Integrative molecular concept modeling of prostate can

Nature Genetics 39, 41-51 DOI: 10.1038/ng1935

Citation Report

#	Article	IF	CITATIONS
1	Luteinising hormone-releasing hormone antagonists in prostate cancer therapy. Expert Opinion on Emerging Drugs, 2007, 12, 285-299.	1.0	19
2	Elucidating the Altered Transcriptional Programs in Breast Cancer using Independent Component Analysis. PLoS Computational Biology, 2007, 3, e161.	1.5	108
3	Androgen receptor CAG repeat length contraction in diseased and non-diseased prostatic tissues. Prostate Cancer and Prostatic Diseases, 2007, 10, 360-368.	2.0	17
4	Integrating Biomedical Knowledge to Model Pathways of Prostate Cancer Progression. Cell Cycle, 2007, 6, 1177-1187.	1.3	12
5	Transforming growth factor-β receptor III downregulation in prostate cancer: is inhibin B a tumor suppressor in prostate?. Journal of Molecular Endocrinology, 2007, 39, 329-332.	1.1	19
6	Androgen Induction of the Androgen Receptor Coactivator Four and a Half LIM Domain Protein-2: Evidence for a Role for Serum Response Factor in Prostate Cancer. Cancer Research, 2007, 67, 10592-10599.	0.4	61
7	Integrative Microarray Analysis of Pathways Dysregulated in Metastatic Prostate Cancer. Cancer Research, 2007, 67, 10296-10303.	0.4	71
8	Integrative Analysis of Genomic Aberrations Associated with Prostate Cancer Progression. Cancer Research, 2007, 67, 8229-8239.	0.4	103
9	Higher order structure in the cancer transcriptome and systems medicine. Molecular Systems Biology, 2007, 3, 94.	3.2	7
11	TMPRSS2-ERG Fusion Heterogeneity in Multifocal Prostate Cancer: Clinical and Biologic Implications. Urology, 2007, 70, 630-633.	0.5	146
12	TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Urologic Oncology: Seminars and Original Investigations, 2007, 25, 448-449.	0.8	3
13	TMPRSS2-ETS fusion prostate cancer: biological and clinical implications. Journal of Clinical Pathology, 2007, 60, 1185-1186.	1.0	49
14	Genomic Profiling Reveals Alternative Genetic Pathways of Prostate Tumorigenesis. Cancer Research, 2007, 67, 8504-8510.	0.4	251
15	Genomic Signatures Associated with the Development, Progression, and Outcome of Prostate Cancer. Molecular Diagnosis and Therapy, 2007, 11, 345-354.	1.6	7
16	Oncomine 3.0: Genes, Pathways, and Networks in a Collection of 18,000 Cancer Gene Expression Profiles. Neoplasia, 2007, 9, 166-180.	2.3	1,847
17	Molecular Concepts Analysis Links Tumors, Pathways, Mechanisms, and Drugs. Neoplasia, 2007, 9, 443-IN9.	2.3	124
18	Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the <i>ETS</i> gene family. Genes and Development, 2007, 21, 1882-1894.	2.7	253
19	The Lethal Phenotype of Cancer: The Molecular Basis of Death Due to Malignancy. Ca-A Cancer Journal for Clinicians, 2007, 57, 225-241.	157.7	145

#	Article	IF	CITATIONS
20	Prostate cancer prevention. Cancer, 2007, 110, 1889-1899.	2.0	60
21	Clinical implications and utility of field cancerization. Cancer Cell International, 2007, 7, 2.	1.8	230
22	New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Reports, 2007, 8, 871-878.	2.0	240
23	Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature, 2007, 448, 595-599.	13.7	743
24	A gene transcription signature associated with hormone independence in a subset of both breast and prostate cancers. BMC Genomics, 2007, 8, 199.	1.2	11
25	Integrative Genomics Analysis Reveals Silencing of β-Adrenergic Signaling by Polycomb in Prostate Cancer. Cancer Cell, 2007, 12, 419-431.	7.7	204
27	Association between polymorphisms in cell cycle genes and advanced prostate carcinoma. Prostate, 2008, 68, 1179-1186.	1.2	23
28	Dickkopfâ€l expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate, 2008, 68, 1396-1404.	1.2	127
29	Defining the molecular action of HDAC inhibitors and synergism with androgen deprivation in ERGâ€positive prostate cancer. International Journal of Cancer, 2008, 123, 2774-2781.	2.3	60
30	Gene module level analysis: identification to networks and dynamics. Current Opinion in Biotechnology, 2008, 19, 482-491.	3.3	90
31	Loss of Raf Kinase Inhibitory Protein Induces Radioresistance in Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, 153-160.	0.4	52
32	Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Modern Pathology, 2008, 21, 1156-1167.	2.9	363
33	Identification of ETS-like transcription factor 4 as a novel androgen receptor target in prostate cancer cells. Oncogene, 2008, 27, 4865-4876.	2.6	41
34	Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene, 2008, 27, 7180-7191.	2.6	151
35	GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics. British Journal of Cancer, 2008, 99, 939-948.	2.9	119
36	Application of transcript profiling in formalinâ€fixed paraffinâ€embedded diagnostic prostate cancer needle biopsies. BJU International, 2008, 102, 364-370.	1.3	20
37	Predicting cancer involvement of genes from heterogeneous data. BMC Bioinformatics, 2008, 9, 172.	1.2	66
38	A general approach to simultaneous model fitting and variable elimination in response models for biological data with many more variables than observations. BMC Bioinformatics, 2008, 9, 195.	1.2	21

#	Article	IF	CITATIONS
39	Literature-aided meta-analysis of microarray data: a compendium study on muscle development and disease. BMC Bioinformatics, 2008, 9, 291.	1.2	21
40	Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells. BMC Bioinformatics, 2008, 9, 404.	1.2	31
41	Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility. BMC Genomics, 2008, 9, 12.	1.2	27
42	Identification of gene interactions associated with disease from gene expression data using synergy networks. BMC Systems Biology, 2008, 2, 10.	3.0	64
43	Prostatic preneoplasia and beyond. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1785, 156-181.	3.3	23
44	The Role of SPINK1 in ETS Rearrangement-Negative Prostate Cancers. Cancer Cell, 2008, 13, 519-528.	7.7	303
45	The use of genomic tools for the molecular understanding of breast cancer and to guide personalized medicine. Drug Discovery Today, 2008, 13, 481-487.	3.2	14
46	ETS transcription factors: oncogenes and tumor suppressor genes as therapeutic targets for prostate cancer. Expert Review of Anticancer Therapy, 2008, 8, 33-42.	1.1	53
47	Change in Prostate Cancer Grade Over Time in Men Followed Expectantly for Stage T1c Disease. Journal of Urology, 2008, 179, 901-905.	0.2	48
48	Anni 2.0: a multipurpose text-mining tool for the life sciences. Genome Biology, 2008, 9, R96.	13.9	104
49	Ranking and selecting clustering algorithms using a meta-learning approach. , 2008, , .		53
50			
	New drug development in metastatic prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 430-437.	0.8	19
51	New drug development in metastatic prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 430-437. Screen detected, low volume prostate cancer: The case for active treatment. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 511-515.	0.8	19 2
51 52	Investigations, 2008, 26, 430-437. Screen detected, low volume prostate cancer: The case for active treatment. Urologic Oncology:		
	Investigations, 2008, 26, 430-437. Screen detected, low volume prostate cancer: The case for active treatment. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 511-515. Integrated approaches to uncovering transcription regulatory networks in mammalian cells.	0.8	2
52	Investigations, 2008, 26, 430-437. Screen detected, low volume prostate cancer: The case for active treatment. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 511-515. Integrated approaches to uncovering transcription regulatory networks in mammalian cells. Genomics, 2008, 91, 219-231. CD200: A putative therapeutic target in cancer. Biochemical and Biophysical Research	0.8 1.3	2 38
52 53	Investigations, 2008, 26, 430-437. Screen detected, low volume prostate cancer: The case for active treatment. Urologic Oncology: Seminars and Original Investigations, 2008, 26, 511-515. Integrated approaches to uncovering transcription regulatory networks in mammalian cells. Genomics, 2008, 91, 219-231. CD200: A putative therapeutic target in cancer. Biochemical and Biophysical Research Communications, 2008, 366, 117-122. Repression of Smad3 activity by histone demethylase SMCX/JARID1C. Biochemical and Biophysical	0.8 1.3 1.0	2 38 96

	CHAHON		
#	ARTICLE Clustering cancer gene expression data: a comparative study. BMC Bioinformatics, 2008, 9, 497.	IF 1.2	Citations
58	Recurrent gene fusions in prostate cancer. Nature Reviews Cancer, 2008, 8, 497-511.	12.8	617
59	Genome-Wide Studies in Thyroid Neoplasia. Endocrinology and Metabolism Clinics of North America, 2008, 37, 311-331.	1.2	9
60	Molecular Pathology of the Genitourinary Tract: Prostate and Bladder. Surgical Pathology Clinics, 2008, 1, 211-236.	0.7	0
61	A Comprehensive Approach Toward Novel Serum Biomarkers for Benign Prostatic Hyperplasia: The MPSA Consortium. Journal of Urology, 2008, 179, 1243-1256.	0.2	15
62	Role of the TMPRSS2-ERG Gene Fusion in Prostate Cancer. Neoplasia, 2008, 10, 177-IN9.	2.3	608
63	Golgi Protein GOLM1 Is a Tissue and Urine Biomarker of Prostate Cancer. Neoplasia, 2008, 10, 1285-IN35.	2.3	89
64	Survival in Familial Pancreatic Cancer. Pancreatology, 2008, 8, 252-256.	0.5	10
65	A Transcriptional Fingerprint of Estrogen in Human Breast Cancer Predicts Patient Survival. Neoplasia, 2008, 10, 79-IN34.	2.3	32
66	Higher Expression of the Androgen-Regulated Gene <i>PSA/HK3</i> mRNA in Prostate Cancer Tissues Predicts Biochemical Recurrence-Free Survival. Clinical Cancer Research, 2008, 14, 758-763.	3.2	21
67	Humoral Response Profiling Reveals Pathways to Prostate Cancer Progression. Molecular and Cellular Proteomics, 2008, 7, 600-611.	2.5	54
68	KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle, 2008, 7, 3539-3547.	1.3	125
69	Gene network and canonical pathway analysis in prostate cancer: a microarray study. Experimental and Molecular Medicine, 2008, 40, 176.	3.2	56
70	Genome-Wide Analysis of the Homeobox C6 Transcriptional Network in Prostate Cancer. Cancer Research, 2008, 68, 1988-1996.	0.4	62
71	Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 Gene Fusions in Prostate Cancer. Cancer Research, 2008, 68, 73-80.	0.4	244
72	Prioritization of candidate cancer genes—an aid to oncogenomic studies. Nucleic Acids Research, 2008, 36, e115-e115.	6.5	31
73	Estrogen-Dependent Signaling in a Molecularly Distinct Subclass of Aggressive Prostate Cancer. Journal of the National Cancer Institute, 2008, 100, 815-825.	3.0	286
74	The Mitogen-Activated Protein Kinase Phosphatase <i>Vaccinia</i> H1–Related Protein Inhibits Apoptosis in Prostate Cancer Cells and Is Overexpressed in Prostate Cancer. Cancer Research, 2008, 68, 9255-9264.	0.4	51

	Сіт	CITATION REPORT	
#	Article	IF	CITATIONS
75	Modeling Cancer Progression via Pathway Dependencies. PLoS Computational Biology, 2008, 4, e28.	1.5	60
76	Defective signal transduction in B lymphocytes lacking presenilin proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 979-984.	3.3	21
77	Concordance of Survival in Family Members With Prostate Cancer. Journal of Clinical Oncology, 2008, 26, 1705-1709.	0.8	57
78	Tumor Cell Dependence on Ran-GTP–Directed Mitosis. Cancer Research, 2008, 68, 1826-1833.	0.4	88
79	A new rule-based algorithm for identifying metabolic markers in prostate cancer using tandem mass spectrometry. Bioinformatics, 2008, 24, 2908-2914.	1.8	67
80	Survival in Bladder and Renal Cell Cancers Is Familial. Journal of the American Society of Nephrology: JASN, 2008, 19, 985-991.	3.0	13
81	Genetic Polymorphism in EGF Is Associated with Prostate Cancer Aggressiveness and Progression-Free Interval in Androgen Blockade–Treated Patients. Clinical Cancer Research, 2008, 14, 3367-3371.	3.2	44
82	Activation of the Osteopontin/Matrix Metalloproteinase-9 Pathway Correlates with Prostate Cancer Progression. Clinical Cancer Research, 2008, 14, 7470-7480.	3.2	99
83	Mining metastasis related genes by primary-secondary tumor comparisons from large-scale database. , 2008, , .		0
84	Characterization of <i>TMPRSS2-ERG</i> Fusion High-Grade Prostatic Intraepithelial Neoplasia and Potential Clinical Implications. Clinical Cancer Research, 2008, 14, 3380-3385.	3.2	200
85	hCAP-D3 Expression Marks a Prostate Cancer Subtype With Favorable Clinical Behavior and Androgen Signaling Signature. American Journal of Surgical Pathology, 2008, 32, 205-209.	2.1	25
86	The GTPase Ran: regulation of cell life and potential roles in cell transformation. Frontiers in Bioscience - Landmark, 2008, Volume, 4097.	3.0	44
87	A Tissue Biomarker Panel Predicting Systemic Progression after PSA Recurrence Post-Definitive Prostate Cancer Therapy. PLoS ONE, 2008, 3, e2318.	1.1	160
88	Identification of Functional Networks of Estrogen- and c-Myc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer. PLoS ONE, 2008, 3, e2987.	1.1	85
89	Inferring Condition-Specific Modulation of Transcription Factor Activity in Yeast through Regulon-Based Analysis of Genomewide Expression. PLoS ONE, 2008, 3, e3112.	1.1	35
91	Cross-Study Projections of Genomic Biomarkers: An Evaluation in Cancer Genomics. PLoS ONE, 2009, 4 e4523.	4, 1.1	15
92	Identifying Gene Signatures from Cancer Progression Data Using Ordinal Analysis. , 2009, , .		2
93	The Search for New Prostate Cancer Biomarkers Continues. Clinical Chemistry, 2009, 55, 1277-1279.	1.5	18

