Musical experience shapes human brainstem encoding

Nature Neuroscience 10, 420-422 DOI: 10.1038/nn1872

Citation Report

#	Article	IF	CITATIONS
1	Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15894-15898.	3.3	502
2	Experience-dependent neural plasticity is sensitive to shape of pitch contours. NeuroReport, 2007, 18, 1963-1967.	0.6	47
3	The linguistic benefits of musical abilities. Trends in Cognitive Sciences, 2007, 11, 369-372.	4.0	103
4	Music acquisition: effects of enculturation and formal training on development. Trends in Cognitive Sciences, 2007, 11, 466-472.	4.0	352
5	Sensory-based learning disability: Insights from brainstem processing of speech sounds. International Journal of Audiology, 2007, 46, 524-532.	0.9	91
6	Auditory-Processing Malleability. Current Directions in Psychological Science, 2007, 16, 105-110.	2.8	70
7	Changes in speech production in an early deafened adult with a cochlear implant. International Journal of Language and Communication Disorders, 2007, 42, 387-405.	0.7	4
8	Audio–vocal system regulation in children with autism spectrum disorders. Experimental Brain Research, 2008, 188, 111-124.	0.7	44
9	Speech auditory brainstem response (speech ABR) characteristics depending on recording conditions, and hearing status. Journal of Neuroscience Methods, 2008, 175, 196-205.	1.3	47
10	Hearing of note: An electrophysiologic and psychoacoustic comparison of pitch discrimination between vocal and instrumental musicians. Psychophysiology, 2008, 45, 994-1007.	1.2	49
11	Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Research, 2008, 1194, 81-89.	1.1	96
12	Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 2008, 18, 452-463.	2.0	160
13	Task-Dependent Modulation of Medial Geniculate Body Is Behaviorally Relevant for Speech Recognition. Current Biology, 2008, 18, 1855-1859.	1.8	57
14	Research note: Exceptional absolute pitch perception for spoken words in an able adult with autism. Neuropsychologia, 2008, 46, 2095-2098.	0.7	81
15	The temporal relationship between speech auditory brainstem responses and the acoustic pattern of the phoneme /ba/ in normal-hearing adults. Clinical Neurophysiology, 2008, 119, 922-933.	0.7	122
16	Deficient brainstem encoding of pitch in children with Autism Spectrum Disorders. Clinical Neurophysiology, 2008, 119, 1720-1731.	0.7	180
18	Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hearing Research, 2008, 241, 34-42.	0.9	197
19	Cross-cultural perspectives on pitch memory. Journal of Experimental Child Psychology, 2008, 100, 40-52.	0.7	29

#	ARTICLE Music Janguage and cognition: unresolved issues Trends in Cognitive Sciences 2008 12 45-46	IF 4 O	CITATIONS
21	Speech Perception. Current Directions in Psychological Science, 2008, 17, 80-85.	2.8	22
22	Identification of Mandarin tones by English-speaking musicians and nonmusicians. Journal of the Acoustical Society of America, 2008, 124, 3235-3248.	0.5	125
23	Brainstem Timing Deficits in Children with Learning Impairment May Result from Corticofugal Origins. Audiology and Neuro-Otology, 2008, 13, 335-344.	0.6	46
24	Children with Specific Language Impairment Also Show Impairment of Music-syntactic Processing. Journal of Cognitive Neuroscience, 2008, 20, 1940-1951.	1.1	90
25	Corticofugal Modulation of Initial Sound Processing in the Brain. Journal of Neuroscience, 2008, 28, 11615-11621.	1.7	120
26	Developmental Plasticity in the Human Auditory Brainstem. Journal of Neuroscience, 2008, 28, 4000-4007.	1.7	135
27	Neural Correlates of Perceptual Learning in the Auditory Brainstem: Efferent Activity Predicts and Reflects Improvement at a Speech-in-Noise Discrimination Task. Journal of Neuroscience, 2008, 28, 4929-4937.	1.7	183
28	Plasticity in the Adult Human Auditory Brainstem following Short-term Linguistic Training. Journal of Cognitive Neuroscience, 2008, 20, 1892-1902.	1.1	264
29	Volume of Left Heschl's Gyrus and Linguistic Pitch Learning. Cerebral Cortex, 2008, 18, 828-836.	1.6	184
30	Language and Music: What do they have in Common and how do they Differ? A Neuroscientific Approach. European Review, 2008, 16, 413-427.	0.4	8
31	Music Training and Vocal Production of Speech and Song. Music Perception, 2008, 25, 419-428.	0.5	17
32	Music drives brain plasticity. F1000 Biology Reports, 2009, 1, 78.	4.0	82
33	Bimusicalism: The Implicit Dual Enculturation of Cognitive and Affective Systems. Music Perception, 2009, 27, 81-88.	0.5	88
34	Selective Subcortical Enhancement of Musical Intervals in Musicians. Journal of Neuroscience, 2009, 29, 5832-5840.	1.7	132
35	Communication Disorders in Speakers of Tone Languages: Etiological Bases and Clinical Considerations. Seminars in Speech and Language, 2009, 30, 162-173.	0.5	26
36	Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13022-13027.	3.3	200
37	Subcortical Laterality of Speech Encoding. Audiology and Neuro-Otology, 2009, 14, 198-207.	0.6	84

#	Article	IF	CITATIONS
38	Neural Correlates of Consonance, Dissonance, and the Hierarchy of Musical Pitch in the Human Brainstem. Journal of Neuroscience, 2009, 29, 13165-13171.	1.7	168
39	Concurrent Sound Segregation Is Enhanced in Musicians. Journal of Cognitive Neuroscience, 2009, 21, 1488-1498.	1.1	108
40	Music Training Facilitates Lexical Stress Processing. Music Perception, 2009, 26, 235-246.	0.5	46
41	Reading and Subcortical Auditory Function. Cerebral Cortex, 2009, 19, 2699-2707.	1.6	224
42	Phonological processing in adults with deficits in musical pitch recognition. Journal of Communication Disorders, 2009, 42, 226-234.	0.8	54
43	Perceiving speech rhythm in music: Listeners classify instrumental songs according to language of origin. Cognition, 2009, 111, 403-409.	1.1	25
44	Relative influence of musical and linguistic experience on early cortical processing of pitch contours. Brain and Language, 2009, 108, 1-9.	0.8	145
45	The role of the auditory brainstem in processing linguistically-relevant pitch patterns. Brain and Language, 2009, 110, 135-148.	0.8	125
46	Dissociable pitch processing mechanisms in lexical and melodic contexts revealed by ERPs. Brain Research, 2009, 1263, 104-113.	1.1	15
47	Selective neurophysiologic responses to music in instrumentalists with different listening biographies. Human Brain Mapping, 2009, 30, 267-275.	1.9	137
48	Neuroanatomical markers of speaking Chinese. Human Brain Mapping, 2009, 30, 4108-4115.	1.9	47
49	Tonotopic reorganization of developing auditory brainstem circuits. Nature Neuroscience, 2009, 12, 711-717.	7.1	223
50	Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Developmental Science, 2009, 12, 557-567.	1.3	134
51	Musical experience and neural efficiency – effects of training on subcortical processing of vocal expressions of emotion. European Journal of Neuroscience, 2009, 29, 661-668.	1.2	159
52	Topâ€down modulation of auditory processing: effects of sound context, musical expertise and attentional focus. European Journal of Neuroscience, 2009, 30, 1636-1642.	1.2	96
53	Current Advances in the Cognitive Neuroscience of Music. Annals of the New York Academy of Sciences, 2009, 1156, 211-231.	1.8	168
54	Effects of Asymmetric Cultural Experiences on the Auditory Pathway. Annals of the New York Academy of Sciences, 2009, 1169, 157-163.	1.8	8
55	Experienceâ€induced Malleability in Neural Encoding of <i>Pitch</i> , <i>Timbre</i> , and <i>Timing</i> . Annals of the New York Academy of Sciences, 2009, 1169, 543-557.	1.8	124

#	Article	IF	CITATIONS
56	A Neuroscientific Perspective on Music Therapy. Annals of the New York Academy of Sciences, 2009, 1169, 374-384.	1.8	249
57	Can Music Influence Language and Cognition?. Contemporary Music Review, 2009, 28, 329-345.	0.3	64
58	Musical Training Influences Linguistic Abilities in 8-Year-Old Children: More Evidence for Brain Plasticity. Cerebral Cortex, 2009, 19, 712-723.	1.6	560
59	Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex. Behavioural Brain Research, 2009, 196, 49-54.	1.2	49
60	Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem. Neuron, 2009, 62, 463-469.	3.8	150
61	Context-Dependent Encoding in the Human Auditory Brainstem Relates to Hearing Speech in Noise: Implications for Developmental Dyslexia. Neuron, 2009, 64, 311-319.	3.8	228
62	Exploring the relationship between physiological measures of cochlear and brainstem function. Clinical Neurophysiology, 2009, 120, 959-966.	0.7	41
63	Neural Discrimination of Nonprototypical Chords in Music Experts and Laymen: An MEG Study. Journal of Cognitive Neuroscience, 2009, 21, 2230-2244.	1.1	112
64	Experience-dependent Enhancement of Linguistic Pitch Representation in the Brainstem Is Not Specific to a Speech Context. Journal of Cognitive Neuroscience, 2009, 21, 1092-1105.	1.1	107
65	Musical Experience Limits the Degradative Effects of Background Noise on the Neural Processing of Sound. Journal of Neuroscience, 2009, 29, 14100-14107.	1.7	331
66	Musical training modulates the development of syntax processing in children. NeuroImage, 2009, 47, 735-744.	2.1	160
67	Being Together in Time: Musical Experience and the Mirror Neuron System. Music Perception, 2009, 26, 489-504.	0.5	338
68	Musician Enhancement for Speech-In-Noise. Ear and Hearing, 2009, 30, 653-661.	1.0	420
69	Preattentive Cortical-Evoked Responses to Pure Tones, Harmonic Tones, and Speech: Influence of Music Training. Ear and Hearing, 2009, 30, 432-446.	1.0	70
70	Audiovisual Deficits in Older Adults with Hearing Loss: Biological Evidence. Ear and Hearing, 2009, 30, 505-514.	1.0	33
71	Sensory Processing of Linguistic Pitch as Reflected by the Mismatch Negativity. Ear and Hearing, 2009, 30, 552-558.	1.0	33
72	Differential neural contributions to native- and foreign-language talker identification Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1950-1960.	0.7	40
73	Experience-dependent neural representation of dynamic pitch in the brainstem. NeuroReport, 2009, 20, 408-413.	0.6	92

# 74	ARTICLE Music and auditory training. Hearing Journal, 2010, 63, 58.	IF 0.1	CITATIONS
75	Auditory Brain Stem Response to Complex Sounds: A Tutorial. Ear and Hearing, 2010, 31, 302-324.	1.0	621
76	Phonological universals constrain the processing of nonspeech stimuli Journal of Experimental Psychology: General, 2010, 139, 418-435.	1.5	46
77	Musicians' and nonmusicians' short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity. Memory and Cognition, 2010, 38, 163-175.	0.9	153
78	Asymmetric cultural effects on perceptual expertise underlie an own-race bias for voices. Cognition, 2010, 114, 42-55.	1.1	48
79	Brainstem pitch representation in native speakers of Mandarin is less susceptible to degradation of stimulus temporal regularity. Brain Research, 2010, 1313, 124-133.	1.1	29
80	Effects of reverberation on brainstem representation of speech in musicians and non-musicians. Brain Research, 2010, 1355, 112-125.	1.1	191
81	The Musical Brain: Myth and Science. World Neurosurgery, 2010, 73, 442-453.	0.7	10
82	Effects of musical experience and training on pitch contour perception. Journal of Phonetics, 2010, 38, 654-662.	0.6	31
83	The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 2010, 47, 236-246.	1.2	382
84	Music training for the development of auditory skills. Nature Reviews Neuroscience, 2010, 11, 599-605.	4.9	801
85	Brainstem correlates of temporal auditory processing in children with specific language impairment. Developmental Science, 2010, 13, 77-91.	1.3	97
86	Stimulus Rate and Subcortical Auditory Processing of Speech. Audiology and Neuro-Otology, 2010, 15, 332-342.	0.6	36
87	Perception of musical pitch and lexical tones by Mandarin-speaking musicians. Journal of the Acoustical Society of America, 2010, 127, 481-490.	0.5	43
89	Hearing and speech. , 2010, , 194-236.		1
90	Early Maturation of Frequency-Following Responses to Voice Pitch in Infants with Normal Hearing. Perceptual and Motor Skills, 2010, 111, 765-784.	0.6	44
91	Speech-evoked brainstem responses in Arabic and Hebrew speakers. International Journal of Audiology, 2010, 49, 844-849.	0.9	15
92	Effect of tonal native language on voice fundamental frequency responses to pitch feedback perturbations during sustained vocalizations. Journal of the Acoustical Society of America, 2010, 128, 3739-3746.	0.5	37

