enhanced green quantum dot light-emitting diodes using gold nanoparticles. RSC Advances, 2015, 5, 19624-19629.	1.7	54
425	Core–shell quantum dots: Properties and applications. Journal of Alloys and Compounds, 2015, 636, 395-404.	2.8	266
426	One-pot aqueous synthesis of germanium-doped cadmium sulfide quantum dots as fluorescent probes for cell imaging. Materials Science in Semiconductor Processing, 2015, 34, 1-7.	1.9	17
427	White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode. Applied Physics Letters, 2015, 106, .	1.5	58
428	Colloidal quantum-dot LEDs with a solution-processed copper oxide (CuO) hole injection layer. Organic Electronics, 2015, 26, 245-250.	1.4	53
429	Type-II CdS/ZnSe core/shell heterostructures: UV–vis absorption, photoluminescence and Raman scattering studies. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 200, 107-116.	1.7	14
430	Fluorescence cadmium sulfide nanosensor for selective recognition of chromium ions in aqueous solution at wide pH range. Sensors and Actuators B: Chemical, 2015, 221, 1055-1061.	4.0	21
431	Lateral carrier confinement in InGaN quantum-well nanorods. Annals of Physics, 2015, 358, 255-265.	1.0	1
432	Electroluminescent properties of poly[N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine] doped with 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene. Displays, 2015, 38, 32-37.	2.0	13
433	Vacuum-free transparent quantum dot light-emitting diodes with silver nanowire cathode. Scientific Reports, 2015, 5, 12499.	1.6	44
434	Studying of photoluminescence characteristics of CdTe/ZnS QDs manipulated by TiO2 inverse opal photonic crystals. Optical Materials, 2015, 46, 350-354.	1.7	22
435	Cadmium-free quantum dots based violet light-emitting diodes: High-efficiency and brightness via optimization of organic hole transport layers. Organic Electronics, 2015, 25, 178-183.	1.4	73
436	Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 15955-15960.	4.0	76
437	Water repellent spray-type encapsulation of quantum dot light-emitting diodes using super-hydrophobic self-assembled nanoparticles. Applied Surface Science, 2015, 353, 338-341.	3.1	15
438	Atomistic Modeling of Morphology and Electronic Properties of Colloidal Ultrathin Bi ₂ S ₃ Nanowires. Journal of Physical Chemistry C, 2015, 119, 16913-16919.	1.5	13
439	Implementation of graphene multilayer electrodes in quantum dot light-emitting devices. Applied Physics A: Materials Science and Processing, 2015, 120, 1197-1203.	1.1	2
440	Prepare core–multishell CdSe/ZnS nanocrystals with pure color and controlled emission by tri-n-octylphosphine-assisted method. Applied Surface Science, 2015, 353, 480-488.	3.1	10
441	Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index. Journal of Alloys and Compounds, 2015, 647, 837-843.	2.8	24

#	Article	IF	CITATIONS
442	A sustainable future for photonic colloidal nanocrystals. Chemical Society Reviews, 2015, 44, 5897-5914.	18.7	115
443	Formation of poly(methyl methacrylate)-ZnO nanoparticle quantum dot composites by dispersion polymerization in supercritical CO2. Journal of Supercritical Fluids, 2015, 103, 83-89.	1.6	14
444	Irreversible temperature quenching and antiquenching of photoluminescence of ZnS/CdS:Mn/ZnS quantum well quantum dots. Chemical Physics Letters, 2015, 625, 147-150.	1.2	6
445	Tunable Photoluminescent Core/Shell Cu ⁺ -Doped ZnSe/ZnS Quantum Dots Codoped with Al ³⁺ , Ga ³⁺ , or In ³⁺ . ACS Applied Materials & Interfaces, 2015, 7, 10055-10066.	4.0	49
446	High-Power Genuine Ultraviolet Light-Emitting Diodes Based On Colloidal Nanocrystal Quantum Dots. Nano Letters, 2015, 15, 3793-3799.	4.5	105
447	Fluorescent heavy metal cation sensing with water dispersible 2MPA capped CdSe/ZnS quantum dots. Journal of Luminescence, 2015, 166, 88-92.	1.5	19
448	Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6, 7149.	5.8	536
449	Studying of the photoluminescence characteristics of AgInS2 quantum dots. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	13
450	High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 2015, 9, 259-266.	15.6	886
451	Inverted Quantum Dot Light Emitting Diodes using Polyethylenimine ethoxylated modified ZnO. Scientific Reports, 2015, 5, 8968.	1.6	113
452	Soft Contact Transplanted Nanocrystal Quantum Dots for Light-Emitting Diodes: Effect of Surface Energy on Device Performance. ACS Applied Materials & Interfaces, 2015, 7, 10828-10833.	4.0	31
453	Deep Ultraviolet Emission from Water-Soluble SnO2 Quantum Dots Grown via a Facile "Top-Down― Strategy. Journal of Materials Science and Technology, 2015, 31, 670-673.	5.6	9
454	Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Probe for Detection of Zn ²⁺ Using a Dual-Emission Silica-Coated Quantum Dots Mixture. Analytical Chemistry, 2015, 87, 5318-5323.	3.2	85
455	Facile synthesis of composition-gradient Cd _{1â^'x} Zn _x S quantum dots by cation exchange for controlled optical properties. Journal of Materials Chemistry C, 2015, 3, 3286-3293.	2.7	23
456	Brightly Luminescent and Color-Tunable Colloidal CH ₃ NH ₃ PbX ₃ (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 2015, 9, 4533-4542.	7.3	2,001
457	Measurement of the Hydrodynamic Radius of Quantum Dots by Fluorescence Correlation Spectroscopy Excluding Blinking. Journal of Physical Chemistry B, 2015, 119, 4294-4299.	1.2	13
458	Photoluminescent silicon nanocrystal-polymer hybrid materials via surface initiated reversible addition–fragmentation chain transfer (RAFT) polymerization. Nanoscale, 2015, 7, 7811-7818.	2.8	20
459	Efficient hybrid white light-emitting diodes by organic-inorganic materials at different CCT from 3000K to 9000K. Optics Express, 2015, 23, A204.	1.7	17

#	Article	IF	CITATIONS
460	Discovering Amorphous Indium Phosphide Nanostructures with High-Temperature ab Initio Molecular Dynamics. Journal of Physical Chemistry C, 2015, 119, 23238-23249.	1.5	12
461	Very High Brightness Quantum Dot Light-Emitting Devices via Enhanced Energy Transfer from a Phosphorescent Sensitizer. ACS Applied Materials & Interfaces, 2015, 7, 25828-25834.	4.0	27
462	A Nanoscale Adventure with Silicon: Synthesis, Surface Chemistry, and other Surprises. Solid State Phenomena, 2015, 242, 383-390.	0.3	0
463	Ag and Cu doped colloidal CdSe nanocrystals: partial cation exchange and luminescence. Materials Research Express, 2015, 2, 085004.	0.8	14
464	Influence of interfacial oxide on the optical properties of single layer CdTe/CdS quantum dots in porous silicon scaffolds. Applied Physics Letters, 2015, 107, 063106.	1.5	6
465	Oscillatory Microprocessor for Growth and in Situ Characterization of Semiconductor Nanocrystals. Chemistry of Materials, 2015, 27, 6131-6138.	3.2	74
466	Random Lasing with Systematic Threshold Behavior in Films of CdSe/CdS Core/Thick-Shell Colloidal Quantum Dots. ACS Nano, 2015, 9, 9792-9801.	7.3	49
467	Flexible quantum dot light emitting diodes based on ZnO nanoparticles. RSC Advances, 2015, 5, 82192-82198.	1.7	41
468	Probing the Mechanism of Fluorescence Quenching of QDs by Co(III)-Complexes: Size of QD and Nature of the Complex Both Dictate Energy and Electron Transfer Processes. Journal of Physical Chemistry C, 2015, 119, 22690-22699.	1.5	52
469	Influence of phosphor amount on microstructure and damage evolution of silicone/phosphor composite in light-emitting diodes packaging. Composites Science and Technology, 2015, 107, 98-106.	3.8	12
470	Size-Dependent Oxidation of Monodisperse Silicon Nanocrystals with Allylphenylsulfide Surfaces. Small, 2015, 11, 335-340.	5.2	20
471	Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasiâ€Continuous Pumping. Advanced Materials, 2015, 27, 169-175.	11.1	127
472	Low-cost, environmentally friendly synthesis, structural and spectroscopic properties of Fe:ZnSe colloidal nanocrystals. Journal of Alloys and Compounds, 2015, 621, 396-403.	2.8	17
473	Carbon nanodot–ORMOSIL fluorescent paint and films. Journal of Materials Chemistry C, 2015, 3, 714-719.	2.7	13
474	Effect of Ag doping on structural and optical properties of ZnSe nanophosphors. Materials Science in Semiconductor Processing, 2015, 30, 376-380.	1.9	21
475	Improved performance of flexible white hybrid light emitting diodes by adjusting quantum dots distribution in polymer matrix. Vacuum, 2015, 111, 1-4.	1.6	10
476	Nanoparticle characterization based on STM and STS. Chemical Society Reviews, 2015, 44, 970-987.	18.7	82
477	Highly Efficient Flexible Hybrid Nanocrystal u(In,Ga)Se ₂ (CIGS) Solar Cells. Advanced Energy Materials, 2015, 5, 1401280.	10.2	32

#	Article	IF	CITATIONS
478	"Green―Quantum Dots: Basics, Green Synthesis, and Nanotechnological Applications. , 0, , .		13
479	CdS_xSe_1-x/ZnS semiconductor nanocrystal laser with sub 10kW/cm^2 threshold and 40nJ emission output at 600 nm. Optics Express, 2016, 24, A146.	1.7	8
480	P-93: High Performance of Quantum Dot Based Light Emitting Diodes Optimized by Graphene Sheets. Digest of Technical Papers SID International Symposium, 2016, 47, 1472-1475.	0.1	1
481	2Dâ€Crystalâ€Based Functional Inks. Advanced Materials, 2016, 28, 6136-6166.	11.1	371
482	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie - International Edition, 2016, 55, 5071-5075.	7.2	42
483	34-2: A Rapid, Highly Emissive Procedure Synthesize of Giant Pure Red Coreshell Quantum Rods by Using Modified Tributylphosphine-assisted Method. Digest of Technical Papers SID International Symposium, 2016, 47, 428-431.	0.1	2
484	34-3: A Low-cost, Two-step Nucleation and Growth of CdTe Quantum Dots via Magic-sized Cluster Intermediates in Aqueous Phase. Digest of Technical Papers SID International Symposium, 2016, 47, 432-435.	0.1	0
485	55-4: Large Size Quantum Dots-based Organic/inorganic Hybrid Light-emitting Devices. Digest of Technical Papers SID International Symposium, 2016, 47, 751-753.	0.1	Ο
486	Supramolecular Polymeric Fluorescent Nanoparticles Based on Quadruple Hydrogen Bonds. Advanced Functional Materials, 2016, 26, 5483-5489.	7.8	105
487	Control of the binding energy by tuning the single dopant position, magnetic field strength and shell thickness in ZnS/CdSe core/shell quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 303-309.	1.3	21
488	Synthetic Developments of Nontoxic Quantum Dots. ChemPhysChem, 2016, 17, 598-617.	1.0	80
489	Transparent InP Quantum Dot Lightâ€Emitting Diodes with ZrO ₂ Electron Transport Layer and Indium Zinc Oxide Top Electrode. Advanced Functional Materials, 2016, 26, 3454-3461.	7.8	84
490	Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 1176-1207.	11.1	211
491	Injection of 2D electron gas into a quantum-dot organic light-emitting diode structure on silicon substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 06KJ01.	0.6	2
492	Tailoring the highest occupied molecular orbital level of poly(N-vinylcarbazole) hole transport layers in organic multilayer heterojunctions. Applied Physics Letters, 2016, 108, 023301.	1.5	8
493	Carrier recombination spatial transfer by reduced potential barrier causes blue/red switchable luminescence in C8 carbon quantum dots/organic hybrid light-emitting devices. APL Materials, 2016, 4, .	2.2	5
494	Structural and optical properties of solvothermal synthesized nearly monodispersed CdSe nanocrystals. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 035010.	0.7	9
495	Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes. Scientific Reports, 2016, 6, 32306.	1.6	28

