Npro fusion technology to produce proteins with authe

Nature Methods 4, 1037-1043 DOI: 10.1038/nmeth1116

Citation Report

#	Article	IF	CITATIONS
1	Production of biologically active forms of recombinant hepcidin, the ironâ€regulatory hormone. FEBS Journal, 2008, 275, 3793-3803.	2.2	30
2	Effective Expression of Recombinant Cytotoxic Protein via Its Attachment to a Polyglutamine Domain. OMICS A Journal of Integrative Biology, 2009, 13, 211-217.	1.0	0
3	Microbial bioâ€production of a recombinant stimuliâ€responsive biosurfactant. Biotechnology and Bioengineering, 2009, 102, 176-187.	1.7	18
4	Refolding of N ^{pro} fusion proteins. Biotechnology and Bioengineering, 2009, 104, 774-784.	1.7	30
5	EDDIE fusion proteins: Triggering autoproteolytic cleavage. Process Biochemistry, 2009, 44, 1217-1224.	1.8	18
6	Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column. Journal of Chromatography A, 2009, 1216, 8460-8469.	1.8	14
7	Highâ€ŧhroughput system for determining dissolution kinetics of inclusion bodies. Biotechnology Journal, 2009, 4, 722-729.	1.8	12
8	Tandem multimer expression of angiotensin lâ€converting enzyme inhibitory peptide in <i>Escherichia coli</i> . Biotechnology Journal, 2009, 4, 1345-1356.	1.8	13
9	Interactive visualization of clusters in microarray data: an efficient tool for improved metabolic analysis of E. coli. Microbial Cell Factories, 2009, 8, 37.	1.9	5
10	A novel Ecotin-Ubiquitin-Tag (ECUT) for efficient, soluble peptide production in the periplasm of Escherichia coli. Microbial Cell Factories, 2009, 8, 7.	1.9	17
11	Expression and purification of antimicrobial peptide CM4 by Npro fusion technology in E. coli. Amino Acids, 2010, 39, 1545-1552.	1.2	13
12	Plasmidâ€free T7â€based <i>Escherichia coli</i> expression systems. Biotechnology and Bioengineering, 2010, 105, 786-794.	1.7	53
13	Efficient production of extracellular proteins with Escherichia coli by means of optimized coexpression of bacteriocin release proteins. Journal of Biotechnology, 2010, 145, 350-358.	1.9	27
14	Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column: A kinetic investigation. Journal of Chromatography A, 2010, 1217, 5950-5956.	1.8	13
15	Peptide affinity chromatography media that bind Npro fusion proteins under chaotropic conditions. Journal of Chromatography A, 2010, 1217, 6203-6213.	1.8	7
16	NproAutoprotease Fusion Technology: Development, Characteristics, and Influential Factors. Separation Science and Technology, 2010, 45, 2194-2209.	1.3	10
17	Dissection of an old protein reveals a novel application: domain D of Staphylococcus aureus Protein A (sSpAD) as a secretion - tag. Microbial Cell Factories, 2010, 9, 92.	1.9	7
18	Expressed Peptide Assay for DNA Detection. Journal of the American Chemical Society, 2010, 132, 4161-4168.	6.6	32

