Arsenic removal from water/wastewater using adsorbe

Journal of Hazardous Materials 142, 1-53 DOI: 10.1016/j.jhazmat.2007.01.006

Citation Report

#	Article	IF	CITATIONS
1	Application of fly ash agglomerates in the sorption of arsenic. Polish Journal of Chemical Technology, 2007, 9, 37-41.	0.3	9
2	Layered Double Hydroxide Based Polymer Nanocomposites. Advances in Polymer Science, 2007, , 101-168.	0.4	138
3	Hierarchical Nanostructured Copper Oxide and Its Application in Arsenic Removal. Journal of Physical Chemistry C, 2007, 111, 18624-18628.	1.5	121
4	Sorption Removal of Arsenic(V) by Sn-loaded Poly(hydroxamic) Acid Chelating Resin. Journal of Ion Exchange, 2007, 18, 240-245.	0.1	4
5	Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chemical Engineering Journal, 2008, 144, 42-50.	6.6	181
6	Synthesis and characterization of nanostructure hydrous iron–titanium binary mixed oxide for arsenic sorption. Journal of Nanoparticle Research, 2008, 10, 1361-1368.	0.8	24
7	Adsorption mechanism of arsenate by zirconyl-functionalized activated carbon. Journal of Colloid and Interface Science, 2008, 317, 228-234.	5.0	48
8	Arsenic removal from an aqueous solution by modified A. niger biomass: Batch kinetic and isotherm studies. Journal of Hazardous Materials, 2008, 150, 818-825.	6.5	126
9	Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide. Journal of Hazardous Materials, 2008, 152, 397-406.	6.5	65
10	Wastewater treatment using low cost activated carbons derived from agricultural byproducts—A case study. Journal of Hazardous Materials, 2008, 152, 1045-1053.	6.5	222
11	Removal of As(V) and As(III) by reclaimed iron-oxide coated sands. Journal of Hazardous Materials, 2008, 153, 817-826.	6.5	83
12	Removal of As(V) and Cr(VI) from aqueous solutions using solid waste from leather industry. Journal of Hazardous Materials, 2008, 151, 280-284.	6.5	110
13	Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. Journal of Hazardous Materials, 2008, 154, 1066-1074.	6.5	155
14	An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers. Journal of Hazardous Materials, 2008, 156, 604-611.	6.5	47
15	An effective adsorbent developed from municipal solid waste and coal co-combustion ash for As(V) removal from aqueous solution. Journal of Hazardous Materials, 2008, 159, 313-318.	6.5	29
16	Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology, 2008, 99, 6017-6027.	4.8	1,344
17	Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 2008, 140, 114-131.	7.0	1,198
18	Characteristics of molybdate-impregnated chitosan beads (MICB) in terms of arsenic removal from water and the application of a MICB-packed column to remove arsenic from wastewater. Bioresource Technology, 2008, 99, 7487-7494.	4.8	54

#	Article	IF	CITATIONS
19	Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy, 2008, 90, 137-146.	1.8	43
20	Adsorption of arsenate and arsenite anions from aqueous medium by using metal(III)-loaded amberlite resins. Hydrometallurgy, 2008, 91, 138-143.	1.8	57
21	Arsenic Release from a Natural Rock under Nearâ€natural Oxidizing Conditions. Engineering in Life Sciences, 2008, 8, 622-630.	2.0	9
22	Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of the Total Environment, 2008, 400, 42-51.	3.9	537
23	Atomic spectrometry update. Advances in atomic emission, absorption, and fluorescence spectrometry, and related techniques. Journal of Analytical Atomic Spectrometry, 2008, 23, 889.	1.6	29
24	A pH-Metric, UV, NMR, and X-ray Crystallographic Study on Arsenous Acid Reacting with Dithioerythritol. Inorganic Chemistry, 2008, 47, 3832-3840.	1.9	24
25	Use of Manganic Ferrihydrite to treat As(V) contaminated water. Chemistry and Ecology, 2008, 24, 23-33.	0.6	2
26	Arsenate Removal by Nanostructured ZrO ₂ Spheres. Environmental Science & Technology, 2008, 42, 3786-3790.	4.6	123
27	Nanostructure Iron(III)â^'Zirconium(IV) Binary Mixed Oxide: Synthesis, Characterization, and Physicochemical Aspects of Arsenic(III) Sorption from the Aqueous Solution. Industrial & Engineering Chemistry Research, 2008, 47, 9903-9912.	1.8	48
28	Experimental and modelling analysis of As(V) ions adsorption on granular activated carbon. Water Research, 2008, 42, 2007-2016.	5.3	82
29	Effect of NOM on arsenic adsorption by TiO2 in simulated As(III)-contaminated raw waters. Water Research, 2008, 42, 2309-2319.	5.3	60
30	Evaluation of a novel hybrid inorganic/organic polymer type material in the Arsenic removal process from drinking water. Water Research, 2008, 42, 4327-4333.	5.3	52
31	Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution, 2008, 156, 1149-1155.	3.7	89
32	In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environmental Pollution, 2008, 156, 827-831.	3.7	69
33	Batch and Column Study:  Adsorption of Arsenate Using Untreated Laterite as Adsorbent. Industrial & Engineering Chemistry Research, 2008, 47, 1620-1629.	1.8	69
34	Arsenate Removal by Iron (Hydr)Oxide Modified Granulated Activated Carbon: Modeling Arsenate Breakthrough with the Pore Surface Diffusion Model. Separation Science and Technology, 2008, 43, 3154-3167.	1.3	21
35	Safety in use of the treatments for the removal of manganese, iron and arsenic from natural mineral waters by oxyhydroxide media - Scientific Opinion of the Panel on Food additives, Flavourings, Processing aids and Materials in Contact with Food (AFC). EFSA Journal, 2008, 6, 784.	0.9	1
36	Removal of Arsenate in Acid Mine Drainage by a Permeable Reactive Barrier Bearing Granulated Blast Furnace Slag: Column Study. Materials Transactions, 2008, 49, 835-844.	0.4	13