#	Article	IF	CITATIONS
496	Phosphonic acids as stabilizing ligands for cadmium chalcogenide colloidal quantum dots. Russian Chemical Bulletin, 2016, 65, 1902-1909.	0.4	6
497	The role of stress in CdTe quantum dot doped glasses. Journal Physics D: Applied Physics, 2016, 49, 475302.	1.3	3
498	Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route. AIP Conference Proceedings, 2016, , .	0.3	0
499	Temperature-sensitive photoluminescent CdSe-ZnS polymer composite film for lock-in photothermal characterization. Journal of Applied Physics, 2016, 119, .	1.1	5
500	Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot. Chinese Physics B, 2016, 25, 128502.	0.7	7
501	Semiconducting organic–inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods. Nanoscale, 2016, 8, 8887-8898.	2.8	15
502	Energy Transfer between Inorganic Perovskite Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 13310-13315.	1.5	106
503	Optical systems modeling and experimental realization of pump and probe technique: investigation of nonlinear absorption in colloidal quantum dots. Proceedings of SPIE, 2016, , .	0.8	2
504	Improved electroluminescence of quantum dot light-emitting diodes enabled by a partial ligand exchange with benzenethiol. Nanotechnology, 2016, 27, 245203.	1.3	21
505	Advancing colloidal quantum dot photovoltaic technology. Nanophotonics, 2016, 5, 31-54.	2.9	19
506	Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nanoscale, 2016, 8, 12182-12188.	2.8	111
507	Dual role of the reactant MOH (M=Li, Na or K) in the growth of ZnO quantum dots under a sol–gel process: promoter and inhibitor. RSC Advances, 2016, 6, 50173-50179.	1.7	5
508	Organolead trihalide perovskite materials for efficient light emitting diodes. Science China Chemistry, 2016, 59, 653-658.	4.2	9
509	Influence of Ambient Gas on the Performance of Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 11557-11563.	4.0	13
510	Influence of the Shell Thickness and Ratio Between Core Elements on Photostability of the CdTe/CdS Core/Shell Quantum Dots Embedded in a Polymer Matrix. Nanoscale Research Letters, 2016, 11, 216.	3.1	16
511	All inorganic quantum dot light emitting devices with solution processed metal oxide transport layers. MRS Advances, 2016, 1, 305-310.	0.5	8
512	One-step fabrication of a transparent and conductive TiOx/Ag nanowire hybrid thin film with high robustness. RSC Advances, 2016, 6, 40886-40889.	1.7	3
513	Modeling and simulation of compositional engineering in SiGe films using patterned stress fields. Molecular Systems Design and Engineering, 2016, 1, 74-85.	1.7	1

#	ARTICLE	IF	CITATIONS
514	Gas phase grown silicon germanium nanocrystals. Chemical Physics Letters, 2016, 661, 185-190.	1.2	3
515	Tunable electronic structures in MPX ₃ (M = Zn, Cd; X = S, Se) monolayers by strain engineering. RSC Advances, 2016, 6, 89901-89906.	1.7	19
516	Efficient and Stable White LEDs with Silicaâ€Coated Inorganic Perovskite Quantum Dots. Advanced Materials, 2016, 28, 10088-10094.	11.1	765
517	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 2016, 116, 10513-10622.	23.0	744
518	All-inorganic quantum-dot light-emitting-diodes with vertical nickel oxide nanosheets as hole transport layer. Progress in Natural Science: Materials International, 2016, 26, 503-509.	1.8	11
519	Fabrication of highly photoluminescent quantum dot-polymer composite micropatterned surface using thiol-ene chemistry. RSC Advances, 2016, 6, 96700-96705.	1.7	13
520	Ammonia reduced graphene oxides as a hole injection layer for CdSe/CdS/ZnS quantum dot light-emitting diodes. Nanotechnology, 2016, 27, 325201.	1.3	7
521	Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr_3 quantum dots. Optics Letters, 2016, 41, 3821.	1.7	246
522	Quantum Dot/Light-Emitting Electrochemical Cell Hybrid Device and Mechanism of Its Operation. ACS Applied Materials & Interfaces, 2016, 8, 24692-24698.	4.0	41
523	Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films. Science and Technology of Advanced Materials, 2016, 17, 443-453.	2.8	25
524	Macroscopic Responsive Liquid Quantum Dots Constructed via Pillar[5]areneâ€Based Hostâ€Guest Interactions. Chemistry - A European Journal, 2016, 22, 13805-13809.	1.7	26
525	Preparation of Highly Photoluminescent CdTe Nanocrystals in a Mixing Alkali Medium. Chemistry Letters, 2016, 45, 535-537.	0.7	5
526	Studies on the Mechanism of Fluorescence Quenching of CdS quantum dots by 2â€Aminoâ€7â€Nitrofluorene and 2â€(N,Nâ€dimethylamino)â€7â€Nitrofluorene. ChemistrySelect, 2016, 1, 2290-2298.	0.7	6
527	Metal sulfide precursor aqueous solutions for fabrication of Ag-doped Zn Cd1â^'S quantum dots thin films. Journal of Luminescence, 2016, 180, 258-263.	1.5	6
528	Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today, 2016, 11, 565-586.	6.2	563
529	A facile method for the synthesis of CuInS ₂ –ZnS quantum dots with tunable photoluminescent properties. RSC Advances, 2016, 6, 93303-93308.	1.7	11
530	High-performance azure blue quantum dot light-emitting diodes via doping PVK in emitting layer. Organic Electronics, 2016, 37, 280-286.	1.4	55
531	High luminance of CuInS2-based yellow quantum dot light emitting diodes fabricated by all-solution processing. RSC Advances, 2016, 6, 72462-72470.	1.7	20

#	Article	IF	CITATIONS
532	Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices. Scientific Reports, 2016, 6, 34659.	1.6	54
533	Enhanced Performance of Quantum Dot-Based Light-Emitting Diodes with Gold Nanoparticle-Doped Hole Injection Layer. Nanoscale Research Letters, 2016, 11, 376.	3.1	13
534	Ultrastable Quantum-Dot Light-Emitting Diodes by Suppression of Leakage Current and Exciton Quenching Processes. ACS Applied Materials & Interfaces, 2016, 8, 31385-31391.	4.0	119
535	Electrical switching of photoluminescence of single siteâ€controlled InAs quantum dots. Electronics Letters, 2016, 52, 1240-1242.	0.5	0
536	Reduced reabsorption and enhanced propagation induced by large Stokes shift in quantum dot-filled optical fiber. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	7
537	Top-emitting quantum dots light-emitting devices employing microcontact printing with electricfield-independent emission. Scientific Reports, 2016, 6, 22530.	1.6	46
538	Surface Charge Transfer Doping <i>via</i> Transition Metal Oxides for Efficient p-Type Doping of Il–VI Nanostructures. ACS Nano, 2016, 10, 10283-10293.	7.3	31
539	Solution-processed copper oxide interlayers for broadband PbS quantum-dot photodiodes. Journal of Materials Chemistry C, 2016, 4, 11205-11211.	2.7	20
540	Formation of core/shell PbS/Na_2SrSi_2O_6 nanocrystals in glass. Optical Materials Express, 2016, 6, 578.	1.6	2
541	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie, 2016, 128, 5155-5159.	1.6	8
542	High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers. Journal of Materials Chemistry C, 2016, 4, 7223-7229.	2.7	33
543	Solution-processed high-efficiency cadmium-free Cu-Zn-In-S-based quantum-dot light-emitting diodes with low turn-on voltage. Organic Electronics, 2016, 36, 97-102.	1.4	40
544	Photobleaching-resistant ternary quantum dots embedded in a polymer-coated silica matrix. Journal of Materials Chemistry C, 2016, 4, 5263-5269.	2.7	13
545	Very Bright and Efficient Microcavity Top-Emitting Quantum Dot Light-Emitting Diodes with Ag Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 16768-16775.	4.0	81
546	Optoelectronic properties of passivated and solvated (ZnO) 6 nanocluster – A DFT/TD-DFT study. Materials Chemistry and Physics, 2016, 181, 248-258.	2.0	6
547	Sensitive fluorescence assay of organophosphorus pesticides based on the fluorescence resonance energy transfer between CdTe quantum dots and porphyrin. Analyst, The, 2016, 141, 4941-4946.	1.7	18
548	Doubleâ€5ided Junctions Enable Highâ€Performance Colloidalâ€Quantumâ€Đot Photovoltaics. Advanced Materials, 2016, 28, 4142-4148.	11.1	121
549	Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers. Organic Electronics, 2016, 31, 82-89.	1.4	59

#	Article	IF	CITATIONS
550	Hydroxyl-Terminated CuInS ₂ Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes. Chemistry of Materials, 2016, 28, 1085-1091.	3.2	155
551	High Chromaticity Aluminum Plasmonic Pixels for Active Liquid Crystal Displays. ACS Nano, 2016, 10, 1108-1117.	7.3	153
552	Probing the carrier transfer processes in a self-assembled system with In 0.3 Ga 0.7 As/GaAs quantum dots by photoluminescence excitation spectroscopy. Superlattices and Microstructures, 2016, 93, 214-220.	1.4	2
553	Fabrication of noble-metal-free NiS2/g-C3N4 hybrid photocatalysts with visible light-responsive photocatalytic activities. Research on Chemical Intermediates, 2016, 42, 6483-6499.	1.3	21
554	Exciton energy recycling from ZnO defect levels: towards electrically driven hybrid quantum-dot white light-emitting-diodes. Nanoscale, 2016, 8, 5835-5841.	2.8	12
555	Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing. ACS Applied Materials & Interfaces, 2016, 8, 5493-5498.	4.0	81
556	Nanomanufacturing: A Perspective. ACS Nano, 2016, 10, 2995-3014.	7.3	176
557	Performance of Inverted Quantum Dot Light-Emitting Diodes Enhanced by Using Phosphorescent Molecules as Exciton Harvesters. Journal of Physical Chemistry C, 2016, 120, 4667-4672.	1.5	30
558	Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals. ACS Nano, 2016, 10, 3356-3364.	7.3	65
559	Influence of Ionizing Radiation and the Role of Thiol Ligands on the Reversible Photodarkening of CdTe/CdS Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 7869-7876.	4.0	12
560	Emission-Tunable Multicolor Graphene Molecules with Controllable Synthesis, Excellent Optical Properties, and Specific Applications. ACS Applied Materials & Interfaces, 2016, 8, 7938-7947.	4.0	6
561	Improved quantum dot light-emitting diodes with a cathode interfacial layer. Organic Electronics, 2016, 32, 89-93.	1.4	31
562	Colloidal quantum dot ligand engineering for high performance solar cells. Energy and Environmental Science, 2016, 9, 1130-1143.	15.6	297
563	Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 2016, 16, 1415-1420.	4.5	685
564	Tuning the Charge Carrier Dynamics via Interfacial Alloying in Core/Shell CdTe/ZnSe NCs. Journal of Physical Chemistry C, 2016, 120, 1918-1925.	1.5	17
565	Controllable synthesis of CdS quantum dots and their photovoltaic application on quantum-dot-sensitized ZnO nanorods. Journal of Solid State Electrochemistry, 2016, 20, 533-540.	1.2	16
566	Effect of pyridine capping on morphological and optical properties of ZnS:Mn2+ core–shell quantum dots. Journal of Materials Science: Materials in Electronics, 2016, 27, 3003-3010.	1.1	9
567	The impact of electrostatic interactions on ultrafast charge transfer at Ag ₂₉ nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces. Journal of Materials Chemistry C, 2016, 4, 2894-2900.	2.7	12