#	Article	IF	CITATIONS
19	Non-Chromatographic Recombinant Protein Purification by Self-Cleaving Purification Tags. Separation Science and Technology, 2010, 45, 2245-2257.	1.3	8
20	Protein Refolding/Renaturation. , 2011, , 765-784.		1
21	Self-cleaving fusion tags for recombinant protein production. Biotechnology Letters, 2011, 33, 869-881.	1.1	80
22	Production of recombinant proteins and metabolites in yeasts. Applied Microbiology and Biotechnology, 2011, 89, 939-948.	1.7	90
23	Streamlined protein expression and purification using cleavable self-aggregating tags. Microbial Cell Factories, 2011, 10, 42.	1.9	45
25	A novel PCR-based method for high throughput prokaryotic expression of antimicrobial peptide genes. BMC Biotechnology, 2012, 12, 10.	1.7	12
26	An Advanced Monitoring Platform for Rational Design of Recombinant Processes. Advances in Biochemical Engineering/Biotechnology, 2012, 132, 65-84.	0.6	1
28	Simultaneous Purification and Siteâ€Specific Modification of Pyrrolineâ€Carboxyâ€Lysine Proteins. ChemBioChem, 2012, 13, 364-366.	1.3	1
29	Continuous processing of recombinant proteins: Integration of inclusion body solubilization and refolding using simulated moving bed size exclusion chromatography with buffer recycling. Journal of Chromatography A, 2013, 1319, 107-117.	1.8	26
30	Self-assembling amphipathic alpha-helical peptides induce the formation of active protein aggregates in vivo. Faraday Discussions, 2013, 166, 243.	1.6	32
31	Mechanism and model for solubilization of inclusion bodies. Chemical Engineering Science, 2013, 101, 631-641.	1.9	13
32	Autoprotease Npro: Analysis of self-cleaving fusion protein. Journal of Chromatography A, 2013, 1304, 92-100.	1.8	4
33	Facile expression and purification of the antimicrobial peptide histatin 1 with a cleavable self-aggregating tag (cSAT) in Escherichia coli. Protein Expression and Purification, 2013, 88, 248-253.	0.6	18
34	Crystal Structures of the Viral Protease Npro Imply Distinct Roles for the Catalytic Water in Catalysis. Structure, 2013, 21, 929-938.	1.6	20
35	The Structure of Classical Swine Fever Virus Npro: A Novel Cysteine Autoprotease and Zinc-Binding Protein Involved in Subversion of Type I Interferon Induction. PLoS Pathogens, 2013, 9, e1003704.	2.1	28
36	The Pestivirus N Terminal Protease Npro Redistributes to Mitochondria and Peroxisomes Suggesting New Sites for Regulation of IRF3 by Npro. PLoS ONE, 2014, 9, e88838.	1.1	24
37	Prediction of inclusion body solubilization from shaken to stirred reactors. Biotechnology and Bioengineering, 2014, 111, 84-94.	1.7	14
38	Challenges and recent advances in affinity purification of tag-free proteins. Biotechnology Letters, 2014, 36, 1391-1406.	1.1	30

#	Article	IF	CITATIONS
39	Continuous processing of recombinant proteins: Integration of refolding and purification using simulated moving bed size-exclusion chromatography with buffer recycling. Journal of Chromatography A, 2014, 1337, 48-56.	1.8	51
40	Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in <i>Escherichia coli</i> . FEBS Letters, 2014, 588, 247-252.	1.3	82
41	Integrated continuous dissolution, refolding and tag removal of fusion proteins from inclusion bodies in a tubular reactor. Journal of Biotechnology, 2014, 185, 39-50.	1.9	12
42	Cecropin A–melittin mutant with improved proteolytic stability and enhanced antimicrobial activity against bacteria and fungi associated with gastroenteritis in vitro. Biochemical and Biophysical Research Communications, 2014, 451, 650-655.	1.0	40
43	Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease Npro. Virology, 2014, 452-453, 303-309.	1.1	11
44	Cetting ready for PAT: Scale up and inline monitoring of protein refolding of Npro fusion proteins. Process Biochemistry, 2014, 49, 1113-1121.	1.8	27
45	Continuous protein refolding in a tubular reactor. Chemical Engineering Science, 2014, 116, 763-772.	1.9	17
46	Aggregating tags for columnâ€free protein purification. Biotechnology Journal, 2015, 10, 1877-1886.	1.8	36
47	A Method for Systematic Assessment of Intrinsically Disordered Protein Regions by NMR. International Journal of Molecular Sciences, 2015, 16, 15743-15760.	1.8	7
48	Production and purification of recombinant human hepcidin-25 with authentic N and C-termini. Journal of Biotechnology, 2015, 195, 89-92.	1.9	6
49	Engineering batch and pulse refolding with transition of aggregation kinetics: An investigation using green fluorescent protein (GFP). Chemical Engineering Science, 2015, 131, 91-100.	1.9	7
50	Design and optimization of protein refolding with crossflow ultrafiltration. Chemical Engineering Science, 2015, 130, 290-300.	1.9	9
51	An optimized N ^{pro} -based method for the expression and purification of intrinsically disordered proteins for an NMR study. Intrinsically Disordered Proteins, 2015, 3, e1011004.	1.9	13
52	Insoluble Proteins. Methods in Molecular Biology, 2015, 1258, v.	0.4	11
53	Online prediction of product titer andÂsolubility of recombinant proteins inÂ <i>Escherichia coli</i> fedâ€batch cultivations. Journal of Chemical Technology and Biotechnology, 2015, 90, 283-290.	1.6	13
54	Overview of the recombinant proteins purification by affinity tags and tags exploit systems. Journal of Fundamental and Applied Sciences, 2016, 8, 90.	0.2	2
55	Real-time monitoring of protein precipitation in a tubular reactor for continuous bioprocessing. Process Biochemistry, 2016, 51, 1610-1621.	1.8	11
56	Green fluorescent protein as a scaffold for high efficiency production of functional bacteriotoxic proteins in Escherichia coli. Scientific Reports, 2016, 6, 20661.	1.6	22

