Mutations in the gene encoding the synaptic scaffolding with autism spectrum disorders

Nature Genetics 39, 25-27 DOI: 10.1038/ng1933

Citation Report

#	Article	IF	CITATIONS
2	Autism: the quest for the genes. Expert Reviews in Molecular Medicine, 2007, 9, 1-15.	1.6	44
3	A Neuroligin-3 Mutation Implicated in Autism Increases Inhibitory Synaptic Transmission in Mice. Science, 2007, 318, 71-76.	6.0	932
4	Molecular Windows into Speech and Language Disorders. Folia Phoniatrica Et Logopaedica, 2007, 59, 130-140.	0.5	16
5	Ethical implications of array comparative genomic hybridization in complex phenotypes: points to consider in research. Genetics in Medicine, 2007, 9, 626-631.	1.1	43
6	The Possible Interplay of Synaptic and Clock Genes in Autism Spectrum Disorders. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 645-654.	2.0	161
7	Co-inheritance of a novel deletion of the entire SPINK1 gene with a CFTR missense mutation (L997F) in a family with chronic pancreatitis. Molecular Genetics and Metabolism, 2007, 92, 168-175.	0.5	25
8	MeCP2 Controls Excitatory Synaptic Strength by Regulating Clutamatergic Synapse Number. Neuron, 2007, 56, 58-65.	3.8	439
9	Structures of Neuroligin-1 and the Neuroligin-1/Neurexin-1β Complex Reveal Specific Protein-Protein and Protein-Ca2+ Interactions. Neuron, 2007, 56, 992-1003.	3.8	178
10	Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Current Opinion in Genetics and Development, 2007, 17, 182-192.	1.5	293
11	Contribution of SHANK3 Mutations to Autism Spectrum Disorder. American Journal of Human Genetics, 2007, 81, 1289-1297.	2.6	604
12	Strong Association of De Novo Copy Number Mutations with Autism. Science, 2007, 316, 445-449.	6.0	2,497
13	Atypical Antipsychotics in Children with Pervasive Developmental Disorders. Paediatric Drugs, 2007, 9, 249-266.	1.3	26
14	Sleep in Children at Risk. Sleep Medicine Clinics, 2007, 2, 477-490.	1.2	10
15	22q13 microduplication in two patients with common clinical manifestations: A recognizable syndrome?. American Journal of Medical Genetics, Part A, 2007, 143A, 2804-2809.	0.7	40
16	Association of autism with polymorphisms in the paired-like homeodomain transcription factor 1 (PITX1) on chromosome 5q31: a candidate gene analysis. BMC Medical Genetics, 2007, 8, 74.	2.1	35
18	Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 2007, 39, 319-328.	9.4	1,272
19	Autism: highly heritable but not inherited. Nature Medicine, 2007, 13, 534-536.	15.2	83
20	The bridge between dendritic cells and asthma. Nature Medicine, 2007, 13, 536-538.	15.2	12

ATION REDO

ARTICLE IF CITATIONS # Identification and characterization of the TRIP8 and REEP3 genes on chromosome 10q21.3 as novel 21 1.4 77 candidate genes for autism. European Journal of Human Genetics, 2007, 15, 422-431. The Neurobiology of Autism. Brain Pathology, 2007, 17, 434-447. 2.1 373 Autism spectrum disorders: developmental disconnection syndromes. Current Opinion in 23 2.0 1,294 Neurobiology, 2007, 17, 103-111. Subtle familial translocation t(11;22)(q24.2;q13.33) resulting in Jacobsen syndrome and distal trisomy 24 22q13.3: further details of genotypeâ€"phenotype maps. Journal of Applied Genetics, 2008, 49, 397-405. Microarray comparative genomic hybridization analysis of 59 patients with schizophrenia. Journal of 25 1.1 8 Human Génetics, 2008, 53, 914-919. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics, 2008, 9, 245 153-161. CANDID: a flexible method for prioritizing candidate genes for complex human traits. Genetic 27 0.6 75 Epidemiology, 2008, 32, 779-790. A novel mutation in <i>JARID1C/SMCX</i> in a patient with autism spectrum disorder (ASD). American 28 139 Journal of Medical Genetics, Part A, 2008, 146A, 505-511. Syndromes and epistemology II: Is autism a polygenic disorder?. American Journal of Medical Genetics, 29 0.7 6 Part A, 2008, 146A, 2203-2212. Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry. Science, 2008, 321, 218-223. 6.0 688 Minimal aberrant behavioral phenotypes of neuroliginâ€3 R451C knockin mice. Autism Research, 2008, 1, 31 2.1 263 147-158. Autism genetics: strategies, challenges, and opportunities. Autism Research, 2008, 1, 4-17. 2.1 123 Structural Variation of Chromosomes in Autism Spectrum Disorder. American Journal of Human 33 2.6 1,641 Genetics, 2008, 82, 477-488. Alterations in CDH15 and KIRREL3 in Patients with Mild to Severe Intellectual Disability. American 34 2.6 Journal of Human Genetics, 2008, 83, 703-713. Interstitial 22q13 deletions: genes other than SHANK3 have major effects on cognitive and language 35 1.4 71 development. European Journal of Human Genetics, 2008, 16, 1301-1310. Position effect leading to haploinsufficiency in a mosaic ring chromosome 14 in a boy with autism. 1.4 24 European Journal of Human Genetics, 2008, 16, 1187-1192 37 Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 2008, 455, 903-911. 13.7 1,577 Copy-number variations associated with neuropsychiatric conditions. Nature, 2008, 455, 919-923.

#	Article	IF	Citations
39	Advances in autism genetics: on the threshold of a new neurobiology. Nature Reviews Genetics, 2008, 9, 341-355.	7.7	1,552
40	Abnormal melatonin synthesis in autism spectrum disorders. Molecular Psychiatry, 2008, 13, 90-98.	4.1	423
41	Characterization of the solution structure of a neuroligin/ \hat{I}^2 -neurexin complex. Chemico-Biological Interactions, 2008, 175, 150-155.	1.7	8
42	Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 2008, 20, 775-803.	1.4	849
43	Deletion 22q13.3 syndrome. Orphanet Journal of Rare Diseases, 2008, 3, 14.	1.2	161
44	Structural And Functional Organization Of The Synapse. , 2008, , .		8
45	Heterogeneity and hypothesis testing in neuropsychiatric illness. Behavioral and Brain Sciences, 2008, 31, 266-267.	0.4	6
46	Molecular Cytogenetic Analysis and Resequencing of Contactin Associated Protein-Like 2 in Autism Spectrum Disorders. American Journal of Human Genetics, 2008, 82, 165-173.	2.6	494
47	Unraveling Autism. American Journal of Human Genetics, 2008, 82, 7-9.	2.6	30
48	Neural phenotypes of common and rare genetic variants. Biological Psychology, 2008, 79, 43-57.	1.1	11
49	A 21 years follow-up of a girl patient with a pseudodicentric bisatellited chromosome 22 associated with partial trisomy 22pter→22q12.1: Clinical, cytogenetic and molecular observations. European Journal of Medical Genetics, 2008, 51, 332-342.	0.7	3
50	Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochemical and Biophysical Research Communications, 2008, 377, 926-929.	1.0	92
51	Autism and Brain Development. Cell, 2008, 135, 396-400.	13.5	175
52	S.09.05 Antihypertensive treatment on cognitive functions in Alzheimer's disease. European Neuropsychopharmacology, 2008, 18, S173.	0.3	0
56	Copy-number variations associated with autism spectrum disorder. Pharmacogenomics, 2008, 9, 1143-1154.	0.6	13
57	Animal models may help fractionate shared and discrete pathways underpinning schizophrenia and autism. Behavioral and Brain Sciences, 2008, 31, 264-265.	0.4	0
58	A complete theory of psychosis and autism as diametric disorders of social brain must consider full range of clinical syndromes. Behavioral and Brain Sciences, 2008, 31, 277-278.	0.4	2
59	Is this conjectural phenotypic dichotomy a plausible outcome of genomic imprinting?. Behavioral and Brain Sciences, 2008, 31, 267-268.	0.4	2

ARTICLE IF CITATIONS # Towards a computational neuroscience of autism-psychosis spectrum disorders. Behavioral and Brain 60 0.4 1 Sciences, 2008, 31, 282-283. Why is creativity attractive in a potential mate?. Behavioral and Brain Sciences, 2008, 31, 275-276. 0.4 Are schizophrenics more religious? Do they have more daughters?. Behavioral and Brain Sciences, 62 0.4 0 2008, 31, 272-273. Psychosis and autism as two developmental windows on a disordered social brain. Behavioral and Brain Sciences, 2008, 31, 280-281. The "mechanism―of human cognitive variation. Behavioral and Brain Sciences, 2008, 31, 263-264. 64 0.4 0 Mapping autism and schizophrenia onto the ontogenesis of social behaviour: A hierarchical-developmental rather than diametrical perspective. Behavioral and Brain Sciences, 2008, 0.4 31, 262-263. Genomic imprinting and disorders of the social brain; shades of grey rather than black and white. 66 0.4 4 Behavioral and Brain Sciences, 2008, 31, 265-266. Creativity, psychosis, autism, and the social brain. Behavioral and Brain Sciences, 2008, 31, 268-269. 0.4 Private speech, cognitive-computational control, and the autism-psychosis continuum. Behavioral and 68 0.4 4 Brain Sciences, 2008, 31, 269-270. Imprinting and psychiatric genetics: Beware the diagnostic phenotype. Behavioral and Brain Sciences, 0.4 <u>2008, 31, 270-271.</u> Kinship asymmetries and the divided self. Behavioral and Brain Sciences, 2008, 31, 271-272. 70 3 0.4 Cortical plasticity: A proposed mechanism by which genomic factors lead to the behavioral and neurological phénotype of autism spectrum and psychotic-spectrum disorders. Behavioral and Brain Sciences, 2008, 31, 276-277. 0.4 Evolutionary perspectives on psychoses and autism: Does genomic imprinting contribute to 72 0.4 4 phenomenólogical antithesis? Éehavioral and Brain Sciences, 2008, 31, 281-282. The evolutionary social brain: From genes to psychiatric conditions. Behavioral and Brain Sciences, 2008, 31, 284-320. 0.4 Gene Expression in Cortical Interneuron Precursors is Prescient of their Mature Function. Cerebral 74 120 1.6 Cortex, 2008, 18, 2306-2317. Pharmacology and genetics of autism: implications for diagnosis and treatment. Personalized Medicine, 2008, 5, 599-607. Psychiatric disorders and the social brain: Distinguishing mentalizing and empathizing. Behavioral and 76 0.4 2 Brain Sciences, 2008, 31, 279-280. Problems with the imprinting hypothesis of schizophrenia and autism. Behavioral and Brain Sciences, 2008, 31, 273-274.

#	Article	IF	CITATIONS
78	Theory of mind in autism, schizophrenia, and in-between. Behavioral and Brain Sciences, 2008, 31, 261-262.	0.4	74
79	Reunifying autism and early-onset schizophrenia in terms of social communication disorders. Behavioral and Brain Sciences, 2008, 31, 278-279.	0.4	20
80	Hypo- or hyper-mentalizing: It all depends upon what one means by "mentalizing― Behavioral and Brain Sciences, 2008, 31, 274-275.	0.4	17
81	The role of rare structural variants in the genetics of autism spectrum disorders. Cytogenetic and Genome Research, 2008, 123, 36-43.	0.6	27
82	The Fragile X Family of Disorders: A Model for Autism and Targeted Treatments. Current Pediatric Reviews, 2008, 4, 40-52.	0.4	83
83	Copy number variation in the autism genome. Expert Opinion on Medical Diagnostics, 2008, 2, 417-428.	1.6	2
84	Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1710-1715.	3.3	489
85	Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1. Journal of Neuroscience, 2008, 28, 1697-1708.	1.7	321
86	UNEXPECTED ROLES OF SCAFFOLDING PROTEINS IN RECEPTOR PATHO-PHYSIOLOGICAL FUNCTIONS. Journal of Integrative Neuroscience, 2008, 07, 211-224.	0.8	2
87	Neurobehavioral Profile and Brain Imaging Study of the 22q13.3 Deletion Syndrome in Childhood. Pediatrics, 2008, 122, e376-e382.	1.0	95
88	Scaffolding Proteins at the Postsynaptic Density: Shank as the Architectural Framework. Handbook of Experimental Pharmacology, 2008, , 365-380.	0.9	89
89	Digit ratio (2D:4D) as a marker for mental disorders: Low (masculinized) 2D:4D in autism-spectrum disorders, high (feminized) 2D:4D in schizophrenic-spectrum disorders. Behavioral and Brain Sciences, 2008, 31, 283-284.	0.4	25
90	Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Human Molecular Genetics, 2008, 17, 3965-3974.	1.4	179
91	Psychosis and autism as diametrical disorders of the social brain. Behavioral and Brain Sciences, 2008, 31, 241-261.	0.4	515
92	Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism. Human Molecular Genetics, 2008, 17, 2541-2551.	1.4	78
93	Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. Journal of Medical Genetics, 2008, 46, 1-8.	1.5	146
94	Contemplating effects of genomic structural variation. Genetics in Medicine, 2008, 10, 639-647.	1.1	85
95	Autism: A review of biological bases, assessment, and intervention School Psychology Quarterly, 2008, 23, 258-270.	2.4	24

#	Article	IF	CITATIONS
96	Current Developments in the Genetics of Autism: From Phenome to Genome. Journal of Neuropathology and Experimental Neurology, 2008, 67, 829-837.	0.9	84
97	What is new in autism?. Current Opinion in Neurology, 2008, 21, 143-149.	1.8	50
98	E-I balance and human diseases – from molecules to networking. Frontiers in Molecular Neuroscience, 2008, 1, 2.	1.4	151
99	Excitation control: balancing PSD-95 function at the synapse. Frontiers in Molecular Neuroscience, 2008, 1, 4.	1.4	156
103	Recent Advances in the Pathogenesis of Syndromic Autisms. International Journal of Pediatrics (United Kingdom), 2009, 2009, 1-9.	0.2	17
104	Gene Expression Profiling of Lymphoblasts from Autistic and Nonaffected Sib Pairs: Altered Pathways in Neuronal Development and Steroid Biosynthesis. PLoS ONE, 2009, 4, e5775.	1.1	134
105	Association and Mutation Analyses of 16p11.2 Autism Candidate Genes. PLoS ONE, 2009, 4, e4582.	1.1	80
106	Epigenetics, genomic mutations and cognitive function. Cognitive Neuropsychiatry, 2009, 14, 377-390.	0.7	36
107	Could autism with mental retardation result from digenism and frequent de novo mutations?. World Journal of Biological Psychiatry, 2009, 10, 1030-1036.	1.3	5
108	Linkage and linkage disequilibrium scan for autism loci in an extended pedigree from Finland. Human Molecular Genetics, 2009, 18, 2912-2921.	1.4	24
109	Using zebrafish to assess the impact of drugs on neural development and function. Expert Opinion on Drug Discovery, 2009, 4, 715-726.	2.5	134
110	Recurrent Rearrangements in Synaptic and Neurodevelopmental Genes and Shared Biologic Pathways in Schizophrenia, Autism, and Mental Retardation. Archives of General Psychiatry, 2009, 66, 947.	13.8	374
112	Pathogenesis of autism: a patchwork of genetic causes. Future Neurology, 2009, 4, 591-599.	0.9	10
113	AutDB: a gene reference resource for autism research. Nucleic Acids Research, 2009, 37, D832-D836.	6.5	359
114	Synaptic Cross-talk between N-Methyl-d-aspartate Receptors and LAPSER1-β-Catenin at Excitatory Synapses. Journal of Biological Chemistry, 2009, 284, 29146-29157.	1.6	53
115	Whole Genome Scanning: Resolving Clinical Diagnosis and Management Amidst Complex Data. Pediatric Research, 2009, 66, 357-363.	1.1	66
116	Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder. Human Molecular Genetics, 2009, 18, 1795-1804.	1.4	102
117	Cell Adhesion, the Backbone of the Synapse: "Vertebrate" and "Invertebrate" Perspectives. Cold Spring Harbor Perspectives in Biology, 2009, 1, a003079-a003079.	2.3	89

		Report	
#	Article	IF	Citations
118	A Neuroligin-4 Missense Mutation Associated with Autism Impairs Neuroligin-4 Folding and Endoplasmic Reticulum Export. Journal of Neuroscience, 2009, 29, 10843-10854.	1.7	162
119	Possible association between the androgen receptor gene and autism spectrum disorder. Psychoneuroendocrinology, 2009, 34, 752-761.	1.3	58
120	A synaptic trek to autism. Current Opinion in Neurobiology, 2009, 19, 231-234.	2.0	596
121	Convulsing toward the pathophysiology of autism. Brain and Development, 2009, 31, 95-103.	0.6	126
122	Copy Number Variations and Psychiatric Disorders. Tzu Chi Medical Journal, 2009, 21, 197-203.	0.4	1
123	Mapping of partially overlapping de novo deletions across an autism susceptibility region (<i>AUTS5</i>) in two unrelated individuals affected by developmental delays with communication impairment. American Journal of Medical Genetics, Part A, 2009, 149A, 588-597.	0.7	21
124	Novel de novo SHANK3 mutation in autistic patients. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 421-424.	1.1	289
125	Allelic variants in HTR3C show association with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 741-746.	1.1	15
126	Screening for copy number alterations in loci associated with autism spectrum disorders by two olor multiplex ligationâ€dependent probe amplification. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 280-285.	1.1	7
127	Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism. Journal of Autism and Developmental Disorders, 2009, 39, 511-520.	1.7	70
128	Genetics of autism spectrum disorders. Current Neurology and Neuroscience Reports, 2009, 9, 188-197.	2.0	125
129	Molecular genetics of autism. Current Psychiatry Reports, 2009, 11, 137-142.	2.1	11
130	Novel copy number variants in children with autism and additional developmental anomalies. Journal of Neurodevelopmental Disorders, 2009, 1, 292-301.	1.5	35
131	Fragile x syndrome and autism: from disease model to therapeutic targets. Journal of Neurodevelopmental Disorders, 2009, 1, 133-140.	1.5	39
132	The pathophysiology of restricted repetitive behavior. Journal of Neurodevelopmental Disorders, 2009, 1, 114-132.	1.5	181
133	Medical conditions in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 2009, 1, 102-113.	1.5	19
134	Syndromic autism: causes and pathogenetic pathways. World Journal of Pediatrics, 2009, 5, 169-176.	0.8	77
135	Association study of SHANK3 gene polymorphisms with autism in Chinese Han population. BMC Medical Genetics, 2009, 10, 61.	2.1	28

#	ARTICLE	IF	CITATIONS
136	The practice of child and adolescent psychiatry: a survey of early-career psychiatrists in Japan. Child and Adolescent Psychiatry and Mental Health, 2009, 3, 30.	1.2	15
137	Mosaic 22q13 deletions: evidence for concurrent mosaic segmental isodisomy and gene conversion. European Journal of Human Genetics, 2009, 17, 426-433.	1.4	16
138	Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection. European Journal of Human Genetics, 2009, 17, 1347-1353.	1.4	76
139	Genetics and neuropsychiatric disorders: Genome-wide, yet narrow. Nature Medicine, 2009, 15, 850-851.	15.2	8
140	Shank1 mRNA: Dendritic Transport by Kinesin and Translational Control by the 5′Untranslated Region. Traffic, 2009, 10, 844-857.	1.3	42
141	Increased anxietyâ€like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes, Brain and Behavior, 2009, 8, 114-126.	1.1	180
142	Replication study of candidate genes for cognitive abilities: the Lothian Birth Cohort 1936. Genes, Brain and Behavior, 2009, 8, 238-247.	1.1	79
143	Neuroliginâ€3â€deficient mice: model of a monogenic heritable form of autism with an olfactory deficit. Genes, Brain and Behavior, 2009, 8, 416-425.	1.1	315
144	Regulation of dendritic spine morphology by SPIN90, a novel Shank binding partner. Journal of Neurochemistry, 2009, 109, 1106-1117.	2.1	20
145	Autism: A world changing too fast for a mis-wired brain?. Neuroscience and Biobehavioral Reviews, 2009, 33, 1227-1242.	2.9	154
146	CNTNAP2 and NRXN1 Are Mutated in Autosomal-Recessive Pitt-Hopkins-like Mental Retardation and Determine the Level of a Common Synaptic Protein in Drosophila. American Journal of Human Genetics, 2009, 85, 655-666.	2.6	573
147	Chromosome 22q13.3 deletion syndrome with a de novo interstitial 22q13.3 cryptic deletion disrupting SHANK3. European Journal of Medical Genetics, 2009, 52, 328-332.	0.7	51
148	Genetic advances in autism: heterogeneity and convergence on shared pathways. Current Opinion in Genetics and Development, 2009, 19, 271-278.	1.5	158
149	The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends in Neurosciences, 2009, 32, 402-412.	4.2	271
150	Downregulation of NR3A-Containing NMDARs Is Required for Synapse Maturation and Memory Consolidation. Neuron, 2009, 63, 342-356.	3.8	131
151	Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3 in mice. Neuroscience, 2009, 163, 1201-1210.	1.1	99
152	Autism and Nonsyndromic Mental Retardation Associated with a De Novo Mutation in the NLGN4X Gene Promoter Causing an Increased Expression Level. Biological Psychiatry, 2009, 66, 906-910.	0.7	61
153	A Mouse Model of the Human Fragile X Syndrome I304N Mutation. PLoS Genetics, 2009, 5, e1000758.	1.5	113

	Ста	CITATION REPORT	
#	Article	IF	CITATIONS
154	Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Medicine, 2009, 1, 102.	3.6	259
155	A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Human Molecular Genetics, 2009, 18, 4650-4661.	1.4	131
156	Overgrowth Syndromes: A Classification. Endocrine Development, 2009, 14, 53-60.	1.3	13
158	Autism genetics: emerging data from genome-wide copy-number and single nucleotide polymorphism scans. Expert Review of Molecular Diagnostics, 2009, 9, 795-803.	1.5	76
159	Copy number variations associated with idiopathic autism identified by whole-genome microarray-based comparative genomic hybridization. Psychiatric Genetics, 2009, 19, 177-185.	0.6	41
161	Emerging Pharmacotherapies for Neurodevelopmental Disorders. Journal of Developmental and Behavioral Pediatrics, 2010, 31, 564-581.	0.6	44
163	The Intense World Theory – A Unifying Theory of the Neurobiology of Autism. Frontiers in Human Neuroscience, 2010, 4, 224.	1.0	362
164	Chromosome 22q13 Rearrangements Causing Global Developmental Delay and Autistic Spectrum Disorder. Monographs in Human Genetics, 2010, , 137-150.	0.5	2
165	Newly Recognized Mental Retardation Microdeletion/Duplication Syndromes. Monographs in Human Genetics, 2010, , 101-113.	0.5	0
166	Structural Variation in the Human Genome and its Role in Disease. Annual Review of Medicine, 2010, 61 437-455.	., 5.0	1,015
167	Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4389-4394.	3.3	807
168	Genetics of autistic disorders: review and clinical implications. European Child and Adolescent Psychiatry, 2010, 19, 169-178.	2.8	185
169	Novel variants identified in methyl-CpG-binding domain genes in autistic individuals. Neurogenetics, 2010, 11, 291-303.	0.7	67
170	Oriented Markov Random Field Based Dendritic Spine Segmentation for Fluorescence Microscopy Images. Neuroinformatics, 2010, 8, 157-170.	1.5	4
171	The genetic basis of non-syndromic intellectual disability: a review. Journal of Neurodevelopmental Disorders, 2010, 2, 182-209.	1.5	209
172	Associating Neural Alterations and Genotype in Autism and Fragile X Syndrome: Incorporating Perceptual Phenotypes in Causal Modeling. Journal of Autism and Developmental Disorders, 2010, 40, 1541-1548.	1.7	18
173	Disruption of the epigenetic code: An emerging mechanism in mental retardation. Neurobiology of Disease, 2010, 39, 3-12.	2.1	49
174	Loose ligation of the rat sciatic nerve elicits early accumulation of Shank1 protein in the post-synaptic density of spinal dorsal horn neurons. Pain, 2010, 149, 152-159.	2.0	17