		CITATION REP	ORT	
# 94	ARTICLE Development of a Multiplex Quantitative PCR Signature to Predict Progression in		IF 0.4	CITATIONS
95	Non–Muscle-Invasive Bladder Cancer. Cancer Research, 2009, 69, 3810-3818. Conserved Gene Expression Programs Integrate Mammalian Prostate Development and Tumorigene Cancer Research, 2009, 69, 1739-1747.	esis.	0.4	62
96	RUNX3 Inactivation in Colorectal Polyps Arising Through Different Pathways of Colonic Carcinogenesis. American Journal of Gastroenterology, 2009, 104, 426-436.		0.2	35
97	Genomic Strategy for Targeting Therapy in Castration-Resistant Prostate Cancer. Journal of Clinical Oncology, 2009, 27, 2022-2029.		0.8	130
98	Mining cancer genes with running-sum statistics. , 2009, , .			2
99	Hormonal Therapy for Prostate Cancer: Toward Further Unraveling of Androgen Receptor Function. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 1046-1051.		0.9	9
100	Prostatakarzinom. , 2009, , 485-635.			0
101	An oncogenic role for the multiple endocrine neoplasia type 1 gene in prostate cancer. Prostate Cancer and Prostatic Diseases, 2009, 12, 184-191.		2.0	22
102	Prostate Cancer–Associated Gene Expression Alterations Determined from Needle Biopsies. Clinic Cancer Research, 2009, 15, 3135-3142.	cal	3.2	15
103	Seeking unique and common biological themes in multiple gene lists or datasets: pathway pattern extraction pipeline for pathway-level comparative analysis. BMC Bioinformatics, 2009, 10, 200.		1.2	16
104	CLEAN: CLustering Enrichment ANalysis. BMC Bioinformatics, 2009, 10, 234.		1.2	65
105	Mining metastasis related genes by primary-secondary tumor comparisons from large-scale databas BMC Bioinformatics, 2009, 10, S2.	es.	1.2	3
106	Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer, 2009, 9, 173.		1.1	63
107	ETS Gene Fusions in Prostate Cancer: From Discovery to Daily Clinical Practice. European Urology, 2009, 56, 275-286.		0.9	332
108	Genomic approaches to outcome prediction in prostate cancer. Cancer, 2009, 115, 3046-3057.		2.0	18
109	The role of the disintegrin metalloproteinase ADAM15 in prostate cancer progression. Journal of Cellular Biochemistry, 2009, 106, 967-974.		1.2	29
111	Shared <i>TP53</i> gene mutation in morphologically and phenotypically distinct concurrent prima small cell neuroendocrine carcinoma and adenocarcinoma of the prostate. Prostate, 2009, 69, 603-	iry 609.	1.2	72
112	Purineâ€rich element binding protein (PUR) α induces endoplasmic reticulum stress response, and differentiation pathways in prostate cancer cells. Prostate, 2009, 69, 861-873.	cell	1.2	10

#	Article	IF	CITATIONS
113	Interspecies comparison of prostate cancer geneâ€expression profiles reveals genes associated with aggressive tumors. Prostate, 2009, 69, 1034-1044.	1.2	15
114	Temporal expression profiling of the effects of secreted factors from prostate stromal cells on embryonal carcinoma stem cells. Prostate, 2009, 69, 1353-1365.	1.2	15
115	Gene expression profile of primary prostate epithelial and stromal cells in response to sulforaphane or iberin exposure. Prostate, 2009, 69, 1411-1421.	1.2	30
116	Expression of multidrug resistance proteins in prostate cancer is related with cell sensitivity to chemotherapeutic drugs. Prostate, 2009, 69, 1448-1459.	1.2	74
117	The expression of androgenâ€responsive genes is Upâ€Regulated in the epithelia of benign prostatic hyperplasia. Prostate, 2009, 69, 1716-1723.	1.2	47
118	Impact of sample acquisition and linear amplification on gene expression profiling of lung adenocarcinoma: laser capture micro-dissection cell-sampling versus bulk tissue-sampling. BMC Medical Genomics, 2009, 2, 13.	0.7	29
119	Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data. BMC Medical Genomics, 2009, 2, 48.	0.7	45
120	Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency. BMC Medical Genomics, 2009, 2, 70.	0.7	41
121	BP1, a homeoprotein, is significantly expressed in prostate adenocarcinoma and is concordant with prostatic intraepithelial neoplasia. Modern Pathology, 2009, 22, 1-6.	2.9	40
122	Characterization of ETS gene aberrations in select histologic variants of prostate carcinoma. Modern Pathology, 2009, 22, 1176-1185.	2.9	91
123	ETS rearrangements and prostate cancer initiation. Nature, 2009, 457, E1-E1.	13.7	98
124	Tomlins et al. reply. Nature, 2009, 457, E2-E3.	13.7	6
125	Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457, 910-914.	13.7	1,944
126	The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene, 2009, 28, 3487-3498.	2.6	58
127	Increased expression of class III β-tubulin in castration-resistant human prostate cancer. British Journal of Cancer, 2009, 101, 951-956.	2.9	76
128	<i>FYN</i> is overexpressed in human prostate cancer. BJU International, 2009, 103, 171-177.	1.3	79
129	Gene polymorphisms and prostate cancer: the evidence. BJU International, 2009, 104, 1560-1572.	1.3	32
130	Pathway-Based Biomarker Search by High-Throughput Proteomics Profiling of Secretomes. Journal of Proteome Research, 2009, 8, 1489-1503.	1.8	72

# 131	ARTICLE Biomarker Discovery for Metastatic Disease. , 2009, , 289-315.	IF	CITATIONS
132	TGF-Î ² 3 and cancer: A review. Cytokine and Growth Factor Reviews, 2009, 20, 305-317.	3.2	93
133	Androgen Receptor Regulates a Distinct Transcription Program in Androgen-Independent Prostate Cancer. Cell, 2009, 138, 245-256.	13.5	797
134	MMSET is overexpressed in cancers: Link with tumor aggressiveness. Biochemical and Biophysical Research Communications, 2009, 379, 840-845.	1.0	69
136	Patterns, Art, and Context: Donald Floyd Gleason and the Development of the Gleason Grading System. Urology, 2009, 74, 497-503.	0.5	14
138	HSD17B4 overexpression, an independent biomarker of poor patient outcome in prostate cancer. Molecular and Cellular Endocrinology, 2009, 301, 89-96.	1.6	47
139	Differential expression of apoptotic genes PDIA3 and MAP3K5 distinguishes between low- and high-risk prostate cancer. Molecular Cancer, 2009, 8, 130.	7.9	70
140	Clusterin (CLU) and Prostate Cancer. Advances in Cancer Research, 2009, 105, 1-19.	1.9	34
142	A Decade of Cancer Gene Profiling: From Molecular Portraits to Molecular Function. Methods in Molecular Biology, 2009, 576, 61-87.	0.4	13
143	Gene Expression Profiling and Real-Time PCR Analyses Identify Novel Potential Cancer-Testis Antigens in Multiple Myeloma. Journal of Immunology, 2009, 183, 832-840.	0.4	24
144	Stanniocalcin 2 overexpression in castrationâ€resistant prostate cancer and aggressive prostate cancer. Cancer Science, 2009, 100, 914-919.	1.7	43
145	Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes. BMC Cancer, 2009, 9, 452.	1.1	50
146	The Discovery of Common Recurrent Transmembrane Protease Serine 2 (TMPRSS2)-Erythroblastosis Virus E26 Transforming Sequence (ETS) Gene Fusions in Prostate Cancer. Advances in Anatomic Pathology, 2009, 16, 145-153.	2.4	47
147	A Bioinformatics Pipeline for Cancer Epigenetics. Current Bioinformatics, 2010, 5, 153-163.	0.7	2
148	"Getting From Here to There"-Mechanisms and Limitations to the Activation of the Androgen Receptor in Castration-Resistant Prostate Cancer. Journal of Investigative Medicine, 2010, 58, 938-944.	0.7	27
149	Theranostic and prognostic biomarkers: genomic applications in urological malignancies. Pathology, 2010, 42, 384-394.	0.3	45
150	Chronotherapy and the molecular clock: Clinical implications in oncologyâ~†. Advanced Drug Delivery Reviews, 2010, 62, 979-1001.	6.6	139
151	Information technology solutions for integration of biomolecular and clinical data in the identification of new cancer biomarkers and targets for therapy. , 2010, 128, 488-498.		13

		CITATION REPORT		
#	Article		IF	CITATIONS
152	Genomic profiling of tumor initiating prostatospheres. BMC Genomics, 2010, 11, 324.		1.2	67
153	Differential expression of anterior gradient gene ACR2 in prostate cancer. BMC Cancer	r, 2010, 10, 680.	1.1	53
154	Development of a new magnetic beads-based immunoprecipitation strategy for protec Journal of Proteomics, 2010, 73, 1491-1501.	omics analysis.	1.2	6
155	Molecular sampling of prostate cancer: a dilemma for predicting disease progression. I Genomics, 2010, 3, 8.	BMC Medical	0.7	219
156	<i>In silico</i> models of cancer. Wiley Interdisciplinary Reviews: Systems Biology and 2, 438-459.	Medicine, 2010,	6.6	103
157	The Ron receptor tyrosine kinase positively regulates angiogenic chemokine productio cancer cells. Oncogene, 2010, 29, 214-226.	n in prostate	2.6	57
158	FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cel targets of FK506 and cyclosporin A. Oncogene, 2010, 29, 1691-1701.	l growth and the	2.6	99
159	Applicability of coexpression networks analysis to anticancer drug targets discovery. N Biology, 2010, 44, 326-333.	1olecular	0.4	1
160	Consolidation of the cancer genome into domains of repressive chromatin by long-ran silencing (LRES) reduces transcriptional plasticity. Nature Cell Biology, 2010, 12, 235-2	ge epigenetic 246.	4.6	178
161	Bypass Mechanisms of the Androgen Receptor Pathway in Therapy-Resistant Prostate Models. PLoS ONE, 2010, 5, e13500.	Cancer Cell	1.1	88
162	Metabolomic Characterization of Human Prostate Cancer Bone Metastases Reveals In Cholesterol. PLoS ONE, 2010, 5, e14175.	creased Levels of	1.1	135
163	Systems Biology and Personalized Medicine in Cancer. Current Pharmacogenomics an Medicine, 2010, 8, 64-72.	d Personalized	0.2	2
164	ChimerDB 2.0—a knowledgebase for fusion genes updated. Nucleic Acids Research, 2	2010, 38, D81-D85.	6.5	78
165	Prognostic Value and Function of KLF4 in Prostate Cancer: RNAa and Vector-Mediated Identify KLF4 as an Inhibitor of Tumor Cell Growth and Migration. Cancer Research, 20 10182-10191.	Overexpression 10, 70,	0.4	119
166	Quantitative Proteomic Profiling of Prostate Cancer Reveals a Role for miR-128 in Pros Molecular and Cellular Proteomics, 2010, 9, 298-312.	tate Cancer.	2.5	113
167	elF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer Proceedings of the National Academy of Sciences of the United States of America, 20.	progression. 10, 107, 14134-14139.	3.3	447
168	The clusterin paradigm in prostate and breast carcinogenesis. Endocrine-Related Cance R1-R17.	er, 2010, 17,	1.6	93
169	The role of YAP transcription coactivator in regulating stem cell self-renewal and differ Genes and Development, 2010, 24, 1106-1118.	entiation.	2.7	621

#	Article	IF	CITATIONS
170	Multi-gene biomarker panel for reference free prostate cancer diagnosis: determination and independent validation. Biomarkers, 2010, 15, 693-706.	0.9	4
171	The Ability of Biomarkers to Predict Systemic Progression in Men with High-Risk Prostate Cancer Treated Surgically Is Dependent on ERG Status. Cancer Research, 2010, 70, 8994-9002.	0.4	56
172	MYC and Prostate Cancer. Genes and Cancer, 2010, 1, 617-628.	0.6	245
173	Distinct Genomic Alterations in Prostate Cancers in Chinese and Western Populations Suggest Alternative Pathways of Prostate Carcinogenesis. Cancer Research, 2010, 70, 5207-5212.	0.4	150
174	Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets. Bioinformatics, 2010, 26, 1506-1512.	1.8	12
175	Use of Data-Biased Random Walks on Graphs for the Retrieval of Context-Specific Networks from Genomic Data. PLoS Computational Biology, 2010, 6, e1000889.	1.5	79
176	Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis. PLoS Computational Biology, 2010, 6, e1000730.	1.5	140
177	Usefulness of the top-scoring pairs of genes for prediction of prostate cancer progression. Prostate Cancer and Prostatic Diseases, 2010, 13, 252-259.	2.0	21
178	RasGRP3 Contributes to Formation and Maintenance of the Prostate Cancer Phenotype. Cancer Research, 2010, 70, 7905-7917.	0.4	40
179	<i>FZD4</i> as a Mediator of <i>ERG</i> Oncogene–Induced WNT Signaling and Epithelial-to-Mesenchymal Transition in Human Prostate Cancer Cells. Cancer Research, 2010, 70, 6735-6745.	0.4	229
180	Progressive 3q Amplification Consistently Targets <i>SOX2</i> in Preinvasive Squamous Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 83-91.	2.5	102
181	Regulator of Calcineurin 1 Controls Growth Plasticity of Adult Pancreas. Gastroenterology, 2010, 139, 609-619.e6.	0.6	33
182	Molecular genetics of prostate cancer: new prospects for old challenges. Genes and Development, 2010, 24, 1967-2000.	2.7	811
183	Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Review of Molecular Diagnostics, 2010, 10, 49-64.	1.5	60
184	Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Human Pathology, 2010, 41, 781-793.	1.1	243
185	Mitochondrial Genetics and Cancer. , 2010, , .		22
187	Genomic Evaluation and Management of Prostate Cancer. , 2010, , 477-492.		0
188	The activity and expression of microRNAs in prostate cancers. Molecular BioSystems, 2010, 6, 2561.	2.9	20

#	Article	IF	CITATIONS
189	Representation of a Fisher Criterion Function in a Kernel Feature Space. IEEE Transactions on Neural Networks, 2010, 21, 333-339.	4.8	9
190	Common Gene Rearrangements in Prostate Cancer. Journal of Clinical Oncology, 2011, 29, 3659-3668.	0.8	268
191	Molecular phenotypic portraits - Exploring the 'OMES' with individual resolution. , 2011, , .		2
192	Dynamic rewiring of the androgen receptor protein interaction network correlates with prostate cancer clinical outcomes. Integrative Biology (United Kingdom), 2011, 3, 1020.	0.6	23
193	Regulation of Androgen Receptor-Mediated Transcription by RPB5 Binding Protein URI/RMP. Molecular and Cellular Biology, 2011, 31, 3639-3652.	1.1	38
194	Evolving standards in the treatment of docetaxel-refractory castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2011, 14, 192-205.	2.0	61
195	Cysteine-Rich Secretory Protein-3 (CRISP3) Is Strongly Up-Regulated in Prostate Carcinomas with the TMPRSS2-ERG Fusion Gene. PLoS ONE, 2011, 6, e22317.	1.1	36
196	Immunohistology of the Prostate, Bladder, Kidney, and Testis. , 2011, , 593-661.		6
197	Role of organic cation transporters in drug-induced toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 159-174.	1.5	70
198	Drug resistance in metastatic castration-resistant prostate cancer. Nature Reviews Clinical Oncology, 2011, 8, 12-23.	12.5	286
200	Cytogenomic aberrations associated with prostate cancer. Cancer Genetics, 2011, 204, 57-67.	0.2	5
201	Gleason Pattern 5 Is the Greatest Risk Factor for Clinical Failure and Death From Prostate Cancer After Dose-Escalated Radiation Therapy and Hormonal Ablation. International Journal of Radiation Oncology Biology Physics, 2011, 81, e351-e360.	0.4	68
202	Analysis of Normal-Tumour Tissue Interaction in Tumours: Prediction of Prostate Cancer Features from the Molecular Profile of Adjacent Normal Cells. PLoS ONE, 2011, 6, e16492.	1.1	17
203	Metabolomic Profiling Reveals a Role for Androgen in Activating Amino Acid Metabolism and Methylation in Prostate Cancer Cells. PLoS ONE, 2011, 6, e21417.	1.1	75
204	Gene Expression Analysis Reveals the Cell Cycle and Kinetochore Genes Participating in Ischemia Reperfusion Injury and Early Development in Kidney. PLoS ONE, 2011, 6, e25679.	1.1	11
205	Cancer progression analysis based on ordinal relationship of cancer stages and co-expression network modularity. International Journal of Data Mining and Bioinformatics, 2011, 5, 233.	0.1	7
206	Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochemical Pharmacology, 2011, 82, 1100-1109.	2.0	97
207	Mechanistic Rationale for Inhibition of Poly(ADP-Ribose) Polymerase in ETS Gene Fusion-Positive Prostate Cancer. Cancer Cell, 2011, 19, 664-678.	7.7	397