#	Article	IF	CITATIONS
57	Recombinant production of influenza hemagglutinin and HIV-1 GP120 antigenic peptides using a cleavable self-aggregating tag. Scientific Reports, 2016, 6, 35430.	1.6	10
58	Recombinant production of medium- to large-sized peptides in Escherichia coli using a cleavable self-aggregating tag. Microbial Cell Factories, 2016, 15, 136.	1.9	27
59	An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Archives of Biochemistry and Biophysics, 2016, 612, 57-77.	1.4	58
60	Current strategies for protein production and purification enabling membrane protein structural biology. Biochemistry and Cell Biology, 2016, 94, 507-527.	0.9	96
61	Npro fusion technology: On-column complementation to improve efficiency in biopharmaceutical production. Protein Expression and Purification, 2016, 120, 42-50.	0.6	6
62	Efficient biosynthesis of a Cecropin A-melittin mutant in Bacillus subtilis WB700. Scientific Reports, 2017, 7, 40587.	1.6	24
63	Functional expression and purification of recombinant Hepcidin25 production in Escherichia coli using SUMO fusion technology. Gene, 2017, 610, 112-117.	1.0	20
64	A microscale bacterial cell disruption technique as first step for automated and miniaturized process development. Process Biochemistry, 2017, 59, 207-215.	1.8	8
65	Application of an E. coli signal sequence as a versatile inclusion body tag. Microbial Cell Factories, 2017, 16, 50.	1.9	48
66	A cleavable selfâ€assembling tag strategy for preparing proteins and peptides with an authentic Nâ€ŧerminus. Biotechnology Journal, 2017, 12, 1600656.	1.8	21
67	Integrated process development—a robust, rapid method for inclusion body harvesting and processing at the microscale level. Preparative Biochemistry and Biotechnology, 2017, 47, 874-880.	1.0	2
68	Inteins as tools for tagless and traceless protein purification. Journal of Chemical Technology and Biotechnology, 2018, 93, 1827-1835.	1.6	25
69	Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. International Journal of Biological Macromolecules, 2018, 106, 803-822.	3.6	245
70	Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins. Critical Reviews in Biotechnology, 2018, 38, 729-744.	5.1	18
71	Inclusion Body Bead Size in E. coli Controlled by Physiological Feeding. Microorganisms, 2018, 6, 116.	1.6	21
72	Custom made inclusion bodies: impact of classical process parameters and physiological parameters on inclusion body quality attributes. Microbial Cell Factories, 2018, 17, 148.	1.9	47
73	Direct Immunoassay for Facile and Sensitive Detection of Small Molecule Aflatoxin B ₁ based on Nanobody. Chemistry - A European Journal, 2018, 24, 9869-9876.	1.7	57
74	Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3). Bioengineering, 2018, 5, 1.	1.6	90

