A QTL for rice grain width and weight encodes a previou biquitin ligase

Nature Genetics 39, 623-630 DOI: 10.1038/ng2014

Citation Report

#	Article	IF	CITATIONS
1	Strategies for developing Green Super Rice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16402-16409.	3.3	653
2	A quantitative trait locus regulating rice grain width. Nature Genetics, 2007, 39, 583-584.	9.4	9
3	Recent Progress on Rice Genetics in China. Journal of Integrative Plant Biology, 2007, 49, 776-790.	4.1	16
4	New insights into the history of rice domestication. Trends in Genetics, 2007, 23, 578-587.	2.9	443
5	Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics and Genomes, 2008, 4, 647-661.	0.6	182
6	Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativaÂĂ—ÂO. rufipogon cross. Theoretical and Applied Genetics, 2008, 116, 613-622.	1.8	142
7	Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theoretical and Applied Genetics, 2008, 116, 881-890.	1.8	140
8	Genetic dissection of a thousand-grain weight quantitative trait locus on rice chromosome 1. Science Bulletin, 2008, 53, 2326-2332.	4.3	21
9	Toward An Optimum Return From Crop Plants. Rice, 2008, 1, 135-143.	1.7	14
10	Comparative Analysis of Rice Genome Sequence to Understand the Molecular Basis of Genome Evolution. Rice, 2008, 1, 119-126.	1.7	6
11	SSR based linkage and mapping analysis of <i>C</i> , a yellow cocoon gene in the silkworm, <i>Bombyx mori</i> . Insect Science, 2008, 15, 399-404.	1.5	9
12	Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research, 2008, 18, 1199-1209.	5.7	583
13	Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40, 761-767.	9.4	1,666
14	Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40, 1023-1028.	9.4	794
15	Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40, 1370-1374.	9.4	706
16	Genetic approaches to crop improvement: responding to environmental and population changes. Nature Reviews Genetics, 2008, 9, 444-457.	7.7	396
17	Mapping quantitative trait loci associated with arsenic accumulation in rice (<i>Oryza sativa</i>). New Phytologist, 2008, 177, 350-356.	3.5	108
18	Applying modelling experiences from the past to shape crop systems biology: the need to converge crop physiology and functional genomics. New Phytologist, 2008, 179, 629-642.	3.5	81

#	Article	IF	CITATIONS
19	Towards molecular breeding of reproductive traits in cereal crops. Plant Biotechnology Journal, 2008, 6, 529-559.	4.1	34
20	Yield assessment of integumentâ€led seed growth following targeted repair of <i>auxin response factor 2</i> . Plant Biotechnology Journal, 2008, 6, 758-769.	4.1	33
21	Genetic variation in rice. Current Opinion in Plant Biology, 2008, 11, 144-148.	3.5	23
22	Identifying and exploiting grain yield genes in rice. Current Opinion in Plant Biology, 2008, 11, 209-214.	3.5	255
23	Conditional and unconditional mapping of quantitative trait loci underlying plant height and tiller number in rice (Oryza sativa L.) grown at two nitrogen levels. Progress in Natural Science: Materials International, 2008, 18, 1539-1547.	1.8	18
24	Prospect of the QTL-qSB-9Tq utilized in molecular breeding program of japonica rice against sheath blight. Journal of Genetics and Genomics, 2008, 35, 499-505.	1.7	47
25	Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice. Journal of Genetics and Genomics, 2008, 35, 715-721.	1.7	4
26	Fine Mapping of Spr3, a Locus for Spreading Panicle from African Cultivated Rice (Oryza glaberrima) Tj ETQq1 1	0.784314 3.9314	rgBT /Overlo
27	Quantitative Trait Loci for Grain Yield and Adaptation of Durum Wheat (<i>Triticum durum</i> Desf.) Across a Wide Range of Water Availability. Genetics, 2008, 178, 489-511.	1.2	397
28	COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in <i>Arabidopsis </i> . Plant Cell, 2008, 20, 292-306.	3.1	355
29	Quantitative Trait Loci (QTL) Analysis For Rice Grain Width and Fine Mapping of an Identified QTL Allele <i>gw-5</i> in a Recombination Hotspot Region on Chromosome 5. Genetics, 2008, 179, 2239-2252.	1.2	133
30	Molecular Markers and Their Use in Markerâ€Assisted Selection in Rice. Crop Science, 2008, 48, 1266-1276.	0.8	222
31	Rice Genome Research: Current Status and Future Perspectives. Plant Genome, 2008, 1, .	1.6	7
32	Highly Specific Gene Silencing by Artificial miRNAs in Rice. PLoS ONE, 2008, 3, e1829.	1.1	295
33	Intellectual Property Protection for Plant Varieties in the 21st Century. Crop Science, 2008, 48, 1277-1290.	0.8	17
34	Local maternal control of seed size by <i>KLUH</i> / <i>CYP78A5</i> -dependent growth signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20115-20120.	3.3	230
35	Unraveling the Complex Trait of Crop Yield With Quantitative Trait Loci Mapping in <i>Brassica napus</i> . Genetics, 2009, 182, 851-861.	1.2	362
36	Towards the Understanding of Complex Traits in Rice: Substantially or Superficially?. DNA Research, 2009, 16, 141-154.	1.5	119

	CITATION	Report	
#	Article	IF	Citations
37	PosMed-plus: An Intelligent Search Engine that Inferentially Integrates Cross-Species Information Resources for Molecular Breeding of Plants. Plant and Cell Physiology, 2009, 50, 1249-1259.	1.5	17
38	Loss of 26S Proteasome Function Leads to Increased Cell Size and Decreased Cell Number in Arabidopsis Shoot Organs Â. Plant Physiology, 2009, 150, 178-189.	2.3	117
39	Natural Variation in an ABC Transporter Gene Associated with Seed Size Evolution in Tomato Species. PLoS Genetics, 2009, 5, e1000347.	1.5	63
40	DNA changes tell us about rice domestication. Current Opinion in Plant Biology, 2009, 12, 185-192.	3.5	77
41	QTL mapping of grain quality traits in rice. Journal of Cereal Science, 2009, 50, 145-151.	1.8	87
42	Identification and characterization of a novel Waxy allele from a Yunnan rice landrace. Plant Molecular Biology, 2009, 71, 609-626.	2.0	95
43	Development of gene-tagged markers for quantitative trait loci underlying rice yield components. Euphytica, 2009, 169, 215-226.	0.6	33
44	Review and prospect of transgenic rice research. Science Bulletin, 2009, 54, 4049-4068.	1.7	46
45	Genetic Relationships Among Panicle Characteristics of Rice (Oryza sativa L.) Using Unconditional and Conditional QTL Analyses. Journal of Plant Biology, 2009, 52, 259-267.	0.9	11
46	Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds. Theoretical and Applied Genetics, 2009, 118, 1035-1044.	1.8	54
47	Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza) Tj ETC	2q0 0 0 rgBT	Overlock 10
48	Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff.). Theoretical and Applied Genetics, 2009, 119, 827-836.	1.8	40
49	The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460, 1026-1030.	13.7	840
50	Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009, 41, 494-497.	9.4	858
51	Genetic Analysis and Fine Mapping of Two Genes for Grain Shape and Weight in Rice. Journal of Integrative Plant Biology, 2009, 51, 45-51.	4.1	58
52	Overâ€expression of the rice <i>LRK1</i> gene improves quantitative yield components. Plant Biotechnology Journal, 2009, 7, 611-620.	4.1	57
53	Deletion in a Quantitative Trait Gene <i>qPE9-1</i> Associated With Panicle Erectness Improves Plant Architecture During Rice Domestication. Genetics, 2009, 183, 315-324.	1.2	180
54	Evolutionary History of <i>GS3</i> , a Gene Conferring Grain Length in Rice. Genetics, 2009, 182, 1323-1334.	1.2	305

	CITATION REP	PORT	
#	Article	IF	CITATIONS
55	Not just a grain of rice: the quest for quality. Trends in Plant Science, 2009, 14, 133-139.	4.3	643
56	Characterization of the genome expression trends in the heading-stage panicle of six rice lineages. Genomics, 2009, 93, 169-178.	1.3	11
57	Mapping and Interaction of QTLs for Thousand-Grain Weight and Percentage of Grains with Chalkiness in Rice. Acta Agronomica Sinica, 2009, 35, 255-261.	0.3	5
58	What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?. Plant Cell, 2009, 21, 1877-1896.	3.1	401
59	Avoidance of Linkage Drag Between Blast Resistance Gene and the QTL Conditioning Spikelet Fertility Based on Genotype Selection Against Heading Date in Rice. Rice Science, 2009, 16, 21-26.	1.7	15
60	QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum) Tj ETQq1	1,0,7843 1.0	14 rgBT /O
61	Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theoretical and Applied Genetics, 2010, 120, 753-763.	1.8	126
62	A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theoretical and Applied Genetics, 2010, 120, 875-893.	1.8	152
63	Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2010, 120, 933-942.	1.8	54
64	Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum) Tj ETQq1	1 0.7843 1.8	14 rgBT /O 112
65	Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics, 2010, 121, 475-487.	1.8	172
66	Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4 + concentrations in hydroponic conditions. Theoretical and Applied Genetics, 2010, 121, 535-547.	1.8	107
67	A Quantitative Trait Locus for Chlorophyll Content and its Association with Leaf Photosynthesis in Rice. Rice, 2010, 3, 172-180.	1.7	99
68	Consilience of genetics and archaeobotany in the entangled history of rice. Archaeological and Anthropological Sciences, 2010, 2, 115-131.	0.7	319
69	Fine mapping of grain weight QTLs using near isogenic lines from a Cross between Oryza sativa and O. grandiglumis. Journal of Crop Science and Biotechnology, 2010, 13, 7-12.	0.7	2
70	Identification of main effects, epistatic effects and their environmental interactions of QTLs for yield traits in rice. Genes and Genomics, 2010, 32, 37-45.	0.5	15
71	Identification of quantitative trait loci for physical and chemical properties of rice grain. Plant Biotechnology Reports, 2010, 4, 61-73.	0.9	16
72	Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis. Biotechnology Letters, 2010, 32, 1753-1763.	1.1	17

#	Article	IF	CITATIONS
73	GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max). Molecular Biology Reports, 2010, 37, 685-693.	1.0	30
74	Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genetics and Genomes, 2010, 6, 25-36.	0.6	105
75	Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics, 2010, 11, 656.	1.2	96
76	Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biology, 2010, 10, 143.	1.6	179
77	Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics, 2010, 11, 16.	2.7	162
78	OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 2010, 42, 545-549.	9.4	1,187
79	Comparative mapping of QTLs determining glume, pistil and stamen sizes in cultivated rice (<i>Oryza) Tj ETQq0 (</i>	0 rgBT /C	Verlock 10 T

80	QTL analysis for heading date and yield traits using recombinant inbred lines of <i>indica</i> rice grown in different cropping seasons. Plant Breeding, 2010, 129, 676-682.	1.0	10
81	Germplasm-regression-combined marker-trait association identification in plants. African Journal of Biotechnology, 2010, 9, 573-580.	0.3	12
82	A Novel Kinesin 13 Protein Regulating Rice Seed Length. Plant and Cell Physiology, 2010, 51, 1315-1329.	1.5	125
83	High-Throughput Genetic Mapping of Mutants via Quantitative Single Nucleotide Polymorphism Typing. Genetics, 2010, 184, 19-26.	1.2	66
84	Halophyte Improvement for a Salinized World. Critical Reviews in Plant Sciences, 2010, 29, 329-359.	2.7	151
85	Construction of a new set of rice chromosome segment substitution lines and identification of grain weight and related traits QTLs. Breeding Science, 2010, 60, 305-313.	0.9	40
86	Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions. Critical Reviews in Biotechnology, 2010, 30, 192-199.	5.1	8
87	Comparison Between QTLs for Chlorophyll Content and Genes Controlling Chlorophyll Biosynthesis and Degradation in Japonica Rice. Acta Agronomica Sinica, 2010, 36, 376-384.	0.3	8
88	Mapping QTLs for Grain Weight and Shape Using Four Sister Near Isogenic Lines of Rice. Acta Agronomica Sinica, 2010, 36, 1310-1317.	0.3	3
89	Linking differential domain functions of the CS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19579-19584.	3.3	580
90	Genetic and Molecular Bases of Rice Yield. Annual Review of Plant Biology, 2010, 61, 421-442.	8.6	762

		CITATION R	EPORT	
#	Article		IF	CITATIONS
91	Genetic perspectives on crop domestication. Trends in Plant Science, 2010, 15, 529-53	37.	4.3	321
92	Mapping of qGL7-2, a grain length QTL on chromosome 7 of rice. Journal of Genetics a 2010, 37, 523-531.	nd Genomics,	1.7	46
93	Toward understanding genetic mechanisms of complex traits in rice. Journal of Genetic Genomics, 2010, 37, 653-666.	:s and	1.7	34
94	Cloning and Expression Level Analysis of Two BnaANT Candidate Genes in Brassica nap Sciences in China, 2010, 9, 488-496.	us. Agricultural	0.6	6
95	Identification of Quantitative Trait Loci for Grain Traits in Japonica Rice. Agricultural Sc China, 2010, 9, 929-936.	iences in	0.6	15
96	Relationship Between Heterosis and Parental Genetic Distance Based on Molecular Ma Functional Genes Related to Yield Traits in Rice. Rice Science, 2010, 17, 288-295.	rkers for	1.7	33
97	Transgenics for Increasing Productivity of Crops. Journal of Plant Biochemistry and Bio 2010, 19, 1-7.	technology,	0.9	9
98	<i>DTH8</i> Suppresses Flowering in Rice, Influencing Plant Height and Yield Potentia Â. Plant Physiology, 2010, 153, 1747-1758.	l Simultaneously	2.3	549
99	A Genetic Framework for Grain Size and Shape Variation in Wheat Â. Plant Cell, 2010,	22, 1046-1056.	3.1	397
100	Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza Journal of Experimental Botany, 2011, 62, 4943-4954.	a sativa).	2.4	95
101	Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance ag Magnaporthe oryzae by modifying the cell wall defence. Cell Research, 2011, 21, 835-	ainst 348.	5.7	80
102	Natural variation in GS5 plays an important role in regulating grain size and yield in rice Genetics, 2011, 43, 1266-1269.	e. Nature	9.4	821
103	Developmental Genetics and New Sequencing Technologies: The Rise of Nonmodel Or Developmental Cell, 2011, 21, 65-76.	ganisms.	3.1	24
104	Evaluation of yield performance in rice near-isogenic lines with increased spikelet numl Research, 2011, 120, 68-75.	per. Field Crops	2.3	68
105	Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining resistance. Journal of Experimental Botany, 2011, 62, 469-486.	lodging	2.4	474
106	Development of upland rice introgression lines and identification of QTLsÂfor basal roo under different water regimes. Journal of Genetics and Genomics, 2011, 38, 547-556.	pt thickness	1.7	21
107	Characterization of a single recessive yield trait mutant with elevated endogenous ABA concentration and deformed grains, spikelets and leaves. Plant Science, 2011, 180, 30	4 16-312.	1.7	10
108	The role of QTLs in the breeding of high-yielding rice. Trends in Plant Science, 2011, 16	, 319-326.	4.3	171

#	Article	IF	CITATIONS
109	QTL Detection for Rice Grain Shape Using Chromosome Single Segment Substitution Lines. Rice Science, 2011, 18, 273-278.	1.7	3
110	Functional Genomics of Rice Pollen and Seed Development by Genome-wide Transcript Profiling and <i>Ds</i> Insertion Mutagenesis. International Journal of Biological Sciences, 2011, 7, 28-40.	2.6	8
111	Molecular mapping of quantitative trait loci for kernel morphology traits in a non-1BL.1RS×1BL.1RS wheat cross. Crop and Pasture Science, 2011, 62, 625.	0.7	20
112	A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets. Breeding Science, 2011, 61, 17-25.	0.9	45
113	Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS, is a possible target of human selection during domestication to diversify flowering times of cultivated rice. Genes and Genetic Systems, 2011, 86, 175-182.	0.2	44
114	Characterizing homologues of crop domestication genes in poorly described wild relatives by highâ€throughput sequencing of whole genomes. Plant Biotechnology Journal, 2011, 9, 1131-1140.	4.1	28
115	Modelling the size and composition of fruit, grain and seed by processâ€based simulation models. New Phytologist, 2011, 191, 601-618.	3.5	42
116	Identification of a Stable Quantitative Trait Locus for Percentage Grains with White Chalkiness in Rice (<i>Oryza sativa</i>). Journal of Integrative Plant Biology, 2011, 53, 598-607.	4.1	68
117	Making the most of â€~omics' for crop breeding. Trends in Biotechnology, 2011, 29, 33-40.	4.9	199
118	Exploring molecular backgrounds of quality traits in rice by predictive models based on high-coverage metabolomics. BMC Systems Biology, 2011, 5, 176.	3.0	37
119	Physiological characterization of introgression lines derived from an indica rice cultivar, IR64, adapted to drought and water-saving irrigation. Field Crops Research, 2011, 123, 130-138.	2.3	44
120	Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice. Euphytica, 2011, 180, 261-271.	0.6	28
121	Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Planta, 2011, 234, 347-361.	1.6	72
122	Diverse approaches to achieving grain yield in wheat. Functional and Integrative Genomics, 2011, 11, 37-48.	1.4	35
123	Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 122, 211-223.	1.8	392
124	Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theoretical and Applied Genetics, 2011, 122, 327-340.	1.8	134
125	Mapping quantitative trait loci for seed size traits in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 2011, 122, 581-594.	1.8	82
126	QTL consistency and meta-analysis for grain yield components in three generations in maize. Theoretical and Applied Genetics, 2011, 122, 771-782.	1.8	71

#	Article	IF	CITATIONS
127	Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theoretical and Applied Genetics, 2011, 122, 905-913.	1.8	97
128	QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theoretical and Applied Genetics, 2011, 122, 1305-1320.	1.8	143
129	Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theoretical and Applied Genetics, 2011, 123, 465-474.	1.8	66
130	Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2011, 123, 859-867.	1.8	75
131	Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123, 1055-1063.	1.8	125
132	Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theoretical and Applied Genetics, 2011, 123, 1173-1181.	1.8	80
133	Quantitative trait loci for rice yield-related traits using recombinant inbred lines derived from two diverse cultivars. Journal of Genetics, 2011, 90, 209-215.	0.4	63
134	Studies on Ancient Rice—Where Botanists, Agronomists, Archeologists, Linguists, and Ethnologists Meet. Rice, 2011, 4, 178-183.	1.7	18
135	Genetic and Molecular Insights into the Enhancement of Rice Yield Potential. Journal of Plant Biology, 2011, 54, 1-9.	0.9	48
136	Fine mapping of grain weight QTL, tgw11 using near isogenic lines from a cross between Oryza sativa and O. grandiglumis. Genes and Genomics, 2011, 33, 259-265.	0.5	21
137	Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonicarice. BMC Plant Biology, 2011, 11, 10.	1.6	130
139	A Major QTL, Ghd8, Plays Pleiotropic Roles in Regulating Grain Productivity, Plant Height, and Heading Date in Rice. Molecular Plant, 2011, 4, 319-330.	3.9	498
140	Genome-Wide Association Study Identifies Candidate Genes That Affect Plant Height in Chinese Elite Maize (Zea mays L.) Inbred Lines. PLoS ONE, 2011, 6, e29229.	1.1	110
141	VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defence response of grapevine. Journal of Experimental Botany, 2011, 62, 5671-5682.	2.4	43
142	Detection of epistatic interaction of two QTLs, gw8.1 and gw9.1, underlying grain weight using nearly isogenic lines in rice. Breeding Science, 2011, 61, 69-75.	0.9	8
143	Detection of QTLs for grain length from large grain rice (Oryza sativa L.). Breeding Science, 2011, 61, 269-274.	0.9	32
144	Genetic Effects of Backgroundâ€Independent Loci for Grain Weight and Shape Identified using Advanced Reciprocal Introgression Lines from Lemont × Teqing in Rice. Crop Science, 2011, 51, 2525-2534.	0.8	19
145	<i>SmartGrain</i> : High-Throughput Phenotyping Software for Measuring Seed Shape through Image Analysis Â. Plant Physiology, 2012, 160, 1871-1880.	2.3	325

#	Article	IF	CITATIONS
146	An atypical bHLH protein encoded by <i>POSITIVE REGULATOR OF GRAIN LENGTH 2</i> is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breeding Science, 2012, 62, 133-141.	0.9	84
147	The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. Journal of Experimental Botany, 2012, 63, 3727-3740.	2.4	123
148	Molecular and environmental factors determining grain quality in rice. Food and Energy Security, 2012, 1, 111-132.	2.0	118
149	Overexpression of a Rice TIFY Gene Increases Grain Size through Enhanced Accumulation of Carbohydrates in the Stem. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2129-2134.	0.6	41
150	Identification of Quantitative Trait Loci for Lipid Metabolism in Rice Seeds. Molecular Plant, 2012, 5, 865-875.	3.9	50
151	Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica. Journal of Experimental Botany, 2012, 63, 6457-6465.	2.4	9
152	<i>SHORT GRAIN1</i> Decreases Organ Elongation and Brassinosteroid Response in Rice Â. Plant Physiology, 2012, 158, 1208-1219.	2.3	90
153	Evidence from principal component analysis for improvement of grain shape- and spikelet morphology-related traits after hexaploid wheat speciation. Genes and Genetic Systems, 2012, 87, 299-310.	0.2	36
154	Loose Plant Architecture1, an INDETERMINATE DOMAIN Protein Involved in Shoot Gravitropism, Regulates Plant Architecture in Rice Â. Plant Physiology, 2012, 161, 317-329.	2.3	150
155	Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. Journal of Experimental Botany, 2012, 63, 5945-5955.	2.4	90
156	Can heterotrimeric G proteins help to feed the world?. Trends in Plant Science, 2012, 17, 563-568.	4.3	111
157	Rare allele of <i>OsPPKL1</i> associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21534-21539.	3.3	426
158	SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theoretical and Applied Genetics, 2012, 125, 1057-1068.	1.8	139
159	The contribution of intersubspecific hybridization toÂthe breeding ofÂsuper-high-yielding japonica rice in northeast China. Theoretical and Applied Genetics, 2012, 125, 1149-1157.	1.8	39
160	Allelic variation for a candidate gene for GS7, responsible for grain shape in rice. Theoretical and Applied Genetics, 2012, 125, 1303-1312.	1.8	49
161	Mapping and characterization of the major quantitative trait locus qSS7 associated with increased length and decreased width of rice seeds. Theoretical and Applied Genetics, 2012, 125, 1717-1726.	1.8	62
162	Fine mapping of a dominant minute-grain gene, Mi3, in rice. Molecular Breeding, 2012, 30, 1045-1051.	1.0	5
163	Early rice exploitation in the lower Yangzi valley: What are we missing?. Holocene, 2012, 22, 613-621.	0.9	32