			_
#	Article	IF	CITATIONS
93	Congenital amusia in speakers of a tone language: association with lexical tone agnosia. Brain, 2010, 133, 2635-2642.	3.7	129
94	Absolute PitchFunctional Evidence of Speech-Relevant Auditory Acuity. Cerebral Cortex, 2010, 20, 447-455.	1.6	103
95	Sensory-Cognitive Interaction in the Neural Encoding of Speech in Noise: A Review. Journal of the American Academy of Audiology, 2010, 21, 575-585.	0.4	82
96	Music, Noise-Exclusion, and Learning. Music Perception, 2010, 27, 297-306.	0.5	38
97	Objective Neural Indices of Speech-in-Noise Perception. Trends in Amplification, 2010, 14, 73-83.	2.4	52
99	Emotion and the auditory brainstem response to speech. Neuroscience Letters, 2010, 469, 319-323.	1.0	6
100	Aging alters the perception and physiological representation of frequency: Evidence from human frequency-following response recordings. Hearing Research, 2010, 264, 48-55.	0.9	158
101	Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hearing Research, 2010, 261, 22-29.	0.9	268
102	Brainstem correlates of speech-in-noise perception in children. Hearing Research, 2010, 270, 151-157.	0.9	91
103	Athletic training in badminton players modulates the early C1 component of visual evoked potentials: A preliminary investigation. International Journal of Psychophysiology, 2010, 78, 308-314.	0.5	22
104	The effects of tone language experience on pitch processing in the brainstem. Journal of Neurolinguistics, 2010, 23, 81-95.	0.5	122
105	Rapid acoustic processing in the auditory brainstem is not related to cortical asymmetry for the syllable rate of speech. Clinical Neurophysiology, 2010, 121, 1343-1350.	0.7	11
106	Plastic brain mechanisms for attaining auditory temporal order judgment proficiency. NeuroImage, 2010, 50, 1271-1279.	2.1	16
107	From melody to lexical tone: Musical ability enhances specific aspects of foreign language perception. European Journal of Cognitive Psychology, 2010, 22, 46-61.	1.3	82
109	Exponential modeling of human frequency-following responses to voice pitch. International Journal of Audiology, 2011, 50, 582-593.	0.9	15
110	Singing One's Way to Self-Regulation: The Role of Early Music and Movement Curricula and Private Speech. Early Education and Development, 2011, 22, 274-304.	1.6	87
111	The Bimusical Brain Is Not Two Monomusical Brains in One: Evidence from Musical Affective Processing. Journal of Cognitive Neuroscience, 2011, 23, 4082-4093.	1.1	24
112	Affective Priming Effects of Musical Sounds on the Processing of Word Meaning. Journal of Cognitive Neuroscience, 2011, 23, 604-621.	1.1	87

ARTICLE IF CITATIONS # Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts 113 1.1 276 reading and phonology. Cortex, 2011, 47, 674-689. Sensitive periods in human development: EvidenceÂfromÂmusical training. Cortex, 2011, 47, 1126-1137. 114 1.1 143 Musicians and tone-language speakers share enhanced brainstem encoding but not perceptual benefits 115 0.8 141 for musical pitch. Brain and Cognition, 2011, 77, 1-10. The preattentive processing of major vs. minor chords in the human brain: An event-related potential 116 study. Neuroscience Letters, 2011, 487, 406-410. Transfer of Training between Music and Speech: Common Processing, Attention, and Memory. 117 1.1 223 Frontiers in Psychology, 2011, 2, 94. Can You Hear Me Now? Musical Training Shapes Functional Brain Networks for Selective Auditory Attention and Hearing Speech in Noise. Frontiers in Psychology, 2011, 2, 113. 1.1 Congenital Amusia (or Tone-Deafness) Interferes with Pitch Processing in Tone Languages. Frontiers 119 1.1 73 in Psychology, 2011, 2, 120. Neurophysiological Influence of Musical Training on Speech Perception. Frontiers in Psychology, 2011, 120 1.1 48 2, 126. Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis. Frontiers 121 408 1.1 in Psychology, 2011, 2, 142. Tone Language Fluency Impairs Pitch Discrimination. Frontiers in Psychology, 2011, 2, 145. 1.1 24 Implicit Memory in Music and Language. Frontiers in Psychology, 2011, 2, 211. 123 1.1 52 Musical Experience and the Aging Auditory System: Implications for Cognitive Abilities and Hearing Speech in Noise. PLoS ONE, 2011, 6, e18082. 124 1.1 Cross-Linguistic Comparison of Frequency-Following Responses to Voice Pitch in American and 125 1.0 68 Chinese Neonates and Adults. Ear and Hearing, 2011, 32, 699-707. Musical training gives edge in auditory processing. Hearing Journal, 2011, 64, 10. 0.1 Objective Biological Measures for the Assessment and Management of Auditory Processing Disorder. 127 0.4 6 Current Pediatric Reviews, 2011, 7, 252-261. Toward a Neural Basis of Music Perception \hat{a} €" A Review and Updated Model. Frontiers in Psychology, 265 2011, 2, 110. Native Experience with a Tone Language Enhances Pitch Discrimination and the Timing of Neural 129 1.1 52 Responses to Pitch Change. Frontiers in Psychology, 2011, 2, 146. Enhanced brainstem encoding predicts musicians' perceptual advantages with pitch. European Journal 1.2 of Neuroscience, 2011, 33, 530-538.

#	Article	IF	CITATIONS
131	What subcortical–cortical relationships tell us about processing speech in noise. European Journal of Neuroscience, 2011, 33, 549-557.	1.2	75
132	Intensive language training and attention modulate the involvement of fronto-parietal regions during a non-verbal auditory discrimination task. European Journal of Neuroscience, 2011, 34, 165-175.	1.2	25
133	Long-term exposure to music enhances the sensitivity of the auditory system in children. European Journal of Neuroscience, 2011, 34, 755-765.	1.2	43
134	Language and Music in the Musician Brain. Language and Linguistics Compass, 2011, 5, 617-634.	1.3	15
135	Auditory frequency-following response: A neurophysiological measure for studying the "cocktail-party problem― Neuroscience and Biobehavioral Reviews, 2011, 35, 2046-2057.	2.9	47
136	Plasticity of the human auditory cortex related to musical training. Neuroscience and Biobehavioral Reviews, 2011, 35, 2140-2154.	2.9	148
137	Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia, 2011, 49, 3338-3345.	0.7	92
138	Predictors of spoken language learning. Journal of Communication Disorders, 2011, 44, 564-567.	0.8	10
139	Short-Term Music Training Enhances Verbal Intelligence and Executive Function. Psychological Science, 2011, 22, 1425-1433.	1.8	526
140	Auditory and visual memory in musicians and nonmusicians. Psychonomic Bulletin and Review, 2011, 18, 586-591.	1.4	84
141	Enhanced perception of various linguistic features by musicians: A cross-linguistic study. Acta Psychologica, 2011, 138, 1-10.	0.7	53
142	Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 89-100.	0.9	127
143	The Frequency Following Response (FFR) May Reflect Pitch-Bearing Information But is Not a Direct Representation of Pitch. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 767-782.	0.9	65
144	Subcortical processing of speech regularities underlies reading and music aptitude in children. Behavioral and Brain Functions, 2011, 7, 44.	1.4	100
145	Musician Advantages in Music Perception: An Issue of Motivation, Not Just Ability. Music Perception, 2011, 28, 505-518.	0.5	21
146	Neural Encoding of Speech and Music: Implications for Hearing Speech in Noise. Seminars in Hearing, 2011, 32, 129-141.	0.5	17
147	Influence of Musical Expertise on Segmental and Tonal Processing in Mandarin Chinese. Journal of Cognitive Neuroscience, 2011, 23, 2701-2715.	1.1	129
148	Cross-domain Effects of Music and Language Experience on the Representation of Pitch in the Human Auditory Brainstem. Journal of Cognitive Neuroscience, 2011, 23, 425-434.	1.1	269

#	ARTICLE	IF	CITATIONS
149	Tonal Expectations Influence Early Pitch Processing. Journal of Cognitive Neuroscience, 2011, 23, 3095-3104.	1.1	23
150	Perception of Speech in Noise: Neural Correlates. Journal of Cognitive Neuroscience, 2011, 23, 2268-2279.	1.1	166
151	Speaking to the trained ear: Musical expertise enhances the recognition of emotions in speech prosody Emotion, 2011, 11, 1021-1031.	1.5	128
152	Associations between music education, intelligence, and spelling ability in elementary school. Advances in Cognitive Psychology, 2011, 7, 1-6.	0.2	35
153	Exploration on potential connections between music education and teaching Mandarin to westerners: Evidence from Taiwanese universities. Journal of Music, Technology and Education, 2011, 3, 183-200.	0.1	0
154	Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15516-15521.	3.3	184
155	Musicians and the Metric Structure of Words. Journal of Cognitive Neuroscience, 2011, 23, 294-305.	1.1	140
156	Hearing impairments hidden in normal listeners. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16139-16140.	3.3	4
157	Long-term music training tunes how the brain temporally binds signals from multiple senses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1441-50.	3.3	140
158	Pitch perception beyond the traditional existence region of pitch. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7629-7634.	3.3	91
159	Relative Power of Harmonics in Human Frequency-Following Responses Associated with Voice Pitch in American and Chinese Adults. Perceptual and Motor Skills, 2011, 113, 67-86.	0.6	14
160	Illusory transformation from speech to song. Journal of the Acoustical Society of America, 2011, 129, 2245-2252.	0.5	108
161	Learning a novel phonological contrast depends on interactions between individual differences and training paradigm design. Journal of the Acoustical Society of America, 2011, 130, 461-472.	0.5	211
162	Enhanced Passive and Active Processing of Syllables in Musician Children. Journal of Cognitive Neuroscience, 2011, 23, 3874-3887.	1.1	95
163	Playing Music for a Smarter Ear: Cognitive, Perceptual and Neurobiological Evidence. Music Perception, 2011, 29, 133-146.	0.5	90
164	Musical Expertise Boosts Implicit Learning of Both Musical and Linguistic Structures. Cerebral Cortex, 2011, 21, 2357-2365.	1.6	121
165	Evaluation of two algorithms for detecting human frequency-following responses to voice pitch. International Journal of Audiology, 2011, 50, 14-26.	0.9	27
166	Fine-grained pitch processing of music and speech in congenital amusia. Journal of the Acoustical Society of America, 2011, 130, 4089-4096.	0.5	41

# 167	ARTICLE Decoding Temporal Structure in Music and Speech Relies on Shared Brain Resources but Elicits Different Fine-Scale Spatial Patterns. Cerebral Cortex, 2011, 21, 1507-1518.	IF 1.6	Citations 129
168	The separation between music and speech: Evidence from the perception of Cantonese tones. Journal of the Acoustical Society of America, 2012, 132, 2711-2720.	0.5	36
169	Music Appreciation and Training for Cochlear Implant Recipients: A Review. Seminars in Hearing, 2012, 33, 307-334.	0.5	113
170	Musical background not associated with self-perceived hearing performance or speech perception in postlingual cochlear-implant users. Journal of the Acoustical Society of America, 2012, 132, 1009-1016.	0.5	17
171	Music Perception and Appraisal: Cochlear Implant Users and Simulated Cochlear Implant Listening. Journal of the American Academy of Audiology, 2012, 23, 350-365.	0.4	43
172	Musical Melody and Speech Intonation: Singing a Different Tune. PLoS Biology, 2012, 10, e1001372.	2.6	158
173	Training to Improve Hearing Speech in Noise: Biological Mechanisms. Cerebral Cortex, 2012, 22, 1180-1190.	1.6	172
174	Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7877-7881.	3.3	225
175	Language and music: sound, structure, and meaning. Wiley Interdisciplinary Reviews: Cognitive Science, 2012, 3, 483-492.	1.4	37
176	Pitch Perception. Journal of Neuroscience, 2012, 32, 13335-13338.	1.7	118
177	The influence of linguistic and musical experience on Cantonese word learning. Journal of the Acoustical Society of America, 2012, 131, 4756-4769.	0.5	102
178	Human inferior colliculus activity relates to individual differences in spoken language learning. Journal of Neurophysiology, 2012, 107, 1325-1336.	0.9	98
179	Music and the brain. , 2012, , .		2
181	Experience-dependent plasticity in pitch encoding. NeuroReport, 2012, 23, 498-502.	0.6	50
182	Sensitivity to musical structure in the human brain. Journal of Neurophysiology, 2012, 108, 3289-3300.	0.9	68
183	Relationship between brainstem, cortical and behavioral measures relevant to pitch salience in humans. Neuropsychologia, 2012, 50, 2849-2859.	0.7	63
184	Pitch perception, working memory, and second-language phonological production. Psychology of Music, 2012, 40, 508-517.	0.9	47
185	Musicians have fine-tuned neural distinction of speech syllables. Neuroscience, 2012, 219, 111-119.	1.1	112

