Red colouration in apple fruit is due to the activity of the MdMYB10

Plant Journal 49, 414-427 DOI: 10.1111/j.1365-313x.2006.02964.x

Citation Report

#	Article	IF	CITATIONS
1	Isolation and Functional Analysis of a MYB Transcription Factor Gene that is a Key Regulator for the Development of Red Coloration in Apple Skin. Plant and Cell Physiology, 2007, 48, 958-970.	3.1	515
2	Genomics For Improvement Of Rosaceae Temperate Tree Fruit. , 2007, , 357-397.		3
3	Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biology, 2007, 7, 46.	3.6	189
4	Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics, 2007, 8, 212.	2.8	195
5	Biotechnology of flavonoids and other phenylpropanoidâ€derived natural products. Part II: Reconstruction of multienzyme pathways in plants and microbes. Biotechnology Journal, 2007, 2, 1235-1249.	3.5	96
6	Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta, 2007, 226, 1243-1254.	3.2	92
7	Evolution and current status of research in phenolic compounds. Phytochemistry, 2007, 68, 2722-2735.	2.9	507
8	Development of an STS map of an interspecific progeny of Malus. Tree Genetics and Genomes, 2008, 4, 469-479.	1.6	50
10	Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa). Plant Cell Reports, 2008, 27, 985-994.	5.6	105
11	Cisgenesis, a New Tool for Traditional Plant Breeding, Should be Exempted from the Regulation on Genetically Modified Organisms in a Step by Step Approach. Potato Research, 2008, 51, 75-88.	2.7	65
12	Isolation and characterization of a novel glycosyltransferase that converts phloretin to phlorizin, a potent antioxidant in apple. FEBS Journal, 2008, 275, 3804-3814.	4.7	90
13	Red â€~Anjou' pear has a higher photoprotective capacity than green â€~Anjou'. Physiologia Plantarum, 2008, 134, 486-498.	5.2	44
14	The inheritance of the red colour character in European pear (<i>Pyrus communis</i>) and its map position in the mutated cultivar â€~Max Red Bartlett'. Plant Breeding, 2008, 127, 524-526.	1.9	37
15	Engineered native pathways for high kaempferol and caffeoylquinate production in potato. Plant Biotechnology Journal, 2008, 6, 870-886.	8.3	77
16	MYB transcription factors that colour our fruit. Trends in Plant Science, 2008, 13, 99-102.	8.8	594
17	Relationship Between Anthocyanin Biosynthesis and Related Enzymes Activity in Pyrus pyrifolia Mantianhong and Its Bud Sports Aoguan. Agricultural Sciences in China, 2008, 7, 1318-1323.	0.6	10
18	Apples. , 2008, , 1-38.		14
19	Molecular Aspects of Anthocyanin fruit Tomato in Relation to high pigment-1. Journal of Heredity, 2008, 99, 292-303.	2.4	77

#	Article	IF	Citations
20	Multiple Models for Rosaceae Genomics. Plant Physiology, 2008, 147, 985-1003.	4.8	291
21	Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. Journal of Experimental Botany, 2008, 59, 3691-3703.	4.8	91
22	The Transcription Factor VvMYB5b Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis in Developing Grape Berries Â. Plant Physiology, 2008, 147, 2041-2053.	4.8	358
23	Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany, 2009, 60, 853-867.	4.8	308
24	The Grapevine R2R3-MYB Transcription Factor VvMYBF1 Regulates Flavonol Synthesis in Developing Grape Berries. Plant Physiology, 2009, 151, 1513-1530.	4.8	383
25	Bioengineering. , 2009, , 435-473.		3
26	Ectopic Expression of VvMybPA2 Promotes Proanthocyanidin Biosynthesis in Grapevine and Suggests Additional Targets in the Pathway Â. Plant Physiology, 2009, 149, 1028-1041.	4.8	354
27	Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics, 2009, 10, 540.	2.8	69
28	Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (Malus sp.). Planta, 2009, 229, 681-692.	3.2	61
29	A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana) Tj ETQq1 I	0,78431 3.2	4 rgBT /Overl 120
30	Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta, 2009, 230, 1141-1153.	3.2	152
31	Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Current Opinion in Biotechnology, 2009, 20, 197-203.	6.6	116
32	Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Molecular Biology, 2009, 69, 633-648.	3.9	202
33	Transcription analysis of apple fruit development using cDNA microarrays. Tree Genetics and Genomes, 2009, 5, 685-698.	1.6	31
34	A Genomics Approach Using Expressed Sequence Tags and Microarrays in Ripening Apple Fruit (Malus) Tj ETQq0	0 0 rgBT /	Overlock 10 ⁻
35	Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theoretical and Applied Genetics, 2009, 118, 1143-1155.	3.6	49
36	The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theoretical and Applied Genetics, 2009, 120, 45-57.	3.6	132
37	Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Moscow), 2009, 74, 1-11.	1.5	179

#	Article	IF	CITATIONS
38	Effects of redâ€leaved transgenic tobacco expressing a MYB transcription factor on two herbivorous insects, <i>Spodoptera litura</i> and <i>Helicoverpa armigera</i> . Entomologia Experimentalis Et Applicata, 2009, 133, 117-127.	1.4	36
39	Light-induced expression of basic helix-loop-helix genes involved in anthocyanin biosynthesis in flowers and leaves of Asiatic hybrid lily. Scientia Horticulturae, 2009, 121, 84-91.	3.6	68
40	The elevated anthocyanin level in the shaded peel of â€~Anjou' pear enhances its tolerance to high temperature under high light. Plant Science, 2009, 177, 418-426.	3.6	31
41	Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. Plant Cell, 2009, 21, 168-183.	6.6	453
42	Apple Functional Genomics. , 2009, , 121-142.		3
43	Genomics Tools Across Rosaceae Species. , 2009, , 539-561.		7
44	Apple Transformation and Translational Genomics. , 2009, , 143-162.		2
45	Raspberries and Blackberries: The Genomics of Rubus. , 2009, , 507-524.		9
46	DkMyb4 Is a Myb Transcription Factor Involved in Proanthocyanidin Biosynthesis in Persimmon Fruit. Plant Physiology, 2009, 151, 2028-2045.	4.8	193
47	Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry. Theoretical and Applied Genetics, 2010, 121, 611-627.	3.6	56
48	A WD40-repeat gene from MalusÂ×Âdomestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTA GLABRA1. Plant Cell Reports, 2010, 29, 285-294.	5.6	78
49	Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis. Plant Physiology and Biochemistry, 2010, 48, 1020-1026.	5.8	60
50	Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. Planta, 2010, 231, 623-635.	3.2	46
51	Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta, 2010, 231, 887-899.	3.2	254
52	Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta, 2010, 231, 1061-1076.	3.2	143
53	Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta, 2010, 232, 245-255.	3.2	320
54	DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta, 2010, 232, 1045-1059.	3.2	81
55	Cloning and molecular characterization of R2R3-MYB and bHLH-MYC transcription factors from Citrus sinensis. Tree Genetics and Genomes. 2010. 6. 101-112.	1.6	49

ARTICLE

5

QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium) Tj ETQq0 0 0.rgBT /Overlock 10 Th

57	Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Molecular Biology, 2010, 72, 607-620.	3.9	190
58	Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis viniferaL.) leaves. BMC Plant Biology, 2010, 10, 187.	3.6	175
59	An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010, 10, 50.	3.6	576
60	Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. Phytochemistry, 2010, 71, 1839-1847.	2.9	92
61	Comprehensive Analysis of Expressed Sequence Tags from the Pulp of the Red Mutant â€~Cara Cara' Navel Orange (<i>Citrus sinensis</i> Osbeck). Journal of Integrative Plant Biology, 2010, 52, 856-867.	8.5	12
62	Kiwifruit <i>EIL</i> and <i>ERF</i> Genes Involved in Regulating Fruit Ripening Â. Plant Physiology, 2010, 153, 1280-1292.	4.8	249
63	The Purple Cauliflower Arises from Activation of a MYB Transcription Factor. Plant Physiology, 2010, 154, 1470-1480.	4.8	250
64	Comparative Analysis of the Triplicate Proathocyanidin Regulators in Lotus japonicus. Plant and Cell Physiology, 2010, 51, 912-922.	3.1	23
65	Ectopic Expression of Apple <i>F3′H</i> Genes Contributes to Anthocyanin Accumulation in the Arabidopsis <i>tt7</i> Mutant Grown Under Nitrogen Stress Â. Plant Physiology, 2010, 153, 806-820.	4.8	115
66	Strategies for Map-Based Cloning in Apple. Critical Reviews in Plant Sciences, 2010, 29, 265-284.	5.7	13
67	The Role of Ethylene and Cold Temperature in the Regulation of the Apple <i>POLYGALACTURONASE1</i> Gene and Fruit Softening Â. Plant Physiology, 2010, 153, 294-305.	4.8	137
68	The Basic Helix-Loop-Helix Transcription Factor MYC1 Is Involved in the Regulation of the Flavonoid Biosynthesis Pathway in Grapevine. Molecular Plant, 2010, 3, 509-523.	8.3	313
69	Managing Phenol Contents in Crop Plants by Phytochemical Farming and Breeding—Visions and Constraints. International Journal of Molecular Sciences, 2010, 11, 807-857.	4.1	179
72	Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62, 2465-2483.	4.8	990
73	Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science, 2011, 181, 219-229.	3.6	715
74	Characteristics of chalcone synthase promoters from different leaf-color malus crabapple cultivars. Scientia Horticulturae, 2011, 129, 449-458.	3.6	43
75	Rubus. , 2011, , 179-196.		5

#	Article	IF	CITATIONS
76	Three R2R3 MYB transcription factor genes from Capsicum annuum showing differential expression during fruit ripening. African Journal of Biotechnology, 2011, 10, 8267-8274.	0.6	11
77	Differential Expression of Anthocyanin Biosynthetic Genes in Relation to Anthocyanin Accumulation in the Pericarp of Litchi Chinensis Sonn. PLoS ONE, 2011, 6, e19455.	2.5	156
78	Blackberries and Raspberries. , 2011, , 64-113.		4
79	Two differentially expressed <i>MATE</i> factor genes from apple complement the Arabidopsis <i>transparent testa12</i> mutant. Plant Biology, 2011, 13, 42-50.	3.8	38
80	High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell and Environment, 2011, 34, 1176-1190.	5.7	330
81	Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in redâ€fleshed kiwifruit (<i>Actinidia chinensis</i>). Plant Journal, 2011, 65, 106-118.	5.7	164
82	Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant Journal, 2011, 66, 94-116.	5.7	1,014
83	Members of an R2R3â€MYB transcription factor family in <i>Petunia</i> are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant Journal, 2011, 65, 771-784.	5.7	401
84	Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant Journal, 2011, 68, 999-1013.	5.7	118
85	Early ripening events caused by bud mutation in Beni Shogun apple. Russian Journal of Plant Physiology, 2011, 58, 439-447.	1.1	9
86	Review of the molecular genetics of flavonoid biosynthesis in fruits. Acta Alimentaria, 2011, 40, 150-163.	0.7	18
87	Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Molecular Biology, 2011, 75, 579-591.	3.9	101
88	Isolation, Phylogeny and Expression Patterns of AP2-Like Genes in Apple (Malus × domestica Borkh). Plant Molecular Biology Reporter, 2011, 29, 209-216.	1.8	34
89	Differential Gene Expression Analysis of Yunnan Red Pear, Pyrus Pyrifolia, During Fruit Skin Coloration. Plant Molecular Biology Reporter, 2011, 29, 305-314.	1.8	78
90	Utility testing of an apple skin color MdMYB1 marker in two progenies. Molecular Breeding, 2011, 27, 525-532.	2.1	32
91	Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Molecular Biology Reports, 2011, 38, 205-211.	2.3	94
92	The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell, Tissue and Organ Culture, 2011, 106, 235-242.	2.3	46
93	Anthocyanin production as a potential visual selection marker during plant transformation. Transgenic Research, 2011, 20, 1253-1264.	2.4	63

#	Article	IF	CITATIONS
94	QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genetics and Genomes, 2011, 7, 323-335.	1.6	154
95	A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development. Planta, 2011, 234, 865-881.	3.2	100
96	Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Reports, 2011, 30, 695-706.	5.6	176
97	Isolation and characterization of genes expressed differently in mature fruits of â€~redfield' and â€~greensleeves' apples. Horticulture Environment and Biotechnology, 2011, 52, 413-421.	2.1	4
98	Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biology, 2011, 11, 155.	3.6	68
99	Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11, 93.	3.6	227
100	A white mutant of Malay apple fruit (Syzygium malaccense) lacks transcript expression and activity for the last enzyme of anthocyanin synthesis, and the normal expression of a MYB transcription factor. Functional Plant Biology, 2011, 38, 75.	2.1	21
101	Mangosteen (Garcinia mangostana L.). , 2011, , 1-32e.		11
102	RNA-Mediated Gene Silencing Signals Are Not Graft Transmissible from the Rootstock to the Scion in Greenhouse-Grown Apple Plants Malus sp International Journal of Molecular Sciences, 2012, 13, 9992-10009.	4.1	28
103	Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin. Journal of Experimental Botany, 2012, 63, 2437-2447.	4.8	126
104	Five anthocyanin polymorphisms are associated with an <i>R2R3â€MYB</i> cluster in <i>Mimulus guttatus</i> (Phrymaceae). American Journal of Botany, 2012, 99, 82-91.	1.7	37
105	Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. Journal of Experimental Botany, 2012, 63, 5437-5450.	4.8	74
106	UV-A Light Induces Anthocyanin Biosynthesis in a Manner Distinct from Synergistic Blue + UV-B Light and UV-A/Blue Light Responses in Different Parts of the Hypocotyls in Turnip Seedlings. Plant and Cell Physiology, 2012, 53, 1470-1480.	3.1	89
107	MdCOP1 Ubiquitin E3 Ligases Interact with MdMYB1 to Regulate Light-Induced Anthocyanin Biosynthesis and Red Fruit Coloration in Apple Â. Plant Physiology, 2012, 160, 1011-1022.	4.8	381
108	Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency. Journal of Experimental Botany, 2012, 63, 6393-6405.	4.8	110
109	Seasonal Abscisic Acid Signal and a Basic Leucine Zipper Transcription Factor, DkbZIP5, Regulate Proanthocyanidin Biosynthesis in Persimmon Fruit À Â. Plant Physiology, 2012, 158, 1089-1102.	4.8	66
110	Metabolic and gene expression analysis of apple (Malus × domestica) carotenogenesis. Journal of Experimental Botany, 2012, 63, 4497-4511.	4.8	75
111	Retrotransposons Control Fruit-Specific, Cold-Dependent Accumulation of Anthocyanins in Blood Oranges. Plant Cell, 2012, 24, 1242-1255.	6.6	591

#	Article	IF	CITATIONS
112	Apple EIN3 BINDING F-box 1 inhibits the activity of three apple EIN3-like transcription factors. AoB PLANTS, 2012, 2012, pls034.	2.3	18
113	Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Research, 2012, 21, 1163-1181.	2.4	74
114	Genomics of Temperate Fruit Trees. , 2012, , 155-208.		0
115	Genetic Transformation of Fruit Trees. , 2012, , 117-153.		16
116	Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology, 2012, 13, R47.	9.6	272
117	Expression of flavonoid genes in the red grape berry of â€~Alicante Bouschet' varies with the histological distribution of anthocyanins and their chemical composition. Planta, 2012, 236, 1037-1051.	3.2	58
118	Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta, 2012, 236, 1153-1164.	3.2	75
119	The transcription factor LhMYB12 determines anthocyanin pigmentation in the tepals of Asiatic hybrid lilies (Lilium spp.) and regulates pigment quantity. Molecular Breeding, 2012, 30, 913-925.	2.1	58
120	Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in †Yunhongli No. 1' (Pyrus pyrifolia Nakai) pears. Scientia Horticulturae, 2012, 134, 53-59.	3.6	82
121	Isolation of anthocyanin biosynthetic genes in red Chinese sand pear (Pyrus pyrifolia Nakai) and their expression as affected by organ/tissue, cultivar, bagging and fruit side. Scientia Horticulturae, 2012, 136, 29-37.	3.6	54
122	Isolation and characterization of a basic Helix–Loop–Helix transcription factor gene potentially involved in proanthocyanidin biosynthesis regulation in persimmon (Diospyros kaki Thunb.). Scientia Horticulturae, 2012, 136, 115-121.	3.6	28
123	The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. Journal of Plant Physiology, 2012, 169, 710-717.	3.5	198
124	Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus â€~Robusta 5' accessions. BMC Genetics, 2012, 13, 25.	2.7	88
125	Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics, 2012, 13, 19.	2.8	199
126	The cold-induced basic helix-loop-helix transcription factor gene MdClbHLH1encodes an ICE-like protein in apple. BMC Plant Biology, 2012, 12, 22.	3.6	162
127	Apple. , 2012, , 329-367.		34
128	An Ancient Duplication of Apple MYB Transcription Factors Is Responsible for Novel Red Fruit-Flesh Phenotypes Â. Plant Physiology, 2012, 161, 225-239.	4.8	272
130	European Pear. , 2012, , 369-413.		22

#	Article	IF	CITATIONS
132	Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple. PLoS ONE, 2012, 7, e31745.	2.5	249
133	Genomic Selection for Fruit Quality Traits in Apple (Malus×domestica Borkh.). PLoS ONE, 2012, 7, e36674.	2.5	218
134	CURRENT PROGRESS IN TRANS- AND CISGENIC APPLE AND STRAWBERRY BREEDING. Acta Horticulturae, 2012, , 37-48.	0.2	2
135	Visual Tracking of Plant Virus Infection and Movement Using a Reporter MYB Transcription Factor That Activates Anthocyanin Biosynthesis Â. Plant Physiology, 2012, 158, 1130-1138.	4.8	52
136	Comparison of MdMYB1 sequences and expression of anthocyanin biosynthetic and regulatory genes between Malus domestica Borkh. cultivar â€~Ralls' and its blushed sport. Euphytica, 2012, 185, 157-170.	1.2	49
137	Genetic diversity of red-fleshed apples (Malus). Euphytica, 2012, 185, 281-293.	1.2	47
138	Isolation and expression of McF3H gene in the leaves of crabapple. Acta Physiologiae Plantarum, 2012, 34, 1353-1361.	2.1	26
139	R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine. Protoplasma, 2012, 249, 109-118.	2.1	149
140	An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics, 2012, 75, 2670-2684.	2.4	74
141	Allergen related gene expression in apple fruit is differentially controlled by ethylene during ripening. Postharvest Biology and Technology, 2012, 63, 40-49.	6.0	16
142	Mining the apple genome reveals a family of nine ethylene receptor genes. Postharvest Biology and Technology, 2012, 72, 42-46.	6.0	20
143	The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell and Environment, 2012, 35, 1884-1897.	5.7	525
144	QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biology, 2012, 12.	3.6	117
145	A genomics approach to understanding the role of auxin in apple (Malus x domestica)fruit size control. BMC Plant Biology, 2012, 12, 7.	3.6	170
146	A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor). Plant Cell Reports, 2012, 31, 281-289.	5.6	122
147	Identification of differentially expressed genes related to coloration in red/green mutant pear (Pyrus) Tj ETQq1	0.784314	4 rgBT /Overlo
148	The effect of fruit bagging on the color, phenolic compounds and expression of the anthocyanin biosynthetic and regulatory genes on the †Granny Smith' apples. European Food Research and Technology, 2013, 237, 875-885.	3.3	29
149	The MrWD40-1 Gene of Chinese Bayberry (Myrica rubra) Interacts with MYB and bHLH to Enhance Anthocyanin Accumulation. Plant Molecular Biology Reporter, 2013, 31, 1474-1484.	1.8	65

#	Article	IF	CITATIONS
151	New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science, 2013, 18, 477-483.	8.8	893
152	Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics, 2013, 14, 393.	2.8	115
153	An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. BMC Genomics, 2013, 14, 28.	2.8	73
154	Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13, 68.	3.6	247
155	The molecular network regulating the coloration in apple. Scientia Horticulturae, 2013, 163, 1-9.	3.6	32
156	QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theoretical and Applied Genetics, 2013, 126, 847-865.	3.6	17
157	The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell, Tissue and Organ Culture, 2013, 115, 285-298.	2.3	60
158	Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bayberry. Plant Cell, Tissue and Organ Culture, 2013, 113, 491-499.	2.3	34
159	Over-expression of the transcription factor HIMYB3 in transgenic hop (Humulus lupulus L. cv.) Tj ETQq0 0 0 rgBT phloroglucinols. Plant Cell, Tissue and Organ Culture, 2013, 113, 279-289.	/Overlock 2.3	10 Tf 50 427 6
160	Expression Analysis of Anthocyanin Biosynthetic Genes in Different Colored Sweet Cherries (Prunus) Tj ETQq1 1	0.784314 5.1	rgBT /Over o
161	Phenylpropanoid metabolites and expression of key genes involved inÂanthocyanin biosynthesis in the shaded peel of apple fruit in response to sun exposure. Plant Physiology and Biochemistry, 2013, 69, 54-61.	5.8	114
162	Effect of fruit maturity on UV-B-induced post-harvest anthocyanin accumulation in red Chinese sand pear. Acta Physiologiae Plantarum, 2013, 35, 2857-2866.	2.1	19
163	Differential gene expression analysis of â€~Granny Smith' apple (Malus domestica Borkh.) during fruit skin coloration. South African Journal of Botany, 2013, 88, 125-131.	2.5	19
164	Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1236-1247.	1.9	268
165	Susceptibility of cider apple cultivars to the sooty blotch and flyspeck complex in Spain. European Journal of Plant Pathology, 2013, 135, 201-209.	1.7	3
166	Comparative transcriptional profiling analysis of olive ripe-fruit pericarp and abscission zone tissues shows expression differences and distinct patterns of transcriptional regulation. BMC Genomics, 2013, 14, 866.	2.8	37
167	A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity. Frontiers in Biology, 2013, 8, 577-598.	0.7	71
168	Opportunities and challenges for metabolic engineering of secondary metabolite pathways for improved human health characters in fruit and vegetable crops. New Zealand Journal of Crop and Horticultural Science, 2013, 41, 154-177.	1.3	36