#	Article	IF	CITATIONS
164	<i>TaCKX6â€Ð1</i> , the ortholog of rice <i>OsCKX2</i> , is associated with grain weight in hexaploid wheat. New Phytologist, 2012, 195, 574-584.	3.5	219
165	Dissecting the Genetic Basis of Extremely Large Grain Shape in Rice Cultivar †JZ1560'. Journal of Genetics and Genomics, 2012, 39, 325-333.	1.7	23
166	A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L). Journal of Genetics and Genomics, 2012, 39, 335-350.	1.7	35
167	Detection of QTLs with main, epistatic and QTL×environment interaction effects for rice grain appearance quality traits using two populations of backcross inbred lines (BILs). Field Crops Research, 2012, 135, 97-106.	2.3	12
168	Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2012, 44, 32-39.	9.4	1,030
169	Transcriptional profile analysis of E3 ligase and hormone-related genes expressed during wheat grain development. BMC Plant Biology, 2012, 12, 35.	1.6	29
170	An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnology for Biofuels, 2012, 5, 42.	6.2	37
171	Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield-related genes. Rice, 2012, 5, 37.	1.7	45
172	A Kelch Motif ontaining Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Journal of Integrative Plant Biology, 2012, 54, 979-990.	4.1	83
173	Plant Nitrogen Assimilation and Use Efficiency. Annual Review of Plant Biology, 2012, 63, 153-182.	8.6	1,446
174	The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 2012, 22, 1666-1680.	5.7	334
175	Factors Affected BC1F1 Size for Development of Genome-Wide Introgression Lines. Acta Agronomica Sinica, 2012, 38, 50-54.	0.3	0
176	Fine Mapping of qTGW3-1, a QTL for 1000-Grain Weight on Chromosome 3 in Rice. Journal of Integrative Agriculture, 2012, 11, 879-887.	1.7	15
177	Rice functional genomics research: Progress and implications for crop genetic improvement. Biotechnology Advances, 2012, 30, 1059-1070.	6.0	100
178	Genome-wide genetic changes during modern breeding of maize. Nature Genetics, 2012, 44, 812-815.	9.4	352
179	Identification of candidate genes of QTLs for seed weight in Brassica napus through comparative mapping among Arabidopsis and Brassica species. BMC Genetics, 2012, 13, 105.	2.7	54
180	Crop Traits crop/cropping trait : Gene Isolation crop/cropping trait gene isolation. , 2012, , 2689-2720.		0
181	Identifying Loci Influencing 1,000-Kernel Weight in Wheat by Microsatellite Screening for Evidence of Selection during Breeding. PLoS ONE, 2012, 7, e29432.	1.1	116

#	Article	IF	CITATIONS
182	The Rice HGW Gene Encodes a Ubiquitin-Associated (UBA) Domain Protein That Regulates Heading Date and Grain Weight. PLoS ONE, 2012, 7, e34231.	1.1	83
183	Antagonistic Actions of HLH/bHLH Proteins Are Involved in Grain Length and Weight in Rice. PLoS ONE, 2012, 7, e31325.	1.1	129
184	Overexpression of a basic helix–loop–helix gene Antagonist of PGL1 (APG) decreases grain length of rice. Plant Biotechnology, 2012, 29, 65-69.	0.5	9
185	Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 2012, 44, 950-954.	9.4	1,004
186	Fine mapping of grain length QTLs on chromosomes 1 and 7 in Basmati rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology, 2012, 21, 157-166.	0.9	43
187	Functional markers in wheat: current status and future prospects. Theoretical and Applied Genetics, 2012, 125, 1-10.	1.8	188
188	Improving rice yield and quality by QTL pyramiding. Molecular Breeding, 2012, 29, 903-913.	1.0	30
189	Genomeâ€wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. Plant Journal, 2012, 69, 126-140.	2.8	106
190	A Sequential Quantitative Trait Locus Fineâ€Mapping Strategy Using Recombinantâ€Derived Progeny ^F . Journal of Integrative Plant Biology, 2012, 54, 228-237.	4.1	55
191	Yieldâ€related QTLs and Their Applications in Rice Genetic Improvement ^F . Journal of Integrative Plant Biology, 2012, 54, 300-311.	4.1	94
192	Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant Journal, 2012, 70, 624-636.	2.8	173
193	Maternal control of seed size by <i>EOD3/CYP78A6</i> in <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 70, 929-939.	2.8	150
194	A comparative study of seed yield parameters in <i>Arabidopsis thaliana</i> mutants and transgenics. Plant Biotechnology Journal, 2012, 10, 488-500.	4.1	42
195	Identification of Quantitative Trait Loci for Bacterial Blight Resistance Derived from <i>Oryza meyeriana</i> and Agronomic Traits in Recombinant Inbred Lines of <i>Oryza sativa</i> . Journal of Phytopathology, 2012, 160, 461-468.	0.5	15
196	Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics, 2012, 124, 585-596.	1.8	42
197	TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Molecular Biology, 2012, 78, 351-359.	2.0	50
198	Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308. Euphytica, 2012, 184, 1-13.	0.6	12
199	Seed size: a priority trait in cereal crops. Physiologia Plantarum, 2013, 147, 113-120.	2.6	80

#	Article	IF	CITATIONS
200	Dissecting the genetic basis of physiological processes determining maize kernel weight using the IBM (B73×Mo17) Syn4 population. Field Crops Research, 2013, 145, 33-43.	2.3	28
201	Gene identification using rice genome sequences. Genes and Genomics, 2013, 35, 415-424.	0.5	3
202	Quantitative trait loci for grain-quality traits across a rice F2 population and backcross inbred lines. Euphytica, 2013, 192, 25-35.	0.6	10
203	Meta-analysis combined with syntenic metaQTL mining dissects candidate loci for maize yield. Molecular Breeding, 2013, 31, 601-614.	1.0	33
204	Diagnostics in Plant Breeding. , 2013, , .		2
205	QTL for spikelet number from a high-yielding rice variety, Hoshiaoba, detected in an introgression line with the genetic background of an indica rice variety, IR64. Euphytica, 2013, 192, 97-106.	0.6	10
206	Molecular characterization and functional analysis of "fruit-weight2.2-like―gene family in rice. Planta, 2013, 238, 643-655.	1.6	30
207	Haplotype structure in grain weight gene GW2 and its association with grain characteristics in rice. Euphytica, 2013, 192, 55-61.	0.6	19
208	Microarray-based screening of the microRNAs associated with caryopsis development in Oryza sativa. Biologia Plantarum, 2013, 57, 255-261.	1.9	4
209	Functional genomics based understanding of rice endosperm development. Current Opinion in Plant Biology, 2013, 16, 236-246.	3.5	74
210	Hd-q, a novel allele of Ef7 from a Chinese rice landrace, confers weak photoperiod sensitivity and improves local adaptability and yield potential. Molecular Breeding, 2013, 32, 651-662.	1.0	18
211	A non-synonymous SNP within the isopentenyl transferase 2 locus is associated with kernel weight in Chinese maize inbreds (Zea mays L.). BMC Plant Biology, 2013, 13, 98.	1.6	26
212	Quantitative trait loci and candidate genes for yield and related traits in Madhukar x Swarna RIL population of rice. Journal of Crop Science and Biotechnology, 2013, 16, 35-44.	0.7	7
213	Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 2013, 31, 848-852.	9.4	401
214	Crop crop/cropping Responses to Available Soil Water crop/cropping Responses to available soil water. , 2013, , 615-637.		0
215	<scp><i>GS</i></scp> <i>6</i> , A Member of the <scp>GRAS</scp> Gene Family, Negatively Regulates Grain Size in Rice. Journal of Integrative Plant Biology, 2013, 55, 938-949.	4.1	99
216	QTL mapping and correlation analysis for 1000-grain weight and percentage of grains with chalkiness in rice. Journal of Genetics, 2013, 92, 281-287.	0.4	12
217	Mapping quantitative trait loci (QTL) for grain size in rice using a RIL population from BasmatiÂ×Âindica cross showing high segregation distortion. Euphytica, 2013, 194, 401-416.	0.6	30

#	Article	IF	CITATIONS
218	Natural variation and artificial selection in four genes determine grain shape in rice. New Phytologist, 2013, 200, 1269-1280.	3.5	70
219	Molecular characterization of VvSDIR1 from Vitis vinifera and its functional analysis by heterologous expression in Nicotiana tabacum. Protoplasma, 2013, 250, 565-576.	1.0	14
220	Identification and characterization of <i>Os<scp>EBS</scp></i> , a gene involved in enhanced plant biomass and spikelet number in rice. Plant Biotechnology Journal, 2013, 11, 1044-1057.	4.1	23
221	QTL mapping of grain weight in rice and the validation of the QTL qTGW3.2. Gene, 2013, 527, 201-206.	1.0	45
222	QTL Mapping for Grain Size Traits Based on Extra-Large Grain Rice Line TD70. Rice Science, 2013, 20, 400-406.	1.7	25
223	Rice (Oryza sativa L.): Seed–Size Comparison and Cultivation in Ancient Korea. Economic Botany, 2013, 67, 378-386.	0.8	11
224	Resequencing rice genomes: an emerging new era of rice genomics. Trends in Genetics, 2013, 29, 225-232.	2.9	108
225	Simultaneous improvement and genetic dissection of grain yield and its related traits in a backbone parent of hybrid rice (Oryza sativa L.) using selective introgression. Molecular Breeding, 2013, 31, 181-194.	1.0	20
226	Fine mapping of GS2, a dominant gene for big grain rice. Crop Journal, 2013, 1, 160-165.	2.3	29
227	Control of Rice Embryo Development, Shoot Apical Meristem Maintenance, and Grain Yield by a Novel Cytochrome P450. Molecular Plant, 2013, 6, 1945-1960.	3.9	79
228	Quantitative trait locus analyses of ozone-induced grain yield reduction in rice. Environmental and Experimental Botany, 2013, 88, 100-106.	2.0	17
229	A near isogenic line of rice carrying chromosome segments containing OsSPS1 of Kasalath in the genetic background of Koshihikari produces an increased spikelet number per panicle. Field Crops Research, 2013, 149, 56-62.	2.3	12
230	Quantitative Trait Loci for Grain Chalkiness and Endosperm Transparency Detected in Three Recombinant Inbred Line Populations of Indica Rice. Journal of Integrative Agriculture, 2013, 12, 1-11.	1.7	26
231	<i>ZmGA3ox2</i> , a candidate gene for a major <scp>QTL</scp> , <scp><i>qPH3.1</i></scp> , for plant height in maize. Plant Journal, 2013, 73, 405-416.	2.8	138
232	A Bountiful Harvest: Genomic Insights into Crop Domestication Phenotypes. Annual Review of Plant Biology, 2013, 64, 47-70.	8.6	326
233	Molecular Diagnostics in Rice (Oryza sativa). , 2013, , 443-465.		0
234	Seed-Development Programs: A Systems Biology–Based Comparison Between Dicots and Monocots. Annual Review of Plant Biology, 2013, 64, 189-217.	8.6	196
235	Carrying Capacity for Aquaculture, Modeling Frameworks for Determination of. , 2013, , 417-448.		13

#	Article	IF	CITATIONS
237	Function of TaGW2-6A and its effect on grain weight in wheat (Triticum aestivum L.). Euphytica, 2013, 192, 347-357.	0.6	41
238	Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 2013, 45, 707-711.	9.4	500
239	BEAK-SHAPED GRAIN 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice. Science China Life Sciences, 2013, 56, 275-283.	2.3	36
240	Crop Traits crop/cropping trait : Gene Isolation crop/cropping trait gene isolation. , 2013, , 667-698.		0
241	Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica, 2013, 141, 247-254.	0.5	88
242	High-density linkage mapping of yield components and epistatic interactions in maize with doubled haploid lines from four crosses. Molecular Breeding, 2013, 32, 533-546.	1.0	12
243	Identification and validation of a yield-enhancing QTL cluster in rice (Oryza sativa L.). Euphytica, 2013, 192, 145-153.	0.6	9
244	Identification of quantitative trait loci for grain size and the contributions of major grain-size QTLs to grain weight in rice. Molecular Breeding, 2013, 31, 451-461.	1.0	20
245	Genetic bases of rice grain shape: so many genes, so little known. Trends in Plant Science, 2013, 18, 218-226.	4.3	358
246	QTL Mapping: Methodology and Applications in Cereal Breeding. , 2013, , 275-318.		18
247	Validation of gene based marker-QTL association for grain dimension traits in rice. Journal of Plant Biochemistry and Biotechnology, 2013, 22, 467-473.	0.9	12
248	Knockout of the VPS22 component of the ESCRT-II complex in rice (Oryza sativa L.) causes chalky endosperm and early seedling lethality. Molecular Biology Reports, 2013, 40, 3475-3481.	1.0	50
249	QTL Analysis and Map-Based Cloning of Salt Tolerance Gene in Rice. Methods in Molecular Biology, 2013, 956, 69-82.	0.4	6
250	Association mapping for seed size and shape traits in soybean cultivars. Molecular Breeding, 2013, 31, 785-794.	1.0	93
251	QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Rice, 2013, 6, 33.	1.7	54
253	<i>NAL1</i> allele from a rice landrace greatly increases yield in modern <i>indica</i> cultivars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20431-20436.	3.3	249
254	The Ubiquitin Receptor DA1 Interacts with the E3 Ubiquitin Ligase DA2 to Regulate Seed and Organ Size in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 3347-3359.	3.1	226

#	Article	IF	CITATIONS
256	Pleiotropic effects of the elongated glume gene P1 on grain and spikelet shape-related traits in tetraploid wheat. Euphytica, 2013, 194, 207-218.	0.6	18
258	Grain Quality. , 2013, , 237-254.		8
259	QTL analysis for eating quality-related traits in an F _{2:3} population derived from waxy corn × sweet corn cross. Breeding Science, 2013, 63, 325-332.	0.9	21
260	Multiple and independent origins of short seeded alleles of <i>GS3</i> in rice. Breeding Science, 2013, 63, 77-85.	0.9	44
261	Crop plants as models for understanding plant adaptation and diversification. Frontiers in Plant Science, 2013, 4, 290.	1.7	80
262	Genetic control of inflorescence architecture during rice domestication. Nature Communications, 2013, 4, 2200.	5.8	134
263	A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Scientific Reports, 2013, 3, 2149.	1.6	181
264	Biotechnological Approaches for Increasing Productivity and Sustainability of Rice Production. , 2013, , 151-175.		2
265	Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nature Communications, 2013, 4, 2793.	5.8	70
266	Omics-Based Approaches for Rice Improvement. , 2013, , 1-46.		1
267	Genetic Analysis of Grain Shape for Paddy and Brown Rice Using Introgression Lines. Crop Science, 2013, 53, 2411-2420.	0.8	0
267 268	Genetic Analysis of Grain Shape for Paddy and Brown Rice Using Introgression Lines. Crop Science, 2013, 53, 2411-2420. Scanning QTLs for Grain Shape Using a Whole Genome SNP Array in Rice. Journal of Plant Biochemistry & Physiology, 2013, 1, .	0.8 0.5	0
267 268 269	Genetic Analysis of Grain Shape for Paddy and Brown Rice Using Introgression Lines. Crop Science, 2013, 53, 2411-2420. Scanning QTLs for Grain Shape Using a Whole Genome SNP Array in Rice. Journal of Plant Biochemistry & Physiology, 2013, 1, . Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS ONE, 2013, 8, e57853.	0.8 0.5 1.1	0 6 104
267 268 269 270	Genetic Analysis of Grain Shape for Paddy and Brown Rice Using Introgression Lines. Crop Science, 2013, 53, 2411-2420. Scanning QTLs for Grain Shape Using a Whole Genome SNP Array in Rice. Journal of Plant Biochemistry & Physiology, 2013, 1, . Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS ONE, 2013, 8, e57853. Identification and validation of a new grain weight QTL in rice. Genetics and Molecular Research, 2013, 12, 5623-5633.	0.8 0.5 1.1 0.3	0 6 104 10
267 268 269 270 271	Genetic Analysis of Grain Shape for Paddy and Brown Rice Using Introgression Lines. Crop Science, 2013, 53, 2411-2420.Scanning QTLs for Grain Shape Using a Whole Genome SNP Array in Rice. Journal of Plant Biochemistry & Physiology, 2013, 1, .Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS ONE, 2013, 8, e57853.Identification and validation of a new grain weight QTL in rice. Genetics and Molecular Research, 2013, 12, 5623-5633.QTL Analysis of Leaf Photosynthesis in Rice. Japan Agricultural Research Quarterly, 2013, 47, 227-235.	0.8 0.5 1.1 0.3 0.1	0 6 104 10
267 268 269 270 271	Genetic Analysis of Crain Shape for Paddy and Brown Rice Using Introgression Lines. Crop Science, 2013, 53, 2411-2420. Scanning QTLs for Grain Shape Using a Whole Genome SNP Array in Rice. Journal of Plant Biochemistry & Physiology, 2013, 1, . Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS ONE, 2013, 8, e57853. Identification and validation of a new grain weight QTL in rice. Genetics and Molecular Research, 2013, 12, 5623-5633. QTL Analysis of Leaf Photosynthesis in Rice. Japan Agricultural Research Quarterly, 2013, 47, 227-235. RNAi-Directed Downregulation of Vacuolar H+-ATPase Subunit A Results in Enhanced Stomatal Aperture and Density in Rice. PLoS ONE, 2013, 8, e69046.	0.8 0.5 1.1 0.3 0.1	0 6 104 10 4 34
267 268 269 270 271 272	Genetic Analysis of Grain Shape for Paddy and Brown Rice Using Introgression Lines. Crop Science, 2013, 53, 2411-2420. Scanning QTLs for Grain Shape Using a Whole Genome SNP Array in Rice. Journal of Plant Biochemistry & Physiology, 2013, 1, . Association Analysis of Genomic Loci Important for Grain Weight Control in Elite Common Wheat Varieties Cultivated with Variable Water and Fertiliser Supply. PLoS ONE, 2013, 8, e57853. Identification and validation of a new grain weight QTL in rice. Genetics and Molecular Research, 2013, 12, 5623-5633. QTL Analysis of Leaf Photosynthesis in Rice. Japan Agricultural Research Quarterly, 2013, 47, 227-235. RNAi-Directed Downregulation of Vacuolar H+-ATPase Subunit A Results in Enhanced Stomatal Aperture and Density in Rice. PLoS ONE, 2013, 8, e69046. Functional Characterization of Genes/QTLs for Increasing Rice Yield Potential. , 2014, , .	0.8 0.5 1.1 0.3 0.1 1.1	0 6 104 10 4 34 2

#	Article	IF	CITATIONS
276	Dlf1, a WRKY Transcription Factor, Is Involved in the Control of Flowering Time and Plant Height in Rice. PLoS ONE, 2014, 9, e102529.	1.1	89
277	Genes and QTLs for Rice Grain Quality Improvement. , 0, , .		31
278	Association Mapping of Four Important Traits Using the USDA Rice Mini-Core Collection. , 0, , .		2
279	Quantative trait loci of seed traits for soybean in multiple environments. Genetics and Molecular Research, 2014, 13, 4000-4012.	0.3	3
280	Identification of Genes for Rice Grain Size and Their Function. Japanese Journal of Crop Science, 2014, 83, 299-304.	0.1	1
281	Barley Grain: Development and Structure. , 2014, , 11-53.		1
282	Identification and Utilization of Elite Genes from Elite Germplasms for Yield Improvement. , 0, , .		2
283	Phenotypic and Transcriptional Analysis of Divergently Selected Maize Populations Reveals the Role of Developmental Timing in Seed Size Determination Â. Plant Physiology, 2014, 165, 658-669.	2.3	37
284	Breeding value estimation of the application of IPA1 and DEP1 to improvement of Oryza sativa L. ssp. japonica in early hybrid generations. Molecular Breeding, 2014, 34, 1933-1942.	1.0	15
285	Fine mapping of quantitative trait loci for seed size traits in soybean. Molecular Breeding, 2014, 34, 2165-2178.	1.0	36
286	Validation of QTLs associated with spikelets per panicle and grain weight in rice. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, S151-S154.	0.4	2
288	QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding. Breeding Science, 2014, 64, 231-239.	0.9	16
289	Physical, metabolic and developmental functions of the seed coat. Frontiers in Plant Science, 2014, 5, 510.	1.7	125
290	Ubiquitin-mediated control of seed size in plants. Frontiers in Plant Science, 2014, 5, 332.	1.7	91
291	SALT-RESPONSIVE ERF1 Is a Negative Regulator of Grain Filling and Gibberellin-Mediated Seedling Establishment in Rice. Molecular Plant, 2014, 7, 404-421.	3.9	55
292	Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, 2014, , .	0.2	7
293	Trait linked microsatellite marker based diversity analysis for yield attributing traits in some bengal landraces of rice (<i>Oryza sativa</i> L). Agricultural Science Digest, 2014, 34, 1.	0.0	0
294	Defining the genome structure of `Tongil' rice, an important cultivar in the Korean "Green Revolution". Rice, 2014, 7, 22.	1.7	24

#	Article	IF	CITATIONS
295	Seed Length Controlled by Same Locus in Four Different AA Genome Species of Genus Oryza. Rice Science, 2014, 21, 20-28.	1.7	1
296	A potential role of UBC28 interacting RING finger protein TaRF1 in spike development of wheat. Journal of Plant Biochemistry and Biotechnology, 2014, 23, 421-429.	0.9	3
297	Recent progress on molecular breeding of rice in China. Plant Cell Reports, 2014, 33, 551-564.	2.8	80
298	Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Molecular Breeding, 2014, 33, 129-138.	1.0	44
299	A wholeâ€genome <scp>SNP</scp> array (<scp>RICE</scp> 6 <scp>K</scp>) for genomic breeding in rice. Plant Biotechnology Journal, 2014, 12, 28-37.	4.1	163
300	Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theoretical and Applied Genetics, 2014, 127, 1019-1037.	1.8	121
301	Simple sequence repeat markers reveal multiple loci governing grain-size variations in a japonica rice (Oryza sativa L.) mutant induced by cosmic radiation during space flight. Euphytica, 2014, 196, 225-236.	0.6	1
302	Legumes in the Omic Era. , 2014, , .		12
303	Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Molecular Breeding, 2014, 34, 937-947.	1.0	102
304	Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. Journal of Experimental Botany, 2014, 65, 2757-2766.	2.4	59
305	Genomics of Plant Genetic Resources. , 2014, , .		16
306	Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice. Plant Cell Reports, 2014, 33, 235-244.	2.8	32
307	Genetic improvement of Purslane (Portulaca oleracea L.) and its future prospects. Molecular Biology Reports, 2014, 41, 7395-7411.	1.0	38
308	Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. National Science Review, 2014, 1, 253-276.	4.6	56
309	Patterns of nucleotide diversity and phenotypes of two domestication related genes (OsC1 and Wx) in indigenous rice varieties in Northeast India. BMC Genetics, 2014, 15, 71.	2.7	19
310	High-density mapping of quantitative trait loci for grain-weight and spikelet number in rice. Rice, 2014, 7, 14.	1.7	12
311	Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biology, 2014, 14, 191.	1.6	161
312	Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biology, 2014, 15, 415.	3.8	134