#	Article	IF	CITATIONS
568	Enhanced Light Extraction From Green Quantum Dot Light-Emitting Diodes by Attaching Microstructure Arrayed Films. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 42-47.	1.9	11
569	Facile synthesis of three dimensional CdS nanoflowers with high photocatalytic performance. Journal of Alloys and Compounds, 2016, 656, 972-977.	2.8	30
570	Simultaneous ligand and cation exchange in PbSe/CdSe nanocrystal films. Chemical Physics, 2016, 471, 69-74.	0.9	3
571	Nonthermal Plasma Synthesized Boron-Doped Germanium Nanocrystals. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-5.	1.9	10
572	An Insight into the Interface through Excited-State Carrier Dynamics for Promising Enhancement of Power Conversion Efficiency in a Mn-Doped CdZnSSe Gradient Alloy. Chemistry - A European Journal, 2017, 23, 3755-3763.	1.7	17
573	Colloidal quantum-dots surface and device structure engineering for high-performance light-emitting diodes. National Science Review, 2017, 4, 170-183.	4.6	98
574	Preparation of quantum dots-montmorillonite nanocomposites with strong photoluminescence for light-emitting diodes. RSC Advances, 2017, 7, 7774-7779.	1.7	3
575	1,2-Ethanedithiol Treatment for AgIn ₅ S ₈ /ZnS Quantum Dot Light-Emitting Diodes with High Brightness. ACS Applied Materials & Interfaces, 2017, 9, 8187-8193.	4.0	60
576	Solution-Processed CuInS ₂ -Based White QD-LEDs with Mixed Active Layer Architecture. ACS Applied Materials & Interfaces, 2017, 9, 11224-11230.	4.0	37
577	Photoionization cross section and binding energy of single dopant in hollow cylindrical core/shell quantum dot. Journal of Applied Physics, 2017, 121, .	1.1	30
578	A Few Key Technologies of Quantum Dot Light-Emitting Diodes for Display. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-12.	1.9	17
579	Tuning optical properties of water-soluble CdTe quantum dots for biological applications. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	7
580	Flexible Blade oated Multicolor Polymer Lightâ€Emitting Diodes for Optoelectronic Sensors. Advanced Materials, 2017, 29, 1606206.	11.1	84
581	All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C, 2017, 5, 4565-4570.	2.7	149
582	Ultrasonic Spray Processed, Highly Efficient All-Inorganic Quantum-Dot Light-Emitting Diodes. ACS Photonics, 2017, 4, 1271-1278.	3.2	84
583	Highly efficient flexible quantum-dot light emitting diodes with an ITO/Ag/ITO cathode. Journal of Materials Chemistry C, 2017, 5, 4543-4548.	2.7	42
584	Epitaxial growth of wafer-scale two-dimensional polytypic ZnS thin films on ZnO substrates. CrystEngComm, 2017, 19, 2294-2299.	1.3	9
585	Pure Blue and Highly Luminescent Quantumâ€Dot Lightâ€Emitting Diodes with Enhanced Electron Injection and Exciton Confinement via Partially Oxidized Aluminum Cathode. Advanced Optical Materials, 2017, 5, 1700035.	3.6	39

ARTICLE IF CITATIONS # Quantum-Dot Light-Emitting Diodes with Nitrogen-Doped Carbon Nanodot Hole Transport and 586 43 1.6 Electronic Energy Transfer Layer. Scientific Reports, 2017, 7, 46422. Efficient quantum dot light-emitting diodes with a Zn_{0.85}Mg_{0.15}O interfacial 587 2.8 149 modification layer. Nanoscale, 2017, 9, 8962-8969. Recent developments on the synthesis, structural and optical properties of chalcogenide quantum 588 3.0 46 dots. Solar Energy Materials and Solar Cells, 2017, 168, 183-200. Large-Scale Synthesis of Highly Luminescent InP@ZnS Quantum Dots Using Elemental Phosphorus Precursor. Chemistry of Materials, 2017, 29, 4236-4243. Broadband light scattering and photoluminescence enhancement from plasmonic Vogel's golden 590 4.4 16 spirals. Laser and Photonics Reviews, 2017, 11, 1600235. Ligand mediated excited state carrier relaxation dynamics of Cd1â^'xZnxSe1â^'ySy NCs derived from bile salts. Journal of Materials Chemistry C, 2017, 5, 4977-4984. 2.7 Solution-processed inorganic copper(i) thiocyanate as a hole injection layer for high-performance 592 1.7 27 quantum dot-based light-emitting diodes. RSC Advances, 2017, 7, 26322-26327. Polyethylenimine Insulativity-Dominant Charge-Injection Balance for Highly Efficient Inverted 4.0 Quantum Dot Light-Emitting Diodes. ACS Applied Materials & amp; Interfaces, 2017, 9, 20231-20238. 594 Chiral Responsive Liquid Quantum Dots. Advanced Materials, 2017, 29, 1700296. 11.1 16 Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode. ACS 38 Applied Materials & amp; Interfaces, 2017, 9, 24005-24010. Synthesis of short-chain passivated carbon quantum dots as the light emitting layer towards 596 77 1.7 electroluminescence. RSC Advances, 2017, 7, 28754-28762. Epitaxial multilayers of Î²-FeSi2 nanodots/Si for Si-based nanostructured electronic materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 041402. Fully Stretchable Optoelectronic Sensors Based on Colloidal Quantum Dots for Sensing 598 7.3 115 Photoplethysmographic Signals. ACS Nano, 2017, 11, 5992-6003. Colloidal guantum dots for optoelectronics. Journal of Materials Chemistry A, 2017, 5, 13252-13275. 599 5.2 167 Pâ€117: Inverted Quantum Dot Lightâ€Emitting Diodes with MgZnO Modified Electron Transport Layer. 600 0.1 1 Digest of Technical Papers SID International Symposium, 2017, 48, 1699-1701. Alcohol-Soluble Quantum Dots: Enhanced Solution Processability and Charge Injection for Electroluminescence Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8. Parametric analysis of mechanically driven compositional patterning in SiGe substrates. Journal of 602 1.1 3 Applied Physics, 2017, 121, 065303. Harnessing Organic Ligand Libraries for First-Principles Inorganic Discovery: Indium Phosphide 3.2 24 Quantum Dot Precursor Design Strategies. Chemistry of Materials, 2017, 29, 3632-3643.

#	Article	IF	CITATIONS
604	Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells. Nano Letters, 2017, 17, 2349-2353.	4.5	46
605	Enhancing the Performance of Blue Quantum-Dot Light-Emitting Diodes Based on Mg-Doped ZnO as an Electron Transport Layer. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	15
606	Bandgap tunable Zn _{1â^'x} Mg _x O thin films as electron transport layers for high performance quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 4724-4730.	2.7	88
607	Hexamethyldisilazane-mediated, full-solution-processed inverted quantum dot-light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 522-526.	2.7	42
608	Tunable high reflective bands to improve quantum dot white light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1149-1154.	2.7	14
609	Luminance enhancement in quantum dot light-emitting diodes fabricated with Field's metal as the cathode. Journal Physics D: Applied Physics, 2017, 50, 095106.	1.3	1
610	Method to determine radiative and non-radiative defects applied to AgInS ₂ –ZnS luminescent nanocrystals. Physical Chemistry Chemical Physics, 2017, 19, 2359-2363.	1.3	24
611	Color-tunable Ag-In-Zn-S quantum-dot light-emitting devices realizing green, yellow and amber emissions. Journal of Materials Chemistry C, 2017, 5, 953-959.	2.7	39
612	One-pot synthesis of gradient interface quaternary ZnCdSSe quantum dots. Applied Surface Science, 2017, 415, 19-23.	3.1	11
613	Toward the minimization of fluorescence loss in hybrid cross-linked core-shell PS/QD/PMMA nanoparticles: Effect of the shell thickness. Chemical Engineering Journal, 2017, 313, 261-269.	6.6	15
614	Luminescent Cd 1â^'x Zn x S quantum dots synthesized by a nanoemulsion method, assisted by an ultrasonic probe. Journal of Luminescence, 2017, 184, 123-129.	1.5	10
615	Efficient and longâ€life green lightâ€emitting diodes comprising tridentate thiol capped quantum dots. Laser and Photonics Reviews, 2017, 11, 1600227.	4.4	67
616	Co-encapsulation of CdSe/ZnS and CeO ₂ nanoparticles in waterborne polymer dispersions: enhancement of fluorescence emission under sunlight. Soft Matter, 2017, 13, 8039-8047.	1.2	6
617	Plasmon enhanced quantum dots fluorescence and energy conversion in water splitting using shell-isolated nanoparticles. Nano Energy, 2017, 42, 232-240.	8.2	28
618	Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes. Nanoscale Research Letters, 2017, 12, 537.	3.1	29
619	Highâ€Efficiency and Stable Quantum Dot Lightâ€Emitting Diodes Enabled by a Solutionâ€Processed Metalâ€Doped Nickel Oxide Hole Injection Interfacial Layer. Advanced Functional Materials, 2017, 27, 1704278.	7.8	114
620	Enhanced Openâ€Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity ontrolled Solutionâ€Phase Ligand Exchange. Advanced Materials, 2017, 29, 1703627.	11.1	49
621	Improved performance of quantum dot light emitting diode by modulating electron injection with yttrium-doped ZnO nanoparticles. Journal of Applied Physics, 2017, 122, .	1.1	22

#	Article	IF	CITATIONS
622	Allâ€Aqueous Synthesis of Silicaâ€Encapsulated Quantum Dots with Functional Shells. European Journal of Inorganic Chemistry, 2017, 2017, 5152-5157.	1.0	2
623	Controlled synthesis of near-infrared quantum dots for optoelectronic devices. Nanoscale, 2017, 9, 16843-16851.	2.8	17
624	Hierarchical Multicomponent Nanoheterostructures via Facet-to-Facet Attachment of Anisotropic Semiconductor Nanoparticles. Chemistry of Materials, 2017, 29, 9075-9083.	3.2	3
625	Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 38755-38760.	4.0	204
626	Synthesis of sphere-like ZnS architectures via a solvothermal method and their visible-light catalytic properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 17827-17832.	1.1	6
627	MoO ₃ -induced oxidation doping of PEDOT:PSS for high performance full-solution-processed inverted quantum-dot light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 10555-10561.	2.7	47
628	A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport. RSC Advances, 2017, 7, 43366-43372.	1.7	59
629	Fabrication of Flexible White Light-Emitting Diodes from Photoluminescent Polymer Materials with Excellent Color Quality. ACS Applied Materials & Interfaces, 2017, 9, 35279-35286.	4.0	26
630	Full-color quantum dots active matrix display fabricated by ink-jet printing. Science China Chemistry, 2017, 60, 1349-1355.	4.2	67
631	Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots. Nanoscale, 2017, 9, 13583-13591.	2.8	102
632	Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots. Science Advances, 2017, 3, e1701500.	4.7	91
633	Surface plasmon-assisted photoluminescence enhancement of Au-hybrid CdSe/ZnS nanocrystal quantum dots. Molecular Crystals and Liquid Crystals, 2017, 654, 1-5.	0.4	1
634	Colloidal CsPbX3 (X = Br, I, Cl) NCs: Morphology controlling, composition evolution, and photoluminescence shift. Journal of Luminescence, 2017, 190, 397-402.	1.5	35
635	Indium Phosphideâ€Based Quantum Dots with Shellâ€Enhanced Absorption for Luminescent Downâ€Conversion. Advanced Materials, 2017, 29, 1700686.	11.1	48
636	Stable monolayer α-phase of CdTe: strain-dependent properties. Journal of Materials Chemistry C, 2017, 5, 12249-12255.	2.7	9
637	Role of Crystal Structure and Chalcogenide Redox Properties on the Oxidative Assembly of Cadmium Chalcogenide Nanocrystals. Langmuir, 2017, 33, 9434-9443.	1.6	14
638	Size-tunable Lateral Confinement in Monolayer Semiconductors. Scientific Reports, 2017, 7, 3324.	1.6	57
639	Room-temperature processing of CdSe quantum dots with tunable sizes. Journal of Applied Physics, 2017, 121, .	1.1	8

#	Article	IF	CITATIONS
640	Synthesis of g-C ₃ N ₄ /Silica Gels for White-Light-Emitting Devices. Particle and Particle Systems Characterization, 2017, 34, 1600258.	1.2	25
641	Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dotÂsolids. Nature Materials, 2017, 16, 258-263.	13.3	563
642	Surface Molecular Imprinting on Silica-Coated CdTe Quantum Dots for Selective and Sensitive Fluorescence Detection of p-aminophenol in Water. Journal of Fluorescence, 2017, 27, 181-189.	1.3	26
644	Förster-type Resonance Energy Transfer (FRET): Applications. SpringerBriefs in Applied Sciences and Technology, 2017, , 1-40.	0.2	2
646	Introduction to the Basic Properties of Luminescent Materials. , 2017, , 1-29.		1
647	Hydrothermal synthesis for highâ€quality glutathioneâ€capped Cd _x Zn _{1 – x} Cd _x Zn _{1 – x} Se/ZnS alloyed quantum dots and its application in Hg(II) sensir Luminescence, 2017, 32, 231-239.	Se and 1g.1.5	2
648	Coherent and Polarized Random Laser Emissions from Colloidal CdSe/ZnS Quantum Dots Plasmonically Coupled to Ellipsoidal Ag Nanoparticles. Advanced Optical Materials, 2017, 5, 1600746.	3.6	39
649	A General Solvent Selection Strategy for Solution Processed Quantum Dots Targeting High Performance Lightâ€Emitting Diode. Advanced Functional Materials, 2017, 27, 1603325.	7.8	94
650	Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1604436.	11.1	643
651	Mobility enhancement of hole transporting layer in quantum-dot light-emitting diodes incorporating single-walled carbon nanotubes. Diamond and Related Materials, 2017, 73, 154-160.	1.8	12
652	Peculiarities of the nonlinear absorption of colloidal solutions of CdSe/ZnS quantum dots under stationary single-photon excitation of excitons. Journal of Experimental and Theoretical Physics, 2017, 125, 890-895.	0.2	19
653	Temperature effect on the structure and characteristics of ZnS-based quantum dots. Journal of Structural Chemistry, 2017, 58, 1397-1402.	0.3	1
654	Strategies to Achieve High-Performance White Organic Light-Emitting Diodes. Materials, 2017, 10, 1378.	1.3	43
655	Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications—Focus on Prostate and Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 1102.	1.8	59
656	Quantum Dot-Based Light Emitting Diodes (QDLEDs): New Progress. , 0, , .		8
657	High-efficiency, deep blue ZnCdS/Cd _x Zn _{1â^'x} S/ZnS quantum-dot-light-emitting devices with an EQE exceeding 18%. Nanoscale, 2018, 10, 5650-5657.	2.8	103
658	Spatial Light Patterning of Full Color Quantum Dot Displays Enabled by Locally Controlled Surface Tailoring. Advanced Optical Materials, 2018, 6, 1701335.	3.6	27
659	Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. Journal of Materials Chemistry C, 2018, 6, 2618-2634.	2.7	82