#	Article	IF	CITATIONS
186	Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children. Hearing Research, 2012, 284, 52-58.	0.9	70
187	Musical and linguistic expertise influence pre-attentive and attentive processingÂof non-speech sounds. Cortex, 2012, 48, 447-457.	1.1	73
188	Specialization among the specialized: Auditory brainstem function is tuned in to timbre. Cortex, 2012, 48, 360-362.	1.1	74
189	Multisensory Stimulation in Stroke Rehabilitation. Frontiers in Human Neuroscience, 2012, 6, 60.	1.0	61
190	Musicians experience less age-related decline in central auditory processing Psychology and Aging, 2012, 27, 410-417.	1.4	206
191	Musical training during early childhood enhances the neural encoding of speech in noise. Brain and Language, 2012, 123, 191-201.	0.8	166
192	Investigation of auditory processing disorder and language impairment using the speech-evoked auditory brainstem response. Hearing Research, 2012, 294, 143-152.	0.9	60
193	Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage, 2012, 59, 3677-3689.	2.1	279
194	Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron, 2012, 76, 486-502.	3.8	602
195	Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, 2012, , .	0.3	3
196	The Human Auditory Cortex. Springer Handbook of Auditory Research, 2012, , .	0.3	18
197	Assessing Musical Abilities Objectively: Construction and Validation of the Profile of Music Perception Skills. PLoS ONE, 2012, 7, e52508.	1.1	164
198	Individual Differences in the Discrimination of Novel Speech Sounds: Effects of Sex, Temporal Processing, Musical and Cognitive Abilities. PLoS ONE, 2012, 7, e48623.	1.1	13
199	Music, Neuroscience, and the Psychology of Well-Being: A Précis. Frontiers in Psychology, 2012, 2, 393.	1.1	59
200	Does It Really Matter? Separating the Effects of Musical Training on Syntax Acquisition. Frontiers in Psychology, 2012, 3, 543.	1.1	18
201	La musique comme outil de stimulation cognitive. Annee Psychologique, 2012, 112, 499-542.	0.2	5
203	Effects of musicality and motivational orientation on auditory category learning: A test of a regulatory-fit hypothesis. Memory and Cognition, 2012, 40, 231-251.	0.9	6
204	Native and nonnative processing of Japanese pitch accent. Applied Psycholinguistics, 2012, 33, 623-641.	0.8	11

#	ARTICLE	IF	CITATIONS
205	non-musicians: Behavioral, electrophysiological and psychoacoustic study. Brain Research, 2012, 1455, 75-89.	1.1	36
206	Introduction to <i>The Neurosciences and Music IV: Learning and Memory</i> . Annals of the New York Academy of Sciences, 2012, 1252, 1-16.	1.8	5
207	Differential roles of right temporal cortex and broca's area in pitch processing: Evidence from music and mandarin. Human Brain Mapping, 2013, 34, 2045-2054.	1.9	51
208	Music Training and Second-Language English Comprehension and Vocabulary Skills in Indian Children. Psychological Studies, 2013, 58, 164-170.	0.5	24
209	Improved motor sequence retention by motionless listening. Psychological Research, 2013, 77, 310-319.	1.0	12
210	A case study of the changes in the speech-evoked auditory brainstem response associated with auditory training in children with auditory processing disorders. International Journal of Pediatric Otorhinolaryngology, 2013, 77, 594-604.	0.4	18
211	Musical Expertise and Second Language Learning. Brain Sciences, 2013, 3, 923-940.	1.1	57
212	Predispositions and Plasticity in Music and Speech Learning: Neural Correlates and Implications. Science, 2013, 342, 585-589.	6.0	135
213	The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia, 2013, 51, 1608-1618.	0.7	73
214	Musical Development. , 2013, , 423-497.		37
215	Biological impact of preschool music classes on processing speech in noise. Developmental Cognitive Neuroscience, 2013, 6, 51-60.	1.9	59
216	Processing of communication sounds: Contributions of learning, memory, and experience. Hearing Research, 2013, 305, 31-44.	0.9	28
217	Oscillatory support for rapid frequency change processing in infants. Neuropsychologia, 2013, 51, 2812-2824.	0.7	31
218	Design and implementation of frequency-following response recording system. International Journal of Audiology, 2013, 52, 824-831.	0.9	4
219	The auditory brainstem is a barometer of rapid auditory learning. Neuroscience, 2013, 243, 104-114.	1.1	75
220	Musical Experience Influences Statistical Learning of a Novel Language. American Journal of Psychology, 2013, 126, 95-104.	0.5	31
221	Art for Art's Sake?. Educational Research and Innovation, 2013, , .	0.5	153
222	Emergence in the central nervous system. Cognitive Neurodynamics, 2013, 7, 173-195.	2.3	16

#	Article	IF	CITATIONS
223	A dynamic auditory-cognitive system supports speech-in-noise perception in older adults. Hearing Research, 2013, 300, 18-32.	0.9	193
224	The Influence of Lifelong Musicianship on Neurophysiological Measures of Concurrent Sound Segregation. Journal of Cognitive Neuroscience, 2013, 25, 503-516.	1.1	44
225	What Brainstem Recordings May or May Not Be Able to Tell Us about Hearing Aid-Amplified Signals. Seminars in Hearing, 2013, 34, 270-277.	0.5	3
226	High stimulus variability in nonnative speech learning supports formation of abstract categories: Evidence from Japanese geminates. Journal of the Acoustical Society of America, 2013, 134, 1324-1335.	0.5	47
227	Brain signal variability as a window into the bidirectionality between music and language processing: moving from a linear to a nonlinear model. Frontiers in Psychology, 2013, 4, 984.	1.1	22
228	The Potential Role of the cABR in Assessment and Management of Hearing Impairment. International Journal of Otolaryngology, 2013, 2013, 1-10.	1.0	34
229	Evaluation of an Automated Procedure for Detecting Frequency-Following Responses in American and Chinese Neonates. Perceptual and Motor Skills, 2013, 116, 456-465.	0.6	17
230	Hearing in Time. Ear and Hearing, 2013, 34, 385-401.	1.0	68
231	Changes in Oscillatory Brain Networks after Lexical Tone Training. Brain Sciences, 2013, 3, 757-780.	1.1	8
232	Music Training for the Development of Speech Segmentation. Cerebral Cortex, 2013, 23, 2038-2043.	1.6	221
233	Neural Correlates of Musical Behaviors A Brief Overview. Music Therapy Perspectives, 2013, 31, 15-24.	0.2	17
234	Neuroscience meets music education: Exploring the implications of neural processing models on music education practice. International Journal of Music Education, 2013, 31, 217-231.	1.0	15
235	Tonal language background and detecting pitch contour in spoken and musical items. Psychology of Music, 2013, 41, 59-74.	0.9	27
236	Musical Training Enhances Neural Processing of Binaural Sounds. Journal of Neuroscience, 2013, 33, 16741-16747.	1.7	32
237	Auditory Training: Evidence for Neural Plasticity in Older Adults. Perspectives on Hearing and Hearing Disorders Research and Research Diagnostics, 2013, 17, 37.	0.4	54
238	Brainstem processing following unilateral and bilateral hearing-aid amplification. NeuroReport, 2013, 24, 271-275.	0.6	11
239	Audition. , 2013, , .		1
240	Artseducation,academic achievement and cognitive ability. , 2014, , 364-384.		10

#	Article	IF	CITATIONS
241	Tone Language Speakers and Musicians Share Enhanced Perceptual and Cognitive Abilities for Musical Pitch: Evidence for Bidirectionality between the Domains of Language and Music. PLoS ONE, 2013, 8, e60676.	1.1	213
242	Musical Experience, Auditory Perception and Reading-Related Skills in Children. PLoS ONE, 2013, 8, e75876.	1.1	28
243	Pathway Evidence of How Musical Perception Predicts Word-Level Reading Ability in Children with Reading Difficulties. PLoS ONE, 2013, 8, e84375.	1.1	3
244	Auditory and Visual Interhemispheric Communication in Musicians and Non-Musicians. PLoS ONE, 2013, 8, e84446.	1.1	8
245	Toward a Neural Chronometry for the Aesthetic Experience of Music. Frontiers in Psychology, 2013, 4, 206.	1.1	131
246	The Role of the Auditory Brainstem in Processing Musically Relevant Pitch. Frontiers in Psychology, 2013, 4, 264.	1.1	46
247	Musical, language, and reading abilities in early Portuguese readers. Frontiers in Psychology, 2013, 4, 288.	1.1	18
248	Speech and music shape the listening brain: evidence for shared domain-general mechanisms. Frontiers in Psychology, 2013, 4, 321.	1.1	64
249	Music and speech prosody: a common rhythm. Frontiers in Psychology, 2013, 4, 566.	1.1	67
250	Moderating variables of music training-induced neuroplasticity: a review and discussion. Frontiers in Psychology, 2013, 4, 606.	1.1	56
251	Musical training heightens auditory brainstem function during sensitive periods in development. Frontiers in Psychology, 2013, 4, 622.	1.1	64
252	Neural implementation of musical expertise and cognitive transfers: could they be promising in the framework of normal cognitive aging?. Frontiers in Human Neuroscience, 2013, 7, 693.	1.0	29
253	Musical expertise and foreign speech perception. Frontiers in Systems Neuroscience, 2013, 7, 84.	1.2	19
254	Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan. Frontiers in Systems Neuroscience, 2013, 7, 90.	1.2	77
256	Neurophysiological evidence that musical training influences the recruitment of right hemispheric homologues for speech perception. Frontiers in Psychology, 2014, 5, 171.	1.1	16
257	Individual aptitude in Mandarin lexical tone perception predicts effectiveness of high-variability training. Frontiers in Psychology, 2014, 5, 1318.	1.1	49
258	Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Frontiers in Human Neuroscience, 2014, 8, 496.	1.0	45
259	An equal start: absence of group differences in cognitive, social, and neural measures prior to music or sports training in children. Frontiers in Human Neuroscience, 2014, 8, 690.	1.0	39

#	Article	IF	CITATIONS
260	How musical training affects cognitive development: rhythm, reward and other modulating variables. Frontiers in Neuroscience, 2013, 7, 279.	1.4	143
261	The musician effect: does it persist under degraded pitch conditions of cochlear implant simulations?. Frontiers in Neuroscience, 2014, 8, 179.	1.4	64
262	The evolution of music and human social capability. Frontiers in Neuroscience, 2014, 8, 292.	1.4	33
263	Speech perception as an active cognitive process. Frontiers in Systems Neuroscience, 2014, 8, 35.	1.2	134
264	Immersive audiomotor game play enhances neural and perceptual salience of weak signals in noise. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2606-15.	3.3	72
265	Early Musical Training Is Linked to Gray Matter Structure in the Ventral Premotor Cortex and Auditory–Motor Rhythm Synchronization Performance. Journal of Cognitive Neuroscience, 2014, 26, 755-767.	1.1	89
266	Musicians' Enhanced Neural Differentiation of Speech Sounds Arises Early in Life: Developmental Evidence from Ages 3 to 30. Cerebral Cortex, 2014, 24, 2512-2521.	1.6	85
267	Recording Frequency-following Responses to Voice Pitch in Guinea Pigs: Preliminary Results. Perceptual and Motor Skills, 2014, 118, 681-690.	0.6	3
268	Children's identification of familiar songs from pitch and timing cues. Frontiers in Psychology, 2014, 5, 863.	1.1	10
269	Auditory Reserve and the Legacy of Auditory Experience. Brain Sciences, 2014, 4, 575-593.	1.1	6
270	Effects of stimulus presentation mode and subcortical laterality in speech-evoked auditory brainstem responses. International Journal of Audiology, 2014, 53, 243-249.	0.9	20
271	The Auditory Brain-Stem Response to Complex Sounds: A Potential Biomarker for Guiding Treatment of Psychosis. Frontiers in Psychiatry, 2014, 5, 142.	1.3	21
272	Objective Information-Theoretic Algorithm for Detecting Brainstem-Evoked Responses to Complex Stimuli. Journal of the American Academy of Audiology, 2014, 25, 715-726.	0.4	16
272 273	Objective Information-Theoretic Algorithm for Detecting Brainstem-Evoked Responses to Complex Stimuli. Journal of the American Academy of Audiology, 2014, 25, 715-726. Auditory Temporal Processing Skills in Musicians with Dyslexia. Dyslexia, 2014, 20, 261-279.	0.4	16 29
272 273 274	Objective Information-Theoretic Algorithm for Detecting Brainstem-Evoked Responses to Complex Stimuli. Journal of the American Academy of Audiology, 2014, 25, 715-726. Auditory Temporal Processing Skills in Musicians with Dyslexia. Dyslexia, 2014, 20, 261-279. Enhanced development of auditory change detection in musically trained schoolâ€aged children: a longitudinal eventâ€related potential study. Developmental Science, 2014, 17, 282-297.	0.4 0.8 1.3	16 29 71
272 273 274 275	Objective Information-Theoretic Algorithm for Detecting Brainstem-Evoked Responses to Complex Stimuli. Journal of the American Academy of Audiology, 2014, 25, 715-726. Auditory Temporal Processing Skills in Musicians with Dyslexia. Dyslexia, 2014, 20, 261-279. Enhanced development of auditory change detection in musically trained schoolâ€aged children: a longitudinal eventâ€related potential study. Developmental Science, 2014, 17, 282-297. Central auditory processing functions in learning disabled children assessed by behavioural tests. Hearing, Balance and Communication, 2014, 12, 143-154.	0.4 0.8 1.3 0.1	16 29 71 4
272 273 274 275 276	Objective Information-Theoretic Algorithm for Detecting Brainstem-Evoked Responses to Complex Stimuli. Journal of the American Academy of Audiology, 2014, 25, 715-726.Auditory Temporal Processing Skills in Musicians with Dyslexia. Dyslexia, 2014, 20, 261-279.Enhanced development of auditory change detection in musically trained schoolâ€aged children: a longitudinal eventâ€related potential study. Developmental Science, 2014, 17, 282-297.Central auditory processing functions in learning disabled children assessed by behavioural tests. Hearing, Balance and Communication, 2014, 12, 143-154.Pitch Processing in Children with Williams Syndrome: Relationships between Music and Prosody Skills. Brain Sciences, 2014, 4, 376-395.	0.4 0.8 1.3 0.1 1.1	16 29 71 4 12