#	Article	IF	CITATIONS
313	The Ubiquitin Receptor DA1 Regulates Seed and Organ Size by Modulating the Stability of the Ubiquitin-Specific Protease UBP15/SOD2 in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 665-677.	3.1	149
314	Molecular Genetic Dissection of Quantitative Trait Loci Regulating Rice Grain Size. Annual Review of Genetics, 2014, 48, 99-118.	3.2	369
315	Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theoretical and Applied Genetics, 2014, 127, 1463-1489.	1.8	49
316	Transcript suppression of TaGW2 increased grain width and weight in bread wheat. Functional and Integrative Genomics, 2014, 14, 341-349.	1.4	87
317	<i><scp>SMALL GRAIN</scp> 1</i> , which encodes a mitogenâ€activated protein kinase kinase 4, influences grain size in rice. Plant Journal, 2014, 77, 547-557.	2.8	175
318	An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15, 433.	1.2	151
319	Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. BMC Plant Biology, 2014, 14, 107.	1.6	117
320	Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biology, 2014, 14, 128.	1.6	102
321	Quantitative trait loci identification, fine mapping and gene expression profiling for ovicidal response to whitebacked planthopper (Sogatella furcifera Horvath) in rice (Oryza sativa L.). BMC Plant Biology, 2014, 14, 145.	1.6	39
322	Regulatory change at Physalis Organ Size 1 correlates to natural variation in tomatillo reproductive organ size. Nature Communications, 2014, 5, 4271.	5.8	24
323	The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). Journal of Experimental Botany, 2014, 65, 5063-5076.	2.4	69
324	Development of a TILLING resource in durum wheat for reverse- and forward-genetic analyses. Crop and Pasture Science, 2014, 65, 112.	0.7	33
325	QTL Mapping for Hull Thickness and Related Traits in Hybrid Rice Xieyou 9308. Rice Science, 2014, 21, 29-38.	1.7	4
326	Molecular Improvement of Grain Weight and Yield in Rice by Using GW6 Gene. Rice Science, 2014, 21, 127-132.	1.7	6
327	Genotype × Environment Interactions for Agronomic Traits of Rice Revealed by Association Mapping. Rice Science, 2014, 21, 133-141.	1.7	27
328	Threeâ€Dimensional Seed Size and Shape QTL in Hexaploid Wheat (<i>Triticum aestivum</i> L.) Populations. Crop Science, 2014, 54, 98-110.	0.8	79
329	Rice <scp>PCR1</scp> influences grain weight and <scp>Z</scp> n accumulation in grains. Plant, Cell and Environment, 2015, 38, 2327-2339.	2.8	56
330	Maize orthologs of rice <i>GS5</i> and their transâ€regulator are associated with kernel development. Journal of Integrative Plant Biology, 2015, 57, 943-953.	4.1	55

ARTICLE

IF CITATIONS

Prioritization of candidate genes in $\hat{a} \in \mathbb{C}$ QTL-hotspot $\hat{a} \in \mathbb{C}$ region for drought tolerance in chickpea (Cicer) Tj ETQq0 0.0 rgBT /Oyerlock 10

332	A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics, 2015, 16, 747.	1.2	83
333	An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize. BMC Genomics, 2015, 16, 1078.	1.2	55
334	Mapping of qTGW1.1, a Quantitative Trait Locus for 1000-Grain Weight in Rice (Oryza sativa L.). Rice Science, 2015, 22, 9-15.	1.7	4
335	Influence of Multi-Gene Allele Combinations on Grain Size of Rice and Development of a Regression Equation Model to Predict Grain Parameters. Rice, 2015, 8, 33.	1.7	23
336	An evolutionarily conserved gene, <i><scp>FUWA</scp></i> , plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant Journal, 2015, 83, 427-438.	2.8	68
337	Rice microRNA osaâ€miR1848 targets the obtusifoliol 14αâ€demethylase gene <i>Os<scp>CYP</scp>51G3</i> and mediates the biosynthesis of phytosterols and brassinosteroids during development and in response to stress. New Phytologist, 2015, 208, 790-802.	3.5	81
338	Unconditional and conditional <scp>QTL</scp> underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breeding, 2015, 134, 300-309.	1.0	58
339	Expression of <i>Ta<scp>CYP</scp>78A3</i> , a gene encoding cytochrome P450 <scp>CYP</scp> 78A3 protein in wheat (<i>Triticum aestivum</i> L.), affects seed size. Plant Journal, 2015, 83, 312-325.	2.8	131
340	Relationship between grain yield and quality in rice germplasms grown across different growing areas. Breeding Science, 2015, 65, 226-232.	0.9	45
341	Genetic analysis of grain shape and weight after cutting rice husk. Genetics and Molecular Research, 2015, 14, 17739-17748.	0.3	6
342	Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice. Genetics and Molecular Research, 2015, 14, 14882-14892.	0.3	7
343	Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a <i>japonica</i> × <i>indica</i> cross. Breeding Science, 2015, 65, 308-318.	0.9	56
344	Time-Course Association Mapping of the Grain-Filling Rate in Rice (Oryza sativa L.). PLoS ONE, 2015, 10, e0119959.	1.1	17
345	Genomic Prediction of Biological Shape: Elliptic Fourier Analysis and Kernel Partial Least Squares (PLS) Regression Applied to Grain Shape Prediction in Rice (Oryza sativa L.). PLoS ONE, 2015, 10, e0120610.	1.1	43
346	Identification of Genomic Regions and the Isoamylase Gene for Reduced Grain Chalkiness in Rice. PLoS ONE, 2015, 10, e0122013.	1.1	53
347	Identification of Novel SNP in Promoter Sequence of TaGW2-6A Associated with Grain Weight and Other Agronomic Traits in Wheat (Triticum aestivum L.). PLoS ONE, 2015, 10, e0129400.	1.1	85
348	Differential Proteomic Analysis Using iTRAQ Reveals Alterations in Hull Development in Rice (Oryza) Tj ETQq1 1 0.	784314 rg	gBT /Overl

ARTICLE

IF CITATIONS

Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

350	Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Frontiers in Plant Science, 2015, 6, 832.	1.7	38
351	A Single-Nucleotide Polymorphism of TaGS5 Gene Revealed its Association with Kernel Weight in Chinese Bread Wheat. Frontiers in Plant Science, 2015, 6, 1166.	1.7	76
352	Accuracy and genetic progress of agronomic traits in irrigated rice program in Brazil. African Journal of Agricultural Research Vol Pp, 2015, 10, 4032-4038.	0.2	4
353	Phenotypic Diversity Studies on Selected Kenyan and Tanzanian Rice (Oryza sativa L) Genotypes Based on Grain and Kernel Traits. Rice Research Open Access, 2015, 03, .	0.4	0
354	Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Rice Science, 2015, 22, 65-70.	1.7	5
355	Drought Resistance in Crops: Physiological and Genetic Basis of Traits for Crop Productivity. , 2015, , 267-292.		9
356	Rapid Identification of Major QTLs Associated with Rice Grain Weight and Their Utilization. PLoS ONE, 2015, 10, e0122206.	1.1	56
357	High-Density Genetic Linkage Map Construction and QTL Mapping of Grain Shape and Size in the Wheat Population Yanda1817 × Beinong6. PLoS ONE, 2015, 10, e0118144.	1.1	167
358	Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae). G3: Genes, Genomes, Genetics, 2015, 5, 1117-1128.	0.8	45
360	Characterization and fine mapping of NGP4c(t), a novel gene controlling the number of grains per panicle in rice. Journal of Genetics, 2015, 94, 513-517.	0.4	2
361	A Mathematical Model of Phloem Sucrose Transport as a New Tool for Designing Rice Panicle Structure for High Grain Yield. Plant and Cell Physiology, 2015, 56, 605-619.	1.5	23
362	Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. Journal of Experimental Botany, 2015, 66, 1737-1748.	2.4	164
363	Patterns of genomic changes with crop domestication and breeding. Current Opinion in Plant Biology, 2015, 24, 47-53.	3.5	83
364	Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nature Communications, 2015, 6, 6258.	5.8	292
365	Maternal control of seed size in plants. Journal of Experimental Botany, 2015, 66, 1087-1097.	2.4	123
366	Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 76-81.	3.3	236
367	Genotyping-by-sequencing based intra-specific genetic map refines a â€~ã€~QTL-hotspot―region for drought tolerance in chickpea. Molecular Genetics and Genomics, 2015, 290, 559-571.	1.0	180

ARTICLE IF CITATIONS Rice genomics and biotechnology., 2015, , 167-178. 1 368 Molecular functions of genes related to grain shape in rice. Breeding Science, 2015, 65, 120-126. Identification of QTLs for agronomic traits in indica rice using an RIL population. Genes and Genomics, 370 0.5 6 2015, 37, 809-817. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 371 9.4 485 2015, 47, 944-948. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under 372 2.4 70 domestication. Journal of Experimental Botany, 2015, 66, 5703-5711. A Rare Allele of CS2 Enhances Grain Size and Grain Yield in Rice. Molecular Plant, 2015, 8, 1455-1465. Genetic dissection on rice grain shape by the two-dimensional image analysis in one japonicaÂ×Âindica population consisting of recombinant inbred lines. Theoretical and Applied Genetics, 2015, 128, 374 1.8 63 1969-1986. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced 1.8 54 thousand-grain weight and spike length. Theoretical and Applied Genetics, 2015, 128, 1827-1837. Population genetic structure of Oryza sativa in East and Southeast Asia and the discovery of elite 376 1.6 19 alleles for grain traits. Scientific Reports, 2015, 5, 11254. Mapping of the genetic determinant for grain size in rice using a recombinant inbred line (RIL) population generated from two elite indica parents. Euphytica, 2015, 206, 159-173. Genetic mapping of a QTL controlling source–sink size and heading date in rice. Gene, 2015, 571, 263-270. 378 1.0 12 <i>OsACSW1</i>, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice. 379 2.4 Journal of Experimental Botany, 2015, 66, 5691-5701. Rice RING E3 ligase may negatively regulate gamma-ray response to mediate the degradation of photosynthesis-related proteins. Planta, 2015, 241, 1119-1129. 380 1.6 23 QTL mapping for rice grain quality: a strategy to detect more QTLs within sub-populations. Molecular 1.0 Breeding, 2015, 35, 1 Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China. 382 1.7 6 Journal of Integrative Agriculture, 2015, 14, 811-822. Post-transcriptional and post-translational regulations of drought and heat response in plants: a 136 spiderââ,¬â,,¢s web of mechanisms. Frontiers in Plant Science, 2015, 6, 57. Construction of highâ€throughput genotyped chromosome segment substitution lines in rice (<i>Oryza) Tj ETQq0,0,0 rgBT /Qverlock 1 384

CITATION REPORT

385qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. Journal of
Experimental Botany, 2015, 66, 2723-2732.2.464

#	Article	IF	CITATIONS
386	Analysis of QTL Interaction for Grain Weight using Near Isogenic Lines in Rice. Plant Breeding and Biotechnology, 2015, 3, 30-38.	0.3	5
387	OsKinesin-13A Is an Active Microtubule Depolymerase Involved in Glume Length Regulation via Affecting Cell Elongation. Scientific Reports, 2015, 5, 9457.	1.6	28
388	Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015, 66, 2611-2623.	2.4	119
389	Transcription Factors SOD7/NGAL2 and DPA4/NGAL3 Act Redundantly to Regulate Seed Size by Directly Repressing <i>KLU</i> Expression in <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 620-632.	3.1	77
390	Discovery and mapping of genomic regions governing economically important traits of Basmati rice. BMC Plant Biology, 2015, 15, 207.	1.6	20
391	Enhanced sucrose loading improves rice yield by increasing grain size. Plant Physiology, 2015, 169, pp.01170.2015.	2.3	88
392	Rice Ovate Family Protein 2 (OFP2) alters hormonal homeostasis and vasculature development. Plant Science, 2015, 241, 177-188.	1.7	106
393	The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biology, 2015, 15, 156.	1.6	32
394	The Usefulness of Known Genes/Qtls for Grain Quality Traits in an Indica Population of Diverse Breeding Lines Tested using Association Analysis. Rice, 2015, 8, 29.	1.7	41
395	Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theoretical and Applied Genetics, 2015, 128, 1813-1825.	1.8	40
396	Different effects of DEP1 on vascular bundle- and panicle-related traits under indica and japonica genetic backgrounds. Molecular Breeding, 2015, 35, 1.	1.0	15
397	Natural variation in <i>ARF18</i> gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5123-32.	3.3	185
398	Activation of <i>Big Grain1</i> significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11102-11107.	3.3	265
399	Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theoretical and Applied Genetics, 2015, 128, 2437-2445.	1.8	36
400	Natural Variations in <i>SLG7</i> Regulate Grain Shape in Rice. Genetics, 2015, 201, 1591-1599.	1.2	71
401	QTL Identification. , 2015, , 51-94.		0
402	Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Euphytica, 2015, 202, 119-127.	0.6	16
403	Novel InDel variation in GS3 locus and development of InDel based marker for marker assisted breeding of short grain aromatic rices. Journal of Plant Biochemistry and Biotechnology, 2015, 24, 120-127.	0.9	8

	Сіт	ation Report	
#	Article	IF	CITATIONS
404	SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. Journal of Experimental Botany, 2015, 66, 161-174.	2.4	31
405	Variations in <scp><i>CYP</i></scp> <i>78</i> <scp><i>A</i></scp> <i>13</i> coding region influence grain size and yield in rice. Plant, Cell and Environment, 2015, 38, 800-811.	2.8	102
406	Breeding challenge: improving yield potential. , 2015, , 397-421.		5
407	RICE Genetics., 2016,,.		0
408	Quantitative Trait Loci Mapping for Appearance Quality in Shortâ€Grain Rice. Crop Science, 2016, 56, 1484-1492.	0.8	9
409	Identification of variability for agronomically important traits in rice mutant families. Bragantia, 2016, 75, 41-50.	1.3	21
410	Rice: Genetics. , 2016, , 398-406.		0
411	Mapping of QTLs Controlling Grain Shape and Populations Construction Derived from Related Residual Heterozygous Lines in Rice. Journal of Agricultural Science, 2016, 8, 104.	0.1	3
412	The <i>DENSE AND ERECT PANICLE 1</i> (<i>DEP1</i>) gene offering the potenti the breeding of high-yielding rice. Breeding Science, 2016, 66, 659-667.	ial in 0.9	68
413	Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa). PLoS ONE, 2016, 11, e0150458.	1.1	38
414	Improvement of Rice Biomass Yield through QTL-Based Selection. PLoS ONE, 2016, 11, e0151830.	1.1	25
415	Identification and Validation of Loci Governing Seed Coat Color by Combining Association Mapping and Bulk Segregation Analysis in Soybean. PLoS ONE, 2016, 11, e0159064.	1.1	46
416	Transferring Desirable Genes from Agropyron cristatum 7P Chromosome into Common Wheat. PLoS ONE, 2016, 11, e0159577.	1.1	23
417	Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice. PLoS ONE, 2016, 11, e0164748.	1.1	33
418	Haplotypes of qGL3 and their roles in grain size regulation with GS3 alleles in rice. Genetics and Molecular Research, 2016, 15, .	0.3	4
419	Overexpression of Peptide-Encoding OsCEP6.1 Results in Pleiotropic Effects on Growth in Rice (O.) Tj E	ETQq1 1 0.784314 rg 1.7	gBŢ_/Overlac
420	Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System. Frontiers in Plant Science, 2016, 7, 377.	1.7	375
421	The Rice Eukaryotic Translation Initiation Factor 3 Subunit f (OseIF3f) Is Involved in Microgametogenesis. Frontiers in Plant Science, 2016, 7, 532.	1.7	5

#	Article	IF	CITATIONS
422	Identification of a Candidate Gene for Panicle Length in Rice (Oryza sativa L.) Via Association and Linkage Analysis. Frontiers in Plant Science, 2016, 7, 596.	1.7	71
423	Genetic Diversity and Elite Allele Mining for Grain Traits in Rice (Oryza sativa L.) by Association Mapping. Frontiers in Plant Science, 2016, 7, 787.	1.7	26
424	Identification of Key Proteins and Networks Related to Grain Development in Wheat (Triticum) Tj ETQq0 0 0 rgBT Frontiers in Plant Science, 2016, 7, 922.	/Overlock 1.7	10 Tf 50 66 23
425	High-Throughput Sequencing Reveals Single Nucleotide Variants in Longer-Kernel Bread Wheat. Frontiers in Plant Science, 2016, 7, 1193.	1.7	7
426	Development and Evaluation of Chromosome Segment Substitution Lines Carrying Overlapping Chromosome Segments of the Whole Wild Rice Genome. Frontiers in Plant Science, 2016, 7, 1737.	1.7	12
427	Regulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice. Frontiers in Plant Science, 2016, 7, 1853.	1.7	29
428	SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Frontiers in Plant Science, 2016, 7, 1926.	1.7	15
429	QTLâ€seq for rapid identification of candidate genes for 100â€seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnology Journal, 2016, 14, 2110-2119.	4.1	177
430	Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Molecular Genetics and Genomics, 2016, 291, 1927-1940.	1.0	39
431	The OsmiR396câ€OsGRF4â€OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnology Journal, 2016, 14, 2134-2146.	4.1	224
432	Micro <scp>RNA</scp> â€ŧargeted transcription factor gene <i><scp>RDD</scp>1</i> promotes nutrient ion uptake and accumulation in rice. Plant Journal, 2016, 85, 466-477.	2.8	79
433	Dissection of Genetic Factors underlying Wheat Kernel Shape and Size in an Elite × Nonadapted Cross using a High Density SNP Linkage Map. Plant Genome, 2016, 9, plantgenome2015.09.0081.	1.6	116
434	Molecular cloning and functional characterisation of the tomato E3 ubiquitin ligase SIBAH1 gene. Functional Plant Biology, 2016, 43, 1091.	1.1	6
435	Population structure and association analysis of yield and grain quality traits in hybrid rice primal parental lines. Euphytica, 2016, 212, 261-273.	0.6	12
436	Expanding Maize Genetic Resources with Predomestication Alleles: Maize–Teosinte Introgression Populations. Plant Genome, 2016, 9, plantgenome2015.07.0053.	1.6	43
437	Loss of function of OsMADS34 leads to large sterile lemma and low grain yield in rice (Oryza sativa) Tj ETQq1 1 0	.784314 r 1.0	gĄŢ/Overloc
438	Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations. G3: Genes, Genomes, Genetics, 2016, 6, 2523-2530.	0.8	32
439	OsSGL, a novel pleiotropic stress-related gene enhances grain length and yield in rice. Scientific Reports, 2016, 6, 38157.	1.6	38

#	Article	IF	CITATIONS
440	Open access resources for genome-wide association mapping in rice. Nature Communications, 2016, 7, 10532.	5.8	371
441	Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice. Molecular Breeding, 2016, 36, 1.	1.0	17
442	SMALL GRAIN 11 Controls Grain Size, Grain Number and Grain Yield in Rice. Rice, 2016, 9, 64.	1.7	87
443	<i>Ta<scp>GS</scp>5â€3A,</i> a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnology Journal, 2016, 14, 1269-1280.	4.1	217
444	Genome wide association mapping for grain shape traits in indica rice. Planta, 2016, 244, 819-830.	1.6	47
445	Genetic analysis of heterosis for maize grain yield and its components in a set of SSSL testcross populations. Euphytica, 2016, 210, 181-193.	0.6	11
446	Considering causal genes in the genetic dissection of kernel traits in common wheat. Journal of Applied Genetics, 2016, 57, 467-476.	1.0	82
447	Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58Â×ÂSK maize population. Theoretical and Applied Genetics, 2016, 129, 1465-1477.	1.8	84
448	Expansin genes are candidate markers for the control of fruit weight in peach. Euphytica, 2016, 210, 441-449.	0.6	11
449	OsSET7, a homologue of ARABIDOPSIS TRITHORAX-RELATED protein that plays a role in grain elongation regulation in rice. Agri Gene, 2016, 1, 135-142.	1.9	1
450	Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5 12
451	High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice. Rice, 2016, 9, 48.	1.7	56
452	The pleiotropic <i>ABNORMAL FLOWER AND DWARF1</i> affects plant height, floral development and grain yield in rice. Journal of Integrative Plant Biology, 2016, 58, 529-539.	4.1	56
453	Detection of Novel QTLs Regulating Grain Size in Extra-Large Grain Rice (Oryza sativa L.) Lines. Rice, 2016, 9, 34.	1.7	16
454	<i>OsGRF4</i> controls grain shape, panicle length and seed shattering in rice. Journal of Integrative Plant Biology, 2016, 58, 836-847.	4.1	137
455	Leaf growth in dicots and monocots: so different yet so alike. Current Opinion in Plant Biology, 2016, 33, 72-76.	3.5	87
456	QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.). Journal of Integrative Agriculture, 2016, 15, 1693-1702.	1.7	13
458	Comparison and analysis of QTLs for grain and hull thickness related traits in two recombinant inbred line (RIL) populations in rice (Oryza sativa L.). Journal of Integrative Agriculture, 2016, 15, 2430	1.7	8

#	Article	IF	CITATIONS
459	A mutational approach for the detection of genetic factors affecting seed size in maize. Plant Reproduction, 2016, 29, 301-310.	1.3	4
460	Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants, 2016, 2, 15203.	4.7	306
461	An Integrated Genomic Strategy Delineates Candidate Mediator Genes Regulating Grain Size and Weight in Rice. Scientific Reports, 2016, 6, 23253.	1.6	22
462	Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTLs for agronomic traits from the F3population. Cereal Research Communications, 2016, 44, 370-380.	0.8	11
463	Restricting the above ground sink corrects the root/shoot ratio and substantially boosts the yield potential per panicle in fieldâ€grown rice (<i>Oryza sativa</i> L.). Physiologia Plantarum, 2016, 156, 371-386.	2.6	8
464	Regulation of brassinosteroid on pod growth through cell hypertrophy in soybean (Glycine max (L.)) Tj ETQq1 1 ().784314 i 1.8	rg₽Ţ /Overloo
465	Quantitative evaluation of influence of PROSTRATE GROWTH 1 gene on rice canopy structure based on three-dimensional structure model. Field Crops Research, 2016, 194, 65-74.	2.3	10
466	Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC Plant Biology, 2016, 16, 81.	1.6	47
467	Fine mapping of qKW7, a major QTL for kernel weight and kernel width in maize, confirmed by the combined analytic approaches of linkage and association analysis. Euphytica, 2016, 210, 221-232.	0.6	21
468	Quantitative trait locus mapping for salt tolerance at maturity stage in indica rice using replicated F2 population. Revista Brasileira De Botanica, 2016, 39, 641-650.	0.5	14
469	<i>SLG</i> controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Journal of Experimental Botany, 2016, 67, 4241-4253.	2.4	103
470	Identification of QTLs for grain size and characterization of the beneficial alleles of grain size genes in large grain rice variety BL129. Journal of Integrative Agriculture, 2016, 15, 1-9.	1.7	4
471	Fine Mapping Identifies a New QTL for Brown Rice Rate in Rice (Oryza Sativa L.). Rice, 2016, 9, 4.	1.7	38
472	Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L Rice, 2016, 9, 12.	1.7	60
473	SNP-based analysis of genetic diversity reveals important alleles associated with seed size in rice. BMC Plant Biology, 2016, 16, 93.	1.6	42
474	Signaling pathways of seed size control in plants. Current Opinion in Plant Biology, 2016, 33, 23-32.	3.5	304
475	Perennial Grain and Oilseed Crops. Annual Review of Plant Biology, 2016, 67, 703-729.	8.6	68
476	Cloning, localization and expression analysis of two fw2.2-like genes in small- and large-fruited pear species. Journal of Integrative Agriculture, 2016, 15, 282-294.	1.7	16