#	Article	IF	CITATIONS
37	Identification of Sulfate- and Arsenate-Reducing Bacteria in Sheep Manure as Permeable Reactive Materials after Arsenic Immobilization in Groundwater. Materials Transactions, 2008, 49, 2275-2282.	0.4	4
38	Adsorption ability for several harmful anions and thermal behavior of Zn-Fe layered double hydroxide. Journal of the Ceramic Society of Japan, 2008, 116, 192-197.	0.5	40
39	Agricultural Wastes. Water Environment Research, 2008, 80, 1340-1396.	1.3	1
41	Adsorption of Reactive Dyes by Palm Kernel Shell Activated Carbon: Application of Film Surface and Film Pore Diffusion Models. E-Journal of Chemistry, 2009, 6, 949-954.	0.4	5
42	Bioaccumulation of Arsenic by Fungi. American Journal of Environmental Sciences, 2009, 5, 364-370.	0.3	27
43	Comparison of nanofiltration and adsorption techniques to remove arsenic from drinking water. Desalination and Water Treatment, 2009, 9, 149-154.	1.0	18
44	LIVE AND DEAD <i>SPIRULINA</i> SP. TO REMOVE ARSENIC (V) FROM WATER. International Journal of Phytoremediation, 2009, 11, 53-64.	1.7	25
45	Iron(III) complex of an amino-functionalized poly(acrylamide)-grafted lignocellulosic residue as a potential adsorbent for the removal of chromium(VI) from water and industry effluents. Desalination and Water Treatment, 2009, 12, 3-15.	1.0	3
46	Removal of As(V) from aqueous system using steel-making by-product. Desalination and Water Treatment, 2009, 7, 152-159.	1.0	7
47	Development of GAC-Iron Adsorbent for Arsenic Removal. Proceedings of the Water Environment Federation, 2009, 2009, 1552-1571.	0.0	2
48	Heavy metal ions adsorption from mine waters by sawdust. Chemical Industry and Chemical Engineering Quarterly, 2009, 15, 237-249.	0.4	33
49	Removal of inorganic As5+ from a small drinking water system. Journal of the Serbian Chemical Society, 2009, 74, 85-92.	0.4	8
50	Waste Biomass from Marine Environment as Arsenic and Lead Biosorbent. Advanced Materials Research, 2009, 71-73, 597-600.	0.3	3
51	Removal of arsenate and 17α-ethinyl estradiol (EE2) by iron (hydr)oxide modified activated carbon fibers. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 354-361.	0.9	44
52	Arsenic (V) removal from aqueous system using adsorbent developed from a high iron-containing fly ash. Science of the Total Environment, 2009, 407, 5780-5786.	3.9	64
53	Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies. Journal of Contaminant Hydrology, 2009, 106, 15-28.	1.6	42
54	Waste Treatment and Remediation Technologies for Arsenic. , 0, , 351-430.		6
55	Magnetic Multiâ€Functional Nano Composites for Environmental Applications. Advanced Functional Materials, 2009, 19, 1268-1275.	7.8	110