		CITATION REPORT	
#	Article	IF	CITATIONS
278	An Integrative Model of Subcortical Auditory Plasticity. Brain Topography, 2014, 27, 539-552.	0.8	58
279	Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiology of Learning and Memory, 2014, 109, 82-93.	1.0	42
280	Perspectives on Auditory Research. Springer Handbook of Auditory Research, 2014, , .	0.3	9
281	Musical training affects the representation of speech. Proceedings of Meetings on Acoustics, 2014,	,. 0.3	0
282	Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 2014, 308, 84-97.	0.9	161
283	The enigma of dyslexic musicians. Neuropsychologia, 2014, 54, 28-40.	0.7	28
284	Multisensory perceptual learning and sensory substitution. Neuroscience and Biobehavioral Reviews 2014, 41, 16-25.	š, 2.9	94
285	Biological impact of auditory expertise across the life span: Musicians as a model of auditory learning. Hearing Research, 2014, 308, 109-121.	0.9	144
286	Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians. European Journal of Neuroscience, 2014, 40, 2662-2673.	1.2	138
287	Frequency difference beyond behavioral limen reflected by frequency following response of human auditory Brainstem. BioMedical Engineering OnLine, 2014, 13, 114.	1.3	7
288	Evaluation of a posteriori Wiener filtering applied to frequency-following response extraction in the auditory brainstem. Biomedical Signal Processing and Control, 2014, 14, 206-216.	3.5	4
289	The layering of auditory experiences in driving experience-dependent subcortical plasticity. Hearing Research, 2014, 311, 36-48.	0.9	27
290	Issues in Forensic Voice. Journal of Voice, 2014, 28, 170-184.	0.6	12
291	Turning down the noise: The benefit of musical training on the aging auditory brain. Hearing Research, 2014, 308, 162-173.	0.9	113
292	Can nonlinguistic musical training change the way the brain processes speech? The expanded OPER hypothesis. Hearing Research, 2014, 308, 98-108.	A 0.9	231
293	Phase locked neural activity in the human brainstem predicts preference for musical consonance. Neuropsychologia, 2014, 58, 23-32.	0.7	35
294	Twelve Months of Active Musical Training in 8- to 10-Year-Old Children Enhances the Preattentive Processing of Syllabic Duration and Voice Onset Time. Cerebral Cortex, 2014, 24, 956-967.	1.6	189
295	Rhythm perception and production predict reading abilities in developmental dyslexia. Frontiers in Human Neuroscience, 2014, 8, 392.	1.0	118

		CITATION REPORT		
#	Article		IF	CITATIONS
296	Experience-dependent learning of auditory temporal resolution. NeuroReport, 2014, 25	i, 134-137.	0.6	10
297	Auditory Training for Central Auditory Processing Disorder. Seminars in Hearing, 2015,	36, 199-215.	0.5	46
298	The effects of absolute pitch ability and musical training on lexical tone perception. Psy Music, 2015, 43, 881-897.	rchology of	0.9	34
299	Individual differences in the perception of melodic contours and pitch-accent timing in Support for domain-generality of pitch processing Journal of Experimental Psychology 144, 730-736.	speech: : General, 2015,	1.5	19
300	How musical expertise shapes speech perception: evidence from auditory classification Scientific Reports, 2015, 5, 14489.	images.	1.6	20
301	Musical expertise modulates functional connectivity of limbic regions during continuou listening Psychomusicology: Music, Mind and Brain, 2015, 25, 443-454.	ıs music	1.1	42
302	Auditory Scene Analysis. Music Perception, 2015, 33, 70-82.		0.5	15
303	Interaction of Musicianship and Aging: A Comparison of Cortical Auditory Evoked Poter Behavioural Neurology, 2015, 2015, 1-12.	ntials.	1.1	17
304	Brainstem encoding of speech and musical stimuli in congenital amusia: evidence from speakers. Frontiers in Human Neuroscience, 2014, 8, 1029.	Cantonese	1.0	45
305	Sadness is unique: neural processing of emotions in speech prosody in musicians and r Frontiers in Human Neuroscience, 2014, 8, 1049.	on-musicians.	1.0	24
306	Robust Encoding in the Human Auditory Brainstem: Use It or Lose It?. Frontiers in Neur 9, 451.	oscience, 2015,	1.4	4
307	Musical Minds: Attentional Blink Reveals Modality-Specific Restrictions. PLoS ONE, 201	5, 10, e0118294.	1.1	16
308	Experience Changes How Emotion in Music Is Judged: Evidence from Children Listening Cochlear Implants, Bimodal Devices, and Normal Hearing. PLoS ONE, 2015, 10, e01366	with Bilateral 585.	1.1	25
309	Intonation processing deficits of emotional words among Mandarin Chinese speakers v amusia: an ERP study. Frontiers in Psychology, 2015, 6, 385.	vith congenital	1.1	18
310	Musical experience modulates categorical perception of lexical tones in native Chinese Frontiers in Psychology, 2015, 06, 436.	speakers.	1.1	46
311	Enhanced cognitive and perceptual processing: a computational basis for the musician speech learning. Frontiers in Psychology, 2015, 6, 682.	advantage in	1.1	18
312	The perception of speech modulation cues in lexical tones is guided by early language-s experience. Frontiers in Psychology, 2015, 6, 1290.	specific	1.1	23
313	Does Music Training Enhance Literacy Skills? A Meta-Analysis. Frontiers in Psychology, 2	2015, 6, 1777.	1.1	141

		CITATION R	EPORT	
#	Article		IF	CITATIONS
314	Prosodic Structure as a Parallel to Musical Structure. Frontiers in Psychology, 2015, 6, 1	.962.	1.1	29
315	The Actual vs. Predicted Effects of Intonation Accuracy on Vocal Performance Quality. N Perception, 2015, 33, 135-146.	Лusic	0.5	5
316	Multichannel recordings of the human brainstem frequency-following response: Scalp t source generators, and distinctions from the transient ABR. Hearing Research, 2015, 32	opography, 23, 68-80.	0.9	145
317	From Notes to Vowels: Neural Correlations between Musical Training and Speech Proce of Neuroscience, 2015, 35, 8379-8381.	ssing. Journal	1.7	2
318	The Effect of Short-Term Musical Training on Speech Perception in Noise. Audiology Res 111.	search, 2015, 5,	0.8	11
319	A preliminary report of music-based training for adult cochlear implant users: Rationales development. Cochlear Implants International, 2015, 16, S22-S31.	and	0.5	27
320	Positive Effekte des Musizierens auf Wahrnehmung und Kognition aus neurowissensch Perspektive. , 2015, , 375-393.	aftlicher		2
322	Using singing to nurture children's hearing? A pilot study. Cochlear Implants Internation S63-S70.	nal, 2015, 16,	0.5	17
323	Subcortical representation of musical dyads: Individual differences and neural generato Research, 2015, 323, 9-21.	rs. Hearing	0.9	4
324	The effects of language learning and vocal training on sensorimotor control of lexical to of Phonetics, 2015, 51, 50-69.	ne. Journal	0.6	16
325	Classification of speech-evoked brainstem responses to English vowels. Speech Commu 68, 69-84.	inication, 2015,	1.6	22
326	Auditory brainstem's sensitivity to human voices. International Journal of Psychophysiol 333-337.	ogy, 2015, 95,	0.5	2
327	Listening to the Brainstem: Musicianship Enhances Intelligibility of Subcortical Represer Speech. Journal of Neuroscience, 2015, 35, 1687-1691.	itations for	1.7	42
328	A Longitudinal Study on Children's Music Training Experience and Academic Developme Reports, 2014, 4, 5854.	nt. Scientific	1.6	35
329	Musical Training Orchestrates Coordinated Neuroplasticity in Auditory Brainstem and C Counteract Age-Related Declines in Categorical Vowel Perception. Journal of Neuroscier 1240-1249.	ortex to nce, 2015, 35,	1.7	205
330	Expert music performance: cognitive, neural, and developmental bases. Progress in Brai 2015, 217, 57-86.	n Research,	0.9	60
331	Rodent auditory perception: Critical band limitations and plasticity. Neuroscience, 2015	i, 296, 55-65.	1.1	16
332	Prior Experience Biases Subcortical Sensitivity to Sound Patterns. Journal of Cognitive N 2015, 27, 124-140.	leuroscience,	1.1	24

#	Article	IF	Citations
333	Effects of language experience and stimulus context on the neural organization and categorical perception of speech. NeuroImage, 2015, 120, 191-200.	2.1	59
334	Effect of musical experience on learning lexical tone categories. Journal of the Acoustical Society of America, 2015, 137, 1452-1463.	0.5	36
335	Music training alters the course of adolescent auditory development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10062-10067.	3.3	121
336	Morris–Lecar Model. , 2015, , 1758-1764.		1
337	Music training improves speech-in-noise perception: Longitudinal evidence from a community-based music program. Behavioural Brain Research, 2015, 291, 244-252.	1.2	122
338	Influence of musical training on sensitivity to temporal fine structure. International Journal of Audiology, 2015, 54, 220-226.	0.9	11
339	Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia. European Journal of Neuroscience, 2015, 42, 1644-1650.	1.2	23
340	Pitch expertise is not created equal: Cross-domain effects of musicianship and tone language experience on neural and behavioural discrimination of speech and music. Neuropsychologia, 2015, 71, 52-63.	0.7	54
341	The effect of music performance on the transcriptome of professional musicians. Scientific Reports, 2015, 5, 9506.	1.6	38
342	A Tale of Two Writing Systems. Journal of Learning Disabilities, 2015, 48, 130-145.	1.5	52
343	Cortical entrainment to music and its modulation by expertise. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6233-42.	3.3	227
344	Musical ability and nonâ€native speechâ€sound processing are linked through sensitivity to pitch and spectral information. British Journal of Psychology, 2015, 106, 349-366.	1.2	22
345	Speech processing in children with cochlear implant. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 2028-2034.	0.4	10
346	Higher-level linguistic categories dominate lower-level acoustics in lexical tone processing. Journal of the Acoustical Society of America, 2015, 138, EL133-EL137.	0.5	15
347	The music of language: An ERP investigation of the effects of musical training on emotional prosody processing. Brain and Language, 2015, 140, 24-34.	0.8	28
348	Language experience enhances early cortical pitch-dependent responses. Journal of Neurolinguistics, 2015, 33, 128-148.	0.5	21
349	Music and Brain Plasticity. , 2016, , .		7
350	Speech Perception. , 2016, , 185-194.		8