#	Article	IF	CITATIONS
175	Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends in Genetics, 2010, 26, 363-372.	2.9	296
176	Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix) Tj ETQq1 1	0.784314 1.2	rgBT /Overl
177	Epilepsy and autism spectrum disorders: Are there common developmental mechanisms?. Brain and Development, 2010, 32, 731-738.	0.6	147
178	Beyond categorical diagnostics in psychiatry: Scientific and medicolegal implications. International Journal of Law and Psychiatry, 2010, 33, 59-65.	0.5	32
179	22q13.3 deletion syndrome: Clinical and molecular analysis using array CGH. American Journal of Medical Genetics, Part A, 2010, 152A, 573-581.	0.7	116
180	Insertional translocation detected using FISH confirmation of array omparative genomic hybridization (aCGH) results. American Journal of Medical Genetics, Part A, 2010, 152A, 1111-1126.	0.7	85
181	Fulminant hepatic failure requiring liver transplantation in 22q13.3 deletion syndrome. American Journal of Medical Genetics, Part A, 2010, 152A, 2099-2102.	0.7	13
182	Deletions of <i>NRXN1</i> (neurexinâ€1) predispose to a wide spectrum of developmental disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 937-947.	1.1	217
183	Population-based study of genetic variation in individuals with autism spectrum disorders from Croatia. BMC Medical Genetics, 2010, 11, 134.	2.1	21
184	Submicroscopic subtelomeric aberrations in Chinese patients with unexplained developmental delay/mental retardation. BMC Medical Genetics, 2010, 11, 72.	2.1	60
185	Mutation screening of melatonin-related genes in patients with autism spectrum disorders. BMC Medical Genomics, 2010, 3, 10.	0.7	77
186	Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Molecular Autism, 2010, 1, 15.	2.6	521
187	Assessing the impact of a combined analysis of four common low-risk genetic variants on autism risk. Molecular Autism, 2010, 1, 4.	2.6	17
188	Genetic causes of syndromic and nonâ€syndromic autism. Developmental Medicine and Child Neurology, 2010, 52, 130-138.	1.1	90
189	The prodrome of autism: early behavioral and biological signs, regression, peri―and postâ€natal development and genetics. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2010, 51, 432-458.	3.1	172
190	Genotype–phenotype relationship in three cases with overlapping 19p13.12 microdeletions. European Journal of Human Genetics, 2010, 18, 1302-1309.	1.4	46
191	Linkage and candidate gene studies of autism spectrum disorders in European populations. European Journal of Human Genetics, 2010, 18, 1013-1019.	1.4	80
192	Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Molecular Psychiatry, 2010, 15, 767-776.	4.1	113

#	Article	IF	CITATIONS
193	High-density SNP association study and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the IMMP2L–DOCK4 gene region in autism susceptibility. Molecular Psychiatry, 2010, 15, 954-968.	4.1	126
194	Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 2010, 466, 368-372.	13.7	1,803
195	Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 2010, 466, 253-257.	13.7	1,568
196	A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nature Genetics, 2010, 42, 203-209.	9.4	539
197	Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nature Genetics, 2010, 42, 489-491.	9.4	491
198	Molecular Evaluation of exons 8 and 22 of the SHANK3 gene in Autism Spectrum Disorders. Nature Precedings, 2010, , .	0.1	0
199	Review Synthetic Report: Genetic and socio-anthropological regards in infantile Autism. International Journal of Modern Anthropology, 2010, 1, .	0.3	1
200	Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models. Frontiers in Synaptic Neuroscience, 2010, 2, 4.	1.3	156
202	Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 2010, 19, 4848-4860.	1.4	103
203	Behavioral and Cerebellar Transmission Deficits in Mice Lacking the Autism-Linked Gene Islet Brain-2. Journal of Neuroscience, 2010, 30, 14805-14816.	1.7	61
204	A genome-wide scan for common alleles affecting risk for autism. Human Molecular Genetics, 2010, 19, 4072-4082.	1.4	538
205	SCAMP5, NBEA and AMISYN: three candidate genes for autism involved in secretion of large dense-core vesicles. Human Molecular Genetics, 2010, 19, 1368-1378.	1.4	80
206	The clinical context of copy number variation in the human genome. Expert Reviews in Molecular Medicine, 2010, 12, e8.	1.6	157
207	De novo mutations in the gene encoding the synaptic scaffolding protein <i>SHANK3</i> in patients ascertained for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7863-7868.	3.3	361
208	Neuroligin-1 Deletion Results in Impaired Spatial Memory and Increased Repetitive Behavior. Journal of Neuroscience, 2010, 30, 2115-2129.	1.7	391
209	Disruption at the <i>PTCHD1</i> Locus on Xp22.11 in Autism Spectrum Disorder and Intellectual Disability. Science Translational Medicine, 2010, 2, 49ra68.	5.8	178
210	Genetic Overlaps in Mental Retardation, Autism and Schizophrenia. Monographs in Human Genetics, 2010, , 126-136.	0.5	3
211	Severe Progressive Autism Associated with Two de novo Changes: A 2.6-Mb 2q31.1 Deletion and a Balanced t(14;21)(q21.1;p11.2) Translocation with Long-Range Epigenetic Silencing of & & & & & & & & & & & & & & & & & &	0.3	36

#	Article	IF	CITATIONS
212	The Role of Calcium-Dependent Gene Expression in Autism Spectrum Disorders: Lessons from MeCP2, Ube3a and Beyond. NeuroSignals, 2010, 18, 72-81.	0.5	9
213	Cell Adhesion Molecules and Their Involvement in Autism Spectrum Disorder. NeuroSignals, 2010, 18, 62-71.	0.5	36
214	Neuroligin-deficient mutants of <i>C. elegans</i> have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. DMM Disease Models and Mechanisms, 2010, 3, 366-376.	1.2	81
215	The Genetics of Autism: Key Issues, Recent Findings, and Clinical Implications. Psychiatric Clinics of North America, 2010, 33, 83-105.	0.7	133
216	Progress in Cytogenetics: Implications for Child Psychopathology. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 736-751.	0.3	15
217	Genetics of Autism. , 2010, , 699-714.		4
218	Analysis of relative gene dosage and expression differences of the paralogs RABL2A and RABL2B by Pyrosequencing. Gene, 2010, 455, 1-7.	1.0	10
219	A de novo 7.9ÂMb deletion in 22q13.2→qter in a boy with autistic features, epilepsy, developmental delay, atopic dermatitis and abnormal immunological findings. European Journal of Medical Genetics, 2010, 53, 329-332.	0.7	31
220	Altered neuroligin expression is involved in social deficits in a mouse model of the fragile X syndrome. Behavioural Brain Research, 2010, 208, 96-105.	1.2	88
222	Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10.	3.8	15
222 223	Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10. Neurexin-Neuroligin Cell Adhesion Complexes Contribute to Synaptotropic Dendritogenesis via Growth Stabilization Mechanisms InÂVivo. Neuron, 2010, 67, 967-983.	3.8 3.8	15 109
222 223 224	Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10. Neurexin-Neuroligin Cell Adhesion Complexes Contribute to Synaptotropic Dendritogenesis via Growth Stabilization Mechanisms InÂVivo. Neuron, 2010, 67, 967-983. The Genetics of Child Psychiatric Disorders: Focus on Autism and Tourette Syndrome. Neuron, 2010, 68, 254-269.	3.8 3.8 3.8	15 109 156
222 223 224 225	Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10. Neurexin-Neuroligin Cell Adhesion Complexes Contribute to Synaptotropic Dendritogenesis via Growth Stabilization Mechanisms InÂVivo. Neuron, 2010, 67, 967-983. The Genetics of Child Psychiatric Disorders: Focus on Autism and Tourette Syndrome. Neuron, 2010, 68, 254-269. Neurogenetics: Advancing the "Next-Generation―of Brain Research. Neuron, 2010, 68, 165-173.	3.8 3.8 3.8 3.8	15 109 156 44
222 223 224 225 225	Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10. Neurexin-Neuroligin Cell Adhesion Complexes Contribute to Synaptotropic Dendritogenesis via Growth Stabilization Mechanisms InÂVivo. Neuron, 2010, 67, 967-983. The Genetics of Child Psychiatric Disorders: Focus on Autism and Tourette Syndrome. Neuron, 2010, 68, 254-269. Neurogenetics: Advancing the "Next-Generation―of Brain Research. Neuron, 2010, 68, 165-173. Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders. Genetics in Medicine, 2010, 12, 694-702.	3.8 3.8 3.8 3.8 1.1	15 109 156 44 116
222 223 224 225 225 226	Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10. Neurexin-Neuroligin Cell Adhesion Complexes Contribute to Synaptotropic Dendritogenesis via Growth Stabilization Mechanisms InÂVivo. Neuron, 2010, 67, 967-983. The Genetics of Child Psychiatric Disorders: Focus on Autism and Tourette Syndrome. Neuron, 2010, 68, 254-269. Neurogenetics: Advancing the "Next-Generationâ€of Brain Research. Neuron, 2010, 68, 165-173. Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders. Genetics in Medicine, 2010, 12, 694-702. Recurrent Distal 16q Duplication and Terminal 22q Deletion: Prenatal Diagnosis and Genetic Counseling. Taiwanese Journal of Obstetrics and Gynecology, 2010, 49, 544-547.	 3.8 3.8 3.8 1.1 0.5 	 15 109 156 44 116 3
2222 223 224 225 225 226 2227	Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10. Neurexin-Neuroligin Cell Adhesion Complexes Contribute to Synaptotropic Dendritogenesis via Growth Stabilization Mechanisms InÂVivo. Neuron, 2010, 67, 967-983. The Cenetics of Child Psychiatric Disorders: Focus on Autism and Tourette Syndrome. Neuron, 2010, 68, 254-269. Neurogenetics: Advancing the "Next-Generationâ€-of Brain Research. Neuron, 2010, 68, 165-173. Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders. Genetics in Medicine, 2010, 12, 694-702. Recurrent Distal 16q Duplication and Terminal 22q Deletion: Prenatal Diagnosis and Genetic Counseling. Taiwanese Journal of Obstetrics and Gynecology, 2010, 49, 544-547. Handbook of Genomics and the Family. Issues in Clinical Child Psychology, 2010,	 3.8 3.8 3.8 3.8 1.1 0.5 0.2 	 15 109 156 44 116 3 5
 222 223 224 225 226 227 228 229 	Genome Variation and Complexity in the Autism Spectrum. Neuron, 2010, 67, 8-10. Neurexin-Neuroligin Cell Adhesion Complexes Contribute to Synaptotropic Dendritogenesis via Growth Stabilization Mechanisms InAVivo. Neuron, 2010, 67, 967-983. The Cenetics of Child Psychiatric Disorders: Focus on Autism and Tourette Syndrome. Neuron, 2010, 68, 254-269. Neurogenetics: Advancing the "Next-Generationâ€-of Brain Research. Neuron, 2010, 68, 165-173. Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders. Genetics in Medicine, 2010, 12, 694-702. Recurrent Distal 16q Duplication and Terminal 22q Deletion: Prenatal Diagnosis and Genetic Counseling. Taiwanese Journal of Obstetrics and Gynecology, 2010, 49, 544-547. Handbook of Genomics and the Family. Issues in Clinical Child Psychology, 2010, Mechanisms of Synapse and Dendrite Maintenance and Their Disruption in Psychiatric and Neurodegenerative Disorders. Annual Review of Neuroscience, 2010, 33, 349-378.	 3.8 3.8 3.8 3.8 1.1 0.5 0.2 5.0 	 15 109 156 44 116 3 5 217

#	Article	IF	CITATIONS
231	GPCR Interacting Proteins (GIPs) in the Nervous System: Roles in Physiology and Pathologies. Annual Review of Pharmacology and Toxicology, 2010, 50, 89-109.	4.2	159
232	Genetic testing for autism: recent advances and clinical implications. Expert Review of Molecular Diagnostics, 2010, 10, 837-840.	1.5	17
233	A de novo 1p34.2 microdeletion identifies the synaptic vesicle gene RIMS3 as a novel candidate for autism. Journal of Medical Genetics, 2010, 47, 81-90.	1.5	52
234	Importance of Shank3 Protein in Regulating Metabotropic Glutamate Receptor 5 (mGluR5) Expression and Signaling at Synapses. Journal of Biological Chemistry, 2011, 286, 34839-34850.	1.6	180
235	Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Molecular Psychiatry, 2011, 16, 867-880.	4.1	260
236	Autism spectrum disorders—A genetics review. Genetics in Medicine, 2011, 13, 278-294.	1.1	466
237	The Balance Between Excitation And Inhibition And Functional Sensory Processing In The Somatosensory Cortex. International Review of Neurobiology, 2011, 97, 305-333.	0.9	40
238	Disentangling the Myriad Genomics of Complex Disorders, Specifically Focusing on Autism, Epilepsy, and Schizophrenia. Cytogenetic and Genome Research, 2011, 135, 228-240.	0.6	71
239	Molecular and Functional Models in Neuropsychiatry. Current Topics in Behavioral Neurosciences, 2011, , .	0.8	3
240	Mouse Models of Autism: Testing Hypotheses About Molecular Mechanisms. Current Topics in Behavioral Neurosciences, 2011, 7, 187-212.	0.8	51
241	Gain-of-function glutamate receptor interacting protein 1 variants alter GluA2 recycling and surface distribution in patients with autism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4920-4925.	3.3	74
242	Ras and Rap Signaling in Synaptic Plasticity and Mental Disorders. Neuroscientist, 2011, 17, 54-78.	2.6	131
244	Defects in translational regulation contributing to human cognitive and behavioral disease. Current Opinion in Genetics and Development, 2011, 21, 465-473.	1.5	41
245	Zebrafish models for the functional genomics of neurogenetic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 335-345.	1.8	95
246	Genetics of obesity and overgrowth syndromes. Best Practice and Research in Clinical Endocrinology and Metabolism, 2011, 25, 207-220.	2.2	43
247	Oligonucleotide microarrays in constitutional genetic diagnosis. Expert Review of Molecular Diagnostics, 2011, 11, 521-532.	1.5	15
248	Epac2-mediated dendritic spine remodeling: Implications for disease. Molecular and Cellular Neurosciences, 2011, 46, 368-380.	1.0	44
249	Lateral organization of the postsynaptic density. Molecular and Cellular Neurosciences, 2011, 48, 321-331.	1.0	56

#	Article	IF	Citations
250	Genetic and Epigenetic Networks in Intellectual Disabilities. Annual Review of Genetics, 2011, 45, 81-104.	3.2	329
251	The Postsynaptic Organization of Synapses. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005678-a005678.	2.3	455
252	Application of the immunological disease continuum to study autoimmune and other inflammatory events after vaccination. Vaccine, 2011, 29, 913-919.	1.7	17
253	Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends in Neurosciences, 2011, 34, 143-153.	4.2	88
254	Emerging themes in GABAergic synapse development. Progress in Neurobiology, 2011, 95, 68-87.	2.8	32
255	Association study of the CNS patterning genes and autism in Han Chinese in Taiwan. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1512-1517.	2.5	27
256	Emotion regulation and development in children with autism and 22q13 Deletion Syndrome: Evidence for group differences. Research in Autism Spectrum Disorders, 2011, 5, 926-934.	0.8	14
257	The Genetic Basis of Phenotypic Diversity: Autism as an Extreme Tail of a Complex Dimensional Trait. , 2011, , .		4
258	Nervous vascular parallels: axon guidance and beyond. International Journal of Developmental Biology, 2011, 55, 439-445.	0.3	27
259	Dynamics and plasticity of chromosome ends: consequences in human pathologies. Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2011, , .	0.1	0
260	A New Genetic Mechanism for Autism. , 2011, , .		1
261	Genome-Wide Association Studies of Copy Number Variation in Autism Spectrum Disorder. , 2011, , .		0
262	Common Genetic Etiologies and Biological Pathways Shared Between Autism Spectrum Disorders and Intellectual Disabilities. , 0, , .		0
263	Quantifying and Modeling Birth Order Effects in Autism. PLoS ONE, 2011, 6, e26418.	1.1	23
264	A Brain Region-Specific Predictive Gene Map for Autism Derived by Profiling a Reference Gene Set. PLoS ONE, 2011, 6, e28431.	1.1	20
265	Novel variants of the SHANK3 gene in Japanese autistic patients with severe delayed speech development. Psychiatric Genetics, 2011, 21, 208-211.	0.6	47
266	Synaptic Signaling and Aberrant RNA Splicing in Autism Spectrum Disorders. Frontiers in Synaptic Neuroscience, 2011, 3, 1.	1.3	50
267	Turnover of Synapse and Dynamic Nature of Synaptic Molecules In Vitro and In Vivo. Acta Histochemica Et Cytochemica, 2011, 44, 9-15.	0.8	6

ATION RE

#	Article	IF	CITATIONS
268	Hemizygous deletions on chromosome 1p21.3 involving the DPYD gene in individuals with autism spectrum disorder. Clinical Genetics, 2011, 80, 435-443.	1.0	61
269	Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia, 2011, 52, 13-20.	2.6	70
270	Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience, 2011, 14, 285-293.	7.1	1,284
271	Clinical utility gene card for: Deletion 22q13 syndrome. European Journal of Human Genetics, 2011, 19, 492-492.	1.4	11
272	Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO Journal, 2011, 30, 569-581.	3.5	204
273	A double hit implicates DIAPH3 as an autism risk gene. Molecular Psychiatry, 2011, 16, 442-451.	4.1	68
274	Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 2011, 472, 437-442.	13.7	1,273
275	Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 2011, 474, 380-384.	13.7	1,654
276	Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends in Cell Biology, 2011, 21, 594-603.	3.6	238
277	Association study of six candidate genes asymmetrically expressed in the two cerebral hemispheres suggests the involvement of BAIAP2 in autism. Journal of Psychiatric Research, 2011, 45, 280-282.	1.5	40
278	PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs) and synaptic plasticity. Current Opinion in Neurobiology, 2011, 21, 306-312.	2.0	142
279	Does treatment of premature labor with terbutaline increase the risk of autism spectrum disorders?. American Journal of Obstetrics and Gynecology, 2011, 204, 91-94.	0.7	13
280	Are retinoids potential therapeutic agents in disorders of social cognition including autism?. FEBS Letters, 2011, 585, 1529-1536.	1.3	30
281	Sociability and motor functions in Shank1 mutant mice. Brain Research, 2011, 1380, 120-137.	1.1	206
282	Gene and miRNA expression profiles in autism spectrum disorders. Brain Research, 2011, 1380, 85-97.	1.1	165
283	Analysis of a purported SHANK3 mutation in a boy with autism: Clinical impact of rare variant research in neurodevelopmental disabilities. Brain Research, 2011, 1380, 98-105.	1.1	28
284	Do common variants play a role in risk for autism? Evidence and theoretical musings. Brain Research, 2011, 1380, 78-84.	1.1	95
285	Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting. Brain Research, 2011, 1380, 42-77.	1.1	788

#	Article	IF	CITATIONS
286	The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome). Molecular Syndromology, 2011, 2, 186-201.	0.3	374
287	The conundrums of understanding genetic risks for autism spectrum disorders. Nature Neuroscience, 2011, 14, 1499-1506.	7.1	287
288	Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability. American Journal of Human Genetics, 2011, 88, 306-316.	2.6	310
289	Progress in Understanding Autism: 2007–2010. Journal of Autism and Developmental Disorders, 2011, 41, 395-404.	1.7	70
290	Characterizing Brain Cortical Plasticity and Network Dynamics Across the Age-Span in Health and Disease with TMS-EEG and TMS-fMRI. Brain Topography, 2011, 24, 302-315.	0.8	318
291	Risk factors for autism: translating genomic discoveries into diagnostics. Human Genetics, 2011, 130, 123-148.	1.8	102
292	Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. Invertebrate Neuroscience, 2011, 11, 73-83.	1.8	71
294	IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. Journal of Neuroinflammation, 2011, 8, 52.	3.1	263
295	Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold. Molecular Neurodegeneration, 2011, 6, 65.	4.4	66
296	Animal model integration to AutDB, a genetic database for autism. BMC Medical Genomics, 2011, 4, 15.	0.7	25
297	A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism. Molecular Autism, 2011, 2, 1.	2.6	191
298	The ongoing dissection of the genetic architecture of autistic spectrum disorder. Molecular Autism, 2011, 2, 12.	2.6	18
299	Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder. Molecular Autism, 2011, 2, 9.	2.6	30
300	A translocation between Xq21.33 and 22q13.33 causes an intragenic <i>SHANK3</i> deletion in a woman with Phelan–McDermid syndrome and hypergonadotropic hypogonadism. American Journal of Medical Genetics, Part A, 2011, 155, 403-408.	0.7	32
301	Submicroscopic deletion in 7q31 encompassing <i>CADPS2</i> and <i>TSPAN12</i> in a child with autism spectrum disorder and PHPV. American Journal of Medical Genetics, Part A, 2011, 155, 1568-1573.	0.7	24
302	Genetic and functional analyses identify <i>DISC1</i> as a novel callosal agenesis candidate gene. American Journal of Medical Genetics, Part A, 2011, 155, 1865-1876.	0.7	38
303	Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders. American Journal of Medical Genetics, Part A, 2011, 155, 2386-2396.	0.7	159
304	Mutations in the <i>TSCA14</i> gene in families with autism spectrum disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 303-311.	1.1	15