#	Article	IF	CITATIONS
660	Lasing from dot-in-rod nanocrystals in planar polymer microcavities. RSC Advances, 2018, 8, 13026-13033.	1.7	28
661	Non-Invasive Characterization of the Organic Coating of Biocompatible Quantum Dots Using Nuclear Magnetic Resonance Spectroscopy. Chemistry of Materials, 2018, 30, 3454-3466.	3.2	21
662	Full color quantum dot lightâ€emitting diodes patterned by photolithography technology. Journal of the Society for Information Display, 2018, 26, 121-127.	0.8	33
663	Absorption and Emission of Light in Optoelectronic Nanomaterials: The Role of the Local Optical Environment. Journal of Physical Chemistry Letters, 2018, 9, 2077-2084.	2.1	17
664	Solid-state-ligand-exchange free quantum dot ink-based solar cells with an efficiency of 10.9%. Energy and Environmental Science, 2018, 11, 1603-1609.	15.6	73
665	Determination of Hansen parameters for particles: A standardized routine based on analytical centrifugation. Advanced Powder Technology, 2018, 29, 1550-1561.	2.0	77
666	Two-Photon Excitation Fluorescence Spectroscopy of Quantum Dots: Photophysical Properties and Application in Bioassays. Journal of Physical Chemistry C, 2018, 122, 9641-9647.	1.5	21
667	Ultrastable Quantum Dot Composite Films under Severe Environments. ACS Applied Materials & Interfaces, 2018, 10, 15880-15887.	4.0	11
668	High performance ultraviolet photodetector based on a spray-coated nanocrystal quantum dots layer and Si photodiode. Sensors and Actuators A: Physical, 2018, 273, 182-188.	2.0	3
669	One-pot Synthesis of Silver Indium Sulfide Ternary Semiconductor Nanocrystals with Highly Luminescent Performance from Low-toxic Precursors. Chemistry Letters, 2018, 47, 490-493.	0.7	2
670	Interface dipole for remarkable efficiency enhancement in all-solution-processable transparent inverted quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 2596-2603.	2.7	27
671	Nonblinking Quantum-Dot-Based Blue Light-Emitting Diodes with High Efficiency and a Balanced Charge-Injection Process. ACS Photonics, 2018, 5, 939-946.	3.2	113
672	Improving Charge Injection via a Blade-Coating Molybdenum Oxide Layer: Toward High-Performance Large-Area Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 8258-8264.	4.0	39
673	Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes. ACS Nano, 2018, 12, 1564-1570.	7.3	121
674	Highly Efficient Solutionâ€₽rocessable Nanophosphor with Ambipolar Shell. Chemistry - A European Journal, 2018, 24, 2971-2979.	1.7	5
675	Enhanced optoelectronic performance in AgBiS ₂ nanocrystals obtained <i>via</i> an improved amine-based synthesis route. Journal of Materials Chemistry C, 2018, 6, 731-737.	2.7	49
676	From Large-Scale Synthesis to Lighting Device Applications of Ternary I–III–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. Journal of Physical Chemistry Letters, 2018, 9, 435-445.	2.1	136
677	Towards Low-Toxic Colloidal Quantum Dots. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1443-1455.	1.4	6

#	Article	IF	CITATIONS
678	Effect of a Phonon Bottleneck on Exciton and Spin Generation in Self-Assembled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>In</mml:mi></mml:mrow><mml:mrow><mml Quantum Dots. Physical Review Applied, 2018, 9, .</mml </mml:mrow></mml:msub></mml:mrow></mml:math 	:mn>1 <td>ml:mn><mm< td=""></mm<></td>	ml:mn> <mm< td=""></mm<>
679	The Role of Dopant Ions on Charge Injection and Transport in Electrochemically Doped Quantum Dot Films. Journal of the American Chemical Society, 2018, 140, 6582-6590.	6.6	28
680	Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures. Results in Physics, 2018, 9, 1345-1351.	2.0	3
681	Nanocrystal light-emitting diodes based on type II nanoplatelets. Nano Energy, 2018, 47, 115-122.	8.2	62
682	One-pot synthesis of highly luminescent and color-tunable water-soluble Mn:ZnSe/ZnS core/shell quantum dots by microwave-assisted method. Journal of Materials Science: Materials in Electronics, 2018, 29, 9184-9192.	1.1	14
683	Formation of CdSe nanocrystals in Cd-doped thin arsenic selenide films under laser irradiation. Thin Solid Films, 2018, 651, 163-169.	0.8	13
684	Characteristics of gradient-interface-structured ZnCdSSe quantum dots with modified interface and its application to quantum-dot-sensitized solar cells. Applied Surface Science, 2018, 429, 16-22.	3.1	13
685	Tunable emission properties of core-shell ZnCuInS-ZnS quantum dots with enhanced fluorescence intensity. Journal of Materials Science and Technology, 2018, 34, 942-948.	5.6	22
686	CdS–Oleic Acid Quantum Dots as Longâ€Wavelength Photoinitiators in Organic Solvent and Preparation of Luminescent, Colloidal CdS/Polymer Nanocomposites. Macromolecular Chemistry and Physics, 2018, 219, 1700356.	1.1	9
687	Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures. Nanoscale, 2018, 10, 1038-1046.	2.8	16
688	Optical Properties and Reliability Studies of Gradient Alloyed Green Emitting (CdSe)x(ZnS)1–x and Red Emitting (CuInS2)x(ZnS)1–x Quantum Dots for White Light-Emitting Diodes. ACS Photonics, 2018, 5, 462-470.	3.2	17
689	Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer. Scientific Reports, 2018, 8, 17119.	1.6	6
690	Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 10958-10981.	2.7	32
691	Design and Realization of White Quantum Dot Light-Emitting Electrochemical Cell Hybrid Devices. ACS Applied Materials & Interfaces, 2018, 10, 42637-42646.	4.0	23
692	Effect of Post Thermal Annealing on the Optical Properties of InP/ZnS Quantum Dot Films. Nanoscale Research Letters, 2018, 13, 369.	3.1	6
693	Efficient radical-based light-emitting diodes with doublet emission. Nature, 2018, 563, 536-540.	13.7	453
694	Mechanistic Insights and Controlled Synthesis of Radioluminescent ZnSe Quantum Dots Using a Microfluidic Reactor. Chemistry of Materials, 2018, 30, 8562-8570.	3.2	32
695	PS/PMMA dSe/ZnS Quantum Dots Hybrid Nanofibers for VOCs Sensors. Israel Journal of Chemistry, 2018, 58, 1347-1355.	1.0	11

# 696	ARTICLE Rapid and On-Site Detection of Uranyl lons via Ratiometric Fluorescence Signals Based on a Smartphone Platform, ACS Applied Materials & amp: Interfaces, 2018, 10, 42225-42232.	IF 4.0	Citations 98
697	31.5: <i>Invited Paper:</i> Colloidal Quantum Dots and Their Applications in Hybrid Optoelectronic Devices. Digest of Technical Papers SID International Symposium, 2018, 49, 345-347.	0.1	0
698	Pâ€9.5: Flexible and vacuumâ€free fabricated quantum dotâ€lightâ€emitting diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 673-676.	0.1	0
699	White Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescence Emitters. , 0, , .		1
700	Femtosecond two-photon absorption spectroscopy of copper indium sulfide quantum dots: A structure-optical properties relationship. Optical Materials, 2018, 86, 455-459.	1.7	6
701	Interplay between normal and abnormal stark shift according to the quantum dot spherical core/shell size ratio. Philosophical Magazine Letters, 2018, 98, 252-265.	0.5	8
702	Dielectric Properties of Photo-Luminescent CdSe/CdS Mono-Shell and CdSe/CdS/ZnS Multi-Shell Nanocrystals Studied by TEM-EELS. ECS Journal of Solid State Science and Technology, 2018, 7, R167-R174.	0.9	1
703	Interface Engineering Strategies for Fabricating Nanocrystal-Based Organic–Inorganic Nanocomposites. Applied Sciences (Switzerland), 2018, 8, 1376.	1.3	14
704	Blue quantum dot light emitting diodes with polyvinylpyrrolidone-doped electron transport layer. Organic Electronics, 2018, 63, 65-70.	1.4	28
705	Electronic Structure Origins of Surface-Dependent Growth in Ill–V Quantum Dots. Chemistry of Materials, 2018, 30, 7154-7165.	3.2	25
706	Balanced carrier injection of quantum dots light-emitting diodes: the case of interface barrier of bilayer ZnO electron transport layer. Nanotechnology, 2018, 29, 485203.	1.3	7
707	Effect of surface/interfacial defects on photo-stability of thick-shell CdZnSeS/ZnS quantum dots. Nanoscale, 2018, 10, 18331-18340.	2.8	35
708	A Versatile Coordinating Ligand for Coating Semiconductor, Metal, and Metal Oxide Nanocrystals. Chemistry of Materials, 2018, 30, 7269-7279.	3.2	26
709	Proton Irradiation Effects on Colloidal InGaP/ZnS Core–Shell Quantum Dots Embedded in Polydimethylsiloxane: Discriminating Core from Shell Radiation-Induced Defects through Time-Resolved Photoluminescence Analysis. Journal of Physical Chemistry C, 2018, 122, 22170-22177.	1.5	7
710	Radiation-induced optical change of ion-irradiated CdSeS/ZnS core-shell quantum dots embedded in polyvinyl alcohol. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 327-330.	0.6	2
711	Efficient pure green light-emitting diodes based on formamidinium lead bromide perovskite nanocrystals. Organic Electronics, 2018, 60, 64-70.	1.4	10
712	Sizeâ€Tunable Synthesis of Colloidal Silver Sulfide Nanocrystals for Solutionâ€Processed Photovoltaic Applications. ChemistrySelect, 2018, 3, 5620-5629.	0.7	11
713	Pâ€1 18: Quantum Dots ―Silica Monolith: From Alcohol Soluble Quantum Dots to High Performance Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 1654-1656.	0.1	2