#	Article	IF	CITATIONS
351	Understanding Speech in the Context of Variability. , 2016, , 195-208.		9
352	Neural Correlates of Indicators of Sound Change in Cantonese: Evidence from Cortical and Subcortical Processes. Frontiers in Human Neuroscience, 2016, 10, 652.	1.0	8
353	Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model. Frontiers in Neuroscience, 2016, 10, 136.	1.4	24
354	Neural Biomarkers for Dyslexia, ADHD, and ADD in the Auditory Cortex of Children. Frontiers in Neuroscience, 2016, 10, 324.	1.4	69
355	Musicians Are Better than Non-musicians in Frequency Change Detection: Behavioral and Electrophysiological Evidence. Frontiers in Neuroscience, 2016, 10, 464.	1.4	32
356	Individual Differences in the Frequency-Following Response: Relation to Pitch Perception. PLoS ONE, 2016, 11, e0152374.	1.1	33
357	Top–Down Modulation on the Perception and Categorization of Identical Pitch Contours in Speech and Music. Frontiers in Psychology, 2016, 7, 817.	1.1	10
358	Editorial: Overlap of Neural Systems for Processing Language and Music. Frontiers in Psychology, 2016, 7, 876.	1.1	8
359	NaÃ ⁻ ve Learners Show Cross-Domain Transfer after Distributional Learning: The Case of Lexical and Musical Pitch. Frontiers in Psychology, 2016, 7, 1189.	1.1	14
360	Effects of experience with L2 and music on rhythmic grouping by French listeners. Bilingualism, 2016, 19, 971-986.	1.0	26
361	LSTM for dynamic emotion and group emotion recognition in the wild. , 2016, , .		45
362	Cortical auditory evoked potentials (CAEPs) represent neural cues relevant to pitch perception. , 2016, 2016, 1628-1631.		0
363	Subcortical neural representation to Mandarin pitch contours in American and Chinese newborns. Journal of the Acoustical Society of America, 2016, 139, EL190-EL195.	0.5	20
364	Subcortical encoding of speech cues inÂchildren with congenital blindness. Restorative Neurology and Neuroscience, 2016, 34, 757-768.	0.4	4
365	Pitch perception and production in congenital amusia: Evidence from Cantonese speakers. Journal of the Acoustical Society of America, 2016, 140, 563-575.	0.5	26
366	Musical intervention enhances infants' neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5212-5217.	3.3	132
367	Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians. International Archives of Otorhinolaryngology, 2016, 20, 310-314.	0.3	16
368	The case for aural perceptual speaker identification. Forensic Science International, 2016, 269, 8-20.	1.3	6

#	Article	IF	CITATIONS
369	Tracing the neural basis of auditory entrainment. Neuroscience, 2016, 337, 306-314.	1.1	23
370	Short-Term Memory Performance in 7- and 8-Year-Old Children: The Relationship Between Phonological and Pitch Processing. Journal of Speech, Language, and Hearing Research, 2016, 59, 1208-1217.	0.7	3
371	Musical training shapes neural responses to melodic and prosodic expectation. Brain Research, 2016, 1650, 267-282.	1.1	24
372	On Older Listeners' Ability to Perceive Dynamic Pitch. Journal of Speech, Language, and Hearing Research, 2016, 59, 572-582.	0.7	13
373	Musical experience facilitates lexical tone processing among Mandarin speakers: Behavioral and neural evidence. Neuropsychologia, 2016, 91, 247-253.	0.7	36
374	Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 2016, 7, 11070.	5.8	310
375	Auditory Processing Disorder: Biological Basis and Treatment Efficacy. Springer Handbook of Auditory Research, 2016, , 51-80.	0.3	5
376	Toward a Diagnostic Test for Hidden Hearing Loss. Trends in Hearing, 2016, 20, 233121651665746.	0.7	68
377	Construction of Hindi Speech Stimuli for Eliciting Auditory Brainstem Responses. Indian Journal of Otolaryngology and Head and Neck Surgery, 2016, 68, 496-507.	0.3	0
378	Effects of enriched auditory experience on infants' speech perception during the first year of life. Prospects, 2016, 46, 235-247.	1.3	3
379	Quantity language speakers show enhanced subcortical processing. Biological Psychology, 2016, 118, 169-175.	1.1	5
380	Native language shapes automatic neural processing of speech. Neuropsychologia, 2016, 89, 57-65.	0.7	18
381	Musicians have enhanced audiovisual multisensory binding: experience-dependent effects in the double-flash illusion. Experimental Brain Research, 2016, 234, 3037-3047.	0.7	46
382	Neural correlates of accelerated auditory processing in children engaged in music training. Developmental Cognitive Neuroscience, 2016, 21, 1-14.	1.9	89
383	Enhanced auditory evoked potentials in musicians: A review of recent findings. Journal of Otology, 2016, 11, 63-72.	0.4	18
384	Pitch Ability As an Aptitude for Tone Learning. Language Learning, 2016, 66, 774-808.	1.4	50
385	An Approach to Speaker Identification. Journal of Forensic Sciences, 2016, 61, 334-344.	0.9	6
386	Reading and working memory in adults with or without formal musical training: Musical and lexical tone. Psychology of Music, 2016, 44, 369-387.	0.9	5

#	Article	IF	CITATIONS
387	Subgroup differences in the lexical tone mismatch negativity (MMN) among Mandarin speakers with congenital amusia. Biological Psychology, 2016, 113, 59-67.	1.1	22
388	Music identification skills of children with specific language impairment. International Journal of Language and Communication Disorders, 2016, 51, 203-211.	0.7	2
389	Musical experience sharpens human cochlear tuning. Hearing Research, 2016, 335, 40-46.	0.9	26
390	Language-experience plasticity in neural representation of changes in pitch salience. Brain Research, 2016, 1637, 102-117.	1.1	14
391	Effects of short-term music and second-language training on executive control. Journal of Experimental Child Psychology, 2016, 144, 84-97.	0.7	65
392	Pitch perception and frequency-following responses elicited by lexical-tone chimeras. International Journal of Audiology, 2016, 55, 53-63.	0.9	5
393	Visual-spatial sequence learning and memory in trained musicians. Psychology of Music, 2017, 45, 5-21.	0.9	24
394	Attention to affective audio-visual information: Comparison between musicians and non-musicians. Psychology of Music, 2017, 45, 204-215.	0.9	19
395	Infant and Childhood Development: Intersections Between Development and Language Experience. Springer Handbook of Auditory Research, 2017, , 17-43.	0.3	4
397	The Frequency-Following Response. Springer Handbook of Auditory Research, 2017, , .	0.3	45
398	The Janus Face of Auditory Learning: How Life in Sound Shapes Everyday Communication. Springer Handbook of Auditory Research, 2017, , 121-158.	0.3	3
399	Cortical Correlates of the Auditory Frequency-Following and Onset Responses: EEG and fMRI Evidence. Journal of Neuroscience, 2017, 37, 830-838.	1.7	5
400	PERCEPTION PRACTICE, PRODUCTION PRACTICE, AND MUSICAL ABILITY IN L2 MANDARIN TONE-WORD LEARNING. Studies in Second Language Acquisition, 2017, 39, 593-620.	1.8	60
401	Individual Differences in Temporal Perception and Their Implications for Everyday Listening. Springer Handbook of Auditory Research, 2017, , 159-192.	0.3	11
402	Variations on the theme of musical expertise: cognitive and sensory processing in percussionists, vocalists and nonâ€musicians. European Journal of Neuroscience, 2017, 45, 952-963.	1.2	37
403	Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity. Hearing Research, 2017, 345, 30-42.	0.9	13
404	Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators. Hearing Research, 2017, 348, 1-15.	0.9	85
405	Context-dependent plasticity in the subcortical encoding of linguistic pitch patterns. Journal of Neurophysiology, 2017, 117, 594-603.	0.9	14

#	Article	IF	CITATIONS
406	Does Participation in Music and Performing Arts Influence Child Development?. American Educational Research Journal, 2017, 54, 399-443.	1.6	33
407	Music perception improves in children with bilateral cochlear implants or bimodal devices. Journal of the Acoustical Society of America, 2017, 141, 4494-4507.	0.5	29
408	Stability and plasticity in neural encoding of linguistically relevant pitch patterns. Journal of Neurophysiology, 2017, 117, 1409-1424.	0.9	18
409	Connectivity patterns during music listening: Evidence for actionâ€based processing in musicians. Human Brain Mapping, 2017, 38, 2955-2970.	1.9	80
410	Correlation between the frequency difference limen and an index based on principal component analysis of the frequency-following response of normal hearing listeners. Hearing Research, 2017, 344, 255-264.	0.9	15
411	Effects of acoustic and linguistic experience on Japanese pitch accent processing. Bilingualism, 2017, 20, 931-946.	1.0	2
412	Musicianship enhances ipsilateral and contralateral efferent gain control to the cochlea. Hearing Research, 2017, 344, 275-283.	0.9	32
413	Cortical Correlates of the Auditory Frequency-Following and Onset Responses: EEG and fMRI Evidence. Journal of Neuroscience, 2017, 37, 830-838.	1.7	98
414	Music training enhances the automatic neural processing of foreign speech sounds. Scientific Reports, 2017, 7, 12631.	1.6	28
415	Language experience-dependent advantage in pitch representation in the auditory cortex is limited to favorable signal-to-noise ratios. Hearing Research, 2017, 355, 42-53.	0.9	4
416	Just Ask Me: Convergent Validity of Self-Reported Measures of Music Participation. Journal of Research in Music Education, 2017, 65, 129-138.	1.0	4
417	Cultural Factors in Responses to Rhythmic Stimuli. , 2017, , 279-306.		4
418	Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians. NeuroImage, 2017, 163, 398-412.	2.1	36
419	Vowel decoding from singleâ€ŧrial speechâ€evoked electrophysiological responses: A featureâ€based machine learning approach. Brain and Behavior, 2017, 7, e00665.	1.0	32
420	Apollos Gift and Curse: Making Music as a model for Adaptive and Maladaptive Plasticity. E-Neuroforum, 2017, 23, 57-75.	0.2	8
421	Human Brainstem Exhibits higher Sensitivity and Specificity than Auditory-Related Cortex to Short-Term Phonetic Discrimination Learning. Scientific Reports, 2017, 7, 7455.	1.6	8
422	Hidden Markov modeling of frequency-following responses to Mandarin lexical tones. Journal of Neuroscience Methods, 2017, 291, 101-112.	1.3	23
423	Faster native vowel discrimination learning in musicians is mediated by an optimization of mnemonic functions. Neuropsychologia, 2017, 104, 64-75.	0.7	14

#	Article	IF	CITATIONS
424	Neural representations of concurrent sounds with overlapping spectra in rat inferior colliculus: Comparisons between temporal-fine structure and envelope. Hearing Research, 2017, 353, 87-96.	0.9	14
425	Personalized learning: From neurogenetics of behaviors to designing optimal language training. Neuropsychologia, 2017, 98, 192-200.	0.7	28
426	Cortical and subcortical processing of short duration speech stimuli in trained rock musicians: a pilot study. European Archives of Oto-Rhino-Laryngology, 2017, 274, 1153-1160.	0.8	0
427	Apollos Fluch und Segen: Musizieren als NeuroplastizitÃ ts motor. E-Neuroforum, 2017, 23, 76-95.	0.2	0
428	Understanding Sound. Psychology of Learning and Motivation - Advances in Research and Theory, 2017, 67, 53-93.	0.5	5
429	Do Lifestyle Activities Protect Against Cognitive Decline in Aging? A Review. Frontiers in Aging Neuroscience, 2017, 9, 381.	1.7	45
430	Fast Brain Plasticity during Word Learning in Musically-Trained Children. Frontiers in Human Neuroscience, 2017, 11, 233.	1.0	38
431	Neurophysiological and Behavioral Responses of Mandarin Lexical Tone Processing. Frontiers in Neuroscience, 2017, 11, 95.	1.4	26
432	Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers. Frontiers in Neuroscience, 2017, 11, 213.	1.4	7
433	The impact of making music on aural perception and language skills: A research synthesis. London Review of Education, 0, 15, .	1.3	14
434	Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans. PLoS ONE, 2017, 12, e0184036.	1.1	14
435	Brain Plasticity and Perceptual Learning. , 2017, , 37-69.		2
436	Perceptual Learning of Pitch Direction in Congenital Amusia. Music Perception, 2017, 34, 335-351.	0.5	20
437	Association Between Sex and Speech Auditory Brainstem Responses in Adults, and Relationship to Sex Hormone Levels. Medical Science Monitor, 2017, 23, 2275-2283.	0.5	13
438	Music training and child development: a review of recent findings from a longitudinal study. Annals of the New York Academy of Sciences, 2018, 1423, 73-81.	1.8	66
439	Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage, 2018, 175, 56-69.	2.1	198
440	Causal inference and temporal predictions in audiovisual perception of speech and music. Annals of the New York Academy of Sciences, 2018, 1423, 102-116.	1.8	25
441	Theta Coherence Asymmetry in the Dorsal Stream of Musicians Facilitates Word Learning. Scientific Reports, 2018, 8, 4565.	1.6	9