#	Article	IF	CITATIONS
305	Links between genetics and pathophysiology in the autism spectrum disorders. EMBO Molecular Medicine, 2011, 3, 438-450.	3.3	39
306	Discovery, Structure–Activity Relationship Studies, and Crystal Structure of Nonpeptide Inhibitors Bound to the Shank3 PDZ Domain. ChemMedChem, 2011, 6, 1411-1422.	1.6	34
307	Behavioral profiles of mouse models for autism spectrum disorders. Autism Research, 2011, 4, 5-16.	2.1	133
308	Fetal exposure to teratogens: Evidence of genes involved in autism. Neuroscience and Biobehavioral Reviews, 2011, 35, 1254-1265.	2.9	139
309	Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function. European Journal of Human Genetics, 2011, 19, 1238-1245.	1.4	74
310	The Autism Candidate Gene Neurobeachin Encodes a Scaffolding Protein Implicated in Membrane Trafficking and Signaling. Current Molecular Medicine, 2011, 11, 204-217.	0.6	45
311	Behavioral Profiles in Phelan-McDermid Syndrome: Focus on Mental Health. Journal of Mental Health Research in Intellectual Disabilities, 2011, 4, 1-18.	1.3	14
312	The Genetics of Autism. , 2011, , 77-97.		1
313	Protein Interactome Reveals Converging Molecular Pathways Among Autism Disorders. Science Translational Medicine, 2011, 3, 86ra49.	5.8	201
314	Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Human Molecular Genetics, 2011, 20, 3366-3375.	1.4	149
315	Diverse mutational mechanisms cause pathogenic subtelomeric rearrangements. Human Molecular Genetics, 2011, 20, 3769-3778.	1.4	35
316	IL-1 Receptor Accessory Protein-Like 1 Associated with Mental Retardation and Autism Mediates Synapse Formation by <i>Trans</i> -Synaptic Interaction with Protein Tyrosine Phosphatase I´. Journal of Neuroscience, 2011, 31, 13485-13499.	1.7	148
317	AUTMINER: A SYSTEM FOR EXTRACTING ASD-RELATED GENES USING TEXT MINING. Journal of Biological Systems, 2011, 19, 113-125.	0.5	10
318	Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Human Molecular Genetics, 2011, 20, 3093-3108.	1.4	510
319	Phospholipase $\hat{Cl^2}$ lb associates with a Shank3 complex at the cardiac sarcolemma. FASEB Journal, 2011, 25, 1040-1047.	0.2	30
320	Autism: A "Critical Period―Disorder?. Neural Plasticity, 2011, 2011, 1-17.	1.0	241
321	Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. Journal of Medical Genetics, 2011, 48, 48-54.	1.5	94
322	Sapap3 Deletion Anomalously Activates Short-Term Endocannabinoid-Mediated Synaptic Plasticity. Journal of Neuroscience, 2011, 31, 9563-9573.	1.7	78

#	Article	IF	CITATIONS
323	Deletion of Densin-180 Results in Abnormal Behaviors Associated with Mental Illness and Reduces mGluR5 and DISC1 in the Postsynaptic Density Fraction. Journal of Neuroscience, 2011, 31, 16194-16207.	1.7	62
324	Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13764-13769.	3.3	296
325	Neuronal Activity-Regulated Gene Transcription in Synapse Development and Cognitive Function. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005744-a005744.	2.3	426
326	SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Human Molecular Genetics, 2011, 20, 2297-2307.	1.4	204
327	Genetic risk in autism: new associations and clinical testing. Expert Opinion on Medical Diagnostics, 2011, 5, 347-356.	1.6	6
328	Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders. Neural Plasticity, 2011, 2011, 1-25.	1.0	181
329	The 1000 Genomes Project: deep genomic sequencing waiting for deep psychiatric phenotyping. Journal of Psychiatry and Neuroscience, 2011, 36, 147-149.	1.4	7
330	Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome. PLoS Genetics, 2011, 7, e1002173.	1.5	172
331	Alterations of GABAergic Signaling in Autism Spectrum Disorders. Neural Plasticity, 2011, 2011, 1-12.	1.0	242
332	Mechanisms of developmental regression in autism and the broader phenotype: A neural network modeling approach Psychological Review, 2011, 118, 637-654.	2.7	59
333	Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders. PLoS Genetics, 2012, 8, e1002521.	1.5	358
334	Autism Spectrum Disorders and Autisticlike Traits. Archives of General Psychiatry, 2012, 69, 46.	13.8	228
335	Autism-Associated Mutations in ProSAP2/Shank3 Impair Synaptic Transmission and Neurexin–Neuroligin-Mediated Transsynaptic Signaling. Journal of Neuroscience, 2012, 32, 14966-14978.	1.7	154
336	Reduced axonal localization of a Caps2 splice variant impairs axonal release of BDNF and causes autistic-like behavior in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21104-21109.	3.3	72
337	Reduced Excitatory Neurotransmission and Mild Autism-Relevant Phenotypes in Adolescent <i>Shank3</i> Null Mutant Mice. Journal of Neuroscience, 2012, 32, 6525-6541.	1.7	342
338	Genetics and Epigenetics of Autism Spectrum Disorders. Research and Perspectives in Neurosciences, 2012, , 105-132.	0.4	4
339	Individual common variants exert weak effects on the risk for autism spectrum disorders. Human Molecular Genetics, 2012, 21, 4781-4792.	1.4	334
340	CNVs leading to fusion transcripts in individuals with autism spectrum disorder. European Journal of Human Genetics, 2012, 20, 1141-1147.	1.4	33

#	Article	IF	CITATIONS
341	Synaptic Dysfunction in Neurodevelopmental Disorders Associated with Autism and Intellectual Disabilities. Cold Spring Harbor Perspectives in Biology, 2012, 4, a009886-a009886.	2.3	650
342	Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Human Molecular Genetics, 2012, 21, 344-357.	1.4	133
343	Cortactin-Binding Protein 2 Modulates the Mobility of Cortactin and Regulates Dendritic Spine Formation and Maintenance. Journal of Neuroscience, 2012, 32, 1043-1055.	1.7	75
344	Meditation as a Potential Therapy for Autism: A Review. Autism Research & Treatment, 2012, 2012, 1-11.	0.1	15
345	Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways. Human Molecular Genetics, 2012, 21, 3513-3523.	1.4	158
346	Childhood Disorders of the Synapse: Challenges and Opportunities. Science Translational Medicine, 2012, 4, 152ps17.	5.8	0
347	Zebrafish homologs of 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes. DMM Disease Models and Mechanisms, 2012, 5, 834-51.	1.2	76
348	Triggers for Autism: Genetic and Environmental Factors. Journal of Central Nervous System Disease, 2012, 4, JCNSD.S9058.	0.7	11
349	Altered Balance of Proteolytic Isoforms of Pro-Brain-Derived Neurotrophic Factor in Autism. Journal of Neuropathology and Experimental Neurology, 2012, 71, 289-297.	0.9	79
350	Metabotropic Glutamate Receptors and Interacting Proteins: Evolving Drug Targets. Current Drug Targets, 2012, 13, 145-156.	1.0	54
351	Role of a redox-based methylation switch in mRNA life cycle (pre- and post-transcriptional) Tj ETQq0 0 0 rgBT /Ov 2012, 6, 92.	verlock 10 1.4	Tf 50 347 Td 16
352	Epileptic encephalopathies of the Landauâ€Kleffner and continuous spike and waves during slowâ€wave sleep types: Genomic dissection makes the link with autism. Epilepsia, 2012, 53, 1526-1538.	2.6	148
353	Neuroligin-1–dependent competition regulates cortical synaptogenesis and synapse number. Nature Neuroscience, 2012, 15, 1667-1674.	7.1	159
354	Cellular and synaptic network defects in autism. Current Opinion in Neurobiology, 2012, 22, 866-872.	2.0	78
355	Serotonin in the Modulation of Neural Plasticity and Networks: Implications for Neurodevelopmental Disorders. Neuron, 2012, 76, 175-191.	3.8	327
356	Autism genetics: searching for specificity and convergence. Genome Biology, 2012, 13, 247.	13.9	162
357	The Long and the Short of it: Gene and Environment Interactions During Early Cortical Development and Consequences for Long-Term Neurological Disease. Frontiers in Psychiatry, 2012, 3, 50.	1.3	50
358	Children With Autism Show Reduced Somatosensory Response: An <scp>MEG</scp> Study. Autism Research, 2012, 5, 340-351.	2.1	90

#	Article	IF	CITATIONS
359	A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Human Genetics, 2012, 131, 565-579.	1.8	180
360	De novo mutations in neurological and psychiatric disorders: effects, diagnosis and prevention. Genome Medicine, 2012, 4, 71.	3.6	14
361	Structural Variation in Subtelomeres. Methods in Molecular Biology, 2012, 838, 137-149.	0.4	5
362	Dendritic mRNA Targeting and Translation. Advances in Experimental Medicine and Biology, 2012, 970, 285-305.	0.8	48
363	Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 831-842.	1.8	186
364	CNVs: Harbingers of a Rare Variant Revolution in Psychiatric Genetics. Cell, 2012, 148, 1223-1241.	13.5	759
365	Genetic architecture in autism spectrum disorder. Current Opinion in Genetics and Development, 2012, 22, 229-237.	1.5	445
366	Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5052-5056.	3.3	135
367	Severe lateral tibial bowing with short stature in two siblings—A provisionally novel syndrome. American Journal of Medical Genetics, Part A, 2012, 158A, 2309-2316.	0.7	0
368	Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder. Molecular Autism, 2012, 3, 8.	2.6	22
369	The effect of perceptual-motor training on attention in the children with autism spectrum disorders. Research in Autism Spectrum Disorders, 2012, 6, 1331-1336.	0.8	15
370	Interneuron dysfunction in psychiatric disorders. Nature Reviews Neuroscience, 2012, 13, 107-120.	4.9	978
371	Subsynaptic AMPA Receptor Distribution Is Acutely Regulated by Actin-Driven Reorganization of the Postsynaptic Density. Journal of Neuroscience, 2012, 32, 658-673.	1.7	82
372	Genomics, Intellectual Disability, and Autism. New England Journal of Medicine, 2012, 366, 733-743.	13.9	276
373	Rare Variants in Complex Traits: Novel Identification Strategies and the Role of de novo Mutations. Human Heredity, 2012, 74, 215-225.	0.4	8
374	Modeling of Autism Genetic Variations in Mice: Focusing on Synaptic and Microcircuit Dysfunctions. Developmental Neuroscience, 2012, 34, 88-100.	1.0	30
375	CHAPTER 15. Emerging Research towards the Understanding and Treatment of Autism. RSC Drug Discovery Series, 2012, , 384-415.	0.2	0
376	Discovery and Statistical Genotyping of Copy-Number Variation from Whole-Exome Sequencing Depth. American Journal of Human Genetics, 2012, 91, 597-607.	2.6	513

#	Article	IF	CITATIONS
377	Association of genetic copy number variations at 11 q14.2 with brain regional volume differences in an alcohol use disorder population. Alcohol, 2012, 46, 519-527.	0.8	20
378	Troubles du spectre autistiqueÂ: qu'apprend-on de la génétiqueÂ?. Annales Medico-Psychologiques, 2012 170, 476-478.	.0.2	0
379	Molecular and synaptic defects in intellectual disability syndromes. Current Opinion in Neurobiology, 2012, 22, 530-536.	2.0	32
380	Mining and modeling human genetics for autism therapeutics. Current Opinion in Neurobiology, 2012, 22, 902-910.	2.0	9
381	Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends in Pharmacological Sciences, 2012, 33, 669-684.	4.0	106
382	Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins. Frontiers in Biology, 2012, 7, 379-396.	0.7	25
383	Calcium-Dependent Networks in Dopamine–Glutamate Interaction: The Role of Postsynaptic Scaffolding Proteins. Molecular Neurobiology, 2012, 46, 275-296.	1.9	50
384	Epigenetics, Brain and Behavior. Research and Perspectives in Neurosciences, 2012, , .	0.4	5
385	Tweaking the Social Network. Science Translational Medicine, 2012, 4, 131fs9.	5.8	0
386	Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Aberrant Emotional and Social Behaviors. PLoS ONE, 2012, 7, e32969.	1.1	102
387	NESH Regulates Dendritic Spine Morphology and Synapse Formation. PLoS ONE, 2012, 7, e34677.	1.1	24
388	Genetic Copy Number Variation and General Cognitive Ability. PLoS ONE, 2012, 7, e37385.	1.1	21
390	Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins. Frontiers in Molecular Neuroscience, 2012, 5, 52.	1.4	41
391	Cryptic Rearrangements in Idiopathic Intellectual Disability Diagnosed by Molecular Cytogenetic Analysis. International Journal of Human Genetics, 2012, 12, 157-171.	0.1	0
392	Autism and autism spectrum disorders. , 0, , 183-195.		0
393	Synaptic Plasticity in Mouse Models of Autism Spectrum Disorders. Korean Journal of Physiology and Pharmacology, 2012, 16, 369.	0.6	20
394	A patient presenting a 22q13 deletion associated with an apparently balanced translocation t(16;22): an illustrative case in the investigation of patients with low ARSA activity. Genetics and Molecular Biology, 2012, 35, 424-427.	0.6	1
395	Polyunsaturated Fatty Acids and their Metabolites in Neural Development and Implications for Psychiatric Disorders. Current Psychopharmacology, 2012, 2, 73-83.	0.1	11

#	Article	IF	CITATIONS
396	Clinical and Genetic Heterogeneity of Autism. , 0, , .		2
397	Phelan-McDermid syndrome in two adult brothers: atypical bipolar disorder as its psychopathological phenotype?. Neuropsychiatric Disease and Treatment, 2012, 8, 175.	1.0	56
399	Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 2012, 486, 256-260.	13.7	570
400	Microdeletion and Microduplication Syndromes. Methods in Molecular Biology, 2012, 838, 29-75.	0.4	58
401	Scaffold Proteins at the Postsynaptic Density. Advances in Experimental Medicine and Biology, 2012, 970, 29-61.	0.8	67
402	A complex chromosomal rearrangement involving chromosomes 2, 5, and X in autism spectrum disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 529-536.	1.1	10
403	Networking in Autism: Leveraging Genetic, Biomarker and Model System Findings in the Search for New Treatments. Neuropsychopharmacology, 2012, 37, 196-212.	2.8	109
404	Functional Consequences of Mutations in Postsynaptic Scaffolding Proteins and Relevance to Psychiatric Disorders. Annual Review of Neuroscience, 2012, 35, 49-71.	5.0	103
405	Detection and Characterization of Copy Number Variation in Autism Spectrum Disorder. Methods in Molecular Biology, 2012, 838, 115-135.	0.4	72
406	Association of GTF2i in the Williams-Beuren Syndrome Critical Region with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2012, 42, 1459-1469.	1.7	61
407	Rare Deletions at the Neurexin 3 Locus in Autism Spectrum Disorder. American Journal of Human Genetics, 2012, 90, 133-141.	2.6	182
408	SHANK1 Deletions in Males with Autism Spectrum Disorder. American Journal of Human Genetics, 2012, 90, 879-887.	2.6	292
409	Annual Research Review: Impact of advances in genetics in understanding developmental psychopathology. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2012, 53, 510-518.	3.1	32
410	Ring chromosome 22 and neurofibromatosis type II: proof of twoâ€hit model for the loss of the <i>NF2</i> gene in the development of meningioma. Clinical Genetics, 2012, 81, 82-87.	1.0	24
411	SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Molecular Psychiatry, 2012, 17, 71-84.	4.1	283
412	Effect of experimental genital mycoplasmosis on gene expression in the fetal brain. Journal of Reproductive Immunology, 2012, 93, 9-16.	0.8	9
413	Mutations affecting synaptic levels of neurexin- \hat{l}^2 in autism and mental retardation. Neurobiology of Disease, 2012, 47, 135-143.	2.1	33
414	Evidence for involvement of <i>GNB1L</i> in autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 61-71.	1.1	28

# 415	ARTICLE A promoter variant of SHANK1 affects auditory working memory in schizophrenia patients and in subjects clinically at risk for psychosis. European Archives of Psychiatry and Clinical Neuroscience, 2012, 262, 117-124.	IF 1.8	Citations
416	Effect of homozygous deletions at 22q13.1 on alcohol dependence severity and cueâ€elicited BOLD response in the precuneus. Addiction Biology, 2013, 18, 548-558.	1.4	13
417	Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Molecular Autism, 2013, 4, 18.	2.6	278
418	SHANK3 haploinsufficiency: a "common―but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Molecular Autism, 2013, 4, 17.	2.6	152
419	The Genetic Landscapes of Autism Spectrum Disorders. Annual Review of Genomics and Human Genetics, 2013, 14, 191-213.	2.5	352
420	Up-regulation of Ras/Raf/ERK1/2 signaling impairs cultured neuronal cell migration, neurogenesis, synapse formation, and dendritic spine development. Brain Structure and Function, 2013, 218, 669-682.	1.2	42
421	Neurodevelopmental Disabilities. , 2013, , 1-15.		1
422	Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients. Human Genetics, 2013, 132, 461-471.	1.8	48
423	Neurodevelopmental Genomics of Autism, Schizophrenia, and Related Disorders. , 2013, , 695-708.		0
424	Cambridge Neuropsychological Test Automated Battery. , 2013, , 498-515.		5
425	Pervasive Developmental Disorders Rating Scale (PDDRS). , 2013, , 2210-2211.		0
426	Social Gaze. , 2013, , 2895-2895.		0
427	GluA1 and its PDZ-interaction: A role in experience-dependent behavioral plasticity in the forced swim test. Neurobiology of Disease, 2013, 52, 160-167.	2.1	19
428	Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Human Molecular Genetics, 2013, 22, 2055-2066.	1.4	139
429	Brain IL-6 and autism. Neuroscience, 2013, 252, 320-325.	1.1	111
430	SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature, 2013, 503, 267-271.	13.7	399
431	MET Receptor Tyrosine Kinase as an Autism Genetic Risk Factor. International Review of Neurobiology, 2013, 113, 135-165.	0.9	38
432	The Autism ProSAP1/Shank2 mouse model displays quantitative and structural abnormalities in ultrasonic vocalisations. Behavioural Brain Research, 2013, 256, 677-689	1.2	126

#	Article	IF	CITATIONS
433	Novel treatments in autism spectrum disorders: From synaptic dysfunction to experimental therapeutics. Behavioural Brain Research, 2013, 251, 125-132.	1.2	10
434	SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature, 2013, 503, 72-77.	13.7	323
435	SHANK3 as an autism spectrum disorder-associated gene. Brain and Development, 2013, 35, 106-110.	0.6	106
436	Genetic background modulates phenotypes of serotonin transporter Ala56 knock-in mice. Molecular Autism, 2013, 4, 35.	2.6	35
437	Does epilepsy in multiplex autism pedigrees define a different subgroup in terms of clinical characteristics and genetic risk?. Molecular Autism, 2013, 4, 47.	2.6	43
438	Plasticity, Neural. , 2013, , 2275-2282.		0
440	Neuroligins and Neurexins. , 2013, , 671-686.		0
441	Epigenetic Findings in Autism: New Perspectives for Therapy. International Journal of Environmental Research and Public Health, 2013, 10, 4261-4273.	1.2	65
442	Copy Number Variation in Autism Spectrum Disorders. , 2013, , 145-154.		1
443	An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy. Neuropharmacology, 2013, 68, 2-82.	2.0	190
444	Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening. Translational Psychiatry, 2013, 3, e294-e294.	2.4	97
445	Genetic analysis of the DLGAP1 gene as a candidate gene for schizophrenia. Psychiatry Research, 2013, 205, 13-17.	1.7	19
446	Next-Generation Sequencing For Gene and Pathway Discovery and Analysis in Autism Spectrum Disorders. , 2013, , 169-177.		1
447	Scaffolding Proteins of the Post-synaptic Density Contribute to Synaptic Plasticity by Regulating Receptor Localization and Distribution: Relevance for Neuropsychiatric Diseases. Neurochemical Research, 2013, 38, 1-22.	1.6	70
448	Genetic Basis of Intellectual Disability. Annual Review of Medicine, 2013, 64, 441-450.	5.0	85
449	Cerebellar and posterior fossa malformations in patients with autismâ€associated chromosome 22q13 terminal deletion. American Journal of Medical Genetics, Part A, 2013, 161, 131-136.	0.7	65
450	Deletion of the last exon of SHANK3 gene produces the full Phelan–McDermid phenotype: A case report. Gene, 2013, 524, 386-389.	1.0	14
451	Mutations of the synapse genes and intellectual disability syndromes. European Journal of	1.7	17

#	Article	IF	CITATIONS
452	Cortical Development. , 2013, , .		3
453	Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicology and Teratology, 2013, 36, 3-16.	1.2	104
454	Dances with black widow spiders: Dysregulation of glutamate signalling enters centre stage in ADHD. European Neuropsychopharmacology, 2013, 23, 479-491.	0.3	56
455	Identification of Small Exonic CNV from Whole-Exome Sequence Data and Application to Autism Spectrum Disorder. American Journal of Human Genetics, 2013, 93, 607-619.	2.6	136
456	Translational Neuroimaging for Drug Discovery and Development in Autism Spectrum Disorders. , 2013, , 245-280.		0
457	Autism spectrum disorder in the genetics clinic: a review. Clinical Genetics, 2013, 83, 399-407.	1.0	153
458	Distribution of Disease-Associated Copy Number Variants Across Distinct Disorders of Cognitive Development. Journal of the American Academy of Child and Adolescent Psychiatry, 2013, 52, 414-430.e14.	0.3	28
459	Modeling Autism by SHANK Gene Mutations in Mice. Neuron, 2013, 78, 8-27.	3.8	434
460	Mitochondrial Medicine. , 2013, , 1-153.		5
461	Sensory Integration and Praxis Tests (SIPT). , 2013, , 2795-2795.		0
462	Dysfunction of <i><scp>SHANK2</scp></i> and <i><scp>CHRNA7</scp></i> in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clinical Genetics, 2013, 84, 560-565.	1.0	60
463	Picture Exchange Communication System. , 2013, , 2260-2264.		Ο
464	Actin filaments and microtubules in dendritic spines. Journal of Neurochemistry, 2013, 126, 155-164.	2.1	85
465	Checklist for Autism in Toddlers (CHAT). , 2013, , 571-575.		0
466	SCQ. , 2013, , 2676-2676.		0
467	Screening Measures. , 2013, , 2676-2682.		1
469	Molecular and Phenotypic Characterization of Ring Chromosome 22 in Two Unrelated Patients. Cytogenetic and Genome Research, 2013, 140, 1-11.	0.6	8
470	Autism genetics. Behavioural Brain Research, 2013, 251, 95-112.	1.2	218