#	Article	IF	CITATIONS
714	73â€4: Tandem Red Quantumâ€Dot Lightâ€Emitting Diodes with External Quantum Efficiency over 34 %. Digest of Technical Papers SID International Symposium, 2018, 49, 977-980.	0.1	4
715	Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography. Nanoscale, 2018, 10, 11651-11656.	2.8	40
716	73â€3: <i>Distinguished Student Paper:</i> Full Color Quantum Dot Lightâ€Emitting Diodes Patterned by Photolithography Technology. Digest of Technical Papers SID International Symposium, 2018, 49, 973-976.	0.1	0
717	Full-color tunable photoluminescent carbon dots based on oil/water interfacial synthesis and their applications. RSC Advances, 2018, 8, 24002-24012.	1.7	12
718	4â€4: High Stability Green Luminescent Microspheres based on Quantum Dot. Digest of Technical Papers SID International Symposium, 2018, 49, 32-35.	0.1	3
719	Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nature Communications, 2018, 9, 2608.	5.8	268
720	Mechanistic investigation of the sulfur precursor evolution in the synthesis of highly photoluminescent Cd _{0.15} Zn _{0.85} S quantum dots. New Journal of Chemistry, 2018, 42, 14779-14788.	1.4	8
721	Dynamics of radiolytic formation of CdSe quantum dots in aqueous solution containing different alcohols: A pulse radiolysis study. Radiation Physics and Chemistry, 2018, 152, 49-55.	1.4	6
722	Quantum dot white LEDs with high luminous efficiency. Optica, 2018, 5, 793.	4.8	84
723	Integration of green CuInS_2/ZnS quantum dots for high-efficiency light-emitting diodes and high-responsivity photodetectors. Optical Materials Express, 2018, 8, 314.	1.6	22
724	ZnMgO:ZnO composite films for fast electron transport and high charge balance in quantum dot light emitting diodes. Optical Materials Express, 2018, 8, 909.	1.6	30
725	Highâ€Efficiency, Solutionâ€Processed White Quantum Dot Lightâ€Emitting Diodes with Serially Stacked Red/Green/Blue Units. Advanced Optical Materials, 2018, 6, 1800652.	3.6	48
726	All-Solution-Processed Quantum Dot Light Emitting Diodes Based on Double Hole Transport Layers by Hot Spin-Coating with Highly Efficient and Low Turn-On Voltage. ACS Applied Materials & Interfaces, 2018, 10, 29076-29082.	4.0	73
727	Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 2018, 28, 1801834.	7.8	357
728	Synthesis of Nanoparticles. , 2018, , 392-429.		15
729	Solvent-Less Solid State Synthesis of Dispersible Metal and Semiconducting Metal Sulfide Nanocrystals. ACS Sustainable Chemistry and Engineering, 2018, 6, 12006-12016.	3.2	10
730	Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Applied Sciences (Switzerland), 2018, 8, 299.	1.3	34
731	Chloride-Passivated Mg-Doped ZnO Nanoparticles for Improving Performance of Cadmium-Free, Quantum-Dot Light-Emitting Diodes. ACS Photonics, 2018, 5, 3704-3711.	3.2	45

#	Article	IF	CITATIONS
732	Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots. ACS Nano, 2018, 12, 8104-8114.	7.3	52
733	Solar Conversion Efficiency Performance of a High Temperature Alloy over a Low Temperature One: Comprehending Interfaces through <i>Excitonics</i> Study. Journal of Physical Chemistry C, 2018, 122, 11312-11321.	1.5	5
734	Atomistic tight-binding simulations of quaternary-alloyed \$\$hbox {Zn}_{x}hbox {Cd}_{1-x}hbox {S}_{y}hbox {Se}_{1-y}\$\$ Zn x Cd 1 - x. Journal of Computational Electronics, 2018, 17, 888-898.	1.3	0
735	High-Performance Quantum Dot Light-Emitting Diodes Based on Al-Doped ZnO Nanoparticles Electron Transport Layer. ACS Applied Materials & Interfaces, 2018, 10, 18902-18909.	4.0	82
736	Reverse synthesis of CsPb _x Mn _{1â^'x} (Cl/Br) ₃ perovskite quantum dots from CsMnCl ₃ precursors through cation exchange. Journal of Materials Chemistry C, 2018, 6, 5908-5915.	2.7	20
737	Reversible Charge-Carrier Trapping Slows Förster Energy Transfer in CdSe/CdS Quantum-Dot Solids. Nano Letters, 2018, 18, 5867-5874.	4.5	5
738	Recent Advances of Exciplex-Based White Organic Light-Emitting Diodes. Applied Sciences (Switzerland), 2018, 8, 1449.	1.3	37
739	Enhancing the Performance of Blue Quantum Dots Lightâ€Emitting Diodes through Interface Engineering with Deoxyribonucleic Acid. Advanced Optical Materials, 2018, 6, 1800578.	3.6	25
740	Emergence of Nanoplatelet Light-Emitting Diodes. Materials, 2018, 11, 1376.	1.3	37
741	Electronic state and photoionization cross section of a single dopant in GaN/InGaN core/shell quantum dot under magnetic field and hydrostatic pressure. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	15
742	Efficient CulnS2/ZnS based quantum dot light emitting diodes by engineering the exciton formation interface. Journal of Luminescence, 2018, 202, 339-344.	1.5	10
743	Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs. Nanotechnology, 2018, 29, 345605.	1.3	30
744	Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications, 2018, 9, 2249.	5.8	676
745	Environmental engineering of transition metal dichalcogenide optoelectronics. Frontiers of Physics, 2018, 13, 1.	2.4	13
746	CH ₃ NH ₃ PbBr ₃ Quantum Dot-Induced Nucleation for High Performance Perovskite Light-Emitting Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 22320-22328.	4.0	32
747	Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25%. ACS Nano, 2018, 12, 6040-6049.	7.3	82
748	High-Performance, All-Inkjet-Printed Light-Emitting Diodes Based on Quantum Dots. , 2019, , .		0
749	CsPbBr3/CdS Core/Shell Structure Quantum Dots for Inverted Light-Emitting Diodes Application. Frontiers in Chemistry, 2019, 7, 499.	1.8	32

		CITATION REP	PORT	
#	Article		IF	Citations
750	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007	'.	1.9	31
751	Novel CS2 storage materials from ion-like liquids for one-step synthesis of active nano-metal sulfide in the photocatalytic reduction of CO2. Journal of Cleaner Production, 2019, 237, 117710.	S	4.6	12
752	Scalable Large-Area p–i–n Light-Emitting Diodes Based on WS ₂ Monolayers Grown MOCVD. ACS Photonics, 2019, 6, 1832-1839.	ו via	3.2	36
753	Accelerated solution-phase exchanges minimize defects in colloidal quantum dot solids. Nano Energ 2019, 63, 103876.	y,	8.2	12
754	Highly Efficient Quantum Dot Lightâ€Emitting Diodes by Inserting Multiple Poly(methyl methacryla Electronâ€Blocking Layers. Advanced Functional Materials, 2019, 29, 1906742.	te) as	7.8	23
755	Performance Enhancement of All-Inorganic Quantum Dot Light-Emitting Diodes via Surface Modification of Nickel Oxide Nanoparticles Hole Transport Layer. ACS Applied Electronic Materials, 2019, 1, 2096-2102.		2.0	9
756	Efficient and Stable Inverted Quantum Dot Light-Emitting Diodes Enabled by An Inorganic Copper-Doped Tungsten Phosphate Hole-Injection Layer. ACS Applied Materials & Interfaces, 2 40267-40273.	019, 11,	4.0	22
757	Ultrafast Charge Carrier Dynamics and Nonlinear Optical Absorption of InP/ZnS Core–Shell Colloid Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 27207-27213.	dal	1.5	17
758	Pâ€5.1: Enhanced Nickel Oxide Hole Injection Layer via the rGO Combustion Method for Perovskite Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2019, 50, 724-72	QDs 7.	0.1	0
759	Control of carrier injection and transport in quantum dot light emitting diodes (QLEDs) via modulating Schottky injection barrier and carrier mobility. Journal of Applied Physics, 2019, 126, .		1.1	27
760	Efficient Top-emitting Quantum Dot Light Emitting Diodes via Inkjet Printing. , 2019, , .			1
761	Crystal Structure Control of ZnxCd1â^'xS Alloyed Nanocrystals and Structural Dependent Fluorescence Properties. Nano, 2019, 14, 1950098.		0.5	0
762	A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Scientific Reports, 2019, 9, 12048.		1.6	47
763	Boosting the performance of quantum dot light-emitting diodes with Mg and PVP Co-doped ZnO as electron transport layer. Organic Electronics, 2019, 75, 105411.		1.4	14
764	Generation of Coulomb matrix elements for the 2D quantum harmonic oscillator. Journal of Mathematical Physics, 2019, 60, 081905.		0.5	1
765	Order-of-Magnitude, Broadband-Enhanced Light Emission from Quantum Dots Assembled in Multisc Phase-Separated Block Copolymers. Nano Letters, 2019, 19, 6827-6838.	cale	4.5	21
766	Investigation on Thermally Induced Efficiency Roll-Off: Toward Efficient and Ultrabright Quantum-Dot Light-Emitting Diodes. ACS Nano, 2019, 13, 11433-11442.		7.3	105
767	Efficient fluorescence quenching of CdSe quantum dots on epitaxial GaAs nanostructures. Journal o Nanoparticle Research, 2019, 21, 1.	f	0.8	4

# 768	ARTICLE High-Quality All-Inorganic Perovskite CsPbBr3 Quantum Dots Emitter Prepared by a Simple Purified Method and Applications of Light-Emitting Diodes. Energies, 2019, 12, 3507.	IF 1.6	CITATIONS
769	Synthetic development in Cd–Zn–Se quantum dots chemistry. Optical Materials, 2019, 97, 109385.	1.7	5
770	Trichromophore-doped cassava-based biopolymer as low-cost and eco-friendly luminous material for bio hybrid white-light-emitting diodes by dual-FRET process. Optical Materials, 2019, 95, 109270.	1.7	8
771	Ultraefficient Green LEDs Using Quantum Dots in Liquid Matrix. IEEE Transactions on Electron Devices, 2019, 66, 4784-4789.	1.6	7
772	CdSe/ZnS Quantum-Dot Light-Emitting Diodes With Spiro-OMeTAD as Buffer Layer. IEEE Transactions on Electron Devices, 2019, 66, 4901-4906.	1.6	8
773	Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots. Small, 2019, 15, e1804947.	5.2	23
774	Beyond OLED: Efficient Quantum Dot Lightâ€Emitting Diodes for Display and Lighting Application. Chemical Record, 2019, 19, 1729-1752.	2.9	95
775	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019, 11, 1475-1504.	2.8	134
776	Enhanced efficiency and high temperature stability of hybrid quantum dot light-emitting diodes using molybdenum oxide doped hole transport layer. RSC Advances, 2019, 9, 16252-16257.	1.7	14
777	Suppression of electron trapping by quantum dot emitters using a grafted polystyrene shell. Materials Horizons, 2019, 6, 2024-2031.	6.4	8
778	25â€3: Highly Efficient, Allâ€Inkjetâ€Printed, Deep Red Quantum Dot Light Emitting Diodes from Positive Aging. Digest of Technical Papers SID International Symposium, 2019, 50, 346-348.	0.1	1
779	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	7.3	266
780	75â€4: Inkjetâ€Printed Quantum Dot Display with Blue OLEDs for Next Generation Display. Digest of Technical Papers SID International Symposium, 2019, 50, 1075-1078.	0.1	10
781	Electrically Pumped Whiteâ€Lightâ€Emitting Diodes Based on Histidineâ€Doped MoS ₂ Quantum Dots. Small, 2019, 15, e1901908.	5.2	26
782	High-efficiency CdSe/CdS nanorod–based red light–emitting diodes. Optics Express, 2019, 27, 7935.	1.7	42
783	Cross-linkable hole transporting layers boost operational stability of high-performance quantum dot light-emitting device. Organic Electronics, 2019, 71, 206-211.	1.4	13
784	Pushing the Efficiency Envelope for Semiconductor Nanocrystal-Based Electroluminescence Devices Using Anisotropic Nanocrystals. Chemistry of Materials, 2019, 31, 3066-3082.	3.2	51
785	Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks. ACS Energy Letters, 2019, 4, 1225-1230.	8.8	54