#	Article	IF	CITATIONS
442	Auditory perceptual learning and changes in the conceptualization of auditory cortex. Hearing Research, 2018, 366, 3-16.	0.9	45
443	Relationship between speech-evoked neural responses and perception of speech in noise in older adults. Journal of the Acoustical Society of America, 2018, 143, 1333-1345.	0.5	10
444	School-based integrated curriculum: An integrated music approach in one Hong Kong kindergarten. British Journal of Music Education, 2018, 35, 133-152.	0.1	18
445	Is there a bilingual advantage in phonetic and phonological acquisition? The initial learning of word-final coronal stop realization in a novel accent of English. International Journal of Bilingualism, 2018, 22, 350-370.	0.6	6
446	Speaking a tone language enhances musical pitch perception in 3–5â€yearâ€olds. Developmental Science, 2018, 21, e12503.	1.3	23
447	A Comparison of Stimulus Variability in Lexical Tone and Melody Perception. Psychological Reports, 2018, 121, 600-614.	0.9	1
448	Plasticity in the auditory system. Hearing Research, 2018, 362, 61-73.	0.9	60
449	Perceptual Training of Second-Language Vowels: Does Musical Ability Play a Role?. Journal of Psycholinguistic Research, 2018, 47, 95-112.	0.7	3
450	Testing native language neural commitment at the brainstem level: A cross-linguistic investigation of the association between frequency-following response and speech perception. Neuropsychologia, 2018, 109, 140-148.	0.7	10
451	Information Fusion VIA Optimized KECA with Application to Audio Emotion Recognition. , 2018, , .		2
452	On Dynamic Pitch Benefit for Speech Recognition in Speech Masker. Frontiers in Psychology, 2018, 9, 1967.	1.1	10
453	Temporal Coding of Voice Pitch Contours in Mandarin Tones. Frontiers in Neural Circuits, 2018, 12, 55.	1.4	9
454	Musician Hearing Enhancement: Where and When it Occurs?. , 2018, , .		0
455	Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13129-13134.	3.3	92
457	Lower-level acoustics underlie higher-level phonological categories in lexical tone perception. Journal of the Acoustical Society of America, 2018, 144, EL158-EL164.	0.5	4
458	Generalization of the primary tone phase variation method: An exclusive way of isolating the frequency-following response components. Journal of the Acoustical Society of America, 2018, 144, 2400-2412.	0.5	5
459	Brain Changes Associated with Acquisition of Musical Expertise. , 0, , 550-575.		2
460	Evaluating predisposition and training in shaping the musician's brain: the need for a developmental perspective. Annals of the New York Academy of Sciences, 2018, 1423, 40-50.	1.8	12

#	Article	IF	Citations
461	Enhanced neural and behavioural processing of a nonnative phonemic contrast in professional musicians. European Journal of Neuroscience, 2018, 47, 1504-1516.	1.2	11
462	Normal pre-attentive and impaired attentive processing of lexical tones in Cantonese-speaking congenital amusics. Scientific Reports, 2018, 8, 8420.	1.6	13
463	Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6630-E6639.	3.3	69
464	Nonlinear neuroplasticity corresponding to sports experience: A voxelâ€based morphometry and restingâ€state functional connectivity study. Human Brain Mapping, 2018, 39, 4393-4403.	1.9	14
465	Complementary metrics of human auditory nerve function derived from compound action potentials. Journal of Neurophysiology, 2018, 119, 1019-1028.	0.9	25
466	Musical Experience, Sensorineural Auditory Processing, and Reading Subskills in Adults. Brain Sciences, 2018, 8, 77.	1.1	6
467	What Can Lexical Tone Training Studies in Adults Tell Us about Tone Processing in Children?. Frontiers in Psychology, 2018, 9, 1.	1.1	1,009
468	One Way or Another: Evidence for Perceptual Asymmetry in Pre-attentive Learning of Non-native Contrasts. Frontiers in Psychology, 2018, 9, 162.	1.1	8
469	Automatic Processing of Musical Sounds in the Human Brain. Springer Handbooks, 2018, , 441-452.	0.3	0
470	Gender-bias in the sensory representation of infant cry. Neuroscience Letters, 2018, 678, 138-143.	1.0	5
471	Planning musicâ€based amelioration and training in infancy and childhood based on neural evidence. Annals of the New York Academy of Sciences, 2018, 1423, 146-154.	1.8	6
472	Linguistic effect on speech perception observed at the brainstem. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8716-8721.	3.3	46
473	Tracing the Trajectory of Sensory Plasticity across Different Stages of Speech Learning in Adulthood. Current Biology, 2018, 28, 1419-1427.e4.	1.8	55
474	Effects of combination of linguistic and musical pitch experience on subcortical pitch encoding. Journal of Neurolinguistics, 2018, 47, 145-155.	0.5	14
475	Exponential Modeling of Frequency-Following Responses in American Neonates and Adults. Journal of the American Academy of Audiology, 2018, 29, 125-134.	0.4	7
476	Comparing musicians and non-musicians in signal-in-noise perception. International Journal of Audiology, 2019, 58, 717-723.	0.9	11
477	Congenital blindness enhances perception of musical rhythm more than melody in Mandarin speakers. Journal of the Acoustical Society of America, 2019, 145, EL354-EL359.	0.5	7
478	Analyzing the FFR: A tutorial for decoding the richness of auditory function. Hearing Research, 2019, 382, 107779.	0.9	90

#	Article	IF	CITATIONS
479	Plasticity in auditory categorization is supported by differential engagement of the auditory-linguistic network. Neurolmage, 2019, 201, 116022.	2.1	24
480	Categorical processing of fast temporal sequences in the guinea pig auditory brainstem. Communications Biology, 2019, 2, 265.	2.0	1
481	Evolving perspectives on the sources of the frequency-following response. Nature Communications, 2019, 10, 5036.	5.8	116
482	Musical Expertise Affects Audiovisual Speech Perception: Findings From Event-Related Potentials and Inter-trial Phase Coherence. Frontiers in Psychology, 2019, 10, 2562.	1.1	8
483	Enhanced linguistic prosodic skills in musically trained individuals with Williams syndrome. Language and Cognition, 2019, 11, 455-478.	0.2	2
484	Testing the influence of musical expertise on novel word learning across the lifespan using a cross-sectional approach in children, young adults and older adults. Brain and Language, 2019, 198, 104678.	0.8	20
485	Uncertain Emotion Discrimination Differences Between Musicians and Non-musicians Is Determined by Fine Structure Association: Hilbert Transform Psychophysics. Frontiers in Neuroscience, 2019, 13, 902.	1.4	2
486	Afferent-efferent connectivity between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults. Hearing Research, 2019, 382, 107795.	0.9	44
487	Modulation of phase-locked neural responses to speech during different arousal states is age-dependent. NeuroImage, 2019, 189, 734-744.	2.1	15
489	Musical training improves the ability to understand speech-in-noise in older adults. Neurobiology of Aging, 2019, 81, 102-115.	1.5	48
490	Biometric identification of listener identity from frequency following responses to speech. Journal of Neural Engineering, 2019, 16, 056004.	1.8	13
491	Tone language experience-dependent advantage in pitch representation in brainstem and auditory cortex is maintained under reverberation. Hearing Research, 2019, 377, 61-71.	0.9	8
492	DEVELOPMENT AND VALIDATION OF A METHOD TO ENHANCE AUDITORY ATTENTION DURING CONTINUOUS SPEECH-SHAPED NOISE ENVIRONMENT. Journal of Mechanics in Medicine and Biology, 2019, 19, 1950048.	0.3	0
493	Mandarin Tone Identification by Tone-NaÃ ⁻ ve Musicians and Non-musicians in Auditory-Visual and Auditory-Only Conditions. Frontiers in Communication, 2019, 4, .	0.6	7
494	Short-Term Choir Singing Supports Speech-in-Noise Perception and Neural Pitch Strength in Older Adults With Age-Related Hearing Loss. Frontiers in Neuroscience, 2019, 13, 1153.	1.4	44
495	Beyond Technology: The Interaction of Perceptual Accuracy and Experiential Factors in Pediatric Music Engagement. Otology and Neurotology, 2019, 40, e290-e297.	0.7	13
496	Explicit and implicit aptitude effects on second language speech learning: Scrutinizing segmental and suprasegmental sensitivity and performance via behavioural and neurophysiological measures. Bilingualism, 2019, 22, 1123-1140.	1.0	25
497	Interactive effects of linguistic abstraction and stimulus statistics in the online modulation of neural speech encoding. Attention, Perception, and Psychophysics, 2019, 81, 1020-1033.	0.7	4

#	Article	IF	CITATIONS
498	The frequency-following response (FFR) to speech stimuli: AÂnormative dataset in healthy newborns. Hearing Research, 2019, 371, 28-39.	0.9	31
504	Cortical tracking of rhythm in music and speech. NeuroImage, 2019, 185, 96-101.	2.1	58
505	OBSERVING PITCH GESTURES FAVORS THE LEARNING OF SPANISH INTONATION BY MANDARIN SPEAKERS. Studies in Second Language Acquisition, 2019, 41, 5-32.	1.8	22
506	Simultaneous EEG and MEG recordings reveal vocal pitch elicited cortical gamma oscillations in young and older adults. NeuroImage, 2020, 204, 116253.	2.1	39
507	Relationship between musical and language abilities in post-stroke aphasia. Aphasiology, 2020, 34, 793-819.	1.4	7
508	EFFECTS OF IMPLICIT VERSUS EXPLICIT CORRECTIVE FEEDBACK ON MANDARIN TONE ACQUISITION IN A SCMC LEARNING ENVIRONMENT. Studies in Second Language Acquisition, 2020, 42, 61-88.	1.8	12
509	Song and infant-directed speech facilitate word learning. Quarterly Journal of Experimental Psychology, 2020, 73, 1036-1054.	0.6	15
510	A systematic review of the voice-tagging hypothesis of speech-in-noise perception. Neuropsychologia, 2020, 136, 107256.	0.7	4
511	On some limitations of the frequency following response. Acoustical Science and Technology, 2020, 41, 83-89.	0.3	0
512	Musical expertise enhances the cortical tracking of the acoustic envelope during naturalistic music listening. Acoustical Science and Technology, 2020, 41, 361-364.	0.3	18
513	WHY ARE LEXICAL TONES DIFFICULT TO LEARN?. Studies in Second Language Acquisition, 2020, 42, 33-59.	1.8	16
514	The Effect of Musical Training and Working Memory in Adverse Listening Situations. Ear and Hearing, 2020, 41, 278-288.	1.0	19
515	Reduced Sensitivity to Between-Category Information but Preserved Categorical Perception of Lexical Tones in Tone Language Speakers With Congenital Amusia. Frontiers in Psychology, 2020, 11, 581410.	1.1	6
516	The Use of Therapeutic Music Training to Remediate Cognitive Impairment Following an Acquired Brain Injury: The Theoretical Basis and a Case Study. Healthcare (Switzerland), 2020, 8, 327.	1.0	4
517	Effects of age on electrophysiological measures of cochlear synaptopathy in humans. Hearing Research, 2020, 396, 108068.	0.9	16
518	Aging and Hearing. Springer Handbook of Auditory Research, 2020, , .	0.3	7
519	Learning a Second Language in Adulthood Changes Subcortical Neural Encoding. Neural Plasticity, 2020, 2020, 1-9.	1.0	3
520	Lifelong Tone Language Experience does not Eliminate Deficits in Neural Encoding of Pitch in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2021, 51, 3291-3310.	1.7	11

#	Article	IF	CITATIONS
521	Harnessing the musician advantage: Short-term musical training affects non-native cue weighting of linguistic pitch. Language Teaching Research, 2023, 27, 1016-1031.	2.1	5
522	Investigating Influences of Medial Olivocochlear Efferent System on Central Auditory Processing and Listening in Noise: A Behavioral and Event-Related Potential Study. Brain Sciences, 2020, 10, 428.	1.1	5
523	Non-invasive peripheral nerve stimulation selectively enhances speech category learning in adults. Npj Science of Learning, 2020, 5, 12.	1.5	28
524	Differential Activation and Functional Plasticity of Multimodal Areas Associated with Acquired Musical Skill. Neuroscience, 2020, 446, 294-303.	1.1	2
525	Factors influencing classification of frequency following responses to speech and music stimuli. Hearing Research, 2020, 398, 108101.	0.9	4
526	Speech Perception, Production and Acquisition. Chinese Language Learning Sciences, 2020, , .	0.3	4
527	Frequency selectivity of tonal language native speakers probed by suppression tuning curves of spontaneous otoacoustic emissions. Hearing Research, 2020, 398, 108100.	0.9	2
528	How musical experience affects tone perception efficiency by musicians of tonal and non-tonal speakers?. PLoS ONE, 2020, 15, e0232514.	1.1	15
529	<i>ASPM</i> -lexical tone association in speakers of a tone language: Direct evidence for the genetic-biasing hypothesis of language evolution. Science Advances, 2020, 6, eaba5090.	4.7	24
530	Parallel pitch processing in speech and melody: A study of the interference of musical melody on lexical pitch perception in speakers of Mandarin. PLoS ONE, 2020, 15, e0229109.	1.1	9
531	The musical brain. , 2020, , 1-40.		1
532	Music Form but Not Music Experience Modulates Motor Cortical Activity in Response to Novel Music. Frontiers in Human Neuroscience, 2020, 14, 127.	1.0	2
533	Neural tracking of the speech envelope is differentially modulated by attention and language experience. Brain and Language, 2021, 213, 104891.	0.8	30
534	Voice Quality and Auditory Processing in Subjects with and Without Musical Experience. Journal of Voice, 2021, 35, 9-17.	0.6	7
535	The Impact of Musical Training on Understanding Dysarthric Speech: A Preliminary Study of Transcription Errors. Communication Disorders Quarterly, 2021, 42, 73-80.	0.5	0
536	role of f0 alignment in distinguishing intonation categories: evidence from American english. Journal of Speech Sciences, 2013, 3, 3-67.	0.1	16
537	MEG Intersubject Phase Locking of Stimulus-Driven Activity during Naturalistic Speech Listening Correlates with Musical Training. Journal of Neuroscience, 2021, 41, 2713-2722.	1.7	11
538	The Musical Ear Test: Norms and correlates from a large sample of Canadian undergraduates. Behavior Research Methods, 2021, 53, 2007-2024.	2.3	14