#	Article	IF	CITATIONS
169	Reflective mulch enhances ripening and health compounds in apple fruit. Journal of the Science of Food and Agriculture, 2013, 93, 2575-2579.	3.5	25
170	Phenotypic changes associated with <scp>RNA</scp> interference silencing of chalcone synthase in apple (<i>Malus</i> × <i>domestica</i>) . Plant Journal, 2013, 74, 398-410.	5.7	78
171	Coordinated regulation of anthocyanin biosynthesis through photorespiration and temperature in peach (Prunus persica f. atropurpurea). Tree Genetics and Genomes, 2013, 9, 265-278.	1.6	24
172	Anthocyanin accumulation and expression analysis of biosynthesis-related genes during chili pepper fruit development. Biologia Plantarum, 2013, 57, 49-55.	1.9	62
173	Upregulation of polyphenol-related genes prevents â€~skin burning' of well-colored â€~Cameo' apples stored under stressful controlled atmosphere conditions. Postharvest Biology and Technology, 2013, 77, 121-127.	6.0	5
174	Analysis of different pigmentation patterns in â€~Mantianhong' (Pyrus pyrifolia Nakai) and â€~Cascade' (Pyrus communis L.) under bagging treatment and postharvest UV-B/visible irradiation conditions. Scientia Horticulturae, 2013, 151, 75-82.	3.6	35
175	Redâ€foliaged apples affect the establishment, growth, and development of the light brown apple moth, <i><scp>E</scp>piphyas postvittana</i> . Entomologia Experimentalis Et Applicata, 2013, 146, 261-275.	1.4	11
176	Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus) Tj ETQq1 1	0.784314 r 5.6	gBT /Overloci
177	The role of enoyl reductase genes in phloridzin biosynthesis in apple. Plant Physiology and Biochemistry, 2013, 72, 54-61.	5.8	19
178	Apple <scp><i>SEPALLATA1/2</i></scp> â€like genes control fruit flesh development and ripening. Plant Journal, 2013, 73, 1044-1056.	5.7	124
179	Expression of the sweetpotato <scp>R2R3</scp> â€ŧype <i><scp>lbMYB1a</scp></i> gene induces anthocyanin accumulation in <i>Arabidopsis</i> . Physiologia Plantarum, 2013, 148, 189-199.	5.2	57
181	Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry, 2013, 90, 25-36.	2.9	128
182	Expression and functional analysis of a novel MYB gene, MdMYB110a_JP, responsible for red flesh, not skin color in apple fruit. Planta, 2013, 238, 65-76.	3.2	71
183	Analysis of genetically modified redâ€fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnology Journal, 2013, 11, 408-419.	8.3	92
184	Molecular and genetic regulation of fruit ripening. Plant Molecular Biology, 2013, 82, 575-591.	3.9	300
185	The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 123-152.	5.2	228
186	Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites. Plant Cell Reports, 2013, 32, 703-714.	5.6	26
187	Identification of key amino acids for the evolution of promoter target specificity of anthocyanin and proanthocyanidin regulating MYB factors. Plant Molecular Biology, 2013, 82, 457-471.	3.9	109

#	Article	IF	CITATIONS
188	Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear (Pyrus communis L.). Tree Genetics and Genomes, 2013, 9, 1351-1360.	1.6	45
189	Primary and secondary metabolism in the sunâ€exposed peel and the shaded peel of apple fruit. Physiologia Plantarum, 2013, 148, 9-24.	5.2	78
190	Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit. Postharvest Biology and Technology, 2013, 78, 55-66.	6.0	123
191	Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. Journal of Experimental Botany, 2013, 64, 5115-5131.	4.8	121
192	Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat. Journal of Experimental Botany, 2013, 65, 4679-4689.	4.8	75
193	Cloning and differential expression of a plum single repeat-MYB, PdMYB3, in compatible and incompatible interactions during fungal infection. Canadian Journal of Plant Science, 2013, 93, 599-605.	0.9	3
194	A Major QTL Controlling Earliness of Fruit Maturity Linked to the Red leaf/Red flesh Trait in Apple cv. ^ ^lsquo;Maypole^ ^rsquo;. Japanese Society for Horticultural Science, 2013, 82, 97-105.	0.8	12
195	An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biology, 2013, 13, 176.	3.6	177
196	Fruit Coloration and Anthocyanin Biosynthesis after Bag Removal in Non-Red and Red Apples (Malus ×) Tj ETQq	0	/Qyerlock 1
197	A R2R3-MYB Transcription Factor from Epimedium sagittatum Regulates the Flavonoid Biosynthetic Pathway. PLoS ONE, 2013, 8, e70778.	2.5	80
198	The Promoter Structure Differentiation of a MYB Transcription Factor RLC1 Causes Red Leaf Coloration in Empire Red Leaf Cotton under Light. PLoS ONE, 2013, 8, e77891.	2.5	29
199	Two Novel Anoxia-Induced Ethylene Response Factors That Interact with Promoters of Deastringency-Related Genes from Persimmon. PLoS ONE, 2014, 9, e97043.	2.5	50

200	Low Medium pH Value Enhances Anthocyanin Accumulation in Malus Crabapple Leaves. PLoS ONE, 2014, 9, e97904.	2.5	27
201	Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules, 2014, 19, 16240-16265.	3.8	813
202	A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection. Genetics and Molecular Research, 2014, 13, 9103-9114.	0.2	14
204	Analysis of the MdMYB1 gene sequence and development of new molecular markers related to apple skin color and fruit-bearing traits. Molecular Genetics and Genomics, 2014, 289, 1257-1265.	2.1	9
205	Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing. G3: Genes, Genomes, Genetics, 2014, 4, 1681-1687.	1.8	123
206	An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240, 1051-1062.	3.2	123

ARTICLE

Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus) Tj ETQq0 0 0 rgBT_2/Qverlock 10 Tf 50 7 2.3

208	Reactive oxygen species produced via plasma membrane NADPH oxidase regulate anthocyanin synthesis in apple peel. Planta, 2014, 240, 1023-1035.	3.2	40
209	Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biology, 2014, 14, 388.	3.6	89
210	Molecular-level and trait-level differentiation between the cultivated apple (<i>Malus</i> ×Â <i>domestica</i> Borkh.) and its main progenitor <i>Malussieversii</i> . Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, 330-340.	0.8	22
211	Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. Journal of Experimental Botany, 2014, 65, 4349-4359.	4.8	138
212	Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Frontiers in Plant Science, 2014, 5, 651.	3.6	124
213	Decreased Nucleotide and Expression Diversity and Modified Coexpression Patterns Characterize Domestication in the Common Bean. Plant Cell, 2014, 26, 1901-1912.	6.6	103
214	Genome-Wide Identification, Evolution and Expression Analysis of the Grape (Vitis vinifera L.) Zinc Finger-Homeodomain Gene Family. International Journal of Molecular Sciences, 2014, 15, 5730-5748.	4.1	44
215	MYB5 and MYB14 Play Pivotal Roles in Seed Coat Polymer Biosynthesis in <i>Medicago truncatula</i> Â Â Â. Plant Physiology, 2014, 165, 1424-1439.	4.8	113
216	Comparison of phenolic metabolism and primary metabolism between green â€~Anjou' pear and its bud mutation, red â€~Anjou'. Physiologia Plantarum, 2014, 150, 339-354.	5.2	23
217	Anthocyanin Accumulation and Transcriptional Regulation of Anthocyanin Biosynthesis in Purple Bok Choy (<i>Brassica rapa</i> var. <i>chinensis</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 12366-12376.	5.2	78
218	A Role for PacMYBA in ABA-Regulated Anthocyanin Biosynthesis in Red-Colored Sweet Cherry cv. Hong Deng (Prunus avium L.). Plant and Cell Physiology, 2014, 55, 862-880.	3.1	177
219	Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carotaL.) cultivars reveals distinct patterns. BMC Plant Biology, 2014, 14, 262.	3.6	82
221	Apple Pollination Biology for Stable and Novel Fruit Production: Search System for Apple Cultivar Combination Showing Incompatibility, Semicompatibility, and Full-Compatibility Based on the <i>S-RNase</i> Allele Database. International Journal of Agronomy, 2014, 2014, 1-9.	1.2	9
222	Isolation of a WD40-repeat gene regulating anthocyanin biosynthesis in storage roots of purple-fleshed sweet potato. Acta Physiologiae Plantarum, 2014, 36, 1123-1132.	2.1	27
223	Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genetics and Genomes, 2014, 10, 367-381.	1.6	53
224	Recent advances in genetic engineering for improvement of fruit crops. Plant Cell, Tissue and Organ Culture, 2014, 116, 1-15.	2.3	66
225	Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Reports, 2014, 33, 669-680.	5.6	36

#	Article	IF	CITATIONS
226	Isolation and Expression Analysis of Anthocyanin Biosynthesis Genes from the Red Chinese Sand Pear, Pyrus pyrifolia Nakai cv. Mantianhong, in Response to Methyl Jasmonate Treatment and UV-B/VIS Conditions. Plant Molecular Biology Reporter, 2014, 32, 428-437.	1.8	42
227	Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (<i>Fragaria</i> Â×Â <i>ananassa</i>). New Phytologist, 2014, 201, 440-451.	7.3	57
228	Variation and genetic parameters of fruit colour and polyphenol composition in an apple seedling population segregating for red leaf. Tree Genetics and Genomes, 2014, 10, 953-964.	1.6	12
229	Microarray analysis of differentially expressed genes engaged in fruit development between table and wine grape. Molecular Biology Reports, 2014, 41, 4397-4412.	2.3	1
230	An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Functional and Integrative Genomics, 2014, 14, 177-189.	3.5	85
231	Regulation of anthocyanin biosynthesis in peach fruits. Planta, 2014, 240, 913-929.	3.2	207
232	Arguments in the evo-devo debate: say it with flowers!. Journal of Experimental Botany, 2014, 65, 2231-2242.	4.8	25
233	The effects of bagging and debagging on external fruit quality, metabolites, and the expression of anthocyanin biosynthetic genes in †Jonagold' apple (Malus domestica Borkh.). Scientia Horticulturae, 2014, 165, 123-131.	3.6	57
234	Transcriptome analysis of the exocarp of apple fruit identifies light-induced genes involved in red color pigmentation. Gene, 2014, 534, 78-87.	2.2	48
235	Effects of UV-B radiation on anatomical characteristics, phenolic compounds and gene expression of the phenylpropanoid pathway in highbush blueberry leaves. Plant Physiology and Biochemistry, 2014, 85, 85-95.	5.8	59
236	bHLH05 Is an Interaction Partner of MYB51 and a Novel Regulator of Glucosinolate Biosynthesis in Arabidopsis. Plant Physiology, 2014, 166, 349-369.	4.8	109
237	Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. Journal of Zhejiang University: Science B, 2014, 15, 809-819.	2.8	22
238	The red sport of â€~Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry, 2014, 107, 16-23.	2.9	60
239	<i>MYB10</i> plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of <i>Fragaria</i> × <i>ananassa</i> fruits. Journal of Experimental Botany, 2014, 65, 401-417.	4.8	252
240	Apple (<i>Malus domestica</i> L. Borkh) as an emerging model for fruit development. Plant Biosystems, 2014, 148, 157-168.	1.6	37
241	Accumulation and Molecular Regulation of Anthocyanin in Purple Tumorous Stem Mustard (<i>Brassica juncea</i> var. <i>tumida</i> Tsen et Lee). Journal of Agricultural and Food Chemistry, 2014, 62, 7813-7821.	5.2	52
242	Target metabolite and gene transcription profiling during the development of superficial scald in apple (Malus x domestica Borkh). BMC Plant Biology, 2014, 14, 193.	3.6	69
243	Unraveling the Mechanism Underlying the Glycosylation and Methylation of Anthocyanins in Peach Â. Plant Physiology, 2014, 166, 1044-1058.	4.8	94

#	Article	IF	CITATIONS
244	Heterologous Expression of BoPAP1 in Tomato Induces Stamen Specific Anthocyanin Accumulation and Enhances Tolerance to a Long-Term Low Temperature Stress. Journal of Plant Growth Regulation, 2014, 33, 757-768.	5.1	19
245	Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134. Planta, 2014, 240, 497-511.	3.2	61
246	The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis. Molecular Biology Reports, 2014, 41, 5329-5342.	2.3	62
247	The transcriptional response of apple alcohol acyltransferase (MdAAT2) to salicylic acid and ethylene is mediated through two apple MYB TFs in transgenic tobacco. Plant Molecular Biology, 2014, 85, 627-638.	3.9	17
248	Dietary Flavonoids from Modified Apple Reduce Inflammation Markers and Modulate Gut Microbiota in Mice. Journal of Nutrition, 2014, 144, 146-154.	2.9	153
249	Ethylene Regulates Apple (Malus × domestica) Fruit Softening Through a Dose × Time-Dependent Mechanism and Through Differential Sensitivities and Dependencies of Cell Wall-Modifying Genes. Plant and Cell Physiology, 2014, 55, 1005-1016.	3.1	59
250	Selection of low-variance expressed Malus x domestica (apple) genes for use as quantitative PCR reference genes (housekeepers). Tree Genetics and Genomes, 2014, 10, 751-759.	1.6	25
251	Isolation and characterisation of a Myb transcription factor DkPA1 related to proanthocyanidin biosynthesis in C-PCNA and non-PCNA persimmon (Diospyros kaki Thunb.) fruit. Acta Physiologiae Plantarum, 2014, 36, 1831-1839.	2.1	5
252	Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Scientia Horticulturae, 2014, 179, 98-102.	3.6	55
253	The Malus crabapple transcription factor McMYB10 regulates anthocyanin biosynthesis during petal coloration. Scientia Horticulturae, 2014, 166, 42-49.	3.6	52
254	Phenotypic and genetic analysis of the German Malus Germplasm Collection in terms of type 1 and type 2 red-fleshed apples. Gene, 2014, 544, 198-207.	2.2	15
255	Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology, 2014, 19, 81-90.	7.1	454
256	Regulation of POD activity by pelargonidin during vegetative growth in radish (Raphanus sativus L.). Scientia Horticulturae, 2014, 174, 105-111.	3.6	29
257	COMPARISON OF ANTHOCYANIN ACCUMULATION OF RED CHINESE SAND PEARS (PYRUS PYRIFOLIA NAKAI) GROWN AT TWO LOCATIONS. Acta Horticulturae, 2015, , 175-182.	0.2	0
258	The <i><scp>O</scp></i> â€methyltransferase gene <i><scp>M</scp>do<scp>OMT</scp>1</i> is required for biosynthesis of methylated phenylpropenes in ripe apple fruit. Plant Journal, 2015, 82, 937-950.	5.7	35
259	Highâ€ŧemperature inhibition of biosynthesis and transportation of anthocyanins results in the poor red coloration in redâ€fleshed <i>Actinidia chinensis</i> . Physiologia Plantarum, 2015, 153, 565-583.	5.2	48
260	Breeding depression of red flesh apple progeny containing both functional <i>MdMYB10</i> and <i>MYB110a_JP</i> genes. Plant Breeding, 2015, 134, 239-246.	1.9	10
261	Fine mapping of the genetic locus <i>L1</i> conferring black pods using a chromosome segment substitution line population of soybean. Plant Breeding, 2015, 134, 437-445.	1.9	23

#	Article	IF	CITATIONS
262	Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars. Molecules, 2015, 20, 22767-22780.	3.8	40
263	Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms. International Journal of Molecular Sciences, 2015, 16, 15811-15851.	4.1	321
264	Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions. PLoS ONE, 2015, 10, e0120599.	2.5	27
265	Expression and Anthocyanin Biosynthesis-Modulating Potential of Sweet Cherry (Prunus avium L.) MYB10 and bHLH Genes. PLoS ONE, 2015, 10, e0126991.	2.5	67
266	Constitutive Activation of an Anthocyanin Regulatory Gene PcMYB10.6 Is Related to Red Coloration in Purple-Foliage Plum. PLoS ONE, 2015, 10, e0135159.	2.5	34
267	PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears. PLoS ONE, 2015, 10, e0142112.	2.5	36
268	Development of the First Cisgenic Apple with Increased Resistance to Fire Blight. PLoS ONE, 2015, 10, e0143980.	2.5	71
269	Prunus transcription factors: breeding perspectives. Frontiers in Plant Science, 2015, 6, 443.	3.6	30
270	VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves. Frontiers in Plant Science, 2015, 6, 500.	3.6	30
271	Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Frontiers in Plant Science, 2015, 6, 673.	3.6	30
272	Transcriptome profiling reveals differential gene expression in proanthocyanidin biosynthesis associated with red/green skin color mutant of pear (Pyrus communis L.). Frontiers in Plant Science, 2015, 6, 795.	3.6	53
273	Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. Frontiers in Plant Science, 2015, 6, 908.	3.6	45
274	Polyphenol traits, antimicrobial property and consumer preference of †Italian Red Passion' apple genotypes and cultivar †Annurca'. Acta Horticulturae, 2015, , 185-190.	0.2	5
275	<i>De Novo</i> Transcriptome Sequencing of the Orange-Fleshed Sweet Potato and Analysis of Differentially Expressed Genes Related to Carotenoid Biosynthesis. International Journal of Genomics, 2015, 2015, 1-10.	1.6	27
276	Early phenylpropanoid biosynthetic pathway genes are responsible for flavonoid accumulation in the leaves of three crabapple (<i>Malus</i> spp.) cultivars. Journal of Horticultural Science and Biotechnology, 2015, 90, 489-502.	1.9	7
277	Genome-wide identification and characterization of R2R3-MYB transcription factors in pear. Scientia Horticulturae, 2015, 197, 176-182.	3.6	18
278	Expression of RsMYB1 in chrysanthemum regulates key anthocyanin biosynthetic genes. Electronic Journal of Biotechnology, 2015, 18, 359-364.	2.2	6
279	A Scutellaria baicalensis R2R3-MYB gene, SbMYB8, regulates flavonoid biosynthesis and improves drought stress tolerance in transgenic tobacco. Plant Cell, Tissue and Organ Culture, 2015, 120, 961-972.	2.3	53

#	Article	IF	CITATIONS
280	MetaQTL analysis provides a compendium of genomic loci controlling fruit quality traits in apple. Tree Genetics and Genomes, 2015, 11, 1.	1.6	25
281	Photoperiod and shading regulate coloration and anthocyanin accumulation in the leaves of malus crabapples. Plant Cell, Tissue and Organ Culture, 2015, 121, 619-632.	2.3	27
282	Heterologous expression of IbMYB1a by different promoters exhibits different patterns of anthocyanin accumulation in tobacco. Plant Physiology and Biochemistry, 2015, 89, 1-10.	5.8	28
283	The MYB182 Protein Down-Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Poplar by Repressing Both Structural and Regulatory Flavonoid Genes Â. Plant Physiology, 2015, 167, 693-710.	4.8	177
284	Mc <scp>MYB</scp> 10 regulates coloration via activating <i>McF3′H</i> and later structural genes in everâ€red leaf crabapple. Plant Biotechnology Journal, 2015, 13, 948-961.	8.3	92
285	Developmental Profile of Anthocyanin, Flavonol, and Proanthocyanidin Type, Content, and Localization in Saskatoon Fruits (<i>Amelanchier alnifolia</i> Nutt.). Journal of Agricultural and Food Chemistry, 2015, 63, 1601-1614.	5.2	22
286	Molecular genetics of bloodâ€fleshed peach reveals activation of anthocyanin biosynthesis by <scp>NAC</scp> transcription factors. Plant Journal, 2015, 82, 105-121.	5.7	404
287	Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics, 2015, 11, 739-752.	3.0	30
288	The Balance of Expression of Dihydroflavonol 4-reductase and Flavonol Synthase Regulates Flavonoid Biosynthesis and Red Foliage Coloration in Crabapples. Scientific Reports, 2015, 5, 12228.	3.3	79
289	A DNA test for fruit flesh color in tetraploid sour cherry (Prunus cerasus L.). Molecular Breeding, 2015, 35, 1.	2.1	8
290	The effects of fruit bagging on levels of phenolic compounds and expression by anthocyanin biosynthetic and regulatory genes in red-fleshed apples. Process Biochemistry, 2015, 50, 1774-1782.	3.7	37
291	Cisgenic apple trees; development, characterization, and performance. Frontiers in Plant Science, 2015, 6, 286.	3.6	64
292	Anthocyanin accumulation and related gene family expression in the skin of dark-grown red and non-red apples (Malus domestica Borkh.) in response to sunlight. Scientia Horticulturae, 2015, 189, 66-73.	3.6	18
293	In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex. Journal of Experimental Botany, 2015, 66, 1427-1436.	4.8	117
294	Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach. Developmental Dynamics, 2015, 244, 1074-1095.	1.8	15
295	Differential Transcription Factor Networks Orchestrate Flavonoid Biosynthesis. , 2015, , 69-91.		0
296	Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple. Frontiers in Plant Science, 2015, 6, 243.	3.6	58
297	Functional characterization of flavanone 3-hydroxylase gene from Phyllanthus emblica (L.). Journal of Plant Biochemistry and Biotechnology, 2015, 24, 453-460.	1.7	17