#	Article	IF	CITATIONS
786	Highly efficient full color light-emitting diodes based on quantum dots surface passivation engineering. Organic Electronics, 2019, 70, 140-148.	1.4	7
787	Inkjetâ€Printed Highâ€Efficiency Multilayer QLEDs Based on a Novel Crosslinkable Smallâ€Molecule Hole Transport Material. Small, 2019, 15, e1900111.	5.2	50
788	Effective Mn-Doping in AgInS2/ZnS Core/Shell Nanocrystals for Dual Photoluminescent Peaks. Nanomaterials, 2019, 9, 263.	1.9	12
789	Light-Emitting Devices Based on Type-II InP/ZnO Quantum Dots. ACS Photonics, 2019, 6, 939-946.	3.2	35
790	Carboxylate Anchors Act as Exciton Reporters in 1.3 nm Indium Phosphide Nanoclusters. Journal of Physical Chemistry Letters, 2019, 10, 1833-1839.	2.1	23
791	Mg3Y2Ge3O12:Bi3+ UV fluorescent phosphor as the TiO2 "sensitizer―for enhancing the heavy oil viscosity reduction. Ceramics International, 2019, 45, 13112-13118.	2.3	3
792	Fabrication of large-scale uniform submicron inverted pyramid pit arrays on silicon substrates by laser interference lithography. Vacuum, 2019, 165, 1-6.	1.6	2
793	Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer. Applied Physics Letters, 2019, 114, .	1.5	32
794	Preparation of anisotropic CdSe-P3HT core-shell nanorods using directly synthesized Br-functionalized CdSe nanorods. Surface and Coatings Technology, 2019, 362, 84-89.	2.2	2
795	Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 2019, 5, 100028.	2.3	86
796	Highâ€Performance Blue Quantum Dot Lightâ€Emitting Diodes with Balanced Charge Injection. Advanced Electronic Materials, 2019, 5, 1800794.	2.6	34
797	Grinding Synthesis of APbX ₃ (A = MA, FA, Cs; X = Cl, Br, I) Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 10059-10067.	4.0	67
798	Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nature Photonics, 2019, 13, 192-197.	15.6	596
799	Interfacial engineering for highly efficient quasi-two dimensional organic–inorganic hybrid perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 4344-4349.	2.7	45
800	Dependence of operating conditions on lifetime of Phosphor Quantum dots-based white LEDs. , 2019, , .		0
801	Effect of doping mechanism on photogenerated carriers behavior in Cu-doped ZnSe/ZnS/L-Cys core-shell quantum dots. AIP Advances, 2019, 9, .	0.6	2
802	Suspension- and powder-based derivation of Hansen dispersibility parameters for zinc oxide quantum dots. Particuology, 2019, 44, 71-79.	2.0	11
803	Photoluminescence enhancement of colloidal CdSe/ZnS quantum dots embedded in polyvinyl alcohol after 2‬MeV proton irradiation: crucial role of the embedding medium. Optical Materials, 2019, 88, 271-276.	1.7	10

#	Article	IF	CITATIONS
804	Solution-Processed Double-Junction Quantum-Dot Light-Emitting Diodes with an EQE of Over 40%. ACS Applied Materials & Interfaces, 2019, 11, 1065-1070.	4.0	44
805	Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano, 2019, 13, 939-953.	7.3	153
806	Efficiency enhancement in quantum dot light-emitting devices employing trapping-type electron buffer layer. Organic Electronics, 2019, 66, 211-215.	1.4	3
807	Few-Nanometer-Sized α-CsPbI ₃ Quantum Dots Enabled by Strontium Substitution and Iodide Passivation for Efficient Red-Light Emitting Diodes. Journal of the American Chemical Society, 2019, 141, 2069-2079.	6.6	218
808	Preparation of organic-inorganic nanocomposites using directly synthesized Br-functionalized nanocrystals. Applied Surface Science, 2019, 475, 695-699.	3.1	0
809	Inverted polymer/quantum-dots hybrid white light emitting diodes. Thin Solid Films, 2019, 669, 34-41.	0.8	4
810	High quality quantum dots polymeric films as color converters for smart phone display technology. Materials Research Express, 2019, 6, 035015.	0.8	13
811	Environmentally friendly approach to the synthesis of monodisperse and bright blue emitting Cd0.15Zn0.85S quantum dots. Journal of Alloys and Compounds, 2020, 812, 152159.	2.8	8
812	Investigation of optical and structural properties of aqueous CdS quantum dots under gamma irradiation. Radiation Physics and Chemistry, 2020, 166, 108476.	1.4	12
813	Quantumâ€Dot Lightâ€Emitting Diodes for Outdoor Displays with High Stability at High Brightness. Advanced Optical Materials, 2020, 8, 1901145.	3.6	94
814	Colloidal metal oxides in electronics and optoelectronics. , 2020, , 203-246.		3
815	Improvement of the electron transport behavior in quantum-dot light-emitting diodes using a low-temperature processable ZnO. Current Applied Physics, 2020, 20, 366-370.	1.1	2
816	Record High External Quantum Efficiency of 19.2% Achieved in Lightâ€Emitting Diodes of Colloidal Quantum Wells Enabled by Hotâ€Injection Shell Growth. Advanced Materials, 2020, 32, e1905824.	11.1	95
817	Enhancing performance of quantum-dot light-emitting diodes based on poly(indenofluorene-co-triphenylamine) copolymer as hole-transporting layer. Journal of Materials Science: Materials in Electronics, 2020, 31, 2551-2556.	1.1	5
818	Compositional variation dependent colour tuning and observation of Förster resonant energy transfer in Cd _(1â^'x) Zn _x S nanomaterials. New Journal of Chemistry, 2020, 44, 870-883.	1.4	6
819	Realâ€Time Optical Response of Polysiloxane/Quantum Dot Nanocomposites under 2 MeV Proton Irradiation: Luminescence Enhancement of Polysiloxane Emission through Quantum Dot Sensitization. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900586.	0.8	3
820	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	1.3	52
821	Annealing-Temperature Dependent Carrier-Transportation in ZnO/PbS Quantum Dot Solar Cells Fabricated Using Liquid-Phase Ligand Exchange Methods. Energies, 2020, 13, 5037.	1.6	2

#	Article	IF	CITATIONS
822	Two-step light conversion with quantum dots inside non-linear crystals. Journal of Chemical Physics, 2020, 153, 121105.	1.2	2
823	Efficient All-Blade-Coated Quantum Dot Light-Emitting Diodes through Solvent Engineering. Journal of Physical Chemistry Letters, 2020, 11, 9019-9025.	2.1	10
824	Improved Brightness and Color Tunability of Solution-Processed Silicon Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 23333-23342.	1.5	20
825	Pâ€93: Compact Stable Quantum Dots via Amideâ€Mediated Synthesis of PMOâ€Based Multifunctional Ligand. Digest of Technical Papers SID International Symposium, 2020, 51, 1719-1722.	0.1	0
826	Ultralow Threshold Cavity-Free Laser Induced by Total Internal Reflection. ACS Omega, 2020, 5, 18551-18556.	1.6	4
827	Solid-State C–S Coupling in Nickel Organochalcogenide Frameworks as a Route to Hierarchical Structure Transfer to Binary Nanomaterials. Inorganic Chemistry, 2020, 59, 10835-10844.	1.9	3
828	Efficient Optical Gain in Spherical Quantum Wells Enabled by Engineering Biexciton Interactions. ACS Photonics, 2020, 7, 2252-2264.	3.2	20
829	Aqueous-Mediated Synthesis of Group IIB-VIA Semiconductor Quantum Dots: Challenges and Developments. , 2020, , .		2
830	Atomic Control in Multicomponent Nanomaterials: when Colloidal Chemistry Meets Atomic Layer Deposition. , 2020, 2, 1182-1202.		8
831	All-solution-processed colour-tuneable tandem quantum-dot light-emitting diode driven by AC signal. Nanoscale, 2020, 12, 17020-17028.	2.8	15
832	A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes. Joule, 2020, 4, 1977-1987.	11.7	111
833	Random lasing action from PMMA waveguide doped with CdSe/ZnS CQDs plasmonically enhanced by Ag nanoislands. Optics and Laser Technology, 2020, 131, 106358.	2.2	4
834	Meeting High Stability and Efficiency in Hybrid Lightâ€Emitting Diodes Based on SiO ₂ /ZrO ₂ Coated CsPbBr ₃ Perovskite Nanocrystals. Advanced Functional Materials, 2020, 30, 2005401.	7.8	63
835	Reduction of Trap and Polydispersity in Mutually Passivated Quantum Dot Solar Cells. ACS Applied Energy Materials, 2020, 3, 8903-8911.	2.5	9
836	Effect of Washing Solvents on the Properties of Air-Synthesized Perovskite CsPbBr ₃ Quantum Dots for Quantum Dot-Based Light-Emitting Devices. IEEE Access, 2020, 8, 159415-159423.	2.6	8
837	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie, 2020, 132, 22752-22758.	1.6	16
838	Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices. Nature Communications, 2020, 11, 4814.	5.8	48
839	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 22563-22569.	7.2	73

#	Article	IF	CITATIONS
840	Highly Efficient Deep Blue Cdâ€Free Quantum Dot Lightâ€Emitting Diodes by a pâ€Type Doped Emissive Layer. Small, 2020, 16, e2002109.	5.2	24
841	Promoted Hole Transport Capability by Improving Lateral Current Spreading for Highâ€Efficiency Quantum Dot Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 2001760.	5.6	30
842	Improved device performance of solution-processed red-colored Cu–In–Zn–S-based quantum dot light-emitting diodes enabled by doping TCTA into the emitting layer. Organic Electronics, 2020, 84, 105790.	1.4	6
843	Deciphering exciton-generation processes in quantum-dot electroluminescence. Nature Communications, 2020, 11, 2309.	5.8	96
844	Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting. Journal of Materials Chemistry C, 2020, 8, 10676-10695.	2.7	46
845	Defect studies on short-wave infrared photovoltaic devices based on HgTe nanocrystals/TiO ₂ heterojunction. Nanotechnology, 2020, 31, 385701.	1.3	5
846	Samarium-Doped Metal Halide Perovskite Nanocrystals for Single-Component Electroluminescent White Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2131-2139.	8.8	124
847	Synthesis of Red-Emitting CdSe/CdS/ZnS Core/Shell/Shell Quantum Dots. Materials Today: Proceedings, 2020, 24, 2144-2148.	0.9	3
848	The systematic study of the precursor ratio effect in the Cd–Zn–S quantum dot synthesis. CrystEngComm, 2020, 22, 4324-4337.	1.3	2
849	Temperature activated mirror-less laser action from a hole-transport conjugated-polymer. Optics and Laser Technology, 2020, 127, 106209.	2.2	1
850	High-Performance Quantum Dot-Light-Emitting Diodes with a Polyethylenimine Ethoxylated-modified Emission layer. Thin Solid Films, 2020, 709, 138179.	0.8	6
851	High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking. Nature Communications, 2020, 11, 2874.	5.8	114
852	Highly Efficient Photo-Induced Charge Separation Enabled by Metal–Chalcogenide Interfaces in Quantum-Dot/Metal-Oxide Hybrid Phototransistors. ACS Applied Materials & Interfaces, 2020, 12, 16620-16629.	4.0	21
853	Excitonic fine structure of zinc-blende and wurtzite colloidal CdSe nanocrystals and comparison to effective mass results. Physical Review B, 2020, 101, .	1.1	9
854	Recent advances and comprehensive insights on nickel oxide in emerging optoelectronic devices. Sustainable Energy and Fuels, 2020, 4, 4415-4458.	2.5	33
855	Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 2020, 4, 1759-1775.	11.7	284
856	Colloidal quantum dot light-emitting diodes employing solution-processable tin dioxide nanoparticles in an electron transport layer. RSC Advances, 2020, 10, 8261-8265.	1.7	14
857	General and fast patterning of semiconductor nanocrystals by femtosecond laser direct writing. Journal Physics D: Applied Physics, 2020, 53, 125105.	1.3	4

	CITATION	KEPUKI	
#	Article	IF	CITATIONS
858	Tuning hole injection of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) to optimize a quantum dot light-emitting diode. Semiconductor Science and Technology, 2020, 35, 055036.	1.0	1
859	Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Materials, 2020, 12, .	3.8	36
860	Mn-Doped ZnS Quantum dots–An Effective Nanoscale Sensor. Microchemical Journal, 2020, 155, 104755.	2.3	36
861	Interactive Colorâ€Changing Electronic Skin Based on Flexible and Piezoelectrically Tunable Quantum Dots Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901715.	3.6	10
862	Solution-processed blue quantum-dot light-emitting diodes based on double hole transport layers: Charge injection balance, solvent erosion control and performance improvement. Superlattices and Microstructures, 2020, 140, 106460.	1.4	15
863	Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 13087-13095.	4.0	62
864	Waterproof Flexible InP@ZnSeS Quantum Dot Lightâ€Emitting Diode. Advanced Optical Materials, 2020, 8, 1901362.	3.6	23
865	Circumventing Dedicated Electrolytes in Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906715.	7.8	23
866	Facile, gram-scale and eco-friendly synthesis of multi-color graphene quantum dots by thermal-driven advanced oxidation process. Chemical Engineering Journal, 2020, 388, 124285.	6.6	57
867	Raman study of laser-induced formation of Il–VI nanocrystals in zinc-doped As–S(Se) films. Applied Nanoscience (Switzerland), 2020, 10, 4831-4837.	1.6	6
868	Interfacial engineering revolutionizers: perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 251-279.	6.8	35
869	Highâ€Performance Red Quantumâ€Dot Lightâ€Emitting Diodes Based on Organic Electron Transporting Layer. Advanced Functional Materials, 2021, 31, 2007686.	7.8	32
870	Recent Progress of Quantum Dotâ€Based Photonic Devices and Systems: A Comprehensive Review of Materials, Devices, and Applications. Small Structures, 2021, 2, 2000024.	6.9	55
871	Novel Fenton process of Co-catalyst Co9S8 quantum dots for highly efficient removal of organic pollutants. Chemosphere, 2021, 270, 128648.	4.2	30
872	Direct Writing Largeâ€Area Multiâ€Layer Ultrasmooth Films by an Allâ€Solution Process: Toward Highâ€Performance QLEDs. Angewandte Chemie, 2021, 133, 690-694.	1.6	3
873	Efficient larger size white quantum dots light emitting diodes using blade coating at ambient conditions. Organic Electronics, 2021, 88, 106021.	1.4	9
874	Technology progress on quantum dot light-emitting diodes for next-generation displays. Nanoscale Horizons, 2021, 6, 68-77.	4.1	32
875	Direct Writing Largeâ€Area Multiâ€Layer Ultrasmooth Films by an Allâ€Solution Process: Toward Highâ€Performance QLEDs. Angewandte Chemie - International Edition, 2021, 60, 680-684.	7.2	13