#	Article	IF	CITATIONS
56	Removal of arsenic from simulated groundwater by GACâ€Fe: A modeling approach. AICHE Journal, 2009, 55, 1860-1871.	1.8	26
57	Treatment of simulated arsenic contaminated groundwater using GAC-Cu in batch reactor: Optimization of process parameters. Canadian Journal of Chemical Engineering, 2009, 87, 766-778.	0.9	11
58	Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 2009, 171, 965-972.	6.5	184
59	Usage of the sol–gel process on the fabrication of macroporous adsorbent activated-gamma alumina spheres. Microporous and Mesoporous Materials, 2009, 120, 228-238.	2.2	16
60	Enhanced removal of arsenite from water by a mesoporous hybrid material – Thiol-functionalized silica coated activated alumina. Microporous and Mesoporous Materials, 2009, 124, 1-7.	2.2	52
61	Review of fluoride removal from drinking water. Journal of Environmental Management, 2009, 91, 67-77.	3.8	676
62	Arsenic removal using hydrous nanostructure iron(III)–titanium(IV) binary mixed oxide from aqueous solution. Journal of Hazardous Materials, 2009, 161, 884-892.	6.5	219
63	Adsorption of As(V) on surfactant-modified natural zeolites. Journal of Hazardous Materials, 2009, 162, 204-211.	6.5	169
64	Arsenic adsorption from aqueous solution on synthetic zeolites. Journal of Hazardous Materials, 2009, 162, 440-447.	6.5	222
65	Sorption of As(V) from aqueous solution using acid modified carbon black. Journal of Hazardous Materials, 2009, 162, 1269-1277.	6.5	97
66	Experimental study of arsenic removal by direct contact membrane distillation. Journal of Hazardous Materials, 2009, 163, 874-879.	6.5	107
67	Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite-rich tuffs. Journal of Hazardous Materials, 2009, 163, 939-945.	6.5	71
68	Adsorption characteristics of As(V) on iron-coated zeolite. Journal of Hazardous Materials, 2009, 163, 804-808.	6.5	160
69	Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. Journal of Hazardous Materials, 2009, 164, 533-541.	6.5	108
70	Modified aluminosilicates as low-cost sorbents of As(III) from anoxic groundwater. Journal of Hazardous Materials, 2009, 165, 134-140.	6.5	42
71	Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II). Journal of Hazardous Materials, 2009, 165, 893-902.	6.5	109
72	Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste–wheat straw mixture. Journal of Hazardous Materials, 2009, 165, 1119-1123.	6.5	58
73	Biosorption of arsenic from aqueous solution using agricultural residue â€~rice polish'. Journal of Hazardous Materials, 2009, 166, 1050-1059.	6.5	245

#	Article	IF	CITATIONS
74	Sorption of arsenate and dichromate on polymerin, Fe(OH)x–polymerin complex and ferrihydrite. Journal of Hazardous Materials, 2009, 166, 1174-1179.	6.5	26
75	Removal of arsenic from aqueous solution using electrocoagulation. Journal of Hazardous Materials, 2009, 167, 966-969.	6.5	119
76	Preparation and evaluation of thiol-functionalized activated alumina for arsenite removal from water. Journal of Hazardous Materials, 2009, 167, 1215-1221.	6.5	45
77	Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. Journal of Hazardous Materials, 2009, 168, 1-12.	6.5	155
78	Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 2009, 168, 430-437.	6.5	137
79	Size effects of nanocrystalline TiO2 on As(V) and As(III) adsorption and As(III) photooxidation. Journal of Hazardous Materials, 2009, 168, 747-752.	6.5	48
80	Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. Journal of Hazardous Materials, 2009, 168, 820-825.	6.5	194
81	Iron coated pottery granules for arsenic removal from drinking water. Journal of Hazardous Materials, 2009, 168, 626-632.	6.5	56
82	Adsorption and abiotic oxidation of arsenic by aged biofilter media: Equilibrium and kinetics. Journal of Hazardous Materials, 2009, 168, 1310-1318.	6.5	19
83	Sorption of naphthalene and phosphate to the CTMAB–Al13 intercalated bentonites. Journal of Hazardous Materials, 2009, 168, 1590-1594.	6.5	60
84	Risk assessment and management of arsenic in source water in China. Journal of Hazardous Materials, 2009, 170, 729-734.	6.5	34
85	Adsorption of As(V) from water using Mg–Fe-based hydrotalcite (FeHT). Journal of Hazardous Materials, 2009, 171, 665-670.	6.5	98
86	Adsorption of heavy metal ions by sawdust of deciduous trees. Journal of Hazardous Materials, 2009, 171, 684-692.	6.5	138
87	Low-cost farmed shrimp shells could remove arsenic from solutions kinetically. Journal of Hazardous Materials, 2009, 171, 859-864.	6.5	25
88	Value-added utilization of oil palm ash: A superior recycling of the industrial agricultural waste. Journal of Hazardous Materials, 2009, 172, 523-531.	6.5	104
89	Modeling of arsenic adsorption kinetics of synthetic and contaminated groundwater on natural laterite. Journal of Hazardous Materials, 2009, 172, 928-934.	6.5	33
90	Structure investigation of As(III)- and As(V)-species bound to Fe-modified clinoptilolite tuffs. Microporous and Mesoporous Materials, 2009, 118, 408-415.	2.2	37
91	Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method. Microporous and Mesoporous Materials, 2009, 122, 28-35.	2.2	118