#	Article	IF	CITATIONS
298	Cloning and expression of anthocyanin biosynthetic genes in red and white pomegranate. Journal of Plant Research, 2015, 128, 687-696.	2.4	53
299	MYB Transcription Factors as Regulators of Phenylpropanoid Metabolism in Plants. Molecular Plant, 2015, 8, 689-708.	8.3	674
300	Anthocyanin Accumulation and Molecular Analysis of Correlated Genes in Purple Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 4160-4169.	5.2	65
301	Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Reports, 2015, 34, 1817-1823.	5.6	11
302	A standard nomenclature for gene designation in the Rosaceae. Tree Genetics and Genomes, 2015, 11, 1.	1.6	17
303	CrMYB73 , a PH -like gene, contributes to citric acid accumulation in citrus fruit. Scientia Horticulturae, 2015, 197, 212-217.	3.6	35
304	Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. Plant Physiology and Biochemistry, 2015, 97, 304-312.	5.8	22
305	Identification of major stable QTLs for flower color in roses. Molecular Breeding, 2015, 35, 1.	2.1	18
306	The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers. Scientia Horticulturae, 2015, 194, 278-285.	3.6	46
307	Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC Plant Biology, 2015, 15, 27.	3.6	53
308	Different coloration patterns between the red- and white-fleshed fruits of malus crabapples. Scientia Horticulturae, 2015, 194, 26-33.	3.6	16
309	MdMYB9 and MdMYB11 are Involved in the Regulation of the JA-Induced Biosynthesis of Anthocyanin and Proanthocyanidin in Apples. Plant and Cell Physiology, 2015, 56, 650-662.	3.1	264
310	Photoprotection mechanism in the †̃Fuji' apple peel at different levels of photooxidative sunburn. Physiologia Plantarum, 2015, 154, 54-65.	5.2	33
311	Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar. Plant Physiology and Biochemistry, 2015, 86, 82-90.	5.8	82
312	Phenolic compounds and antioxidant activity in red-fleshed apples. Journal of Functional Foods, 2015, 18, 1086-1094.	3.4	115
313	Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f.niedzwetzkyana). Plant Cell, Tissue and Organ Culture, 2015, 120, 325-337.	2.3	101
314	Overexpression of the <i><scp>lbMYB1</scp></i> gene in an orangeâ€fleshed sweet potato cultivar produces a dualâ€pigmented transgenic sweet potato with improved antioxidant activity. Physiologia Plantarum, 2015, 153, 525-537.	5.2	65
315	Comparison of physicochemical traits of red-fleshed, commercial and ancient apple cultivars. Zahradnictvi (Prague, Czech Republic: 1992), 2016, 43, 159-166.	0.9	16

#	Article	IF	CITATIONS
316	The Effect of High Air Temperature on Anthocyanin Concentration and the Expressions of Its Biosynthetic Genes in Strawberry 'Sachinoka'. Environmental Control in Biology, 2016, 54, 101-107.	0.7	22
317	Anthocyanin Accumulation in Muscadine Berry Skins Is Influenced by the Expression of the MYB Transcription Factors, MybA1, and MYBCS1. Antioxidants, 2016, 5, 35.	5.1	16
318	The Changes in Color, Soluble Sugars, Organic Acids, Anthocyanins and Aroma Components in "Starkrimson―during the Ripening Period in China. Molecules, 2016, 21, 812.	3.8	18
319	Identification of differentially expressed genes implicated in peel color (red and green) of Dimocarpus confinis. SpringerPlus, 2016, 5, 1088.	1.2	9
320	Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genetics and Molecular Research, 2016, 15, .	0.2	20
321	New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. Frontiers in Plant Science, 2016, 7, 153.	3.6	90
322	Two LcbHLH Transcription Factors Interacting with LcMYB1 in Regulating Late Structural Genes of Anthocyanin Biosynthesis in Nicotiana and Litchi chinensis During Anthocyanin Accumulation. Frontiers in Plant Science, 2016, 7, 166.	3.6	79
323	Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. Frontiers in Plant Science, 2016, 7, 763.	3.6	24
324	Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of â€~Furongli' Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq. Frontiers in Plant Science, 2016, 7, 1338.	3.6	67
325	Multiple R2R3-MYB Transcription Factors Involved in the Regulation of Anthocyanin Accumulation in Peach Flower. Frontiers in Plant Science, 2016, 7, 1557.	3.6	95
326	De novo Transcriptome Analysis Revealed Genes Involved in Flavonoid and Vitamin C Biosynthesis in Phyllanthus emblica (L.). Frontiers in Plant Science, 2016, 7, 1610.	3.6	24
327	Comparative Physiological and Proteomic Analysis Reveal Distinct Regulation of Peach Skin Quality Traits by Altitude. Frontiers in Plant Science, 2016, 7, 1689.	3.6	66
328	De novo transcriptome sequencing of blue honeysuckle fruit (Lonicera caerulea L.) and analysis of major genes involved in anthocyanin biosynthesis. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	7
329	Analysis of anthocyanin biosynthesis genes expression profiles in contrasting cultivars of Japanese plum (Prunus salicina L.) during fruit development. Gene Expression Patterns, 2016, 21, 54-62.	0.8	46
330	Use of mRNA-seq data to select <i>Malus × domestica</i> (apple) genes for use as quantitative PCR reference genes. Acta Horticulturae, 2016, , 179-184.	0.2	1
331	Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot (Daucus carota L.) taproots. Scientific Reports, 2016, 6, 27356.	3.3	30
332	Medicinal plant transcriptomes: the new gateways for accelerated understanding of plant secondary metabolism. Plant Genetic Resources: Characterisation and Utilisation, 2016, 14, 256-269.	0.8	21
333	Genetics of Pigment Biosynthesis and Degradation. Compendium of Plant Genomes, 2016, , 149-161.	0.5	6

#	ARTICLE	IF	CITATIONS
334	Expression Profiling of Several Gene Families Involved in Anthocyanin Biosynthesis in Apple (Malus) Tj ETQq0 0 0 449-464.	rgBT /Ove 5.1	erlock 10 Tf 5(36
335	Epigenetic regulation of MdMYB1 is associated with paper bagging-induced red pigmentation of apples. Planta, 2016, 244, 573-586.	3.2	47
336	Physiological and molecular characteristics of two ploidy mutants in Myrica rubra cv. Dongkui. Journal of Integrative Agriculture, 2016, 15, 1458-1468.	3.5	0
337	Synergistic effects of light and temperature on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue and Organ Culture, 2016, 127, 217-227.	2.3	54
338	Genome-wide identification and characterization of R2R3MYB family in Rosaceae. Genomics Data, 2016, 9, 50-57.	1.3	12
339	Comparative transcriptome analysis reveals a global insight into molecular processes regulating citrate accumulation in sweet orange (<i>Citrus sinensis</i>). Physiologia Plantarum, 2016, 158, 463-482.	5.2	37
340	Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Scientific Reports, 2016, 6, 31481.	3.3	270
341	Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1. Scientific Reports, 2016, 6, 32534.	3.3	103
342	Two IIIf Clade-bHLHs from Freesia hybrida Play Divergent Roles in Flavonoid Biosynthesis and Trichome Formation when Ectopically Expressed in Arabidopsis. Scientific Reports, 2016, 6, 30514.	3.3	45
343	Physiological and genetic control of red skin colouration in apples grown under warm and cool conditions. Acta Horticulturae, 2016, , 27-34.	0.2	2
344	The <scp>R</scp> 2 <scp>R</scp> 3 <scp>MYB</scp> transcription factor <i><scp>P</scp>av<scp>MYB</scp>10.1</i> involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (<i><scp>P</scp>runus avium</i> <scp>L</scp> .). Plant Biotechnology Journal, 2016, 14, 2120-2133.	8.3	174
345	A functional genetic marker for apple red skin coloration across different environments. Tree Genetics and Genomes, 2016, 12, 1.	1.6	32
346	Genome-Wide Analysis of the R2R3 MYB Subfamily Genes in Lotus (Nelumbo nucifera). Plant Molecular Biology Reporter, 2016, 34, 1016-1026.	1.8	16
347	MYB transcription factor isolated from Raphanus sativus enhances anthocyanin accumulation in chrysanthemum cultivars. 3 Biotech, 2016, 6, 79.	2.2	4
348	Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genomics, 2016, 17, 36.	2.8	70
349	An optimized TRV-based virus-induced gene silencing protocol for Malus crabapple. Plant Cell, Tissue and Organ Culture, 2016, 126, 499-509.	2.3	29
350	Light affects anthocyanin biosynthesis via transcriptional regulation of COP1 in the ever-red leaves of crabapple M.cv. â€~Royalty'. Revista Brasileira De Botanica, 2016, 39, 659-667.	1.3	5
351	Overexpression of <i>PtrMYB119</i> , a R2R3-MYB transcription factor from <i>Populus trichocarpa</i> , promotes anthocyanin production in hybrid poplar. Tree Physiology, 2016, 36, 1162-1176.	3.1	71

		CITATION REPORT		
#	Article		IF	CITATIONS
352	Breeding Perennial Fruit Crops for Quality Improvement. Erwerbs-Obstbau, 2016, 58, 1	19-126.	1.3	8
353	Hydroxycinnamic acid functional ingredients and their biosynthetic genes in tubers of S tuberosum Group Phureja. Cogent Food and Agriculture, 2016, 2, .	iolanum	1.4	6
354	MdMYB1 Regulates Anthocyanin and Malate Accumulation by Directly Facilitating Their Vacuoles in Apples. Plant Physiology, 2016, 170, 1315-1330.	[.] Transport into	4.8	203
355	Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1 their interaction with basic helix-loop-helix cofactors. Journal of Experimental Botany, 20 2159-2176.	, and MYB113 and 016, 67,	4.8	163
356	Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin b pathway from Epimedium sagittatum. Plant Cell Reports, 2016, 35, 883-894.	iosynthetic	5.6	32
357	A DNA test for routine prediction in breeding of sweet cherry fruit color, Pav-Rf-SSR. Mc Breeding, 2016, 36, 1.	plecular	2.1	22
358	Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcriptior Chinese White Pear (<i>Pyrus bretschneideri</i>). Plant and Cell Physiology, 2016, 57,	n Factors in 824-847.	3.1	89
359	Evolutionary origin of Rosaceae-specific active non-autonomous hAT elements and thei to gene regulation and genomic structural variation. Plant Molecular Biology, 2016, 91,	r contribution , 179-191.	3.9	7
360	Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcript gene RsMYB1. Plant Cell Reports, 2016, 35, 641-653.	tion factor	5.6	73
361	Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (<i>Pyrus) Ţ</i>	j ETQq1 1 0.784314 rgBT	Overlock 4.8	10 Tf 50 38
362	Molecular Characterization of Ethylene-Regulated Anthocyanin Biosynthesis in Plums D Ripening. Plant Molecular Biology Reporter, 2016, 34, 777-785.	uring Fruit	1.8	78
363	Expression analysis of candidate cell wall-related genes associated with changes in pect biochemistry during postharvest apple softening. Postharvest Biology and Technology, 176-185.	in 2016, 112,	6.0	61
364	Initiation of ripening capacity in 1-MCP treated green and red †Anjou' pears and a of genes related to ethylene biosynthesis and perception following cold storage and po ethylene conditioning. Postharvest Biology and Technology, 2016, 111, 140-149.	associated expression ost-storage	6.0	17
365	Gene transcript profiles in the desert plant Nitraria tangutorum during fruit developmer ripening. Molecular Genetics and Genomics, 2016, 291, 383-398.	nt and	2.1	4
366	Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food 0 194, 325-336.	Chemistry, 2016,	8.2	115
367	MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in re (<i>Malus sieversii</i> f <i>. niedzwetzkyana</i>). Plant Journal, 2017, 90, 276-292.	dâ€fleshed apple	5.7	235
368	Novel R2R3-MYB transcription factors from <i>Prunus americana</i> regulate differentia anthocyanin accumulation in tobacco and citrus. GM Crops and Food, 2017, 8, 85-105.	l patterns of	3.8	29
369	Integrated analysis of multiomic data reveals the role of the antioxidant network in the buckthorn berry. FASEB Journal, 2017, 31, 1929-1938.	quality of sea	0.5	20

#	Article	IF	CITATIONS
370	Changes in Anthocyanin Production during Domestication of <i>Citrus</i> . Plant Physiology, 2017, 173, 2225-2242.	4.8	92
371	Varietal differences in phenolic compounds metabolism of type 2 red-fleshed apples. Scientia Horticulturae, 2017, 219, 1-9.	3.6	16
372	Involvement of PAL, C4H, and 4CL in Chilling Injury-induced Flesh Lignification of Loquat Fruit. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 127-131.	1.0	28
373	MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade. Journal of Photochemistry and Photobiology B: Biology, 2017, 168, 40-49.	3.8	20
374	Metabolic engineering of apple by overexpression of the MdMyb10 gene. Journal of Genetic Engineering and Biotechnology, 2017, 15, 263-273.	3.3	7
375	A DNA test for routine prediction in breeding of peach blush, Ppe-Rf-SSR. Molecular Breeding, 2017, 37, 1.	2.1	17
376	McMYB12 Transcription Factors Co-regulate Proanthocyanidin and Anthocyanin Biosynthesis in Malus Crabapple. Scientific Reports, 2017, 7, 43715.	3.3	64
377	Fagopyrum tataricum FtWD40 Functions as a Positive Regulator of Anthocyanin Biosynthesis in Transgenic Tobacco. Journal of Plant Growth Regulation, 2017, 36, 755-765.	5.1	19
378	The MYB transcription factor StMYBA1 from potato requires light to activate anthocyanin biosynthesis in transgenic tobacco. Journal of Plant Biology, 2017, 60, 93-101.	2.1	24
379	A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Scientific Reports, 2017, 7, 45324.	3.3	102
380	The Structure and Methylation Level of the McMYB10 Promoter Determine the Leaf Color of Malus Crabapple. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 520-526.	1.0	8
381	Effects of combined pulsed electric fields and mild temperature pasteurization on microbial inactivation and physicochemical properties of cloudy red apple juice (<i>Malus pumila</i>) Tj ETQq1 1 0.78431	4 r gB T /Ov	verback 10 Tf.
382	A SNP in the promoter region of theVvmybA1 gene is responsible for differences in grape berry color between two related bud sports of grape. Plant Growth Regulation, 2017, 82, 457-465.	3.4	11
383	The small ubiquitinâ€like modifier E3 ligase MdSIZ1 promotes anthocyanin accumulation by sumoylating MdMYB1 under lowâ€ŧemperature conditions in apple. Plant, Cell and Environment, 2017, 40, 2068-2080.	5.7	75
384	Effects of methyl jasmonate and abscisic acid on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue and Organ Culture, 2017, 130, 227-237.	2.3	30
385	A R2R3-MYB Gene <i>LfMYB113</i> is Responsible for Autumn Leaf Coloration in Formosan sweet gum (<i>Liquidambar formosana</i> Hance). Plant and Cell Physiology, 2017, 58, pcw228.	3.1	17
386	MdHIR proteins repress anthocyanin accumulation by interacting with the MdJAZ2 protein to inhibit its degradation in apples. Scientific Reports, 2017, 7, 44484.	3.3	10
387	PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. Plant Cell Reports, 2017, 36, 1263-1276.	5.6	81

#	Article	IF	CITATIONS
388	Association analysis for pomological traits in mango (Mangifera indica L.) by genic-SSR markers. Trees - Structure and Function, 2017, 31, 1391-1409.	1.9	18
389	MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar â€~Granny Smith'. Journal of Experimental Botany, 2017, 68, 1055-1069.	4.8	76
390	Flower Color and Pigmentation Patterns in <i>Phalaenopsis</i> Orchids. , 2017, , 393-420.		4
391	MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. Journal of Experimental Botany, 2017, 68, 2977-2990.	4.8	101
392	The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research, 2017, 4, 17023.	6.3	216
393	Identification and expression analysis under abiotic stress of the R2R3-MYB genes in Ginkgo biloba L Physiology and Molecular Biology of Plants, 2017, 23, 503-516.	3.1	25
394	Cloning and elucidation of the functional role of apple MdLBD13 in anthocyanin biosynthesis and nitrate assimilation. Plant Cell, Tissue and Organ Culture, 2017, 130, 47-59.	2.3	36
395	McMYB10 regulates anthocyanins and quercetin accumulation during the fruit development of crabapples. Journal of Horticultural Science and Biotechnology, 2017, , 1-9.	1.9	1
396	Transcriptome analysis of bagging-treated red Chinese sand pear peels reveals light-responsive pathway functions in anthocyanin accumulation. Scientific Reports, 2017, 7, 63.	3.3	67
397	The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Molecular Biology, 2017, 94, 149-165.	3.9	151
398	Quercetin and derivatives: useful tools in inflammation and pain management. Future Medicinal Chemistry, 2017, 9, 79-93.	2.3	141
399	Crop Improvement. , 2017, , .		3
400	VvMYBA6 in the promotion of anthocyanin biosynthesis and salt tolerance in transgenic Arabidopsis. Plant Biotechnology Reports, 2017, 11, 299-314.	1.5	22
401	Cisgenesis and Intragenesis as New Strategies for Crop Improvement. , 2017, , 191-216.		2
402	Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein. Plant and Cell Physiology, 2017, 58, 1953-1962.	3.1	46
403	Isolation and functional characterization of a R2R3-MYB regulator of Prunus mume anthocyanin biosynthetic pathway. Plant Cell, Tissue and Organ Culture, 2017, 131, 417-429.	2.3	55
404	Mapâ€based cloning of the pear gene <i><scp>MYB</scp>114</i> identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant Journal, 2017, 92, 437-451.	5.7	279
405	Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry. Plant Physiology and Biochemistry, 2017, 119, 275-285.	5.8	33

#	Article	IF	CITATIONS
406	Combined transcriptomic and proteomic analysis constructs a new model for lightâ€induced anthocyanin biosynthesis in eggplant (<scp><i>Solanum melongena</i></scp> L.). Plant, Cell and Environment, 2017, 40, 3069-3087.	5.7	72
407	The ectopic expression of apple MYB1 and bHLH3 differentially activates anthocyanin biosynthesis in tobacco. Plant Cell, Tissue and Organ Culture, 2017, 131, 183-194.	2.3	15
408	Identification of genic <scp>SSR</scp> s in jute (<i>Corchorus capsularis</i> , Malvaceae) and development of markers for phenylpropanoid biosynthesis genes and regulatory genes. Plant Breeding, 2017, 136, 784-797.	1.9	11
409	Medicine is not health care, food is health care: plant metabolic engineering, diet and human health. New Phytologist, 2017, 216, 699-719.	7.3	94
410	Biosynthesis and Regulation of Phenylpropanoids in Plants. Critical Reviews in Plant Sciences, 2017, 36, 257-290.	5.7	328
411	MdMYB4 enhances apple callus salt tolerance by increasing MdNHX1 expression levels. Plant Cell, Tissue and Organ Culture, 2017, 131, 283-293.	2.3	19
412	Effect of maturation on the bulk optical properties of apple skin and cortex in the 500–1850Ânm wavelength range. Journal of Food Engineering, 2017, 214, 79-89.	5.2	57
413	Allelic composition of MdMYB1 drives red skin color intensity in apple (MalusÂ×Âdomestica Borkh.) and its application to breeding. Euphytica, 2017, 213, 1.	1.2	13
414	Evaluation of a MdMYB10/GFP43 fusion gene for its suitability to act as reporter gene in promoter studies in Fragaria vesca L. â€~Rügen'. Plant Cell, Tissue and Organ Culture, 2017, 130, 345-356.	2.3	4
415	Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing. Molecular Genetics and Genomics, 2017, 292, 215-229.	2.1	35
416	Engineering biosynthesis of high-value compounds in photosynthetic organisms. Critical Reviews in Biotechnology, 2017, 37, 779-802.	9.0	15
417	Estimation of the degree of red coloration in flesh of a red-fleshed apple cultivar †Kurenai no Yume' with a UV–vis-NIR interactance device. Postharvest Biology and Technology, 2017, 124, 128-136.	6.0	5
418	Expression of RsMYB1 in Petunia enhances anthocyanin production in vegetative and floral tissues. Scientia Horticulturae, 2017, 214, 58-65.	3.6	23
419	A Conserved cis-Regulatory Module Determines Germline Fate through Activation of the Transcription Factor DUO1 Promoter. Plant Physiology, 2017, 173, 280-293.	4.8	16
420	Comparative transcriptome and proteome profiling of two Citrus sinensis cultivars during fruit development and ripening. BMC Genomics, 2017, 18, 984.	2.8	41
421	Rapid identification of the purple stem (Ps) gene of Chinese kale (Brassica oleracea var. alboglabra) in a segregation distortion population by bulked segregant analysis and RNA sequencing. Molecular Breeding, 2017, 37, 1.	2.1	77
422	Anthocyanins in Berries and Their Potential Use in Human Health. , 0, , .		9
423	Transcriptomics Analysis of Apple Leaves in Response to Alternaria alternata Apple Pathotype Infection. Frontiers in Plant Science, 2017, 8, 22.	3.6	72