#	Article	IF	CITATIONS
208	Coordinated Regulation of Polycomb Group Complexes through microRNAs in Cancer. Cancer Cell, 2011, 20, 187-199.	7.7	191
209	Proteomics revisits the cancer metabolome. Expert Review of Proteomics, 2011, 8, 505-533.	1.3	10
210	Novel Molecular Targets of Azadirachta indica Associated with Inhibition of Tumor Growth in Prostate Cancer. AAPS Journal, 2011, 13, 365-377.	2.2	44
211	Estimating variable structure and dependence inÂmultitask learning via gradients. Machine Learning, 2011, 83, 265-287.	3.4	6
212	Possible role of death receptor-mediated apoptosis by the E3 ubiquitin ligases Siah2 and POSH. Molecular Cancer, 2011, 10, 57.	7.9	26
213	Lineage relationship of prostate cancer cell types based on gene expression. BMC Medical Genomics, 2011, 4, 46.	0.7	22
214	Distinctions in gastric cancer gene expression signatures derived from laser capture microdissection versushistologic macrodissection. BMC Medical Genomics, 2011, 4, 48.	0.7	21
215	Alignment of gene expression profiles from test samples against a reference database: New method for context-specific interpretation of microarray data. BioData Mining, 2011, 4, 5.	2.2	5
216	Consistent metagenes from cancer expression profiles yield agent specific predictors of chemotherapy response. BMC Bioinformatics, 2011, 12, 310.	1.2	4
217	Gene expression pathways of high grade localized prostate cancer. Prostate, 2011, 71, 1568-1577.	1.2	77
218	Chemotherapy sensitivity recovery of prostate cancer cells by functional inhibition and knock down of multidrug resistance proteins. Prostate, 2011, 71, 1810-1817.	1.2	28
219	Exploring genomic profiles of hepatocellular carcinoma. Molecular Carcinogenesis, 2011, 50, 235-243.	1.3	61
220	Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Computational Biology and Chemistry, 2011, 35, 151-158.	1.1	54
221	Hormone Depletion-Insensitivity of Prostate Cancer Cells Is Supported by the AR Without Binding to Classical Response Elements. Molecular Endocrinology, 2011, 25, 621-634.	3.7	25
222	Ubiquitously Expressed Hematological and Neurological Expressed 1 Downregulates Akt-Mediated GSK3I² Signaling, and Its Knockdown Results in Deregulated G2/M Transition in Prostate Cells. DNA and Cell Biology, 2011, 30, 419-429.	0.9	28
223	Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Research, 2011, 21, 1028-1041.	2.4	166
224	mRNA Expression Signature of Gleason Grade Predicts Lethal Prostate Cancer. Journal of Clinical Oncology, 2011, 29, 2391-2396.	0.8	140
225	Chemotherapy-Based Treatment for Castration-Resistant Prostate Cancer. Journal of Clinical Oncology, 2011, 29, 3686-3694.	0.8	76

#	Article	IF	CITATIONS
226	Manganese Superoxide Dismutase (Sod2) and Redox-Control of Signaling Events That Drive Metastasis. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 191-201.	0.9	135
227	Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Research, 2011, 21, 1450-1461.	2.4	269
228	Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Modern Pathology, 2011, 24, 1128-1138.	2.9	106
229	Invasive Prostate Carcinoma Driven by c-Src and Androgen Receptor Synergy. Cancer Research, 2011, 71, 862-872.	0.4	84
230	Identification of a Clinically Relevant Androgen-Dependent Gene Signature in Prostate Cancer. Cancer Research, 2011, 71, 1978-1988.	0.4	38
231	Highly sensitive molecular diagnosis of prostate cancer using surplus material washed off from biopsy needles. British Journal of Cancer, 2011, 105, 1600-1607.	2.9	4
232	Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance. British Journal of Cancer, 2011, 105, 575-585.	2.9	25
233	Correlation of Urine <i>TMPRSS2:ERG</i> and <i>PCA3</i> to ERG+ and Total Prostate Cancer Burden. American Journal of Clinical Pathology, 2012, 138, 685-696.	0.4	72
234	ETS1 transcriptional activity is increased in advanced prostate cancer and promotes the castrate-resistant phenotype. Carcinogenesis, 2012, 33, 572-580.	1.3	26
235	Antiangiogenic Effects and Therapeutic Targets of <i>Azadirachta indica</i> Leaf Extract in Endothelial Cells. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-14.	0.5	23
236	Antibody-Based Detection of ERG Rearrangements in Prostate Core Biopsies, Including Diagnostically Challenging Cases: ERG Staining in Prostate Core Biopsies. Archives of Pathology and Laboratory Medicine, 2012, 136, 935-946.	1.2	88
237	Persistent androgen receptor-mediated transcription in castration-resistant prostate cancer under androgen-deprived conditions. Nucleic Acids Research, 2012, 40, 10765-10779.	6.5	108
238	Induction of the Transcriptional Repressor ZBTB4 in Prostate Cancer Cells by Drug-Induced Targeting of MicroRNA-17-92/106b-25 Clusters. Molecular Cancer Therapeutics, 2012, 11, 1852-1862.	1.9	50
239	The Essential Role of Giα2 in Prostate Cancer Cell Migration. Molecular Cancer Research, 2012, 10, 1380-1388.	1.5	16
240	Molecular States Underlying Androgen Receptor Activation: A Framework for Therapeutics Targeting Androgen Signaling in Prostate Cancer. Journal of Clinical Oncology, 2012, 30, 644-646.	0.8	122
241	MetaQC: objective quality control and inclusion/exclusion criteria for genomic meta-analysis. Nucleic Acids Research, 2012, 40, e15-e15.	6.5	79
242	Integrated analysis identifies a class of androgen-responsive genes regulated by short combinatorial long-range mechanism facilitated by CTCF. Nucleic Acids Research, 2012, 40, 4754-4764.	6.5	39
243	MYC Is Activated by USP2a-Mediated Modulation of MicroRNAs in Prostate Cancer. Cancer Discovery, 2012, 2, 236-247.	7.7	82

	CHAIION	REPORT	
#	Article	IF	CITATIONS
244	Clinical potential of the ERG oncoprotein in prostate cancer. Nature Reviews Urology, 2012, 9, 131-137.	1.9	56
245	Heterogeneous epigenetic regulation of <i><i>TIMP3</i></i> in prostate cancer. Epigenetics, 2012, 7, 1279-1289.	1.3	34
246	Emerging Critical Role of Molecular Testing in Diagnostic Genitourinary Pathology. Archives of Pathology and Laboratory Medicine, 2012, 136, 372-390.	1.2	42
247	Genetic and functional analyses implicate the <i>NUDT11</i> , <i>HNF1B</i> , and <i>SLC22A3</i> genes in prostate cancer pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11252-11257.	3.3	102
248	Oncogene-mediated alterations in chromatin conformation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9083-9088.	3.3	142
249	A novel strategy for deciphering dynamic conservation of gene expression relationship. Journal of Molecular Cell Biology, 2012, 4, 177-179.	1.5	3
250	Slug, a Unique Androgen-Regulated Transcription Factor, Coordinates Androgen Receptor to Facilitate Castration Resistance in Prostate Cancer. Molecular Endocrinology, 2012, 26, 1496-1507.	3.7	51
251	Collaboration of Kras and Androgen Receptor Signaling Stimulates EZH2 Expression and Tumor-Propagating Cells in Prostate Cancer. Cancer Research, 2012, 72, 4672-4681.	0.4	30
252	Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is down regulated in aggressive prostate cancers and is prognostic for poor clinical outcome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14977-14982.	3.3	49
253	The Enzymatic Activity of Apoptosis-inducing Factor Supports Energy Metabolism Benefiting the Growth and Invasiveness of Advanced Prostate Cancer Cells. Journal of Biological Chemistry, 2012, 287, 43862-43875.	1.6	19
254	Modeling community-wide molecular networks of multicellular systems. Bioinformatics, 2012, 28, 694-700.	1.8	18
255	Identification of functional genomic regions with copy number alteration in liver cancer. , 2012, , .		1
256	A Wnt-Bmp Feedback Circuit Controls Intertissue Signaling Dynamics in Tooth Organogenesis. Science Signaling, 2012, 5, ra4.	1.6	93
257	CD24 Is an Effector of HIF-1–Driven Primary Tumor Growth and Metastasis. Cancer Research, 2012, 72, 5600-5612.	0.4	115
258	The 5α-Androstanedione Pathway to Dihydrotestosterone in Castration-Resistant Prostate Cancer. Journal of Investigative Medicine, 2012, 60, 504-507.	0.7	39
259	RRM2B Suppresses Activation of the Oxidative Stress Pathway and is Up-regulated by P53 During Senescence. Scientific Reports, 2012, 2, 822.	1.6	29
261	Statistical tests for the intersection of independent lists of genes: Sensitivity, FDR, and type I error control. Annals of Applied Statistics, 2012, 6, 521-541.	0.5	16
262	Profiling CCK-mediated pancreatic growth: the dynamic genetic program and the role of STATs as potential regulators. Physiological Genomics, 2012, 44, 14-24.	1.0	4

#	Article	IF	CITATIONS
263	Chromatin accessibility reveals insights into androgen receptor activation and transcriptional specificity. Genome Biology, 2012, 13, R88.	13.9	65
264	Bioinformatics for cancer immunology and immunotherapy. Cancer Immunology, Immunotherapy, 2012, 61, 1885-1903.	2.0	40
265	Twenty-First Century Pathology Sign-Out. Clinics in Laboratory Medicine, 2012, 32, 639-650.	0.7	2
266	Role of Transcriptional Corepressor CtBP1 in Prostate Cancer Progression. Neoplasia, 2012, 14, 905-IN8.	2.3	59
267	DICLENS: Divisive Clustering Ensemble with Automatic Cluster Number. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 408-420.	1.9	41
268	Peroxiredoxins 3 and 4 Are Overexpressed in Prostate Cancer Tissue and Affect the Proliferation of Prostate Cancer Cells in Vitro. Journal of Proteome Research, 2012, 11, 2452-2466.	1.8	46
269	A New Unsupervised Feature Ranking Method for Gene Expression Data Based on Consensus Affinity. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1257-1263.	1.9	26
270	The PSAâ^'/lo Prostate Cancer Cell Population Harbors Self-Renewing Long-Term Tumor-Propagating Cells that Resist Castration. Cell Stem Cell, 2012, 10, 556-569.	5.2	281
271	14-3-3ζ, a Novel Androgen-Responsive Gene, Is Upregulated in Prostate Cancer and Promotes Prostate Cancer Cell Proliferation and Survival. Clinical Cancer Research, 2012, 18, 5617-5627.	3.2	68
272	Histone H2A.Z prepares the prostate specific antigen (PSA) gene for androgen receptor-mediated transcription and is upregulated in a model of prostate cancer progression. Cancer Letters, 2012, 315, 38-47.	3.2	55
273	NetWalker: a contextual network analysis tool for functional genomics. BMC Genomics, 2012, 13, 282.	1.2	99
274	Recent advances in metabolomics in oncology. Bioanalysis, 2012, 4, 431-451.	0.6	50
275	Osteoprotegerin in Bone Metastases: Mathematical Solution to the Puzzle. PLoS Computational Biology, 2012, 8, e1002703.	1.5	32
276	Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy?. Lancet Oncology, The, 2012, 13, e509-e517.	5.1	150
277	Large Oncosomes in Human Prostate Cancer Tissues and in the Circulation of Mice with Metastatic Disease. American Journal of Pathology, 2012, 181, 1573-1584.	1.9	321
278	A 12-Gene Expression Signature Is Associated with Aggressive Histological in Prostate Cancer. American Journal of Pathology, 2012, 181, 1585-1594.	1.9	41
279	Do Gleason Patterns 3 and 4 Prostate Cancer Represent Separate Disease States?. Journal of Urology, 2012, 188, 1667-1675.	0.2	66
280	Understanding Cancer Progression Using Protein Interaction Networks. , 2012, , 167-195.		1

#	Article	IF	CITATIONS
282	mCOPA: analysis of heterogeneous features in cancer expression data. Journal of Clinical Bioinformatics, 2012, 2, 22.	1.2	20
283	SNRPE is involved in cell proliferation and progression of high-grade prostate cancer through the regulation of androgen receptor expression. Oncology Letters, 2012, 3, 264-268.	0.8	23
285	Development of an ELISA to detect the secreted prostate cancer biomarker AGR2 in voided urine. Prostate, 2012, 72, 1023-1034.	1.2	48
286	L ₁ penalized continuation ratio models for ordinal response prediction using highâ€dimensional datasets. Statistics in Medicine, 2012, 31, 1464-1474.	0.8	44
287	A gene signature identified using a mouse model of androgen receptorâ€dependent prostate cancer predicts biochemical relapse in human disease. International Journal of Cancer, 2012, 131, 662-672.	2.3	33
288	Polycomb Protein EZH2 Regulates Tumor Invasion via the Transcriptional Repression of the Metastasis Suppressor RKIP in Breast and Prostate Cancer. Cancer Research, 2012, 72, 3091-3104.	0.4	195
289	The Stress Response Mediator ATF3 Represses Androgen Signaling by Binding the Androgen Receptor. Molecular and Cellular Biology, 2012, 32, 3190-3202.	1.1	38
290	Oncogenomics Methods and Resources. Cold Spring Harbor Protocols, 2012, 2012, pdb.top069229.	0.2	8
291	Androgen regulated HN1 leads proteosomal degradation of androgen receptor (AR) and negatively influences AR mediated transactivation in prostate cells. Molecular and Cellular Endocrinology, 2012, 350, 107-117.	1.6	28
292	Prostateâ€specific antigen response to deferred combined androgen blockade therapy using bicalutamide predicts survival after subsequent oestrogen and docetaxel therapies in patients with castrationâ€resistant prostate cancer. BJU International, 2012, 110, 1149-1155.	1.3	10
293	Metastasis suppressors in human benign prostate, intraepithelial neoplasia, and invasive cancer: their prospects as therapeutic agents. Medicinal Research Reviews, 2012, 32, 1026-1077.	5.0	23
294	Modelling gene expression profiles related to prostate tumor progression using binary states. Theoretical Biology and Medical Modelling, 2013, 10, 37.	2.1	4
296	High levels of secreted frizzled-related protein 1 correlate with poor prognosis and promote tumourigenesis in gastric cancer. European Journal of Cancer, 2013, 49, 3718-3728.	1.3	32
297	The Mutational Landscape of Prostate Cancer. European Urology, 2013, 64, 567-576.	0.9	203
298	Comparison of progestin transcriptional profiles in rat mammary gland using Laser Capture Microdissection and whole tissue-sampling. Experimental and Toxicologic Pathology, 2013, 65, 949-960.	2.1	5
299	Epithelial Membrane Protein 2 Is a Prognostic Indictor for Patients with Urothelial Carcinoma of the Upper Urinary Tract. American Journal of Pathology, 2013, 183, 709-719.	1.9	15
300	Prostate Cancer: Shifting from Morphology to Biology. , 2013, , .		1
301	SPINK1 expression is tightly linked to 6q15- and 5q21-deleted ERC-fusion negative prostate cancers but unrelated to PSA recurrence. Prostate, 2013, 73, 1690-1698.	1.2	38