#	Article	IF	CITATIONS
477	Cell length instead of cell number becomes the predominant factor contributing to hypocotyl length genotypic differences under abiotic stress in <i>Medicago truncatula</i> . Physiologia Plantarum, 2016, 156, 108-124.	2.6	10
478	Introgression and Exploitation of QTL for Yield and Yield Components from Related Wild Species in Rice Cultivars. Sustainable Development and Biodiversity, 2016, , 171-202.	1.4	2
479	A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theoretical and Applied Genetics, 2016, 129, 1099-1112.	1.8	179
480	Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Molecular Breeding, 2016, 36, 1.	1.0	42
481	Fine mapping of qKL1.07, a major QTL for kernel length in maize. Molecular Breeding, 2016, 36, 1.	1.0	21
482	Breeding high-yield superior quality hybrid super rice by rational design. National Science Review, 2016, 3, 283-294.	4.6	179
483	An integrated approach to maintaining cereal productivity under climate change. Global Food Security, 2016, 8, 9-18.	4.0	110
484	OsSPL13 controls grain size in cultivated rice. Nature Genetics, 2016, 48, 447-456.	9.4	662
485	Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Molecular Breeding, 2016, 36, 1.	1.0	218
487	Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Molecular Biology, 2016, 90, 33-47.	2.0	84
488	Construction of a versatile SNP array for pyramiding useful genes of rice. Plant Science, 2016, 242, 131-139.	1.7	33
489	Progress and challenges in improving the nutritional quality of rice (<i>Oryza sativa</i> L.). Critical Reviews in Food Science and Nutrition, 2017, 57, 2455-2481.	5.4	110
490	Shoot tolerance mechanisms to iron toxicity in rice (<i>Oryza sativa</i> L.). Plant, Cell and Environment, 2017, 40, 570-584.	2.8	107
491	Validation of qCS10 , a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.). Journal of Integrative Agriculture, 2017, 16, 16-26.	1.7	17
492	Genome-wide Association Analyses Reveal the Genetic Basis of Stigma Exsertion in Rice. Molecular Plant, 2017, 10, 634-644.	3.9	66
493	Overexpression of TIFY genes promotes plant growth in rice through jasmonate signaling. Bioscience, Biotechnology and Biochemistry, 2017, 81, 906-913.	0.6	29
494	Role of Biotechnology in Rice Production. , 2017, , 487-547.		7
495	Structure and expression of the TaGW7 in bread wheat (Triticum aestivum L.). Plant Growth Regulation, 2017, 82, 281-291.	1.8	9

#	Article	IF	CITATIONS
496	Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theoretical and Applied Genetics, 2017, 130, 1011-1029.	1.8	66
497	Verification and fine mapping of qGW1.05, a major QTL for grain weight in maize (Zea mays L.). Molecular Genetics and Genomics, 2017, 292, 871-881.	1.0	22
498	Genetic dissection of large grain shape in rice cultivar †Nanyangzhan' and validation of a grain thickness QTL (qGT3.1) and a grain length QTL (qGL3.4). Molecular Breeding, 2017, 37, 1.	1.0	13
499	Major genes determining yield-related traits in wheat and barley. Theoretical and Applied Genetics, 2017, 130, 1081-1098.	1.8	175
500	Identification of QTLs for seed storability in rice under natural aging conditions using two RILs with the same parent Shennong 265. Journal of Integrative Agriculture, 2017, 16, 1084-1092.	1.7	13
501	Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. Journal of Experimental Botany, 2017, 68, 2717-2729.	2.4	65
502	A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017, 3, 17064.	4.7	133
503	Discussion on strategy of grain quality improvement for super high yielding japonica rice in Northeast China. Journal of Integrative Agriculture, 2017, 16, 1075-1083.	1.7	9
504	The enhancer of zeste gene OsiEZ1 is involved in ligule and seed development in rice. Canadian Journal of Plant Science, 0, , .	0.3	0
505	Grain physical characteristic of the Australian wild rices. Plant Genetic Resources: Characterisation and Utilisation, 2017, 15, 409-420.	0.4	10
506	Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theoretical and Applied Genetics, 2017, 130, 1569-1585.	1.8	78
507	Molecular dissection of QTL governing grain size traits employing association and linkage mapping in Basmati rice. Molecular Breeding, 2017, 37, 1.	1.0	6
508	<i><scp>WIDE AND THICK GRAIN</scp> 1</i> , which encodes an otubainâ€like protease with deubiquitination activity, influences grain size and shape in rice. Plant Journal, 2017, 91, 849-860.	2.8	146
509	Exiting Already? Molecular Control of Cell-Proliferation Arrest in Leaves: Cutting Edge. Molecular Plant, 2017, 10, 909-911.	3.9	0
510	Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population. Theoretical and Applied Genetics, 2017, 130, 1405-1414.	1.8	48
511	Genomic dissection of rice yield traits under low temperature across multi-environments. Euphytica, 2017, 213, 1.	0.6	7
512	Regulation of Gene Expression in the Remobilization of Carbon Reserves in Rice Stems During Grain Filling. Plant and Cell Physiology, 2017, 58, 1391-1404.	1.5	35
513	Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. New Phytologist, 2017, 215, 1026-1038.	3.5	103

#	Article	IF	CITATIONS
514	E3 Ubiquitin Ligases: Ubiquitous Actors in Plant Development and Abiotic Stress Responses. Plant and Cell Physiology, 2017, 58, 1461-1476.	1.5	194
515	Genome-wide study of an elite rice pedigree reveals a complex history of genetic architecture for breeding improvement. Scientific Reports, 2017, 7, 45685.	1.6	13
516	Wheat genomics comes of age. Current Opinion in Plant Biology, 2017, 36, 142-148.	3.5	103
517	OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biology, 2017, 15, 28.	1.7	100
518	Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. Science China Life Sciences, 2017, 60, 506-515.	2.3	103
519	Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Reports, 2017, 36, 1187-1213.	2.8	81
520	Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice. Molecular Plant, 2017, 10, 685-694.	3.9	253
521	Identification of quantitative trait loci for panicle length and yield related traits under different water and P application conditions in tropical region in rice (Oryza sativa L.). Euphytica, 2017, 213, 1.	0.6	9
522	Examining two sets of introgression lines reveals background-independent and stably expressed QTL that improve grain appearance quality in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2017, 130, 951-967.	1.8	35
523	Introgression of Yield Component Traits in Rice (<i>Oryza sativa</i> ssp. <i>indica</i>) through Interspecific Hybridization. Crop Science, 2017, 57, 1557-1573.	0.8	21
524	<i>GRAIN INCOMPLETE FILLING 2</i> regulates grain filling and starch synthesis during rice caryopsis development. Journal of Integrative Plant Biology, 2017, 59, 134-153.	4.1	80
525	Duplication of an upstream silencer of FZP increases grain yield in rice. Nature Plants, 2017, 3, 885-893.	4.7	121
526	DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 2017, 120, 169-178.	2.8	6
527	Whole genome sequencing-based association study to unravel genetic architecture of cooked grain width and length traits in rice. Scientific Reports, 2017, 7, 12478.	1.6	69
528	Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Scientific Reports, 2017, 7, 12561.	1.6	11
529	Genetic Improvement of Tropical Crops. , 2017, , .		23
530	Genetic dissection of grain traits in Yamadanishiki, an excellent sake-brewing rice cultivar. Theoretical and Applied Genetics, 2017, 130, 2567-2585.	1.8	13
531	Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. Physiology and Molecular Biology of Plants, 2017, 23, 877-889.	1.4	20

ARTICLE

 $_{532}$ Genetic variation for domestication-related traits revealed in a cultivated rice, Nipponbare (Oryza) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

533	<scp>QTL</scp> for maize grain yield identified by <scp>QTL</scp> mapping in six environments and consensus loci for grain weight detected by metaâ€analysis. Plant Breeding, 2017, 136, 820-833.	1.0	8
534	The rice TRIANGULAR HULL1 protein acts as a transcriptional repressor in regulating lateral development of spikelet. Scientific Reports, 2017, 7, 13712.	1.6	23
535	TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat. Planta, 2017, 246, 1153-1163.	1.6	36
536	Influence of TaGW2-6A on seed development in wheat by negatively regulating gibberellin synthesis. Plant Science, 2017, 263, 226-235.	1.7	29
537	MiR408 Regulates Grain Yield and Photosynthesis via a Phytocyanin Protein. Plant Physiology, 2017, 175, 1175-1185.	2.3	121
538	Enriching an intraspecific genetic map and identifying QTL for fiber quality and yield component traits across multiple environments in Upland cotton (Gossypium hirsutum L.). Molecular Genetics and Genomics, 2017, 292, 1281-1306.	1.0	36
539	OsFH15, a class I formin, interacts with microfilaments and microtubules to regulate grain size via affecting cell expansion in rice. Scientific Reports, 2017, 7, 6538.	1.6	36
540	The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice. Plant Physiology, 2017, 175, 774-785.	2.3	114
541	Conditional quantitative trait locus mapping of wheat seed protein-fraction in relation to starch content. Cereal Research Communications, 2017, 45, 478-487.	0.8	3
542	NOG1 increases grain production in rice. Nature Communications, 2017, 8, 1497.	5.8	111
543	Genetic Improvement of Rice (Oryza sativa L.). , 2017, , 111-127.		5
544	Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor. Plant Physiology, 2017, 175, 1720-1731.	2.3	49
546	Does the pre-flowering period determine the potential grain weight of sunflower?. Field Crops Research, 2017, 212, 23-33.	2.3	21
547	08SC2/OsBAK1 regulates grain size and number, and functions differently in Indica and Japonica backgrounds in rice. Rice, 2017, 10, 25.	1.7	52
548	Overexpression of the 16â€ <scp>kD</scp> a αâ€amylase/trypsin inhibitor <scp>RAG</scp> 2 improves grain yield and quality of rice. Plant Biotechnology Journal, 2017, 15, 568-580.	4.1	52
549	The art of curation at a biological database: Principles and application. Current Plant Biology, 2017, 11-12, 2-11.	2.3	30
550	Genomics-assisted breeding – A revolutionary strategy for crop improvement. Journal of Integrative Agriculture, 2017, 16, 2674-2685.	1.7	50

#	Article	IF	CITATIONS
551	Mapping quantitative trait loci associated with starch paste viscosity in rice (<i>Oryza sativa</i> L.) under different environmental conditions. Plant Breeding, 2017, 136, 591-602.	1.0	9
552	GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice, 2017, 10, 34.	1.7	55
553	Breeding Rice for Improved Grain Quality. , 2017, , .		11
554	Genetic analysis and fine mapping of the RK4 gene for round kernel in rice (Oryza sativa L.). Czech Journal of Genetics and Plant Breeding, 2017, 53, 153-158.	0.4	1
555	New Candidate Genes Affecting Rice Grain Appearance and Milling Quality Detected by Genome-Wide and Gene-Based Association Analyses. Frontiers in Plant Science, 2016, 7, 1998.	1.7	55
556	TaGW2, a Good Reflection of Wheat Polyploidization and Evolution. Frontiers in Plant Science, 2017, 8, 318.	1.7	21
557	SNP Discovery and Genetic Variation of Candidate Genes Relevant to Heat Tolerance and Agronomic Traits in Natural Populations of Sand Rice (Agriophyllum squarrosum). Frontiers in Plant Science, 2017, 8, 536.	1.7	18
558	Regional Association Analysis of MetaQTLs Delineates Candidate Grain Size Genes in Rice. Frontiers in Plant Science, 2017, 8, 807.	1.7	36
559	Genome-Wide Association Study of Grain Architecture in Wild Wheat Aegilops tauschii. Frontiers in Plant Science, 2017, 8, 886.	1.7	114
560	Evolutionary Insights Based on SNP Haplotypes of Red Pericarp, Grain Size and Starch Synthase Genes in Wild and Cultivated Rice. Frontiers in Plant Science, 2017, 8, 972.	1.7	21
561	Insight into MAS: A Molecular Tool for Development of Stress Resistant and Quality of Rice through Gene Stacking. Frontiers in Plant Science, 2017, 8, 985.	1.7	105
562	Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops. Frontiers in Plant Science, 2017, 8, 1237.	1.7	59
563	Genetic analysis for rice seedling vigor and fine mapping of a major QTL <i>qSSL1b</i> for seedling shoot length. Breeding Science, 2017, 67, 307-315.	0.9	40
564	Identify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments. Breeding Science, 2017, 67, 472-482.	0.9	23
565	Identification of putative markers linked to grain plumpness in rice (Oryza sativa L.) via association mapping. BMC Genetics, 2017, 18, 89.	2.7	9
566	Uncovering the Genetic Architecture of Seed Weight and Size in Intermediate Wheatgrass through Linkage and Association Mapping. Plant Genome, 2017, 10, plantgenome2017.03.0022.	1.6	26
567	QTL mapping of agronomically important traits in sorghum (Sorghum bicolor L.). Euphytica, 2017, 213, 1.	0.6	15
568	Overexpression of <i>SRS5</i> improves grain size of brassinosteroid-related dwarf mutants in rice (<i>Oryza sativa</i> L.). Breeding Science, 2017, 67, 393-397.	0.9	25

#	Article	IF	CITATIONS
569	Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regulation, 2018, 84, 401-422.	1.8	35
570	Alternative splicing of <i>Os<scp>LG</scp>3b</i> controls grain length and yield in <i>japonica</i> rice. Plant Biotechnology Journal, 2018, 16, 1667-1678.	4.1	109
571	G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications, 2018, 9, 852.	5.8	219
572	A G-protein pathway determines grain size in rice. Nature Communications, 2018, 9, 851.	5.8	195
573	Temperature-dependent QTLs in indica alleles for improving grain quality in rice: increased prominence of QTLs responsible for reduced chalkiness under high-temperature conditions. Molecular Breeding, 2018, 38, 1.	1.0	3
574	Fine mapping and identification of a novel locus qGL12.2 control grain length in wild rice (Oryza) Tj ETQq1 1 0.	784314 rgBT 1.8	- /Overlock 1 22
575	Analysis of the functions of <i>Ta<scp>GW</scp>2</i> homoeologs in wheat grain weight and protein content traits. Plant Journal, 2018, 94, 857-866.	2.8	211
576	Rice Functional Genomics Research: Past Decade and Future. Molecular Plant, 2018, 11, 359-380.	3.9	113
578	Rice Plant Architecture: Molecular Basis and Application in Breeding. , 2018, , 129-154.		4
579	A heading date QTL, qHD7.2, from wild rice (Oryza rufipogon) delays flowering and shortens panicle length under long-day conditions. Scientific Reports, 2018, 8, 2928.	1.6	26
580	Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase. Nucleic Acids Research, 2018, 46, 2660-2677.	6.5	22
581	Genotyping by sequencing of rice interspecific backcross inbred lines identifies QTLs for grain weight and grain length. Euphytica, 2018, 214, 1.	0.6	29
582	Divergent functions of the <scp>GAGA</scp> â€binding transcription factor family in rice. Plant Journal, 2018, 94, 32-47.	2.8	22
583	Characterization and fine mapping of qPE12, a new locus controlling rice panicle exsertion. Euphytica, 2018, 214, 1.	0.6	4
584	Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice. Journal of Experimental Botany, 2018, 69, 1533-1543.	2.4	66
585	Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology. Planta, 2018, 247, 1089-1098.	1.6	40
586	Identification of quantitative trait loci underlying seed shape in soybean across multiple environments. Journal of Agricultural Science, 2018, 156, 3-12.	0.6	5
587	Fine mapping and candidate gene analysis of the quantitative trait locus gw8.1 associated with grain length in rice. Genes and Genomics, 2018, 40, 389-397.	0.5	16

#	Article	IF	CITATIONS
588	LKF, the locus regulating large grains in the rice cultivar â€ [~] Fusayoshi', is identical to the loci encoding a serine/threonine protein phosphatase with Kelch motif. Euphytica, 2018, 214, 1.	0.6	1
589	CS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications, 2018, 9, 1240.	5.8	221
590	<i>GRAIN SIZE AND NUMBER1</i> Negatively Regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to Coordinate the Trade-off between Grain Number per Panicle and Grain Size in Rice. Plant Cell, 2018, 30, 871-888.	3.1	196
591	A Novel QTL qTGW3 Encodes the GSK3/SHAGGY-Like Kinase OsGSK5/OsSK41 that Interacts with OsARF4 to Negatively Regulate Grain Size and Weight in Rice. Molecular Plant, 2018, 11, 736-749.	3.9	201
592	Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a and GS3 as key genes. Theoretical and Applied Genetics, 2018, 131, 1391-1403.	1.8	17
593	Control of grain size in rice. Plant Reproduction, 2018, 31, 237-251.	1.3	188
594	Expression of sorghum gene SbSGL enhances grain length and weight in rice. Molecular Breeding, 2018, 38, 1.	1.0	6
595	Increasing the efficiency of CRISPR as9â€VQR precise genome editing in rice. Plant Biotechnology Journal, 2018, 16, 292-297.	4.1	78
596	Overâ€expression of mutated <i>Zm<scp>DA</scp>1</i> or <i>Zm<scp>DAR</scp>1</i> gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnology Journal, 2018, 16, 234-244.	4.1	57
597	Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2018, 131, 267-282.	1.8	49
598	Meta-expression analysis of unannotated genes in rice and approaches for network construction to suggest the probable roles. Plant Molecular Biology, 2018, 96, 17-34.	2.0	4
599	Harnessing genetic resources and progress in plant genomics for fonio (Digitaria spp.) improvement. Genetic Resources and Crop Evolution, 2018, 65, 373-386.	0.8	17
600	Genome-wide association study of rice grain width variation. Genome, 2018, 61, 233-240.	0.9	7
601	A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2018, 131, 539-553.	1.8	121
602	Transcriptome Analysis and Functional Identification of Xa13 and Piâ€ŧa Orthologs in Oryza granulata. Plant Genome, 2018, 11, 170097.	1.6	2
603	Overexpression of OsbHLH107, a member of the basic helix-loop-helix transcription factor family, enhances grain size in rice (Oryza sativa L.). Rice, 2018, 11, 41.	1.7	42
604	Grain width 2 (GW2) and its interacting proteins regulate seed development in rice (Oryza sativa L.). , 2018, 59, 23.		26
605	A northern Chinese origin of Austronesian agriculture: new evidence on traditional Formosan cereals. Rice, 2018, 11, 57.	1.7	12

#	Article	IF	CITATIONS
606	Systems modelâ€guided rice yield improvements based on genes controlling source, sink, and flow. Journal of Integrative Plant Biology, 2018, 60, 1154-1180.	4.1	19
607	The Arrangement of Endosperm Cells and Development of Starch Granules Are Associated With the Occurrence of Grain Chalkiness in Japonica Varieties. Journal of Agricultural Science, 2018, 10, 156.	0.1	4
608	Fine mapping of a major quantitative trait locus, <i>qgnp7(t)</i> , controlling grain number per panicle in African rice (<i>Oryza glaberrima</i> S.). Breeding Science, 2018, 68, 606-613.	0.9	9
609	Notched Belly Grain 4, a Novel Allele of Dwarf 11, Regulates Grain Shape and Seed Germination in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2018, 19, 4069.	1.8	16
610	QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biology, 2018, 18, 324.	1.6	82
611	Expansin genes expression in growing ovaries and grains of sunflower are tissue-specific and associate with final grain weight. BMC Plant Biology, 2018, 18, 327.	1.6	10
612	Development of High Yielding Glutinous Cytoplasmic Male Sterile Rice (Oryza sativa L.) Lines through CRISPR/Cas9 Based Mutagenesis of Wx and TGW6 and Proteomic Analysis of Anther. Agronomy, 2018, 8, 290.	1.3	24
613	Colocalization of QTLs for hull-cracked rice and grain size in elite rice varieties in Japan. Breeding Science, 2018, 68, 449-454.	0.9	9
614	Retrospective and perspective of rice breeding in China. Journal of Genetics and Genomics, 2018, 45, 603-612.	1.7	45
615	SRG1, Encoding a Kinesin-4 Protein, Is an Important Factor for Determining Grain Shape in Rice. Rice Science, 2018, 25, 297-307.	1.7	7
616	Improvement and identification of genes for yield related traits in Indica-type rice. Ikushugaku Kenkyu, 2018, 20, 180-184.	0.1	0
617	QTL Detection for Kernel Size and Weight in Bread Wheat (Triticum aestivum L.) Using a High-Density SNP and SSR-Based Linkage Map. Frontiers in Plant Science, 2018, 9, 1484.	1.7	78
619	Discovery of QTL Alleles for Grain Shape in the Japan-MAGIC Rice Population Using Haplotype Information. G3: Genes, Genomes, Genetics, 2018, 8, 3559-3565.	0.8	34
620	QTL mapping in a maize F2 population using Genotyping-by-Sequencing and a modified fine-mapping strategy. Plant Science, 2018, 276, 171-180.	1.7	16
621	Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. Theoretical and Applied Genetics, 2018, 131, 1741-1759.	1.8	90
622	Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage. Journal of Experimental Botany, 2018, 69, 4017-4032.	2.4	39
623	The rational design of multiple molecular module-based assemblies for simultaneously improving rice yield and grain quality. Journal of Genetics and Genomics, 2018, 45, 337-341.	1.7	14
624	Dimerization through the RING-Finger Domain Attenuates Excision Activity of the piggyBac Transposase. Biochemistry, 2018, 57, 2913-2922.	1.2	2

#	Article	IF	CITATIONS
625	A Novel and Pleiotropic Factor SLENDER GRAIN3 Is Involved in Regulating Grain Size in Rice. Rice Science, 2018, 25, 132-141.	1.7	8
627	Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa) Tj ETQq1	1	l4 rgBT /Ovei

628	Life goes on: Archaeobotanical investigations of diet and ritual at Angkor Thom, Cambodia (14th–15th) Tj ETQ	q0.0,0 rgB 0.9	T /Overlock
629	Genetic Diversity and Genome-Wide Association Study of Major Ear Quantitative Traits Using High-Density SNPs in Maize. Frontiers in Plant Science, 2018, 9, 966.	1.7	46
630	Genomeâ€Wide Association Analysis of Grain Yieldâ€Associated Traits in a Panâ€European Barley Cultivar Collection. Plant Genome, 2018, 11, 170073.	1.6	78
631	Molecular characterization of the TaWTG1 in bread wheat (Triticum aestivum L.). Gene, 2018, 678, 23-32.	1.0	5
632	Large-Scale Investigation of Soybean Gene Functions by Overexpressing a Full-Length Soybean cDNA Library in Arabidopsis. Frontiers in Plant Science, 2018, 9, 631.	1.7	7
633	Insights Into the Genetic Basis of Blueberry Fruit-Related Traits Using Diploid and Polyploid Models in a GWAS Context. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	60
634	Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari. Breeding Science, 2018, 68, 210-218.	0.9	19
635	LTBSG1, a New Allele of BRD2, Regulates Panicle and Grain Development in Rice by Brassinosteroid Biosynthetic Pathway. Genes, 2018, 9, 292.	1.0	14
636	Molecular Genetics and Breeding for Nutrient Use Efficiency in Rice. International Journal of Molecular Sciences, 2018, 19, 1762.	1.8	51
637	GW2 Functions as an E3 Ubiquitin Ligase for Rice Expansin-Like 1. International Journal of Molecular Sciences, 2018, 19, 1904.	1.8	56
638	Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PLoS ONE, 2018, 13, e0196690.	1.1	25
639	An EMS-induced new sequence variant, TEMS5032, in the coding region of SRS3 gene leads to shorter grain length in rice (Oryza sativa L.). Journal of Applied Genetics, 2018, 59, 377-389.	1.0	1
640	Effect of qGN4.1 QTL for Grain Number per Panicle in Genetic Backgrounds of Twelve Different Mega Varieties of Rice. Rice, 2018, 11, 8.	1.7	21
641	Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC Plant Biology, 2018, 18, 22.	1.6	29
642	Sheathed Panicle Phenotype (cv. Sathi) Maintains Normal Spikelet Fertility and Grain Filling under Prolonged Heat Stress in Rice. Crop Science, 2018, 58, 1693-1705.	0.8	9