#	Article	IF	CITATIONS
471	Etiological Heterogeneity in Autism Spectrum Disorders. , 2013, , 113-144.		10
472	The Genetics of Autism Spectrum Disorders – A Guide for Clinicians. Current Psychiatry Reports, 2013, 15, 334.	2.1	49
473	Shank3-Rich2 Interaction Regulates AMPA Receptor Recycling and Synaptic Long-Term Potentiation. Journal of Neuroscience, 2013, 33, 9699-9715.	1.7	52
474	Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action. Molecular Autism, 2013, 4, 45.	2.6	43
475	Developing new pharmacotherapies for autism. Journal of Internal Medicine, 2013, 274, 308-320.	2.7	28
476	Copy number variants in adult patients with Lennox–Gastaut syndrome features. Epilepsy Research, 2013, 105, 110-117.	0.8	35
477	Autism spectrum disorders: The quest for genetic syndromes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 327-366.	1.1	84
478	Expression, Purification, and Structural Analysis of Intracellular C-Termini from Metabotropic Glutamate Receptors. Methods in Enzymology, 2013, 520, 257-279.	0.4	5
479	Atypical Developmental Patterns of Brain Chemistry in Children With Autism Spectrum Disorder. JAMA Psychiatry, 2013, 70, 964.	6.0	45
480	Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. European Journal of Human Genetics, 2013, 21, 310-316.	1.4	210
481	A review of gene–environment correlations and their implications for autism: A conceptual model Psychological Review, 2013, 120, 497-521.	2.7	38
482	Multiplex ligation-dependant probe amplification study of children with idiopathic mental retardation in South India. Indian Journal of Human Genetics, 2013, 19, 165.	0.7	7
483	Co-expression Profiling of Autism Genes in the Mouse Brain. PLoS Computational Biology, 2013, 9, e1003128.	1.5	64
484	Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO Journal, 2013, 32, 1730-1744.	3.5	54
485	Changes in Plasticity Across the Lifespan. Progress in Brain Research, 2013, 207, 91-120.	0.9	102
486	Autisms. , 2013, , 651-694.		9
487	MeCP2 and Autism Spectrum Disorders. , 2013, , 421-436.		0
488	SHANK2 and SHANK3 Mutations Implicate Glutamate Signaling Abnormalities in Autism Spectrum Disorders 2013 437-448		2

#	Article	IF	CITATIONS
489	Shank3 Deficiency Induces NMDA Receptor Hypofunction via an Actin-Dependent Mechanism. Journal of Neuroscience, 2013, 33, 15767-15778.	1.7	103
490	Loss of Predominant Shank3 Isoforms Results in Hippocampus-Dependent Impairments in Behavior and Synaptic Transmission. Journal of Neuroscience, 2013, 33, 18448-18468.	1.7	252
491	Neurotransmitter systems and neurotrophic factors in autism: association study of 37 genes suggests involvement of DDC. World Journal of Biological Psychiatry, 2013, 14, 516-527.	1.3	36
492	Multiethnic Meta-Analysis of Genome-Wide Association Studies in >100 000 Subjects Identifies 23 Fibrinogen-Associated Loci but No Strong Evidence of a Causal Association Between Circulating Fibrinogen and Cardiovascular Disease. Circulation, 2013, 128, 1310-1324.	1.6	128
493	Genomics and Autism Spectrum Disorder. Journal of Nursing Scholarship, 2013, 45, 69-78.	1.1	21
494	Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. Journal of Neurochemistry, 2013, 126, 165-182.	2.1	106
495	Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochemical Journal, 2013, 455, 1-14.	1.7	167
496	SHANK3 Gene Mutations Associated with Autism Facilitate Ligand Binding to the Shank3 Ankyrin Repeat Region. Journal of Biological Chemistry, 2013, 288, 26697-26708.	1.6	52
497	Translational approaches to the biology of Autism: false dawn or a new era?. Molecular Psychiatry, 2013, 18, 435-442.	4.1	75
498	Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish. DMM Disease Models and Mechanisms, 2013, 6, 358-72.	1.2	43
500	Animal Models of Autism Spectrum Disorder (ASD): A Synaptic-Level Approach to Autistic-Like Behavior in Mice. Experimental Animals, 2013, 62, 71-78.	0.7	24
501	Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Frontiers in Molecular Neuroscience, 2013, 6, 19.	1.4	154
502	Mouse Behavioral Models for Autism Spectrum Disorders. , 2013, , 363-378.		0
503	Autism Spectrum Disorders, Risk Communication, and the Problem of Inadvertent Harm. Kennedy Institute of Ethics Journal, 2013, 23, 105-138.	0.3	27
504	Sequencing ASMT Identifies Rare Mutations in Chinese Han Patients with Autism. PLoS ONE, 2013, 8, e53727.	1.1	26
505	IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway. PLoS ONE, 2013, 8, e66254.	1.1	49
506	What is Neuroaesthetics? : A New Paradigm in Psychiatry. Journal of Korean Neuropsychiatric Association, 2013, 52, 3.	0.2	3
507	Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice: an animal model of Autism. Frontiers in Cellular Neuroscience, 2013, 7, 85.	1.8	50

ARTICLE IF CITATIONS Studying Autism in Rodent Models: Reconciling Endophenotypes with Comorbidities. Frontiers in 508 1.0 42 Human Neuroscience, 2013, 7, 417. Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Frontiers in 509 1.2 104 Systems Neuroscience, 2013, 7, 15. Mouse Models of Mutations and Variations in Autism Spectrum Disorder-Associated Genes: Mice Expressing Caps2/Cadps2 Copy Number and Alternative Splicing Variants. International Journal of 510 1.2 12 Environmental Research and Public Health, 2013, 10, 6335-6353. Genetic Etiology of Autism., 0,,. 511 Social Language Development Test., 2013, , 2903-2915. 512 1 The Genetic Architecture of Autism and Related Conditions., 0, , . Processing Speed Index., 2013,, 2380-2381. 514 2 Genetic and Environmental Factors in Autism., 2013,,. 515 516 The Psychobiology of Autism., 2014, , 2502-2511. 0 Genetic aspects of autism spectrum disorders: insights from animal models. Frontiers in Cellular 1.8 Neuroscience, 2014, 8, 58. Sarm1 deficiency impairs synaptic function and leads to behavioral deficits, which can be ameliorated 518 1.8 34 by an mGluR allosteric modulator. Frontiers in Cellular Neuroscience, 2014, 8, 87. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Frontiers in 519 1.8 Cellular Neuroscience, 2014, 8, 109. Synaptic proteins and receptors defects in autism spectrum disorders. Frontiers in Cellular 520 1.8 138 Neuroscience, 2014, 8, 276. The Association of Homozygote T Allele of rs2943641 Polymorphism near of Insulin Receptor Substrate 1 Gene in the Susceptibility to Autism. Gene Technology, 2014, 03, . The Potential Role of Insulin on the Shank-Postsynaptic Platform in Neurodegenerative Diseases 522 0.9 5 Involving Cognition. American Journal of Alzheimer's Disease and Other Dementias, 2014, 29, 303-310. Structural Alterations of Synapses in Psychiatric and Neurodegenerative Disorders., 2014, , 281-300. Structural and Functional Organization of the Postsynaptic Density., 2014, 129-153. 524 2 Genome-Wide Association Studies of Autism. Current Behavioral Neuroscience Reports, 2014, 1, 234-241.

#	Article	IF	CITATIONS
526	Association study between autistic-like traits and polymorphisms in the autism candidate regions RELN, CNTNAP2, SHANK3, and CDH9/10. Molecular Autism, 2014, 5, 55.	2.6	28
527	22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan–McDermid syndrome. Genetics in Medicine, 2014, 16, 318-328.	1.1	71
528	Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genetics, 2014, 10, e1004580.	1.5	501
529	Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Science Signaling, 2014, 7, re10.	1.6	91
530	The trading zone of autism genetics: Examining the intersection of genomic and psychiatric classification. BioSocieties, 2014, 9, 329-352.	0.8	15
531	Absence of strong strain effects in behavioral analyses of <i>Shank3</i> -deficient mice. DMM Disease Models and Mechanisms, 2014, 7, 667-81.	1.2	45
532	Research Highlights: Highlights from the latest articles on the pharmacogenomics of neuropsychiatric disorders. Pharmacogenomics, 2014, 15, 735-738.	0.6	0
533	Identification of two novel <i>Shank3</i> transcripts in the developing mouse neocortex. Journal of Neurochemistry, 2014, 128, 280-293.	2.1	28
534	MET Receptor Tyrosine Kinase Controls Dendritic Complexity, Spine Morphogenesis, and Glutamatergic Synapse Maturation in the Hippocampus. Journal of Neuroscience, 2014, 34, 16166-16179.	1.7	57
535	Language and traits of autism spectrum conditions: Evidence of limited phenotypic and etiological overlap. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 587-595.	1.1	13
536	The emerging role of <i>SHANK</i> genes in neuropsychiatric disorders. Developmental Neurobiology, 2014, 74, 113-122.	1.5	224
537	Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring. Journal of Neurodevelopmental Disorders, 2014, 6, 39.	1.5	122
538	A pilot controlled trial of insulin-like growth factor-1 in children with Phelan-McDermid syndrome. Molecular Autism, 2014, 5, 54.	2.6	109
539	GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation, 2014, 11, 189.	3.1	168
540	Shank mutant mice as an animal model of autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130143.	1.8	67
541	Alternative polyadenylation and differential expression of Shank mRNAs in the synaptic neuropil. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130137.	1.8	24
542	Disease-in-a-Dish. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S155-S168.	0.7	18
543	Autism Spectrum Disorder Genetics. Harvard Review of Psychiatry, 2014, 22, 65-75.	0.9	59

#	Article	IF	CITATIONS
544	SYN2 is an autism predisposing gene: loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth. Human Molecular Genetics, 2014, 23, 90-103.	1.4	80
545	The Social Brain Network and Autism. Annals of Neurosciences, 2014, 21, 69-73.	0.9	38
546	Pre-clinical models of neurodevelopmental disorders: focus on the cerebellum. Reviews in the Neurosciences, 2014, 25, 177-94.	1.4	34
547	Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology. Autism Research & Treatment, 2014, 2014, 1-15.	0.1	40
548	Autism and Fragile X Syndrome. Seminars in Neurology, 2014, 34, 258-265.	0.5	43
549	Common DNA methylation alterations in multiple brain regions in autism. Molecular Psychiatry, 2014, 19, 862-871.	4.1	279
550	The PSD protein ProSAP2/Shank3 displays synapto-nuclear shuttling which is deregulated in a schizophrenia-associated mutation. Experimental Neurology, 2014, 253, 126-137.	2.0	59
551	The utility of patient specific induced pluripotent stem cells for the modelling of Autistic Spectrum Disorders. Psychopharmacology, 2014, 231, 1079-1088.	1.5	43
552	Glutamatergic Postsynaptic Density Protein Dysfunctions in Synaptic Plasticity and Dendritic Spines Morphology: Relevance to Schizophrenia and Other Behavioral Disorders Pathophysiology, and Implications for Novel Therapeutic Approaches. Molecular Neurobiology, 2014, 49, 484-511.	1.9	116
553	Convergent synaptic and circuit substrates underlying autism genetic risks. Frontiers in Biology, 2014, 9, 137-150.	0.7	16
554	Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Human Molecular Genetics, 2014, 23, 3024-3034.	1.4	27
555	Glutamatergic candidate genes in autism spectrum disorder: an overview. Journal of Neural Transmission, 2014, 121, 1081-1106.	1.4	23
556	Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neuroscience and Biobehavioral Reviews, 2014, 46, 228-241.	2.9	87
557	A commonly carried genetic variant, rs9616915, in SHANK3 gene is associated with a reduced risk of autism spectrum disorder: replication in a Chinese population. Molecular Biology Reports, 2014, 41, 1591-1595.	1.0	13
558	Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology, 2014, 231, 1037-1062.	1.5	70
559	Clinical and genomic evaluation of 201 patients with Phelan–McDermid syndrome. Human Genetics, 2014, 133, 847-859.	1.8	142
560	Identification of risk genes for autism spectrum disorder through copy number variation analysis in Austrian families. Neurogenetics, 2014, 15, 117-127.	0.7	98
561	Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: Detailed spectrographic analyses and developmental profiles. Neuroscience and Biobehavioral Reviews, 2014, 43, 199-212.	2.9	115

#	Article	IF	CITATIONS
562	Glutamatergic agents in Autism Spectrum Disorders: Current trends. Research in Autism Spectrum Disorders, 2014, 8, 255-265.	0.8	13
564	Sarm1, a neuronal inflammatory regulator, controls social interaction, associative memory and cognitive flexibility in mice. Brain, Behavior, and Immunity, 2014, 37, 142-151.	2.0	38
565	A blueprint for research on Shankopathies: A view from research on autism spectrum disorder. Developmental Neurobiology, 2014, 74, 85-112.	1.5	12
566	A de novo convergence of autism genetics and molecular neuroscience. Trends in Neurosciences, 2014, 37, 95-105.	4.2	410
567	Dendritic Spines: The Locus of Structural and Functional Plasticity. Physiological Reviews, 2014, 94, 141-188.	13.1	399
568	Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Human Molecular Genetics, 2014, 23, 2752-2768.	1.4	140
570	Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Human Molecular Genetics, 2014, 23, 1563-1578.	1.4	134
571	A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Developmental Neurobiology, 2014, 74, 136-146.	1.5	91
572	Genomic and genetic aspects of autism spectrum disorder. Biochemical and Biophysical Research Communications, 2014, 452, 244-253.	1.0	81
573	Common genetic variants on 1p13.2 associate with risk of autism. Molecular Psychiatry, 2014, 19, 1212-1219.	4.1	85
574	Neurexin Dysfunction in Adult Neurons Results in Autistic-like Behavior in Mice. Cell Reports, 2014, 8, 338-346.	2.9	68
575	Sensory Integration in Mouse Insular Cortex Reflects GABA Circuit Maturation. Neuron, 2014, 83, 894-905.	3.8	282
576	Neuroimaging in autism—from basic science to translational research. Nature Reviews Neurology, 2014, 10, 82-91.	4.9	94
577	Advances in Genetic Discovery and Implications for Counseling of Patients and Families with Autism Spectrum Disorders. Current Genetic Medicine Reports, 2014, 2, 124-134.	1.9	7
578	Etiology of Autism Spectrum Disorder: A Genomics Perspective. Current Psychiatry Reports, 2014, 16, 501.	2.1	12
579	Loss of COMMD1 and copper overload disrupt zinc homeostasis and influence an autism-associated pathway at glutamatergic synapses. BioMetals, 2014, 27, 715-730.	1.8	24
580	Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Molecular Autism, 2014, 5, 30.	2.6	137
581	Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits. Molecular Autism, 2014, 5, 32.	2.6	71

ARTICLE IF CITATIONS Epigenetics and Pervasive Developmental Disorders., 2014, , 395-424. 1 582 Genetic diagnosis of autism spectrum disorders: The opportunity and challenge in the genomics era. 2.7 38 Critical Reviews in Clinical Laboratory Sciences, 2014, 51, 249-262. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: 584 Developmental aspects and effects of social context. Journal of Neuroscience Methods, 2014, 234, 1.3 65 92-100. Zinc deficiency dysregulates the synaptic ProSAP/Shank scaffold and might contribute to autism 154 spectrum disorders. Brain, 2014, 137, 137-152. Therapeutic approaches for shankopathies. Developmental Neurobiology, 2014, 74, 123-135. 586 1.525 High rate of disease-related copy number variations in childhood onset schizophrenia. Molecular 4.1 Psychiatry, 2014, 19, 568-572. Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with 588 1.4 60 autism spectrum disorders. European Journal of Human Genetics, 2014, 22, 71-78. Genes and Environment in Autism Spectrum Disorders: An Integrated Perspective., 2014, , 335-374. 592 SHANKMutations May Disorder Brain Development. Molecular Syndromology, 2014, 6, 1-3. 0.3 1 Interstitial duplication of 22q13.2 in a girl with short stature, impaired speech and language, and dysmorphism. Journal of Pediatric Genetics, 2015, 01, 047-053. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism andÂother synaptic 594 2.1 152 disorders. Journal of Neurochemistry, 2015, 135, 849-858. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Current 0.8 100 Topics in Behavioral Neurosciences, 2015, 28, 1-52. Autism spectrum disorder in Phelan-McDermid syndrome: initial characterization and 597 1.2 53 genotype-phenotype correlations. Orphanet Journal of Rare Diseases, 2015, 10, 105. Case report: an unexpected link between partial deletion of the SHANK3 gene and Heller's dementia 1.1 infantilis, a rare subtype of autism spectrum disorder. BMC Psychiatry, 2015, 15, 256. Post-transcriptional regulation of SHANK3 expression by microRNAs related to multiple 599 1.3 60 neuropsychiatric disorders. Molecular Brain, 2015, 8, 74. Ultrastructural analyses in the hippocampus CA1 field in Shank3-deficient mice. Molecular Autism, 2015, 6, 41. De novo <i>SHANK3</i> mutation causes Rett syndromeâ€like phenotype in a female patient. American 601 0.7 26 Journal of Medical Genetics, Part A, 2015, 167, 1593-1596. <scp>CASPR</scp>2 forms a complex with <scp>GPR</scp>37 via <scp>MUPP</scp>1 but not with <scp>GPR</scp>37(R558Q), an autism spectrum disorderâ€related mutation. Journal of Neurochemistry, 2.1 2015, 134, 783-793.

#	Article	IF	CITATIONS
604	Modeling autism-relevant behavioral phenotypes in rats and mice. Behavioural Pharmacology, 2015, 26, 522-540.	0.8	63
605	Specific Roles of NMDA Receptor Subunits in Mental Disorders. Current Molecular Medicine, 2015, 15, 193-205.	0.6	34
606	Novel Therapeutic Approach for Autism Spectrum Disorder: Focus on SHANK3. Current Neuropharmacology, 2015, 13, 786-792.	1.4	17
607	Evidence for the multiple hits genetic theory for inherited language impairment: a case study. Frontiers in Genetics, 2015, 6, 272.	1.1	11
608	Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Frontiers in Cellular Neuroscience, 2015, 9, 94.	1.8	148
609	Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia. Frontiers in Cellular Neuroscience, 2015, 9, 386.	1.8	86
610	MicroRNAs: Not "Fine-Tuners―but Key Regulators of Neuronal Development and Function. Frontiers in Neurology, 2015, 6, 245.	1.1	62
611	Cerebellar associative sensory learning defects in five mouse autism models. ELife, 2015, 4, e06085.	2.8	120
612	Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder. Frontiers in Physiology, 2015, 6, 324.	1.3	70
613	Assessing and Stabilizing Aberrant Neuroplasticity in Autism Spectrum Disorder: The Potential Role of Transcranial Magnetic Stimulation. Frontiers in Psychiatry, 2015, 6, 124.	1.3	18
614	Meta-analysis of differentially expressed genes in autism based on gene expression data. Genetics and Molecular Research, 2015, 14, 2146-2155.	0.3	24
615	Genetics of Autism Spectrum Disorder: Current Status and Possible Clinical Applications. Experimental Neurobiology, 2015, 24, 257-272.	0.7	133
616	Using Sibling Designs to Understand Neurodevelopmental Disorders: From Genes and Environments to Prevention Programming. BioMed Research International, 2015, 2015, 1-16.	0.9	10
617	Lithium as a rescue therapy for regression and catatonia features in two SHANK3 patients with autism spectrum disorder: case reports. BMC Psychiatry, 2015, 15, 107.	1.1	91
618	A molecular model for neurodevelopmental disorders. Translational Psychiatry, 2015, 5, e565-e565.	2.4	38
619	The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: Central mediators of pathophysiology and antidepressant activity?. Neuroscience and Biobehavioral Reviews, 2015, 52, 193-206.	2.9	77
621	Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators. Cell Reports, 2015, 11, 1400-1413.	2.9	245
622	Addressing the Genetics of Human Mental Health Disorders in Model Organisms. Annual Review of Genomics and Human Genetics, 2015, 16, 173-197.	2.5	28

#	Article	IF	CITATIONS
623	Duplications in ADHD patients harbour neurobehavioural genes that are coâ€expressed with genes associated with hyperactivity in the mouse. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 97-107.	1.1	2
624	Phenotypic and functional analysis of SHANK3 stop mutations identified in individuals with ASD and/or ID. Molecular Autism, 2015, 6, 23.	2.6	68
625	Novel mutations highlight the key role of the ankyrin repeat domain in <i>TRPV4</i> -mediated neuropathy. Neurology: Genetics, 2015, 1, e29.	0.9	20
626	Architecture of the Genetic Risk for Autism. Key Issues in Mental Health, 0, , 80-96.	0.6	0
627	Identification and functional characterization of rare SHANK2 variants in schizophrenia. Molecular Psychiatry, 2015, 20, 1489-1498.	4.1	72
629	The Emerging Picture of Autism Spectrum Disorder: Genetics and Pathology. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 111-144.	9.6	225
630	Rab3 interacting molecule 3 mutations associated with autism alter regulation of voltage-dependent Ca2+ channels. Cell Calcium, 2015, 58, 296-306.	1.1	14
631	Two knockdown models of the autism genes SYNGAP1 and SHANK3 in zebrafish produce similar behavioral phenotypes associated with embryonic disruptions of brain morphogenesis. Human Molecular Genetics, 2015, 24, 4006-4023.	1.4	67
632	Clinical and Molecular Cytogenetic Characterization of a de novo Interstitial 1p31.1p31.3 Deletion in a Boy with Moderate Intellectual Disability and Severe Language Impairment. Cytogenetic and Genome Research, 2015, 146, 39-43.	0.6	16
633	Human Structural Variation: Mechanisms of Chromosome Rearrangements. Trends in Genetics, 2015, 31, 587-599.	2.9	192
634	Autism-Associated Insertion Mutation (InsG) of Shank3 Exon 21 Causes Impaired Synaptic Transmission and Behavioral Deficits. Journal of Neuroscience, 2015, 35, 9648-9665.	1.7	136
635	Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform. International Journal of Molecular Sciences, 2015, 16, 11522-11530.	1.8	4
636	Discovery of Rare Mutations in Autism: Elucidating Neurodevelopmental Mechanisms. Neurotherapeutics, 2015, 12, 553-571.	2.1	21
637	Recent Advances on the Modular Organization of the Cortex. , 2015, , .		3
638	Exome sequencing unravels unexpected differential diagnoses in individuals with the tentative diagnosis of Coffin–Siris and Nicolaides–Baraitser syndromes. Human Genetics, 2015, 134, 553-568.	1.8	59
639	Phelan–McDermid Syndrome and SHANK3: Implications for Treatment. Neurotherapeutics, 2015, 12, 620-630.	2.1	83
640	Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurology, The, 2015, 14, 1109-1120.	4.9	374
641	Differential Local Connectivity and Neuroinflammation Profiles in the Medial Prefrontal Cortex and Hippocampus in the Valproic Acid Rat Model of Autism. Developmental Neuroscience, 2015, 37, 215-231.	1.0	82