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
302	BreakTrans: uncovering the genomic architecture of gene fusions. Genome Biology, 201	3, 14, R87.	13.9	25
303	Dysregulated methylation at imprinted genes in prostate tumor tissue detected by meth microarray. BMC Urology, 2013, 13, 37.	iylation	0.6	17
304	Cysteine (C)-X-C Receptor 4 Regulates NADPH Oxidase-2 During Oxidative Stress in Pro Cells. Cancer Microenvironment, 2013, 6, 277-288.	state Cancer	3.1	17
305	Biomarkers in Oncology. , 2013, , .			1
306	Identification of New Genes Downregulated in Prostate Cancer and Investigation of The Prognosis. Genetic Testing and Molecular Biomarkers, 2013, 17, 562-566.	ir Effects on	0.3	28
307	The Application of MicroRNAs in Cancer Diagnostics. Advances in Delivery Science and T 2013, , 259-298.	echnology,	0.4	1
308	The Androgen Receptor Induces a Distinct Transcriptional Program in Castration-Resista Cancer in Man. Cancer Cell, 2013, 23, 35-47.	nt Prostate	7.7	354
309	COUP-TFII inhibits TGF-Î ² -induced growth barrier to promote prostate tumorigenesis. Na 236-240.	ture, 2013, 493,	13.7	146
310	Activation of Mammalian Target of Rapamycin Signaling Pathway Markers in Minute Ade of the Prostate. Urology, 2013, 82, 1083-1089.	nocarcinoma	0.5	2
311	Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports cell-of-origin model for prostate cancer heterogeneity. Nature Cell Biology, 2013, 15, 27		4.6	261
313	ARF Represses Androgen Receptor Transactivation in Prostate Cancer. Molecular Endoci 27, 635-648.	inology, 2013,	3.7	27
314	Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate canc 2013, 32, 3992-4000.	er. Oncogene,	2.6	55
315	Active surveillance for low-risk prostate cancer. Critical Reviews in Oncology/Hematolog 295-302.	y, 2013, 85,	2.0	46
316	ETS Fusion Genes in Prostate Cancer. , 2013, , 139-183.			6
317	Minireview: Androgen Metabolism in Castration-Resistant Prostate Cancer. Molecular Er 2013, 27, 708-714.	ıdocrinology,	3.7	64
318	A co-clinical approach identifies mechanisms and potential therapies for androgen depriresistance in prostate cancer. Nature Genetics, 2013, 45, 747-755.	vation	9.4	138
319	Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway fo senescence bypass and tumor invasion. Nature Genetics, 2013, 45, 739-746.	r cellular	9.4	134
320	The SLC22 family with transporters of organic cations, anions and zwitterions. Molecula Medicine, 2013, 34, 413-435.	r Aspects of	2.7	325

#	Article	IF	CITATIONS
321	Life spanning murine gene expression profiles in relation to chronological and pathological aging in multiple organs. Aging Cell, 2013, 12, 901-909.	3.0	58
322	Genetic and epigenetic regulation of the organic cation transporter 3, SLC22A3. Pharmacogenomics Journal, 2013, 13, 110-120.	0.9	75
323	Mechanisms of Androgen Receptor Activation in Castration-Resistant Prostate Cancer. Endocrinology, 2013, 154, 4010-4017.	1.4	68
324	Molecular Signature of Cancer at Gene Level or Pathway Level? Case Studies of Colorectal Cancer and Prostate Cancer Microarray Data. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-8.	0.7	22
325	Molecular Characterization and Clinical Impact of <i>TMPRSS2-ERG</i> Rearrangement on Prostate Cancer: Comparison between FISH and RT-PCR. BioMed Research International, 2013, 2013, 1-10.	0.9	17
326	iPcc: a novel feature extraction method for accurate disease class discovery and prediction. Nucleic Acids Research, 2013, 41, e143-e143.	6.5	26
327	Clinical Applications of Recent Molecular Advances in Urologic Malignancies. Advances in Anatomic Pathology, 2013, 20, 175-203.	2.4	26
328	The Steroid Receptor Coactivator-3 Is Required for the Development of Castration-Resistant Prostate Cancer. Cancer Research, 2013, 73, 3997-4008.	0.4	32
329	Protein Kinase A Regulates MYC Protein through Transcriptional and Post-translational Mechanisms in a Catalytic Subunit Isoform-specific Manner. Journal of Biological Chemistry, 2013, 288, 14158-14169.	1.6	33
330	Coordination of Nutrient Availability and Utilization by MAX- and MLX-Centered Transcription Networks. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014258-a014258.	2.9	43
331	The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Research, 2013, 41, D793-D800.	6.5	728
332	Gene Expression Profiling of Localized Prostate Cancer: Getting Answers to the Questions That Really Matter. Journal of Clinical Oncology, 2013, 31, 3295-3296.	0.8	2
333	FoxA1 Specifies Unique Androgen and Glucocorticoid Receptor Binding Events in Prostate Cancer Cells. Cancer Research, 2013, 73, 1570-1580.	0.4	194
334	JiffyNet: a web-based instant protein network modeler for newly sequenced species. Nucleic Acids Research, 2013, 41, W192-W197.	6.5	31
335	Androgen Receptor Promotes Ligand-Independent Prostate Cancer Progression through c-Myc Upregulation. PLoS ONE, 2013, 8, e63563.	1.1	104
336	Androgen-responsive Serum Response Factor target genes regulate prostate cancer cell migration. Carcinogenesis, 2013, 34, 1737-1746.	1.3	37
337	ellipsoidFN: a tool for identifying a heterogeneous set of cancer biomarkers based on gene expressions. Nucleic Acids Research, 2013, 41, e53-e53.	6.5	34
338	Identification of <i>TDRD1</i> as a direct target gene of <i>ERG</i> in primary prostate cancer. International Journal of Cancer, 2013, 133, 335-345.	2.3	59

#	Article	IF	CITATIONS
339	Integrative analysis of prostate cancer aggressiveness. Prostate, 2013, 73, 1413-1426.	1.2	15
340	The E2F1/DNMT1 axis is associated with the development of AR negative castration resistant prostate cancer. Prostate, 2013, 73, 1776-1785.	1.2	17
341	AAPL: assessing association between <i>p</i> â€value lists. Statistical Analysis and Data Mining, 2013, 6, 144-155.	1.4	1
342	Portraying the expression landscapes of cancer subtypes. Systems Biomedicine (Austin, Tex), 2013, 1, 99-121.	0.7	43
343	Identification of genomic functional hotspots with copy number alteration in liver cancer. Eurasip Journal on Bioinformatics and Systems Biology, 2013, 2013, 14.	1.4	8
344	The shaping and functional consequences of the dosage effect landscape in multiple myeloma. BMC Genomics, 2013, 14, 672.	1.2	16
345	Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis. PLoS ONE, 2013, 8, e54082.	1.1	22
346	De-Regulated MicroRNAs in Pediatric Cancer Stem Cells Target Pathways Involved in Cell Proliferation, Cell Cycle and Development. PLoS ONE, 2013, 8, e61622.	1.1	48
347	Novel Biomarkers in Determining Prostate Cancer Diagnosis and Prognosis. OnLine Journal of Biological Sciences, 2014, 14, 277-285.	0.2	1
348	Short Hairpin RNA Library-Based Functional Screening Identified Ribosomal Protein L31 That Modulates Prostate Cancer Cell Growth via p53 Pathway. PLoS ONE, 2014, 9, e108743.	1.1	31
349	NIAM-Deficient Mice Are Predisposed to the Development of Proliferative Lesions including B-Cell Lymphomas. PLoS ONE, 2014, 9, e112126.	1.1	7
350	Mining CK2 in Cancer. PLoS ONE, 2014, 9, e115609.	1.1	127
351	Androgen Receptor Activation in Castration-Recurrent Prostate Cancer: The Role of Src-Family and Ack1 Tyrosine Kinases. International Journal of Biological Sciences, 2014, 10, 620-626.	2.6	28
352	Targeting Androgen Receptor Action for Prostate Cancer Treatment: Does the Post-Receptor Level Provide Novel Opportunities?. International Journal of Biological Sciences, 2014, 10, 576-587.	2.6	16
353	Untargeted LC-QTOF (ESI +) MS Analysis of Small Serum Metabolites Related to Prostate Cancer and Prostate Specific Antigen. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Food Science and Technology, 2014, 71, .	0.1	1
354	Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer. Cell Cycle, 2014, 13, 1798-1810.	1.3	22
355	A generative model of identifying informative proteins from dynamic PPI networks. Science China Life Sciences, 2014, 57, 1080-1089.	2.3	4
356	Androgen receptor co-regulatory networks in castration-resistant prostate cancer. Endocrine-Related Cancer, 2014, 21, R1-R11.	1.6	19

#	Article	IF	CITATIONS
357	Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. British Journal of Cancer, 2014, 111, 1201-1212.	2.9	123
358	Upregulation of RASGRP3 expression in prostate cancer correlates with aggressive capabilities and predicts biochemical recurrence after radical prostatectomy. Prostate Cancer and Prostatic Diseases, 2014, 17, 119-125.	2.0	14
359	Integrative Analysis of FOXP1 Function Reveals a Tumor-Suppressive Effect in Prostate Cancer. Molecular Endocrinology, 2014, 28, 2012-2024.	3.7	56
360	The androgen receptor transcriptional program in castration-resistant prostate cancer. Cancer Biology and Therapy, 2014, 15, 16-18.	1.5	2
361	HEXIM1 plays a critical role in the inhibition of the androgen receptor by anti-androgens. Biochemical Journal, 2014, 462, 315-327.	1.7	18
362	The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nature Communications, 2014, 5, 5383.	5.8	522
363	The Thoc1 Ribonucleoprotein and Prostate Cancer Progression. Journal of the National Cancer Institute, 2014, 106, dju306-dju306.	3.0	19
364	Up-regulation of miR-582-5p regulates cellular proliferation of prostate cancer cells under androgen-deprived conditions. Prostate, 2014, 74, 1604-1612.	1.2	15
365	Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Medical Genomics, 2014, 7, 513.	0.7	33
366	AR-Regulated TWEAK-FN14 Pathway Promotes Prostate Cancer Bone Metastasis. Cancer Research, 2014, 74, 4306-4317.	0.4	37
367	Management of low risk prostate cancer. Current Opinion in Urology, 2014, 24, 270-279.	0.9	24
368	The transcriptional programme of the androgen receptor (<scp>AR</scp>) in prostate cancer. BJU International, 2014, 113, 358-366.	1.3	38
369	Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene, 2014, 33, 2815-2825.	2.6	289
370	Modeling disease progression using dynamics of pathway connectivity. Bioinformatics, 2014, 30, 2343-2350.	1.8	56
371	Differential Effects of RUNX2 on the Androgen Receptor in Prostate Cancer: Synergistic Stimulation of a Gene Set Exemplified by SNAI2 and Subsequent Invasiveness. Cancer Research, 2014, 74, 2857-2868.	0.4	30
372	Notch signaling in prostate cancer: A moving target. Prostate, 2014, 74, 933-945.	1.2	70
373	Management of Castration Resistant Prostate Cancer. Current Clinical Urology, 2014, , .	0.0	2
374	Integrin-Free Tetraspanin CD151 Can Inhibit Tumor Cell Motility upon Clustering and Is a Clinical Indicator of Prostate Cancer Progression. Cancer Research, 2014, 74, 173-187.	0.4	39

#	Article	IF	CITATIONS
375	Expanding the computational toolbox for mining cancer genomes. Nature Reviews Genetics, 2014, 15, 556-570.	7.7	166
376	A novel approach to identify driver genes involved in androgen-independent prostate cancer. Molecular Cancer, 2014, 13, 120.	7.9	53
377	Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Medical Genomics, 2014, 7, S3.	0.7	23
378	MS4A8B promotes cell proliferation in prostate cancer. Prostate, 2014, 74, 911-922.	1.2	7
379	CARM1 Methylates Chromatin Remodeling Factor BAF155 to Enhance Tumor Progression and Metastasis. Cancer Cell, 2014, 25, 21-36.	7.7	215
380	A 17-gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality, and Biopsy Undersampling. European Urology, 2014, 66, 550-560. Cav1.3 channel 1±1D protein is overexpressed and modulates androgen receptor transactivation in	0.9	553
381	prostate cancers11This work was partially supported by grants from DoD PCRP program (W81XWH-09-1-0455) and KUMC Valk Foundation to Dr Benyi Li, and grants from China Natural Science Foundation to Dr Benyi Li (NSFC #81172427) and Dr Jun Yang (NSFC #81101927). This project was also supported by the "Chutian Scholar―program funded by Hubei Province of China dedicated to China	0.8	61
382	Three Gorges University Urologic Oncology: Seminars and Original Investigations, 2014, 32, 524-536. Prolonged exposure to (R)-bicalutamide generates a LNCaP subclone with alteration of mitochondrial genome. Molecular and Cellular Endocrinology, 2014, 382, 314-324.	1.6	13
383	Management of low risk prostate cancer—active surveillance and focal therapy. Nature Reviews Clinical Oncology, 2014, 11, 324-334.	12.5	61
384	Development of sparse Bayesian multinomial generalized linear model for multi-class prediction. BMC Bioinformatics, 2014, 15, .	1.2	2
385	Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis. Genes and Development, 2015, 29, 2547-2562.	2.7	77
386	Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks. Molecular Endocrinology, 2015, 29, 1195-1218.	3.7	8
387	MetaOmics: Transcriptomic Meta-Analysis Methods for Biomarker Detection, Pathway Analysis and Other Exploratory Purposes. , 0, , 39-67.		0
388	Multigroup Equivalence Analysis for High-Dimensional Expression Data. Cancer Informatics, 2015, 14s2, CIN.S17304.	0.9	0
389	A Bayesian approach for inducing sparsity in generalized linear models with multi-category response. BMC Bioinformatics, 2015, 16, S13.	1.2	2
390	Genome-wide analysis of androgen receptor binding sites in prostate cancer cells. Experimental and Therapeutic Medicine, 2015, 9, 2319-2324.	0.8	16
391	Wholeâ€lesion apparent diffusion coefficient metrics as a marker of percentage Gleason 4 component within Gleason 7 prostate cancer at radical prostatectomy. Journal of Magnetic Resonance Imaging, 2015, 41, 708-714.	1.9	71
392	Unravelling personalized dysfunctional gene network of complex diseases based on differential network model. Journal of Translational Medicine, 2015, 13, 189.	1.8	36