		Report	
#	Article	IF	CITATIONS
644	Genome-Wide Association Studies to Identify Loci and Candidate Genes Controlling Kernel Weight and Length in a Historical United States Wheat Population. Frontiers in Plant Science, 2018, 9, 1045.	1.7	39
645	Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2Âhomoeologues to grain size and weight in wheat. Theoretical and Applied Genetics, 2018, 131, 2463-2475.	1.8	142
646	Transcriptome-referenced association study of clove shape traits in garlic. DNA Research, 2018, 25, 587-596.	1.5	31
647	Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/â€~AC Domain'. PLoS ONE, 2018, 13, e0190681.	1.1	66
648	Effect of multiple allelic combinations of genes on regulating grain size in rice. PLoS ONE, 2018, 13, e0190684.	1.1	29
649	Characterization of Imprinted Genes in Rice Reveals Conservation of Regulation and Imprinting with Other Plant Species. Plant Physiology, 2018, 177, 1754-1771.	2.3	50
650	New Insights into the Molecular Mechanism Underlying Seed Size Control under Drought Stress. Journal of Agricultural and Food Chemistry, 2019, 67, 9697-9704.	2.4	10
651	Mapping and analysis of QTLs related to seed length and seed width in Glycine max. Plant Breeding, 2019, 138, 733-740.	1.0	3
652	The overexpression of rice <scp>ACYL</scp> â€ <scp>CoA</scp> â€ <scp>BINDING PROTEIN</scp> 2 increases grain size and bran oil content in transgenic rice. Plant Journal, 2019, 100, 1132-1147.	2.8	28
653	Morphological Characteristics and Gene Mapping of Purple Apiculus Formation in Rice. Plant Molecular Biology Reporter, 2019, 37, 277-290.	1.0	5
654	Molecular insights into the regulation of rice kernel elongation. Critical Reviews in Biotechnology, 2019, 39, 904-923.	5.1	9
655	The Rho-family GTPase <i>OsRac1</i> controls rice grain size and yield by regulating cell division. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16121-16126.	3.3	39
656	Combined linkage and association mapping reveal candidate loci for kernel size and weight in maize. Breeding Science, 2019, 69, 420-428.	0.9	9
657	Mapping quantitative traits for grain physical and textural quality in Cambodian Jasmine rice PRD. Euphytica, 2019, 215, 1.	0.6	2
658	Fine-Mapping of qTGW1.2a, a Quantitative Trait Locus for 1000-Grain Weight in Rice. Rice Science, 2019, 26, 220-228.	1.7	10
659	Tomato locule number and fruit size controlled by natural alleles of <i>lc</i> and <i>fas</i> . Plant Direct, 2019, 3, e00142.	0.8	67
660	Using a Mathematical Model of Phloem Transport to Optimize Strategies for Crop Improvement. Methods in Molecular Biology, 2019, 2014, 387-395.	0.4	0
661	Transfer printing of nanomaterials and microstructures using a wire bonder. Journal of Micromechanics and Microengineering, 2019, 29, 125014.	1.5	1

#	Article	IF	CITATIONS
662	Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genetics, 2019, 20, 77.	2.7	42
663	Enhanced Mechanical Properties of Na _{0.02} Pb _{0.98} Te/MoTe ₂ Thermoelectric Composites Through in-Situ-Formed MoTe ₂ . ACS Applied Materials & Interfaces, 2019, 11, 41472-41481.	4.0	12
664	Genome-Wide Association Analysis and Allelic Mining of Grain Shape-Related Traits in Rice. Rice Science, 2019, 26, 384-392.	1.7	11
665	The Mediator subunit OsMED15a is a transcriptional co-regulator of seed size/weight–modulating genes in rice. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194432.	0.9	16
666	Novel haplotype combinations reveal enhanced seedling vigor traits in rice that can accurately predict dry biomass accumulation in seedlings. Breeding Science, 2019, 69, 651-657.	0.9	1
667	Mapping quantitative trait loci for yield-related traits and predicting candidate genes for grain weight in maize. Scientific Reports, 2019, 9, 16112.	1.6	15
668	Identification of Rice Large Grain Gene GW2 by Whole-Genome Sequencing of a Large Grain-Isogenic Line Integrated with Japonica Native Gene and Its Linkage Relationship with the Co-integrated Semidwarf Gene d60 on Chromosome 2. International Journal of Molecular Sciences, 2019, 20, 5442.	1.8	2
669	InDel Marker Based Estimation of Multi-Gene Allele Contribution and Genetic Variations for Grain Size and Weight in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2019, 20, 4824.	1.8	12
670	The basic helixâ€loopâ€helix transcription factor, Os <scp>PIL</scp> 15, regulates grain size via directly targeting a purine permease gene <i>Os<scp>PUP</scp>7</i> in rice. Plant Biotechnology Journal, 2019, 17, 1527-1537.	4.1	46
671	<i>De novo</i> transcriptome assembly and identification of genes related to seed size in common buckwheat (<i>Fagopyrum esculentum</i> M.). Breeding Science, 2019, 69, 487-497.	0.9	19
672	LONG GRAIN 1: a novel gene that regulates grain length in rice. Molecular Breeding, 2019, 39, 1.	1.0	7
673	Genome-wide association mapping and candidate gene analysis for seed shape in soybean (Glycine max). Crop and Pasture Science, 2019, 70, 684.	0.7	7
674	Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.). Journal of Integrative Agriculture, 2019, 18, 1838-1850.	1.7	6
675	Utilization of Interspecific High-Density Genetic Map of RIL Population for the QTL Detection and Candidate Gene Mining for 100-Seed Weight in Soybean. Frontiers in Plant Science, 2019, 10, 1001.	1.7	31
676	Evaluation of head and broken rice of long grain Indica rice cultivars: Evidence for the role of starch and protein composition to head rice recovery. Food Research International, 2019, 126, 108675.	2.9	7
677	OsSPL18 controls grain weight and grain number in rice. Journal of Genetics and Genomics, 2019, 46, 41-51.	1.7	76
678	<i>Aegilops tauschii</i> Genome Sequence: A Framework for Meta-analysis of Wheat QTLs. G3: Genes, Genomes, Genetics, 2019, 9, 841-853.	0.8	1
679	Dissecting the Genetic Basis of Grain Size and Weight in Barley (Hordeum vulgare L.) by QTL and Comparative Genetic Analyses. Frontiers in Plant Science, 2019, 10, 469.	1.7	46

ARTICLE

680 Genome-wide association study of important agronomic traits within a core collection of rice (Oryza) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

681	Gene editing of the wheat homologs of <scp>TONNEAU</scp> 1â€recruiting motif encoding gene affects grain shape and weight in wheat. Plant Journal, 2019, 100, 251-264.	2.8	97
682	Structural Organization and Functional Activity of the Orthologous TaGLW7 Genes in Bread Wheat (Triticum aestivum L.). Russian Journal of Genetics, 2019, 55, 571-579.	0.2	1
683	Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). Theoretical and Applied Genetics, 2019, 132, 2325-2351.	1.8	30
684	The PLATZ Transcription Factor GL6 Affects Grain Length and Number in Rice. Plant Physiology, 2019, 180, 2077-2090.	2.3	127
685	A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population. PLoS Genetics, 2019, 15, e1008191.	1.5	72
686	Novel OsGRAS19 mutant, D26, positively regulates grain shape in rice (Oryza sativa). Functional Plant Biology, 2019, 46, 857.	1.1	12
687	OstMAPKKK5, a truncated mitogen-activated protein kinase kinase kinase 5, positively regulates plant height and yield in rice. Crop Journal, 2019, 7, 707-714.	2.3	12
688	Genomic Regions From an Iranian Landrace Increase Kernel Size in Durum Wheat. Frontiers in Plant Science, 2019, 10, 448.	1.7	20
689	Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in <i>Brassica napus</i> L Breeding Science, 2019, 69, 104-116.	0.9	10
690	Development of Three Sets of High-Throughput Genotyped Rice Chromosome Segment Substitution Lines and QTL Mapping for Eleven Traits. Rice, 2019, 12, 33.	1.7	26
691	Validation of Yield Component Traits Identified by Genomeâ€Wide Association Mapping in a tropical japonica × tropical japonica Rice Biparental Mapping Population. Plant Genome, 2019, 12, 180021.	1.6	13
692	Identification and application of major quantitative trait loci for panicle length in rice (Oryza sativa) through singleâ€segment substitution lines. Plant Breeding, 2019, 138, 299-308.	1.0	9
693	Foreign Food Plants as Prestigious Gifts: The Archaeobotany of the Amarna Age Palace at Tel Beth-Shemesh, Israel. Bulletin of the American Schools of Oriental Research, 2019, 381, 83-105.	0.2	5
694	Harnessing Novel Diversity From Landraces to Improve an Elite Barley Variety. Frontiers in Plant Science, 2019, 10, 434.	1.7	28
695	The Genomics of <i>Oryza</i> Species Provides Insights into Rice Domestication and Heterosis. Annual Review of Plant Biology, 2019, 70, 639-665.	8.6	80
696	QTL identification and epistatic effect analysis of seed size- and weight-related traits in Zea mays L. Molecular Breeding, 2019, 39, 1.	1.0	7
697	Adaptation and Phenotypic Diversification in Arabidopsis through Loss-of-Function Mutations in Protein-Coding Genes, Plant Cell, 2019, 31, 1012-1025.	3.1	42

#	Article	IF	CITATIONS
698	Mapping and verification of grain shape QTLs based on high-throughput SNP markers in rice. Molecular Breeding, 2019, 39, 1.	1.0	10
699	How elevated CO2 affects our nutrition in rice, and how we can deal with it. PLoS ONE, 2019, 14, e0212840.	1.1	31
700	Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2019, 132, 1799-1814.	1.8	69
701	One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology, 2019, 37, 287-292.	9.4	222
702	Transcriptome analysis reveals important candidate genes involved in grain-size formation at the stage of grain enlargement in common wheat cultivar "Bainong 4199― PLoS ONE, 2019, 14, e0214149.	1.1	13
703	OsGASR9 positively regulates grain size and yield in rice (Oryza sativa). Plant Science, 2019, 286, 17-27.	1.7	31
704	Genetic Modification for Wheat Improvement: From Transgenesis to Genome Editing. BioMed Research International, 2019, 2019, 1-18.	0.9	64
705	<i>>FLOURY ENDOSPERM16</i> encoding a NADâ€dependent cytosolic malate dehydrogenase plays an important role in starch synthesis and seed development in rice. Plant Biotechnology Journal, 2019, 17, 1914-1927.	4.1	50
706	μ CT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. Plant Journal, 2019, 99, 98-111.	2.8	19
707	Fine mapping of qTGW10-20.8, a QTL having important contribution to grain weight variation in rice. Crop Journal, 2019, 7, 587-597.	2.3	15
708	An Overview of Rice QTLs Associated with Disease Resistance to Three Major Rice Diseases: Blast, Sheath Blight, and Bacterial Panicle Blight. Agronomy, 2019, 9, 177.	1.3	21
709	Ubiquitin Specific Protease 15 Has an Important Role in Regulating Grain Width and Size in Rice. Plant Physiology, 2019, 180, 381-391.	2.3	90
710	Molecular Networks of Seed Size Control in Plants. Annual Review of Plant Biology, 2019, 70, 435-463.	8.6	336
711	Applications of the CRISPR/Cas9 System for Rice Grain Quality Improvement: Perspectives and Opportunities. International Journal of Molecular Sciences, 2019, 20, 888.	1.8	98
712	<i>LARGE GRAIN</i> Encodes a Putative RNA-Binding Protein that Regulates Spikelet Hull Length in Rice. Plant and Cell Physiology, 2019, 60, 503-515.	1.5	11
713	Construction of a High-Density Genetic Map and Identification of Loci Related to Hollow Stem Trait in Broccoli (Brassic oleracea L. italica). Frontiers in Plant Science, 2019, 10, 45.	1.7	16
714	Genome-wide association study revealed that the TaGW8 gene was associated with kernel size in Chinese bread wheat. Scientific Reports, 2019, 9, 2702.	1.6	59
715	Genome-Wide Identification and Characterization of the ALOG Domain Genes in Rice. International Journal of Genomics, 2019, 2019, 1-13.	0.8	12

#	Article	IF	CITATIONS
716	A systematic in silico prediction of gibberellic acid stimulated GASA family members: A novel small peptide contributes to floral architecture and transcriptomic changes induced by external stimuli in rice. Journal of Plant Physiology, 2019, 234-235, 117-132.	1.6	37
717	Manipulating osa-MIR156f Expression by D18 Promoter to Regulate Plant Architecture and Yield Traits both in Seasonal and Ratooning Rice. Biological Procedures Online, 2019, 21, 21.	1.4	8
718	Molecular, cellular and Yin-Yang regulation of grain size and number in rice. Molecular Breeding, 2019, 39, 1.	1.0	32
720	Identification and fine mapping of a stigma exsertion mutant gene (Bolsem) in ornamental kale (Brassica oleracea var. acephala). Molecular Breeding, 2019, 39, 1.	1.0	3
721	Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.). BMC Genetics, 2019, 20, 98.	2.7	35
722	A high-density genetic map constructed using specific length amplified fragment (SLAF) sequencing and QTL mapping of seed-related traits in sesame (Sesamum indicum L.). BMC Plant Biology, 2019, 19, 588.	1.6	24
723	Genetic dissection and validation of QTLs for grain shape and weight in rice and fine mapping of qGL1.3, a major QTL for grain length and weight. Molecular Breeding, 2019, 39, 1.	1.0	3
724	Registration of the Estrela × NSFTV199 Rice Recombinant Inbred Line Mapping Population. Journal of Plant Registrations, 2019, 13, 469-478.	0.4	7
725	Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports, 2019, 38, 475-485.	2.8	136
726	Association Analysis of Three Diverse Rice (Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome, 2019, 12, 170085.	1.6	33
726 727	Association Analysis of Three Diverse Rice (Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome, 2019, 12, 170085. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 2019, 132, 419-429.	1.6 1.8	33 33
726 727 728	Association Analysis of Three Diverse Rice (Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome, 2019, 12, 170085. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 2019, 132, 419-429. Rice appearance quality., 2019,, 371-383.	1.6 1.8	33 33 10
726 727 728 729	Association Analysis of Three Diverse Rice (Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome, 2019, 12, 170085. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 2019, 132, 419-429. Rice appearance quality. , 2019, , 371-383. A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology, 2019, 61, 337-358.	1.6 1.8 4.1	 33 33 10 122
726 727 728 729 730	Association Analysis of Three Diverse Rice (Oryza sativa L.) Cermplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome, 2019, 12, 170085. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 2019, 132, 419-429. Rice appearance quality. , 2019, , 371-383. A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology, 2019, 61, 337-358. <\>GW5å€Like, a homolog of <\>GW5, negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology, 2019, 61, 1171-1185.	1.6 1.8 4.1 4.1	 33 33 10 122 30
 726 727 728 729 730 731 	Association Analysis of Three Diverse Rice (Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome, 2019, 12, 170085. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 2019, 132, 419-429. Rice appearance quality. , 2019, , 371-383. A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology, 2019, 61, 337-358. <i>>GW5â€Like</i> , a homolog of <i>GW5</i> , negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology, 2019, 61, 1171-1185. Identification of QTLs and Validation of qCd-2 Associated with Grain Cadmium Concentrations in Rice. Rice Science, 2019, 26, 42-49.	1.6 1.8 4.1 4.1 1.7	 33 33 10 122 30 9
 726 727 728 729 730 731 732 	Association Analysis of Three Diverse Rice (Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome, 2019, 12, 170085. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 2019, 132, 419-429. Rice appearance quality., 2019, , 371-383. A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology, 2019, 61, 337-358. <i>> GW5â€Like </i> , a homolog of <i>GW5 </i> , negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology, 2019, 61, 1171-1185. Identification of QTLs and Validation of qCd-2 Associated with Grain Cadmium Concentrations in Rice. Rice Science, 2019, 26, 42-49. A Megabase-Scale Deletion is Associated with Phenotypic Variation of Multiple Traits in Maize. Genetics, 2019, 211, 305-316.	1.6 1.8 4.1 4.1 1.7 1.2	 33 33 10 122 30 9 6
 726 727 728 729 730 731 732 733 	Association Analysis of Three Diverse Rice (Oryza sativa L) Cermplasm Collections for Loci Regulating Grain Quality Traits. Plant Genome, 2019, 12, 170085. Enhancing grain size in durum wheat using RNAi to knockdown GW2 genes. Theoretical and Applied Genetics, 2019, 132, 419-429. Rice appearance quality. , 2019, , 371-383. A reductionist approach to dissecting grain weight and yield in wheat. Journal of Integrative Plant Biology, 2019, 61, 337-358. <i>>GW5â€Like</i> >, a homolog of <i>>GW5</i> , negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology, 2019, 61, 1171-1185. Identification of QTLs and Validation of qCd-2 Associated with Grain Cadmium Concentrations in Rice. Rice Science, 2019, 26, 42-49. A Megabase-Scale Deletion is Associated with Phenotypic Variation of Multiple Traits in Maize. Genetics, 2019, 211, 305-316. Rice Grain Quality. Methods in Molecular Biology, 2019,	1.6 1.8 4.1 4.1 1.7 1.2 0.4	 33 33 10 122 300 9 6 5

|--|

#	Article	IF	CITATIONS
735	Comparative Analysis of the Expression of Candidate Genes Governing Salt Tolerance and Yield Attributes in Two Contrasting Rice Genotypes, Encountering Salt Stress During Grain Development. Journal of Plant Growth Regulation, 2019, 38, 539-556.	2.8	22
736	An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Briefings in Bioinformatics, 2019, 20, 1913-1924.	3.2	74
737	OsNF-YC10, a seed preferentially expressed gene regulates grain width by affecting cell proliferation in rice. Plant Science, 2019, 280, 219-227.	1.7	18
738	<i>Tillering and small grain 1</i> dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. Journal of Integrative Plant Biology, 2020, 62, 581-600.	4.1	37
739	Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping. Plant Biotechnology Journal, 2020, 18, 207-221.	4.1	64
740	The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division. Journal of Integrative Plant Biology, 2020, 62, 847-864.	4.1	43
741	Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133, 149-162.	1.8	42
743	Microbial inactivation in model tissues treated by surface discharge plasma. Journal Physics D: Applied Physics, 2020, 53, 015205.	1.3	5
744	Integrating the dynamics of yield traits in rice in response to environmental changes. Journal of Experimental Botany, 2020, 71, 490-506.	2.4	39
745	Map-based cloning of qBWT-c12 discovered brassinosteroid-mediated control of organ size in cotton. Plant Science, 2020, 291, 110315.	1.7	4
746	Quantitative trait loci identification and genetic diversity analysis of panicle structure and grain shape in rice. Plant Growth Regulation, 2020, 90, 89-100.	1.8	9
747	A putative AGO protein, OsAGO17, positively regulates grain size and grain weight through OsmiR397b in rice. Plant Biotechnology Journal, 2020, 18, 916-928.	4.1	32
748	Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. Journal of Experimental Botany, 2020, 71, 2270-2280.	2.4	36
749	Effects of <i>DEP1</i> on grain yield and grain quality in the background of two <i>japonica</i> rice (<i>Oryza sativa</i>) cultivars. Plant Breeding, 2020, 139, 608-617.	1.0	10
750	<i>TaDA1</i> , a conserved negative regulator of kernel size, has an additive effect with <i>TaGW2</i> in common wheat (<i>Triticum aestivum</i> L). Plant Biotechnology Journal, 2020, 18, 1330-1342.	4.1	90
751	Rice grain quality—traditional traits for high quality rice and health-plus substances. Molecular Breeding, 2020, 40, 1.	1.0	78
752	<i>Wide Grain 7</i> increases grain width by enhancing H3K4me3 enrichment in the <i>OsMADS1</i> promoter in rice (<i>Oryza sativa</i> L.). Plant Journal, 2020, 102, 517-528.	2.8	25
753	Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnology Journal, 2020, 18, 614-630.	4.1	93