#	Article	IF	CITATIONS
424	Factor Analysis of MYB Gene Expression and Flavonoid Affecting Petal Color in Three Crabapple Cultivars. Frontiers in Plant Science, 2017, 8, 137.	3.6	13
425	Transcriptome Analysis Reveals Candidate Genes Related to Color Fading of â€~Red Bartlett' (Pyrus) Tj ETQq1	1 ₃ 0,78431 3.6	4 rgBT /Ove
426	SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple. Frontiers in Plant Science, 2017, 08, 477.	3.6	121
427	Metabolomics for Plant Improvement: Status and Prospects. Frontiers in Plant Science, 2017, 8, 1302.	3.6	210
428	Expression Differences of Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three Contrasting Kiwifruit Cultivars. Frontiers in Plant Science, 2017, 8, 1507.	3.6	61
429	Multiple Copies of a Simple MYB-Binding Site Confers Trans-regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species. Frontiers in Plant Science, 2017, 8, 1864.	3.6	38
430	A Radish Basic Helix-Loop-Helix Transcription Factor, RsTT8 Acts a Positive Regulator for Anthocyanin Biosynthesis. Frontiers in Plant Science, 2017, 8, 1917.	3.6	70
431	Transcriptome-Wide Identification and Characterization of MYB Transcription Factor Genes in the Laticifer Cells of Hevea brasiliensis. Frontiers in Plant Science, 2017, 8, 1974.	3.6	26
432	Regulation of Fig (Ficus carica L.) Fruit Color: Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway. Frontiers in Plant Science, 2017, 8, 1990.	3.6	156
433	TRANSPARENT TESTA GLABRA 1-Dependent Regulation of Flavonoid Biosynthesis. Plants, 2017, 6, 65.	3.5	62
434	Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf. International Journal of Molecular Sciences, 2017, 18, 2722.	4.1	9
435	Kiwifruit R2R3-MYB transcription factors and contribution of the novel AcMYB75 to red kiwifruit anthocyanin biosynthesis. Scientific Reports, 2017, 7, 16861.	3.3	50
436	Functional Fruits Through Metabolic Engineering. , 2017, , .		1
437	The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. Plant Physiology and Biochemistry, 2018, 125, 232-238.	5.8	31
438	The Use of RNA Sequencing and Correlation Network Analysis to Study Potential Regulators of Crabapple Leaf Color Transformation. Plant and Cell Physiology, 2018, 59, 1027-1042.	3.1	28
439	Upâ€regulation of <i>Gh<scp>TT</scp>2â€3A</i> in cotton fibres during secondary wall thickening results in brown fibres with improved quality. Plant Biotechnology Journal, 2018, 16, 1735-1747.	8.3	48
440	Genome-wide Identification and Expression Pattern Analysis of Zinc-finger Homeodomain Transcription Factors in Tomato under Abiotic Stress. Journal of the American Society for Horticultural Science, 2018, 143, 14-22.	1.0	11
441	Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.). Planta, 2018, 247, 1363-1375.	3.2	27

#	Article	IF	Citations
442	Transcriptome analysis of colouration-related genes in two white-fleshed nectarine varieties and their yellow-fleshed mutants. Biotechnology and Biotechnological Equipment, 2018, 32, 899-907.	1.3	4
443	Comparative transcriptomic analysis of white and red Chinese bayberry (Myrica rubra) fruits reveals flavonoid biosynthesis regulation. Scientia Horticulturae, 2018, 235, 9-20.	3.6	19
444	Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus. Biochemical and Biophysical Research Communications, 2018, 500, 405-410.	2.1	45
445	Natural Variation Underlies Differences in ETHYLENE RESPONSE FACTOR17 Activity in Fruit Peel Degreening. Plant Physiology, 2018, 176, 2292-2304.	4.8	47
446	The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Functional and Integrative Genomics, 2018, 18, 341-353.	3.5	41
447	FaTT12-1 , a multidrug and toxin extrusion (MATE) member involved in proanthocyanidin transport in strawberry fruits. Scientia Horticulturae, 2018, 231, 158-165.	3.6	32
448	Solar UV light regulates flavonoid metabolism in apple (<i>Malus</i> x <i>domestica)</i> . Plant, Cell and Environment, 2018, 41, 675-688.	5.7	146
449	Expression of anthocyanin biosynthesis-related genes reflects the peel color in purple tomato. Horticulture Environment and Biotechnology, 2018, 59, 435-445.	2.1	14
450	24-Epibrassinolide enhances 5-ALA-induced anthocyanin and flavonol accumulation in calli of â€~Fuji' apple flesh. Plant Cell, Tissue and Organ Culture, 2018, 134, 319-330.	2.3	28
451	A prospective evaluation of plasma polyphenol levels and colon cancer risk. International Journal of Cancer, 2018, 143, 1620-1631.	5.1	33
452	Overexpression of the transcription factor MdbHLH33 increases cold tolerance of transgenic apple callus. Plant Cell, Tissue and Organ Culture, 2018, 134, 131-140.	2.3	22
453	The influence of protective netting on tree physiology and fruit quality of apple: A review. Scientia Horticulturae, 2018, 236, 60-72.	3.6	96
454	A review of preharvest anthocyanin development in full red and blush cultivars of European pear. New Zealand Journal of Crop and Horticultural Science, 2018, 46, 81-100.	1.3	13
455	Identification and Characterization of Anthocyanin Biosynthesis-Related Genes in Kohlrabi. Applied Biochemistry and Biotechnology, 2018, 184, 1120-1141.	2.9	24
456	Characterization and functional analysis of a MYB gene (GbMYBFL) related to flavonoid accumulation in Ginkgo biloba. Genes and Genomics, 2018, 40, 49-61.	1.4	31
457	Next-Generation Plant Metabolic Engineering, Inspired by an Ancient Chinese Irrigation System. Molecular Plant, 2018, 11, 47-57.	8.3	46
458	Molecular analysis of anthocyanin-related genes in ornamental cabbage. Genome, 2018, 61, 111-120.	2.0	24
459	Exploiting natural variation for accelerating discoveries in plant specialized metabolism. Phytochemistry Reviews, 2018, 17, 17-36.	6.5	9

ARTICLE

 $\frac{1}{3}$

462	Raspberry. , 2018, , .		4
463	QTL Mapping and Marker Assisted Breeding in Rubus spp , 2018, , 121-144.		6
464	Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biology, 2018, 18, 288.	3.6	54
465	Efficient Breeding and Cultivation of Type 2 Red-fleshed Apple Cultivars Using a Search System for Suitable Apple Cultivar Combination. Horticultural Plant Journal, 2018, 4, 219-225.	5.0	6
466	Overexpression of the Wild Soybean R2R3-MYB Transcription Factor GsMYB15 Enhances Resistance to Salt Stress and Helicoverpa Armigera in Transgenic Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 3958.	4.1	51
467	Auxin regulates anthocyanin biosynthesis through the Aux/IAA–ARF signaling pathway in apple. Horticulture Research, 2018, 5, 59.	6.3	105
468	Sequencing of Euscaphis konishii Endocarp Transcriptome Points to Molecular Mechanisms of Endocarp Coloration. International Journal of Molecular Sciences, 2018, 19, 3209.	4.1	5
469	Malus sieversii: the origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples. Horticulture Research, 2018, 5, 70.	6.3	63
470	Novel Traits, Flower Symmetry, and Transcriptional Autoregulation: New Hypotheses From Bioinformatic and Experimental Data. Frontiers in Plant Science, 2018, 9, 1561.	3.6	19
471	Sunlight Differentially Affects the Fruit Skin, Flesh, and Core Coloration of the Type 2 Red-fleshed Apple †Kurenainoyume': Optimization of Fruit Bagging Treatment. Horticulture Journal, 2018, 87, 462-473.	0.8	5
472	Small RNAs, emerging regulators critical for the development of horticultural traits. Horticulture Research, 2018, 5, 63.	6.3	85
473	Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar. Plant Journal, 2018, 96, 1121-1136.	5.7	53
474	Transcriptomic analyses of cacao cell suspensions in light and dark provide target genes for controlled flavonoid production. Scientific Reports, 2018, 8, 13575.	3.3	14
475	MYBA From Blueberry (Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. Frontiers in Plant Science, 2018, 9, 1300.	3.6	55
476	EjMYB4 is a transcriptional activator of 4-Coumarate:coenzyme A ligase involved in lignin biosynthesis in loquat (Eriobotrya japonica). Plant Growth Regulation, 2018, 86, 413-421.	3.4	3
477	The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology, 2018, 98, 205-218.	3.9	118
478	Two amino acid changes in the R3 repeat cause functional divergence of two clustered MYB10 genes in peach. Plant Molecular Biology, 2018, 98, 169-183.	3.9	28

#	Article	IF	CITATIONS
479	Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Molecular Biology, 2018, 98, 1-18.	3.9	176
480	The Nitrate-Responsive Protein MdBT2 Regulates Anthocyanin Biosynthesis by Interacting with the MdMYB1 Transcription Factor. Plant Physiology, 2018, 178, 890-906.	4.8	102
481	Understanding the genetic regulation of anthocyanin biosynthesis in plants – Tools for breeding purple varieties of fruits and vegetables. Phytochemistry, 2018, 153, 11-27.	2.9	140
482	Apple bZIP transcription factor MdbZIP44 regulates abscisic acidâ€promoted anthocyanin accumulation. Plant, Cell and Environment, 2018, 41, 2678-2692.	5.7	189
484	Identification of Putative Precursor Genes for the Biosynthesis of Cannabinoid-Like Compound in Radula marginata. Frontiers in Plant Science, 2018, 9, 537.	3.6	28
485	McMYB10 Modulates the Expression of a Ubiquitin Ligase, McCOP1 During Leaf Coloration in Crabapple. Frontiers in Plant Science, 2018, 9, 704.	3.6	15
486	R2R3â€ <scp>MYB</scp> transcription factor Md <scp>MYB</scp> 23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant Journal, 2018, 96, 562-577.	5.7	178
487	Cherry Breeding: Sweet Cherry (Prunus avium L.) and Sour Cherry (Prunus cerasus L.). , 2018, , 31-88.		2
488	The proanthocyanidinâ€specific transcription factor Md <scp>MYBPA</scp> 1 initiates anthocyanin synthesis under lowâ€temperature conditions in redâ€fleshed apples. Plant Journal, 2018, 96, 39-55.	5.7	127
489	Transcriptome Analysis Reveals Molecular Signatures of Luteoloside Accumulation in Senescing Leaves of Lonicera macranthoides. International Journal of Molecular Sciences, 2018, 19, 1012.	4.1	16
490	Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in Red and Green Walnut (Juglans regia L.). Molecules, 2018, 23, 25.	3.8	36
491	Ectopic Overexpression of a Novel R2R3-MYB, NtMYB2 from Chinese Narcissus Represses Anthocyanin Biosynthesis in Tobacco. Molecules, 2018, 23, 781.	3.8	50
492	Application of a JA-Ile Biosynthesis Inhibitor to Methyl Jasmonate-Treated Strawberry Fruit Induces Upregulation of Specific MBW Complex-Related Genes and Accumulation of Proanthocyanidins. Molecules, 2018, 23, 1433.	3.8	34
493	Fruits of Rosaceae Family as a Source of Anticancer Compounds and Molecular Innovations. , 2018, , 319-336.		0
494	Identification of candidate genes involved in anthocyanin accumulation in the peel of jaboticaba (Myrciaria cauliflora) fruits by transcriptomic analysis. Gene, 2018, 676, 202-213.	2.2	16
495	Systematic Chemical Analysis Approach Reveals Superior Antioxidant Capacity via the Synergistic Effect of Flavonoid Compounds in Red Vegetative Tissues. Frontiers in Chemistry, 2018, 6, 9.	3.6	31
496	Effects of Low Temperature, Shading, Defoliation, and Crop Load on the Flesh Coloration of the Type 2 Red-fleshed Apple †Kurenainoyume'. Horticulture Journal, 2018, 87, 452-461.	0.8	9
497	Expression Profiling of Regulatory and Biosynthetic Genes in Contrastingly Anthocyanin Rich Strawberry (Fragaria × ananassa) Cultivars Reveals Key Genetic Determinants of Fruit Color. International Journal of Molecular Sciences, 2018, 19, 656.	4.1	26

ARTICLE

498 Quantitative trait loci (QTL) mapping of blush skin and flowering time in a European pear (Pyrus) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 7

499	Developmental Transitions to Fruiting in Red Raspberry. Compendium of Plant Genomes, 2018, , 199-212.	0.5	15
500	Combined bulked segregant sequencing and traditional linkage analysis for identification of candidate gene for purple leaf sheath in maize. PLoS ONE, 2018, 13, e0190670.	2.5	8
501	The Novel Rose MYB Transcription Factor RhMYB96 Enhances Salt Tolerance in Transgenic Arabidopsis. Plant Molecular Biology Reporter, 2018, 36, 406-417.	1.8	11
502	Cloning and characterization of MdGST1 from red apple leaves. Canadian Journal of Plant Science, 2018, 98, 1150-1158.	0.9	1
503	EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 Act in a Regulatory Loop That Synergistically Modulates Ethylene Biosynthesis and Anthocyanin Accumulation. Plant Physiology, 2018, 178, 808-823.	4.8	191
504	BTB protein MdBT2 inhibits anthocyanin and proanthocyanidin biosynthesis by triggering MdMYB9 degradation in apple. Tree Physiology, 2018, 38, 1578-1587.	3.1	34
505	Transcriptome sequencing reveals role of light in promoting anthocyanin accumulation of strawberry fruit. Plant Growth Regulation, 2018, 86, 121-132.	3.4	29
506	A kiwifruit (<i>Actinidia deliciosa</i>) R2R3â€ <scp>MYB</scp> transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist, 2019, 221, 309-325.	7.3	160
507	Effect of Orchard Management Factors on Flesh Color of Two Red-Fleshed Apple Clones. Horticulturae, 2019, 5, 54.	2.8	5
508	Integrated physiological and genomic analysis reveals structural variations and expression patterns of candidate genes for colored- and green-leaf poplar. Scientific Reports, 2019, 9, 11150.	3.3	8
509	Application of melatonin promotes anthocyanin accumulation in crabapple leaves. Plant Physiology and Biochemistry, 2019, 142, 332-341.	5.8	20
510	MdWRKY11 Participates in Anthocyanin Accumulation in Red-Fleshed Apples by Affecting MYB Transcription Factors and the Photoresponse Factor MdHY5. Journal of Agricultural and Food Chemistry, 2019, 67, 8783-8793.	5.2	76
511	Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. PLoS ONE, 2019, 14, e0219354.	2.5	24
512	A non-LTR retrotransposon activates anthocyanin biosynthesis by regulating a MYB transcription factor in Capsicum annuum. Plant Science, 2019, 287, 110181.	3.6	42
513	The infiltration efficiency of Agrobacterium-mediated transient transformation in four apple cultivars. Scientia Horticulturae, 2019, 256, 108597.	3.6	15
514	Systematic identification of long noncoding <scp>RNA</scp> s expressed during lightâ€induced anthocyanin accumulation in apple fruit. Plant Journal, 2019, 100, 572-590.	5.7	91
515	The Pear Genome. Compendium of Plant Genomes, 2019, , .	0.5	5

#	Article	IF	CITATIONS
516	Genetics and Breeding of Pear. Compendium of Plant Genomes, 2019, , 63-101.	0.5	1
517	Molecular Mapping of Major Genes and QTLs in Pear. Compendium of Plant Genomes, 2019, , 113-131.	0.5	4
518	Comprehensive Influences of Overexpression of a MYB Transcriptor Regulating Anthocyanin Biosynthesis on Transcriptome and Metabolome of Tobacco Leaves. International Journal of Molecular Sciences, 2019, 20, 5123.	4.1	16
519	Design of DOB-based riveting force controller for dual-machine horizontal drilling and riveting system. Mechatronics, 2019, 63, 102263.	3.3	5
520	Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science, 2019, 289, 110286.	3.6	113
521	Overexpression of kale (<i>Brassica oleracea</i> L. var. <i>acephala</i>) <i>BoMYB</i> increases anthocyanin content in <i>Arabidopsis thaliana</i> . Biotechnology and Biotechnological Equipment, 2019, 33, 902-910.	1.3	5
522	Effects on Plant Growth and Reproduction of a Peach R2R3-MYB Transcription Factor Overexpressed in Tobacco. Frontiers in Plant Science, 2019, 10, 1143.	3.6	28
523	Red to Brown: An Elevated Anthocyanic Response in Apple Drives Ethylene to Advance Maturity and Fruit Flesh Browning. Frontiers in Plant Science, 2019, 10, 1248.	3.6	41
524	Light- and Temperature-Induced Expression of an R2R3-MYB Gene Regulates Anthocyanin Biosynthesis in Red-Fleshed Kiwifruit. International Journal of Molecular Sciences, 2019, 20, 5228.	4.1	31
525	De novo transcriptome sequencing of radish (Raphanus sativus L.) fleshy roots: analysis of major genes involved in the anthocyanin synthesis pathway. BMC Molecular and Cell Biology, 2019, 20, 45.	2.0	14
526	Combined QTL-Seq and Traditional Linkage Analysis to Identify Candidate Genes for Purple Skin of Radish Fleshy Taproots. Frontiers in Genetics, 2019, 10, 808.	2.3	18
527	Comparative transcription analysis of photosensitive and non-photosensitive eggplants to identify genes involved in dark regulated anthocyanin synthesis. BMC Genomics, 2019, 20, 678.	2.8	27
528	Two Bâ€box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with <i>Pyrus pyrifolia</i> ELONGATED HYPOCOTYL 5 in the peel of pear fruit. Plant Journal, 2019, 100, 1208-1223.	5.7	115
529	Purple Is the New Orange: Anthocyanin Regulation Coming Together in Carrot. Plant Physiology, 2019, 181, 12-13.	4.8	2
530	Transcriptome Sequencing and Expression Analysis of Genes Related to Anthocyanin Biosynthesis in Leaves of Malus â€~Profusion' Infected by Japanese Apple Rust. Forests, 2019, 10, 665.	2.1	8
531	A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco. BMC Plant Biology, 2019, 19, 390.	3.6	35
532	Ectopic Expression of a R2R3-MYB Transcription Factor Gene LjaMYB12 from Lonicera japonica Increases Flavonoid Accumulation in Arabidopsis thaliana. International Journal of Molecular Sciences, 2019, 20, 4494.	4.1	21
533	Coordinated Regulation of Grape Berry Flesh Color by Transcriptional Activators and Repressors. Journal of Agricultural and Food Chemistry, 2019, 67, 11815-11824.	5.2	29

#	Article	IF	CITATIONS
534	â€~Passe Crassane' pear fruit (Pyrus communis L.) ripening: Revisiting the role of low temperature via integrated physiological and transcriptome analysis. Postharvest Biology and Technology, 2019, 158, 110949.	6.0	18
535	Identification and functional analysis of three new anthocyanin R2R3â€ <scp>MYB</scp> genes in <i>Petunia</i> . Plant Direct, 2019, 3, e00114.	1.9	32
536	Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS ONE, 2019, 14, e0210672.	2.5	34
537	MdCOL4 Interaction Mediates Crosstalk Between UV-B and High Temperature to Control Fruit Coloration in Apple. Plant and Cell Physiology, 2019, 60, 1055-1066.	3.1	50
538	Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors. Plant Physiology and Biochemistry, 2019, 136, 178-187.	5.8	166
539	Changing Carrot Color: Insertions in <i>DcMYB7</i> Alter the Regulation of Anthocyanin Biosynthesis and Modification. Plant Physiology, 2019, 181, 195-207.	4.8	99
540	Md <scp>WRKY</scp> 40 promotes woundingâ€induced anthocyanin biosynthesis in association with Md <scp>MYB</scp> 1 and undergoes Md <scp>BT</scp> 2â€mediated degradation. New Phytologist, 2019, 224, 380-395.	7.3	121
541	Differential color development and response to light deprivation of fig (Ficus carica L.) syconia peel and female flower tissues: transcriptome elucidation. BMC Plant Biology, 2019, 19, 217.	3.6	23
542	PdMYB118, isolated from a red leaf mutant of Populus deltoids, is a new transcription factor regulating anthocyanin biosynthesis in poplar. Plant Cell Reports, 2019, 38, 927-936.	5.6	22
543	miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. Journal of Experimental Botany, 2019, 70, 4775-4792.	4.8	136
544	A <i>HORT1</i> Retrotransposon Insertion in the <i>PeMYB11</i> Promoter Causes Harlequin/Black Flowers in <i>Phalaenopsis</i> Orchids. Plant Physiology, 2019, 180, 1535-1548.	4.8	34
545	Differences among the Anthocyanin Accumulation Patterns and Related Gene Expression Levels in Red Pears. Plants, 2019, 8, 100.	3.5	16
546	R2R3â€ <scp>MYB</scp> transcription factor <scp>MYB</scp> 6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in <i>Populus tomentosa</i> . Plant Journal, 2019, 99, 733-751.	5.7	134
547	StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. Journal of Experimental Botany, 2019, 70, 3809-3824.	4.8	95
548	Development of DNA markers for breeding yellow cherries. Acta Horticulturae, 2019, , 27-32.	0.2	0
549	RNA-Seq analysis of gene expression during the yellowing developmental process of fresh-cut Chinese water chestnuts. Scientia Horticulturae, 2019, 250, 421-431.	3.6	11
550	Integrating Transcriptomic and GC-MS Metabolomic Analysis to Characterize Color and Aroma Formation during Tepal Development in Lycoris longituba. Plants, 2019, 8, 53.	3.5	42
551	The Bâ€box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. Plant, Cell and Environment, 2019, 42, 2090-2104.	5.7	131