#	Article	IF	CITATIONS
539	Brain, musicality, and language aptitude: A complex interplay. Annual Review of Applied Linguistics, 2021, 41, 95-107.	1.0	7
540	Effects of Amateur Musical Experience on Categorical Perception of Lexical Tones by Native Chinese Adults: An ERP Study. Frontiers in Psychology, 2021, 12, 611189.	1.1	14
541	Processing of Degraded Speech in Brain Disorders. Brain Sciences, 2021, 11, 394.	1.1	9
542	Assessing Music Expertise. Music Perception, 2021, 38, 406-421.	0.5	4
543	Decoding Multiple Sound-Categories in the Auditory Cortex by Neural Networks: An fNIRS Study. Frontiers in Human Neuroscience, 2021, 15, 636191.	1.0	13
544	Language-familiarity effect on voice recognition by blind listeners. JASA Express Letters, 2021, 1, 055201.	0.5	1
546	Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study. NeuroImage, 2021, 231, 117866.	2.1	43
547	Music-selective neural populations arise without musical training. Journal of Neurophysiology, 2021, 125, 2237-2263.	0.9	33
548	Effect of Listening Biographies on Frequency Following Response Responses of Vocalists, Violinists, and Non-Musicians to Indian Carnatic Music Stimuli. Journal of Audiology and Otology, 2021, 25, 131-137.	0.2	0
549	Frequency Selectivity of Persistent Cortical Oscillatory Responses to Auditory Rhythmic Stimulation. Journal of Neuroscience, 2021, 41, 7991-8006.	1.7	17
550	Attention reinforces human corticofugal system to aid speech perception in noise. Neurolmage, 2021, 235, 118014.	2.1	34
551	Individual differences in human frequency-following response predict pitch labeling ability. Scientific Reports, 2021, 11, 14290.	1.6	3
552	Native language, L2 experience, and pitch processing in music. Linguistic Approaches To Bilingualism, 2023, 13, 218-237.	0.6	1
553	Examining Individual Differences in Language Learning: A Neurocognitive Model of Language Aptitude. Neurobiology of Language (Cambridge, Mass), 0, , 1-27.	1.7	9
554	Dissociation of tone merger and congenital amusia in Hong Kong Cantonese. PLoS ONE, 2021, 16, e0253982.	1.1	3
555	Causal Relationship between the Right Auditory Cortex and Speech-Evoked Envelope-Following Response: Evidence from Combined Transcranial Stimulation and Electroencephalography. Cerebral Cortex, 2022, 32, 1437-1454.	1.6	2
556	Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Frontiers in Neuroscience, 2021, 15, 723893.	1.4	6
557	Vestibular System Eletrophysiology: An Analysis of The Relationship between Hearing and Movement. International Archives of Otorhinolaryngology, 0, , .	0.3	0

#	Article	IF	CITATIONS
558	Context-dependent Plasticity and Strength of Subcortical Encoding of Musical Sounds Independently Underlie Pitch Discrimination for Music Melodies. Neuroscience, 2021, 472, 68-89.	1.1	0
559	Neural Speech Encoding in Infancy Predicts Future Language and Communication Difficulties. American Journal of Speech-Language Pathology, 2021, 30, 2241-2250.	0.9	7
560	Early Development of Neural Speech Encoding Depends on Age But Not Native Language Status: Evidence From Lexical Tone. Neurobiology of Language (Cambridge, Mass), 0, , 1-20.	1.7	4
561	Language and nonlanguage factors in foreign language learning: evidence for the learning condition hypothesis. Npj Science of Learning, 2021, 6, 28.	1.5	4
562	Cortical hemisphere preference and brainstem ear asymmetry reflect experience-dependent functional modulation of pitch. Brain and Language, 2021, 221, 104995.	0.8	0
563	Working memory relates to individual differences in speech category learning: Insights from computational modeling and pupillometry. Brain and Language, 2021, 222, 105010.	0.8	10
564	The effect of Mandarin listeners' musical and pitch aptitude on perceptual learning of Cantonese level-tones. Journal of the Acoustical Society of America, 2021, 149, 435-446.	0.5	17
565	Combination of absolute pitch and tone language experience enhances lexical tone perception. Scientific Reports, 2021, 11, 1485.	1.6	5
566	Turning down the noise: The benefit of musical training on the aging auditory brain. Hearing Research, 2014, 308, 162-173.	0.9	45
567	Mechanisms of Memory and Learning in the Auditory System. Springer Handbook of Auditory Research, 2012, , 203-226.	0.3	3
568	Cortical Processing of Music. Springer Handbook of Auditory Research, 2012, , 261-294.	0.3	18
569	The Cognitive Auditory System: The Role of Learning in Shaping the Biology of the Auditory System. Springer Handbook of Auditory Research, 2014, , 299-319.	0.3	17
570	Music as Communication and Training for Children with Cochlear Implants. , 2016, , 313-326.		1
571	Brain Activity Correlates of Quality of Experience. Quality of Experience, 2014, , 109-119.	0.4	16
572	Shaping Brainstem Representation of Pitch-Relevant Information by Language Experience. Springer Handbook of Auditory Research, 2017, , 45-73.	0.3	2
573	Effects of Musical Training and Hearing Loss on Fundamental Frequency Discrimination and Temporal Fine Structure Processing: Psychophysics and Modeling. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 263-277.	0.9	23
574	Toward music-based auditory rehabilitation for older adults. , 2020, , 293-313.		2
575	Musicians use speech-specific areas when processing tones: The key to their superior linguistic competence?. Behavioural Brain Research, 2020, 390, 112662.	1.2	7

#	Article	IF	CITATIONS
577	Enhanced recognition of vocal emotions in individuals with naturally good musical abilities Emotion, 2022, 22, 894-906.	1.5	19
578	Revisiting the "enigma―of musicians with dyslexia: Auditory sequencing and speech abilities Journal of Experimental Psychology: General, 2017, 146, 495-511.	1.5	6
579	Characteristics of the Frequency-Following Response to Speech in Neonates and Potential Applicability in Clinical Practice: A Systematic Review. Journal of Speech, Language, and Hearing Research, 2020, 63, 1618-1635.	0.7	9
580	What makes second language perception of Mandarin tones hard?. Chinese As A Second Language (漢語敹 the Journal of the Chinese Language Teachers Association USA, 2019, 54, 51-78.	[™] å-ç"ç©¶ä 0.2	—美åœ≪ 11
581	Language, music, and the brain: a resource-sharing framework. , 2011, , 204-223.		25
584	Musicians show enhanced perception, but not production, of native lexical tones. Journal of the Acoustical Society of America, 2020, 148, 3443-3454.	0.5	12
585	The Multidimensional Battery of Prosody Perception (MBOPP). Wellcome Open Research, 2020, 5, 4.	0.9	7
586	Effects of Culture on Musical Pitch Perception. PLoS ONE, 2012, 7, e33424.	1.1	85
587	Task-Related Suppression of the Brainstem Frequency following Response. PLoS ONE, 2013, 8, e55215.	1.1	42
588	Linguistic Grammar Learning and DRD2-TAQ-IA Polymorphism. PLoS ONE, 2013, 8, e64983.	1.1	28
589	Evidence for Shared Cognitive Processing of Pitch in Music and Language. PLoS ONE, 2013, 8, e73372.	1.1	32
590	Selective Attention Modulates Human Auditory Brainstem Responses: Relative Contributions of Frequency and Spatial Cues. PLoS ONE, 2014, 9, e85442.	1.1	72
591	Influence of Musical Training on Understanding Voiced and Whispered Speech in Noise. PLoS ONE, 2014, 9, e86980.	1.1	120
592	Faster Sound Stream Segmentation in Musicians than in Nonmusicians. PLoS ONE, 2014, 9, e101340.	1.1	32
593	Mandarin-English Bilinguals Process Lexical Tones in Newly Learned Words in Accordance with the Language Context. PLoS ONE, 2017, 12, e0169001.	1.1	11
594	Behavioral and subcortical signatures of musical expertise in Mandarin Chinese speakers. PLoS ONE, 2018, 13, e0190793.	1.1	4
595	Perceptual learning as a tool for boosting working memory among individuals with reading and learning disability. Learning & Perception, 2009, 1, 115-134.	2.4	18
596	Effect of Music Training on Auditory Brainstem and Middle Latency Responses. Audiology and Speech Research, 2020, 16, 41-47.	0.1	1

#	ARTICLE	IF	CITATIONS
597	Music and Early Language Acquisition. Frontiers in Psychology, 2012, 3, 327.	1.1	121
598	Art and science: how musical training shapes the brain. Frontiers in Psychology, 2013, 4, 713.	1.1	75
599	Musical training improves rhythm integrative processing of classical Chinese poem. Acta Psychologica Sinica, 2020, 52, 847-860.	0.4	5
601	Les entraînements auditifsÂ: des modifications comportementales aux modifications neurophysiologiques. Annee Psychologique, 2014, 114, 389-418.	0.2	1
602	The association of noise sensitivity with music listening, training, and aptitude. Noise and Health, 2015, 17, 350.	0.4	21
603	Uncommon music making: The functional roles of music in design for healthcare. Music and Medicine, 2019, 11, 245.	0.2	4
604	Pronunciation proficiency and musical aptitude in Spanish as a foreign language: results of an experimental research project. Revista De Linguistica Y Lenguas Aplicadas, 2015, 10, 90.	0.4	5
605	The effect of listening to music on human transcriptome. PeerJ, 2015, 3, e830.	0.9	34
606	The Multidimensional Battery of Prosody Perception (MBOPP). Wellcome Open Research, 0, 5, 4.	0.9	1
608	Categorical Perception of Mandarin Pitch Directions by Cantonese-Speaking Musicians and Non-musicians. Frontiers in Psychology, 2021, 12, 713949.	1.1	2
609	Music Does Not Facilitate Lexical Tone Normalization: A Speech-Specific Perceptual Process. Frontiers in Psychology, 2021, 12, 717110.	1.1	1
610	Musicianship Influences Language Effect on Musical Pitch Perception. Frontiers in Psychology, 2021, 12, 712753.	1.1	13
611	Assessing room acoustic listening expertise. Journal of the Acoustical Society of America, 2021, 150, 2539-2548.	0.5	5
612	Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Frontiers in Psychiatry, 2021, 12, 720752.	1.3	21
613	Neuroimaging and the Listening Brain. ASHA Leader, 2010, 15, 14-17.	0.2	1
614	Influence of musical training on perception of L2 speech. , 0, , .		2
615	Possible learning and reading disorder nonmedication correction methods. Ad Verba Liberorum, 2011, 3, .	0.0	0
616	Music, language, and modularity in action. , 2011, , 254-268.		8