#	Article	IF	CITATIONS
394	miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget, 2015, 6, 6092-6104.	0.8	82
395	Reconstitution of the ERG Gene Expression Network Reveals New Biomarkers and Therapeutic Targets in ERG Positive Prostate Tumors. Journal of Cancer, 2015, 6, 490-501.	1.2	4
396	Urinary Nucleic Acid <i>TSPAN13</i> -to- <i>S100A9</i> Ratio as a Diagnostic Marker in Prostate Cancer. Journal of Korean Medical Science, 2015, 30, 1784.	1.1	7
397	MiR-182 Is Associated with Growth, Migration and Invasion in Prostate Cancer via Suppression of FOXO1. Journal of Cancer, 2015, 6, 1295-1305.	1.2	53
398	The PFA-AMeX method achieves a good balance between the morphology of tissues and the quality of RNA content in DNA microarray analysis with laser-capture microdissection samples. Journal of Toxicologic Pathology, 2015, 28, 43-49.	0.3	4
399	Elevated expression of UBE2T exhibits oncogenic properties in human prostate cancer. Oncotarget, 2015, 6, 25226-25239.	0.8	66
400	Simultaneous targeting of androgen receptor (AR) and MAPK-interacting kinases (MNKs) by novel retinamides inhibits growth of human prostate cancer cell lines. Oncotarget, 2015, 6, 3195-3210.	0.8	25
401	Steroid Receptor-Associated Immunophilins: Candidates for Diverse Drug-Targeting Approaches in Disease. Current Molecular Pharmacology, 2015, 9, 66-95.	0.7	15
402	Patterns of Local Failure following Radiation Therapy for Prostate Cancer. Journal of Urology, 2015, 194, 977-982.	0.2	39
404	Loss of Androgen-Regulated MicroRNA 1 Activates SRC and Promotes Prostate Cancer Bone Metastasis. Molecular and Cellular Biology, 2015, 35, 1940-1951.	1.1	49
405	Clinically relevant genetic characterization of prostate tumors: How close are we to the goal?. Korean Journal of Urology, 2015, 56, 90.	1.2	1
406	A role for the dehydrogenase DHRS7 (SDR34C1) in prostate cancer. Cancer Medicine, 2015, 4, 1717-1729.	1.3	15
407	Cooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in <i>Drosophila</i> epithelial tumorigenesis. Biology Open, 2015, 4, 1024-1039.	0.6	5
408	Intercellular Communication in Cancer. , 2015, , .		4
409	Defining â€~progression' and triggers for curative intervention during active surveillance. Current Opinion in Urology, 2015, 25, 258-266.	0.9	14
410	Diverse Functions of Plasma PAF-AH in Tumorigenesis. The Enzymes, 2015, 38, 157-179.	0.7	11
411	Suppression of <i>CHK1</i> by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis. Cancer Discovery, 2015, 5, 550-563.	7.7	24
412	Early Growth Response 3 regulates genes of inflammation and directly activates IL6 and IL8 expression in prostate cancer. British Journal of Cancer, 2015, 112, 755-764.	2.9	62

#	Article	IF	CITATIONS
413	Effect of the CCND1 A870G polymorphism on prostate cancer risk: a meta-analysis of 3,820 cases and 3,825 controls. World Journal of Surgical Oncology, 2015, 13, 55.	0.8	6
414	Transcription of Nrdp1 by the androgen receptor is regulated by nuclear filamin A in prostate cancer. Endocrine-Related Cancer, 2015, 22, 369-386.	1.6	16
415	Apoptosis Induction byOcimum sanctumExtract in LNCaP Prostate Cancer Cells. Journal of Medicinal Food, 2015, 18, 776-785.	0.8	20
416	Determinants of Receptor- and Tissue-Specific Actions in Androgen Signaling. Endocrine Reviews, 2015, 36, 357-384.	8.9	93
417	Transcriptional Repressor DAXX Promotes Prostate Cancer Tumorigenicity via Suppression of Autophagy. Journal of Biological Chemistry, 2015, 290, 15406-15420.	1.6	34
418	Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature, 2015, 521, 94-98.	13.7	451
419	Gleason stratifications prognostic for survival in men receiving definitive external beam radiation therapy for localized prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2015, 33, 71.e11-71.e19.	0.8	27
420	Active Surveillance for Low-Risk Prostate Cancer. Current Urology Reports, 2015, 16, 24.	1.0	36
421	The tumour-promoting receptor tyrosine kinase, EphB4, regulates expression of Integrin-β8 in prostate cancer cells. BMC Cancer, 2015, 15, 164.	1.1	44
422	Comparing Platforms for Messenger RNA Expression Profiling of Archival Formalin-Fixed, Paraffin-Embedded Tissues. Journal of Molecular Diagnostics, 2015, 17, 374-381.	1.2	22
423	In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene, 2015, 34, 2764-2776.	2.6	63
424	Linear mRNA amplification approach for RNAseq from limited amount of RNA. Gene, 2015, 564, 220-227.	1.0	2
425	Genomics and Epigenomics of Prostate Cancer. , 2015, , 149-170.		0
426	Targeting the MLL complex in castration-resistant prostate cancer. Nature Medicine, 2015, 21, 344-352.	15.2	165
427	Androgens and androgen receptor signaling in prostate tumorigenesis. Journal of Molecular Endocrinology, 2015, 54, R15-R29.	1.1	135
428	MAPK/ERK signaling pathway-induced hyper-O-GlcNAcylation enhances cancer malignancy. Molecular and Cellular Biochemistry, 2015, 410, 101-110.	1.4	43
429	Role of active surveillance and focal therapy in low- and intermediate-risk prostate cancers. World Journal of Urology, 2015, 33, 907-916.	1.2	19
430	Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. EBioMedicine, 2015, 2, 1133-1144.	2.7	260

# 431	ARTICLE Molecular Updates in Prostate Cancer. Surgical Pathology Clinics, 2015, 8, 561-580.	IF 0.7	Citations
432	The Placental Gene PEG10 Promotes Progression of Neuroendocrine Prostate Cancer. Cell Reports, 2015, 12, 922-936.	2.9	216
433	SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes. Nature Communications, 2015, 6, 8257.	5.8	47
434	Computational Approaches to Modeling of Molecular Interactions in Multicellular Systems. , 2015, , 287-296.		0
435	Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene, 2015, 34, 4975-4984.	2.6	60
436	Decreased expression of EFS is correlated with the advanced prostate cancer. Tumor Biology, 2015, 36, 799-805.	0.8	9
437	CHCHD2 inhibits apoptosis by interacting with Bcl-x L to regulate Bax activation. Cell Death and Differentiation, 2015, 22, 1035-1046.	5.0	91
438	Mnks, elF4E phosphorylation and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 766-773.	0.9	102
439	The role of the orphan nuclear receptor COUP-TFII in tumorigenesis. Acta Pharmacologica Sinica, 2015, 36, 32-36.	2.8	32
440	Functional CRISPR screening identifies the ufmylation pathway as a regulator of SQSTM1/p62. ELife, 2016, 5, .	2.8	122
441	A Balanced Tissue Composition Reveals New Metabolic and Gene Expression Markers in Prostate Cancer. PLoS ONE, 2016, 11, e0153727.	1.1	24
442	Elevated XPO6 expression as a potential prognostic biomarker for prostate cancer recurrence. Frontiers in Bioscience - Scholar, 2016, 8, 44-55.	0.8	13
443	Lentiviral vectorâ€mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome. Molecular Carcinogenesis, 2016, 55, 1761-1771.	1.3	37
444	Widespread telomere instability in prostatic lesions. Molecular Carcinogenesis, 2016, 55, 842-852.	1.3	16
445	Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma. Prostate, 2016, 76, 479-490.	1.2	12
446	Distinct outcomes of CRL–Nedd8 pathway inhibition reveal cancer cell plasticity. Cell Death and Disease, 2016, 7, e2505-e2505.	2.7	12
447	The role of chemotherapy and new targeted agents in the management of primary prostate cancer. Journal of Clinical Urology, 2016, 9, 30-37.	0.1	2
448	Identification of definitive serum biomarkers associated with disease activity in primary Sjögren's syndrome. Arthritis Research and Therapy, 2016, 18, 106.	1.6	47

#	Article	IF	CITATIONS
449	Identification and Validation of PCAT14 as Prognostic Biomarker in Prostate Cancer. Neoplasia, 2016, 18, 489-499.	2.3	55
450	Kernelized Information-Theoretic Metric Learning for Cancer Diagnosis Using High-Dimensional Molecular Profiling Data. ACM Transactions on Knowledge Discovery From Data, 2016, 10, 1-23.	2.5	7
451	The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nature Cell Biology, 2016, 18, 645-656.	4.6	176
452	ATF3 is a negative regulator of inflammation in human fetal membranes. Placenta, 2016, 47, 63-72.	0.7	15
453	Discovery Proteomics Identifies a Molecular Link between the Coatomer Protein Complex I and Androgen Receptor-dependent Transcription. Journal of Biological Chemistry, 2016, 291, 18818-18842.	1.6	16
454	Metastatic Progression of Prostate Cancer Is Mediated by Autonomous Binding of Galectin-4- <i>O</i> -Glycan to Cancer Cells. Cancer Research, 2016, 76, 5756-5767.	0.4	54
455	Improved Procedures for Gram-Scale Synthesis of Galeterone 3β-Imidazole and Galeterone 3β-Pyridine Methoxylate, Potent Androgen Receptor/Mnk Degrading Agents. Organic Process Research and Development, 2016, 20, 1654-1661.	1.3	8
456	Does true Gleason pattern 3 merit its cancer descriptor?. Nature Reviews Urology, 2016, 13, 541-548.	1.9	18
457	WOMEN IN CANCER THEMATIC REVIEW: New roles for nuclear receptors in prostate cancer. Endocrine-Related Cancer, 2016, 23, T85-T108.	1.6	23
458	Ornithine Decarboxylase Is Sufficient for Prostate Tumorigenesis via Androgen Receptor Signaling. American Journal of Pathology, 2016, 186, 3131-3145.	1.9	28
459	Gene expression analysis of bone metastasis and circulating tumor cells from metastatic castrate-resistant prostate cancer patients. Journal of Translational Medicine, 2016, 14, 72.	1.8	17
460	Resistance to docetaxel in prostate cancer is associated with androgen receptor activation and loss of KDM5D expression. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6259-6264.	3.3	127
461	Integrated Classification of Prostate Cancer Reveals a Novel Luminal Subtype with Poor Outcome. Cancer Research, 2016, 76, 4948-4958.	0.4	147
462	A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling. Journal of Molecular Medicine, 2016, 94, 1167-1179.	1.7	18
463	Translational and clinical implications of the genetic landscape of prostate cancer. Nature Reviews Clinical Oncology, 2016, 13, 597-610.	12.5	63
464	The emerging roles of orphan nuclear receptors in prostate cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 23-36.	3.3	23
465	The expression profile and prognostic value of SPINK1 in initially diagnosed bone metastatic prostate cancer. Prostate, 2016, 76, 823-833.	1.2	20
466	The Proteome of Primary Prostate Cancer. European Urology, 2016, 69, 942-952.	0.9	122

	CITA	ation Report	
# 467	ARTICLE Active Surveillance: Rationale, Patient Selection, Follow-up, and Outcomes. , 2016, , 215-223.	IF	CITATIONS
468	Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties. Oncogene, 2016, 35, 5963-5976.	2.6	78
469	The molecular and cellular origin of human prostate cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1238-1260.	1.9	92
470	The cancer-promoting gene fatty acid-binding protein 5 (<i>FABP5</i>) is epigenetically regulated during human prostate carcinogenesis. Biochemical Journal, 2016, 473, 449-461.	1.7	56
471	Urinary Biomarkers for Prostate Cancer. Urologic Clinics of North America, 2016, 43, 17-38.	0.8	39
472	Molecular Profiles of Prostate Cancer: To Treat or Not to Treat. Annual Review of Medicine, 2016, 67, 119-135.	5.0	15
473	Supervised, Unsupervised, and Semi-Supervised Feature Selection: A Review on Gene Selection. IEEE/AC Transactions on Computational Biology and Bioinformatics, 2016, 13, 971-989.	CM 1.9	415
474	Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5+CK8+ epithelial cells. Oncogene, 2016, 35, 3555-3564.	2.6	19
475	The oncogene ERG: a key factor in prostate cancer. Oncogene, 2016, 35, 403-414.	2.6	186
476	Modified linear discriminant analysis using block covariance matrix in high-dimensional data. Communications in Statistics Part B: Simulation and Computation, 2017, 46, 1796-1807.	0.6	1
477	Gene expression panel predicts metastaticâ€lethal prostate cancer outcomes in men diagnosed with clinically localized prostate cancer. Molecular Oncology, 2017, 11, 140-150.	2.1	24
478	Identifying aggressive prostate cancer foci using a DNA methylation classifier. Genome Biology, 2017, 18, 3.	3.8	43
479	A Genome-Wide Loss-of-Function Screen Identifies SLC26A2 as a Novel Mediator of TRAIL Resistance. Molecular Cancer Research, 2017, 15, 382-394.	1.5	10
480	RAB27A, RAB27B and VPS36 are downregulated in advanced prostate cancer and show functional relevance in prostate cancer cells. International Journal of Oncology, 2017, 50, 920-932.	1.4	31
481	MondoA/ChREBP: The usual suspects of transcriptional glucose sensing; Implication in pathophysiology. Metabolism: Clinical and Experimental, 2017, 70, 133-151.	1.5	44
482	Physical and Functional Interactions between ELL2 and RB in the Suppression of Prostate Cancer Cell Proliferation, Migration, and Invasion. Neoplasia, 2017, 19, 207-215.	2.3	15
483	EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 199-211.	3.3	63
484	Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism. Journal of Nonparametric Statistics, 2017, 29, 577-593.	0.4	10