#	Article	IF	CITATIONS
552	Prunus genetics and applications after de novo genome sequencing: achievements and prospects. Horticulture Research, 2019, 6, 58.	6.3	121
553	Apple whole genome sequences: recent advances and new prospects. Horticulture Research, 2019, 6, 59.	6.3	77
554	A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communications, 2019, 10, 1494.	12.8	254
555	Characterization of a novel litchi R2R3-MYB transcription factor that involves in anthocyanin biosynthesis and tissue acidification. BMC Plant Biology, 2019, 19, 62.	3.6	31
556	Synthetic Metabolism and Its Significance in Agriculture. , 2019, , 365-391.		3
557	Molecular analysis of anthocyanin biosynthesis-related genes reveal BoTT8 associated with purple hypocotyl of broccoli (Brassica oleracea var. italica L.). Genome, 2019, 62, 253-266.	2.0	13
558	MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Horticulture Research, 2019, 6, 40.	6.3	105
559	The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biology, 2019, 19, 85.	3.6	55
560	Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR. Molecular Breeding, 2019, 39, 1.	2.1	43
561	Comprehensive Transcriptome Analysis Revealed the Effects of the Light Quality, Light Intensity, and Photoperiod on Phlorizin Accumulation in Lithocarpus polystachyus Rehd Forests, 2019, 10, 995.	2.1	17
562	C2H2-Type Zinc Finger Proteins (DkZF1/2) Synergistically Control Persimmon Fruit Deastringency. International Journal of Molecular Sciences, 2019, 20, 5611.	4.1	8
563	Genomic Survey, Transcriptome, and Metabolome Analysis of Apocynum venetum and Apocynum hendersonii to Reveal Major Flavonoid Biosynthesis Pathways. Metabolites, 2019, 9, 296.	2.9	26
564	The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Horticulture Research, 2019, 6, 128.	6.3	119
565	Hybrid de novo transcriptome assembly of poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) bracts. BMC Genomics, 2019, 20, 900.	2.8	14
566	Apple B-box factors regulate light-responsive anthocyanin biosynthesis genes. Scientific Reports, 2019, 9, 17762.	3.3	38
567	RNA-seq, de novo transcriptome assembly and flavonoid gene analysis in 13 wild and cultivated berry fruit species with high content of phenolics. BMC Genomics, 2019, 20, 995.	2.8	27
568	PbGA20x8 induces vascular-related anthocyanin accumulation and contributes to red stripe formation on pear fruit. Horticulture Research, 2019, 6, 137.	6.3	30
569	Activatorâ€type R2R3â€MYB genes induce a repressorâ€type R2R3â€MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist, 2019, 221, 1919-1934.	7.3	190

#	Article	IF	Citations
570	Enzyme activity, phenolic and flavonoid compounds in leaves of Iranian red flesh apple cultivars grown on different rootstocks. Scientia Horticulturae, 2019, 246, 862-870.	3.6	14
571	A R2R3-MYB Transcription Factor, VvMYBC2L2, Functions as a Transcriptional Repressor of Anthocyanin Biosynthesis in Grapevine (Vitis vinifera L.). Molecules, 2019, 24, 92.	3.8	33
572	Over-expression of the red plant gene R1 enhances anthocyanin production and resistance to bollworm and spider mite in cotton. Molecular Genetics and Genomics, 2019, 294, 469-478.	2.1	27
573	Three LcABFs are Involved in the Regulation of Chlorophyll Degradation and Anthocyanin Biosynthesis During Fruit Ripening in <i>Litchi chinensis</i> . Plant and Cell Physiology, 2019, 60, 448-461.	3.1	42
574	Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theoretical and Applied Genetics, 2019, 132, 895-906.	3.6	60
575	Differential regulation of the anthocyanin profile in purple kiwifruit (Actinidia species). Horticulture Research, 2019, 6, 3.	6.3	94
577	MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynthesis in red-fleshed apple (Malus) Tj ETQq0 0 0 rg	gBT /Overlo 2.1	ock 10 Tf 50 28
578	The mechanism of color fading in sunburned apple peel. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	7
579	Transcriptomic analysis of bagging-treated â€~Pingguo' pear shows that MYB4-like1, MYB4-like2, MYB1R1 and WDR involved in anthocyanin biosynthesis are up-regulated in fruit peels in response to light. Scientia Horticulturae, 2019, 244, 428-434.	3.6	22
580	Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus) Tj ETQq1 1 0.784	4314 rgBT 3.6	/gyerlock 1
581	Wholeâ€genome resequencingâ€based <scp>QTL</scp> â€seq identified <i>AhTc1</i> gene encoding a R2R3â€ <scp>MYB</scp> transcription factor controlling peanut purple testa colour. Plant Biotechnology Journal, 2020, 18, 96-105.	8.3	53
582	An Apple B-Box Protein MdBBX37 Modulates Anthocyanin Biosynthesis and Hypocotyl Elongation Synergistically with MdMYBs and MdHY5. Plant and Cell Physiology, 2020, 61, 130-143.	3.1	70
583	<i>Anthocyanin Fruit</i> encodes an R2R3â€MYB transcription factor, SlAN2â€like, activating the transcription of <i>SIMYBATV</i> to fineâ€tune anthocyanin content in tomato fruit. New Phytologist, 2020, 225, 2048-2063.	7.3	119
584	Sun injury on apple fruit: Physiological, biochemical and molecular advances, and future challenges. Scientia Horticulturae, 2020, 260, 108866.	3.6	24
585	An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1â€mediated degradation. Plant Biotechnology Journal, 2020, 18, 337-353.	8.3	198
586	The control of red colour by a family of MYB transcription factors in octoploid strawberry (<i>Fragaria</i> Â×Â <i>ananassa</i>) fruits. Plant Biotechnology Journal, 2020, 18, 1169-1184.	8.3	78
587	The ERF transcription factor MdERF38 promotes drought stressâ€induced anthocyanin biosynthesis in apple. Plant Journal, 2020, 101, 573-589.	5.7	181
588	Malus niedzwetzkyana (Dieck) Langenf transcriptome comparison and phylogenetic analysis with Malus sieversii (Ledeb) Roem. Genetic Resources and Crop Evolution, 2020, 67, 313-323.	1.6	3

#	Article	IF	Citations
589	DcMYB113, a rootâ€specific R2R3â€MYB, conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnology Journal, 2020, 18, 1585-1597.	8.3	83
590	Carbon starvation reduces carbohydrate and anthocyanin accumulation in redâ€fleshed fruit via trehalose 6â€phosphate and MYB27. Plant, Cell and Environment, 2020, 43, 819-835.	5.7	33
591	Integrated metabolic profiling and transcriptome analysis of pigment accumulation in diverse petal tissues in the lily cultivar —Vivian'. BMC Plant Biology, 2020, 20, 446.	3.6	13
592	How the Color Fades From Malus halliana Flowers: Transcriptome Sequencing and DNA Methylation Analysis. Frontiers in Plant Science, 2020, 11, 576054.	3.6	17
593	A genome-wide association study uncovers a critical role of the RsPAP2 gene in red-skinned Raphanus sativus L Horticulture Research, 2020, 7, 164.	6.3	25
594	Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Research International, 2020, 138, 109711.	6.2	50
595	The highâ€quality genome of diploid strawberry (<i>Fragaria nilgerrensis</i>) provides new insights into anthocyanin accumulation. Plant Biotechnology Journal, 2020, 18, 1908-1924.	8.3	51
596	Fruit Breeding in Regard to Color and Seed Hardness: A Genomic View from Pomegranate. Agronomy, 2020, 10, 991.	3.0	9
597	Skin Color in Apple Fruit (Malus × domestica): Genetic and Epigenetic Insights. Epigenomes, 2020, 4, 13.	1.8	8
598	mdm-miR828 Participates in the Feedback Loop to Regulate Anthocyanin Accumulation in Apple Peel. Frontiers in Plant Science, 2020, 11, 608109.	3.6	22
599	Functional identification of PsMYB57 involved in anthocyanin regulation of tree peony. BMC Genetics, 2020, 21, 124.	2.7	15
600	Interaction between MdMYB63 and MdERF106 enhances salt tolerance in apple by mediating Na+/H+ transport. Plant Physiology and Biochemistry, 2020, 155, 464-471.	5.8	14
601	Effects of 1Âmethylcyclopropene treatment on quality and anthocyanin biosynthesis in plum (Prunus) Tj ETQq0 (Technology, 2020, 169, 111291.	0 rgBT /0 6.0	Overlock 10 T 27
602	Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear â€ Yunhongli No. 1'. Plant Physiology and Biochemistry, 2020, 154, 665-674.	5.8	49
603	Biosynthesis of the Dihydrochalcone Sweetener Trilobatin Requires <i>Phloretin Glycosyltransferase2</i> . Plant Physiology, 2020, 184, 738-752.	4.8	15
604	Isolation and molecular characterization of NtMYB4a, a putative transcription activation factor involved in anthocyanin synthesis in tobacco. Gene, 2020, 760, 144990.	2.2	14
605	Transcriptome and metabolome analyses reveal the regulation of peel coloration in green, red Chinese prickly ash (Zanthoxylum L.). Food Chemistry Molecular Sciences, 2020, 1, 100004.	2.1	9
606	Light-Induced Basic/Helix-Loop-Helix64 Enhances Anthocyanin Biosynthesis and Undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-Mediated Degradation in Pear. Plant Physiology, 2020, 184, 1684-1701.	4.8	46

#	Article	IF	CITATIONS
607	Expression analysis of correlative regulatory factors of anthocyanin in â€~Cuihongli' and â€~Qiangcuili'. E3S Web of Conferences, 2020, 165, 02004.	0.5	0
608	Cloning of MYB10, PAL and UFGT genes from â€~Cuihongli' and â€~Qiangcuili'. E3S Web of Conferences, 165, 05008.	2020, 2.5	0
609	Long-read sequencing of Chrysanthemum morifolium transcriptome reveals flavonoid biosynthesis and regulation. Plant Growth Regulation, 2020, 92, 559-569.	3.4	3
610	Quantitative trait lociâ€based genomicsâ€assisted prediction for the degree of apple fruit cover color. Plant Genome, 2020, 13, e20047.	2.8	12
611	The proanthocyanin-related transcription factors MYBC1 and WRKY44 regulate branch points in the kiwifruit anthocyanin pathway. Scientific Reports, 2020, 10, 14161.	3.3	44
612	Isolation and Analysis of Anthocyanin Pathway Genes from Ribes Genus Reveals MYB Gene with Potent Anthocyanin-Inducing Capabilities. Plants, 2020, 9, 1078.	3.5	7
613	FtMYB18 acts as a negative regulator of anthocyanin/proanthocyanidin biosynthesis in Tartary buckwheat. Plant Molecular Biology, 2020, 104, 309-325.	3.9	21
614	Decoding altitude-activated regulatory mechanisms occurring during apple peel ripening. Horticulture Research, 2020, 7, 120.	6.3	30
615	Plant Polyphenols-Biofortified Foods as a Novel Tool for the Prevention of Human Gut Diseases. Antioxidants, 2020, 9, 1225.	5.1	22
616	Metabolomic and Transcriptomic Analyses of Anthocyanin Biosynthesis Mechanisms in the Color Mutant <i>Ziziphus jujuba</i> cv. Tailihong. Journal of Agricultural and Food Chemistry, 2020, 68, 15186-15198.	5.2	62
617	Enhancement of phenylpropanoid accumulation in tartary buckwheat hairy roots by overexpression of MYB transcription factors. Industrial Crops and Products, 2020, 156, 112887.	5.2	10
618	MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Horticulture Research, 2020, 7, 72.	6.3	61
619	Transcriptomic profiling of purple broccoli reveals light-induced anthocyanin biosynthetic signaling and structural genes. PeerJ, 2020, 8, e8870.	2.0	19
620	Anthocyanin accumulation is initiated by abscisic acid to enhance fruit color during fig (Ficus carica) Tj ETQq1 1 0	.784314 r 3.5	g&T /Overio
621	PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). Plant Physiology and Biochemistry, 2020, 154, 396-408.	5.8	35
622	Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. Horticulture Research, 2020, 7, 83.	6.3	82
623	MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biology, 2020, 20, 258.	3.6	44
624	PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Horticulture Research, 2020, 7, 37.	6.3	95

#	Article	IF	CITATIONS
625	Transcriptome Analysis Reveals Candidate Genes Related to Anthocyanin Biosynthesis in Different Carrot Genotypes and Tissues. Plants, 2020, 9, 344.	3.5	20
626	Transcriptome Analysis Identifies Two Ethylene Response Factors That Regulate Proanthocyanidin Biosynthesis During Malus Crabapple Fruit Development. Frontiers in Plant Science, 2020, 11, 76.	3.6	14
627	Anthocyanin Biosynthesis and Methylation of the <i>MdMYB10</i> Promoter Are Associated with the Red Blushed-Skin Mutant in the Red Striped-Skin "Changfu 2―Apple. Journal of Agricultural and Food Chemistry, 2020, 68, 4292-4304.	5.2	24
628	The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of <i>FaMYB10</i> and anthocyanin pathway genes. Plant Biotechnology Journal, 2020, 18, 2267-2279.	8.3	82
629	MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. Biology, 2020, 9, 61.	2.8	123
630	Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Revista Brasileira De Botanica, 2020, 43, 81-89.	1.3	45
631	Systems-Based Approaches to Unravel Networks and Individual Elements Involved in Apple Superficial Scald. Frontiers in Plant Science, 2020, 11, 8.	3.6	24
632	REVEILLE Transcription Factors Contribute to the Nighttime Accumulation of Anthocyanins in â€ ⁻ Red Zaosu' (Pyrus Bretschneideri Rehd.) Pear Fruit Skin. International Journal of Molecular Sciences, 2020, 21, 1634.	4.1	14
633	Pigment variation and transcriptional response of the pigment synthesis pathway in the S2309 triple-color ornamental kale (Brassica oleracea L. var. acephala) line. Genomics, 2020, 112, 2658-2665.	2.9	10
634	A novel R3 MYB transcriptional repressor, MaMYBx, finely regulates anthocyanin biosynthesis in grape hyacinth. Plant Science, 2020, 298, 110588.	3.6	28
635	In vitro Anthocyanin Induction and Metabolite Analysis in Malus spectabilis Leaves Under Low Nitrogen Conditions. Horticultural Plant Journal, 2020, 6, 284-292.	5.0	26
636	Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit. Plant Science, 2020, 298, 110578.	3.6	20
637	The R2R3-MYB transcription factor MiMYB1 regulates light dependent red coloration of â€~Irwin' mango fruit skin. Scientia Horticulturae, 2020, 272, 109567.	3.6	23
638	A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology, 2020, 40, 413-423.	3.1	70
639	Transcriptomic Analysis of Ficus carica Peels with a Focus on the Key Genes for Anthocyanin Biosynthesis. International Journal of Molecular Sciences, 2020, 21, 1245.	4.1	20
640	Genome-wide analysis and expression profiles of the StR2R3-MYB transcription factor superfamily in potato (Solanum tuberosum L.). International Journal of Biological Macromolecules, 2020, 148, 817-832.	7.5	51
641	Methylation of <i>MdMYB1</i> locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple. Plant Biotechnology Journal, 2020, 18, 1736-1748.	8.3	42
642	Dynamic regulation of anthocyanin biosynthesis at different light intensities by the BT2-TCP46-MYB1 module in apple. Journal of Experimental Botany, 2020, 71, 3094-3109.	4.8	64

#	Article	IF	CITATIONS
643	Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple. Plant Science, 2020, 292, 110377.	3.6	56
644	Transcriptomic analysis of flower color variation in the ornamental crabapple (Malus spp.) half-sib family through Illumina and PacBio Sequel sequencing. Plant Physiology and Biochemistry, 2020, 149, 27-35.	5.8	27
645	MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple. Horticulture Research, 2020, 7, 19.	6.3	39
646	FvbHLH9 Functions as a Positive Regulator of Anthocyanin Biosynthesis by Forming a HY5–bHLH9 Transcription Complex in Strawberry Fruits. Plant and Cell Physiology, 2020, 61, 826-837.	3.1	72
647	Metabolic engineering of low-molecular-weight antioxidants in sweetpotato. Plant Biotechnology Reports, 2020, 14, 193-205.	1.5	14
648	Identification of EIL and ERF Genes Related to Fruit Ripening in Peach. International Journal of Molecular Sciences, 2020, 21, 2846.	4.1	11
649	Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation. Plant Cell Reports, 2020, 39, 891-907.	5.6	34
650	Comparative transcriptome analysis of differentially expressed genes between the fruit peel and flesh of the purple tomato cultivar †Indigo Rose'. Plant Signaling and Behavior, 2020, 15, 1752534.	2.4	4
651	Phenotypic and transcriptome analysis on red leaf and green leaf Eucommia ulmoides Oliver. Acta Physiologiae Plantarum, 2020, 42, 1.	2.1	2
652	BTB/TAZ protein MdBT2 integrates multiple hormonal and environmental signals to regulate anthocyanin biosynthesis in apple. Journal of Integrative Plant Biology, 2020, 62, 1643-1646.	8.5	29
653	MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar. BMC Plant Biology, 2020, 20, 173.	3.6	25
654	ABI5 regulates ABA-induced anthocyanin biosynthesis by modulating the MYB1-bHLH3 complex in apple. Journal of Experimental Botany, 2021, 72, 1460-1472.	4.8	68
655	Identification of gene co-expression networks and key genes regulating flavonoid accumulation in apple (Malus × domestica) fruit skin. Plant Science, 2021, 304, 110747.	3.6	23
656	The banana (<i>Musa acuminata</i>) <i>MYB</i> gene family and <i>MaMYB14</i> , <i>MaMYB63</i> and <i>MaMYB110</i> expression in response to salinity-stress in cv. Berangan. Plant Biosystems, 2021, 155, 856-870.	1.6	3
657	Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. Plant Biotechnology Journal, 2021, 19, 671-688.	8.3	99
658	A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. Plant Physiology and Biochemistry, 2021, 158, 518-523.	5.8	31
659	MYB_SH[AL]QKY[RF] transcription factors <i>MdLUX</i> and <i>MdPCL-like</i> promote anthocyanin accumulation through DNA hypomethylation and <i>MdF3H</i> activation in apple. Tree Physiology, 2021, 41, 836-848.	3.1	7
660	Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of Integrative Plant Biology, 2021, 63, 180-209.	8.5	509

#	Article	IF	CITATIONS
661	Functional characterization of SmMYB86, a negative regulator of anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant Science, 2021, 302, 110696.	3.6	42
662	Ethyleneâ€activated PpERF105 induces the expression of the repressorâ€ŧype R2R3â€MYB gene <i>PpMYB140<!--<br-->to inhibit anthocyanin biosynthesis in red pear fruit. Plant Journal, 2021, 105, 167-181.</i>	i> 5.7	76
663	RNA-Seq profiling reveals the plant hormones and molecular mechanisms stimulating the early ripening in apple. Genomics, 2021, 113, 493-502.	2.9	11
664	The apple MdCOP1-interacting protein 1 negatively regulates hypocotyl elongation and anthocyanin biosynthesis. BMC Plant Biology, 2021, 21, 15.	3.6	11
665	Genetics and Genomics of Fruit Color Development in Apple. Compendium of Plant Genomes, 2021, , 271-295.	0.5	2
666	Genetic and Physical Mapping of the Apple Genome. Compendium of Plant Genomes, 2021, , 131-168.	0.5	4
667	Transcription Factor and MicroRNA-Mediated Manipulation of Tropane Alkaloid Biosynthesis. , 2021, , 157-172.		0
668	Harnessing the Potential of Modern Omics Tools in Plant Tissue Culture. , 2021, , 125-148.		1
669	Cisgenesis: Engineering Plant Genome by Harnessing Compatible Gene Pools. Concepts and Strategies in Plant Sciences, 2021, , 193-216.	0.5	2
670	AgMYB1, an R2R3-MYB factor, plays a role in anthocyanin production and enhancement of antioxidant capacity in celery. Vegetable Research, 2021, 1, 1-12.	0.7	4
672	MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit. Journal of Plant Physiology, 2021, 257, 153353.	3.5	31
673	Genome-Wide Identification and Characterization of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Red Walnut (Juglans regia L.). Frontiers in Genetics, 2021, 12, 632509.	2.3	23
674	Improved nutritional quality in fruit tree species through traditional and biotechnological approaches. Trends in Food Science and Technology, 2021, 117, 125-138.	15.1	39
675	Transcriptomic Analysis of the Anthocyanin Biosynthetic Pathway Reveals the Molecular Mechanism Associated with Purple Color Formation in Dendrobium Nestor. Life, 2021, 11, 113.	2.4	14
676	Transcriptomic Profiling of Apple Calli With a Focus on the Key Genes for ALA-Induced Anthocyanin Accumulation. Frontiers in Plant Science, 2021, 12, 640606.	3.6	14
677	The role of <i>VvMYBA2r</i> and <i>VvMYBA2w</i> alleles of the <i>MYBA2</i> locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (<i>Vitis</i> spp.) skin coloration. Plant Biotechnology Journal, 2021, 19, 1216-1239.	8.3	39
678	Transcriptional Regulation of Anthocyanin Synthesis by MYB-bHLH-WDR Complexes in Kiwifruit (<i>Actinidia chinensis</i>). Journal of Agricultural and Food Chemistry, 2021, 69, 3677-3691.	5.2	62
680	Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (<scp><i>Prunus salicina</i></scp> L.). Physiologia Plantarum, 2021, 172, 1739-1749.	5.2	5