#	Article	IF	CITATIONS
642	The association of GPR85 with PSD-95-neuroligin complex and autism spectrum disorder: a molecular analysis. Molecular Autism, 2015, 6, 17.	2.6	32
643	MicroRNA-7/Shank3 axis involved in schizophrenia pathogenesis. Journal of Clinical Neuroscience, 2015, 22, 1254-1257.	0.8	28
644	Autism and the synapse. Current Opinion in Neurology, 2015, 28, 91-102.	1.8	156
645	The Use of Induced Pluripotent Stem Cell Technology to Advance Autism Research and Treatment. Neurotherapeutics, 2015, 12, 534-545.	2.1	24
646	Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron, 2015, 87, 1215-1233.	3.8	1,219
647	Phelan McDermid Syndrome. Journal of Child Neurology, 2015, 30, 1861-1870.	0.7	62
648	Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders. Pharmacological Research, 2015, 102, 71-80.	3.1	15
649	Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism. BMC Bioinformatics, 2015, 16, 186.	1.2	17
650	Autism Spectrum Disorder - A Complex Genetic Disorder. Folia Medica, 2015, 57, 19-28.	0.2	33
651	Genome-wide disruption of 5-hydroxymethylcytosine in a mouse model of autism. Human Molecular Genetics, 2015, 24, ddv411.	1.4	38
652	Inactivation of the Catalytic Phosphatase Domain of <scp>PTPRT/RPTPÏ</scp> Increases Social Interaction in Mice. Autism Research, 2015, 8, 19-28.	2.1	8
653	Developing Medications Targeting Glutamatergic Dysfunction in Autism: Progress to Date. CNS Drugs, 2015, 29, 453-463.	2.7	24
654	Decreased expression of mGluR5 within the dorsolateral prefrontal cortex in autism and increased microglial number in mGluR5 knockout mice: Pathophysiological and neurobehavioral implications. Brain, Behavior, and Immunity, 2015, 49, 197-205.	2.0	43
655	Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron, 2015, 87, 684-698.	3.8	858
656	From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 2015, 16, 551-563.	4.9	764
657	Molecular Pathways in Autistic Spectrum Disorders. Key Issues in Mental Health, 0, , 97-112.	0.6	0
658	MRI Surface-Based Brain Morphometry in Egyptian Autistic and Typically Developing Children. Folia Phoniatrica Et Logopaedica, 2015, 67, 29-35.	0.5	3
659	Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation. Nature Communications, 2015, 6, 7168.	5.8	101

	CITATION RE	PORT	
#	Article	IF	Citations
660	SHANK1 and autism spectrum disorders. Science China Life Sciences, 2015, 58, 985-990.	2.3	10
661	The complex genetics in autism spectrum disorders. Science China Life Sciences, 2015, 58, 933-945.	2.3	7
662	Identification of Rare, Single-Nucleotide Mutations in NDE1 and Their Contributions to Schizophrenia Susceptibility. Schizophrenia Bulletin, 2015, 41, 744-753.	2.3	26
663	Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry, 2015, 20, 1350-1365.	4.1	175
664	Use of Transcranial Magnetic Stimulation in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2015, 45, 524-536.	1.7	66
665	Synaptic Signaling in Learning and Memory. Cold Spring Harbor Perspectives in Biology, 2016, 8, a016824.	2.3	127
666	Brain Stimulation and Modulation for Autism Spectrum Disorder. Hanyang Medical Reviews, 2016, 36, 65.	0.4	4
667	SHANK Mutations in Intellectual Disability andÂAutism Spectrum Disorder. , 2016, , 151-160.		8
668	A Short Review on the Current Understanding of Autism Spectrum Disorders. Experimental Neurobiology, 2016, 25, 1-13.	0.7	155
669	Mouse Genetic Models of Human Brain Disorders. Frontiers in Genetics, 2016, 7, 40.	1.1	46
670	Characterization of the Statistical Signatures of Micro-Movements Underlying Natural Gait Patterns in Children with Phelan McDermid Syndrome: Towards Precision-Phenotyping of Behavior in ASD. Frontiers in Integrative Neuroscience, 2016, 10, 22.	1.0	27
671	Double In situ Hybridization for MicroRNAs and mRNAs in Brain Tissues. Frontiers in Molecular Neuroscience, 2016, 9, 126.	1.4	11
672	Genetic Causes of Autism Spectrum Disorders. , 2016, , 13-24.		6
673	Enlarged dendritic spines and pronounced neophobia in mice lacking the PSD protein RICH2. Molecular Brain, 2016, 9, 28.	1.3	27
674	Zinc Stabilizes Shank3 at the Postsynaptic Density of Hippocampal Synapses. PLoS ONE, 2016, 11, e0153979.	1.1	32
675	A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiatric Disease and Treatment, 2016, Volume 12, 1687-1703.	1.0	64
676	Prenatal valproate treatment produces autistic-like behavior and increases metabotropic glutamate receptor 1A-immunoreactivity in the hippocampus of juvenile rats. Molecular Medicine Reports, 2016, 14, 2807-2814.	1.1	12
677	Potential serum biomarkers from a metabolomics study of autism. Journal of Psychiatry and Neuroscience, 2016, 41, 27-37.	1.4	102

# 678	ARTICLE Phelan–McDermid Syndrome. , 2016, , 347-364.	IF	CITATIONS 3
679	Brain connectivity in autism spectrum disorder. Current Opinion in Neurology, 2016, 29, 137-147.	1.8	120
680	Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Research, 2016, 9, 513-535.	2.1	26
681	Neuropsychological phenotype and psychopathology in seven adult patients with Phelanâ€ <scp>McDermid</scp> syndrome: implications for treatment strategy. Genes, Brain and Behavior, 2016, 15, 395-404.	1.1	33
682	Altered Striatal Synaptic Function and Abnormal Behaviour in <i>Shank3</i> Exon4â€9 Deletion Mouse Model of Autism. Autism Research, 2016, 9, 350-375.	2.1	144
683	The overâ€pruning hypothesis of autism. Developmental Science, 2016, 19, 284-305.	1.3	83
684	SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons. Neuron, 2016, 92, 1279-1293.	3.8	119
685	Developmental profiling of ASD-related shank3 transcripts and their differential regulation by valproic acid in zebrafish. Development Genes and Evolution, 2016, 226, 389-400.	0.4	17
686	Shank Modulates Postsynaptic Wnt Signaling to Regulate Synaptic Development. Journal of Neuroscience, 2016, 36, 5820-5832.	1.7	50
687	Mouse Behavior and Models for Autism Spectrum Disorders. , 2016, , 269-293.		5
688	Genome-wide analysis of copy number variations identifies PARK2 as a candidate gene for autism spectrum disorder. Molecular Autism, 2016, 7, 23.	2.6	56
689	Advancing the understanding of autism disease mechanisms through genetics. Nature Medicine, 2016, 22, 345-361.	15.2	684
690	Endosomal system genetics and autism spectrum disorders: A literature review. Neuroscience and Biobehavioral Reviews, 2016, 65, 95-112.	2.9	11
692	The Neurobiological Basis for Social Affiliation in Autism Spectrum Disorder and Schizophrenia. Current Behavioral Neuroscience Reports, 2016, 3, 154-164.	0.6	1
693	Receptor Tyrosine Kinase MET Interactome and Neurodevelopmental Disorder Partners at the Developing Synapse. Biological Psychiatry, 2016, 80, 933-942.	0.7	16
694	Marmosets: A Neuroscientific Model of Human Social Behavior. Neuron, 2016, 90, 219-233.	3.8	260
695	Chromosomal microarray analysis in clinical evaluation of neurodevelopmental disorders-reporting a novel deletion of SETDB1 and illustration of counseling challenge. Pediatric Research, 2016, 80, 371-381.	1.1	16
696	Autism spectrum disorder and schizophrenia: boundaries and uncertainties. BJ Psych Advances, 2016, 22, 316-324.	0.5	41

#	ARTICLE	IF	CITATIONS
697	Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency Syndrome. EBioMedicine, 2016, 9, 293-305.	2.7	79
698	Neurons Derived From Patient-Specific Induced Pluripotent Stem Cells: a Promising Strategy Towards Developing Novel Pharmacotherapies for Autism Spectrum Disorders. EBioMedicine, 2016, 9, 21-22.	2.7	4
699	Behavioral phenotypes of genetic mouse models of autism. Genes, Brain and Behavior, 2016, 15, 7-26.	1.1	137
700	Tentative clinical diagnosis of Lujanâ€Fryns syndrome—A conglomeration of different genetic entities?. American Journal of Medical Genetics, Part A, 2016, 170, 94-102.	0.7	11
701	Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength. Journal of Neuroscience, 2016, 36, 9124-9134.	1.7	50
702	Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype. Human Genetics, 2016, 135, 1343-1354.	1.8	61
703	Copy number variation analysis in adults with catatonia confirms haploinsufficiency of SHANK3 as a predisposing factor. European Journal of Medical Genetics, 2016, 59, 436-443.	0.7	20
704	16p11.2 deletion and duplication: Characterizing neurologic phenotypes in a large clinically ascertained cohort. American Journal of Medical Genetics, Part A, 2016, 170, 2943-2955.	0.7	131
705	Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders?. Journal of Neuroscience, 2016, 36, 11411-11417.	1.7	99
706	A systematic variant annotation approach for ranking genes associated with autism spectrum disorders. Molecular Autism, 2016, 7, 44.	2.6	48
707	The emerging roles of MicroRNAs in autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 2016, 71, 729-738.	2.9	51
708	Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nature Communications, 2016, 7, 11459.	5.8	292
709	If genetic variation could talk: What genomic data may teach us about the importance of gene expression regulation in the genetics of autism. Molecular and Cellular Probes, 2016, 30, 346-356.	0.9	3
710	Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nature Communications, 2016, 7, 12627.	5.8	180
711	Developmental phenotype in Phelan-McDermid (22q13.3 deletion) syndrome: a systematic and prospective study in 34 children. Journal of Neurodevelopmental Disorders, 2016, 8, 16.	1.5	51
712	Overexpression of Homer1a in the basal and lateral amygdala impairs fear conditioning and induces an autism-like social impairment. Molecular Autism, 2016, 7, 16.	2.6	28
713	Brief Report: Sensory Reactivity in Children with Phelan–McDermid Syndrome. Journal of Autism and Developmental Disorders, 2016, 46, 2508-2513.	1.7	26
714	The Genetics of Autism Spectrum Disorders. Research and Perspectives in Endocrine Interactions, 2016, , 101-129.	0.2	47

#	Article	IF	CITATIONS
715	The PI3K signaling pathway as a pharmacological target in Autism related disorders and Schizophrenia. Molecular and Cellular Therapies, 2016, 4, 2.	0.2	51
716	Current knowledge on the genetics of autism and propositions for future research. Comptes Rendus - Biologies, 2016, 339, 300-307.	0.1	97
717	Prenatal Exposure to Histone Deacetylase Inhibitors Affects Gene Expression of Autism-Related Molecules and Delays Neuronal Maturation. Neurochemical Research, 2016, 41, 2574-2584.	1.6	29
718	Genomeâ€wide Association Study of Autism Spectrum Disorder in the East Asian Populations. Autism Research, 2016, 9, 340-349.	2.1	89
719	Early communication deficits in the <i>Shank1</i> knockout mouse model for autism spectrum disorder: Developmental aspects and effects of social context. Autism Research, 2016, 9, 696-709.	2.1	57
720	The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neuroscience and Biobehavioral Reviews, 2016, 63, 207-222.	2.9	66
721	DNA methylation analysis in constitutional disorders: Clinical implications of the epigenome. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 147-165.	2.7	28
722	The autism-associated MET receptor tyrosine kinase engages early neuronal growth mechanism and controls glutamatergic circuits development in the forebrain. Molecular Psychiatry, 2016, 21, 925-935.	4.1	42
723	Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects. Neuron, 2016, 89, 147-162.	3.8	279
724	Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops. Neuron, 2016, 89, 1131-1156.	3.8	159
725	Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Molecular Psychiatry, 2016, 21, 1690-1695.	4.1	88
726	Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature, 2016, 530, 481-484.	13.7	347
727	Focus on Autism and Related Conditions. Focus (American Psychiatric Publishing), 2016, 14, 3-8.	0.4	4
728	CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science, 2016, 351, 1199-1203.	6.0	146
729	Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Molecular Brain, 2016, 9, 10.	1.3	208
730	Early hyperactivity and precocious maturation of corticostriatal circuits in Shank3Bâ^'/â^' mice. Nature Neuroscience, 2016, 19, 716-724.	7.1	192
731	AMPA Receptors as Therapeutic Targets for Neurological Disorders. Advances in Protein Chemistry and Structural Biology, 2016, 103, 203-261.	1.0	75
732	Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links. Neuroscience, 2016, 321, 3-23.	1.1	63

#	Article	IF	CITATIONS
733	The genetics and neurobiology of ESSENCE: The third Birgit Olsson lecture. Nordic Journal of Psychiatry, 2016, 70, 1-9.	0.7	16
734	Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3. Molecular Psychiatry, 2016, 21, 159-168.	4.1	44
735	Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism. Molecular Psychiatry, 2016, 21, 936-945.	4.1	85
736	Modeling autism spectrum disorders with human neurons. Brain Research, 2017, 1656, 49-54.	1.1	17
737	Touchscreen learning deficits and normal social approach behavior in the Shank3B model of Phelan–McDermid Syndrome and autism. Neuroscience, 2017, 345, 155-165.	1.1	52
738	Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Molecular Psychiatry, 2017, 22, 689-702.	4.1	134
739	CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Molecular Psychiatry, 2017, 22, 625-633.	4.1	55
740	Neurological Regeneration. Stem Cells in Clinical Applications, 2017, , .	0.4	1
741	Genetics of Human Handedness and Laterality. Neuromethods, 2017, , 523-552.	0.2	10
742	Stem Cell Therapy for Autism. Stem Cells in Clinical Applications, 2017, , 121-136.	0.4	0
743	Publisher's note. Neuroscience and Biobehavioral Reviews, 2017, 80, 210.	2.9	19
744	Mice lacking GRIP1/2 show increased social interactions and enhanced phosphorylation at GluA2-S880. Behavioural Brain Research, 2017, 321, 176-184.	1.2	12
745	A Novel Human <i>CAMK2A</i> Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors. Journal of Neuroscience, 2017, 37, 2216-2233.	1.7	83
746	An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neuroscience Bulletin, 2017, 33, 183-193.	1.5	561
747	A part of patients with autism spectrum disorder has haploidy of HPC-1/syntaxin1A gene that possibly causes behavioral disturbance as in experimentally gene ablated mice. Neuroscience Letters, 2017, 644, 5-9.	1.0	19
748	SHANK proteins: roles at the synapse and in autism spectrum disorder. Nature Reviews Neuroscience, 2017, 18, 147-157.	4.9	508
749	SHANK proteins limit integrin activation by directly interacting with Rap1 andÂR-Ras. Nature Cell Biology, 2017, 19, 292-305.	4.6	117
750	Constitutional Epi/Genetic Conditions: Genetic, Epigenetic, and Environmental Factors. Journal of Pediatric Genetics, 2017, 06, 030-041.	0.3	15

#	Article	IF	CITATIONS
751	Neurobiology of Autism Spectrum Disorders. , 2017, , 29-93.		1
752	The Yin and Yang of Autism Genetics: How Rare De Novo and Common Variations Affect Liability. Annual Review of Genomics and Human Genetics, 2017, 18, 167-187.	2.5	44
753	De novo unbalanced translocation (4p duplication/8p deletion) in a patient with autism, OCD, and overgrowth syndrome. American Journal of Medical Genetics, Part A, 2017, 173, 1656-1662.	0.7	9
754	Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the postâ€synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder. Hippocampus, 2017, 27, 906-919.	0.9	31
755	Abnormal Function of Metalloproteins Underlies Most Neurodegenerative Diseases. , 2017, , 415-438.		2
756	Novel Unbalanced Translocations Affecting the Long Arms of Chromosomes 10 and 22 Cause Complex Syndromes with Very Severe Neurodevelopmental Delay, Speech Impairment, Autistic Behavior, and Epilepsy. Cytogenetic and Genome Research, 2017, 151, 171-178.	0.6	8
757	Anchoring high concentrations of SynGAP at postsynaptic densities via liquid-liquid phase separation. Small GTPases, 2019, 10, 1-9.	0.7	16
758	Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nature Neuroscience, 2017, 20, 1043-1051.	7.1	152
759	Genetic variants in the transcription regulatory region of MEGF10 are associated with autism in Chinese Han population. Scientific Reports, 2017, 7, 2292.	1.6	7
760	Clinical and molecular characterization of three genomic rearrangements at chromosome 22q13.3 associated with autism spectrum disorder. Psychiatric Genetics, 2017, 27, 23-33.	0.6	29
761	Genome-wide Methyl-Seq analysis of blood-brain targets of glucocorticoid exposure. Epigenetics, 2017, 12, 637-652.	1.3	39
762	Anatomy and Cell Biology of Autism Spectrum Disorder: Lessons from Human Genetics. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 1-25.	1.0	10
763	Autism-like behaviours and enhanced memory formation and synaptic plasticity in Lrfn2/SALM1-deficient mice. Nature Communications, 2017, 8, 15800.	5.8	62
764	Investigation of <i>SHANK3</i> in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 390-398.	1.1	34
765	Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Scientific Reports, 2017, 7, 45190.	1.6	56
766	VTA DA neuron excitatory synapses in Shank3 Δex ^{4–9} mouse line. Synapse, 2017, 71, e21955.	0.6	21
767	Is insulin growth factor-1 the future for treating autism spectrum disorder and/or schizophrenia?. Medical Hypotheses, 2017, 99, 23-25.	0.8	20
768	A Presynaptic Function of Shank Protein in <i>Drosophila</i> . Journal of Neuroscience, 2017, 37, 11592-11604.	1.7	24

#	Article	IF	CITATIONS
770	Genomic Patterns of De Novo Mutation in Simplex Autism. Cell, 2017, 171, 710-722.e12.	13.5	308
771	A Scaled Framework for CRISPR Editing of Human Pluripotent Stem Cells to Study Psychiatric Disease. Stem Cell Reports, 2017, 9, 1315-1327.	2.3	17
772	Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. Journal of Medicinal Chemistry, 2017, 60, 9114-9141.	2.9	46
773	Speech and Language: Translating the Genome. Trends in Genetics, 2017, 33, 642-656.	2.9	57
774	RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer. Genes and Development, 2017, 31, 2099-2112.	2.7	32
775	Characterization of the zinc-induced Shank3 interactome of mouse synaptosome. Biochemical and Biophysical Research Communications, 2017, 494, 581-586.	1.0	13
776	Structure of an unconventional SH3 domain from the postsynaptic density protein Shank3 at ultrahigh resolution. Biochemical and Biophysical Research Communications, 2017, 490, 806-812.	1.0	16
777	Current status of biological treatment options in Autism Spectrum Disorder. Asian Journal of Psychiatry, 2017, 30, 1-10.	0.9	10
778	Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Molecular Autism, 2017, 8, 26.	2.6	135
779	The coâ€occurrence of Down syndrome and autism spectrum disorder: is it because of additional genetic variations?. Prenatal Diagnosis, 2017, 37, 31-36.	1.1	16
780	The PHF21B gene is associated with major depression and modulates the stress response. Molecular Psychiatry, 2017, 22, 1015-1025.	4.1	56
781	Enhancing inhibitory synaptic function reverses spatial memory deficits in Shank2 mutant mice. Neuropharmacology, 2017, 112, 104-112.	2.0	56
782	Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking?. World Neurosurgery, 2017, 98, 659-672.	0.7	5
783	Novel Shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function. Autism Research, 2017, 10, 42-65.	2.1	101
784	Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Developmental Neurobiology, 2017, 77, 393-404.	1.5	193
785	A genome-wide investigation into parent-of-origin effects in autism spectrum disorder identifies previously associated genes including SHANK3. European Journal of Human Genetics, 2017, 25, 234-239.	1.4	37
786	A framework to identify contributing genes in patients with Phelan-McDermid syndrome. Npj Genomic Medicine, 2017, 2, 32.	1.7	58
787	Molecular mechanisms of autism as a form of synaptic dysfunction. Russian Journal of Genetics: Applied Research, 2017, 7, 869-877.	0.4	8

#	Article	IF	CITATIONS
788	Intracellular Pathways Associated with the Etiology of Autism. , 0, , .		0
789	Autism spectrum disorders: an updated guide for genetic counseling. Einstein (Sao Paulo, Brazil), 2017, 15, 233-238.	0.3	39
790	Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy. International Journal of Molecular Sciences, 2017, 18, 618.	1.8	24
791	Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. International Journal of Molecular Sciences, 2017, 18, 2056.	1.8	24
792	Delineating the Common Biological Pathways Perturbed by ASD's Genetic Etiology: Lessons from Network-Based Studies. International Journal of Molecular Sciences, 2017, 18, 828.	1.8	25
793	Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. ELife, 2017, 6, .	2.8	136
794	Early Origin and Evolution of the Angelman Syndrome Ubiquitin Ligase Gene Ube3a. Frontiers in Cellular Neuroscience, 2017, 11, 62.	1.8	13
795	Proteomic Analysis of Post-synaptic Density Fractions from Shank3 Mutant Mice Reveals Brain Region Specific Changes Relevant to Autism Spectrum Disorder. Frontiers in Molecular Neuroscience, 2017, 10, 26.	1.4	66
796	Integrative Analysis of Brain Region-specific Shank3 Interactomes for Understanding the Heterogeneity of Neuronal Pathophysiology Related to SHANK3 Mutations. Frontiers in Molecular Neuroscience, 2017, 10, 110.	1.4	32
797	Striatal Transcriptome and Interactome Analysis of Shank3-overexpressing Mice Reveals the Connectivity between Shank3 and mTORC1 Signaling. Frontiers in Molecular Neuroscience, 2017, 10, 201.	1.4	48
798	Pathological Role of Peptidyl-Prolyl Isomerase Pin1 in the Disruption of Synaptic Plasticity in Alzheimer's Disease. Neural Plasticity, 2017, 2017, 1-12.	1.0	28
799	Hippocampal Regulation of Postsynaptic Density Homer1 by Associative Learning. Neural Plasticity, 2017, 2017, 1-11.	1.0	32
800	Functional significance of rare neuroligin 1 variants found in autism. PLoS Genetics, 2017, 13, e1006940.	1.5	76
801	Prospective study of autism phenomenology and the behavioural phenotype of Phelan–McDermid syndrome: comparison to fragile X syndrome, Down syndrome and idiopathic autism spectrum disorder. Journal of Neurodevelopmental Disorders, 2017, 9, 37.	1.5	25
802	Zinc in Autism. , 2017, , 153-173.		0
803	Structural and Functional Organization of the Postsynaptic Densityâ~†. , 2017, , .		1
804	The Genetic and Epigenetic Basis Involved in the Pathophysiology of ASD: Therapeutic Implications. , 0, ,		1
805	Wnt/Ĵ²-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Translational Psychiatry, 2018, 8, 45.	2.4	27