#	Article	IF	CITATIONS
485	Targeting the mercapturic acid pathway and vicenin-2 for prevention of prostate cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 167-175.	3.3	22
486	Approximate conditional likelihood for generalized linear models with general missing data mechanism. Journal of Systems Science and Complexity, 2017, 30, 139-153.	1.6	15
487	Targeting Lyn regulates Snail family shuttling and inhibits metastasis. Oncogene, 2017, 36, 3964-3975.	2.6	33
488	Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. British Journal of Cancer, 2017, 116, 227-236.	2.9	132
489	Contemporary Active Surveillance. Urologic Clinics of North America, 2017, 44, 565-574.	0.8	20
490	Prostate Cancer: An Update on Molecular Pathology with Clinical Implications. European Urology Supplements, 2017, 16, 253-271.	0.1	2
491	Suppression of STIM1 inhibits the migration and invasion of human prostate cancer cells and is associated with PI3K/Akt signaling inactivation. Oncology Reports, 2017, 38, 2629-2636.	1.2	30
492	Loss of ABHD5 promotes the aggressiveness of prostate cancer cells. Scientific Reports, 2017, 7, 13021.	1.6	29
493	BET inhibitors in metastatic prostate cancer: therapeutic implications and rational drug combinations. Expert Opinion on Investigational Drugs, 2017, 26, 1391-1397.	1.9	26
494	<scp>ACSL</scp> 3 promotes intratumoral steroidogenesis in prostate cancer cells. Cancer Science, 2017, 108, 2011-2021.	1.7	50
495	Phosphorylation of the oncogenic transcription factor ERG in prostate cells dissociates polycomb repressive complex 2, allowing target gene activation. Journal of Biological Chemistry, 2017, 292, 17225-17235.	1.6	17
496	DNA and Histone Methylation in Prostate Cancer. Cancer Drug Discovery and Development, 2017, , 489-529.	0.2	0
497	Tumor Dormancy and Recurrence. Cancer Drug Discovery and Development, 2017, , .	0.2	2
498	Thermodynamics and Cancer Dormancy: A Perspective. Cancer Drug Discovery and Development, 2017, , 61-79.	0.2	0
499	Stromal and epithelial transcriptional map of initiation progression and metastatic potential of human prostate cancer. Nature Communications, 2017, 8, 420.	5.8	91
500	Numbâ^'/low Enriches a Castration-Resistant Prostate Cancer Cell Subpopulation Associated with Enhanced Notch and Hedgehog Signaling. Clinical Cancer Research, 2017, 23, 6744-6756.	3.2	36
501	Targeting AR Variant–Coactivator Interactions to Exploit Prostate Cancer Vulnerabilities. Molecular Cancer Research, 2017, 15, 1469-1480.	1.5	21
502	Voltage-gated calcium channels: Novel targets for cancer therapy. Oncology Letters, 2017, 14, 2059-2074.	0.8	124

ARTICLE IF CITATIONS # Whole blood stabilization for the microfluidic isolation and molecular characterization of 503 5.8 53 circulating tumor cells. Nature Communications, 2017, 8, 1733. Store-Operated Ca2+ Entry as a Prostate Cancer Biomarker â€" a Riddle with Perspectives. Current 504 0.8 Molecular Biology Reports, 2017, 3, 208-217. Granular Fuzzy Possibilistic C-Means Clustering approach to DNA microarray problem. 505 4.0 22 Knowledge-Based Systems, 2017, 133, 53-65. Inhibition of the androgen receptor induces a novel tumor promoter, ZBTB46, for prostate cancer 506 metastasis. Oncogene, 2017, 36, 6213-6224. Telomeres and telomerase in prostate cancer development and therapy. Nature Reviews Urology, 2017, 507 1.9 85 14, 607-619. Genetic association analysis of the RTK/ERK pathway with aggressive prostate cancer highlights the 508 1.6 potential role of CCND2 in disease progression. Scientific Reports, 2017, 7, 4538. mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature, 2017, 509 13.7 142 547, 109-113. E3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nature 510 5.8 26 Communications, 2017, 8, 15865. Expression and Role of PAICS, a De Novo Purine Biosynthetic Gene in Prostate Cancer. Prostate, 2017, 511 1.2 37 77, 10-21. Prostate Cancer Cells in Different Androgen Receptor Status Employ Different Leucine Transporters. 1.2 28 Prostate, 2017, 77, 222-233. Strategies to avoid treatment-induced lineage crisis in advanced prostate cancer. Nature Reviews 513 12.5 36 Clinical Oncology, 2017, 14, 269-283. Novel Nine-Exon AR Transcripts (Exon 1/Exon 1b/Exons 2–8) in Normal and Cancerous Breast and 516 1.8 Prostate Cells. International Journal of Molecular Sciences, 2017, 18, 40. Tracking disease progression by searching paths in a temporal network of biological processes. PLoS 518 1.1 6 ONE, 2017, 12, e0176172. Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network. Genome Biology, 2017, 18, 141. 3.8 Mitogen-activated Protein Kinase (MAPK) Interacting Kinases 1 and 2 (MNK1 and MNK2) as Targets for Cancer Therapy: Recent Progress in the Development of MNK Inhibitors. Current Medicinal Chemistry, 520 59 1.2 2017, 24, 3025-3053. Improvement in prediction of prostate cancer prognosis with somatic mutational signatures. Journal 521 1.2 33 of Cancer, 2017, 8, 3261-3267. Protein kinase D1 regulates subcellular localisation and metastatic function of metastasis-associated 522 2.9 14 protein 1. British Journal of Cancer, 2018, 118, 587-599. The androgen receptor malignancy shift in prostate cancer. Prostate, 2018, 78, 521-531. 1.2 24

#	Article	IF	CITATIONS
524	Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription. Oncogene, 2018, 37, 3340-3355.	2.6	20
525	Pixelated spatial gene expression analysis from tissue. Nature Communications, 2018, 9, 202.	5.8	24
526	Cancer transcriptome profiling at the juncture of clinical translation. Nature Reviews Genetics, 2018, 19, 93-109.	7.7	202
527	Meta-analytic principal component analysis in integrative omics application. Bioinformatics, 2018, 34, 1321-1328.	1.8	36
528	The Genomics of Prostate Cancer: emerging understanding with technologic advances. Modern Pathology, 2018, 31, 1-11.	2.9	47
529	Meeting report from the Prostate Cancer Foundation PSMAâ€directed radionuclide scientific working group. Prostate, 2018, 78, 775-789.	1.2	35
530	Organelle-Derived Acetyl-CoA Promotes Prostate Cancer Cell Survival, Migration, and Metastasis via Activation of Calmodulin Kinase II. Cancer Research, 2018, 78, 2490-2502.	0.4	27
531	LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4179-E4188.	3.3	160
532	Identification of an ILâ€1â€induced gene expression pattern in AR ⁺ PCa cells that mimics the molecular phenotype of AR ^{â^'} PCa cells. Prostate, 2018, 78, 595-606.	1.2	19
533	Nuclear receptor profiling in prostatospheroids and castration-resistant prostate cancer. Endocrine-Related Cancer, 2018, 25, 35-50.	1.6	24
534	A regulatory circuit HP1γ/miR-451a/c-Myc promotes prostate cancer progression. Oncogene, 2018, 37, 415-426.	2.6	33
535	Stromal Clusterin Expression Predicts Therapeutic Response to Neoadjuvant Chemotherapy in Triple Negative Breast Cancer. Clinical Breast Cancer, 2018, 18, e373-e379.	1.1	9
536	Utility of Single-Cell Genomics in Diagnostic Evaluation of Prostate Cancer. Cancer Research, 2018, 78, 348-358.	0.4	24
537	Oncogenic non-coding RNA NEAT1 promotes the prostate cancer cell growth through the SRC3/IGF1R/AKT pathway. International Journal of Biochemistry and Cell Biology, 2018, 94, 125-132.	1.2	48
538	LOX-1 activation by oxLDL triggers an epithelial mesenchymal transition and promotes tumorigenic potential in prostate cancer cells. Cancer Letters, 2018, 414, 34-43.	3.2	45
539	A comparison of high-dimensional variable selection methods with missing covariates in a prostate cancer study. Communications in Statistics Case Studies Data Analysis and Applications, 2018, 4, 82-95.	0.3	0
540	Frequently rearranged and overexpressed δ-catenin is responsible for low sensitivity of prostate cancer cells to androgen receptor and β-catenin antagonists. Oncotarget, 2018, 9, 24428-24442.	0.8	6
541	Replication-incompetent gammaretroviral and lentiviral vector-based insertional mutagenesis screens identify prostate cancer progression genes. Oncotarget, 2018, 9, 15451-15463.	0.8	18

#	Article	IF	CITATIONS
542	Exploring the transcriptome of hormone-naive multifocal prostate cancer and matched lymph node metastases. British Journal of Cancer, 2018, 119, 1527-1537.	2.9	10
543	Classifying Incomplete Gene-Expression Data: Ensemble Learning with Non-Pre-Imputation Feature Filtering and Best-First Search Technique. International Journal of Molecular Sciences, 2018, 19, 3398.	1.8	1
544	A modified PageRank algorithm for biological pathway ranking. Stat, 2018, 7, e204.	0.3	3
545	Integrative analysis of transcriptomics and clinical data uncovers the tumor-suppressive activity of MITF in prostate cancer. Cell Death and Disease, 2018, 9, 1041.	2.7	14
546	Identification of the Transcription Factor Relationships Associated with Androgen Deprivation Therapy Response and Metastatic Progression in Prostate Cancer. Cancers, 2018, 10, 379.	1.7	21
547	Characterize the difference between TMPRSS2-ERG and non-TMPRSS2-ERG fusion patients by clinical and biological characteristics in prostate cancer. Gene, 2018, 679, 186-194.	1.0	3
548	CANCERTOOL: A Visualization and Representation Interface to Exploit Cancer Datasets. Cancer Research, 2018, 78, 6320-6328.	0.4	76
549	Lobaplatin inhibits prostate cancer progression in part by impairing <scp>AR</scp> and <scp>ERG</scp> signal. Fundamental and Clinical Pharmacology, 2018, 32, 548-557.	1.0	5
550	Using Thermodynamic Functions as an Organizing Principle in Cancer Biology. Computational Biology, 2018, , 139-157.	0.1	2
551	Theoretical and Applied Aspects of Systems Biology. Computational Biology, 2018, , .	0.1	3
552	Decreased expression of serine protease inhibitor family G1 (SERPING1) in prostate cancer can help distinguish high-risk prostate cancer and predicts malignant progression. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 366.e1-366.e9.	0.8	15
553	CD38 Inhibits Prostate Cancer Metabolism and Proliferation by Reducing Cellular NAD+ Pools. Molecular Cancer Research, 2018, 16, 1687-1700.	1.5	39
554	Embigin Promotes Prostate Cancer Progression by S100A4-Dependent and-Independent Mechanisms. Cancers, 2018, 10, 239.	1.7	16
555	Wnt receptor Frizzled 8 is a target of ERG in prostate cancer. Prostate, 2018, 78, 1311-1320.	1.2	25
556	The Proteome of Prostate Cancer Bone Metastasis Reveals Heterogeneity with Prognostic Implications. Clinical Cancer Research, 2018, 24, 5433-5444.	3.2	68
557	R1 Regulates Prostate Tumor Growth and Progression By Transcriptional Suppression of the E3 Ligase HUWE1 to Stabilize c-Myc. Molecular Cancer Research, 2018, 16, 1940-1951.	1.5	10
558	Loss of miR-516a-3p mediates upregulation of ABCC5 in prostate cancer and drives its progression. OncoTargets and Therapy, 2018, Volume 11, 3853-3867.	1.0	10
559	Biology and Clinical Implications of the 19q13 Aggressive Prostate Cancer Susceptibility Locus. Cell, 2018, 174, 576-589.e18.	13.5	116

#	Article	IF	Citations
#	Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3K/AKT		
560	signaling. Journal of Experimental and Clinical Cancer Research, 2018, 37, 160.	3.5	123
561	Cholesterol synthesis pathway genes in prostate cancer are transcriptionally downregulated when tissue confounding is minimized. BMC Cancer, 2018, 18, 478.	1.1	12
562	Extracting proteins involved in disease progression using temporally connected networks. BMC Systems Biology, 2018, 12, 78.	3.0	10
563	Evaluation of the rs3088442 G>A SLC22A3 Gene Polymorphism and the Role of microRNA 147 in Groups of Adult Pakistani Populations With Type 2 Diabetes in Response to Metformin. Canadian Journal of Diabetes, 2019, 43, 128-135.e3.	0.4	15
564	Characterization of glycineâ€ <i>N</i> â€acyltransferase like 1 (GLYATL1) in prostate cancer. Prostate, 2019, 79, 1629-1639.	1.2	12
565	DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Research, 2019, 47, 7734-7752.	6.5	80
566	EPHB4 inhibition activates ER stress to promote immunogenic cell death of prostate cancer cells. Cell Death and Disease, 2019, 10, 801.	2.7	38
567	Aromatase-induced endogenous estrogen promotes tumour metastasis through estrogen receptor-α/matrix metalloproteinase 12 axis activation in castration-resistant prostate cancer. Cancer Letters, 2019, 467, 72-84.	3.2	17
568	Plasma Androgen Receptor in Prostate Cancer. Cancers, 2019, 11, 1719.	1.7	13
569	Biocatalysis. , 2019, , .		8
570	MTA1-Dependent Anticancer Activity of Gnetin C in Prostate Cancer. Nutrients, 2019, 11, 2096.	1.7	16
571	Identification of the PTEN-ARID4B-PI3K pathway reveals the dependency on ARID4B by PTEN-deficient prostate cancer. Nature Communications, 2019, 10, 4332.	5.8	38
572	SOX4 is activated by C-MYC in prostate cancer. Medical Oncology, 2019, 36, 92.	1.2	22
573	Development of a predictive model for stromal content in prostate cancer samples to improve signature performance. Journal of Pathology, 2019, 249, 411-424.	2.1	3
574	Prediction of genes and protein-protein interaction networking for miR-221-5p using bioinformatics analysis. Gene Reports, 2019, 16, 100426.	0.4	2
575	Relationship between ETS Transcription Factor ETV1 and TGF-β-regulated SMAD Proteins in Prostate Cancer. Scientific Reports, 2019, 9, 8186.	1.6	19
576	Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists. European Radiology, 2019, 29, 4754-4764.	2.3	55
577	Contemporary approach to active surveillance for favorable risk prostate cancer. Asian Journal of Urology, 2019, 6, 146-152.	0.5	32

#	Article	IF	CITATIONS
578	Race-associated expression of MHC class I polypeptide-related sequence A (MICA) in prostate cancer. Experimental and Molecular Pathology, 2019, 108, 173-182.	0.9	13
579	Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer. Clinical Proteomics, 2019, 16, 15.	1.1	15
580	Vitamin D Signaling Suppresses Early Prostate Carcinogenesis in TgAPT121 Mice. Cancer Prevention Research, 2019, 12, 343-356.	0.7	27
581	Expression and Localization of DDX3 in Prostate Cancer Progression and Metastasis. American Journal of Pathology, 2019, 189, 1256-1267.	1.9	14
582	VERDICT MRI for Prostate Cancer: Intracellular Volume Fraction versus Apparent Diffusion Coefficient. Radiology, 2019, 291, 391-397.	3.6	52
583	SAMD5 mRNA was overexpressed in prostate cancer and can predict biochemical recurrence after radical prostatectomy. International Urology and Nephrology, 2019, 51, 443-451.	0.6	15
584	A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene, 2019, 38, 4977-4989.	2.6	80
585	Molecular functions of brain expressed X-linked 2 (BEX2) in malignancies. Experimental Cell Research, 2019, 376, 221-226.	1.2	10
586	ETS Rearrangements, Neuroendocrine Modulators, and Androgen Resistance: What Can the Microenvironment Reveal in Prostate Cancer?. European Urology Oncology, 2019, 2, 413-414.	2.6	0
587	CUL4B/miRâ€33b/Câ€MYC axis promotes prostate cancer progression. Prostate, 2019, 79, 480-488.	1.2	27
588	Molecular Correlates of Metastasis by Systematic Pan-Cancer Analysis Across The Cancer Genome Atlas. Molecular Cancer Research, 2019, 17, 476-487.	1.5	28
589	Downregulation of IQGAP2 Correlates with Prostate Cancer Recurrence and Metastasis. Translational Oncology, 2019, 12, 236-244.	1.7	17
590	EndoDB: a database of endothelial cell transcriptomics data. Nucleic Acids Research, 2019, 47, D736-D744.	6.5	70
591	Distinct transcriptional repertoire of the androgen receptor in ETS fusion-negative prostate cancer. Prostate Cancer and Prostatic Diseases, 2019, 22, 292-302.	2.0	10
592	The Genomics of Prostate Cancer: A Historic Perspective. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034942.	2.9	11
593	Universal concept signature analysis: genome-wide quantification of new biological and pathological functions of genes and pathways. Briefings in Bioinformatics, 2020, 21, 1717-1732.	3.2	9
594	COUP-TFII in Health and Disease. Cells, 2020, 9, 101.	1.8	40
595	Organic Cation Transporters in Health and Disease. Pharmacological Reviews, 2020, 72, 253-319.	7.1	180