#	Article	IF	CITATIONS
681	Comparative Metabolite and Gene Expression Analyses in Combination With Gene Characterization Revealed the Patterns of Flavonoid Accumulation During Cistus creticus subsp. creticus Fruit Development. Frontiers in Plant Science, 2021, 12, 619634.	3.6	7
682	Poplar MYB117 promotes anthocyanin synthesis and enhances flavonoid B-ring hydroxylation by up-regulating the flavonoid 3′,5′-hydroxylase gene. Journal of Experimental Botany, 2021, 72, 3864-3880.	4.8	23
683	Pigment profile and gene analysis revealed the reasons of petal color difference of crabapples. Revista Brasileira De Botanica, 2021, 44, 287-296.	1.3	5
684	MYB-Mediated Regulation of Anthocyanin Biosynthesis. International Journal of Molecular Sciences, 2021, 22, 3103.	4.1	157
685	The MIR-Domain of PbbHLH2 Is Involved in Regulation of the Anthocyanin Biosynthetic Pathway in â€Red Zaosu―(PyrusBretschneideri Rehd.) Pear Fruit. International Journal of Molecular Sciences, 2021, 22, 3026.	4.1	9
686	Discovery of Anthocyanin Biosynthetic Pathway in Cosmos caudatus Kunth. Using Omics Analysis. Agronomy, 2021, 11, 661.	3.0	1
687	Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors. Horticulture Research, 2021, 8, 77.	6.3	28
688	QTL mapping of phenolic compounds and fruit colour in sweet cherry using a 6+9K SNP array genetic map. Scientia Horticulturae, 2021, 280, 109900.	3.6	11
689	Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1–TRB1–MYB9 complex. Plant Journal, 2021, 106, 1414-1430.	5.7	49
690	The MdHY5-MdWRKY41-MdMYB transcription factor cascade regulates the anthocyanin and proanthocyanidin biosynthesis in red-fleshed apple. Plant Science, 2021, 306, 110848.	3.6	56
691	A single amino acid substitution in the R2R3 conserved domain of the BrPAP1a transcription factor impairs anthocyanin production in turnip (Brassica rapa subsp. rapa). Plant Physiology and Biochemistry, 2021, 162, 124-136.	5.8	12
692	Research progress of fruit color development in apple (Malus domestica Borkh.). Plant Physiology and Biochemistry, 2021, 162, 267-279.	5.8	50
693	Systematic analysis of MYB gene family in Acer rubrum and functional characterization of ArMYB89 in regulating anthocyanin biosynthesis. Journal of Experimental Botany, 2021, 72, 6319-6335.	4.8	5
694	The MdMYB16/MdMYB1â€miR7125â€MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytologist, 2021, 231, 1105-1122.	7.3	50
695	Apple MPK4 mediates phosphorylation of MYB1 to enhance lightâ€induced anthocyanin accumulation. Plant Journal, 2021, 106, 1728-1745.	5.7	38
696	Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Molecular Genetics and Genomics, 2021, 296, 953-970.	2.1	18
697	Genome-Wide Identification, Classification and Expression Analysis of the MYB Transcription Factor Family in Petunia. International Journal of Molecular Sciences, 2021, 22, 4838.	4.1	18
698	Genome-Wide Identification and Expression Analysis of MYB Transcription Factors and Their Responses to Abiotic Stresses in Woodland Strawberry (Fragaria vesca). Horticulturae, 2021, 7, 97.	2.8	6

#	Article	IF	CITATIONS
699	Transcriptome Co-Expression Network Analysis Identifies Key Genes and Regulators of Sweet Cherry Anthocyanin Biosynthesis. Horticulturae, 2021, 7, 123.	2.8	13
700	NtbHLH1, a JAF13-like bHLH, interacts with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus. BMC Plant Biology, 2021, 21, 275.	3.6	9
701	Genome-wide identification of WD40 superfamily genes and prediction of WD40 gene of flavonoid-related genes in Ginkgo biloba. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12086.	1.1	7
702	MrMYB6 From Chinese Bayberry (Myrica rubra) Negatively Regulates Anthocyanin and Proanthocyanidin Accumulation. Frontiers in Plant Science, 2021, 12, 685654.	3.6	14
703	Transcriptomic analysis reveals the parallel transcriptional regulation of UV-B-induced artemisinin and flavonoid accumulation in Artemisia annua L Plant Physiology and Biochemistry, 2021, 163, 189-200.	5.8	23
704	Activation of PsMYB10.2 Transcription Causes Anthocyanin Accumulation in Flesh of the Red-Fleshed Mutant of â€~Sanyueli' (Prunus salicina Lindl.). Frontiers in Plant Science, 2021, 12, 680469.	3.6	13
705	Characterization of Japanese Plum (Prunus salicina) PsMYB10 Alleles Reveals Structural Variation and Polymorphisms Correlating With Fruit Skin Color. Frontiers in Plant Science, 2021, 12, 655267.	3.6	14
706	The interaction of MYB, bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel. Plant Molecular Biology, 2021, 106, 407-417.	3.9	32
707	Brassinolide inhibits flavonoid biosynthesis and red-flesh coloration via the MdBEH2.2–MdMYB60 complex in apple. Journal of Experimental Botany, 2021, 72, 6382-6399.	4.8	15
708	The R2R3-MYB transcription factor SsMYB1 positively regulates anthocyanin biosynthesis and determines leaf color in Chinese tallow (Sapium sebiferum Roxb.). Industrial Crops and Products, 2021, 164, 113335.	5.2	15
709	Frequent gain- and loss-of-function mutations of the BjMYB113 gene accounted for leaf color variation in Brassica juncea. BMC Plant Biology, 2021, 21, 301.	3.6	11
710	Metabolic engineering in woody plants: challenges, advances, and opportunities. ABIOTECH, 2021, 2, 299-313.	3.9	0
711	Metabolome and transcriptome profiling provide insights into green apple peel reveals light- and UV-B-responsive pathway in anthocyanins accumulation. BMC Plant Biology, 2021, 21, 351.	3.6	17
712	SIBBX20 interacts with the COP9 signalosome subunit SICSN5-2 to regulate anthocyanin biosynthesis by activating SIDFR expression in tomato. Horticulture Research, 2021, 8, 163.	6.3	27
713	Nighttime Temperatures and Sunlight Intensities Interact to Influence Anthocyanin Biosynthesis and Photooxidative Sunburn in "Fuji―Apple. Frontiers in Plant Science, 2021, 12, 694954.	3.6	7
714	The R2R3-type MYB transcription factor MdMYB90-like is responsible for the enhanced skin color of an apple bud sport mutant. Horticulture Research, 2021, 8, 156.	6.3	29
715	Intron-retained radish (Raphanus sativus L.) RsMYB1 transcripts found in colored-taproot lines enhance anthocyanin accumulation in transgenic Arabidopsis plants. Plant Cell Reports, 2021, 40, 1735-1749.	5.6	3
716	The R2R3-MYB gene PsMYB58 positively regulates anthocyanin biosynthesis in tree peony flowers. Plant Physiology and Biochemistry, 2021, 164, 279-288.	5.8	28

#	Article	IF	CITATIONS
717	Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities. Horticulture Research, 2021, 8, 166.	6.3	46
718	Identification, through transcriptome analysis, of transcription factors that regulate anthocyanin biosynthesis in different parts of red-fleshed apple â€~May' fruit. Horticultural Plant Journal, 2022, 8, 11-21.	5.0	6
719	The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. Plant Cell, 2021, 33, 3309-3330.	6.6	80
720	Fruit and vegetable consumption and the risk of type 2 diabetes: a systematic review and dose–response meta-analysis of prospective studies. BMJ Nutrition, Prevention and Health, 2021, 4, 519-531.	3.7	47
721	Insights into the effect of human civilization on <i>Malus</i> evolution and domestication. Plant Biotechnology Journal, 2021, 19, 2206-2220.	8.3	23
722	Expression analysis of MYB genes in different apple cultivars with distinct coloration pattern during fruit maturation. Israel Journal of Plant Sciences, 2021, 68, 319-327.	0.5	1
723	OsMYB3 is a R2R3-MYB gene responsible for anthocyanin biosynthesis in black rice. Molecular Breeding, 2021, 41, 1.	2.1	17
724	Genome-Wide Analysis of the R2R3-MYB Gene Family in Fragaria × ananassa and Its Function Identification During Anthocyanins Biosynthesis in Pink-Flowered Strawberry. Frontiers in Plant Science, 2021, 12, 702160.	3.6	17
725	Flavonoid Biosynthetic Pathway: Genetics and Biochemistry. Biosciences, Biotechnology Research Asia, 2021, 18, 271-286.	0.5	1
727	Competition between anthocyanin and kaempferol glycosides biosynthesis affects pollen tube growth and seed set of Malus. Horticulture Research, 2021, 8, 173.	6.3	24
728	VvMYB114 mediated by miR828 negatively regulates trichome development of Arabidopsis. Plant Science, 2021, 309, 110936.	3.6	4
729	<scp><i>PbWRKY75</i></scp> promotes anthocyanin synthesis by activating <scp><i>PbDFR</i></scp> , <scp><i>PbUFGT</i>,</scp> and <scp><i>PbMYB10b</i></scp> in pear. Physiologia Plantarum, 2021, 173, 1841-1849.	5.2	37
730	Variations in the Community Structure of Fungal Microbiota Associated with Apple Fruit Shaped by Fruit Bagging-Based Practice. Journal of Fungi (Basel, Switzerland), 2021, 7, 764.	3.5	4
731	Linkage map and QTL mapping of red flesh locus in apple using a R1R1 × R6R6 population. Horticultural Plant Journal, 2021, 7, 393-400.	5.0	13
732	Genome-wide analysis and expression profiles of PdeMYB transcription factors in colored-leaf poplar (Populus deltoids). BMC Plant Biology, 2021, 21, 432.	3.6	7
733	Postharvest temperature and light treatments induce anthocyanin accumulation in peel of â€~Akihime' plum (Prunus salicina Lindl.) via transcription factor PsMYB10.1. Postharvest Biology and Technology, 2021, 179, 111592.	6.0	24
734	Single-Molecule Real-Time and Illumina Sequencing to Analyze Transcriptional Regulation of Flavonoid Synthesis in Blueberry. Frontiers in Plant Science, 2021, 12, 754325.	3.6	11
735	Codon usage bias predicts the functional MYB10 gene in Populus. Journal of Plant Physiology, 2021, 265, 153491.	3.5	7

#	Article	IF	CITATIONS
736	Identification and Application of BhAPRR2 Controlling Peel Colour in Wax Gourd (Benincasa hispida). Frontiers in Plant Science, 2021, 12, 716772.	3.6	22
737	Molecular and metabolic insights into anthocyanin biosynthesis during leaf coloration in autumn. Environmental and Experimental Botany, 2021, 190, 104584.	4.2	7
738	Transcriptomic analysis reveals key genes associated with the biosynthesis regulation of phenolics in fresh-cut pitaya fruit (Hylocereus undatus). Postharvest Biology and Technology, 2021, 181, 111684.	6.0	15
739	Untangling the UV-B radiation-induced transcriptional network regulating plant morphogenesis and secondary metabolite production. Environmental and Experimental Botany, 2021, 192, 104655.	4.2	26
740	Effect of Reflected Sunlight on Differential Expression of Anthocyanin Synthesis-Related Genes in Young Apple Fruit. International Journal of Fruit Science, 2021, 21, 440-455.	2.4	6
741	Origin of the Domesticated Apples. Compendium of Plant Genomes, 2021, , 383-394.	0.5	3
742	Genomic consequences of apple improvement. Horticulture Research, 2021, 8, 9.	6.3	53
743	transcription factor behaves differently in metallicolous and non-metallicolous populations of. Functional Plant Biology, 2021, 48, 916-923.	2.1	2
745	Anthocyanin concentration and antioxidant activity in light-emitting diode (LED)-treated apples in a greenhouse environmental control system. Fruits, 2016, 71, 269-274.	0.4	20
746	Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation. Physiologia Plantarum, 2013, 148, 432-444.	5.2	30
747	Transgenic Fruit Crops in Europe. , 2011, , 125-145.		2
748	Functional Genomics. , 2012, , 292-322.		2
750	Histamine, Nitrate, and Nitrite Content in Canned and Fresh Apple Products. Biosciences, Biotechnology Research Asia, 2017, 14, 827-834.	0.5	1
751	A Spontaneous Dominant-Negative Mutation within a 35S::AtMYB90 Transgene Inhibits Flower Pigment Production in Tobacco. PLoS ONE, 2010, 5, e9917.	2.5	13
752	Analysis of Flavonoids and the Flavonoid Structural Genes in Brown Fiber of Upland Cotton. PLoS ONE, 2013, 8, e58820.	2.5	44
753	A Multidisciplinary Approach Providing New Insight into Fruit Flesh Browning Physiology in Apple (Malus x domestica Borkh.). PLoS ONE, 2013, 8, e78004.	2.5	63
754	LcMYB1 Is a Key Determinant of Differential Anthocyanin Accumulation among Genotypes, Tissues, Developmental Phases and ABA and Light Stimuli in Litchi chinensis. PLoS ONE, 2014, 9, e86293.	2.5	114
755	QTL Analysis and Candidate Gene Mapping for the Polyphenol Content in Cider Apple. PLoS ONE, 2014, 9, e107103.	2.5	33

#	Article	IF	CITATIONS
756	A Malus Crabapple Chalcone Synthase Gene, McCHS, Regulates Red Petal Color and Flavonoid Biosynthesis. PLoS ONE, 2014, 9, e110570.	2.5	64
757	Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis. PLoS ONE, 2015, 10, e0129148.	2.5	75
758	Identification of Differentially Expressed Genes Associated with Apple Fruit Ripening and Softening by Suppression Subtractive Hybridization. PLoS ONE, 2015, 10, e0146061.	2.5	21
759	EjMYB8 Transcriptionally Regulates Flesh Lignification in Loquat Fruit. PLoS ONE, 2016, 11, e0154399.	2.5	27
760	Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana. PLoS ONE, 2017, 12, e0172695.	2.5	39
761	Functional Analysis of a Pomegranate (Punica granatum L.) MYB Transcription Factor Involved in the Regulation of Anthocyanin Biosynthesis. Iranian Journal of Biotechnology, 2015, 13, 17-25.	0.3	11
762	CISGENESIS IS A PROMISING APPROACH FOR FAST, ACCEPTABLE AND SAFE BREEDING OF PIP FRUIT. Acta Horticulturae, 2009, , 199-204.	0.2	7
763	Development and use of genetic tools in Rubus and Ribes breeding at James Hutton Institute/Limited. Acta Horticulturae, 2020, , 1-10.	0.2	5
764	Night temperatures affect fruit coloration and expressions of anthocyanin biosynthetic genes in †Hongro' apple fruit skins. European Journal of Horticultural Science, 2017, 82, 232-238.	0.7	9
765	Practical Breeding of Red-fleshed Apple: Cultivar Combination for Efficient Red-fleshed Progeny Production. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1098-1101.	1.0	11
766	Identification of MicroRNAs and Their Targets Involved in Paeonia rockii Petal Variegation Using High-throughput Sequencing. Journal of the American Society for Horticultural Science, 2019, 144, 118-129.	1.0	5
767	Biochemical and Gene Expression Involved in Red Blush Color Development in â€~Ambrosia' Apple. Journal of the American Society for Horticultural Science, 2019, 144, 164-171.	1.0	3
768	Identification and Characterization of DIGI Promoter Involved in Photoperiod, Light Intensity, Hormone, and DIELF4 Response from Longan. Journal of the American Society for Horticultural Science, 2020, 145, 340-348.	1.0	3
769	Cisgenics - A Sustainable Approach for Crop Improvement. Current Genomics, 2013, 14, 468-476.	1.6	53
770	Anthocyanin accumulation and differential gene expression in wild-typeand mutant Syzygium malaccense fruits during their growth and ripening. Biologia Plantarum, 0, 63, 710-720.	1.9	4
771	Biological Evaluation of Golden Delicious Apples Exposure to UV Lights in Rats. Pakistan Journal of Biological Sciences, 2019, 22, 564-573.	0.5	1
772	Enhanced Salt Stress Tolerance in Transgenic Potato Plants Expressing IbMYB1, a Sweet Potato Transcription Factor. Journal of Microbiology and Biotechnology, 2013, 23, 1737-1746.	2.1	50
773	Advances in Apple Transformation Technology to Confer Resistance to Fungal Diseases in Apple Crops: A Chilean Perspective. Chilean Journal of Agricultural Research, 2010, 70, 297-308.	1.1	2

#	Article	IF	CITATIONS
774	Cloning and Expression Analysis of <i>RrMYB</i> 113 Gene Related to Anthocyanin Biosynthesis in <i>Rosa rugose</i> . American Journal of Plant Sciences, 2018, 09, 701-710.	0.8	2
775	Development of SNP markers for the identification of apple flesh color based on RNA-Seq data. Journal of Plant Biotechnology, 2017, 44, 372-378.	0.4	1
776	Anthocyanin biosynthesis in fruit tree crops: Genes and their regulation. African Journal of Biotechnology, 2011, 10, .	0.6	24
777	Identification of a <i>R2R3-MYB</i> gene regulating anthocyanin biosynthesis and relationships between its variation and flower color difference in lotus (<i>Nelumbo</i> Adans.). PeerJ, 2016, 4, e2369.	2.0	34
778	Identification and analysis of CYP450 genes from transcriptome of <i> Lonicera japonica</i> and expression analysis of chlorogenic acid biosynthesis related CYP450s. PeerJ, 2017, 5, e3781.	2.0	18
779	Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce. PeerJ, 2018, 6, e4607.	2.0	54
780	Candidate genes associated with red colour formation revealed by comparative genomic variant analysis of red- and green-skinned fruits of Japanese apricot (<i>Prunus mume</i>). PeerJ, 2018, 6, e4625.	2.0	13
781	Hierarchical regulation of <i>MYBPA1</i> by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in <i>Vaccinium</i> species. Journal of Experimental Botany, 2022, 73, 1344-1356.	4.8	20
782	Transcriptomics Integrated With Widely Targeted Metabolomics Reveals the Mechanism Underlying Grain Color Formation in Wheat at the Grain-Filling Stage. Frontiers in Plant Science, 2021, 12, 757750.	3.6	2
783	Genome-Wide Characterization and Analysis of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Fig (Ficus carica L.). Frontiers in Plant Science, 2021, 12, 730692.	3.6	29
784	Analysis of Light-Independent Anthocyanin Accumulation in Mango (Mangifera indica L.). Horticulturae, 2021, 7, 423.	2.8	12
785	Auxin Treatment Enhances Anthocyanin Production in the Non-Climacteric Sweet Cherry (Prunus) Tj ETQq1 1 0.7	84314 rgE 4.1	BT /Overlock
786	Identification of Transcription Factor Genes and Functional Characterization of PIMYB1 From Pueraria lobata. Frontiers in Plant Science, 2021, 12, 743518.	3.6	6
788	DNA Markers in Tree Improvement of Tropical Plantation Species. , 2014, , 568-592.		0
789	Screening of segregating F2 progenies and validation of DNA markers through bulk segregant analysis for phosphorous deficiency tolerance in rice. Ceylon Journal of Science, 2016, 45, 87.	0.3	0
790	PROMOTER CLONING AND EXPRESSION ANALYSIS OF TRANSCRIPTION FACTOR GENE GMMYB92 IN SOYBEAN (Glycine max. L). Pakistan Journal of Agricultural Sciences, 2016, 53, 487-494.	0.2	0
791	Association of allele variants of gene Rf with red fruit color of apple cultivars of ukrainian breeding. Agricultural Science and Practice, 2016, 3, 54-59.	0.6	0
792	Cloning and Expression of One Anthocyanin-Related R2R3-MYB Gene in <i>Rosa rugosa</i> . American Journal of Plant Sciences, 2018, 09, 2020-2032.	0.8	0

#	Article	IF	CITATIONS
794	Development of transgenic potato with improved anthocyanin contents using sweet potato lbMYB1 gene. Journal of Plant Biotechnology, 2018, 45, 364-368.	0.4	0
795	IMPACT OF NATURAL CROSS-LINKING AGENTS ON DENTIN BONDING. Egyptian Dental Journal, 2019, 65, 2801-2811.	0.1	0
796	Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. Frontiers in Plant Science, 2021, 12, 748049.	3.6	45
797	CmMYB9a activates floral coloration by positively regulating anthocyanin biosynthesis in chrysanthemum. Plant Molecular Biology, 2022, 108, 51-63.	3.9	11
798	Homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of transgenic tobacco. Gene, 2022, 809, 146017.	2.2	14
799	An R2R3-MYB transcription factor CmMYB21 represses anthocyanin biosynthesis in color fading petals of chrysanthemum. Scientia Horticulturae, 2022, 293, 110674.	3.6	24
800	Transcriptome sequencing flower petals reveals insights into regulation of flavonoid biosynthesis in Osmanthus fragrans. Biologia Plantarum, 0, 63, 765-775.	1.9	4
801	Identification of MBW Complex Components Implicated in the Biosynthesis of Flavonoids in Woodland Strawberry. Frontiers in Plant Science, 2021, 12, 774943.	3.6	18
802	The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. Molecular Horticulture, 2021, 1, .	5.8	16
803	Development of DNA markers for breeding yellow cherries. Acta Horticulturae, 2018, , 27-32.	0.2	0
804	MdBBX21, a B-Box Protein, Positively Regulates Light-Induced Anthocyanin Accumulation in Apple Peel. Frontiers in Plant Science, 2021, 12, 774446.	3.6	14
805	The RNA Directed DNA Methylation (RdDM) Pathway Regulates Anthocyanin Biosynthesis in Crabapple (Malus cv. spp.) Leaves by Methylating the McCOP1 Promoter. Plants, 2021, 10, 2466.	3.5	1
806	Regulation of MYB Transcription Factors of Anthocyanin Synthesis in Lily Flowers. Frontiers in Plant Science, 2021, 12, 761668.	3.6	30
807	Coreless apples generated by the suppression of carpel genes and hormone-induced fruit set. Fruit Research, 2021, 1, 1-9.	2.0	4
808	A Data Driven Approach to Assess Complex Colour Profiles in Plant Tissues. Frontiers in Plant Science, 2021, 12, 808138.	3.6	1
809	Biological Function and Stress Response Mechanism of MYB Transcription Factor Family Genes. Journal of Plant Growth Regulation, 2023, 42, 83-95.	5.1	18
810	Construction of a high-density genetic map based on specific-locus amplified fragment sequencing and identification of loci controlling anthocyanin pigmentation in Yunnan red radish. Horticulture Research, 2022, 9, .	6.3	6
811	microRNA172 targets <i>APETALA2</i> to regulate flavonoid biosynthesis in apple (<i>Malus) Tj ETQq1 1 0.784</i>	814 rgBT /	Overlock 10 1