#	Article	IF	CITATIONS
806	Whole genome sequencing of 91 multiplex schizophrenia families reveals increased burden of rare, exonic copy number variation in schizophrenia probands and genetic heterogeneity. Schizophrenia Research, 2018, 197, 337-345.	1.1	16
807	Brain MRI abnormalities resembling Unidentified Bright Objects in a patient with Phelan-McDermid syndrome. European Journal of Paediatric Neurology, 2018, 22, 568-569.	0.7	1
808	Repint of "Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity― Neuroscience and Biobehavioral Reviews, 2018, 89, 132-150.	2.9	47
809	Developmental social communication deficits in the <i>Shank3</i> rat model of phelanâ€mcdermid syndrome and autism spectrum disorder. Autism Research, 2018, 11, 587-601.	2.1	78
810	Association between SHANK3 polymorphisms and susceptibility to autism spectrum disorder. Gene, 2018, 651, 100-105.	1.0	17
811	Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. Cell Research, 2018, 28, 221-248.	5.7	78
812	Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome. Glia, 2018, 66, 789-800.	2.5	70
813	Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development. Molecular Psychiatry, 2018, 23, 735-746.	4.1	102
814	Early Postnatal Exposure to Airborne Fine Particulate Matter Induces Autism-like Phenotypes in Male Rats. Toxicological Sciences, 2018, 162, 189-199.	1.4	58
815	Shank3â€deficient thalamocortical neurons show HCN channelopathy and alterations in intrinsic electrical properties. Journal of Physiology, 2018, 596, 1259-1276.	1.3	27
816	Synapse-to-nucleus communication: from developmental disorders to Alzheimer's disease. Current Opinion in Neurobiology, 2018, 48, 160-166.	2.0	34
817	Role of Striatal Direct Pathway 2-Arachidonoylglycerol Signaling in Sociability and Repetitive Behavior. Biological Psychiatry, 2018, 84, 304-315.	0.7	36
818	CRISPR/Cas9-induced shank3b mutant zebrafish display autism-like behaviors. Molecular Autism, 2018, 9, 23.	2.6	112
819	Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Molecular Autism, 2018, 9, 31.	2.6	152
820	nArgBP2-SAPAP-SHANK, the core postsynaptic triad associated with psychiatric disorders. Experimental and Molecular Medicine, 2018, 50, 1-9.	3.2	7
821	Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Translational Psychiatry, 2018, 8, 94.	2.4	103
822	Dendritic structural plasticity and neuropsychiatric disease. Nature Reviews Neuroscience, 2018, 19, 215-234.	4.9	344
823	Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nature Neuroscience, 2018, 21, 564-575.	7.1	192

#	Article	IF	CITATIONS
824	Worms on the spectrum - C. elegans models in autism research. Experimental Neurology, 2018, 299, 199-206.	2.0	17
825	Imaging genetics in autism spectrum disorders: Linking genetics and brain imaging in the pursuit of the underlying neurobiological mechanisms. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 101-114.	2.5	15
826	Strategies to Advance Drug Discovery in Rare Monogenic Intellectual Disability Syndromes. International Journal of Neuropsychopharmacology, 2018, 21, 201-206.	1.0	5
827	Functional analysis of schizophrenia genes using GeneAnalytics program and integrated databases. Gene, 2018, 641, 25-34.	1.0	37
828	Synaptopathology in autism spectrum disorders: Complex effects of synaptic genes on neural circuits. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 398-415.	2.5	12
829	Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOCâ€1 and BORC complexes. Developmental Neurobiology, 2018, 78, 311-330.	1.5	21
830	Behavioral phenotypes and neurobiological mechanisms in the Shank1 mouse model for autism spectrum disorder: A translational perspective. Behavioural Brain Research, 2018, 352, 46-61.	1.2	25
831	Dendritic spine actin cytoskeleton in autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 362-381.	2.5	58
832	Autism spectrum disorders and disease modeling using stem cells. Cell and Tissue Research, 2018, 371, 153-160.	1.5	14
833	Children with autism spectrum disorder who improve with fever: Insights from the Simons Simplex Collection. Autism Research, 2018, 11, 175-184.	2.1	30
834	SHANK genes in autism: Defining therapeutic targets. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 416-423.	2.5	45
835	Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 84, 424-439.	2.5	28
836	Excessive UBE3A dosage impairs retinoic acid signaling and synaptic plasticity in autism spectrum disorders. Cell Research, 2018, 28, 48-68.	5.7	95
837	Psychiatry in a Dish: Stem Cells and Brain Organoids Modeling Autism Spectrum Disorders. Biological Psychiatry, 2018, 83, 558-568.	0.7	48
838	Identification of <i>de novo</i> germline mutations and causal genes for sporadic diseases using trioâ€based wholeâ€exome/genome sequencing. Biological Reviews, 2018, 93, 1014-1031.	4.7	35
839	SHANK3 variant as a cause of nonsyndromal autism in an 11-year-old boy and a review of published literature. Clinical Dysmorphology, 2018, 27, 113-115.	0.1	11
840	Reduced Efficacy of d-Amphetamine and 3,4-Methylenedioxymethamphetamine in Inducing Hyperactivity in Mice Lacking the Postsynaptic Scaffolding Protein SHANK1. Frontiers in Molecular Neuroscience, 2018, 11, 419.	1.4	5
841	Behavioral Phenotyping of an Improved Mouse Model of Phelan–McDermid Syndrome with a Complete Deletion of the <i>Shank3</i> Gene. ENeuro, 2018, 5, ENEURO.0046-18.2018.	0.9	79

#	Article	IF	CITATIONS
842	Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: a systematic review. Journal of Psychiatry and Neuroscience, 2018, 43, 223-244.	1.4	34
843	An opposing function of paralogs in balancing developmental synapse maturation. PLoS Biology, 2018, 16, e2006838.	2.6	35
844	Synaptopathology Involved in Autism Spectrum Disorder. Frontiers in Cellular Neuroscience, 2018, 12, 470.	1.8	191
845	Genotype and phenotype correlations for <i>SHANK3</i> de novo mutations in neurodevelopmental disorders. American Journal of Medical Genetics, Part A, 2018, 176, 2668-2676.	0.7	25
846	Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Molecular Autism, 2018, 9, 48.	2.6	23
847	De novo Mutations (DNMs) in Autism Spectrum Disorder (ASD): Pathway and Network Analysis. Frontiers in Genetics, 2018, 9, 406.	1.1	40
848	Effect of intraperitoneal or intracerebroventricular injection of streptozotocin on learning and memory in mice. Experimental and Therapeutic Medicine, 2018, 16, 2375-2380.	0.8	13
849	Lost in Translation: Traversing the Complex Path from Genomics to Therapeutics in Autism Spectrum Disorder. Neuron, 2018, 100, 406-423.	3.8	98
850	Environmental enrichment has minimal effects on behavior in the Shank3 complete knockout model of autism spectrum disorder. Brain and Behavior, 2018, 8, e01107.	1.0	15
851	Sex Hormones Regulate SHANK Expression. Frontiers in Molecular Neuroscience, 2018, 11, 337.	1.4	28
852	Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Frontiers in Molecular Neuroscience, 2018, 11, 405.	1.4	53
853	GABA Neuronal Deletion of Shank3 Exons 14–16 in Mice Suppresses Striatal Excitatory Synaptic Input and Induces Social and Locomotor Abnormalities. Frontiers in Cellular Neuroscience, 2018, 12, 341.	1.8	45
854	Distinct Phenotypes of Shank2 Mouse Models Reflect Neuropsychiatric Spectrum Disorders of Human Patients With SHANK2 Variants. Frontiers in Molecular Neuroscience, 2018, 11, 240.	1.4	48
855	Plausibility of the zebrafish embryos/larvae as an alternative animal model for autism: A comparison study of transcriptome changes. PLoS ONE, 2018, 13, e0203543.	1.1	19
856	Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170037.	1.8	20
857	Persistent 6-OH-BDE-47 exposure impairs functional neuronal maturation and alters expression of neurodevelopmentally-relevant chromatin remodelers. Environmental Epigenetics, 2018, 4, dvx020.	0.9	18
858	Epigenomic Mechanisms of Human Developmental Disorders. , 2018, , 837-859.		4
859	Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain, Behavior, and Immunity, 2018, 73, 310-319.	2.0	130

#	Article	IF	CITATIONS
860	Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology, 2018, 43, 1779-1788.	2.8	48
861	Different Biometrics for Clinical Trials That Measure Volitional Control. , 2018, , 391-501.		0
862	Autism throughout genetics: Perusal of the implication of ion channels. Brain and Behavior, 2018, 8, e00978.	1.0	21
863	Genetic association between <i>SHANK2</i> polymorphisms and susceptibility to autism spectrum disorder. IUBMB Life, 2018, 70, 763-776.	1.5	14
864	Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition. Journal of Neuroinflammation, 2018, 15, 216.	3.1	62
865	Solution structures of the SH 3 domains from Shank scaffold proteins and their interactions with Cav1.3 calcium channels. FEBS Letters, 2018, 592, 2786-2797.	1.3	7
866	Actin cytoskeleton dynamics in stem cells from autistic individuals. Scientific Reports, 2018, 8, 11138.	1.6	29
867	Single-molecule fluorescence in-situ hybridization reveals that human SHANK3 mRNA expression varies during development and in autism-associated SHANK3 heterozygosity. Stem Cell Research and Therapy, 2018, 9, 206.	2.4	14
868	The Communication Between the Immune and Nervous Systems: The Role of IL-1β in Synaptopathies. Frontiers in Molecular Neuroscience, 2018, 11, 111.	1.4	45
869	Common Ribs of Inhibitory Synaptic Dysfunction in the Umbrella of Neurodevelopmental Disorders. Frontiers in Molecular Neuroscience, 2018, 11, 132.	1.4	19
870	Prospects of Zinc Supplementation in Autism Spectrum Disorders and Shankopathies Such as Phelan McDermid Syndrome. Frontiers in Synaptic Neuroscience, 2018, 10, 11.	1.3	33
871	Stem Cells to Inform the Neurobiology of Mental Illness. Current Topics in Behavioral Neurosciences, 2018, 40, 13-43.	0.8	4
872	Abnormal Social Behaviors and Dysfunction of Autism-Related Genes Associated With Daily Agonistic Interactions in Mice. , 2018, , 309-344.		2
873	USP8 Deubiquitinates SHANK3 to Control Synapse Density and SHANK3 Activity-Dependent Protein Levels. Journal of Neuroscience, 2018, 38, 5289-5301.	1.7	41
874	Functional Relevance of Missense Mutations Affecting the N-Terminal Part of Shank3 Found in Autistic Patients. Frontiers in Molecular Neuroscience, 2018, 11, 268.	1.4	15
875	PAK2 Haploinsufficiency Results in Synaptic Cytoskeleton Impairment and Autism-Related Behavior. Cell Reports, 2018, 24, 2029-2041.	2.9	64
876	GABAergic deficits and schizophrenia-like behaviors in a mouse model carrying patient-derived neuroligin-2 R215H mutation. Molecular Brain, 2018, 11, 31.	1.3	21
877	22q13 deletion syndrome: communication disorder or autism? Evidence from a specific clinical and neurophysiological phenotype. Translational Psychiatry, 2018, 8, 146.	2.4	26

#	Article	IF	CITATIONS
878	Mouse models as a tool for discovering new neurological diseases. Neurobiology of Learning and Memory, 2019, 165, 106902.	1.0	17
879	Identifying Associations Among Co-Occurring Medical Conditions in Children With Autism Spectrum Disorders. Academic Pediatrics, 2019, 19, 300-306.	1.0	49
880	Molecular Genetic Studies of Cognitive Ability. Russian Journal of Genetics, 2019, 55, 783-793.	0.2	0
881	Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice. Nature Neuroscience, 2019, 22, 1223-1234.	7.1	168
882	Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice. Neural Plasticity, 2019, 2019, 1-11.	1.0	5
883	Chemogenetic Activation of Prefrontal Cortex in Shank3-Deficient Mice Ameliorates Social Deficits, NMDAR Hypofunction, and Sgk2 Downregulation. IScience, 2019, 17, 24-35.	1.9	33
884	Patient-Derived Stem Cells, Another in vitro Model, or the Missing Link Toward Novel Therapies for Autism Spectrum Disorders?. Frontiers in Pediatrics, 2019, 7, 225.	0.9	10
885	Lrrc7 mutant mice model developmental emotional dysregulation that can be alleviated by mGluR5 allosteric modulation. Translational Psychiatry, 2019, 9, 244.	2.4	10
886	Shank3 Exons 14–16 Deletion in Glutamatergic Neurons Leads to Social and Repetitive Behavioral Deficits Associated With Increased Cortical Layer 2/3 Neuronal Excitability. Frontiers in Cellular Neuroscience, 2019, 13, 458.	1.8	33
887	<i>SHANK1</i> polymorphisms and SNP–SNP interactions among <i>SHANK</i> family: A possible cue for recognition to autism spectrum disorder in infant age. Autism Research, 2019, 12, 375-383.	2.1	10
888	Social and non-social autism symptoms and trait domains are genetically dissociable. Communications Biology, 2019, 2, 328.	2.0	57
889	Dissecting the Genetics of Autism Spectrum Disorders: A Drosophila Perspective. Frontiers in Physiology, 2019, 10, 987.	1.3	21
890	Gut microbiome: An intermediary to neurotoxicity. NeuroToxicology, 2019, 75, 41-69.	1.4	37
891	Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Scientific Reports, 2019, 9, 12719.	1.6	42
892	Complex phenotypes in ALG12-congenital disorder of glycosylation (ALG12-CDG): Case series and review of the literature. Molecular Genetics and Metabolism, 2019, 128, 409-414.	0.5	13
893	Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders. Biological Psychiatry, 2019, 86, 87-96.	0.7	24
894	Shank3 Mice Carrying the Human Q321R Mutation Display Enhanced Self-Grooming, Abnormal Electroencephalogram Patterns, and Suppressed Neuronal Excitability and Seizure Susceptibility. Frontiers in Molecular Neuroscience, 2019, 12, 155.	1.4	29
895	Atypical behaviour and connectivity in SHANK3-mutant macaques. Nature, 2019, 570, 326-331.	13.7	172

ARTICLE IF CITATIONS # Understanding intellectual disability and autism spectrum disorders from common mouse models: 896 1.5 44 synapses to behaviour. Open Biology, 2019, 9, 180265. Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning. 11.6 Nature Biomedical Engineering, 2019, 3, 930-942. 898 Epigenetic Regulations in Neuropsychiatric Disorders. Frontiers in Genetics, 2019, 10, 268. 1.1 116 Neurodevelopmental Disorders: Functional Role of Ambra1 in Autism and Schizophrenia. Molecular 899 Neurobiology, 2019, 56, 6716-6724. A multiscale analysis in CD38 $\sup \hat{a}'/\hat{a}' (sup)$ mice unveils major prefrontal cortex dysfunctions. 900 0.2 19 FASEB Journal, 2019, 33, 5823-5835. Shanks $\hat{a}\in$ multidomain molecular scaffolds of the postsynaptic density. Current Opinion in Structural Biology, 2019, 54, 122-128. 2.6 Autismâ€associated <i>Shank3</i> mutations alter mGluR expression and mGluRâ€dependent but not NMDA 902 0.6 22 receptorâ€dependent longâ€term depression. Synapse, 2019, 73, e22097. Home-cage hypoactivity in mouse genetic models of autism spectrum disorder. Neurobiology of 903 1.0 29 Learning and Memory, 2019, 165, 107000. Uncovering the Functional Link Between SHANK3 Deletions and Deficiency in Neurodevelopment Using 904 0.9 33 iPSC-Derived Human Neurons. Frontiers in Neuroanatomy, 2019, 13, 23. Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders. Advances in 0.8 Experimental Medicine and Biology, 2019, , . Brain mGluR5 in Shank3Bâ[^]/â[^] Mice Studied With in vivo [18F]FPEB PET Imaging and ex vivo 906 1.3 14 Immunoblotting. Frontiers in Psychiatry, 2019, 10, 38. Interactome Studies of Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2019, 0.8 1118, 163-173. The Neurobiology of Autism., 2019, , 129-157. 908 3 Hippocampal Lnx1–NMDAR multiprotein complex mediates initial social memory. Molecular Psychiatry, 2021, 26, 3956-3969. 909 4.1 Autism, Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutritional Interventions. 910 1.7 102 Nutrients, 2019, 11, 2812. The zebrafish subcortical social brain as a model for studying social behavior disorders. DMM Disease 59 Models and Mechanisms, 2019, 12, . Incontinence in Phelanâ€McDermid Syndrome. Journal of Pediatric Gastroenterology and Nutrition, 912 0.9 6 2019, 69, e39-e42. Region-Specific Reduction of BDNF Protein and Transcripts in the Hippocampus of Juvenile Rats 1.4 Prenatally Treated With Sodium Valproate. Frontiers in Molecular Neuroscience, 2019, 12, 261.

#	Article	IF	CITATIONS
914	Neuropsychiatric decompensation in adolescents and adults with Phelan-McDermid syndrome: a systematic review of the literature. Molecular Autism, 2019, 10, 50.	2.6	47
915	Rainer W. Guillery and the genetic analysis of brain development. European Journal of Neuroscience, 2019, 49, 900-908.	1.2	3
916	Neural tissue microphysiological systems in the era of patient-derived pluripotent stem cells. , 2019, , 249-296.		3
917	Genomeâ€wide association study and identification of chromosomal enhancer maps in multiple brain regions related to autism spectrum disorder. Autism Research, 2019, 12, 26-32.	2.1	15
918	A potential mechanistic role for neuroinflammation in reward processing impairments in autism spectrum disorder. Biological Psychology, 2019, 142, 1-12.	1.1	17
919	Neurobiology and treatment of social cognition in schizophrenia: Bridging the bed-bench gap. Neurobiology of Disease, 2019, 131, 104315.	2.1	17
920	Shank3B mutant mice display pitch discrimination enhancements and learning deficits. International Journal of Developmental Neuroscience, 2019, 72, 13-21.	0.7	21
921	Molecular Dynamics Simulations of Wild Type and Mutants of SAPAP in Complexed with Shank3. International Journal of Molecular Sciences, 2019, 20, 224.	1.8	43
922	Hypothesisâ€driven investigations of diverse pharmacological targets in two mouse models of autism. Autism Research, 2019, 12, 401-421.	2.1	42
923	Effect of Epigenetic Differences in Identical Twins. , 2019, , 25-42.		0
924	Altered spinogenesis in iPSC-derived cortical neurons from patients with autism carrying de novo SHANK3 mutations. Scientific Reports, 2019, 9, 94.	1.6	51
925	Neurodevelopmental Disabilities. , 2019, , 61-79.		0
926	Application of Humanâ€Induced Pluripotent Stem Cells (hiPSCs) to Study Synaptopathy of Neurodevelopmental Disorders. Developmental Neurobiology, 2019, 79, 20-35.	1.5	14
927	The role of Pax6 in brain development and its impact on pathogenesis of autism spectrum disorder. Brain Research, 2019, 1705, 95-103.	1.1	36
928	Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling. Molecular Psychiatry, 2019, 24, 1329-1350.	4.1	128
929	An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function. Molecular Psychiatry, 2020, 25, 2534-2555.	4.1	61
930	Amelioration of autism-like social deficits by targeting histone methyltransferases EHMT1/2 in Shank3-deficient mice. Molecular Psychiatry, 2020, 25, 2517-2533.	4.1	57
931	A kinome-wide RNAi screen identifies ERK2 as a druggable regulator of Shank3 stability. Molecular Psychiatry, 2020, 25, 2504-2516.	4.1	23

#	Article	IF	CITATIONS
932	Colonic dilation and altered <i>ex vivo</i> gastrointestinal motility in the neuroliginâ€3 knockout mouse. Autism Research, 2020, 13, 691-701.	2.1	34
933	Behavioral neuroscience of autism. Neuroscience and Biobehavioral Reviews, 2020, 110, 60-76.	2.9	78
934	Shank3 mutation in a mouse model of autism leads to changes in the S-nitroso-proteome and affects key proteins involved in vesicle release and synaptic function. Molecular Psychiatry, 2020, 25, 1835-1848.	4.1	82
935	NEXMIF/KIDLIA Knock-out Mouse Demonstrates Autism-Like Behaviors, Memory Deficits, and Impairments in Synapse Formation and Function. Journal of Neuroscience, 2020, 40, 237-254.	1.7	33
936	Shank3 Binds to and Stabilizes the Active Form of Rap1 and HRas GTPases via Its NTD-ANK Tandem with Distinct Mechanisms. Structure, 2020, 28, 290-300.e4.	1.6	18
937	Decreased amplitude and reliability of odor-evoked responses in two mouse models of autism. Journal of Neurophysiology, 2020, 123, 1283-1294.	0.9	13
938	Mice lacking neuronal calcium sensor-1 show social and cognitive deficits. Behavioural Brain Research, 2020, 381, 112420.	1.2	9
939	Severe white matter damage inSHANK3deficiency: a human and translational study. Annals of Clinical and Translational Neurology, 2020, 7, 46-58.	1.7	15
940	Neural Stem Cells from Shank3-ko Mouse Model Autism Spectrum Disorders. Molecular Neurobiology, 2020, 57, 1502-1515.	1.9	16
941	Synaptic inhibition in the neocortex: Orchestration and computation through canonical circuits and variations on the theme. Cortex, 2020, 132, 258-280.	1.1	13
942	SHANK3 Co-ordinately Regulates Autophagy and Apoptosis in Myocardial Infarction. Frontiers in Physiology, 2020, 11, 1082.	1.3	7
943	Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neuroscience and Biobehavioral Reviews, 2020, 118, 538-567.	2.9	17
944	The neuroligins and the synaptic pathway in Autism Spectrum Disorder. Neuroscience and Biobehavioral Reviews, 2020, 119, 37-51.	2.9	40
945	Cerebral organoids as tools to identify the developmental roots of autism. Molecular Autism, 2020, 11, 58.	2.6	34
946	Neuroligins and neurexins. , 2020, , 193-212.		0
947	Huntingtin gene CAG repeat size affects autism risk: Familyâ€based and case–control association study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 341-351.	1.1	5
948	Molecular architecture of postsynaptic Interactomes. Cellular Signalling, 2020, 76, 109782.	1.7	11
949	A 29 Mainland Chinese cohort of patients with Phelan–McDermid syndrome: genotype–phenotype correlations and the role of SHANK3 haploinsufficiency in the important phenotypes. Orphanet Journal of Rare Diseases, 2020, 15, 335.	1.2	25

#	Article	IF	CITATIONS
950	Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Molecular Autism, 2020, 11, 89.	2.6	17
951	The role of neuroglia in autism spectrum disorders. Progress in Molecular Biology and Translational Science, 2020, 173, 301-330.	0.9	18
952	SULT4A1 Modulates Synaptic Development and Function by Promoting the Formation of PSD-95/NMDAR Complex. Journal of Neuroscience, 2020, 40, 7013-7026.	1.7	11
953	Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus. Molecular Autism, 2020, 11, 85.	2.6	12
954	Proteomics and Metabolomics Approaches towards a Functional Insight onto AUTISM Spectrum Disorders: Phenotype Stratification and Biomarker Discovery. International Journal of Molecular Sciences, 2020, 21, 6274.	1.8	37
955	A chimeric mouse model to study human iPSC-derived neurons: the case of a truncating SHANK3 mutation. Scientific Reports, 2020, 10, 13315.	1.6	7
956	<i>N</i> -Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opinion on Therapeutic Patents, 2020, 30, 743-767.	2.4	33
957	Mechanistic Insights into the Interactions of Ras Subfamily <scp>CTPases</scp> with the <scp>SPN</scp> Domain of Autismâ€associated <scp>SHANK3</scp> ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1635-1641.	2.6	2
958	A standardized social preference protocol for measuring social deficits in mouse models of autism. Nature Protocols, 2020, 15, 3464-3477.	5.5	85
959	Exosomes derived from mesenchymal stem cells improved core symptoms of genetically modified mouse model of autism Shank3B. Molecular Autism, 2020, 11, 65.	2.6	30
960	Multiple Rare Risk Coding Variants in Postsynaptic Density-Related Genes Associated With Schizophrenia Susceptibility. Frontiers in Genetics, 2020, 11, 524258.	1.1	3
961	Individual differences in stereotypy and neuron subtype translatome with TrkB deletion. Molecular Psychiatry, 2021, 26, 1846-1859.	4.1	24
962	Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3 R451C mouse model of autism spectrum disorder. Pharmacology Biochemistry and Behavior, 2020, 195, 172955.	1.3	12
963	Copy number variations of SHANK3 and related sensory profiles in Egyptian children with autism spectrum disorder. Research in Autism Spectrum Disorders, 2020, 75, 101558.	0.8	3
964	Autism-associated SHANK3 mutations impair maturation of neuromuscular junctions and striated muscles. Science Translational Medicine, 2020, 12, .	5.8	38
965	The sociability spectrum: evidence from reciprocal genetic copy number variations. Molecular Autism, 2020, 11, 50.	2.6	10
966	Axon guidance: semaphorin/neuropilin/plexin signaling. , 2020, , 109-122.		3
967	Are Steroid Hormones Dysregulated in Autistic Girls?. Diseases (Basel, Switzerland), 2020, 8, 6.	1.0	11