#	Article	IF	CITATIONS
596	The role of JNK in prostate cancer progression and therapeutic strategies. Biomedicine and Pharmacotherapy, 2020, 121, 109679.	2.5	62
597	Meta-Analysis of steroid-converting enzymes and related receptors in prostate cancer suggesting novel combined therapies. Journal of Steroid Biochemistry and Molecular Biology, 2020, 198, 105559.	1.2	2
598	A graph-based multi-sample test for identifying pathways associated with cancer progression. Computational Biology and Chemistry, 2020, 87, 107285.	1.1	5
599	Inhibiting the P2X4 Receptor Suppresses Prostate Cancer Growth In Vitro and In Vivo, Suggesting a Potential Clinical Target. Cells, 2020, 9, 2511.	1.8	20
600	Inhibition of the Lysophosphatidylinositol Transporter ABCC1 Reduces Prostate Cancer Cell Growth and Sensitizes to Chemotherapy. Cancers, 2020, 12, 2022.	1.7	13
601	Transcriptional repression of SIRT3 potentiates mitochondrial aconitase activation to drive aggressive prostate cancer to the bone. Cancer Research, 2021, 81, canres.1708.2020.	0.4	24
602	Statistical Analysis of Microarray Data Clustering using NMF, Spectral Clustering, Kmeans, and GMM. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, PP, 1-1.	1.9	18
603	Galectin-3 in Prostate Cancer Stem-Like Cells Is Immunosuppressive and Drives Early Metastasis. Frontiers in Immunology, 2020, 11, 1820.	2.2	22
604	Sildenafil Potentiates the Therapeutic Efficacy of Docetaxel in Advanced Prostate Cancer by Stimulating NO-cGMP Signaling. Clinical Cancer Research, 2020, 26, 5720-5734.	3.2	28
605	Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers, 2020, 12, 2593.	1.7	26
606	Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation. Diagnostics, 2020, 10, 655.	1.3	12
607	Statistical Analysis of Clustering Performances of NMF, Spectral Clustering, and K-means. , 2020, , .		4
608	Chromosomal instability in untreated primary prostate cancer as an indicator of metastatic potential. BMC Cancer, 2020, 20, 398.	1.1	13
609	The miR-218/GAB2 axis regulates proliferation, invasion and EMT via the PI3K/AKT/GSK-3Î ² pathway in prostate cancer. Experimental Cell Research, 2020, 394, 112128.	1.2	19
610	Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer. Journal of Clinical Medicine, 2020, 9, 1703.	1.0	5
611	Seleniumâ€binding protein 1 alters energy metabolism in prostate cancer cells. Prostate, 2020, 80, 962-976.	1.2	20
612	Management of benign prostate hyperplasia (BPH) by combinatorial approach using alpha-1-adrenergic antagonists and 5-alpha-reductase inhibitors. European Journal of Pharmacology, 2020, 883, 173301.	1.7	5
613	Opportunities and Challenges for Analyzing Cancer Data at the Inter- and Intra-Institutional Levels. JCO Precision Oncology, 2020, 4, 743-756.	1.5	1

#	Article	IF	CITATIONS
614	<p>Overexpression of IGFBP5 Enhances Radiosensitivity Through PI3K-AKT Pathway in Prostate Cancer</p> . Cancer Management and Research, 2020, Volume 12, 5409-5418.	0.9	9
615	PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduction and Targeted Therapy, 2020, 5, 7.	7.1	45
616	Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities. Scientific Reports, 2020, 10, 3490.	1.6	43
617	Integrative multiplatform molecular profiling of benign prostatic hyperplasia identifies distinct subtypes. Nature Communications, 2020, 11, 1987.	5.8	29
618	Role of CYP3A5 in Modulating Androgen Receptor Signaling and Its Relevance to African American Men with Prostate Cancer. Cancers, 2020, 12, 989.	1.7	7
619	Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance. Communications Biology, 2021, 4, 22.	2.0	25
620	ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. Journal of Experimental and Clinical Cancer Research, 2021, 40, 3.	3.5	10
621	The Mad2-Binding Protein p31comet as a potential target for human cancer therapy. Current Cancer Drug Targets, 2021, 21, 401-415.	0.8	1
622	The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis. Cancers, 2021, 13, 345.	1.7	6
623	Loss and revival of androgen receptor signaling in advanced prostate cancer. Oncogene, 2021, 40, 1205-1216.	2.6	69
624	Identification And validation of transcription factor genes involved in prostate cancer metastasis. International Journal of Transgender Health, 2021, 14, 287-299.	1.1	0
625	Chromatin conformation changes in peripheral blood can detect prostate cancer and stratify disease risk groups. Journal of Translational Medicine, 2021, 19, 46.	1.8	11
626	Comparison of Immunohistochemistry Expression of CK7, HMWK and PSA in High-Grade Prostatic Adenocarcinoma and Bladder Transitional Cell Carcinoma. Iranian Journal of Pathology, 2021, 16, 33-39.	0.2	3
627	Downregulation of PARVA promotes metastasis by modulating integrin-linked kinase activity and regulating MAPK/ERK and MLC2 signaling in prostate cancer. Translational Andrology and Urology, 2021, 10, 915-928.	0.6	3
628	Targeting the Hippo Pathway in Prostate Cancer: What's New?. Cancers, 2021, 13, 611.	1.7	10
629	Identification of key genes in benign prostatic hyperplasia using bioinformatics analysis. World Journal of Urology, 2021, 39, 3509-3516.	1.2	6
630	miR‑769‑5p is associated with prostate cancer recurrence and modulates proliferation and apoptosis of cancer cells. Experimental and Therapeutic Medicine, 2021, 21, 335.	0.8	9
631	Skp2 and Slug Are Coexpressed in Aggressive Prostate Cancer and Inhibited by Neddylation Blockade. International Journal of Molecular Sciences, 2021, 22, 2844.	1.8	9

#	Article	IF	Citations
632	Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer. Nucleic Acids Research, 2021, 49, 4971-4988.	6.5	22
633	Smoothened inhibition leads to decreased cell proliferation and suppressed tissue fibrosis in the development of benign prostatic hyperplasia. Cell Death Discovery, 2021, 7, 115.	2.0	11
635	Role of opiorphin genes in prostate cancer growth and progression. Future Oncology, 2021, 17, 2209-2223.	1.1	3
637	Expression and clinical significance of organic cation transporter family in glioblastoma multiforme. Irish Journal of Medical Science, 2021, , 1.	0.8	3
638	[68Ga]Ga-PSMA-11: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer. Pharmaceuticals, 2021, 14, 713.	1.7	55
640	HOXB5 Overexpression Is Associated with Neuroendocrine Differentiation and Poor Prognosis in Prostate Cancer. Biomedicines, 2021, 9, 893.	1.4	2
641	Investigation of Anti-Tumor Effects of an MLK1 Inhibitor in Prostate and Pancreatic Cancers. Biology, 2021, 10, 742.	1.3	4
642	Identification of Androgen Receptor Metabolic Correlome Reveals the Repression of Ceramide Kinase by Androgens. Cancers, 2021, 13, 4307.	1.7	7
643	Miniaturized optical fiber probe for prostate cancer screening. Biomedical Optics Express, 2021, 12, 5691.	1.5	4
645	LRIG1, a regulator of stem cell quiescence and a pleiotropic feedback tumor suppressor. Seminars in Cancer Biology, 2022, 82, 120-133.	4.3	14
646	The Role of the Androgen Receptor Polyglutamine Tract in Prostate Cancer: In Mice and Men. , 2009, , 269-295.		1
648	Androgen-Dependent Oncogenic Activation of ETS Transcription Factors by Recurrent Gene Fusions in Prostate Cancer: Biological and Clinical Implications. , 2013, , 307-328.		7
649	Prostate Cancer Epigenome. Methods in Molecular Biology, 2015, 1238, 125-140.	0.4	14
650	Cancer Gene Profiling in Prostate Cancer. Methods in Molecular Biology, 2009, 576, 293-326.	0.4	7
651	Androgen Deprivation Therapy. , 2010, , 101-107.		2
652	Clinical Significance of Enzymes in Disease and Diagnosis. , 2019, , 213-231.		4
653	Gleason 6 Tumors Should Still Be Labeled as Cancer. Current Clinical Urology, 2018, , 41-52.	0.0	1
654	The role of growth factor-induced changes in cell fate in prostate cancer progression. , 0, , 361-376.		1

#	Article	IF	CITATIONS
655	ETS rearrangements in prostate cancer. Asian Journal of Andrology, 2012, 14, 393-399.	0.8	21
656	Molecular profiling of indolent human prostate cancer: tackling technical challenges to achieve high-fidelity genome-wide data. Asian Journal of Andrology, 2012, 14, 385-392.	0.8	4
657	miR-484 is associated with disease recurrence and promotes migration in prostate cancer. Bioscience Reports, 2020, 40, .	1.1	11
658	Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenetics and Genomics, 2010, 20, 687-699.	0.7	175
661	The $\hat{l}\pm 2\hat{l}^21$ integrin is a metastasis suppressor in mouse models and human cancer. Journal of Clinical Investigation, 2011, 121, 226-237.	3.9	186
662	Androgen deprivation–induced NCoA2 promotes metastatic and castration-resistant prostate cancer. Journal of Clinical Investigation, 2014, 124, 5013-5026.	3.9	80
663	MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. Journal of Clinical Investigation, 2016, 126, 4585-4602.	3.9	71
664	AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. Journal of Clinical Investigation, 2017, 127, 1284-1302.	3.9	87
665	ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D. Journal of Clinical Investigation, 2018, 128, 2979-2995.	3.9	53
666	Absence of nuclear receptors LXRs impairs immune response to androgen deprivation and leads to prostate neoplasia. PLoS Biology, 2020, 18, e3000948.	2.6	3
667	A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells. PLoS Computational Biology, 2016, 12, e1004884.	1.5	5
668	Proteomic Interrogation of Androgen Action in Prostate Cancer Cells Reveals Roles of Aminoacyl tRNA Synthetases. PLoS ONE, 2009, 4, e7075.	1.1	54
669	Cholesterol Homeostasis in Two Commonly Used Human Prostate Cancer Cell-Lines, LNCaP and PC-3. PLoS ONE, 2009, 4, e8496.	1.1	46
670	ETS Transcription Factors Control Transcription of EZH2 and Epigenetic Silencing of the Tumor Suppressor Gene Nkx3.1 in Prostate Cancer. PLoS ONE, 2010, 5, e10547.	1.1	122
671	Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines. PLoS ONE, 2011, 6, e23144.	1.1	46
672	Does Changing Androgen Receptor Status during Prostate Cancer Development Impact upon Cholesterol Homeostasis?. PLoS ONE, 2013, 8, e54007.	1.1	22
673	Characterization of Transcriptional Changes in ERG Rearrangement-Positive Prostate Cancer Identifies the Regulation of Metabolic Sensors Such as Neuropeptide Y. PLoS ONE, 2013, 8, e55207.	1.1	32
674	An Integrative Proteomics and Interaction Network-Based Classifier for Prostate Cancer Diagnosis. PLoS ONE, 2013, 8, e63941.	1.1	26

		CITATION	Report	
#	Article		IF	CITATIONS
675	Supporting a Role for the GTPase Rab7 in Prostate Cancer Progression. PLoS ONE, 201	4, 9, e87882.	1.1	52
676	Transcription Factors Involved in Prostate Gland Adaptation to Androgen Deprivation. I 9, e97080.	PLoS ONE, 2014,	1.1	17
677	Systematic Identification and Characterization of RNA Editing in Prostate Tumors. PLoS e101431.	S ONE, 2014, 9,	1.1	15
678	Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signa Clinical Cancer Patients. PLoS ONE, 2015, 10, e0125766.	itures in	1.1	84
679	Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice. I 11, e0147500.	PLoS ONE, 2016,	1.1	12
680	Prostate Cancer Associated Lipid Signatures in Serum Studied by ESI-Tandem Mass Spe Potential New Biomarkers. PLoS ONE, 2016, 11, e0150253.	ectrometryas	1.1	15
681	SMARCC1 expression is upregulated in prostate cancer and positively correlated with t recurrence and dedifferentiation. Histology and Histopathology, 2008, 23, 1069-76.	umour	0.5	42
682	Androgen receptor enhancer usage and the chromatin regulatory landscape in human j cancers. Endocrine-Related Cancer, 2019, 26, R267-R285.	brostate	1.6	22
683	Identification and functional activity of matrix-remodeling associated 5 (MXRA5) in ber hyperplastic prostate. Aging, 2020, 12, 8605-8621.	lign	1.4	23
684	Role of YY1 in the pathogenesis of prostate cancer and correlation with bioinformatic ogene expression. Genes and Cancer, 2014, 5, 71-83.	lata sets of	0.6	29
685	The PI3K regulatory subunit gene PIK3R1 is under direct control of androgens and reproprostate cancer cells. Oncoscience, 2015, 2, 755-764.	essed in	0.9	23
686	<i>HNF1B</i> variants associate with promoter methylation and regulate gene networ prostate and ovarian cancer. Oncotarget, 2016, 7, 74734-74746.	ks activated in	0.8	38
687	Amplification of MUC1 in prostate cancer metastasis and CRPC development. Oncotar 83115-83133.	get, 2016, 7,	0.8	27
688	A novel non-canonical Wnt signature for prostate cancer aggressiveness. Oncotarget, 2 9572-9586.	2017, 8,	0.8	59
689	Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. C 2017, 8, 56051-56065.	Incotarget,	0.8	70
690	The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic S cancer growth. Oncotarget, 2014, 5, 6425-6436.	5kp2 in prostate	0.8	35
691	Differential regulation of the androgen receptor by protein phosphatase regulatory sub Oncotarget, 2018, 9, 3922-3935.	units.	0.8	11
692	NOX2 oxidase expressed in endosomes promotes cell proliferation and prostate tumou Oncotarget, 2018, 9, 35378-35393.	ır development.	0.8	21