#	Article	IF	CITATIONS
813	Phytochrome interacting factor MdPIF7 modulates anthocyanin biosynthesis and hypocotyl growth in apple. Plant Physiology, 2022, 188, 2342-2363.	4.8	15
814	The Paeonia qiui R2R3-MYB Transcription Factor PqMYB113 Positively Regulates Anthocyanin Accumulation in Arabidopsis thaliana and Tobacco. Frontiers in Plant Science, 2021, 12, 810990.	3.6	7
815	Transcriptomic and Chemical Analyses Reveal the Hub Regulators of Flower Color Variation from Camellia japonica Bud Sport. Horticulturae, 2022, 8, 129.	2.8	7
816	Transcription factor McWRKY71 induced by ozone stress regulates anthocyanin and proanthocyanidin biosynthesis in Malus crabapple. Ecotoxicology and Environmental Safety, 2022, 232, 113274.	6.0	19
817	Phosphorylation of MdERF17 by MdMPK4 promotes apple fruit peel degreening during light/dark transitions. Plant Cell, 2022, 34, 1980-2000.	6.6	16
818	A long noncoding RNA functions in high-light-induced anthocyanin accumulation in apple by activating ethylene synthesis. Plant Physiology, 2022, 189, 66-83.	4.8	31
819	Pigmentation and Flavonoid Metabolite Diversity in Immature â€~Fuji' Apple Fruits in Response to Lights and Methyl Jasmonate. International Journal of Molecular Sciences, 2022, 23, 1722.	4.1	13
820	Genome-Wide Analysis of the Apple Family 1 Glycosyltransferases Identified AÂFlavonoid-Modifying Ugt, Mdugt83l3, Which is Targeted by Mdmyb88 and Contributes to Stress Adaptation. SSRN Electronic Journal, 0, , .	0.4	0
821	New red-fleshed apple cultivars: A comprehensive review of processing effect, (poly)phenol bioavailability and biological effects. Food and Function, 2022, , .	4.6	2
822	Flavonoids – flowers, fruit, forage and the future. Journal of the Royal Society of New Zealand, 2023, 53, 304-331.	1.9	9
823	Ethylene precisely regulates anthocyanin synthesis in apple via a module comprising MdEIL1, MdMYB1, and MdMYB17. Horticulture Research, 2022, , .	6.3	16
824	Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway for the Accumulation of Anthocyanins and Other Flavonoids in Sweetpotato Root Skin and Leaf Vein Base. Journal of Agricultural and Food Chemistry, 2022, 70, 2574-2588.	5.2	15
825	De novo assembly of a fruit transcriptome set identifies AmMYB10 as a key regulator of anthocyanin biosynthesis in Aronia melanocarpa. BMC Plant Biology, 2022, 22, 143.	3.6	3
826	Screening of Upstream Transcript Factors of IbMYB1-1 by Yeast One-hybrid in Purple-fleshed Sweet Potato. Tropical Plant Biology, 2022, 15, 148-156.	1.9	3
827	Co-expression network analyses of anthocyanin biosynthesis genes in Ruellia (Wild Petunias;) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 182
828	<i>Re</i> enhances anthocyanin and proanthocyanidin accumulation to produce red foliated cotton and brown fiber. Plant Physiology, 2022, 189, 1466-1481.	4.8	13
829	Genome-wide identification and characterization of PdbHLH transcription factors related to anthocyanin biosynthesis in colored-leaf poplar (Populus deltoids). BMC Genomics, 2022, 23, 244.	2.8	14

830	Apple <scp>MdMYB306</scp> â€like inhibits anthocyanin synthesis by directly interacting with <scp>MdMYB17</scp> and <scp>MdbHLH33</scp> . Plant Journal, 2022, 110, 1021-1034.	5.7	27
-----	--	-----	----

#	Article	IF	CITATIONS
831	Transposon insertions regulate genomeâ€wide alleleâ€specific expression and underpin flower colour variations in apple (<i>Malus</i> spp.). Plant Biotechnology Journal, 2022, 20, 1285-1297.	8.3	21
832	Functional R2R3-MYB transcription factor NsMYB1, regulating anthocyanin biosynthesis, was relative to the fruit color differentiation in Nitraria sibirica Pall BMC Plant Biology, 2022, 22, 186.	3.6	8
833	Genome-wide identification and functional analysis of the peach (P. persica) laccase gene family reveal members potentially involved in endocarp lignification. Trees - Structure and Function, 0, , 1.	1.9	5
834	Identification of candidate genes related to anthocyanin biosynthesis in red sarcocarp hawthorn (Crataegus pinnatifida). Scientia Horticulturae, 2022, 298, 110987.	3.6	2
835	Transcriptome and carotenoid profiling of different varieties of Coffea arabica provides insights into fruit color formation. Plant Diversity, 2022, 44, 322-334.	3.7	6
836	VvMYB15 and VvWRKY40 Positively Co-regulated Anthocyanin Biosynthesis in Grape Berries in Response to Root Restriction. Frontiers in Plant Science, 2021, 12, 789002.	3.6	6
837	Weighted gene coexpression correlation network analysis reveals a potential molecular regulatory mechanism of anthocyanin accumulation under different storage temperatures in â€~Friar' plum. BMC Plant Biology, 2021, 21, 576.	3.6	9
838	Comparative Transcriptome Analysis Identifies Key Regulatory Genes Involved in Anthocyanin Metabolism During Flower Development in Lycoris radiata. Frontiers in Plant Science, 2021, 12, 761862.	3.6	12
839	Advances and outlook of horticultural bioengineering. Horticulture and Viticulture, 2021, , 17-29.	0.3	0
840	Identification of a Strong Anthocyanin Activator, VbMYBA, From Berries of Vaccinium bracteatum Thunb Frontiers in Plant Science, 2021, 12, 697212.	3.6	7
841	FvMYB79 Positively Regulates Strawberry Fruit Softening via Transcriptional Activation of FvPME38. International Journal of Molecular Sciences, 2022, 23, 101.	4.1	15
842	Genetic transformation of fruit crops: A review. International Journal of Horticulture and Food Science, 2020, 2, 49-51.	0.1	1
844	Elevating fruit carotenoid content in apple (Malus x domestica Borkh). Methods in Enzymology, 2022, , 63-98.	1.0	0
845	Monitoring Apricot (Prunus armeniaca L.) Ripening Progression through Candidate Gene Expression Analysis. International Journal of Molecular Sciences, 2022, 23, 4575.	4.1	4
902	Factors Influencing the Ripening and Quality of Fleshy Fruits. , 0, , 296-325.		2
903	Metabolome and transcriptome sequencing analysis reveals anthocyanins in the red flowers of black locust (Robinia pseudoacacia L.). Food Science and Technology, 0, 42, .	1.7	0
904	RNA-Seq Analysis Identifies Transcription Factors Involved in Anthocyanin Biosynthesis of â€~Red Zaosu' Pear Peel and Functional Study of PpPIF8. International Journal of Molecular Sciences, 2022, 23, 4798.	4.1	5
905	Integration of Transcriptome and Metabolome Reveals the Formation Mechanism of Red Stem in Prunus mume. Frontiers in Plant Science, 2022, 13, .	3.6	5

#	Article	IF	CITATIONS
906	MdJa2 Participates in the Brassinosteroid Signaling Pathway to Regulate the Synthesis of Anthocyanin and Proanthocyanidin in Red-Fleshed Apple. Frontiers in Plant Science, 2022, 13, .	3.6	5
907	Genome-wide identification and expression analysis of MYB gene family under nitrogen stress in Panax notoginseng. Protoplasma, 2023, 260, 189-205.	2.1	4
908	A dual-function transcription factor, SIJAF13, promotes anthocyanin biosynthesis in tomato. Journal of Experimental Botany, 2022, 73, 5559-5580.	4.8	12
909	Genome-wide analysis of the apple family 1 glycosyltransferases identified a flavonoid-modifying UGT, MdUGT83L3, which is targeted by MdMYB88 and contributes to stress adaptation. Plant Science, 2022, 321, 111314.	3.6	15

#	Article	IF	CITATIONS
927	Transcription factor VvibHLH93 negatively regulates proanthocyanidin biosynthesis in grapevine. Frontiers in Plant Science, 0, 13, .	3.6	5
928	Identification and Analysis of Long Non-Coding RNAs Related to UV-B-Induced Anthocyanin Biosynthesis During Blood-Fleshed Peach (Prunus persica) Ripening. Frontiers in Genetics, 0, 13, .	2.3	0
929	A TCP Transcription Factor in Malus halliana, MhTCP4, Positively Regulates Anthocyanins Biosynthesis. International Journal of Molecular Sciences, 2022, 23, 9051.	4.1	2
930	Tissue-specific expression of Ruby in Mexican lime (C. aurantifolia) confers anthocyanin accumulation in fruit. Frontiers in Plant Science, 0, 13, .	3.6	2
931	Systematic Analysis and Functional Characterization of R2R3-MYB Genes in Scutellaria baicalensis Georgi. International Journal of Molecular Sciences, 2022, 23, 9342.	4.1	6
932	Characterization of the R2R3-MYB Transcription Factor CsMYB113 Regulates Anthocyanin Biosynthesis in Tea Plants (Camellia sinensis). Plant Molecular Biology Reporter, 0, , .	1.8	1
933	Construction of Genetic Linkage Map and Mapping QTL Specific to Leaf Anthocyanin Colouration in Mapping Population â€~Allahabad Safeda' Á— â€~Purple Guava (Local)' of Guava (Psidium guajava L.). Pla 2022, 11, 2014.	nt 3, 5	4
934	Anthocyanin Accumulation and Molecular Analysis of Correlated Genes by Metabolomics and Transcriptomics in Sister Line Apple Cultivars. Life, 2022, 12, 1246.	2.4	5
935	Coexpression Network Analysis Based Characterisation of the R2R3-MYB Family Genes in Tolerant Poplar Infected with Melampsora larici-populina. Forests, 2022, 13, 1255.	2.1	1
936	Regulation of Anthocyanin Biosynthesis by Drought and UV-B Radiation in Wild Tomato (Solanum) Tj ETQq1 1 0.7	784314 rg 5.1	gBT /Overloc
937	Integrated metabolomics and transcriptomic analysis of the flavonoid regulatory networks in Sorghum bicolor seeds. BMC Genomics, 2022, 23, .	2.8	5
938	Metabolic and Developmental Changes in Germination Process of Mung Bean (Vigna radiata (L.) R.) Tj ETQq1 1 0. 2022, 2022, 1-13.	.784314 r 2.6	gBT /Overlo 3
939	Multi-omics analyses reveal <i>MdMYB10</i> hypermethylation being responsible for a bud sport of apple fruit color. Horticulture Research, 2022, 9, .	6.3	4
940	Transcriptome analysis of branches reveals candidate genes involved in anthocyanin biosynthesis of â€~Red Bartlett' pear (Pyrus communis L.). Scientia Horticulturae, 2022, 305, 111392.	3.6	4
941	PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid. Plant Science, 2022, 324, 111423.	3.6	4
942	Phytochemical Composition of Red-Fleshed Apple Cultivar â€~Baya Marisa' Compared to Traditional, White-Fleshed Apple Cultivar â€~Golden Delicious'. Horticulturae, 2022, 8, 811.	2.8	8
943	An LTR retrotransposon in the promoter of a <i>PsMYB10.2</i> gene associated with the regulation of fruit flesh color in Japanese plum. Horticulture Research, 0, , .	6.3	1
944	Biotic stress-induced and ripening-related anthocyanin biosynthesis are regulated by alternate phytohormone signals in blueberries. Environmental and Experimental Botany, 2022, 203, 105065.	4.2	5

#	ARTICLE	IF	CITATIONS
945	LcNAC90 transcription factor regulates biosynthesis of anthocyanin in harvested litchi in response to ABA and GA3. Postharvest Biology and Technology, 2022, 194, 112109.	6.0	8
946	Advances of anthocyanin synthesis regulated by plant growth regulators in fruit trees. Scientia Horticulturae, 2023, 307, 111476.	3.6	10
947	Direct and Indirect Effects of Light Conditions on Red Coloration of Flesh of â€~Kurenainoyume' Apple Fruit. Horticultural Research (Japan), 2022, 21, 327-332.	0.1	0
948	Genetic Analysis of bHLH Family in Purple Lettuce (Lactuca sativa L.). , 2022, , .		ο
949	Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating <i>PpMYB10</i> expression in pear. Horticulture Research, 2022, 9, .	6.3	20
950	Transcriptional regulation of proanthocyanidin biosynthesis pathway genes and transcription factors in Indigofera stachyodes Lindl. roots. BMC Plant Biology, 2022, 22, .	3.6	0
951	MdbHLH51 plays a positive role in anthocyanin accumulation in â€~Red Delicious' apples. Trees - Structure and Function, 2022, 36, 1687-1695.	1.9	3
952	Decoding the formation of diverse petal colors of Lagerstroemia indica by integrating the data from transcriptome and metabolome. Frontiers in Plant Science, 0, 13, .	3.6	7
953	Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in perilla to light intensity. Frontiers in Plant Science, 0, 13, .	3.6	10
954	Multilevel regulation of anthocyanin-promoting R2R3-MYB transcription factors in plants. Frontiers in Plant Science, 0, 13, .	3.6	15
955	Metabolomic and transcriptomic changes in mungbean (Vigna radiata (L.) R. Wilczek) sprouts under salinity stress. Frontiers in Plant Science, 0, 13, .	3.6	4
956	Anthocyanin Biosynthesis Induced by MYB Transcription Factors in Plants. International Journal of Molecular Sciences, 2022, 23, 11701.	4.1	32
957	PpZAT5 suppresses the expression of a B-box gene PpBBX18 to inhibit anthocyanin biosynthesis in the fruit peel of red pear. Frontiers in Plant Science, 0, 13, .	3.6	2
958	Heterozygous frameshift mutation in FaMYB10 is responsible for the natural formation of red and white-fleshed strawberry (Fragaria x ananassa Duch). Frontiers in Plant Science, 0, 13, .	3.6	5
959	<scp>MPK6â€mediated HY5</scp> phosphorylation regulates <scp>lightâ€induced</scp> anthocyanin accumulation in apple fruit. Plant Biotechnology Journal, 2023, 21, 283-301.	8.3	18
960	De Novo Assembly of a Sarcocarp Transcriptome Set Identifies AaMYB1 as a Regulator of Anthocyanin Biosynthesis in Actinidia arguta var. purpurea. International Journal of Molecular Sciences, 2022, 23, 12120.	4.1	0
961	Apple Polyphenol Diet Extends Lifespan, Slows down Mitotic Rate and Reduces Morphometric Parameters in Drosophila Melanogaster: A Comparison between Three Different Apple Cultivars. Antioxidants, 2022, 11, 2086.	5.1	2
962	Anthocyanin Accumulation Provides Protection against High Light Stress While Reducing Photosynthesis in Apple Leaves. International Journal of Molecular Sciences, 2022, 23, 12616.	4.1	8

#	Article	IF	CITATIONS
963	MdMYB110a, directly and indirectly, activates the structural genes for the ALA-induced accumulation of anthocyanin in apple. Plant Science, 2023, 326, 111511.	3.6	6
964	Genome-wide analysis of R2R3-MYB transcription factors in Japanese morning glory. PLoS ONE, 2022, 17, e0271012.	2.5	3
966	The underlying molecular mechanisms of external factors influencing fruit coloration in fruit trees. Scientia Horticulturae, 2023, 309, 111615.	3.6	7
967	Plant transcription factors: an overview of their role in plant life. , 2023, , 3-20.		3
968	Transcriptomic analyses reveal light-regulated anthocyanin accumulation in â€~ZhongShan-HongYu' grape berries. Scientia Horticulturae, 2023, 309, 111669.	3.6	7
969	Large-fragment deletion encompasses the R2R3 MYB transcription factor, PavMYB10.1, causes yellow fruits in sweet cherry (Prunus avium L.). Scientia Horticulturae, 2023, 309, 111648.	3.6	1
970	Interaction of AcMADS68 with transcription factors regulates anthocyanin biosynthesis in red-fleshed kiwifruit. Horticulture Research, 2023, 10, .	6.3	2
971	DhMYB2 and DhbHLH1 regulates anthocyanin accumulation via activation of late biosynthesis genes in Phalaenopsis-type Dendrobium. Frontiers in Plant Science, 0, 13, .	3.6	1
972	A glutathione Sâ€ŧransferase <i>Gh∏19</i> determines flower petal pigmentation via regulating anthocyanin accumulation in cotton. Plant Biotechnology Journal, 2023, 21, 433-448.	8.3	3
973	<i>>VrMYB90</i> Functions Synergistically with <i>>VrbHLHA</i> and <i>>VrMYB3</i> to Regulate Anthocyanin Biosynthesis in Mung Bean. Plant and Cell Physiology, 2023, 64, 221-233.	3.1	5
974	A MYB transcription factor containing fragment introgressed from Gossypium bickii confers pink flower on Gossypium hirsutum L. Industrial Crops and Products, 2023, 192, 116121.	5.2	4
975	Chromosome-Level Genome Assembly and Multi-Omics Dataset Provide Insights into Isoflavone and Puerarin Biosynthesis in Pueraria lobata (Wild.) Ohwi. Biomolecules, 2022, 12, 1731.	4.0	0
976	An R3-MYB repressor, BnCPC forms a feedback regulation with MBW complex to modulate anthocyanin biosynthesis in Brassica napus. , 2022, 15, .		7
977	Transcriptome and Metabolome Analysis Reveals the Effect of Nitrogen–Potassium on Anthocyanin Biosynthesis in "Fuji―Apple. Journal of Agricultural and Food Chemistry, 2022, 70, 15057-15068.	5.2	5
978	Transcriptome reveals insights into biosynthesis of ginseng polysaccharides. BMC Plant Biology, 2022, 22, .	3.6	6
979	Obtaining Individuals Derived from Gynogenesis Using Î ³ -Ray Irradiated Pollen in Apple. Horticultural Research (Japan), 2022, 21, 401-412.	0.1	0
980	The association between dietary patterns derived by three statistical methods and type 2 diabetes risk: YaHS-TAMYZ and Shahedieh cohort studies. Scientific Reports, 2023, 13, .	3.3	0
982	<pre><scp>MdMYB305–MdbHLH33–MdMYB10</scp> regulates sugar and anthocyanin balance in redâ€fleshed apple fruits. Plant Journal, 2023, 113, 1062-1079.</pre>	5.7	13

#	Article	IF	CITATIONS
983	Targeting ripening regulators to develop fruit with high quality and extended shelf life. Current Opinion in Biotechnology, 2023, 79, 102872.	6.6	10
984	Identification of HubHLH family and key role of HubHLH159 in betalain biosynthesis by activating the transcription of HuADH1, HuCYP76AD1-1, and HuDODA1 in pitaya. Plant Science, 2023, 328, 111595.	3.6	5
985	Metabolite and Transcriptome Profiles of Proanthocyanidin Biosynthesis in the Development of Litchi Fruit. International Journal of Molecular Sciences, 2023, 24, 532.	4.1	3
986	Identification of Chalcone Isomerase Family Genes and Roles of CnCHI4 in Flavonoid Metabolism in Camellia nitidissima. Biomolecules, 2023, 13, 41.	4.0	5
987	Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. IScience, 2023, 26, 105903.	4.1	3
988	Transcriptome profiling reveals the roles of pigment formation mechanisms in yellow Paeonia delavayi flowers. Molecular Genetics and Genomics, 2023, 298, 375-387.	2.1	4
989	An Integrated Metabolomic and Gene Expression Analysis of â€~Sachinoka' Strawberry and Its Somaclonal Mutant Reveals Fruit Color and Volatiles Differences. Plants, 2023, 12, 82.	3.5	3
990	Transcriptional networks orchestrating red and pink testa color in peanut. BMC Plant Biology, 2023, 23, .	3.6	8
991	Transcriptome analysis provides StMYBA1 gene that regulates potato anthocyanin biosynthesis by activating structural genes. Frontiers in Plant Science, 0, 14, .	3.6	4
992	Integrated metabolome and transcriptome analysis reveals the cause of anthocyanin biosynthesis deficiency in litchi aril. Physiologia Plantarum, 2023, 175, .	5.2	3
993	Anthocyanins distribution, transcriptional regulation, epigenetic and post-translational modification in fruits. Food Chemistry, 2023, 411, 135540.	8.2	19
994	Recent advances in epigenetic triggering of climacteric fruit ripening. Plant Physiology, 2023, 192, 1711-1717.	4.8	8
995	Grape phytochrome-interacting factor VvPIF1 negatively regulates carotenoid biosynthesis by repressing VvPSY expression. Plant Science, 2023, 331, 111693.	3.6	3
996	<scp>Mdmâ€miR858</scp> targets <i>MdMYB9</i> and <i>MdMYBPA1</i> to participate anthocyanin biosynthesis in redâ€fleshed apple. Plant Journal, 2023, 113, 1295-1309.	5.7	11
997	Comparative physiological and transcriptomic analyses reveal the mechanisms of CO2 enrichment in promoting the growth and quality in Lactuca sativa. PLoS ONE, 2023, 18, e0278159.	2.5	3
998	ETHYLENE RESPONSE FACTORS 4.1/4.2 with an EAR motif repress anthocyanin biosynthesis in red-skinned pears. Plant Physiology, 2023, 192, 1892-1912.	4.8	10
999	Genome-Wide Identification and Characterization of R2R3-MYB Provide Insight into Anthocyanin Biosynthesis Regulation Mechanism of Ananas comosus var. bracteatus. International Journal of Molecular Sciences, 2023, 24, 3133.	4.1	4
1000	Proteasomal degradation of MaMYB60 mediated by the E3 ligase MaBAH1 causes high temperature-induced repression of chlorophyll catabolism and green ripening in banana. Plant Cell, 2023, 35, 1408-1428.	6.6	20