ARTICLE IF CITATIONS # Inhibitory regulation of calcium transients in prefrontal dendritic spines is compromised by a 968 4.1 15 nonsense Shank3 mutation. Molecular Psychiatry, 2021, 26, 1945-1966. Truncating mutations in SHANK3 associated with global developmental delay interfere with nuclear 2.1 βâ€catenin signaling. Journal of Neurochemistry, 2020, 155, 250-263. The Genetic Control of Stoichiometry Underlying Autism. Annual Review of Neuroscience, 2020, 43, 970 5.0 10 509-533. A Multiplex Human Pluripotent Stem Cell Platform Defines Molecular and Functional Subclasses of 971 Autism-Related Genes. Cell Stem Cell, 2020, 27, 35-49.e6. meQTL and ncRNA functional analyses of 102 GWAS-SNPs associated with depression implicate HACE1 972 1.8 19 and SHANK2 genes. Clinical Epigenetics, 2020, 12, 99. Modifier genes in <i>SCN1A</i>à€related epilepsy syndromes. Molecular Genetics & amp; Genomic 0.6 Medicine, 2020, 8, e1103. Stem Cells for Improving the Treatment of Neurodevelopmental Disorders. Stem Cells and 974 1.1 7 Development, 2020, 29, 1118-1130. Transcriptomics of Gabra4 knockout mice reveals common NMDAR pathways underlying autism, 2.6 memory, and epilepsy. Molecular Autism, 2020, 11, 13. Rare genetic susceptibility variants assessment in autism spectrum disorder: detection rate and 976 2.4 21 practical use. Translational Psychiatry, 2020, 10, 77. Tau Reduction Prevents Key Features of Autism in Mouse Models. Neuron, 2020, 106, 421-437.e11. 3.8 Prenatal diagnosis and molecular cytogenetic characterization of de novo distal 5p deletion and 978 2 0.5 distal 22q duplication. Taiwanese Journal of Obstetrics and Gynecology, 2020, 59, 140-145. Psychiatric illness and regression in individuals with Phelan-McDermid syndrome. Journal of 979 1.5 Néurodevelopmental Disorders, 2020, 12, 7. CaMKIIα phosphorylation of Shank3 modulates ABI1-Shank3 interaction. Biochemical and Biophysical 980 1.0 6 Research Communications, 2020, 524, 262-267. Diffusion Tensor Imaging Abnormalities in the Uncinate Fasciculus and Inferior Longitudinal 1.0 Fasciculus in Phelan-McDermid Syndrome. Pediatric Neurology, 2020, 106, 24-31. Subacute Neuropsychiatric Syndrome in Girls With<i>SHANK3</i>Mutations Responds to 982 1.0 15 Immunomodulation. Pediatrics, 2020, 145, . The cellular and molecular basis of in vivo synaptic plasticity in rodents. American Journal of 14 Physiology - Cell Physiology, 2020, 318, C1264-C1283. Genetic and Epigenetic Etiology Underlying Autism Spectrum Disorder. Journal of Clinical Medicine, 984 1.0 78 2020, 9, 966. Modeling autism spectrum disorders in zebrafish., 2020, , 451-480.

#	Article	IF	Citations
986	Deficiency of SHANK3 isoforms impairs thermal hyperalgesia and dysregulates the expression of postsynaptic proteins in the spinal cord. Neuroscience Research, 2021, 163, 26-33.	1.0	2
987	Shank3 contributes to neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95. Neuroscience Research, 2021, 166, 34-41.	1.0	1
988	Combined cellomics and proteomics analysis reveals shared neuronal morphology and molecular pathway phenotypes for multiple schizophrenia risk genes. Molecular Psychiatry, 2021, 26, 784-799.	4.1	22
989	CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Research, 2021, 31, 37-51.	5.7	39
990	Increased rates of cerebral protein synthesis in Shank3 knockout mice: Implications for a link between synaptic protein deficit and dysregulated protein synthesis in autism spectrum disorder/intellectual disability. Neurobiology of Disease, 2021, 148, 105213.	2.1	8
991	Regulation of processing bodies: From viruses to cancer epigenetic machinery. Cell Biology International, 2021, 45, 708-719.	1.4	7
992	Speech and language phenotype in Phelan-McDermid (22q13.3) syndrome. European Journal of Human Genetics, 2021, 29, 564-574.	1.4	14
993	Identification of SHANK2 Pathogenic Variants in a Chinese Uygur Population with Schizophrenia. Journal of Molecular Neuroscience, 2021, 71, 1-8.	1.1	6
995	Repeated Behavioral Patterns in Animal Models of Autism. Autism and Child Psychopathology Series, 2021, , 47-59.	0.1	0
996	Major motor and gait deficits with sexual dimorphism in a Shank3 mutant mouse model. Molecular Autism, 2021, 12, 2.	2.6	30
997	Perinatal Exposure to Diesel Exhaust-Origin Secondary Organic Aerosol Induces Autism-Like Behavior in Rats. International Journal of Molecular Sciences, 2021, 22, 538.	1.8	8
998	Epigenetics and pervasive developmental disorders. , 2021, , 519-552.		0
1000	Postnatal therapeutic approaches in genetic neurodevelopmental disorders. Neural Regeneration Research, 2021, 16, 414.	1.6	5
1001	France and Autism. , 2021, , 2065-2073.		0
1002	Association of SHANK3 Gene Polymorphism and Parkinson Disease in the North of Iran. Basic and Clinical Neuroscience, 2021, 12, 57-62.	0.3	1
1003	Genetics and epigenetics. , 2021, , 217-238.		0
1004	Paving the Way toward Personalized Medicine: Current Advances and Challenges in Multi-OMICS Approach in Autism Spectrum Disorder for Biomarkers Discovery and Patient Stratification. Journal of Personalized Medicine, 2021, 11, 41.	1.1	23
1005	Chromosomal Abnormalities. , 2021, , 950-953.		0

IF

CITATIONS

1006	SHANK 3., 2021, , 4331-4332.		0
1007	40-Hz Auditory Steady-State Response (ASSR) as a Biomarker of Genetic Defects in the SHANK3 Gene: A Case Report of 15-Year-Old Girl with a Rare Partial SHANK3 Duplication. International Journal of Molecular Sciences, 2021, 22, 1898.	1.8	8
1008	Association of SHANK Family with Neuropsychiatric Disorders: An Update on Genetic and Animal Model Discoveries. Cellular and Molecular Neurobiology, 2022, 42, 1623-1643.	1.7	7
1009	Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neuroscience and Biobehavioral Reviews, 2021, 121, 201-219.	2.9	25
1010	Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice. Translational Psychiatry, 2021, 11, 99.	2.4	16
1011	Stressed parents, happy parents. An assessment of parenting stress and family quality of life in families with a child with Phelanâ€McDermid syndrome. Journal of Applied Research in Intellectual Disabilities, 2021, 34, 1076-1088.	1.3	5
1012	Genome sequencing broadens the range of contributing variants with clinical implications in schizophrenia. Translational Psychiatry, 2021, 11, 84.	2.4	16
1014	Deciphering the roles of glycogen synthase kinase 3 (GSK3) in the treatment of autism spectrum disorder and related syndromes. Molecular Biology Reports, 2021, 48, 2669-2686.	1.0	11
1015	Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Frontiers in Neuroscience, 2021, 15, 642745.	1.4	32
1017	Using structural analysis to clarify the impact of single nucleotide variants in neurexin/neuroligin revealed in clinical genomic sequencing. Journal of Biomolecular Structure and Dynamics, 2021, , 1-15.	2.0	0
1018	Genetic Overlap Between Attention Deficit/Hyperactivity Disorder and Autism Spectrum Disorder in SHANK2 Gene. Frontiers in Neuroscience, 2021, 15, 649588.	1.4	15
1020	Assessing and stabilizing atypical plasticity in autism spectrum disorder using rTMS: Results from a proof-of-principle study. Clinical Neurophysiology, 2022, 141, 109-118.	0.7	10
1022	Protein Phosphorylation Signaling Cascades in Autism: The Role of mTOR Pathway. Biochemistry (Moscow), 2021, 86, 577-596.	0.7	8
1023	Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. ELife, 2021, 10, .	2.8	52
1024	Altered striatum centered brain structures in SHANK3 deficient Chinese children with genotype and phenotype profiling. Progress in Neurobiology, 2021, 200, 101985.	2.8	10
1025	СÐ _; гнальные Ð⁰аÑĐºĐ°ĐʹÑ‹ Đ±ĐµĐ»ĐºĐ¾Đ2Đ¾Đ3Đ¾ Ñ"Đ¾ÑÑ"Đ¾Ñ€Đ͵Đ»Đ͵Ñ€Đ¾Đ2аĐϟ	/2 Ð,Ñ• Ð;Ñŧ	€Ð, аÑ∱Ñ,€
1026	The association of SHANK3 gene polymorphism and autism. Minerva Pediatrics, 2021, 73, 251-255.	0.2	9
1027	Discovery of G Protein-Biased Ligands against 5-HT ₇ R. Journal of Medicinal Chemistry, 2021, 64, 7453-7467.	2.9	8

ARTICLE

#

#	Article	IF	CITATIONS
1028	Autism-associated SHANK3 missense point mutations impact conformational fluctuations and protein turnover at synapses. ELife, 2021, 10, .	2.8	14
1029	Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism. American Journal of Human Genetics, 2021, 108, 1138-1150.	2.6	17
1030	SHANK3 Genotype Mediates Speech and Language Phenotypes in a Nonclinical Population. Autism Research & Treatment, 2021, 2021, 1-7.	0.1	0
1032	Truncating variants in the SHANK1 gene are associated with a spectrum of neurodevelopmental disorders. Genetics in Medicine, 2021, 23, 1912-1921.	1.1	5
1033	Mice with an autismâ€associated <scp>R451C</scp> mutation in neuroliginâ€3 show a cautious but accurate response style in touchscreen attention tasks. Genes, Brain and Behavior, 2022, 21, e12757.	1.1	11
1034	Exome Sequencing in 200 Intellectual Disability/Autistic Patients: New Candidates and Atypical Presentations. Brain Sciences, 2021, 11, 936.	1.1	17
1035	Genetic Findings as the Potential Basis of Personalized Pharmacotherapy in Phelan-McDermid Syndrome. Genes, 2021, 12, 1192.	1.0	9
1036	Restoring glutamate receptosome dynamics at synapses rescues autism-like deficits in Shank3-deficient mice. Molecular Psychiatry, 2021, 26, 7596-7609.	4.1	25
1038	Autism Spectrum Disorders: Etiology and Pathology. , 0, , 1-16.		23
1039	Shank3ÂDeficiency is Associated With Altered Profile of Neurotransmission Markers in Pups and Adult Mice. Neurochemical Research, 2021, 46, 3342-3355.	1.6	13
1041	The Monash Autism-ADHD genetics and neurodevelopment (MAGNET) project design and methodologies: a dimensional approach to understanding neurobiological and genetic aetiology. Molecular Autism, 2021, 12, 55.	2.6	6
1042	Posttranslational modifications & lithium's therapeutic effect—Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neuroscience and Biobehavioral Reviews, 2021, 127, 424-445.	2.9	7
1043	Molecular Mechanisms of Environmental Metal Neurotoxicity: A Focus on the Interactions of Metals with Synapse Structure and Function. Toxics, 2021, 9, 198.	1.6	23
1044	The Gut-Microbiota-Brain Axis in Autism Spectrum Disorder. , 0, , 95-114.		5
1045	FMR1 and Autism, an Intriguing Connection Revisited. Genes, 2021, 12, 1218.	1.0	17
1046	Expression of the Excitatory Postsynaptic Scaffolding Protein, Shank3, in Human Brain: Effect of Age and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 717263.	1.7	9
1047	Strong evidence for genotype–phenotype correlations in Phelan-McDermid syndrome: results from the developmental synaptopathies consortium. Human Molecular Genetics, 2022, 31, 625-637.	1.4	32
1048	Social Deficits and Repetitive Behaviors Are Improved by Early Postnatal Low-Dose VPA Intervention in a Novel shank3-Deficient Zebrafish Model. Frontiers in Neuroscience, 2021, 15, 682054.	1.4	9

		CITATION REPORT		
#	Article		IF	CITATIONS
1049	The Neurological Manifestations of Phelan-McDermid Syndrome. Pediatric Neurology, 2	.021, 122, 59-64.	1.0	10
1050	The use of biomarkers associated with leaky gut as a diagnostic tool for early interventi spectrum disorder: a systematic review. Gut Pathogens, 2021, 13, 54.	on in autism	1.6	33
1053	A randomized controlled trial of intranasal oxytocin in Phelan-McDermid syndrome. Mo Autism, 2021, 12, 62.	lecular	2.6	11
1054	Genetic and Epigenetic Alterations in Autism Spectrum Disorder. Global Medical Geneti 144-148.	cs, 2021, 08,	0.4	6
1055	Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat mode Angelman Syndrome. Molecular Autism, 2021, 12, 59.	ls of	2.6	10
1056	Crissâ€crossing autism spectrum disorder and adult neurogenesis. Journal of Neuroche 452-478.	mistry, 2021, 159,	2.1	18
1057	PM2.5 as a potential risk factor for autism spectrum disorder: Its possible link to neuroi oxidative stress and changes in gene expression. Neuroscience and Biobehavioral Review 534-548.	nflammation, ws, 2021, 128,	2.9	17
1058	Investigation of the Relationship between Autism Spectrum Disorder and FOXP2, GRINZ GABRA4 Genes. Noropsikiyatri Arsivi, 2021, 58, 171-175.	2B, KATNAL2 and	0.2	0
1059	Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Tissue Research, 2021, 383, 581-595.	Cell and	1.5	4
1060	Pleiotropy. , 2021, , 3537-3540.			0
1061	Human induced pluripotent stem cell-based studies; a new route toward modeling autis disorders. , 2021, , 37-81.	sm spectrum		0
1064	Neuroscience of Autism. , 0, , 379-392.			2
1066	New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum Disc Advances in Neurobiology, 2020, 24, 43-81.	order.	1.3	5
1067	Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epi Environmental Factors. Advances in Neurobiology, 2020, 24, 97-141.	igenetic, and	1.3	60
1068	Modelling Autistic Neurons with Induced Pluripotent Stem Cells. Advances in Anatomy, and Cell Biology, 2017, 224, 49-64.	Embryology	1.0	5
1069	Genes, Synapses and Autism Spectrum Disorders. Research and Perspectives in Alzheim 2008, , 169-179.	ier's Disease,	0.1	1
1070	The Role of the Postsynaptic Density in the Pathology of the Fragile X Syndrome. Result in Cell Differentiation, 2012, 54, 61-80.	s and Problems	0.2	11
1071	Human and Primate Subtelomeres. , 2014, , 153-164.			3

ARTICLE IF CITATIONS Synapse Formation in the Brain., 2013, , 229-247. 1 1072 Dendrites in Autism Spectrum Disorders., 2016, , 525-543. The Relevance of Subplate Modifications to Connectivity in the Cerebral Cortex of Individuals with 1074 6 Autism Spectrum Disorders., 2015,, 201-224. A novel SHANK3 interstitial microdeletion in a family with intellectual disability and brain MRI abnormalities resembling Unidentified Bright Objects. European Journal of Paédiatric Neurology, 2017, 21,902-906. Unravelling the genetics of autism spectrum disorders., 2011, , 53-111. 1076 5 Genetic factors and epigenetic factors for autism: Endoplasmic reticulum stress and impaired synaptic 1.4 function. Cell Biology International, 2010, 34, 13-19. Analysis of 9p24 and 11p12-13 regions in autism spectrum disorders: rs1340513 in the JMJD2C gene is 1078 0.6 35 associated with ASDs in Finnish sample. Psychiatric Genetics, 2010, 20, 102-108. 1091 Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers. JCI Insight, 2017, 2, . 2.3An endocannabinoid-regulated basolateral amygdala–nucleus accumbens circuit modulates 1092 3.9 72 sociability. Journal of Clinical Investigation, 2020, 130, 1728-1742. Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism. Journal 1093 of Clinical Investigation, 2017, 127, 1978-1990. An indirect route to repetitive actions. Journal of Clinical Investigation, 2017, 127, 1618-1621. 4 1094 3.9 Abnormalities in Membrane Lipids, Membrane-Associated Proteins, and Signal Transduction in Autism. , 1096 Homer1a-Dependent Crosstalk Between NMDA and Metabotropic Glutamate Receptors in Mouse 1097 1.1 98 Neurons. PLoS ONE, 2010, 5, e9755. Degradation of Postsynaptic Scaffold GKAP and Regulation of Dendritic Spine Morphology by the 1098 1.1 TRIM3 Ubiquitin Ligase in Rat Hippocampal Neurons. PLoS ONE, 2010, 5, e9842. Characterization of the Deleted in Autism 1 Protein Family: Implications for Studying Cognitive 1099 1.1 26 Disorders. PLoS ONE, 2011, 6, e14547. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and 1.1 196 Scent Marking Behavior. PLoS ONE, 2011, 6, e20631. Autism-Associated Gene Expression in Peripheral Leucocytes Commonly Observed between Subjects 1101 1.1 72 with Autism and Healthy Women Having Autistic Children. PLoS ONE, 2011, 6, e24723. High Proportion of 22q13 Deletions and SHANK3 Mutations in Chinese Patients with Intellectual 1.1 Disability. PLoS ONE, 2012, 7, e34739.

#	Article	IF	CITATIONS
1103	High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism. PLoS ONE, 2012, 7, e35003.	1.1	96
1104	The Therapeutic effect of Memantine through the Stimulation of Synapse Formation and Dendritic Spine Maturation in Autism and Fragile X Syndrome. PLoS ONE, 2012, 7, e36981.	1.1	42
1105	Mutation in Parkinson Disease-Associated, C-Protein-Coupled Receptor 37 (GPR37/PaelR) Is Related to Autism Spectrum Disorder. PLoS ONE, 2012, 7, e51155.	1.1	50
1106	Lack of Association between NLGN3, NLGN4, SHANK2 and SHANK3 Gene Variants and Autism Spectrum Disorder in a Chinese Population. PLoS ONE, 2013, 8, e56639.	1.1	36
1107	A Novel Stratification Method in Linkage Studies to Address Inter- and Intra-Family Heterogeneity in Autism. PLoS ONE, 2013, 8, e67569.	1.1	18
1108	A Non-Canonical Initiation Site Is Required for Efficient Translation of the Dendritically Localized Shank1 mRNA. PLoS ONE, 2014, 9, e88518.	1.1	20
1109	Schizophrenia Related Variants in CACNA1C also Confer Risk of Autism. PLoS ONE, 2015, 10, e0133247.	1.1	55
1110	Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation. PLoS ONE, 2020, 15, e0242773.	1.1	15
1111	Shank Proteins Differentially Regulate Synaptic Transmission. ENeuro, 2017, 4, ENEURO.0163-15.2017.	0.9	33
1112	Defective Synapse Maturation and Enhanced Synaptic Plasticity in Shank2 Δex7 ^{–/–} Mice. ENeuro, 2018, 5, ENEURO.0398-17.2018.	0.9	19
1113	Animal Models of Autism Spectrum Disorder. Journal of Neurology & Stroke, 2017, 6, .	0.0	8
1114	Association of genes with phenotype in autism spectrum disorder. Aging, 2019, 11, 10742-10770.	1.4	23
1115	Sam Domains in Multiple Diseases. Current Medicinal Chemistry, 2020, 27, 450-476.	1.2	12
1116	Common Mechanisms of Excitatory and Inhibitory Imbalance in Schizophrenia and Autism Spectrum Disorders. Current Molecular Medicine, 2015, 15, 146-167.	0.6	404
1117	JIP2 haploinsufficiency contributes to neurodevelopmental abnormalities in human pluripotent stem cell–derived neural progenitors and cortical neurons. Life Science Alliance, 2018, 1, e201800094.	1.3	6
1118	Lighting a path: genetic studies pinpoint neurodevelopmental mechanisms in autism and related disorders. Dialogues in Clinical Neuroscience, 2012, 14, 239-252.	1.8	11
1119	Multiple rare variants in the etiology of autism spectrum disorders. Dialogues in Clinical Neuroscience, 2009, 11, 35-43.	1.8	115
1120	Autism risk factors: genes, environment, and gene-environment interactions. Dialogues in Clinical Neuroscience, 2012, 14, 281-292.	1.8	542

		CITATION REPORT	
#	Article	IF	Citations
1121	Mutant mouse models of autism spectrum disorders. Disease Markers, 2012, 33, 225-39.	0.6	20
1122	Sensory Abnormalities in Autism Spectrum Disorders: A Focus on the Tactile Domain, From Gen Mouse Models to the Clinic. Frontiers in Psychiatry, 2019, 10, 1016.	etic 1.3	78
1123	Molecules, Mechanisms, and Disorders of Self-Domestication: Keys for Understanding Emotion Social Communication from an Evolutionary Perspective. Biomolecules, 2021, 11, 2.	al and 1.8	17
1124	A Bibliometric Insight of Genetic Factors in ASD: Emerging Trends and New Developments. Brai Sciences, 2021, 11, 33.	n 1.1	11
1125	Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autis Spectrum Disorder: Evidence from Human and Rodent Studies. International Journal of Molecul Sciences, 2021, 22, 59.	n ar 1.8	29
1126	Genetics of Autism Spectrum Disorder: An Update. Psychiatric Annals, 2019, 49, 109-114.	0.1	4
1127	Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders Biomolecules and Therapeutics, 2016, 24, 207-243.	. 1.1	31
1128	Autism and Obesity: Prevalence, Molecular Basis and Potential Therapies. Autism Insights, 0, , 1	. 0.0	2
1129	Induced pluripotent stem cells for modeling neurological disorders. World Journal of Transplantation, 2015, 5, 209.	0.6	39
1130	Synapse alterations in autism: Review of animal model findings. Biomedical Papers of the Medic Faculty of the University Palacký, Olomouc, Czechoslovakia, 2016, 160, 201-210	cal 0.2).	18
1132	Autism Disease: Neural Network Going Awry and Therapeutic Strategy Underlying Neural Plastic North American Journal of Medicine & Science, 2011, 4, 139.	city. 3.8	1
1133	Shank is a dose-dependent regulator of Cav1 calcium current and CREB target expression. ELife	e, 2017, 6, 2.8	16
1134	MLPA is a practical and complementary alternative to CMA for diagnostic testing in patients wi autism spectrum disorders and identifying new candidate CNVs associated with autism. PeerJ, 2 e6183.	th 2019, 6, 0.9	8
1135	Upregulated NMDAR-enhanced GABAergic transmission underlies autistic-like deficits in <i>Htr. knockout mice. Theranostics, 2021, 11, 9296-9310.</i>	3a 4.6	12
1136	LMT USV Toolbox, a Novel Methodological Approach to Place Mouse Ultrasonic Vocalizations in Behavioral Contexts—A Study in Female and Male C57BL/6J Mice and in Shank3 Mutant Fema Frontiers in Behavioral Neuroscience, 2021, 15, 735920.	ו Their Iles. 1.0	17
1137	Translational pediatrics: clinical perspective for Phelan–McDermid syndrome and autism rese Pediatric Research, 2022, 92, 373-377.	arch. 1.1	2
1138	A systematic review of common genetic variation and biological pathways in autism spectrum disorder. BMC Neuroscience, 2021, 22, 60.	0.8	17
1139	Behavioral aspects and neurobiological properties underlying medical cannabis treatment in Sh mouse model of autism spectrum disorder. Translational Psychiatry, 2021, 11, 524.	ank3 2.4	9