#	Article	IF	CITATIONS
617	Relación entre la aptitud musical y el grado de comprensibilidad del habla en una segunda lengua: estudio de un grupo de alumnos de español de la escuela secundaria inglesa. Porta Linguarum, 2012, , .	0.1	1
618	Influence of Music Training on Pre-Attentive Auditory-Neural Processing Across the Lifespan. Perspectives on Hearing and Hearing Disorders Research and Research Diagnostics, 2012, 16, 47.	0.4	1
619	EVALUATION OF AN AUTOMATED PROCEDURE FOR DETECTING FREQUENCY-FOLLOWING RESPONSES IN AMERICAN AND CHINESE NEONATES1,2. Perceptual and Motor Skills, 0, , 130624075139005.	0.6	0
620	Music therapy in stroke rehabilitation. Journal of Pre-Clinical and Clinical Research, 2013, 7, 23-26.	0.2	2
621	Barriers to Progress in Speaker Identification with Comments on the Trayvon Martin Case. Linguistic Evidence in Security Law and Intelligence, 2013, 1, 76-98.	0.2	1
622	Music Processing in the Brain. , 2014, , 1-34.		2
623	Music Processing in the Brain. , 2015, , 1808-1837.		0
624	Brain and Music Learning. Advances in Psychology, 2016, 06, 65-75.	0.0	0
625	MUSICAL TRAINING INFLUENCES AUDITORY TEMPORAL PROCESSING. Journal of Hearing Science, 2016, 6, 36-44.	0.1	2
627	Short-Term Learning and Memory: Training and Perceptual Learning. Springer Handbook of Auditory Research, 2017, , 75-100.	0.3	4
629	Cognition and Neural Coding: Perspectives for Audiologists. Perspectives of the ASHA Special Interest Groups, 2018, 3, 61-76.	0.4	0
630	Foreigners' Perception of Mandarin Tones: A Review. Modern Linguistics, 2018, 06, 599-606.	0.0	0
631	The Impact of Speaking a Tone Language on Music Aptitude. English Language Education, 2018, , 195-208.	0.0	0
632	Mandarin Tone Identification in Musicians and Non-musicians: Effects of Modality and Speaking Style. , 0, , .		0
633	Effect of musical training on psychophysical abilities and working memory in children. Journal of Indian Speech Language & Hearing Association, 2019, 33, 71.	0.3	0
634	Auditory Frequency-Following Responses. , 2019, , 1-13.		4
639	Structural Organization and Features of Speech and Music Perception in Language Functionsââ,¬â"¢ Implementation with Timbreââ,¬â"¢s Perceptive Assessment. Asian Journal of Humanities and Social Studies, 2019, 7, .	0.1	0
641	The Aging Auditory System: Electrophysiology. Springer Handbook of Auditory Research, 2020, , 117-141.	0.3	2

#	Article	IF	CITATIONS
642	Music training and the use of songs or rhythm: Do they help for lexical stress processing?. IRAL-International Review of Applied Linguistics in Language Teaching, 2020, .	0.5	2
643	Auditory-Motor Mapping Training Facilitates Speech and Word Learning in Tone Language–Speaking Children With Autism: An Early Efficacy Study. Journal of Speech, Language, and Hearing Research, 2021, 64, 4664-4681.	0.7	13
644	A ritmikai szinkronizÃ _i ció kapcsolata a fonológiai tudatossággal és az olvasással iskolakezdÅ' gyerekeknél. Magyar Pszichologiai Szemle, 2020, 75, 455-476.	0.1	0
645	Human Auditory-Frequency Tuning Is Sensitive to Tonal Language Experience. Journal of Speech, Language, and Hearing Research, 2020, 63, 4277-4288.	0.7	1
647	The Effect of Musical Experience and Congenital Amusia on Lexical Tone Perception, Production, and Learning: A Review. Chinese Language Learning Sciences, 2020, , 139-158.	0.3	2
648	The Effect of Music Training on Brain Plasticity during Critical Period. Advances in Psychology, 2020, 10, 75-81.	0.0	0
650	The role of talker variability in the perceptual learning of Mandarin tones by American English listeners. Journal of Second Language Pronunciation, 2020, 6, 209-235.	0.4	6
652	Effect of Noise Reduction on Cortical Speech-in-Noise Processing and Its Variance due to Individual Noise Tolerance. Ear and Hearing, 2022, 43, 849-861.	1.0	3
655	Simultaneous bilinguals who do not speak a tone language show enhancement in pitch sensitivity but not in executive function. Linguistic Approaches To Bilingualism, 2022, 12, 310-346.	0.6	5
657	LANGUAGE EXPERIENCE SHAPES PROCESSING OF PITCH RELEVANT INFORMATION IN THE HUMAN BRAINSTEM AND AUDITORY CORTEX: ELECTROPHYSIOLOGICAL EVIDENCE. Acoustics Australia, 2014, 42, 166-178.	1.4	12
658	Diotic and Dichotic Mechanisms of Discrimination Threshold in Musicians and Non-Musicians. Brain Sciences, 2021, 11, 1592.	1.1	3
659	Neurological Foundations of Phonetic Sciences. , 2021, , 407-429.		0
660	Impact of Early Rhythmic Training on Language Acquisition and Electrophysiological Functioning Underlying Auditory Processing: Feasibility and Preliminary Findings in Typically Developing Infants. Brain Sciences, 2021, 11, 1546.	1.1	6
662	La musique comme outil de stimulation cognitive. Annee Psychologique, 2012, Vol. 112, 499-542.	0.2	2
664	Musical Performance in Adolescents with ADHD, ADD and Dyslexia—Behavioral and Neurophysiological Aspects. Brain Sciences, 2022, 12, 127.	1.1	9
666	Neural Advantages of Older Musicians Involve the Cerebellum: Implications for Healthy Aging Through Lifelong Musical Instrument Training. Frontiers in Human Neuroscience, 2021, 15, 784026.	1.0	6
667	Contributions of common genetic variants to specific languages and to when a language is learned. Scientific Reports, 2022, 12, 580.	1.6	4
668	Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis. SAGE Open, 2022, 12, 215824402110672.	0.8	5

ARTICLE IF CITATIONS # Elucidating the influences of embodiment and conceptual metaphor on lexical and non-speech tone 669 1.1 5 learning. Cognition, 2022, 222, 105014. The Effect of Subjective Fatigue on Auditory Processing in Musicians andÂNonmusicians. Music 670 Perception, 2022, 39, 309-319. Bilinguals' speech perception in noise: Perceptual and neural associations. PLoS ONE, 2022, 17, 672 1.1 6 e0264282. Development of neural discrimination of pitch across speech and music in the first year of life, a mismatch response study. Language, Cognition and Neuroscience, 2022, 37, 1153-1168. Music in the brain. Nature Reviews Neuroscience, 2022, 23, 287-305. 674 4.9 116 Rapid Enhancement of Subcortical Neural Responses to Sine-Wave Speech. Frontiers in Neuroscience, 1.4 2021, 15, 747303. Brain oscillation recordings of the audience in a live concert-like setting. Cognitive Processing, 2022, 677 0.7 5 23, 329-337. Aging Affects Subcortical Pitch Information Encoding Differently in Humans With Different Language 1.7 Backgrounds. Frontiers in Aging Neuroscience, 2022, 14, 816100. The emergence of idiosyncratic patterns in the frequency-following response during the first year of 691 0.5 2 life. JASA Express Letters, 2022, 2, 054401. Effects of Psychoacoustic Training on the Pre-Attentive Processing of Harmonic Sounds and Syllables. Journal of Speech, Language, and Hearing Research, 2022, 65, 2003-2015. Les entraînements auditifsÂ: des modifications comportementales aux modifications 693 0 0.2 neurophysiologiques. Annee Psychologique, 2014, Vol. 114, 389-418. Sleep affects higher-level categorization of speech sounds, but not frequency encoding. Cortex, 2022, 694 1.1 154, 27-45. The positive learning transfer from a musical play early-learning system® to young children's 695 0.8 0 linguistic and spatial skills. Music Education Research, 0, , 1-18. 1.8 rehabilitation. Annals of the New York Academy of Sciences, 2022, 1515, 10-19. L2 rhythm production and musical rhythm perception in advanced learners of English. Poznan Studies 697 0.1 1 in Contemporary Linguistics, 2022, 58, 315-340. Examining Individual Differences in Singing, Musical and Tone Language Ability in Adolescents and 1.1 Young Adults with Dyslexia. Brain Sciences, 2022, 12, 744. Neural Processing of Speech Sounds in ASD and First-Degree Relatives. Journal of Autism and 699 1.7 1 Developmental Disorders, 0, , . Music Processing in the Brain., 2022, , 2146-2175.

ARTICLE IF CITATIONS Auditory Frequency-Following Responses., 2022, , 263-274. 701 0 Event-Related Potential Evidence for Involuntary Consciousness During Implicit Memory Retrieval. 1.0 Frontiers in Behavioral Neuroscience, 0, 16, . Empirical Studies on L2 Mandarin Chinese Production. Researching and Teaching Chinese As A Foreign 704 0.2 0 Language, 2020, 3, 23-49. The neural response at the fundamental frequency of speech is modulated by word-level acoustic and linguistic information. Frontiers in Neuroscience, Ó, 16, . The effects of alphabetic literacy, linguistic-processing demand and tone type on the dichotic 707 1.1 0 listening of lexical tones. Frontiers in Psychology, 0, 13, . Language experience during the sensitive period narrows infants' sensory encoding of lexical 1.0 tonesâ€"Music intervention reverses it. Frontiers in Human Neuroscience, 0, 16, . How experience with tone in the native language affects the L2 acquisition of pitch accents. Frontiers 709 1.1 1 in Psychology, 0, 13, . The Relationship between Early Word Reading, Phonological Awareness, Early Music Reading and 1.3 Musical Aptitude. Journal of Intelligence, 2022, 10, 50. Development of categorical speech perception in Mandarinâ€speaking children and adolescents. Child 711 7 1.7 Development, 2023, 94, 28-43. Individual differences in nonnative lexical tone perception: Effects of tone language repertoire and 1.1 musical experience. Frontiers in Psychology, 0, 13, . An early perceptual locus of absolute pitch. Psychophysiology, 0, , . 713 1.2 1 Auditory affective processing, musicality, and the development of misophonic reactions. Frontiers in 714 1.4 Neuroscience, 0, 16, . How musical rhythm training improves short-term memory for faces. Proceedings of the National 715 3.3 5 Academy of Sciences of the United States of America, 2022, 119, . Implementation of Machine Learning on Human Frequency-Following Responses: A Tutorial. Seminars in Hearing, 2022, 43, 251-274. Neonatal Frequency-Following Responses: A Methodological Framework for Clinical Applications. 717 0.5 7 Seminars in Hearing, 2022, 43, 162-176. Auditory Evoked Potentials in Communication Disorders: An Overview of Past, Present, and Future. Seminars in Hearing, 2022, 43, 137-148. Prenatal daily musical exposure is associated with enhanced neural representation of speech 720 fundamental frequency: Evidence from neonatal frequencyâ€following responses. Developmental 1.35 Science, 2023, 26, . Efferent Control in Musicians: A Review. Audiology Research, 2023, 13, 76-86.

#	Article	IF	CITATIONS
722	Chronology of auditory processing and related co-activation in the orbitofrontal cortex depends on musical expertise. Frontiers in Neuroscience, 0, 16, .	1.4	1
723	Internal structure of intonational categories: The (dis)appearance of a perceptual magnet effect. Frontiers in Psychology, 0, 13, .	1.1	0
724	Musical training alters neural processing of tones and vowels in classic Chinese poems. Brain and Cognition, 2023, 166, 105952.	0.8	1
725	Biophysics of Brain Plasticity and Its Correlation to Music Learning. Signals and Communication Technology, 2023, , 269-282.	0.4	0
726	Cortical representation of musical pitch in event-related potentials. Biomedical Engineering Letters, 2023, 13, 441-454.	2.1	1
727	Short-term training helps second-language learners read like native readers: An ERP study. Brain and Language, 2023, 239, 105251.	0.8	0
728	Differences in a Musician's Advantage for Speech-in-Speech Perception Based on Age and Task. Journal of Speech, Language, and Hearing Research, 2023, 66, 545-564.	0.7	0
729	Native Language Perceptual Sensitivity Predicts Nonnative Speech Perception Differently in Younger and Older Singaporean Bilinguals. Journal of Speech, Language, and Hearing Research, O, , 1-31.	0.7	0
730	Enduring musician advantage among former musicians in prosodic pitch perception. Scientific Reports, 2023, 13, .	1.6	2
731	Auditory Electrophysiological and Perceptual Measures in Student Musicians with High Sound Exposure. Diagnostics, 2023, 13, 934.	1.3	0
733	Musical hearing and the acquisition of foreign-language intonation. Studies in Second Language Learning and Teaching, 2023, 13, 151-178.	0.9	1
734	The human language system, including its inferior frontal component in "Broca's area,―does not support music perception. Cerebral Cortex, 2023, 33, 7904-7929.	1.6	12
735	A large-scale repository of spoken narratives in French, German and Spanish from Cantonese-speaking learners. Scientific Data, 2023, 10, .	2.4	0
736	Language-to-music transfer effects depend on the tone language: Akan vs. East Asian tone languages. Memory and Cognition, 0, , .	0.9	1
758	Teaching Chinese to L2 Preschoolers Through Children's Songs: The Cases of Mandarin and Cantonese. Chinese Language Learning Sciences, 2023, , 161-183.	0.3	0
763	Neuroscience: A lifespan perspective. , 2024, , 187-209.		0