	ARTICLE	IF	CITATIONS
754	An image processing method for investigating the morphology of cereal endosperm cells. Biotechnic and Histochemistry, 2020, 95, 249-261.	0.7	2
755	Combined Linkage Mapping and Genome-Wide Association Study Identified QTLs Associated with Grain Shape and Weight in Rice (Oryza sativa L.). Agronomy, 2020, 10, 1532.	1.3	11
756	Rapid prediction of head rice yield and grain shape for genome-wide association study in indica rice. Journal of Cereal Science, 2020, 96, 103091.	1.8	12
757	Less Is More, Natural Loss-of-Function Mutation Is a Strategy for Adaptation. Plant Communications, 2020, 1, 100103.	3.6	35
758	Cytochrome P450 family: Genome-wide identification provides insights into the rutin synthesis pathway in Tartary buckwheat and the improvement of agricultural product quality. International Journal of Biological Macromolecules, 2020, 164, 4032-4045.	3.6	29
759	Identification of qLG2, qLG8, and qWG2 as novel quantitative trait loci for grain shape and the allelic analysis in cultivated rice. Planta, 2020, 252, 18.	1.6	2
760	Genetic determinants for agronomic and yield-related traits localized on a GBS-SNP linkage map from a japonica x indica cross in rice. Plant Gene, 2020, 24, 100249.	1.4	8
761	Identification of Rice QTLs for Important Agronomic Traits with Long-Kernel CSSL-Z741 and Three SSSLs. Rice Science, 2020, 27, 414-422.	1.7	10
762	Identification and validation of quantitative trait loci for kernel traits in common wheat (Triticum) Tj ETQq0 0 0	rgBT_/Over	lock 10 Tf 50
763	Responses of sub1A quantitative trait locus in rice to salinity in modulation with silver induction. Revista Brasileira De Botanica, 2020, 43, 789-797.	0.5	4
764			
704	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058.	1.8	38
765	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058. Genetic evaluation of domestication-related traits in rice: implications for the archaeobotany of rice origins. Archaeological and Anthropological Sciences, 2020, 12, 1.	1.8 0.7	38 16
765 766	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058. Genetic evaluation of domestication-related traits in rice: implications for the archaeobotany of rice origins. Archaeological and Anthropological Sciences, 2020, 12, 1. Studies on some major yield responsive genes in selected rice (Oryza species) cultivars grown in Nigeria using candidate gene SSR-based markers approach. African Journal of Biotechnology, 2020, 19, 33-42.	1.8 0.7 0.3	38 16 0
765 766 767	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058.Genetic evaluation of domestication-related traits in rice: implications for the archaeobotany of rice origins. Archaeological and Anthropological Sciences, 2020, 12, 1.Studies on some major yield responsive genes in selected rice (Oryza species) cultivars grown in Nigeria using candidate gene SSR-based markers approach. African Journal of Biotechnology, 2020, 19, 3-42.The Selection of Gamma-Ray Irradiated Higher Yield Rice Mutants by Directed Evolution Method. Plants, 2020, 9, 1004.	1.8 0.7 0.3 1.6	38 16 0 9
765 766 767 768	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058.Genetic evaluation of domestication-related traits in rice: implications for the archaeobotany of rice origins. Archaeological and Anthropological Sciences, 2020, 12, 1.Studies on some major yield responsive genes in selected rice (Oryza species) cultivars grown in Nigeria using candidate gene SSR-based markers approach. African Journal of Biotechnology, 2020, 19, 33-42.The Selection of Gamma-Ray Irradiated Higher Yield Rice Mutants by Directed Evolution Method. Plants, 2020, 9, 1004.Genetic control of tracheid properties in Norway spruce wood. Scientific Reports, 2020, 10, 18089.	1.8 0.7 0.3 1.6 1.6	38 16 0 9 9
765 766 767 768 769	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058.Genetic evaluation of domestication-related traits in rice: implications for the archaeobotany of rice origins. Archaeological and Anthropological Sciences, 2020, 12, 1.Studies on some major yield responsive genes in selected rice (Oryza species) cultivars grown in Nigeria using candidate gene SSR-based markers approach. African Journal of Biotechnology, 2020, 19, 33-42.The Selection of Gamma-Ray Irradiated Higher Yield Rice Mutants by Directed Evolution Method. Plants, 2020, 9, 1004.Genetic control of tracheid properties in Norway spruce wood. Scientific Reports, 2020, 10, 18089.Quantitative analysis of allelic differences in the grain proteome between the Wxg2 and Wxg3 alleles in rice (Oryza sativa L.). Euphytica, 2020, 216, 1.	1.8 0.7 0.3 1.6 1.6	38 16 0 9 9
765 766 767 768 769 770	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058.Genetic evaluation of domestication-related traits in rice: implications for the archaeobotany of rice origins. Archaeological and Anthropological Sciences, 2020, 12, 1.Studies on some major yield responsive genes in selected rice (Oryza species) cultivars grown in Nigeria using candidate gene SSR-based markers approach. African Journal of Biotechnology, 2020, 19, 33-42.The Selection of Gamma-Ray Irradiated Higher Yield Rice Mutants by Directed Evolution Method. Plants, 2020, 9, 1004.Genetic control of tracheid properties in Norway spruce wood. Scientific Reports, 2020, 10, 18089.Quantitative analysis of allelic differences in the grain proteome between the Wxg2 and Wxg3 alleles in rice (Oryza sativa L). Euphytica, 2020, 216, 1.Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC Plant Biology, 2020, 20, 411.	1.8 0.7 0.3 1.6 1.6 1.6	 38 16 0 9 9 1 24

#	ARTICLE	IF	CITATIONS
772	genotypes, representing a potential biohazard. Environmental Science and Pollution Research, 2021, 28, 40220-40232.	2.7	18
773	Genetic and epistatic effects for grain quality and yield of three grain-size QTLs identified in brewing rice (Oryza sativa L.) Molecular Breeding, 2020, 40, 1.	1.0	6
774	The ubiquitin system affects agronomic plant traits. Journal of Biological Chemistry, 2020, 295, 13940-13955.	1.6	32
775	Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea. Scientific Reports, 2020, 10, 19637.	1.6	12
776	Sequence Variants Linked to Key Traits in Interspecific Crosses between African and Asian Rice. Plants, 2020, 9, 1653.	1.6	1
777	Cloning of wheat keto-acyl thiolase 2B reveals a role of jasmonic acid in grain weight determination. Nature Communications, 2020, 11, 6266.	5.8	38
778	OsRRM, an RNA-Binding Protein, Modulates Sugar Transport in Rice (Oryza sativa L.). Frontiers in Plant Science, 2020, 11, 605276.	1.7	7
779	Effects of GS3 and GL3.1 for Grain Size Editing by CRISPR/Cas9 in Rice. Rice Science, 2020, 27, 405-413.	1.7	39
780	Identification of Additive–Epistatic QTLs Conferring Seed Traits in Soybean Using Recombinant Inbred Lines. Frontiers in Plant Science, 2020, 11, 566056.	1.7	10
781	RING-Type E3 Ubiqitin Ligase Barley Genes (HvYrg1–2) Control Characteristics of Both Vegetative Organs and Seeds as Yield Components. Plants, 2020, 9, 1693.	1.6	10
782	QTL Analysis and Fine Mapping of a Major QTL Conferring Kernel Size in Maize (Zea mays). Frontiers in Genetics, 2020, 11, 603920.	1.1	16
783	A quantitative trait locus <i>GW6</i> controls rice grain size and yield through the gibberellin pathway. Plant Journal, 2020, 103, 1174-1188.	2.8	85
784	QTL mapping and haplotype analysis revealed candidate genes for grain thickness in rice (Oryza sativa) Tj ETQq0	0 0 rgBT / 1.0	Overlock 10
785	Training instance segmentation neural network with synthetic datasets for crop seed phenotyping. Communications Biology, 2020, 3, 173.	2.0	81
786	Genome-Wide Association Study of Grain Size Traits in Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Population. Frontiers in Plant Science, 2020, 11, 395.	1.7	19
787	RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. Journal of Experimental Botany, 2020, 71, 5377-5388.	2.4	43
788	Genomeâ€wide analysis of polymorphisms identified domesticationâ€associated long lowâ€diversity region carrying important rice grain size/weight quantitative trait loci. Plant Journal, 2020, 103, 1525-1547.	2.8	9

789Wheat RING E3 ubiquitin ligase TaDIS1 degrade TaSTP via the 26S proteasome pathway. Plant Science,
2020, 296, 110494.1.717

#	Article	IF	CITATIONS
790	Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size. Journal of Experimental Botany, 2020, 71, 5389-5401.	2.4	15
791	The development and validation of new DNA markers linked to the thousand-grain weight QTL in bread wheat (Triticum aestivum L.). Czech Journal of Genetics and Plant Breeding, 2020, 56, 52-61.	0.4	0
792	Genome-wide transcriptome profile of rice hybrids with and without Oryza rufipogon introgression reveals candidate genes for yield. Scientific Reports, 2020, 10, 4873.	1.6	9
793	A QTL atlas for grain yield and its component traits in maize (<i>Zea mays</i>). Plant Breeding, 2020, 139, 562-574.	1.0	18
794	Whole-Transcriptome Analysis Unveils the Synchronized Activities of Genes for Fructans in Developing Tubers of the Jerusalem Artichoke. Frontiers in Plant Science, 2020, 11, 101.	1.7	10
795	Fine Mapping of a Grain Shape Gene from a Rice Landrace Longliheinuo-Dwarf (Oryza sativa L. ssp.) Tj ETQq1 1 ().784314 1.3	rgBJ /Overloo
796	Construction of a High-Density Genetic Map and Analysis of Seed-Related Traits Using Specific Length Amplified Fragment Sequencing for Cucurbita maxima. Frontiers in Plant Science, 2019, 10, 1782.	1.7	22
797	Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop. Trends in Plant Science, 2020, 25, 525-537.	4.3	65
798	The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Science Bulletin, 2020, 65, 753-764.	4.3	16
799	The Rice Basic Helix–Loop–Helix 79 (OsbHLH079) Determines Leaf Angle and Grain Shape. International Journal of Molecular Sciences, 2020, 21, 2090.	1.8	16
800	Quantitative Trait Loci for Seed Size Variation in Cucurbits – A Review. Frontiers in Plant Science, 2020, 11, 304.	1.7	30
801	OsINV3 and Its Homolog, OsINV2, Control Grain Size in Rice. International Journal of Molecular Sciences, 2020, 21, 2199.	1.8	19
802	Marker-assisted selection for grain number and yield-related traits of rice (Oryza sativa L.). Physiology and Molecular Biology of Plants, 2020, 26, 885-898.	1.4	21
803	Genome-Wide Identification and Evolutionary Analysis of the Fruit-Weight 2.2-Like Gene Family in Polyploid Oilseed Rape (Brassica napus L.). DNA and Cell Biology, 2020, 39, 766-782.	0.9	3
804	Natural variation in the promoter of <i>TGW2</i> determines grain width and weight in rice. New Phytologist, 2020, 227, 629-640.	3.5	89
805	Genomeâ€wide association studies and <scp>QTL</scp> mapping uncover the genetic architecture of ear tipâ€barrenness in maize. Physiologia Plantarum, 2020, 170, 27-39.	2.6	28
806	Genome-Wide Identification of IncRNAs During Rice Seed Development. Genes, 2020, 11, 243.	1.0	15
807	CRISPR-mediated accelerated domestication of African rice landraces. PLoS ONE, 2020, 15, e0229782.	1.1	53

#	Article	IF	CITATIONS
808	A RING-Type E3 Ubiquitin Ligase, OsGW2, Controls Chlorophyll Content and Dark-Induced Senescence in Rice. International Journal of Molecular Sciences, 2020, 21, 1704.	1.8	20
809	Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany, 2020, 71, 5333-5347.	2.4	49
810	Generation of High Yielding and Fragrant Rice (Oryza sativa L.) Lines by CRISPR/Cas9 Targeted Mutagenesis of Three Homoeologs of Cytochrome P450 Gene Family and OsBADH2 and Transcriptome and Proteome Profiling of Revealed Changes Triggered by Mutations. Plants, 2020, 9, 788.	1.6	57
811	Modern tools in improving rice production. , 2020, , 67-75.		0
812	Rice gene, OsCKX2-2, regulates inflorescence and grain size by increasing endogenous cytokinin content. Plant Growth Regulation, 2020, 92, 283-294.	1.8	14
813	Clycine- and Proline-Rich Protein OsGPRP3 Regulates Grain Size and Quality in Rice. Journal of Agricultural and Food Chemistry, 2020, 68, 7581-7590.	2.4	12
814	<i>Rice Big Grain 1 </i> promotes cell division to enhance organ development, stress tolerance and grain yield. Plant Biotechnology Journal, 2020, 18, 1969-1983.	4.1	25
815	Divergent selection and genetic introgression shape the genome landscape of heterosis in hybrid rice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4623-4631.	3.3	46
816	High-density genetic linkage-map construction of hawthorn and QTL mapping for important fruit traits. PLoS ONE, 2020, 15, e0229020.	1.1	4
817	Genome-Wide Association Study and QTL Meta-Analysis Identified Novel Genomic Loci Controlling Potassium Use Efficiency and Agronomic Traits in Bread Wheat. Frontiers in Plant Science, 2020, 11, 70.	1.7	31
818	Identification of QTL TGW12 responsible for grain weight in rice based on recombinant inbred line population crossed by wild rice (Oryza minuta) introgression line K1561 and indica rice G1025. BMC Genetics, 2020, 21, 10.	2.7	14
819	Resequencing 200 Flax Cultivated Accessions Identifies Candidate Genes Related to Seed Size and Weight and Reveals Signatures of Artificial Selection. Frontiers in Plant Science, 2019, 10, 1682.	1.7	32
820	Genome-wide analysis of Jatropha curcas MADS-box gene family and functional characterization of the JcMADS40 gene in transgenic rice. BMC Genomics, 2020, 21, 325.	1.2	13
821	Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. Journal of Integrative Agriculture, 2020, 19, 1163-1169.	1.7	8
822	Control of Grain Size and Weight by the GSK2-LARGE1/OML4 Pathway in Rice. Plant Cell, 2020, 32, 1905-1918.	3.1	61
823	Allelic response of yield component traits to resource availability in spring wheat. Theoretical and Applied Genetics, 2021, 134, 603-620.	1.8	4
824	Genetic linkage mapping and QTLs identification for morphology and fruit quality related traits of melon by SNP based CAPS markers. Scientia Horticulturae, 2021, 278, 109849.	1.7	18
825	Genome-wide pedigree analysis of elite rice Shuhui 527 reveals key regions for breeding. Journal of Integrative Agriculture, 2021, 20, 35-45.	1.7	3

	Сітаті	on Report	
#	Article	IF	CITATIONS
826	Overcoming the tradeâ€off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. New Phytologist, 2021, 230, 629-640.	3.5	79
827	Wheat MADS-box gene TaSEP3-D1 negatively regulates heading date. Crop Journal, 2021, 9, 1115-1123.	2.3	16
828	Application of "Omics―Technologies in Crop Breeding. , 2021, , 25-45.		3
829	Silencing of an Ubiquitin Ligase Increases Grain Width and Weight in indica Rice. Frontiers in Genetics, 2020, 11, 600378.	1.1	10
830	Fine mapping of a kernel length-related gene with potential value for maize breeding. Theoretical and Applied Genetics, 2021, 134, 1033-1045.	1.8	6
831	Decreased grain size1, a C3HC4-type RING protein, influences grain size in rice (Oryza sativa L.). Plant Molecular Biology, 2021, 105, 405-417.	2.0	10
832	Candidate Genes and Quantitative Trait Loci for Grain Yield and Seed Size in Durum Wheat. Plants, 2021, 10, 312.	1.6	22
833	Modification of cereal plant architecture by genome editing to improve yields. Plant Cell Reports, 2021, 40, 953-978.	2.8	18
834	Comparative analysis of the transcriptomes of two rice subspecies during domestication. Scientific Reports, 2021, 11, 3660.	1.6	5
835	Increased expression of fatty acid and ABC transporters enhances seed oil production in camelina. Biotechnology for Biofuels, 2021, 14, 49.	6.2	13
837	Wheat omics: Classical breeding to new breeding technologies. Saudi Journal of Biological Sciences, 2021, 28, 1433-1444.	1.8	12
838	Association Mapping of Thousand Grain Weight using SSR and SNP Markers in Rice (Oryza sativa L.) Across Six Environments. Tropical Plant Biology, 2021, 14, 143-155.	1.0	4
839	Advanced domestication: harnessing the precision of gene editing in crop breeding. Plant Biotechnology Journal, 2021, 19, 660-670.	4.1	39
840	Association Mapping and Transcriptome Analysis Reveal the Genetic Architecture of Maize Kernel Size. Frontiers in Plant Science, 2021, 12, 632788.	1.7	3
841	Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (<i>Digitaria exilis</i>). GigaScience, 2021, 10, .	3.3	23
842	Genome-wide association study and Mendelian randomization analysis provide insights for improving rice yield potential. Scientific Reports, 2021, 11, 6894.	1.6	9
843	APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley. Development (Cambridge), 2021, 148, .	1.2	18
844	Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12, 1944.	5.8	79

#	Article	IF	CITATIONS
845	The Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing <i>AINTEGUMENTA</i> . Plant Cell, 2021, 33, 1907-1926.	3.1	31
846	Identification of eight QTL controlling multiple yield components in a German multi-parental wheat population, including Rht24, WAPO-A1, WAPO-B1 and genetic loci on chromosomes 5A and 6A. Theoretical and Applied Genetics, 2021, 134, 1435-1454.	1.8	20
848	The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. Plant Physiology and Biochemistry, 2021, 160, 281-293.	2.8	18
849	CRISPR/Cas9 Guided Mutagenesis of Grain Size 3 Confers Increased Rice (Oryza sativa L.) Grain Length by Regulating Cysteine Proteinase Inhibitor and Ubiquitin-Related Proteins. International Journal of Molecular Sciences, 2021, 22, 3225.	1.8	19
850	The <i>da1</i> mutation in wheat increases grain size under ambient and elevated CO ₂ but not grain yield due to tradeâ€off between grain size and grain number. Plant-Environment Interactions, 2021, 2, 61-73.	0.7	9
851	Control of seed size by jasmonate. Science China Life Sciences, 2021, 64, 1215-1226.	2.3	33
852	CRISPR/Cas9-mediated mutagenesis of ClBG1 decreased seed size and promoted seed germination in watermelon. Horticulture Research, 2021, 8, 70.	2.9	38
853	ldentification and Pyramiding of QTLs for Rice Grain Size Based on Short-Wide Grain CSSL-Z563 and Fine-Mapping of qGL3–2. Rice, 2021, 14, 35.	1.7	13
854	Small kernel 501 (<i>smk501</i>) encodes the RUBylation activating enzyme E1 subunit ECR1 (E1) Tj ETQq0 0 0 development in maize. New Phytologist, 2021, 230, 2337-2354.) rgBT /Ove 3.5	erlock 10 Tf 5 8
857	Marker-Assisted Introgression and Stacking of Major QTLs Controlling Grain Number (Gn1a) and Number of Primary Branching (WFP) to NERICA Cultivars. Plants, 2021, 10, 844.	1.6	31
858	Genetic Mapping of Grain Shape Associated QTL Utilizing Recombinant Inbred Sister Lines in High Yielding Rice (Oryza sativa L). Agronomy, 2021, 11, 705.	1.3	2
859	The unusual structure of the PiggyMac cysteine-rich domain reveals zinc finger diversity in PiggyBac-related transposases. Mobile DNA, 2021, 12, 12.	1.3	6
860	Yield-enhancing SPIKE allele from the aus-subtype indica rice and its allele specific codominant marker. Journal of Genetics, 2021, 100, 1.	0.4	1
861	Genome-wide association study-based identification genes influencing agronomic traits in rice (Oryza) Tj ETQq1	1	4 ggBT /Ov <mark>e</mark> r
862	qTGW12a, a naturally varying QTL, regulates grain weight in rice. Theoretical and Applied Genetics, 2021, 134, 2767-2776.	1.8	10
863	The Relevance of a Physiological-Stage Approach Study of the Molecular and Environmental Factors Regulating Seed Germination in Wild Plants. Plants, 2021, 10, 1084.	1.6	2
864	Validation of a QTL for Grain Size and Weight Using an Introgression Line from a Cross between Oryza sativa and Oryza minuta. Rice, 2021, 14, 43.	1.7	11
865	A gain-of-function mutation of OsMAPK6 leads to long grain in rice. Crop Journal, 2021, 9, 1481-1481.	2.3	1

#	Δρτιςι ε	IF	CITATIONS
966	Mapping QTLs for yield component traits using overwintering cultivated rice. Journal of Genetics,	0.4	2 CHAHONS
800	2021, 100, 1.	0.4	J
867	Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality. Scientific Reports, 2021, 11, 10082.	1.6	15
869	Comprehensive Transcriptome Analyses Reveal Candidate Genes for Variation in Seed Size/Weight During Peanut (Arachis hypogaea L.) Domestication. Frontiers in Plant Science, 2021, 12, 666483.	1.7	13
870	Genome-wide association study reveals early seedling vigour-associated quantitative trait loci in indica rice. Euphytica, 2021, 217, 1.	0.6	1
871	A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Molecular Plant, 2021, 14, 1683-1698.	3.9	61
872	Loss of Function of OsARG Resulted in Pepper-Shaped Husk in Indica Rice. Life, 2021, 11, 523.	1.1	0
873	Genome-wide analysis of RING-type E3 ligase family identifies potential candidates regulating high amylose starch biosynthesis in wheat (Triticum aestivum L.). Scientific Reports, 2021, 11, 11461.	1.6	8
874	CRISPR/Cas systems: The link between functional genes and genetic improvement. Crop Journal, 2021, 9, 678-687.	2.3	7
875	What happened during domestication of wild to cultivated rice. Crop Journal, 2021, 9, 564-576.	2.3	19
876	WheatGene: A genomics database for common wheat and its related species. Crop Journal, 2021, 9, 1486-1491.	2.3	5
877	Identification of novel QTLs for grain fertility and associated traits to decipher poor grain filling of basal spikelets in dense panicle rice. Scientific Reports, 2021, 11, 13617.	1.6	6
878	Exploration of rice yield potential: Decoding agronomic and physiological traits. Crop Journal, 2021, 9, 577-589.	2.3	35
879	Marker-Assisted Backcross Breeding for Improvement of Submergence Tolerance and Grain Yield in the Popular Rice Variety â€~Maudamani'. Agronomy, 2021, 11, 1263.	1.3	10
880	Genetic Mapping and Validation of Loci for Kernel-Related Traits in Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2021, 12, 667493.	1.7	17
881	The RING E3 ligase CLG1 targets GS3 for degradation via the endosome pathway to determine grain size in rice. Molecular Plant, 2021, 14, 1699-1713.	3.9	41
882	Impaired SWEET-mediated sugar transportation impacts starch metabolism in developing rice seeds. Crop Journal, 2022, 10, 98-108.	2.3	17
883	Dynamic formation and transcriptional regulation mediated by phytohormones during chalkiness formation in rice. BMC Plant Biology, 2021, 21, 308.	1.6	10
884	Evaluation of the genetic effect of nine yield-related alleles using near-isogenic lines in the genetic backgrounds of Japanese rice cultivars. Ikushugaku Kenkyu, 2021, 23, 16-27.	0.1	4

#	Article	IF	CITATIONS
885	QTL Analysis of Rice Grain Size Using Segregating Populations Derived from the Large Grain Line. Agriculture (Switzerland), 2021, 11, 565.	1.4	4
886	Advances in the Identification of Quantitative Trait Loci and Genes Involved in Seed Vigor in Rice. Frontiers in Plant Science, 2021, 12, 659307.	1.7	22
887	MULTI-FLORET SPIKELET 4 (MFS4) Regulates Spikelet Development and Grain Size in Rice. Rice Science, 2021, 28, 344-357.	1.7	0
888	Genome–wide association study of grain morphology in wheat. Euphytica, 2021, 217, 1.	0.6	2
889	Genetic and Molecular Factors Determining Grain Weight in Rice. Frontiers in Plant Science, 2021, 12, 605799.	1.7	27
890	Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases. Plant Biotechnology Journal, 2021, 19, 2428-2441.	4.1	16
891	The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. Plant Cell, 2021, 33, 3331-3347.	3.1	38
892	Identification and QTL mapping of important agronomic traits based on rice short-wide grain CSSL-Z752 with restorer line Xihui 18 as background. Cereal Research Communications, 2022, 50, 473-480.	0.8	1
893	Molecular and Transcriptional Regulation of Seed Development in Cereals: Present Status and Future Prospects. , 0, , .		2
894	Effects of Grain Shape Genes Editing on Appearance Quality of Erect-Panicle Geng/Japonica Rice. Rice, 2021, 14, 74.	1.7	14
895	GW10, a member of P450 subfamily regulates grain size and grain number in rice. Theoretical and Applied Genetics, 2021, 134, 3941-3950.	1.8	20
896	The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Molecular Plant, 2021, 14, 1266-1280.	3.9	70
897	The decreased expression of GW2 homologous genes contributed to the increased grain width and thousand‑grain weight in wheat-Dasypyrum villosum 6VS·6DL translocation lines. Theoretical and Applied Genetics, 2021, 134, 3873-3894.	1.8	7
898	Multi-locus genome-wide association studies for five yield-related traits in rice. BMC Plant Biology, 2021, 21, 364.	1.6	22
899	Dissection of two QTL for grain length linked on the long arm of chromosome 5 in rice. Crop Science, 0, , .	0.8	0
900	Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study. BMC Genomics, 2021, 22, 602.	1.2	13
901	Genetic Diversity Relationship Between Grain Quality and Appearance in Rice. Frontiers in Plant Science, 2021, 12, 708996.	1.7	13
902	Heterologous expression of ZmGS5 enhances organ size and seed weight by regulating cell expansion in Arabidopsis thaliana. Gene, 2021, 793, 145749.	1.0	5