#	Article	IF	Citations
1140	Rescue of histone hypoacetylation and social deficits by ketogenic diet in a Shank3 mouse model of autism. Neuropsychopharmacology, 2022, 47, 1271-1279.	2.8	13
1141	SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling. Current Biology, 2021, 31, 4956-4970.e9.	1.8	14
1142	Signaling Pathways and Sex Differential Processes in Autism Spectrum Disorder. Frontiers in Psychiatry, 2021, 12, 716673.	1.3	6
1143	Super-resolved 3D-STED microscopy identifies a layer-specific increase in excitatory synapses in the hippocampal CA1 region of Neuroligin-3 KO mice. Biochemical and Biophysical Research Communications, 2021, 582, 144-149.	1.0	6
1144	Facteurs Génétiques. , 2007, , 155-170.		0
1145	Genetics and Psychiatry. , 2008, , 853-883.		0
1146	The Genetics, Epigenetics and Proteomics of Asperger's Disorder. Medical Psychiatry, 2008, , 171-204.	0.2	0
1147	Neurexins and Neuroligins: A Synaptic Code for Neuronal Wiring That Is Implicated in Autism. , 2009, , 347-365.		0
1149	Cell Adhesion Molecules in Synaptopathies. , 2009, , 141-158.		1
1151	Mitochondrial Component of Calcium Signaling Abnormality in Autism. , 2009, , 207-224.		5
1152	Neuroligins and Neurexins: Synaptic Bridges Implicated in Autism. , 2010, , 201-215.		0
1153	Childhood Neuropsychiatric Risk. Issues in Clinical Child Psychology, 2010, , 369-405.	0.2	0
1154	Synaptic Dysfunction Attributes to Autism Spectrum Disorder. North American Journal of Medicine & Science, 2011, 4, 112.	3.8	2
1157	Autism Spectrum Disorders: The Role of Genetics in Diagnosis and Treatment. , 2011, , .		0
1159	Developmental Disorders. Journal of the Nihon University Medical Association, 2012, 71, 390-395.	0.0	0
1160	MCQanswers. , 2012, , 479-484.		0
1161	Ring chromosome 22 and neurofibromatosis type II: proof of two hit model for the loss of the NF2 gene in the development of meningioma. Neuropediatrics, 2012, 43, .	0.3	0
1162	Cryptic Rearrangements in Idiopathic Intellectual Disability Diagnosed by Molecular Cytogenetic Analysis. International Journal of Human Genetics, 2012, 12, .	0.1	0

#	Article	IF	CITATIONS
1164	White Matter Brain Structure in Asperger's Syndrome. , 2014, , 1905-1927.		1
1165	The Epigenetics of Autism $\hat{a} \in$ " Running Beyond the Bases. , 2014, , 303-333.		0
1166	Construction of a Genetic Classifier for ASD Using Gene Pathway Analysis. , 2014, , 119-143.		0
1167	Epigenetic Factors in Normal and Pathological Neuronal Development. Neuromethods, 2015, , 183-215.	0.2	0
1168	Genetics of Autism Spectrum Disorders: The Opportunity and Challenge in the Genetics Clinic. , 2015, , 33-66.		0
1171	Intellectual Disability and Developmental Delay: Cytogenetic Testing. , 2016, , 91-100.		0
1172	Effect of Epigenetic Differences in Identical Twins. , 2017, , 1-18.		1
1173	Metabolic Association Between the Gut–Brain Axis in Autism Spectrum Disorders. , 2017, , 465-476.		0
1174	France and Autism. , 2017, , 1-9.		0
1176	Genetic Basis of Autism Spectrum Disorder. MOJ Cell Science & Report, 2017, 4, .	0.1	0
1180	CHRM3 gene and autism spectrum disorder. Advances in Psychological Science, 2018, 26, 2141.	0.2	0
1184	Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet?. Progress in Neurobiology, 2022, 208, 102183.	2.8	8
1185	Genetic and metabolic profiling of individuals with <scp>Phelanâ€McDermid</scp> syndrome presenting with seizures. Clinical Genetics, 2022, 101, 87-100.	1.0	9
1186	The specific role of zinc in autism spectrum disorders. , 2020, , 115-130.		0
1188	Symptomatic, Genetic, and Mechanistic Overlaps between Autism and Alzheimer's Disease. Biomolecules, 2021, 11, 1635.	1.8	16
1190	A recurrent SHANK3 frameshift variant in Autism Spectrum Disorder. Npj Genomic Medicine, 2021, 6, 91.	1.7	9
1191	Adhesion Molecules at the Synapse. , 2008, , 173-204.		0
1193	Probing Synaptic Signaling with Optogenetic Stimulation and Genetically Encoded Calcium Reporters. Methods in Molecular Biology, 2021, 2191, 109-134.	0.4	3

#	Article	IF	CITATIONS
1195	Research of the Causes and Risk Factors of Autism in the Western Region of Algeria. Journal of Drug Delivery and Therapeutics, 2020, 10, 91-98.	0.2	0
1196	A new wave in the genetics of psychiatric disorders: the copy number variant tsunami. Journal of Psychiatry and Neuroscience, 2009, 34, 55-9.	1.4	9
1197	Lighting a path: genetic studies pinpoint neurodevelopmental mechanisms in autism and related disorders. Dialogues in Clinical Neuroscience, 2012, 14, 239-52.	1.8	15
1198	The use of stem cells to study autism spectrum disorder. Yale Journal of Biology and Medicine, 2015, 88, 5-16.	0.2	11
1199	A Case of Autism with Ring Chromosome 14. Iranian Journal of Public Health, 2013, 42, 1316-20.	0.3	3
1201	Prenatal interleukin 6 elevation increases glutamatergic synapse density and disrupts hippocampal connectivity in offspring. Immunity, 2021, 54, 2611-2631.e8.	6.6	63
1202	A matter of space and time: Emerging roles of disease-associated proteins in neural development. Neuron, 2022, 110, 195-208.	3.8	10
1203	Contribution of Human Pluripotent Stem Cell-Based Models to Drug Discovery for Neurological Disorders. Cells, 2021, 10, 3290.	1.8	4
1204	Clinical Features of Aberrations Chromosome 22q: A Pilot Study. Global Medical Genetics, 2022, 09, 042-050.	0.4	0
1205	SHANK2 Mutations Result in Dysregulation of the ERK1/2 Pathway in Human Induced Pluripotent Stem Cells-Derived Neurons and Shank2(â^'/â^') Mice. Frontiers in Molecular Neuroscience, 2021, 14, 773571.	1.4	12
1206	Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. Journal of Neurodevelopmental Disorders, 2021, 13, 55.	1.5	40
1207	A recurrent, de novo pathogenic variant in ARPC4 disrupts actin filament formation and causes a neurodevelopmental disorder with microcephaly and speech delay. Human Genetics and Genomics Advances, 2021, 3, 100072.	1.0	4
1208	Untreated PKU patients without intellectual disability: SHANK gene family as a candidate modifier. Molecular Genetics and Metabolism Reports, 2021, 29, 100822.	0.4	6
1209	Stride-level analysis of mouse open field behavior using deep-learning-based pose estimation. Cell Reports, 2022, 38, 110231.	2.9	32
1210	Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neuroscience and Biobehavioral Reviews, 2022, 133, 104494.	2.9	10
1212	Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders. Scientific Reports, 2022, 12, 902.	1.6	9
1213	Phelan-McDermid syndrome: a classification system after 30Âyears of experience. Orphanet Journal of Rare Diseases, 2022, 17, 27.	1.2	32
1214	A proof-of-concept study of growth hormone in children with Phelan–McDermid syndrome. Molecular Autism, 2022, 13, 6.	2.6	4

#	Article	IF	CITATIONS
1215	Evaluating the Potential Use of Serotonergic Psychedelics in Autism Spectrum Disorder. Frontiers in Pharmacology, 2021, 12, 749068.	1.6	16
1216	Synaptic dysfunction connects autism spectrum disorder and sleep disturbances: A perspective from studies in model organisms. Sleep Medicine Reviews, 2022, 62, 101595.	3.8	10
1217	OUP accepted manuscript. Human Molecular Genetics, 2022, , .	1.4	8
1218	Disrupted social memory ensembles in the ventral hippocampus underlie social amnesia in autism-associated Shank3 mutant mice. Molecular Psychiatry, 2022, 27, 2095-2105.	4.1	28
1219	Zinc deficiency and supplementation in autism spectrum disorder and <scp>Phelanâ€McDermid</scp> syndrome. Journal of Neuroscience Research, 2022, 100, 970-978.	1.3	9
1220	Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomedicine and Pharmacotherapy, 2022, 148, 112688.	2.5	6
1221	L'apport deÂlaÂgénétique ÃÂlaÂcompréhension desÂorigines deÂl'autisme. , 2014, , 58-64.		0
1223	Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling. Neuron, 2022, 110, 1468-1482.e5.	3.8	13
1225	The Cerebellar Involvement in Autism Spectrum Disorders: From the Social Brain to Mouse Models. International Journal of Molecular Sciences, 2022, 23, 3894.	1.8	40
1226	Clinical and Genetic Aspects of Phelan–McDermid Syndrome: An Interdisciplinary Approach to Management. Genes, 2022, 13, 504.	1.0	9
1227	Effect of Early Swimming on the Behavior and Striatal Transcriptome of the Shank3 Knockout Rat Model of Autism. Neuropsychiatric Disease and Treatment, 2022, Volume 18, 681-694.	1.0	7
1228	Shank promotes action potential repolarization by recruiting BK channels to calcium microdomains. ELife, 2022, 11, .	2.8	2
1229	POSH regulates assembly of the NMDAR/PSD-95/Shank complex and synaptic function. Cell Reports, 2022, 39, 110642.	2.9	7
1230	A recurrent SHANK1 mutation implicated in autism spectrum disorder causes autistic-like core behaviors in mice via downregulation of mGluR1-IP3R1-calcium signaling. Molecular Psychiatry, 2022, 27, 2985-2998.	4.1	12
1231	Shankopathies in the Developing Brain in Autism Spectrum Disorders. Frontiers in Neuroscience, 2021, 15, 775431.	1.4	19
1233	Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nature Reviews Neuroscience, 2022, 23, 323-341.	4.9	81
1271	A convergent mechanism of high risk factors <i>ADNP</i> and <i>POGZ</i> in neurodevelopmental disorders. Brain, 2022, 145, 3250-3263.	3.7	9
1272	SH3- and actin-binding domains connect ADNP and SHANK3, revealing a fundamental shared mechanism underlying autism. Molecular Psychiatry, 2022, 27, 3316-3327.	4.1	29

ARTICLE IF CITATIONS Lighting a path: genetic studies pinpoint neurodevelopmental mechanisms in autism and related 1273 1.8 23 disorders. Dialogues in Clinical Neuroscience, 2012, 14, 239-252. Variability in Phelan-McDermid Syndrome in a Cohort of 210 Individuals. Frontiers in Genetics, 2022, 13, 1274 1.1 652454. Deletion of the Autism-Associated Protein SHANK3 Abolishes Structural Synaptic Plasticity after Brain 1276 1.8 10 Trauma. International Journal of Molecular Sciences, 2022, 23, 6081. Prenatal Zinc Deficient Mice as a Model for Autism Spectrum Disorders. International Journal of 1.8 Molecular Sciences, 2022, 23, 6082. Autism Spectrum Disorder Genes: Disease-Related Networks and Compensatory Strategies. Frontiers in 1278 1.4 4 Molecular Neuroscience, 2022, 15, . Discovery of eQTL Alleles Associated with Autism Spectrum Disorder: A Caseâ€"Control Study. Journal 1.7 of Autism and Developmental Disorders, 0, , . SHANK3 Antibody Validation: Differential Performance in Western Blotting, Immunocyto- and 1284 1.310 Immunohistochemistry. Frontiers in Synaptic Neuroscience, 0, 14, . Neural circuit pathology driven by Shank3 mutation disrupts social behaviors. Cell Reports, 2022, 39, 1285 2.9 24 110906. Genomic Strategies for Understanding the Pathophysiology of Autism Spectrum Disorder. Frontiers in 1286 1.4 5 Molecular Neuroscience, 0, 15, . The Progress of Different Pathways for Shank3 to Cause Autism Spectrum Disorder., 0, 2, 278-284. The Advent of Nutrigenomics: A Narrative Review with an Emphasis on Psychological Disorders. 1288 2 0.7 Preventive Nutrition and Food Science, 2022, 27, 150-164. Descriptive Analysis of Adaptive Behavior in Phelan–McDermid Syndrome and Autism Spectrum 1289 1.4 Disorder. Frontiérs in Neuroscience, 0, 16, . Comparing the Gut Microbiome in Autism and Preclinical Models: A Systematic Review. Frontiers in 1290 1.8 16 Cellular and Infection Microbiology, 0, 12, . SHANK3 genetic polymorphism and susceptibility to ASD: evidence from molecular, in silico, and 1.0 meta-analysis approaches. Molecular Biology Reports, 0, , . Shank postsynaptic scaffolding proteins in autism spectrum disorder: Mouse models and their 1292 3.112 dysfunctions in behaviors, synapses, and molecules. Pharmacological Research, 2022, 182, 106340. Oxytocin and serotonin in the modulation of neural function: Neurobiological underpinnings of 1293 autism-related behavior. Frontiers in Neuroscience, 0, 16, . Multiple Recurrent Copy Number Variations (CNVs) in Chromosome 22 Including 22q11.2 Associated 1294 0.4 2 with Autism Spectrum Disorder. Pharmacogenomics and Personalized Medicine, 0, Volume 15, 705-720. Altered genome-wide hippocampal gene expression profiles following early life lead exposure and 1295 1.6 their potential for reversal by environmental enrichment. Scientific Reports, 2022, 12, .

#	Article	IF	CITATIONS
1296	Could neutrophil extracellular traps drive the development of autism?. Medical Hypotheses, 2022, 167, 110929.	0.8	0
1297	Molecular mechanisms of synaptogenesis. Frontiers in Synaptic Neuroscience, 0, 14, .	1.3	11
1298	Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiology of Disease, 2022, 173, 105856.	2.1	12
1299	Genetic Engineering of Nonhuman Primate Models for Studying Neurodevelopmental Disorders. Neuromethods, 2022, , 235-262.	0.2	0
1300	Early life sleep disruption potentiates lasting sex-specific changes in behavior in genetically vulnerable Shank3 heterozygous autism model mice. Molecular Autism, 2022, 13, .	2.6	17
1302	Hyperbaric Oxygen Therapy Alleviates Social Behavior Dysfunction and Neuroinflammation in a Mouse Model for Autism Spectrum Disorders. International Journal of Molecular Sciences, 2022, 23, 11077.	1.8	7
1304	Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Advanced Drug Delivery Reviews, 2022, 191, 114562.	6.6	4
1306	Transient hearing abnormalities precede social deficits in a mouse model of autism. Behavioural Brain Research, 2023, 437, 114149.	1.2	4
1308	Age, brain region, and gene dosage-differential transcriptomic changes in Shank3-mutant mice. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	9
1309	Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Frontiers in Psychiatry, 0, 13, .	1.3	13
1310	Swimming exercise is a promising early intervention for autismâ€like behavior in <i>Shank3</i> deletion rats. CNS Neuroscience and Therapeutics, 2023, 29, 78-90.	1.9	1
1311	Scaffold proteins as dynamic integrators of biological processes. Journal of Biological Chemistry, 2022, 298, 102628.	1.6	11
1312	Genome-wide association study meta-analysis of suicide death and suicidal behavior. Molecular Psychiatry, 2023, 28, 891-900.	4.1	15
1313	Meta-analysis of epigenome-wide association studies of major depressive disorder. Scientific Reports, 2022, 12, .	1.6	5
1314	Genetic and environmental mouse models of autism reproduce the spectrum of the disease. Journal of Neural Transmission, 2023, 130, 425-432.	1.4	4
1316	Prefrontal Interneurons: Populations, Pathways, and Plasticity Supporting Typical and Disordered Cognition in Rodent Models. Journal of Neuroscience, 2022, 42, 8468-8476.	1.7	8
1317	Elevation of SHANK3 Levels by Antisense Oligonucleotides Directed Against the 3′ Untranslated Region of the Human <i>SHANK3</i> mRNA. Nucleic Acid Therapeutics, 0, , .	2.0	1
1318	Lactobacillus reuteri normalizes altered fear memory in male Cntnap4 knockout mice. EBioMedicine, 2022, 86, 104323.	2.7	6

#	Article	IF	CITATIONS
1319	Alterations in Cerebellar Microtubule Cytoskeletal Network in a ValproicAcid-Induced Rat Model of Autism Spectrum Disorders. Biomedicines, 2022, 10, 3031.	1.4	4
1320	Linking neuroanatomical abnormalities in autism spectrum disorder with gene expression of candidate ASD genes: A meta-analytic and network-oriented approach. PLoS ONE, 2022, 17, e0277466.	1.1	1
1321	Structural deficits in key domains of Shank2 lead to alterations in postsynaptic nanoclusters and to a neurodevelopmental disorder in humans. Molecular Psychiatry, 0, , .	4.1	3
1322	The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals, 2023, 16, 1.	1.7	4
1323	Spinophilin Limits Metabotropic Glutamate Receptor 5 Scaffolding to the Postsynaptic Density and Cell Type Specifically Mediates Excessive Grooming. Biological Psychiatry, 2023, 93, 976-988.	0.7	2
1324	Haploinsufficiency of Shank3 increases the orientation selectivity of V1 neurons. Scientific Reports, 2022, 12, .	1.6	3
1325	The Shank3Venus/Venus knock in mouse enables isoform-specific functional studies of Shank3a. Frontiers in Neuroscience, 0, 16, .	1.4	2
1326	An IGFBP2-derived peptide promotes neuroplasticity and rescues deficits in a mouse model of Phelan-McDermid syndrome. Molecular Psychiatry, 2023, 28, 1101-1111.	4.1	7
1328	Machine Learning-Based Blood RNA Signature for Diagnosis of Autism Spectrum Disorder. International Journal of Molecular Sciences, 2023, 24, 2082.	1.8	5
1329	Prenatal Sex Hormone Exposure Is Associated with the Development of Autism Spectrum Disorder. International Journal of Molecular Sciences, 2023, 24, 2203.	1.8	6
1330	Twenty years of discoveries emerging from mouse models of autism. Neuroscience and Biobehavioral Reviews, 2023, 146, 105053.	2.9	11
1331	Targeting Shank3 deficiency and paresthesia in autism spectrum disorder: A brief review. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	2
1332	Dissecting the 22q13 region to explore the genetic and phenotypic diversity of patients with Phelan-McDermid syndrome. European Journal of Medical Genetics, 2023, 66, 104732.	0.7	10
1333	The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology, 2023, 231, 109491.	2.0	12
1334	Correlation of mutated gene and signalling pathways in ASD. IBRO Neuroscience Reports, 2023, 14, 384-392.	0.7	3
1335	Evidence for parent-of-origin effects in autism spectrum disorder: a narrative review. Journal of Applied Genetics, 2023, 64, 303-317.	1.0	0
1336	Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells, 2023, 12, 538.	1.8	1
1337	Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells, 2023, 12, 574.	1.8	3

#	Article	IF	CITATIONS
1338	Head Size in Phelan–McDermid Syndrome: A Literature Review and Pooled Analysis of 198 Patients Identifies Candidate Genes on 22q13. Genes, 2023, 14, 540.	1.0	0
1339	Maternal treatment with aripiprazole prevents the development of a valproic acid-induced autism-like phenotype in juvenile male mice. Behavioural Pharmacology, 2023, 34, 154-168.	0.8	1
1340	Prolonged partner separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles. ELife, 0, 12, .	2.8	5
1341	Striatal increase of dopamine receptor 2 density in idiopathic and syndromic mouse models of autism spectrum disorder. Frontiers in Psychiatry, 0, 14, .	1.3	4
1342	Excessive self-grooming, gene dysregulation and imbalance between the striosome and matrix compartments in the striatum of Shank3 mutant mice. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	7
1343	Genetic diagnostic yields of 354 Chinese ASD children with rare mutations by a pipeline of genomic tests. Frontiers in Genetics, 0, 14, .	1.1	2
1344	Intestinal Barrier Dysfunction and Microbiota–Gut–Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients, 2023, 15, 1620.	1.7	6
1345	Definition and clinical variability of SHANK3-related Phelan-McDermid syndrome. European Journal of Medical Genetics, 2023, 66, 104754.	0.7	8
1346	Évolution du concept d'autismeÂ: nouvelles perspectives à partir des données génétiques. Information Psychiatrique, 2011, Volume 87, 393-402.	0.1	0
1347	Le langage entre nature et cultureÂ: apport des neurosciences. , 2009, Volume 1, 277-278.	0.0	0
1348	Diagnostic Value of Chromosomal Microarray Analysis for Fetal Congenital Heart Defects with Different Cardiac Phenotypes and Extracardiac Abnormalities. Diagnostics, 2023, 13, 1493.	1.3	0
1370	Case report: Analysis of a gene variant and prenatal diagnosis in a family with megalencephalic leukoencephalopathy with subcortical cysts. Frontiers in Neurology, 0, 14, .	1.1	0
1381	Neurobiology of Autism Spectrum Disorder. , 2023, , 1-38.		0
1382	Epigenomic mechanisms and episignature biomarkers in rare diseases. , 2024, , 1031-1076.		Ο
1383	Biological Pathways Associated with Vitamins in Autism Spectrum Disorder. Neurotoxicity Research, 2023, 41, 730-740.	1.3	3
1385	Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nature Reviews Neurology, 2024, 20, 7-21.	4.9	1
1404	Genes and their Involvement in the Pathogenesis of Autism Spectrum Disorder: Insights from Earlier Genetic Studies. , 2023, , 375-415.		0