#	Δρτιςι ε	IF	CITATIONS
" 876	Tunable optical performance in nanosized AgInS2-ZnS solid solution heterostructures due to the precursor's ratio modification. Optical Materials Express, 2021, 11, 539.	1.6	6
877	Advances in Perovskite Light-Emitting Diodes Possessing Improved Lifetime. Nanomaterials, 2021, 11, 103.	1.9	15
878	Optical selection and sorting of nanoparticles according to quantum mechanical properties. Science Advances, 2021, 7, .	4.7	36
879	Ternary l–Ill–VI quantum dots for light-emitting diode devices. , 2021, , 251-264.		1
880	Room temperature synthesis of low-dimensional rubidium copper halide colloidal nanocrystals with near unity photoluminescence quantum yield. Nanoscale, 2021, 13, 59-65.	2.8	20
881	High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system. Nano Research, 2021, 14, 4125-4131.	5.8	42
882	Solventâ€Regulated Electronic Structure and Morphology of Inorganic Hole Injection Layers for Efficient Quantum Dot Lightâ€Emitting Diodes. Advanced Photonics Research, 2021, 2, 2000124.	1.7	5
883	Allâ€Inorganic Quantum Dot Lightâ€Emitting Diodes with Suppressed Luminance Quenching Enabled by Chloride Passivated Tungsten Phosphate Hole Transport Layers. Small, 2021, 17, e2100030.	5.2	33
884	Enhanced Performance of Pixelated Quantum Dot Lightâ€Emitting Diodes by Inkjet Printing of Quantum Dot–Polymer Composites. Advanced Optical Materials, 2021, 9, 2002129.	3.6	39
885	A review on the electroluminescence properties of quantum-dot light-emitting diodes. Organic Electronics, 2021, 90, 106086.	1.4	67
886	Anomalous nonlinear optical effect and enhanced emission by magnetic excitons in CVD grown cobalt-doped ZnSe nanoribbon. New Journal of Physics, 2021, 23, 033019.	1.2	10
887	Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature, 2021, 591, 72-77.	13.7	471
888	Interaction of Folic Acid with Mn2+ Doped CdTe/ZnS Quantum Dots: In Situ Detection of Folic Acid. Journal of Fluorescence, 2021, 31, 951-960.	1.3	9
889	Mitigating Dark Current for High-Performance Near-Infrared Organic Photodiodes via Charge Blocking and Defect Passivation. ACS Applied Materials & Interfaces, 2021, 13, 16766-16774.	4.0	49
890	Balanced charge transport and enhanced performance of blue quantum dot light-emitting diodes via electron transport layer doping. Nanotechnology, 2021, 32, 335203.	1.3	3
891	Synthetic Image Rendering Solves Annotation Problem in Deep Learning Nanoparticle Segmentation. Small Methods, 2021, 5, e2100223.	4.6	25
892	Highly efficient and stable blue quantum-dot light-emitting diodes based on polyfluorenes with carbazole pendent groups as hole-transporting materials. Organic Electronics, 2021, 92, 106138.	1.4	10
893	Photoluminescent Carbon Quantum Dots: Synthetic Approaches and Photophysical Properties. Chemistry - A European Journal, 2021, 27, 9466-9481.	1.7	25

#	Article	IF	CITATIONS
894	Balanced Charge Carrier Transport Mediated by Quantum Dot Film Post-organization for Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2021, 13, 26170-26179.	4.0	8
895	Highly Stable Interdigitated PbS Quantum Dot and ZnO Nanowire Solar Cells with an Automatically Embedded Electron-Blocking Layer. ACS Applied Energy Materials, 2021, 4, 5918-5926.	2.5	23
896	Continuously Graded Quantum Dots: Synthesis, Applications in Quantum Dot Light-Emitting Diodes, and Perspectives. Journal of Physical Chemistry Letters, 2021, 12, 5967-5978.	2.1	53
897	Highly Efficient, Surface Ligand Modified Quantum Dot Lightâ€Emitting Diodes Driven by Type ontrollable MoTe ₂ Thin Film Transistors via Electron Charge Enhancer. Advanced Electronic Materials, 2021, 7, 2100535.	2.6	9
898	Light-emitting diodes based on quaternary CdZnSeS quantum dots. Journal of Luminescence, 2021, 235, 118025.	1.5	2
899	Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nature Communications, 2021, 12, 4603.	5.8	64
900	Nanodots Derived from Layered Materials: Synthesis and Applications. Advanced Materials, 2021, 33, e2006661.	11.1	29
901	Solution-processed white light-emitting device with polymer/quantum-dot composite emission layers. Chemical Physics Letters, 2021, 776, 138668.	1.2	1
902	One-step preparation of green tea ash derived and polymer functionalized carbon quantum dots via the thiol-ene click chemistry. Inorganic Chemistry Communication, 2021, 130, 108743.	1.8	8
903	Current Stateâ€ofâ€theâ€Art in the Interface/Surface Modification of Thermoelectric Materials. Advanced Energy Materials, 2021, 11, 2101877.	10.2	37
904	Mapping the Origins of Surface- and Chemistry-Dependent Doping Trends in III–V Quantum Dots with Density Functional Theory. Chemistry of Materials, 2021, 33, 7113-7123.	3.2	6
905	Highly efficient and low turn-on voltage quantum-dot light-emitting diodes using a ZnMgO/ZnO double electron transport layer. Current Applied Physics, 2021, 29, 107-113.	1.1	13
906	A 256 × 256, 50- <i>μ</i> m Pixel Pitch OPD Image Sensor Based on an IZO TFT Backplane. IEEE Sensors Journal, 2021, 21, 20824-20832.	2.4	3
907	Nanomaterials: Applications in Electronics. International Journal of Advanced Engineering and Nano Technology, 2021, 4, 7-19.	0.4	2
908	Facile Sulfurization under Ambient Condition with Na2S to Fabricate Nanostructured Copper Sulfide. Nanomaterials, 2021, 11, 2317.	1.9	8
909	Lowâ€Temperature Solutionâ€Processed Transparent QLED Using Inorganic Metal Oxide Carrier Transport Layers. Advanced Functional Materials, 2022, 32, 2106387.	7.8	15
910	Improved blue quantum dot light-emitting diodes via chlorine passivated ZnO nanoparticle layer*. Chinese Physics B, 2021, 30, 118503.	0.7	3
911	Tuning energy transfer efficiency in quantum dots mixture by controlled ratio. Chinese Physics B, O, , .	0.7	1

#	Article	IF	CITATIONS
912	Role of PVA capping on photophysical properties of chemically prepared CdS nanomaterials: Insights on energy transfer mechanisms in the capped system. Materials Letters, 2021, 302, 130398.	1.3	1
913	Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112140.	2.5	19
914	One-step formation of core/shell structure based on hydrophobic silane ligands for enhanced luminescent perovskite quantum dots. Journal of Alloys and Compounds, 2021, 886, 161347.	2.8	12
915	Modified α-Al2O3 wafer: Enhance the stability of perovskite quantum dots with wide colour gamut for white light-emitting diodes. Applied Surface Science, 2021, 569, 150964.	3.1	7
916	High-Purity and Saturated Deep-Blue Luminescence from <i>trans</i> -NHC Platinum(II) Butadiyne Complexes: Properties and Organic Light Emitting Diode Application. ACS Applied Materials & Interfaces, 2021, 13, 5327-5337.	4.0	28
917	Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential. Materials Advances, 2021, 2, 1204-1228.	2.6	32
918	Luminescent Quantum Dots Stabilized by N-Heterocyclic Carbene Polymer Ligands. Journal of the American Chemical Society, 2021, 143, 1873-1884.	6.6	26
919	51â€4: QLEDâ€on‣ilicon Microdisplays. Digest of Technical Papers SID International Symposium, 2020, 51, 758-761.	0.1	4
920	All-quantum-dot emission tuning and multicolored optical films using layer-by-layer assembly method. Chemical Engineering Journal, 2017, 324, 19-25.	6.6	7
921	Material and device engineering for high-performance blue quantum dot light-emitting diodes. Nanoscale, 2020, 12, 13186-13224.	2.8	57
922	Chromatographic property classification of narrowly distributed ZnS quantum dots. Nanoscale, 2020, 12, 12114-12125.	2.8	10
923	Magnetically enhanced luminescence of CdSe/ZnS quantum dot light-emitting diodes using circular ferromagnetic Co/Pt multilayer disks. Optics Express, 2019, 27, 36601.	1.7	2
924	Solution-processed double-layered hole transport layers for highly-efficient cadmium-free quantum-dot light-emitting diodes. Optics Express, 2020, 28, 6134.	1.7	7
925	Exploring the emission mechanism of dichromatic white-light quantum-dot light-emitting diodes using wavelength-resolved transient electroluminescence analysis. Optics Letters, 2020, 45, 6370.	1.7	3
926	Microbial Uptake, Toxicity, and Fate of Biofabricated ZnS:Mn Nanocrystals. PLoS ONE, 2015, 10, e0124916.	1.1	9
927	A Short Analysis on the Morphological Characterization of Colloidal Quantum Dots for Photovoltaic Applications. Current Nanoscience, 2020, 16, 544-555.	0.7	3
928	Near-Field Optical Properties of Quantum Dots, Applications and Perspectives. Recent Patents on Nanotechnology, 2011, 5, 188-224.	0.7	12
929	Surface Treatment Method for Long-term Stability of CdSe/ZnS Quantum Dots. Journal of Korean Powder Metallurgy Institute, 2017, 24, 1-5.	0.2	3

#	Article	IF	CITATIONS
930	Development of Colloidal Quantum Dots for Electrically Driven Light-Emitting Devices. Journal of the Korean Ceramic Society, 2017, 54, 449-469.	1.1	36
931	QD-LED devices using ZnSnO as an electron-transporting layer. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 158504.	0.2	3
932	Solution-Processed White Light-Emitting Diode Utilizing Hybrid Polymer and Red–Green–Blue Quantum Dots. Japanese Journal of Applied Physics, 2012, 51, 09MH03.	0.8	6
933	Efficient quantum dot light-emitting diodes with ultra-homogeneous and highly ordered quantum dot monolayer. Science China Materials, 2022, 65, 757-763.	3.5	13
934	Achieving high efficiency by improving hole injection into quantum dots in colloidal quantum dot light-emitting devices with organic electron transport layer. Molecular Crystals and Liquid Crystals, 0, , 1-7.	0.4	0
935	Strategies for improving performance, lifetime, and stability in light-emitting diodes using liquid medium. Chemical Physics Reviews, 2021, 2, .	2.6	6
936	A bright future. Nature Nanotechnology, 0, , .	15.6	0
937	Developing Bright and Color-Saturated Quantum Dot Light Emitting Diodes towards Next Generation Displays and Solid State Lighting. , 2008, , .		0
938	BLUE LIGHT-EMITTING DIODE BASED ON ZnO NANOWIRE/POLYACRYLAMIDE FILM ON SILICON SUBSTRATE. Acta Polymerica Sinica, 2009, 009, 1-6.	0.0	0
939	Research Progress in Nanophotonics Materials and Devices. Applied Physics, 2011, 01, 9-19.	0.0	0
940	Highly efficient CdS-quantum-dot-sensitized InGaN multiple quantum well solar cells. , 2012, , .		0
941	UV LED with QD for display and lighting application. , 2013, , .		0
942	Synthesis and Characterization of Nanostructured Thin Films of (CdS)0.6 Se0.4 for Solar Cell. IOSR Journal of Applied Physics, 2014, 6, 58-62.	0.1	2
943	Luminescence characteristics of PVK doped with red-emitting quantum dots. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 097302.	0.2	2
944	White light emitting diode based on quantum dots and MEH-PPV. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 067301.	0.2	0
945	Research on Optical Properties of Ag/ZnO Nanostructures. Optoelectronics, 2016, 06, 10-15.	0.0	0
946	Study on the Luminescence Properties of InP/ZnS Quantum Dot. Material Sciences, 2018, 08, 131-136.	0.0	0
947	Laser tuning of resonance energy transfer efficiency in a quantum dot– bacteriorhodopsin nano–bio hybrid material. , 2018, , .		0