#	Article	IF	CITATIONS
75	Using ¹ H ^N amide temperature coefficients to define intrinsically disordered regions: An alternative NMR method. Protein Science, 2018, 27, 1821-1830.	3.1	5
76	Boosting Recombinant Inclusion Body Production—From Classical Fed-Batch Approach to Continuous Cultivation. Frontiers in Bioengineering and Biotechnology, 2019, 7, 297.	2.0	19
77	A new vector coupling ligation-independent cloning with sortase a fusion for efficient cloning and one-step purification of tag-free recombinant proteins. Protein Expression and Purification, 2019, 161, 1-7.	0.6	3
78	Monitoring and control strategies for inclusion body production in E. coli based on glycerol consumption. Journal of Biotechnology, 2019, 296, 75-82.	1.9	15
79	A method of predicting the in vitro fibril formation propensity of Aβ40 mutants based on their inclusion body levels in E. coli. Scientific Reports, 2019, 9, 3680.	1.6	6
80	Perspectives of inclusion bodies for bio-based products: curse or blessing?. Applied Microbiology and Biotechnology, 2019, 103, 1143-1153.	1.7	45
81	Development of INSOLâ€ŧag for proteomeâ€wide protein handling and its application in protein array analysis. Genes To Cells, 2020, 25, 41-53.	0.5	0
82	Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnology Advances, 2020, 45, 107653.	6.0	30
83	Spy chemistryâ€enabled protein directional immobilization and protein purification. Biotechnology and Bioengineering, 2020, 117, 2923-2932.	1.7	19
84	Mutagenesis-Based Characterization and Improvement of a Novel Inclusion Body Tag. Frontiers in Bioengineering and Biotechnology, 2020, 7, 442.	2.0	4
85	FGF21 Normalizes Plasma Glucose in Mouse Models of Type 1 Diabetes and Insulin Receptor Dysfunction. Endocrinology, 2021, 162, .	1.4	6
86	Cascaded processing enables continuous upstream processing with E. coli BL21(DE3). Scientific Reports, 2021, 11, 11477.	1.6	2
87	mem-iLID, a fast and economic protein purification method. Bioscience Reports, 2021, 41, .	1.1	3
88	RBD-Modified Bacterial Vesicles Elicited Potential Protective Immunity against SARS-CoV-2. Nano Letters, 2021, 21, 5920-5930.	4.5	17
89	PROFICS: A bacterial selection system for directed evolution of proteases. Journal of Biological Chemistry, 2021, 297, 101095.	1.6	3
90	Purification and HDL-like particle formation of apolipoprotein A-I after co-expression with the EDDIE mutant of Npro autoprotease. Protein Expression and Purification, 2021, 187, 105946.	0.6	2
92	Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods in Molecular Biology, 2015, 1258, 27-44.	0.4	29
93	Cleavable Self-Aggregating Tags (cSAT) for Protein Expression and Purification. Methods in Molecular Biology, 2015, 1258, 65-78.	0.4	9

#	ARTICLE	IF	CITATIONS
94	Fusion tags to enhance heterologous protein expression. Applied Microbiology and Biotechnology, 2020, 104, 2411-2425.	1.7	94
95	INCLUSION BODIES IN BIOTECHNOLOGY. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 9, 1191-1196.	0.4	7
96	Pestivirus Npro Endopeptidase. , 2013, , 2482-2485.		0
97	Cryoprotective activities of FK20, a human genome-derived intrinsically disordered peptide against cryosensitive enzymes without a stereospecific molecular interaction. PeerJ Physical Chemistry, 0, 3, e20.	0.0	0
98	Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods in Molecular Biology, 2022, 2406, 35-64.	0.4	3
99	Personalized cancer vaccines from bacteria-derived outer membrane vesicles with antibody-mediated persistent uptake by dendritic cells. Fundamental Research, 2022, 2, 23-36.	1.6	10
103	Strategies for improving antimicrobial peptide production. Biotechnology Advances, 2022, 59, 107968.	6.0	31
104	Fundamental insights in earlyâ€stage inclusion body formation. Microbial Biotechnology, 0, , .	2.0	4
105	Functional analysis of the Nâ€ŧerminal region of acetylxylan esterase from <i>Caldanaerobacter subterraneus</i> subsp. <i>tengcongensis</i> . FEBS Open Bio, 0, , .	1.0	1
106	Inclusion Bodies: Status Quo and Perspectives. Methods in Molecular Biology, 2023, , 1-13.	0.4	2