#	Article	IF	CITATIONS
903	Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System. International Journal of Molecular Sciences, 2021, 22, 9554.	1.8	25
904	Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing. BMC Plant Biology, 2021, 21, 419.	1.6	16
905	Verification and dissection of one quantitative trait locus for grain size and weight on chromosome 1 in rice. Scientific Reports, 2021, 11, 18252.	1.6	2
906	Expression, purification and crystallization of TGW6, which limits grain weight in rice. Protein Expression and Purification, 2021, 188, 105975.	0.6	6
907	Wheat. , 2021, , 98-163.		13
908	Utilization of a Wheat55K SNP array-derived high-density genetic map for high-resolution mapping of quantitative trait loci for important kernel-related traits in common wheat. Theoretical and Applied Genetics, 2021, 134, 807-821.	1.8	24
909	Source-Sink Relationships and Its Effect on Plant Productivity: Manipulation of Primary Carbon and Starch Metabolism. Concepts and Strategies in Plant Sciences, 2021, , 1-31.	0.6	5
910	OrMKK3 Influences Morphology and Grain Size in Rice. Journal of Plant Biology, 2021, , 1-14.	0.9	7
911	Seed Dispersal and Crop Domestication: Shattering, Germination and Seasonality in Evolution under Cultivation. , 0, , 238-295.		83
912	Common Bean Genomics and Its Applications in Breeding Programs. , 2014, , 185-206.		4
913	Genomics, Biotechnology and Plant Breeding for the Improvement of Rice Production. , 2020, , 217-232.		4
915	Functional Marker Development Across Species in Selected Traits. , 2013, , 467-515.		16
916	Genomics-Assisted Allele Mining and its Integration Into Rice Breeding. , 2014, , 251-265.		8
917	Fine mapping and gene cloning in the post-NGS era: advances and prospects. Theoretical and Applied Genetics, 2020, 133, 1791-1810.	1.8	94
918	UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nature Communications, 2020, 11, 2629.	5.8	158
923	Analysis of QTL for Grain Size in a Rice Chromosome Segment Substitution Line Z1392 with Long Grains and Fine Mapping of qGL-6. Rice, 2020, 13, 40.	1.7	21
924	Grain Size Selection Using Novel Functional Markers Targeting 14 Genes in Rice. Rice, 2020, 13, 63.	1.7	24
925	MINI SEED 2 (MIS2) Encodes a Receptor-like Kinase that Controls Grain Size and Shape in Rice. Rice, 2020, 13, 7.	1.7	29

		LPORT	
#	ARTICLE	IF	Citations
926	Cell Cycle Regulation and Plant Development. Books in Soils, Plants, and the Environment, 2014, , 3-32.	0.1	1
927	Auxin apical dominance governed by the OsAsp1-OsTIF1 complex determines distinctive rice caryopses development on different branches. PLoS Genetics, 2020, 16, e1009157.	1.5	13
928	Genomic Diversity and Introgression in O. sativa Reveal the Impact of Domestication and Breeding on the Rice Genome. PLoS ONE, 2010, 5, e10780.	1.1	250
929	Identification of Genome-Wide Variations among Three Elite Restorer Lines for Hybrid-Rice. PLoS ONE, 2012, 7, e30952.	1.1	21
930	Australian Wild Rice Reveals Pre-Domestication Origin of Polymorphism Deserts in Rice Genome. PLoS ONE, 2014, 9, e98843.	1.1	36
931	Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene. PLoS ONE, 2015, 10, e0123308.	1.1	46
932	SS1 (NAL1)- and SS2-Mediated Genetic Networks Underlying Source-Sink and Yield Traits in Rice (Oryza) Tj ETQ	9000 rgB 1.1	ST /Qyerlock 1
933	Genome-Wide Association Study of Grain Appearance and Milling Quality in a Worldwide Collection of Indica Rice Germplasm. PLoS ONE, 2015, 10, e0145577.	1.1	67
934	Metabolic Profiling and Physiological Analysis of a Novel Rice Introgression Line with Broad Leaf Size. PLoS ONE, 2015, 10, e0145646.	1.1	6
935	Combination of Eight Alleles at Four Quantitative Trait Loci Determines Grain Length in Rice. PLoS ONE, 2016, 11, e0150832.	1.1	9
936	The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize. PLoS ONE, 2016, 11, e0153428.	1.1	40
937	Dissecting the old Mediterranean durum wheat genetic architecture for phenology, biomass and yield formation by association mapping and QTL meta-analysis. PLoS ONE, 2017, 12, e0178290.	1.1	93
938	Combination of twelve alleles at six quantitative trait loci determines grain weight in rice. PLoS ONE, 2017, 12, e0181588.	1.1	4
939	Mapping and verification of grain shape QTLs based on an advanced backcross population in rice. PLoS ONE, 2017, 12, e0187553.	1.1	9
940	RNA-seq transcriptome analysis of the immature seeds of two Brassica napus lines with extremely different thousand-seed weight to identify the candidate genes related to seed weight. PLoS ONE, 2018, 13, e0191297.	1.1	13
941	The Role of Rice Vacuolar Invertase2 in Seed Size Control. Molecules and Cells, 2019, 42, 711-720.	1.0	13
942	Estudos genômicos de tolerância à seca em arroz. Multi-Science Journal, 2018, 1, 62-69.	0.1	2
943	Programmed Editing of Rice (Oryza sativa L.) OsSPL16 Gene Using CRISPR/Cas9 Improves Grain Yield by Modulating the Expression of Pyruvate Enzymes and Cell Cycle Proteins. International Journal of Molecular Sciences, 2021, 22, 249.	1.8	46

#	Article	IF	CITATIONS
949	QTL Detection of Grain Size and Shape with BC ₂ F ₂ Advanced Backcross Population of Rice (<i>Oryza sativa</i> L.). Acta Agronomica Sinica(China), 2008, 34, 1299-1307.	0.1	2
950	Modeling with Climatic Factors and Analysis on Ecological Characters for Grain Weight Dissected Factors of Two-Line Hybrid Rice, Liangyoupeijiu. Acta Agronomica Sinica(China), 2009, 34, 2202-2209.	0.1	1
951	QTL Mapping and Interaction Analysis for 1000-Grain Weight and Percentage of Grains with Chalkiness in Rice. Acta Agronomica Sinica(China), 2009, 35, 255-261.	0.1	4
952	Comparison between QTLs for Chlorophyll Content and Genes Control-ling Chlorophyll Biosynthesis and Degradation in <l>Japonica</l> Rice (<l>Oryza sativa</l> L.). Acta Agronomica Sinica(China), 2010, 36, 376-384.	0.1	4

Mapping QTLs for Grain Weight and Shape Using Four Sister Near Isogenic Lines in Rice (<I>Oryza) Tj ETQq0 0.0 rgBT /Qverlock 10 0.1 rgBT /Qverl

954	Novel Gene Discovery of Crops in China: Status, Challenging, and Perspective. Acta Agronomica Sinica(China), 2011, 37, 1-17.	0.1	13
955	Identification of QTLs for Grain Traits in Rice Using Extreme Materials in Grain Size. Acta Agronomica Sinica(China), 2011, 37, 784-792.	0.1	4
956	Analysis of Gene Expression Profiles in Pod and Leaf of Two Major Peanut Cultivars in Southern China. Acta Agronomica Sinica(China), 2011, 37, 1378-1388.	0.1	4
957	Genetic Analysis of Rice Mutant <l>L-05261</l> with Panicle Apical Abortion Trait. Acta Agronomica Sinica(China), 2012, 37, 1935-1941.	0.1	1
958	Epistatic and Additive Effects of QTLs for Yield-Related Traits Using Single Segment Substitution Lines of Rice (<i>Oryza sativa</i> L.). Acta Agronomica Sinica(China), 2013, 38, 2007-2014.	0.1	1
959	Mapping Quantitative Trait Loci for Seed Size and Shape Traits in Soybean. Acta Agronomica Sinica(China), 2016, 42, 1309.	0.1	2
960	Fine mapping of a grain weight quantitative trait locus, qGW6, using near isogenic lines derived from Oryza rufipogon IRGC105491 and Oryza sativa cultivar MR219. Genetics and Molecular Research, 2014, 13, 9477-9488.	0.3	6
961	Structural analysis of expressed sequence tags inimmature seed of Oryza sativa L Journal of Plant Biotechnology, 2009, 36, 130-136.	0.1	2
962	Analysis of germinating seed stage expressed sequence tags in Oryza sativa L Journal of Plant Biotechnology, 2009, 36, 281-288.	0.1	2
963	Quantitative Trait Locus Analysis for Grain Size Related Traits of Rice. Molecular Plant Breeding, 0, , .	0.0	7
965	Genetic Dissection of Agronomic Traits in Introgression Lines and Improvement of an Elite <i>Indica</i> Rice Variety. Japan Agricultural Research Quarterly, 2018, 52, 91-103.	0.1	2
966	Dissection of three quantitative trait loci for grain size on the long arm of chromosome 10 in rice (<i>Oryza sativa</i> L.). PeerJ, 2019, 7, e6966.	0.9	7
067	Fine-mapping of <i>qTGW2</i> , a quantitative trait locus for grain weight in rice (<i>Oryza sativa</i>) Tj ETQq1 1	0,784 <u>31</u>	4 rgBT /Ονι

#	Article	IF	CITATIONS
968	Development and Characterization of <i>japonica</i> Rice Line with Long and Spindle-shaped Grain. Han'guk Yukchong Hakhoe Chi, 2018, 50, 116-130.	0.2	5
969	Ascorbate Peroxidase OsAPx1 is Involved in Seed Development in Rice. Plant Breeding and Biotechnology, 2015, 3, 11-20.	0.3	6
970	Substitution Mapping of Two Closely Linked QTLs on Chromosome 8 Controlling Grain Chalkiness in Rice, 2021, 14, 85.	1.7	17
971	Identification of Genomic Regions Controlling Chalkiness and Grain Characteristics in a Recombinant Inbred Line Rice Population Based on High-Throughput SNP Markers. Genes, 2021, 12, 1690.	1.0	8
972	Toward Integrated Multi-Omics Intervention: Rice Trait Improvement and Stress Management. Frontiers in Plant Science, 2021, 12, 741419.	1.7	14
973	A rice QTL GS3.1 regulates grain size through metabolic-flux distribution between flavonoid and lignin metabolons without affecting stress tolerance. Communications Biology, 2021, 4, 1171.	2.0	12
974	A chloride efflux transporter, BIG RICE GRAIN 1, is involved in mediating grain size and salt tolerance in rice. Journal of Integrative Plant Biology, 2021, 63, 2150-2163.	4.1	8
975	Genetic Diversity of Shanlan Upland Rice (Oryza sativa L.) and Association Analysis of SSR Markers Linked to Agronomic Traits. BioMed Research International, 2021, 2021, 1-11.	0.9	5
976	Fine mapping and candidate gene analysis of qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice. Theoretical and Applied Genetics, 2022, 135, 51-64.	1.8	11
977	Rice yield: Bumper crop?. Nature China, 2007, , .	0.0	0
978	Characterization and Mapping of Rice Mutants, des2 and des5 . Rice Genomics and Genetics, 0, , .	0.0	0
979	Progress in Genetic Research into Grain Shape in Rice. Chinese Bulletin of Botany, 2011, 46, 597-605.	0.0	2
980	Genome Mapping, Markers and QTLs. , 2013, , 35-54.		1
981	Yield. , 2013, , 227-235.		0
982	Analysis of High-Resolution QTL Markers Associated with Rice Yields Using Data for Two Consecutive Years in Different Environmental Conditions. Natural Science, 2014, 06, 818-827.	0.2	1
983	Identification of Quantitative Trait Loci for Agronomic Traits in Two Rice Populations Derived from a Cross with a Wide Compatibility Line. Plant Breeding and Biotechnology, 2014, 2, 231-246.	0.3	1
984	Changes in Yield Potential of Traditional Rice Cultivars with Variability in Plant Height, Tillers Per Plant, Fertility and Days to Maturity. Journal of Scientific Research and Reports, 2015, 4, 114-122.	0.2	2
985	Construction of <i>tgw6</i> Mutants in Rice Based on CRISPR/Cas9 Technology. Acta Agronomica Sinica(China), 2016, 42, 1160.	0.1	3

#	ARTICLE Identification of Quantitative Trait Loci Controlling Floral Morphology of Rice Using a Backcross	IF	CITATIONS
986	Population between Common Cultivated Rice, <i>Oryza sativa</i> and Asian Wild Rice, <i>O. rufipogon</i> . American Journal of Plant Sciences, 2017, 08, 734-744.	0.3	3
990	Identification of Yield Improving Quantitative Trait Loci Alleles from Japonica x Indica Sub-Species in Recombinant Inbred Lines Rice (Oryza sativa L.). International Journal of Current Microbiology and Applied Sciences, 2017, 6, 1378-1385.	0.0	0
991	Development of Rice Promising Lines Using Genomic Technology and Information in Vietnam. , 2018, , 11-25.		0
994	Stability Analysis for Yield and Yield Attributing Traits in Rice (Oryza sativa L.). International Journal of Current Microbiology and Applied Sciences, 2018, 7, 1629-1638.	0.0	0
1000	QTL Analysis of Yield Traits Using Hanareum2/Unkwang Recombinant Inbred Lines. Han'guk Yukchong Hakhoe Chi, 2019, 51, 404-414.	0.2	0
1001	Industrial Quality. , 2020, , 47-67.		2
1003	Genomics and Molecular Markers for Rice Grain Quality: A Review. , 2020, , 425-444.		0
1005	Allelic Variation at Loci Associated with Grain Properties in Korean Wheat Cultivars. Han'guk Yukchong Hakhoe Chi, 2020, 52, 362-373.	0.2	3
1006	MOLECULAR CHARACTERIZATION OF RICE VARIETIES (ORIZA SATIVA L.)IN THE DOMINICAN REPUBLIC BY MEANS OF SNP USING ALLELE-SPECIFIC PRIMERS. International Journal of Agriculture Environment and Bioresearch, 2021, 06, 55-79.	0.0	0
1008	<i>gw2</i> mutation increases grain width and culm thickness in rice (<i>Oryza) Tj ETQq1 1 0.784</i>	4314 rgBT 0.9	/Overlock 1 14
1009	Wild Oryza for Quality Improvement. , 2020, , 299-329.		0
1010	Genome-wide association study on agronomic traits of temperate japonica rice (Oryza sativa L.). Crop Breeding and Applied Biotechnology, 2020, 20, .	0.1	5
1012	Quantitative Trait Loci for Rice Grain Quality Improvement. , 2020, , 687-697.		2
1013	CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice. Scientific Reports, 2021, 11, 21941.	1.6	36
1014	The Elite Alleles of OsSPL4 Regulate Grain Size and Increase Grain Yield in Rice. Rice, 2021, 14, 90.	1.7	23
1015	CRISPRâ€BETS: a baseâ€editing design tool for generating stop codons. Plant Biotechnology Journal, 2022, 20, 499-510.	4.1	21
1016	A Cyclophilin OsCYP20–2 Interacts with OsSYF2 to Regulate Grain Length by Pre-mRNA Splicing. Rice, 2020, 13, 64.	1.7	3
1017	Characterization of the â€~Oat-Like Rice' Caused by a Novel Allele OsMADS1Olr Reveals Vital Importance of OsMADS1 in Regulating Grain Shape in Oryza sativa L Rice, 2020, 13, 73.	1.7	6

#	ARTICLE OTL analysis of seed size by a high-density CBS genetic man in watermelon (Citrullus Janatus I.). Acta	IF	Citations
1018	Horticulturae, 2020, , 121-126.	0.1	1
1019	The phosphoproteomic and interactomic landscape of qGL3/OsPPKL1â€mediated brassinosteroid signaling in rice. Plant Journal, 2022, 109, 1048-1063.	2.8	8
1020	Interaction of brassinosteroid and cytokinin promotes ovule initiation and increases seed number per silique in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 702-716.	4.1	21
1021	Identification and verification of grain shape QTLs by SNP array in rice. PLoS ONE, 2021, 16, e0260133.	1.1	4
1022	Diversity of Panicle Architecture and Traits Influencing Grain Filling. , 2022, , 107-128.		0
1023	High-Quality Genomes and High-Density Genetic Map Facilitate the Identification of Genes From a Weedy Rice. Frontiers in Plant Science, 2021, 12, 775051.	1.7	7
1024	Loss of <i>Gn1a/OsCKX2</i> confers heavyâ€panicle rice with excellent lodging resistance. Journal of Integrative Plant Biology, 2022, 64, 23-38.	4.1	27
1025	Detection of QTLs for panicle-related traits using an <i>indica</i> × <i>japonica</i> recombinant inbred line population in rice. PeerJ, 2021, 9, e12504.	0.9	4
1026	Advances of Biotechnology in Quinoa Production: A Global Perspective. , 2021, , 79-111.		2
1027	Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135, 1049-1081.	1.8	51
1028	Identification of Grain Size-Related QTLs in Korean japonica Rice Using Genome Resequencing and High-Throughput Image Analysis. Agriculture (Switzerland), 2022, 12, 51.	1.4	5
1029	TaGW2L, a GW2-like RING finger E3 ligase, positively regulates heading date in common wheat (Triticum) Tj ETQ	1 _{2.3} 0.784	ŀ314 rgBT /○
1031	Natural Variation of <i>BRD</i> 2 Allele Plays an Important Role in the Plant Height and Grain Size. SSRN Electronic Journal, 0, , .	0.4	0
1032	Multi-Environmental Genetic Analysis of Grain Size Traits Based on Chromosome Segment Substitution Line in Rice (Oryza sativa L.). Phyton, 2022, 91, 943-958.	0.4	1
1033	A New RING Finger Protein, PLANT ARCHITECTURE and GRAIN NUMBER 1, Affects Plant Architecture and Grain Yield in Rice. International Journal of Molecular Sciences, 2022, 23, 824.	1.8	10
1034	Rice grain quality: Where we are and where to go?. Advances in Agronomy, 2022, 172, 211-252.	2.4	2
1035	Genome-wide association study of the candidate genes for grape berry shape-related traits. BMC Plant Biology, 2022, 22, 42.	1.6	6
1036	Identification and Pleiotropic Effect Analysis of GSE5 on Rice Chalkiness and Grain Shape. Frontiers in Plant Science, 2021, 12, 814928.	1.7	7

#	Article	IF	CITATIONS
1037	Fine mapping KT1 on wheat chromosome 5A that conditions kernel dimensions and grain weight. Theoretical and Applied Genetics, 2022, 135, 1101-1111.	1.8	2
1038	Characterization of functional genes GS3 and GW2 and their effect on the grain size of various landraces of rice (Oryza sativa). Molecular Biology Reports, 2022, 49, 5397-5403.	1.0	3
1039	Dissection of Closely Linked Quantitative Trait Locis Controlling Grain Size in Rice. Frontiers in Plant Science, 2021, 12, 804444.	1.7	0
1041	Ectopic expression ofÂGmRNF1aÂencoding a soybean E3 ubiquitin ligase affects Arabidopsis silique development and dehiscence. Planta, 2022, 255, 55.	1.6	2
1042	Leveraging millets for developing climate resilient agriculture. Current Opinion in Biotechnology, 2022, 75, 102683.	3.3	8
1043	Identification of genes associated with kernel size in almond [Prunus dulcis (Mill.) D.A. Webb] using RNA-Seq. Plant Growth Regulation, 2022, 97, 357-373.	1.8	4
1044	Natural variations in grain length 10 (GL10) regulate rice grain size. Journal of Genetics and Genomics, 2022, 49, 405-413.	1.7	27
1045	Characteristics of Population Quality and Rice Quality of Semi-Waxy japonica Rice Varieties with Different Grain Yields. Agriculture (Switzerland), 2022, 12, 241.	1.4	9
1046	Identification and characterization of 20S proteasome genes and their relevance to heat/drought tolerance in bread wheat. Gene Reports, 2022, 27, 101552.	0.4	10
1047	A sweet cherry AGAMOUS-LIKE transcription factor PavAGL15 affects fruit size by directly repressing the PavCYP78A9 expression. Scientia Horticulturae, 2022, 297, 110947.	1.7	5
1048	Contribution of the grain size QTL <i>GS3</i> to yield properties and physiological nitrogen-use efficiency in the large-grain rice cultivar â€~Akita 63'. Breeding Science, 2022, 72, 124-131.	0.9	4
1049	TranscriptomeÂAnalysis RevealsÂGenes Associated with KernelÂSize in ApricotsÂCultivated for Kernel Consumption (Prunus Armeniaca×Prunus Sibirica). SSRN Electronic Journal, 0, , .	0.4	0
1051	QTL-by-QTL, QTL-by-environment, and QTL-by-QTL-by-environment interactions of loci controlling grain length in rice. Euphytica, 2022, 218, .	0.6	2
1052	CRISPR-Cas9 Mediated Mutation in OsPUB43 Improves Grain Length and Weight in Rice by Promoting Cell Proliferation in Spikelet Hull. International Journal of Molecular Sciences, 2022, 23, 2347.	1.8	6
1053	Construction of a High-Density Genetic Map and Identification of Quantitative Trait Loci Linked to Fruit Quality Traits in Apricots Using Specific-Locus Amplified Fragment Sequencing. Frontiers in Plant Science, 2022, 13, 798700.	1.7	5
1054	Natural variation in <i>WHITE-CORE RATE 1</i> regulates redox homeostasis in rice endosperm to affect grain quality. Plant Cell, 2022, 34, 1912-1932.	3.1	41
1055	Identifying QTLs for Grain Size in a Colossal Grain Rice (Oryza sativa L.) Line, and Analysis of Additive Effects of QTLs. International Journal of Molecular Sciences, 2022, 23, 3526.	1.8	3
1056	Genome-Wide Analysis of the GW2-Like Genes in Gossypium and Functional Characterization of the Seed Size Effect of GhGW2-2D. Frontiers in Plant Science, 2022, 13, 860922.	1.7	4