#	Article	IF	CITATIONS
948	Nonlinear properties of CdSe/ZnS quantum dots colloidal solutions under one- and two-photon excitation by means of high-power ultrashort laser pulses. , 2018, , .		0
949	Temperature dependences of photoluminescence intensities observed from AgInGaS and AgInGaS/GaSx core–shell nanoparticles. Journal of Nanophotonics, 2020, 14, 1.	0.4	1
950	Effect of inorganic interfacial modification layer on the performance of quantum-dots light-emitting diodes. Japanese Journal of Applied Physics, 2020, 59, 124002.	0.8	1
951	Correlation between the structural morphology and device characteristics of quantum dot based emission layer blended with small molecular hole transport material. Applied Surface Science, 2021, , 151925.	3.1	0
952	Efficient Tandem Quantumâ€Đot LEDs Enabled by An Inorganic Semiconductorâ€Metalâ€Dielectric Interconnecting Layer Stack. Advanced Materials, 2022, 34, e2108150.	11.1	53
953	Gateway towards recent developments in quantum dot-based light-emitting diodes. Nanoscale, 2022, 14, 4042-4064.	2.8	14
954	Mesoporous Trap of Molecular Sieves via Water-Selective Capture for Stable Perovskite Quantum Dots. ACS Sustainable Chemistry and Engineering, 2022, 10, 1115-1124.	3.2	5
955	Blueâ€Light Emissive Type II ZnO@5â€Aminoâ€2â€Naphthalene Sulfonic Acid Core–Shell Quantum Dots. Advanced Photonics Research, 2022, 3, .	1.7	3
956	Hole injection improvement in quantum-dot light-emitting diodes using bi-layered hole injection layer of PEDOT:PSS and V2O. Optics and Laser Technology, 2022, 149, 107864.	2.2	3
957	Spectral-temporal luminescence properties of Colloidal CdSe/ZnS Quantum Dots in relevant polymer matrices for integration in low turn-on voltage AC-driven LEDs. Optics Express, 2022, 30, 10563.	1.7	2
958	Selfâ€Induced Solutal Marangoni Flows Realize Coffeeâ€Ringâ€Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability. Advanced Science, 2022, 9, e2104519.	5.6	15
959	Al Reaction-Induced Conductive a-InGaZnO as Pixel Electrode for Active-Matrix Quantum-Dot LED Displays. IEEE Electron Device Letters, 2022, 43, 749-752.	2.2	3
960	Functional gradient films on aluminum alloy with high absorption efficiencies and damage thresholds for inertial confinement fusion applications. Ceramics International, 2022, 48, 19180-19190.	2.3	4
961	Balancing charge injection in quantum dot light-emitting diodes to achieve high efficienciy of over 21%. Science China Materials, 2022, 65, 1882-1889.	3.5	9
962	A robust vertical nanoscaffold for recyclable, paintable, and flexible light-emitting devices. Science Advances, 2022, 8, eabn2225.	4.7	10
963	N-Heterocyclic carbene-stabilized gold nanoparticles and luminescent quantum dots. , 2022, , .		1
964	Recent Advances in Colloidal Quantum Dots or Perovskite Quantum Dots as a Luminescent Downshifting Layer Embedded on Solar Cells. Nanomaterials, 2022, 12, 985.	1.9	18
965	Copper substituted methyl ammonium lead bromide grown using Non-Aqueous emulsion based synthesis technique. Materials Today: Proceedings, 2022, 62, 454-458.	0.9	4

#	Article	IF	CITATIONS
966	Facile synthesis of Cd1-xZnxSe1-ySy/CdSe/Cd1-xZnxSe1-ySy nanoplatelets with precisely controlled emission wavelength. Thin Solid Films, 2022, 751, 139218.	0.8	0
967	Solution-Processed, Inverted AgBiS ₂ Nanocrystal Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 1634-1642.	4.0	12
968	Properties and applications of quantum dots derived from two-dimensional materials. Advances in Physics: X, 2022, 7, .	1.5	11
970	Role of Atomic Structure on Exciton Dynamics and Photoluminescence in NIR Emissive InAs/InP/ZnSe Quantum Dots. Journal of Physical Chemistry C, 2022, 126, 7576-7587.	1.5	7
971	Double-type-I charge-injection heterostructure for quantum-dot light-emitting diodes. Materials Horizons, 2022, 9, 2147-2159.	6.4	5
972	CdSe Quantum Dot-Based Nanocomposites for Ultralow-Power Memristors. ACS Applied Nano Materials, 2022, 5, 8502-8510.	2.4	15
973	Charge Balance in Red QLEDs for High Efficiency and Stability via Ionic Liquid Doping. Advanced Functional Materials, 2022, 32, .	7.8	17
974	On the accurate characterization of quantum-dot light-emitting diodes for display applications. Npj Flexible Electronics, 2022, 6, .	5.1	8
975	Charge Transfer in Patterned Bilayer Film of Ag/ZnS Composite by Magnetron Control Sputtering. Molecules, 2022, 27, 3805.	1.7	2
976	An electrical and infrared controllable color emission quantum dot light-emitting diode. AIP Advances, 2022, 12, .	0.6	2
977	The uncertainty and quantum correlation of measurement in double quantum-dot systems. Frontiers of Physics, 2022, 17, .	2.4	3
978	Tailored ZnO Functional Nanomaterials for Solutionâ€Processed Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Photonics Research, 2022, 3, .	1.7	8
979	High-performance, high-resolution quantum dot light-emitting devices through photolithographic patterning. Organic Electronics, 2022, 108, 106609.	1.4	8
980	Application of quantum dots in light-emitting diodes. , 2023, , 205-244.		1
981	A general approach for all-visible-light switching of diarylethenes through triplet sensitization using semiconducting nanocrystals. Journal of Materials Chemistry C, 2022, 10, 15833-15842.	2.7	3
982	Noninvasive and Direct Patterning of High-Resolution Full-Color Quantum Dot Arrays by Programmed Microwetting. ACS Nano, 2022, 16, 16598-16607.	7.3	4
983	Dual-Color Emission from Spatially Distributed Quantum Dots in Poly(<scp>l</scp> -lactide) Films with Diverse Morphologies. ACS Macro Letters, 2022, 11, 1272-1277.	2.3	1
984	14.3: The effect of phase separation of organic hole transport materials and QDs on the performance of QLED. Digest of Technical Papers SID International Symposium, 2022, 53, 150-150.	0.1	0

#	Article	IF	CITATIONS
985	Refining Perovskite Heterojunctions for Effective Lightâ€Emitting Solar Cells. Advanced Materials, 2023, 35, .	11.1	4
986	Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors. Sensors, 2022, 22, 8993.	2.1	4
987	Effect of Excess Carriers on the Degradation of InP-Based Quantum-Dot Light-Emitting Diodes. ACS Applied Electronic Materials, 2022, 4, 6229-6236.	2.0	3
988	Efficient single-component white light emitting diodes enabled by lanthanide ions doped lead halide perovskites via controlling Förster energy transfer and specific defect clearance. Light: Science and Applications, 2022, 11, .	7.7	28
989	Progress and Prospects of Nanoscale Emitter Technology for AR/VR Displays. Advanced Materials Technologies, 2023, 8, .	3.0	5
990	Highâ€Performance Cadmiumâ€Free Blue Quantum Dot Lightâ€Emitting Devices with Stepwise Double Holeâ€Transport Layers. Advanced Electronic Materials, 2023, 9, .	2.6	1
991	Controlling optical properties and electronic energy structure of l–Ill–VI semiconductor quantum dots for improving their photofunctions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2023, 54, 100569.	5.6	9
992	Efficient Quantum Dot Color Conversion Layer with Mixed Spherical/Rod-Shaped Scattering Particles. , 2023, 1, 289-297.		1
993	Highly stable quantum dot light-emitting diodes with improved interface contacting via violet irradiation. Applied Surface Science, 2023, 615, 156339.	3.1	1
994	A Comparative Study of Water Dispersible Orange-Emitting Mn-Doped ZnSe/ZnS and CdTe/CdS Core/Shell Quantum Dots. Journal of Nanotechnology in Diagnosis and Treatment, 0, 7, 1-9.	0.7	0
995	Enabling multiple intercavity polariton coherences by adding quantum confinement to cavity molecular polaritons. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
996	Enhancement of spontaneous emission from CdSe/ZnS quantum dots through silicon nitride photonic crystal cavity based on miniaturized bound states in the continuum. Nanoscale, 2023, 15, 3757-3763.	2.8	2
997	Patterning Quantum Dots via Photolithography: A Review. Advanced Materials, 2023, 35, .	11.1	14
998	Synthesis of gallium phosphide quantum dots with high photoluminescence quantum yield and their application as color converters for LEDs. Journal of Industrial and Engineering Chemistry, 2023, 123, 509-516.	2.9	1
999	All organic transport materials (TMs) based QLEDs: Revisiting molecular electron TMs with mapping hole TMs via cross-linking strategy. Organic Electronics, 2023, 119, 106816.	1.4	1
1000	The fatigue effects in red emissive CdSe based QLED operated around turn-on voltage. Journal of Chemical Physics, 2023, 158, .	1.2	3
1001	Effects of electron-accepting substituents on the fluorescence of oxygen-bridged triarylamine. Dyes and Pigments, 2023, 215, 111281.	2.0	0
1002	Simultaneous effect of the capped matrix and the geometric factors of CdS/ZnSe spheroidal quantum dots on the linear and nonlinear optical properties. Optical and Quantum Electronics, 2023, 55, .	1.5	6

		CITATION REPORT		
#	Article		IF	CITATIONS
1003	Combined microfluidics and drying processes for the continuous production of micro-/nanopartic for drug delivery: a review. Drying Technology, 2023, 41, 1533-1568.	les	1.7	5
1004	Materials and device engineering to achieve high-performance quantum dots light emitting diode display applications. Chinese Physics B, O, , .	s for	0.7	0
1005	Performance Enhancement of Cadmiumâ€Free Quantumâ€Dot Lightâ€Emitting Diodes via Clâ€P Zn _{1â^'} <i>_x</i> _{a^'} <i>_y</i> Sn <i>_x Nanoparticles as Electron Transport Layers. Laser and Photonics Reviews, 2023, 17, .</i>	assivated Mg <i><sub< td=""><td>>ук∦sub>∢</td><td></td></sub<></i>	> ук ∦sub>∢	
1006	Cationic Molecular Metal Chalcogenide Ligandâ€Passivated Colloidal Quantum Dots and Their Application to Suppressed Darkâ€Current Nearâ€Infrared Photodetectors. Advanced Materials Technologies, 2023, 8, .		3.0	1
1007	Linear and nonlinear optical properties of CdSe/ZnTe core/shell nanostructures with screened modified Kratzer potential. European Physical Journal Plus, 2023, 138, .		1.2	6
1008	Highly efficient quantum dot light-emitting diodes with the utilization of an organic emission laye Nano Research, 2023, 16, 10545-10551.	r.	5.8	1
1009	Machine Learning Assisted Stability Analysis of Blue Quantum Dot Light-Emitting Diodes. Nano Le 2023, 23, 5738-5745.	tters,	4.5	4
1013	Ultrastable and High-Efficiency Deep Red QLEDs through Giant Continuously Graded Colloidal Quantum Dots with Shell Engineering. Nano Letters, 2023, 23, 6689-6697.		4.5	4
1017	Quantum Dots and Nanoparticles in Light-Emitting Diodes and Displays Applications. Progress in Optical Science and Photonics, 2023, , 253-277.		0.3	0
1018	PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics Journal of Materials Chemistry A, 2023, 11, 18561-18591.	5.	5.2	7
1020	Cross-linking strategies for hole transport/emissive layers in quantum-dot light-emitting diodes. Materials Chemistry Frontiers, 2023, 7, 6130-6140.		3.2	2
1029	Light-emitting Diodes - an encyclopedia article. , 2007, , .			0
1030	Quantum Dots - an encyclopedia article. , 2006, , .			0
1032	Metal oxides in quantum-dot-based LEDs and their applications. , 2024, , 409-442.			0