#	Article	IF	CITATIONS
1001	Integrated Transcriptome and Metabolome Analyses Provide Insights into the Coloring Mechanism of Dark-red and Yellow Fruits in Chinese Cherry [Cerasus pseudocerasus (Lindl.) G. Don]. International Journal of Molecular Sciences, 2023, 24, 3471.	4.1	7
1002	Red-TE Homozygous Alleles of MdMYB10 Confer Full-Red Apple Fruit Skin in a High-Temperature Region. Horticulturae, 2023, 9, 270.	2.8	2
1003	Sucrose non-fermenting1-related protein kinase VcSnRK2.3 promotes anthocyanin biosynthesis in association with VcMYB1 in blueberry. Frontiers in Plant Science, 0, 14, .	3.6	1
1004	Karrikin1 Enhances Drought Tolerance in Creeping Bentgrass in Association with Antioxidative Protection and Regulation of Stress-Responsive Gene Expression. Agronomy, 2023, 13, 675.	3.0	2
1005	Modulation of anthocyanin accumulation in storage roots of sweetpotato by transcription factor IbMYB1-2 through direct binding to anthocyanin biosynthetic gene promoters. Plant Physiology and Biochemistry, 2023, 196, 868-879.	5.8	4
1006	Antosiyaninlerin Yapısı, Hücrede Biyosentezi, Etkinlikleri ve Kullanım Alanları. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2023, 6, 982-1005.	0.6	0
1007	Using HPLC-MS/MS to Determine the Loss of Primary and Secondary Metabolites in the Dehydration Process of Apple Slices. Foods, 2023, 12, 1201.	4.3	1
1008	Postharvest light-induced flavonoids accumulation in mango (Mangifera indica L.) peel is associated with the up-regulation of flavonoids-related and light signal pathway genes. Frontiers in Plant Science, 0, 14, .	3.6	2
1009	The ethylene-responsive transcription factor PpERF9 represses <i>PpRAP2.4</i> and <i>PpMYB114</i> via histone deacetylation to inhibit anthocyanin biosynthesis in pear. Plant Cell, 2023, 35, 2271-2292.	6.6	23
1010	<scp><i>PpHY5</i></scp> is involved in anthocyanin coloration in the peach flesh surrounding the stone. Plant Journal, 2023, 114, 951-964.	5.7	5
1011	The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyanin synthesis in red-fleshed apples. Horticulture Research, 2023, 10, .	6.3	9
1012	Two B-box proteins, PavBBX6/9, positively regulate light-induced anthocyanin accumulation in sweet cherry. Plant Physiology, 2023, 192, 2030-2048.	4.8	9
1013	Identification of CaPs locus involving in purple stripe formation on unripe fruit, reveals allelic variation and alternative splicing of R2R3-MYB transcription factor in pepper (Capsicum annuum L.). Frontiers in Plant Science, 0, 14, .	3.6	1
1014	PgMYB1 Positively Regulates Anthocyanin Accumulation by Activating PgGSTF6 in Pomegranate. International Journal of Molecular Sciences, 2023, 24, 6366.	4.1	0
1015	Metabolomic and Transcriptomic Analysis Reveals the Mechanisms Underlying the Difference in Anthocyanin Accumulation in Apple Fruits at Different Altitudes. Horticulturae, 2023, 9, 475.	2.8	0
1016	Reviewing the Tradeoffs between Sunburn Mitigation and Red Color Development in Apple under a Changing Climate. Horticulturae, 2023, 9, 492.	2.8	0
1017	Biotechnologically Engineered Plants. Biology, 2023, 12, 601.	2.8	2
1010	The mechanisms underpinning anthocyanin accumulation in a red-skinned bud sport in pear (Pyrus) Tj ETQq1 1 (0.7 <u>84314 r</u>	g&T /Overlo

#	Article	IF	CITATIONS
1019	The MYB transcription factor RcMYB1 plays a central role in rose anthocyanin biosynthesis. Horticulture Research, 2023, 10, .	6.3	15
1020	Extreme-phenotype GWAS unravels a complex nexus between apple (<i>Malus domestica</i>) red-flesh colour and internal flesh browning. Fruit Research, 2022, 2, 1-14.	2.0	1
1021	Apples: Role of Nutraceutical Compounds. , 2023, , 1-56.		0
1022	Function and molecular mechanism of a poplar placenta limited MIXTA gene in regulating differentiation of plant epidermal cells. International Journal of Biological Macromolecules, 2023, 242, 124743.	7.5	2
1023	Genome-Wide Comparative Analysis of the R2R3-MYB Gene Family in Six Ipomoea Species and the Identification of Anthocyanin-Related Members in Sweet Potatoes. Plants, 2023, 12, 1731.	3.5	0
1024	PsERF1B-PsMYB10.1-PsbHLH3 module enhances anthocyanin biosynthesis in the flesh-reddening of amber-fleshed plum (cv. Friar) fruit in response to cold storage. Horticulture Research, 2023, 10, .	6.3	1
1025	NataMYB4, a flower specific gene, regulates the flavonoid biosynthesis in Chinese Narcissus. Scientia Horticulturae, 2023, 318, 112101.	3.6	2
1026	The effect of environment and canopy manipulation on the development of red flesh colour in apple. Acta Horticulturae, 2023, , 233-242.	0.2	Ο
1027	Transcriptome-wide expression analysis of MYB gene family leads to functional characterization of flavonoid biosynthesis in fruit coloration of Ziziphus Mill. Frontiers in Plant Science, 0, 14, .	3.6	3
1028	Widely targeted metabolomic profiling combined with transcriptome analysis sheds light on flavonoid biosynthesis in sweet orange 'Newhall' (C. sinensis) under magnesium stress. Frontiers in Plant Science, 0, 14, .	3.6	3
1029	Transcription factors TgbHLH42â€1 and TgbHLH42â€2 positively regulate anthocyanin biosynthesis in Tulip (<i>Tulipa gesneriana</i> L.). Physiologia Plantarum, 2023, 175, .	5.2	3
1030	Genome-Wide Identification of the MYB and bHLH Families in Carnations and Expression Analysis at Different Floral Development Stages. International Journal of Molecular Sciences, 2023, 24, 9499.	4.1	1
1031	Combined transcriptomic and metabolomic analyses identifies CsERF003, a citrus ERF transcription factor, as flavonoid activator. Plant Science, 2023, 334, 111762.	3.6	4
1032	The E3 ubiquitin ligase SINA1 and the protein kinase BIN2 cooperatively regulate PHR1 in apple anthocyanin biosynthesis. Journal of Integrative Plant Biology, 0, , .	8.5	0
1033	The blue light signal transduction module FaCRY1-FaCOP1-FaHY5 regulates anthocyanin accumulation in cultivated strawberry. Frontiers in Plant Science, 0, 14, .	3.6	3
1034	BoMYB2 plays a key role in anthocyanin accumulation in tobacco plants overexpressing BoMYB2, BoTT8 and BoTTG1 transcription factors from purple cauliflower. Plant Cell, Tissue and Organ Culture, 0, , .	2.3	0
1035	Role of bZIP transcription factors in the regulation of plant secondary metabolism. Planta, 2023, 258, .	3.2	6
1036	Ozone mitigates the flesh discoloration in response to 1-methylcyclopropene by promoting anthocyanin biosynthesis in postharvest nectarines. Scientia Horticulturae, 2023, 321, 112253.	3.6	1

#	Article	IF	CITATIONS
1037	Genome-wide identification of R2R3-MYB transcription factor family in Docynia delavayi (Franch.) Schneid and its expression analysis during the fruit development. Food Bioscience, 2023, 54, 102878.	4.4	0
1038	Deciphering the genetic architecture of fruit color in strawberry. Journal of Experimental Botany, 2023, 74, 6306-6320.	4.8	5
1039	Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.). Journal of Integrative Agriculture, 2023, , .	3.5	0
1040	The complex interplay between plant-microbe and virus interactions in sustainable agriculture: Harnessing phytomicrobiomes for enhanced soil health, designer plants, resource use efficiency, and food security. , 2023, 2, 100028.		1
1041	A comprehensive analysis of copy number variations in diverse apple populations. BMC Genomics, 2023, 24, .	2.8	1
1042	Natural variation in Beauty Mark is associated with UV-based geographical adaptation in Gossypium species. BMC Biology, 2023, 21, .	3.8	0
1043	Maturity biomarkers predicting storage performance of early-harvested yellow-fleshed kiwifruit identified using integrated multi-omics analysis. Postharvest Biology and Technology, 2023, 203, 112400.	6.0	3
1044	The <scp>E3</scp> ubiquitin ligases <scp>SINA1</scp> and <scp>SINA2</scp> integrate with the protein kinase <scp>CIPK20</scp> to regulate the stability of <scp>RGL2a</scp> , a positive regulator of anthocyanin biosynthesis. New Phytologist, 2023, 239, 1332-1352.	7.3	5
1045	Involvement of a MYB Transcription Factor in Anthocyanin Biosynthesis during Chinese Bayberry (Morella rubra) Fruit Ripening. Biology, 2023, 12, 894.	2.8	1
1046	Effect of temperature on betacyanins synthesis and the transcriptome of Suaeda salsa. Frontiers in Plant Science, 0, 14, .	3.6	3
1047	MdNAC104 positively regulates apple cold tolerance via CBFâ€dependent and CBFâ€independent pathways. Plant Biotechnology Journal, 2023, 21, 2057-2073.	8.3	17
1048	Light-mediated anthocyanin biosynthesis in rose petals involves a balanced regulatory module comprising transcription factors RhHY5, RhMYB114a, and RhMYB3b. Journal of Experimental Botany, 2023, 74, 5783-5804.	4.8	2
1049	The PcERF5 promotes anthocyanin biosynthesis in red-fleshed pear (Pyrus communis) through both activating and interacting with PcMYB transcription factors. Journal of Integrative Agriculture, 2023, 22, 2687-2704.	3.5	1
1050	An R2R3-MYB Transcription Factor RoMYB10 Regulates Anthocyanin Biosynthesis in Black Raspberry. Agronomy, 2023, 13, 1823.	3.0	0
1051	Variation in the Calyx Color in Two Styrax japonicus Varieties Is Attributed to Varied Anthocyanin Levels as Revealed by Integrated Metabolomic and Transcriptomic Analyses. Forests, 2023, 14, 1413.	2.1	0
1052	A 43 Bp-Deletion in the F3′H Gene Reducing Anthocyanins Is Responsible for Keeping Buds Green at Low Temperatures in Broccoli. International Journal of Molecular Sciences, 2023, 24, 11391.	4.1	1
1053	Independent flavonoid and anthocyanin biosynthesis in the flesh of a red-fleshed table grape revealed by metabolome and transcriptome co-analysis. BMC Plant Biology, 2023, 23, .	3.6	2
1054	Pneumatic Defoliation Enhances Fruit Skin Color and Anthocyanin Pigments in â€~Picnic' Apples. Agronomy, 2023, 13, 2078.	3.0	0

#	ARTICLE Influence of the content of biologically active phenolic compounds in the fruits of Malus Mill. on	IF	CITATIONS
1055	their quality indicators. Pomiculture & Small Fruits Culture in Russia, 2023, 73, 32-42. Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus.	0.1	0
1058	Identification of R2R3-MYB family in blueberry and its potential involvement of anthocyanin biosynthesis in fruits. BMC Genomics, 2023, 24, .	2.8	1
1059	Differential Coloration, Pigment Biosynthesis-Related Gene Expression, and Accumulation According to Developmental Stage in the †Enbu' Apple. Horticulturae, 2023, 9, 1072.	2.8	0
1060	FaMYB5 Interacts with FaBBX24 to Regulate Anthocyanin and Proanthocyanidin Biosynthesis in Strawberry (Fragaria × ananassa). International Journal of Molecular Sciences, 2023, 24, 12185.	4.1	0
1061	Development of a fast and efficient root transgenic system for exploring the function of RsMYB90 involved in the anthocyanin biosynthesis of radish. Scientia Horticulturae, 2024, 323, 112490.	3.6	0
1062	Light-Induced TaHY5-7A and TaBBX-3B Physically Interact to Promote PURPLE PERICARP-MYB 1 Expression in Purple-Grained Wheat. Plants, 2023, 12, 2996.	3.5	0
1063	HaMYBA-HabHLH1 regulatory complex and HaMYBF fine-tune red flower coloration in the corolla of sunflower (Helianthus annuus L.). Plant Science, 2023, , 111901.	3.6	0
1064	The Collaborative Role of the Regulatory (MYB-bHLH-WD40) and Structural Genes Results in Fruit Coloration in Plants Some Do This Under the Influence of External Stimuli. Journal of Plant Growth Regulation, 0, , .	5.1	0
1065	The Synergistic Effects of Environmental and Genetic Factors on the Regulation of Anthocyanin Accumulation in Plant Tissues. International Journal of Molecular Sciences, 2023, 24, 12946.	4.1	2
1066	Transcriptome and metabolome analyses of anthocyanin biosynthesis in post-harvest fruits of a full red-type kiwifruit (Actinidia arguta) â€Jinhongguan'. Frontiers in Plant Science, 0, 14, .	3.6	0
1067	E3 ubiquitin ligases SINA4 and SINA11 regulate anthocyanin biosynthesis by targeting the IAA29â€ARF5å€1â€ <i>ERF3</i> module in apple. Plant, Cell and Environment, 2023, 46, 3902-3918.	5.7	0
1068	Melatonin's chromatic magic: Examining its role in orchestrating pigment biosynthesis in horticultural crops. Scientia Horticulturae, 2024, 323, 112482.	3.6	0
1069	ATP-binding cassette protein ABCC8 promotes anthocyanin accumulation in strawberry fruits. Plant Physiology and Biochemistry, 2023, 203, 108037.	5.8	1
1071	A NAC transcription factor, PpNAC1, regulates the expression of PpMYB10.1 to promote anthocyanin biosynthesis in the leaves of peach trees in autumn. , 2023, 1, .		0
1072	Eggplant transcription factor SmMYB5 integrates jasmonate and light signaling during anthocyanin biosynthesis. Plant Physiology, 0, , .	4.8	0
1073	The regulatory role of MdNAC14-Like in anthocyanin synthesis and proanthocyanidin accumulation in red-fleshed apples. Plant Physiology and Biochemistry, 2023, 204, 108068.	5.8	1
1074	Comprehensive metabolome and transcriptome analyses demonstrate divergent anthocyanin and carotenoid accumulation in fruits of wild and cultivated loquats. Frontiers in Plant Science, 0, 14, .	3.6	1

#	Article	IF	CITATIONS
1075	A chromosome-level genome assembly for Chinese plum â€~Wushancuili' reveals the molecular basis of its fruit color and susceptibility to rain-cracking. Horticultural Plant Journal, 2023, , .	5.0	0
1076	Comprehensive transcriptome and WGCNA analysis reveals the potential function of anthocyanins in low-temperature resistance of a red flower mutant tobacco. Genomics, 2023, 115, 110728.	2.9	1
1077	Improving color sources by plant breeding and cultivation. , 2024, , 507-553.		0
1078	DcbHLH1 interacts with DcMYB1 and DcMYB2 to dynamically regulate petal pigmentation in Dianthus caryophyllus. Industrial Crops and Products, 2024, 207, 117606.	5.2	0
1079	A Novel R2R3–MYB Transcription Factor FaMYB10-like Promotes Light-Induced Anthocyanin Accumulation in Cultivated Strawberry. International Journal of Molecular Sciences, 2023, 24, 16561.	4.1	1
1080	The CsMYB123 and CsbHLH111 are involved in drought stress-induced anthocyanin biosynthesis in Chaenomeles speciosa. Molecular Horticulture, 2023, 3, .	5.8	0
1081	Transcription factor MdNAC33 is involved in ALA-induced anthocyanin accumulation in apples. Plant Science, 2024, 339, 111949.	3.6	0
1082	Potential of UVâ€B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. Plant, Cell and Environment, 0, , .	5.7	0
1083	The anthocyanin formation of purple leaf is associated with the activation of LfiHY5 and LfiMYB75 in crape myrtle. Horticultural Plant Journal, 2023, , .	5.0	3
1084	Targeted Gene Editing in Pome Fruit Genetics and Breeding: State-of-the-Art, Application Potential and Perspectives. , 2024, , 309-345.		0
1085	Apples: Role of Nutraceutical Compounds. , 2023, , 843-897.		0
1086	Constitutive expression of apple <i>endoâ€POLYGALACTURONASE1</i> in fruit induces early maturation, alters skin structure and accelerates softening. Plant Journal, 2024, 117, 1413-1431.	5.7	0
1087	FvDFR2 rather than FvDFR1 play key roles for anthocyanin synthesis in strawberry petioles. Plant Science, 2024, 340, 111960.	3.6	1
1088	The WRKY17-WRKY50 complex modulates anthocyanin biosynthesis to improve drought tolerance in apple. Plant Science, 2024, 340, 111965.	3.6	0
1090	A light responsive transcription factor CsbHLH89 positively regulates anthocyanidin synthesis in tea (Camellia sinensis). Scientia Horticulturae, 2024, 327, 112784.	3.6	0
1091	A stress-responsive R2R3-MYB transcription factor, EpMYB1 is involved in the regulation of anthocyanin biosynthesis in purple coneflower. Industrial Crops and Products, 2024, 209, 118043.	5.2	0
1092	Biochemical characterization and differential expression of genes associated with apple tolerance to Penicillium expansum. Scientia Horticulturae, 2024, 327, 112853.	3.6	0
1093	Tulip transcription factor TgWRKY75 activates salicylic acid and abscisic acid biosynthesis to synergistically promote petal senescence. Journal of Experimental Botany, 2024, 75, 2435-2450.	4.8	2

#	Article	IF	CITATIONS
1094	Genetic variations at BBX24 and MYB110a loci regulated anthocyanin accumulation in pear bud sports. Horticultural Plant Journal, 2024, , .	5.0	0
1095	Genetically modified organisms for crop biofortification. , 2024, , 19-37.		0
1097	Unraveling the Mechanism of Cork Spot-like Physiological Disorders in â€~Kurenainoyume' Apples Based on Occurrence Location. Plants, 2024, 13, 381.	3.5	0
1099	Transcriptome Analysis of White- and Red-Fleshed Apple Fruits Uncovered Novel Genes Related to the Regulation of Anthocyanin Biosynthesis. International Journal of Molecular Sciences, 2024, 25, 1778.	4.1	0
1100	<scp>MdWER</scp> interacts with <scp>MdERF109</scp> and <scp>MdJAZ2</scp> to mediate methyl jasmonate―and light―nduced anthocyanin biosynthesis in apple fruit. Plant Journal, 0, , .	5.7	0
1101	Looking in the Scaffold 22 Hotspot for Differentially Regulated Genes Genomic Sequence Variation in Romanian Blueberry Cultivars. Horticulturae, 2024, 10, 157.	2.8	0
1102	The bZIP transcription factor MpbZIP9 regulates anthocyanin biosynthesis in Malus â€~Pinkspire' fruit. Plant Science, 2024, 342, 112038.	3.6	0
1103	Hypermethylation in the promoter regions of flavonoid pathway genes is associated with skin color fading during â€~Daihong' apple fruit development. Horticulture Research, 2024, 11, .	6.3	0
1104	Pre-flowering UV-C treatment influences yield, bioactive compounds and sensory attributes by altering phenylpropanoid biosynthesis gene expression in tomato. Scientia Horticulturae, 2024, 329, 113030.	3.6	0
1105	Soybean flower-specific R2R3-MYB transcription factor gene GmMYB108 induces anthocyanin production in Arabidopsis thaliana. Applied Biological Chemistry, 2024, 67, .	1.9	0
1106	JrATHB-12 mediates JrMYB113 and JrMYB27 to control the different types of red walnut1. Journal of Integrative Agriculture, 2024, , .	3.5	0
1107	ROS- and CBF- mediated pathways are involved in chlorophyll degradation and anthocyanin accumulation enhanced by cool temperatures in ripening litchi fruits. Postharvest Biology and Technology, 2024, 212, 112888.	6.0	0
1108	FaMYB6-like negatively regulates FaMYB10-induced anthocyanin accumulation during strawberry fruit ripening. Postharvest Biology and Technology, 2024, 212, 112891.	6.0	0
1109	Comparative Metabolomic and Transcriptomic Analysis Reveals That Variations in Flavonoids Determine the Colors of Different Rambutan Cultivars. Horticulturae, 2024, 10, 263.	2.8	0
1110	Functionality of the MYB1 Transcription Factor in the Transactivation of Leucoanthocyanidin Reductase (LAR) Promoters of Fragaria × Ananassa and Fragaria Chiloensis. Journal of Plant Growth Regulation, 0, , .	5.1	0
1111	Screening and functional analysis of StMYB transcription factors in pigmented potato under low-temperature treatment. BMC Genomics, 2024, 25, .	2.8	0
1112	Genome Editing to Improve Nutrition Status of Crop Plants. , 2024, , 29-45.		0
1113	Transcriptome profiling of MYB-overexpressed transgenic lines provides crucial molecular insights into anthocyanin and remodel the biosynthesis regulatory network in Nicotiana tabacum. Industrial Crops and Products, 2024, 213, 118374.	5.2	0