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
1057	Functions of OsWRKY24, OsWRKY70 and OsWRKY53 in regulating grain size in rice. Planta, 2022, 255, 92.	1.6	9
1058	<scp>KNOX II</scp> transcription factor <scp>HOS59</scp> functions in regulating rice grain size. Plant Journal, 2022, 110, 863-880.	2.8	11
1059	A new gain-of-function OsCS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield. Crop Journal, 2022, 10, 1207-1212.	2.3	13
1060	A Genetic Resource for Rice Improvement: Introgression Library of Agronomic Traits for All AA Genome Oryza Species. Frontiers in Plant Science, 2022, 13, 856514.	1.7	10
1061	Grain Size Associated Genes and the Molecular Regulatory Mechanism in Rice. International Journal of Molecular Sciences, 2022, 23, 3169.	1.8	24
1062	Functional Characterization of Serotonin N-Acetyltransferase in Archaeon Thermoplasma volcanium. Antioxidants, 2022, 11, 596.	2.2	12
1063	Identification, pyramid, and candidate gene of QTL for yield-related traits based on rice CSSLs in indica Xihui18 background. Molecular Breeding, 2022, 42, 1.	1.0	3
1064	Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theoretical and Applied Genetics, 2022, 135, 1779-1795.	1.8	15
1065	Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. Rice, 2022, 15, 18.	1.7	52
1066	The <scp>RNA</scp> binding protein <scp>OsLa</scp> influences grain and anther development in rice. Plant Journal, 2022, 110, 1397-1414.	2.8	4
1067	Fixation of hybrid sterility genes and favorable alleles of key yield-related genes with dominance contribute to the high yield of the Yongyou series of intersubspecific hybrid rice. Journal of Genetics and Genomics, 2022, 49, 448-457.	1.7	2
1068	The PCS1 basic helixâ€loopâ€helix protein regulates <i>Fl3</i> to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 2022, 20, 1311-1326.	4.1	23
1069	A superior allele of the wheat gene TaGL3.3-5B, selected in the breeding process, contributes to seed size and weight. Theoretical and Applied Genetics, 2022, 135, 1879-1891.	1.8	3
1070	Characterization of QTLs for grain weight from New Plant Type rice cultivars through the development of near-isogenic lines with an IR 64 background. Euphytica, 2022, 218, 1.	0.6	2
1071	OsDDM1b Controls Grain Size by Influencing Cell Cycling and Regulating Homeostasis and Signaling of Brassinosteroid in Rice. Frontiers in Plant Science, 2022, 13, 873993.	1.7	1
1072	Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application. Journal of Integrative Agriculture, 2022, 21, 1278-1289.	1.7	9
1073	Biochemical and molecular processes contributing to grain filling and yield in rice. Plant Physiology and Biochemistry, 2022, 179, 120-133.	2.8	5
1074	Wheat E3 ubiquitin ligase TaGW2-6A degrades TaAGPS to affect seed size. Plant Science, 2022, 320, 111274.	1.7	12

ARTICLE IF CITATIONS Control of Thousand-Grain Weight by OsMADS56 in Rice. International Journal of Molecular Sciences, 1075 12 1.8 2022, 23, 125. Harnessing tissue-specific genome editing in plants through CRISPR/Cas system: current state and 1076 1.6 future prospects. Planta, 2022, 255, 28. 1077 A high-continuity and annotated tomato reference genome. BMC Genomics, 2021, 22, 898. 1.2 21 Memory and habituation to harmful and non-harmful stimuli in a field population of the sensitive 0.5 plant, <í>Mimosa pudica </i>. Journal of Tropical Ecology, 2022, 38, 89-98. Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of 1079 4.1 26 agronomic traits. Journal of Integrative Plant Biology, 2022, 64, 536-563. Transcriptomic, proteomic, and phosphoproteomic analyses reveal dynamic signaling networks influencing long-grain rice development. Crop Journal, 2021, , . 2.3 An Adenylate Kinase OsAK3 Involves Brassinosteroid Signaling and Grain Length in Rice (Oryza sativa) Tj ETQq0 0 0, rgBT /Overlock 10 Tf 1081 The OsEIL1â€OsERF115â€target gene regulatory module controls grain size and weight in rice. Plant Biotechnology Journal, 2022, 20, 1470-1486. 1084 4.1 Genetic dissection of seed characteristics in field pennycress via genomeâ€wide association mapping 1185 1.6 4 studies. Plant Genome, 2022, 15, e20211. The genetic editing of GS3 via CRISPR/Cas9 accelerates the breeding of three-line hybrid rice with 1.0 superior yield and grain quality. Molecular Breeding, 2022, 42, . Identification of SMG3, a QTL Coordinately Controls Grain Size, Grain Number per Panicle, and Grain 1187 4 1.7 Weight in Rice. Frontiers in Plant Science, 2022, 13, 880919. QTL Analysis of Z414, a Chromosome Segment Substitution Line with Short, Wide Grains, and 1189 1.7 Substitution Mapping of qGL11 in Rice. Rice, 2022, 15, 25. <i>OsJAZ11</i> regulates spikelet and seed development in rice. Plant Direct, 2022, 6, e401. 1190 0.8 8 Poaceae Orthologs of Rice OsSGL, DUF1645 Domain-Containing Genes, Positively Regulate Drought Tolerance, Grain Length and Weight in Rice. Rice Science, 2022, 29, 257-267. 1191 1.7 Effect of Panicle Morphology on Grain Filling and Rice Yield: Genetic Control and Molecular 1192 1.1 11 Regulation. Frontiers in Genetics, 2022, 13, . Transcriptome analysis reveals genes associated with kernel size in apricots cultivated for kernel

CITATION REPORT

1194	N6-Methyladenosine dynamic changes and differential methylation in wheat grain development. Planta, 2022, 255, 125.	1.6	2	

consumption (Prunus armeniacaÂÃ-ÂPrunus sibirica). Scientia Horticulturae, 2022, 302, 111141.

1195 (scp>OsAT1
scp>OsAT1

#	Article	IF	CITATIONS
1196	Genetic mechanism of heterosis for rice milling and appearance quality in an elite rice hybrid. Crop Journal, 2022, 10, 1705-1716.	2.3	7
1197	The Triticum ispahanicum elongated glume locus P2 maps to chromosome 6A and is associated with the ectopic expression of SVP-A1. Theoretical and Applied Genetics, 2022, , .	1.8	4
1198	Genes determining panicle morphology and grain quality in rice (Oryza sativa). Functional Plant Biology, 2022, , .	1.1	0
1199	Identifying Quantitative Trait Loci for Thousand Grain Weight in Eggplant by Genome Re-Sequencing Analysis. Frontiers in Genetics, 2022, 13, .	1.1	2
1200	OsBSK2, a putative brassinosteroid-signalling kinase, positively controls grain size in rice. Journal of Experimental Botany, 2022, 73, 5529-5542.	2.4	15
1201	Fine Mapping and Cloning of a Major QTL qph12, Which Simultaneously Affects the Plant Height, Panicle Length, Spikelet Number and Yield in Rice (Oryza sativa L.). Frontiers in Plant Science, 2022, 13, .	1.7	5
1202	Natural allelic variation of <scp><i>GmST05</i></scp> controlling seed size and quality in soybean. Plant Biotechnology Journal, 2022, 20, 1807-1818.	4.1	44
1203	Characterization of Grain-Related Traits and Pasting and Texture Properties of United State Rice Varieties in Korea. Han'guk Yukchong Hakhoe Chi, 2022, 54, 81-97.	0.2	0
1204	Emerging roles of the ubiquitin–proteasome pathway in enhancing crop yield by optimizing seed agronomic traits. Plant Cell Reports, 2022, 41, 1805-1826.	2.8	9
1205	Origin of the genome editing systems: application for crop improvement. , 2022, 77, 3353-3383.		1
1206	Genome-Wide Association Study of Grain Quality Traits in Rice Detected Genomic Regions of High-Quality Rice for Increasing Rice Consumption. Biosciences, Biotechnology Research Asia, 2022, 19, 333-346.	0.2	1
1207	Validating a Major Quantitative Trait Locus and Predicting Candidate Genes Associated With Kernel Width Through QTL Mapping and RNA-Sequencing Technology Using Near-Isogenic Lines in Maize. Frontiers in Plant Science, 0, 13, .	1.7	0
1208	Regulation of OsPIL15 on rice quality. Molecular Breeding, 2022, 42, .	1.0	2
1209	Fine Mapping of Two Major Quantitative Trait Loci for Rice Chalkiness With High Temperature-Enhanced Additive Effects. Frontiers in Plant Science, 0, 13, .	1.7	5
1210	Genes Impacting Grain Weight and Number in Wheat (Triticum aestivum L. ssp. aestivum). Plants, 2022, 11, 1772.	1.6	6
1211	Unravelling genetic architecture and development of core set from elite rice lines using yield-related candidate gene markers. Physiology and Molecular Biology of Plants, 2022, 28, 1217-1232.	1.4	3
1212	Natural variation of the BRD2 allele affects plant height and grain size in rice. Planta, 2022, 256, .	1.6	7
1213	Genetic control of grain appearance quality in rice. Biotechnology Advances, 2022, 60, 108014.	6.0	32

#	Article	IF	CITATIONS
1214	Fine mapping and candidate gene analysis of qGL10 affecting rice grain length. Crop Journal, 2023, 11, 540-548.	2.3	1
1215	GL9 from Oryza glumaepatula controls grain size and chalkiness in rice. Crop Journal, 2023, 11, 198-207.	2.3	8
1216	Rice co-expression network analysis identifies gene modules associated with agronomic traits. Plant Physiology, 2022, 190, 1526-1542.	2.3	6
1217	<i>cis</i> â€regulatory variation affecting gene expression contributes to the improvement of maize kernel size. Plant Journal, 0, , .	2.8	2
1218	Fine mapping and characterization of a major QTL for grain weight on wheat chromosome arm 5DL. Theoretical and Applied Genetics, 2022, 135, 3237-3246.	1.8	9
1219	Ribonuclease Hâ€like gene <i>SMALL GRAIN2</i> regulates grain size in rice through brassinosteroid signaling pathway. Journal of Integrative Plant Biology, 2022, 64, 1883-1900.	4.1	14
1220	Fine Mapping of qTGW7b, a Minor Effect QTL for Grain Weight in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2022, 23, 8296.	1.8	4
1221	Functional Analysis and Precise Location of m-1a in Rice. Agronomy, 2022, 12, 1706.	1.3	1
1222	OsSIDP301, a Member of the DUF1644 Family, Negatively Regulates Salt Stress and Grain Size in Rice. Frontiers in Plant Science, 0, 13, .	1.7	5
1223	Florigen repression complexes involving rice CENTRORADIALIS2 regulate grain size. Plant Physiology, 2022, 190, 1260-1274.	2.3	8
1224	Identification of QTLs for rice grain size and weight by high-throughput SNP markers in the IR64 x Sadri population. Frontiers in Genetics, 0, 13, .	1.1	3
1225	Genetic and molecular factors in determining grain number per panicle of rice. Frontiers in Plant Science, 0, 13, .	1.7	7
1227	Genome-Wide Association Study for Spot Blotch Resistance in Synthetic Hexaploid Wheat. Genes, 2022, 13, 1387.	1.0	5
1228	Multiplexed promoter and gene editing in wheat using a virusâ€based guide <scp>RNA</scp> delivery system. Plant Biotechnology Journal, 2022, 20, 2332-2341.	4.1	16
1229	Molecular mapping of QTLs for grain dimension traits in Basmati rice. Frontiers in Genetics, 0, 13, .	1.1	5
1230	GLW7.1, a Strong Functional Allele of Ghd7, Enhances Grain Size in Rice. International Journal of Molecular Sciences, 2022, 23, 8715.	1.8	4
1231	FIND-IT: Accelerated trait development for a green evolution. Science Advances, 2022, 8, .	4.7	11
1232	Short grain 5 controls grain length in rice by regulating cell expansion. Plant Science, 2022, 323, 111412.	1.7	1

ARTICLE IF CITATIONS Mapping the Expression Profiles of Grain Yield QTL Associated miRNAs in Rice Varieties with Different 1233 0.3 1 Grain Size. American Journal of Plant Sciences, 2022, 13, 1261-1281. Discovery and Validation of Grain Shape Loci in U.S. Rice Germplasm Through Haplotype 1234 1.1 Charactérization. Frontiers in Genetics, 0, 13, . The double round-robin population unravels the genetic architecture of grain size in barley. Journal 1235 2.4 6 of Experimental Botany, 2022, 73, 7344-7361. Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus., 2022, 15, . Natural variation of GhSI7 increases seed index in cotton. Theoretical and Applied Genetics, 2022, 135, 1237 1.8 4 3661-3672. TATA-box binding protein-associated factor 2 regulates grain size in rice. Crop Journal, 2023, 11, 1238 2.3 438-446. Large-Grain and Semidwarf Isogenic Rice Koshihikari Integrated with GW2 and sd1. Sustainability, 2022, 1239 1.6 1 14, 11075. 2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of 1240 5.1 16 revolution in rice (<i>Oryza sativa</i> L.). Ćritical Reviews in Biotechnology, 2024, 44, 139-162. Low grain weight, a new allele of BRITTLE CULM12, affects grain size through regulating GW7 1241 0 1.7 expression in rice. Frontiers in Plant Science, 0, 13, . Control of Grain Shape and Size in Rice by Two Functional Alleles of OsPUB3 in Varied Genetic 1242 1.6 Background. Plants, 2022, 11, 2530. Genetic dissection of grain traits and their corresponding heterosis in an elite hybrid. Frontiers in 1243 1.7 0 Plant Science, 0, 13, . Heat-induced RING/U-BOX E3 ligase, TaUHS, is a negative regulator by facilitating TaLSD degradation 1244 1.8 during the grain filling period in wheat. Plant Growth Regulation, 2023, 99, 251-264. Microsatellite diversity analysis and QTL identification among progenies derived from aerobic $\tilde{A}f\hat{a}\in$ " 1245 0 basmati rice (Oryza sativa) cross under direct-seeded conditions., 2020, 90, 1411-1418. `eбç"Ÿç§åå\$å°ç>.å...3性状QTL定ä½ç"ç©¶è;>展. Acta Agronomica Sinica(China), 2022, 48, 280-291. 1246 0.1 Role of cytokinins in seed development in pulses and oilseed crops: Current status and future 1247 1.1 5 perspective. Frontiers in Genetics, 0, 13, . Genome-wide association studies provide genetic insights into natural variation of seed-size-related 1248 traits in mungbean. Frontiers in Plant Science, 0, 13, . Identification and Investigation of the Genetic Variations and Candidate Genes Responsible for Seed 1249 1.8 2 Weight via GWAS in Paper Mulberry. International Journal of Molecular Sciences, 2022, 23, 12520. Map-based cloning and transcriptome analysis of the more-tiller and small-grain mutant in rice. 1.6 Planta, 2022, 256, .

#	Article	IF	CITATIONS
1251	Fine mapping of qTGW2b and qGL9, two minor QTL conferring grain size and weight in rice. Molecular Breeding, 2022, 42, .	1.0	3
1252	High-throughput and molecular interventions for identification and characterization of rice germplasm. Cereal Research Communications, 2023, 51, 325-335.	0.8	1
1253	Developing Genetic Engineering Techniques for Control of Seed Size and Yield. International Journal of Molecular Sciences, 2022, 23, 13256.	1.8	8
1254	Identification and fine-mapping of a major QTL (PH1.1) conferring plant height in broomcorn millet (Panicum miliaceum). Frontiers in Plant Science, 0, 13, .	1.7	6
1255	Identification and validation of stable quantitative trait loci for yield component traits in wheat. Crop Journal, 2023, 11, 558-563.	2.3	2
1256	Phenotypic Characterization and Fine Mapping of a Major-Effect Fruit Shape QTL FS5.2 in Cucumber, Cucumis sativus L., with Near-Isogenic Line-Derived Segregating Populations. International Journal of Molecular Sciences, 2022, 23, 13384.	1.8	2
1257	gw2.1, a new allele of GW2, improves grain weight and grain yield in rice. Plant Science, 2022, 325, 111495.	1.7	4
1258	Targeted manipulation of grain shape genes effectively improves outcrossing rate and hybrid seed production in rice. Plant Biotechnology Journal, 2023, 21, 381-390.	4.1	8
1259	Genetic background- and environment-independent QTL and candidate gene identification of appearance quality in three MAGIC populations of rice. Frontiers in Plant Science, 0, 13, .	1.7	2
1261	Parental regulation of seed development. , 2022, 1, 1-12.		1
1262	Genetic improvement of rice grain quality. , 2023, , 235-256.		1
1263	Variant analysis of grain size related genes in the genus Sorghum. Genetic Resources and Crop Evolution, 0, , .	0.8	0
1264	Relationship between rice grain protein content and key phenotype in rice. Agronomy Journal, 0, , .	0.9	0
1265	Control of Grain Weight and Size in Rice (Oryza sativa L.) by OsPUB3 Encoding a U-Box E3 Ubiquitin Ligase. Rice, 2022, 15, .	1.7	3
1266	Co-Overexpression of Two Key Source Genes, <i>OsBMY4</i> and <i>OsISA3</i> , Improves Multiple Key Traits of Rice Seeds. Journal of Agricultural and Food Chemistry, 2023, 71, 615-625.	2.4	7
1267	Marker-trait association analysis for grain shape traits in rice (Oryza sativa L.). Israel Journal of Plant Sciences, 2022, 70, 47-56.	0.3	0
1268	Detecting and pyramiding target QTL for plant- and grain-related traits via chromosomal segment substitution line of rice. Frontiers in Plant Science, 0, 13, .	1.7	1
1269	An endoplasmic reticulum-associated degradation $\hat{a} \in \hat{e}$ related E2 $\hat{a} \in \hat{E}$ enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. Plant Cell, 2023, 35, 1076-1091.	3.1	11

#	Article	IF	CITATIONS
1270	Genetic dissection of and genomic selection for seed weight, pod length, and pod width in soybean. Crop Journal, 2023, 11, 832-841.	2.3	6
1271	Identification of major QTLs for soybean seed size and seed weight traits using a RIL population in different environments. Frontiers in Plant Science, 0, 13, .	1.7	11
1273	Understanding the regulation of cereal grain filling: The way forward. Journal of Integrative Plant Biology, 2023, 65, 526-547.	4.1	9
1274	Artificially Selected Grain Shape Gene Combinations in Guangdong Simiao Varieties of Rice (Oryza) Tj ETQq1 1 0.	.784314 rg 1.7	gBT /Overlo
1275	Genome-Wide Association Study of Rice Grain Shape and Chalkiness in a Worldwide Collection of Xian Accessions. Plants, 2023, 12, 419.	1.6	3
1276	Quality check: ER-associated protein degradation and the control of grain size in rice. Plant Cell, 0, , .	3.1	0
1278	Fine Mapping and Cloning of a qRA2 Affect the Ratooning Ability in Rice (Oryza sativa L.). International Journal of Molecular Sciences, 2023, 24, 967.	1.8	1
1279	Breeding of the Long-Grain Restorer of Indica-Japonica Hybrid Rice by Using the Genetic Effects of Grain Shape QTLs. Agronomy, 2023, 13, 107.	1.3	0
1280	Variations in Grain Traits among Local Rice Varieties Collected More Than Half-Century Ago in Indochinese Countries. Plants, 2023, 12, 133.	1.6	0
1281	AMMI biplot analysis for stability in early maturity group of rice (Oryza sativa L.). Oryza, 2022, 59, 492-503.	0.2	0
1282	Analysis of Domestication Loci in Wild Rice Populations. Plants, 2023, 12, 489.	1.6	0
1283	Molecular bases of rice grain size and quality for optimized productivity. Science Bulletin, 2023, 68, 314-350.	4.3	38
1284	Can the Wild Perennial, Rhizomatous Rice Species Oryza longistaminata be a Candidate for De Novo Domestication?. Rice, 2023, 16, .	1.7	4
1287	ldentification of QTNs, QTN-by-environment interactions, and their candidate genes for grain size traits in main crop and ratoon rice. Frontiers in Plant Science, 0, 14, .	1.7	7
1288	<scp><i>TaTPPâ€7A</i></scp> positively feedback regulates grain filling and wheat grain yield through <scp>T6Pâ€5nRK1</scp> signalling pathway and <scp>sugar–ABA</scp> interaction. Plant Biotechnology Journal, 2023, 21, 1159-1175.	4.1	13
1289	Identification, Fine Mapping and Application of Quantitative Trait Loci for Grain Shape Using Single-Segment Substitution Lines in Rice (Oryza sativa L.). Plants, 2023, 12, 892.	1.6	0
1290	<scp>HSP90</scp> .2 promotes <scp>CO₂</scp> assimilation rate, grain weight and yield in wheat. Plant Biotechnology Journal, 2023, 21, 1229-1239.	4.1	5
1292	A chromosome-level genome assembly of an early matured aromatic Japonica rice variety Qigeng10 to accelerate rice breeding for high grain quality in Northeast China. Frontiers in Plant Science, 0, 14, .	1.7	0

0			-	
C	ΙΤΑΤΙ	ION.	KED	ORT
<u> </u>	/		1.	

#	Article	IF	CITATIONS
1293	Armadillo repeat only protein GS10 negatively regulates brassinosteroid signaling to control rice grain size. Plant Physiology, 2023, 192, 967-981.	2.3	2
1295	Genetic Localization and Homologous Genes Mining for Barley Grain Size. International Journal of Molecular Sciences, 2023, 24, 4932.	1.8	3
1297	The translational landscape of bread wheat during grain development. Plant Cell, 2023, 35, 1848-1867.	3.1	11
1298	<i>Paenibacillus terrae</i> NK3-4 regulates the transcription of growth-related and stress resistance-related genes in rice. Genome, 0, , .	0.9	0
1299	Current Status and Future Prospects of Head Rice Yield. Agriculture (Switzerland), 2023, 13, 705.	1.4	2
1300	Identifying QTLs Related to Grain Filling Using a Doubled Haploid Rice (Oryza sativa L.) Population. Agronomy, 2023, 13, 912.	1.3	0
1301	Application of a Novel Quantitative Trait Locus Combination to Improve Grain Shape without Yield Loss in Rice (Oryza sativa L. spp. japonica). Plants, 2023, 12, 1513.	1.6	0
1302	Novel quantitative trait loci for yield and yield related traits identified in Basmati rice (<scp>) Tj ETQq1 1 0.7843</scp>	14.rgBT /0	Overlock 10 T
1303	Genetic Diversity and Association Mapping of Grain-Size Traits in Rice Landraces from the Honghe Hani Rice Terraces System in Yunnan Province. Plants, 2023, 12, 1678.	1.6	2
1304	Genetic dissection and validation of a major QTL for grain weight on chromosome 3B in bread wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 2024, 23, 77-92.	1.7	4
1305	SPR9 encodes a 60ÂS ribosomal protein that modulates panicle spreading and affects resistance to false smut in riceÂ(Oryza sativa.ÂL). BMC Plant Biology, 2023, 23, .	1.6	0
1306	Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biology, 2023, 21, .	1.7	0
1345	Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Functional and Integrative Genomics, 2023, 23, .	1.4	0
1348	Employing Image Processing and Deep Learning in Gradation and Classification of Paddy Grain. Intelligent Systems Reference Library, 2023, , 85-111.	1.0	1
1357	Regulation of seed traits in soybean. ABIOTECH, 2023, 4, 372-385.	1.8	0
1369	Ubiquitination in plant biotic and abiotic stress. Plant Growth Regulation, 0, , .	1.8	0
1400	Shaping plant architecture for improved productivity: Strigolactones and beyond. Advances in Agronomy, 2024, , .	2.4	0