#	Article	IF	CITATIONS
693	<i>SNAI2/Slug</i> gene is silenced in prostate cancer and regulates neuroendocrine differentiation, metastasis-suppressor and pluripotency gene expression. Oncotarget, 2015, 6, 17121-17134.	0.8	41
694	Specific and redundant activities of <i>ETV1</i> and <i>ETV4</i> in prostate cancer aggressiveness revealed by co-overexpression cellular contexts. Oncotarget, 2015, 6, 5217-5236.	0.8	24
695	Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1. Oncotarget, 2015, 6, 6684-6707.	0.8	64
696	AKT3 promotes prostate cancer proliferation cells through regulation of Akt, B-Raf & TSC1/TSC2. Oncotarget, 2015, 6, 27097-27112.	0.8	37
697	Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget, 2015, 6, 25074-25092.	0.8	53
698	Chromosomal catastrophe is a frequent event in clinically insignificant prostate cancer. Oncotarget, 2015, 6, 29087-29096.	0.8	19
699	Endosomal gene expression: a new indicator for prostate cancer patient prognosis?. Oncotarget, 2015, 6, 37919-37929.	0.8	36
700	Distinct lymphocyte antigens 6 (Ly6) family members Ly6D, Ly6E, Ly6K and Ly6H drive tumorigenesis and clinical outcome. Oncotarget, 2016, 7, 11165-11193.	0.8	76
701	Reduction in expression of the benign AR transcriptome is a hallmark of localised prostate cancer progression. Oncotarget, 2016, 7, 31384-31392.	0.8	11
702	Alterations of androgen receptor-regulated enhancer RNAs (eRNAs) contribute to enzalutamide resistance in castration-resistant prostate cancer. Oncotarget, 2016, 7, 38551-38565.	0.8	36
703	The Role of ETS Transcriptional Regulation in Hormone Sensitive and Refractory Prostate Cancer. The Open Cancer Journal, 2010, 3, 40-48.	0.2	1
704	HORMONAL IMPACT ON TUMOR GROWTH AND PROGRESSION. Experimental Oncology, 2015, 37, 162-172.	0.4	15
705	Regulating Methylation at H3K27: A Trick or Treat for Cancer Cell Plasticity. Cancers, 2020, 12, 2792.	1.7	26
706	Evaluation of the TRPM protein family as potential biomarkers for various types of human cancer using public database analyses. Experimental and Therapeutic Medicine, 2020, 20, 770-785.	0.8	5
707	New developments in the treatment of castration resistant prostate cancer. Asian Journal of Andrology, 2014, 16, 555.	0.8	6
708	Clinically available RNA profiling tests of prostate tumors: utility and comparison. Asian Journal of Andrology, 2016, 18, 575.	0.8	14
709	Combining Laser-Assisted Microdisstection with/and Immunohistochemistry - RNA Quality of Clinical LCM-Derived Samples. , 2012, 02, .		2
710	Application of Sparse Bayesian Generalized Linear Model to Gene Expression Data for Classification of Prostate Cancer Subtypes. Open Journal of Statistics, 2014, 04, 518-526.	0.3	4

#	Article		CITATIONS
711	Penalized pairwise pseudo likelihood for variable selection with nonignorable missing data. Statistica Sinica, 2019, , .	0.2	4
712	Molecular Diagnostics in Urologic Malignancies: A Work in Progress. Archives of Pathology and Laboratory Medicine, 2011, 135, 610-621.	1.2	24
713	A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. ELife, 2017, 6, .	2.8	49
714	Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. ELife, 2019, 8, .	2.8	56
715	Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. ELife, 2020, 9, .	2.8	104
716	Transcription levels and prognostic significance of the NFI family members in human cancers. PeerJ, 2020, 8, e8816.	0.9	14
717	Characterization of Proteins Regulated by Androgen and Protein Kinase a Signaling in VCaP Prostate Cancer Cells. Biomedicines, 2021, 9, 1404.	1.4	2
718	<scp>P2X4</scp> purinergic receptors offer a therapeutic target for aggressive prostate cancer. Journal of Pathology, 2022, 256, 149-163.	2.1	16
719	Elucidating the Altered Transcriptional Programs in Breast Cancer using Independent Component Analysis. PLoS Computational Biology, 2005, preprint, e161.	1.5	0
720	Genomeâ€wide Analysis of the HOXC6 Transcriptional Network in Prostate Cancer. FASEB Journal, 2008, 22, 470.4.	0.2	0
721	Integrative Systems Approaches to Study Innate Immunity. , 2009, , 1-13.		0
722	Targeted Approaches to Drug Development. , 2009, , 57-98.		3
723	Prostate Cancer Stem Cells. , 2009, , 137-165.		0
725	Androgen Regulation of Prostate Cancer Gene Fusions. , 2009, , 701-721.		1
726	Metabolomics in Drug Response and Addiction. , 2010, , 237-253.		0
727	Early Cancer Detection and Monitoring Using Changes in the Mitochondrial Genome as Biosensors. , 2010, , 275-296.		0
728	Abstract 4962:ERGexpression levels in prostate tumors reflect functional status of the androgen receptor as a consequence of fusion ofERGwith AR regulated gene promoters. , 2010, , .		0
729	The Hallmarks of Cancer Revisited Through Systems Biology and Network Modelling. , 2011, , 245-266.		2

		15	<u></u>
#	ARTICLE Molecular Biology of Prostate Cancer and Emerging Diagnostic and Prognostic Biomarkers. , 2012, ,	IF	CITATIONS
730	157-167.		0
732	Integrins as Determinants of Genetic Susceptibility, Tumour Behaviour and Their Potential as Therapeutic Targets. , 0, , .		Ο
733	Functional Protein Interactions in Steroid Receptor-Chaperone Complexes. , 0, , .		1
735	Molecular Markers of Prostate Cancer Outcome. , 2013, , 189-247.		0
736	Apoptosis and Autophagy. , 2013, , 57-77.		1
737	Expression Signature. , 2013, , 183-193.		0
738	Gene Polymorphisms. , 2013, , 161-182.		0
739	Prostatakarzinom. , 2014, , 513-676.		0
740	Response to Acidity: The MondoA–TXNIP Checkpoint Couples the Acidic Tumor Microenvironment to Cell Metabolism. , 2014, , 69-100.		0
741	In Silico Disease Models of Breast Cancer. , 2014, , 315-331.		0
742	Androgen Receptor Biology in Castration Resistant Prostate Cancer. Current Clinical Urology, 2014, , 67-75.	0.0	0
743	Gene Fusions in Prostate Cancer. , 2015, , 381-401.		0
744	Clinical relevance of prostate cancer genetic characterization: literature review. Onkourologiya, 2015, 11, 99.	0.1	1
745	Gene Expression Analysis. Molecular Pathology Library, 2018, , 153-167.	0.1	0
748	Transcriptional regulators and regulatory pathways involved in prostate gland adaptation to a hypoandrogen environment. Genetics and Molecular Biology, 2019, 42, e20180362.	0.6	0
753	Prostatakarzinom: Onkologische Kennzeichen. Springer Reference Medizin, 2020, , 1-18.	0.0	0
754	Prostatakarzinom. , 2014, , 513-676.		0
756	Active surveillance and focal therapy for low-intermediate risk prostate cancer. Translational Andrology and Urology, 2015, 4, 342-54.	0.6	22

		CITATION REPORT		
#	Article		IF	CITATIONS
757	Clinical utility of prostate carcinoma molecular diagnostic tests. Reviews in Urology, 2008, 1	0, 44-69.	0.9	20
760	Nuclear C-MYC expression level is associated with disease progression and potentially predic two year overall survival in prostate cancer. International Journal of Clinical and Experimental Pathology, 2015, 8, 1878-88.	tive of	0.5	27
761	Steroid Receptor-Associated Immunophilins: A Gateway to Steroid Signalling. Clinical Biocher Reviews, 2015, 36, 31-52.	mist	3.3	27
763	"Getting from here to there"mechanisms and limitations to the activation of the androgen r in castration-resistant prostate cancer. Journal of Investigative Medicine, 2010, 58, 938-44.	eceptor	0.7	17
764	Cancer telomeres and white crows. American Journal of Clinical and Experimental Urology, 20 93-100.)18, 6,	0.4	2
765	Pregnancy-associated plasma protein a in cancer: expression, oncogenic functions and regula American Journal of Cancer Research, 2018, 8, 955-963.	ation.	1.4	12
766	MicroRNA-144-3p inhibits cell proliferation and induces cell apoptosis in prostate cancer by t CEP55. American Journal of Translational Research (discontinued), 2018, 10, 2457-2468.	argeting	0.0	17
767	The clinicopathologic significance of Notch3 expression in prostate cancer. International Jour Clinical and Experimental Pathology, 2019, 12, 3535-3541.	rnal of	0.5	3
768	Overexpressed gene signature of EPH receptor A/B family in cancer patients-comprehensive a from the public high-throughput database. International Journal of Clinical and Experimental Pathology, 2020, 13, 1220-1242.	analyses	0.5	11
769	Sumoylation of transcription factor ETV1 modulates its oncogenic potential in prostate canc International Journal of Clinical and Experimental Pathology, 2021, 14, 795-810.	er.	0.5	2
770	Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in C Biology, 2022, 82, 68-93.	ancer	4.3	31
771	Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients. Journal of Experimental and Clinical Ca Research, 2021, 40, 362.	incer	3.5	18
772	Lysine Demethylase 6B Regulates Prostate Cancer Cell Proliferation by Controlling c-MYC Exp Molecular Pharmacology, 2022, 101, 106-119.	pression.	1.0	7
773	MiR-423-5p prevents MALAT1-mediated proliferation and metastasis in prostate cancer. Jour Experimental and Clinical Cancer Research, 2022, 41, 20.	nal of	3.5	25
774	Statistical Analysis of Clustering Performances of NMF, Spectral Clustering, and K-means: Wi Selection. , 2020, , .	th Gene		1
775	Antizyme Inhibitor 1 Regulates Matrikine Expression and Enhances the Metastatic Potential o Aggressive Primary Prostate Cancer. Molecular Cancer Research, 2022, 20, 527-541.	of	1.5	3
776	Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers, 1118.	2022, 14,	1.7	10
777	Leukemia inhibitory factor receptor homodimerization mediated by acetylation of extracellul promotes prostate cancer progression through the PDPK1/AKT/GCN5 axis. Clinical and Trans Medicine, 2022, 12, e676.	ar lysine lational	1.7	10

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
778	Patterns of indolence in prostate cancer (Review). Experimental and Therapeutic Medicine, 2022, 23, 351.	0.8	5
779	Single-cell transcriptomics reveals cell type diversity of human prostate. Journal of Genetics and Genomics, 2022, , .	1.7	0
780	Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Reports, 2022, 39, 110595.	2.9	25
781	Downregulation of SHMT2 promotes the prostate cancer proliferation and metastasis by inducing epithelial-mesenchymal transition. Experimental Cell Research, 2022, 415, 113138.	1.2	11
782	Circulating Insulin-Like Growth Factor 1–Related Biomarkers and Risk of Lethal Prostate Cancer. JNCI Cancer Spectrum, 2022, 6, pkab091.	1.4	6
783	A Single Nucleotide Polymorphism (SNP) in the <i>SLC22A3</i> Transporter Gene Is Associated With the Severity of Oral Mucositis in Multiple Myeloma Patients Receiving Autologous Stem Cell Transplant Followed by Melphalan Therapy. Anticancer Research, 2022, 42, 385-395.	0.5	4
784	Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc. Cell Death and Differentiation, 2022, 29, 1730-1743.	5.0	18
790	Androgen receptor reprogramming demarcates prognostic, context-dependent gene sets in primary and metastatic prostate cancer. Clinical Epigenetics, 2022, 14, 60.	1.8	8
791	Comprehensive Landscape of STEAP Family Members Expression in Human Cancers: Unraveling the Potential Usefulness in Clinical Practice Using Integrated Bioinformatics Analysis. Data, 2022, 7, 64.	1.2	5
792	The genes controlling normal function of citrate and spermine secretion are lost in aggressive prostate cancer and prostate model systems. IScience, 2022, 25, 104451.		2
793	The evolving landscape of prostate cancer somatic mutations. Prostate, 2022, 82, .	1.2	8
794	High throughput, label-free isolation of circulating tumor cell clusters in meshed microwells. Nature Communications, 2022, 13, .	5.8	33
795	Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis. American Journal of Pathology, 2022, 192, 1321-1335.	1.9	3
796	Cell Line Characteristics Predict Subsequent Resistance to Androgen Receptor-Targeted Agents (ARTA) in Preclinical Models of Prostate Cancer. Frontiers in Oncology, 0, 12, .	1.3	0
797	Disassembly of α6β4-mediated hemidesmosomal adhesions promotes tumorigenesis in PTEN-negative prostate cancer by targeting plectin to focal adhesions. Oncogene, 2022, 41, 3804-3820.	2.6	9
798	Prostate cancer as a dedifferentiated organ: androgen receptor, cancer stem cells, and cancer stem cells, and cancer stemness. Essays in Biochemistry, 2022, 66, 291-303.	2.1	8
799	The Neuroprotective Propensity of Organic Extracts of Acacia stenophylla Bark and Their Effectiveness Against Scopolamine-/Diazepam-Induced Amnesia in Mice. Journal of Inflammation Research, 0, Volume 15, 4785-4802.	1.6	0
800	Cellular specificity of androgen receptor, coregulators, and pioneer factors in prostate cancer. Endocrine Oncology, 2022, 2, R112-R131.	0.1	4

ARTICLE IF CITATIONS HMGB1 promotes the development of castration†resistant prostate cancer by regulating androgen 801 1.2 11 receptor activation. Oncology Reports, 2022, 48, . <scp>MEK1</scp>â€dependent <scp>MondoA</scp> phosphorylation regulates glucose uptake in response to ketone bodies in colorectal cancer cells. Cancer Science, 2023, 114, 961-975. 1.7 Sparse overlapped linear discriminant analysis. Test, 2023, 32, 388-417. 804 0.7 1 Activin B and Activin C Have Opposing Effects on Prostate Cancer Progression and Cell Growth. Cancers, 2023, 15, 147. N⁶â€methyladenosineâ€induced long nonâ€coding RNA PVT1 regulates the miRâ€27bâ€3p/BLM axis,to 806 3 promote prostate cancer progression. International Journal of Oncology, 2022, 62, . Going broad and deep: sequencing $\hat{a} \in driven$ insights into plant physiology, evolution, and crop domestication. Plant Journal, 2023, 113, 446-459. 2.8 Antagonistic Functions of Androgen Receptor and NF-Î⁰B in Prostate Cancer—Experimental and 808 1.7 4 Computational Analyses. Cancers, 2022, 14, 6164. Transcriptomic profiling and genomic rearrangement landscape of Nigerian prostate cancer. Prostate, 809 1.2 Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug 810 6.5 30 Resistance Updates, 2023, 68, 100962. Murine toxicology and pharmacokinetics of lead next generation galeterone analog, VNPP433-3Î². Steroids, 2023, 192, 109184. 0.8 Joint estimation of relaxation and diffusion tissue parameters for prostate cancer with 812 1.6 5 relaxation-VERDICT MRI. Scientific Reports, 2023, 13, . Field Cancerization: A Malignant Transformation., 2023, , 223-247. The yin and yang of chromosomal instability in prostate cancer. Nature Reviews Urology, 0, , . 834 1.9 0