#	Article	IF	CITATIONS
92	Synthesis of mesostructured ferric oxyhydroxides templated by alkyl surfactants: Effect of pH, Fâ^' and solvents, and their adsorption isotherms for As(V). Microporous and Mesoporous Materials, 2009, 123, 177-184.	2.2	18
93	Sorption/desorption of arsenate on/from Mg–Al layered double hydroxides: Influence of phosphate. Journal of Colloid and Interface Science, 2009, 333, 63-70.	5.0	99
94	Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal. Journal of Colloid and Interface Science, 2009, 338, 22-29.	5.0	79
95	Fe–Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: Preparation and evaluation. Journal of Colloid and Interface Science, 2009, 338, 353-358.	5.0	99
96	Removal of arsenic from wastewater using iron compound: Comparing two different types of adsorbents in the context of LCA. Resources, Conservation and Recycling, 2009, 53, 688-697.	5.3	15
97	Adsorption of As (V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 106-113.	2.3	83
98	Iron oxide adsorbers for arsenic removal: A low cost treatment for rural areas and mobile applications. Desalination, 2009, 248, 184-192.	4.0	41
99	Interaction of Mg-enriched kaolinite–bentonite ceramics with arsenic aqueous solutions. Desalination, 2009, 249, 582-590.	4.0	15
100	Arsenic removal through adsorption, sand filtration and ultrafiltration: In situ precipitated ferric and manganese binary oxides as adsorbents. Desalination, 2009, 249, 1233-1237.	4.0	45
101	Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples. Analytica Chimica Acta, 2009, 631, 182-188.	2.6	72
102	Nanoâ€adsorbents for the removal of metallic pollutants from water and wastewater. Environmental Technology (United Kingdom), 2009, 30, 583-609.	1.2	352
103	Synthesis of Highly Selective Magnetic Mesoporous Adsorbent. Journal of Physical Chemistry C, 2009, 113, 9804-9813.	1.5	145
104	Sorption Characteristics of Arsenic(V) for Removal from Water Using Agglomerated Nanostructure Iron(III)â^'Zirconium(IV) Bimetal Mixed Oxide. Journal of Chemical & Engineering Data, 2009, 54, 2222-2228.	1.0	65
105	Treatment of arsenic-contaminated groundwater by a low cost activated alumina adsorbent prepared by partial thermal dehydration. Desalination and Water Treatment, 2009, 11, 275-282.	1.0	22
106	Rice Polish: An Alternative to Conventional Adsorbents for Treating Arsenic Bearing Water by Up-Flow Column Method. Industrial & Engineering Chemistry Research, 2009, 48, 10180-10185.	1.8	68
107	Biosorption of As(V) onto the Shells of the Crab (Portunus sanguinolentus): Equilibrium and Kinetic Studies. Industrial & Engineering Chemistry Research, 2009, 48, 3589-3594.	1.8	20
108	Capacity of Activated Carbon Derived from Peach Stones by K2CO3 in the Removal of Acid, Reactive, and Direct Dyes from Aqueous Solution. Journal of Environmental Engineering, ASCE, 2009, 135, 333-340.	0.7	7
109	Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 2009, 35, 743-759.	4.8	913

ARTICLE IF CITATIONS # Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline 110 3.7 59 TiO2-based adsorbent. Environmental Pollution, 2009, 157, 2514-2519. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special 4.2 99 references to corrosion products analyses. Chemosphere, 2009, 75, 156-162. Rapid column-mode removal of arsenate from water by crosslinked poly(allylamine) resin. Water 112 5.3 177 Research, 2009, 43, 1229-1236. Preparation and evaluation of iron–chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater. Water Research, 2009, 43, 3862-3870. Removal of antimony(V) and antimony(III) from drinking water by 114 5.3 241 coagulationâ€"flocculationâ€"sedimentation (CFS). Water Research, 2009, 43, 4327-4335. Modeling and Simulation of Heavy Metals Removal From Drinking Water by Magnetic Zeolite. NATO Science for Peace and Security Series C: Environmental Security, 2009, , 61-84. 0.1 Density functional theory study of Fe(II) adsorption and oxidation on goethite surfaces. Physical 116 1.1 59 Review B, 2009, 79, . Phytoremediation of Arsenic: Fundamental Studies, Practical Applications, and Future Prospects. 3.4 14 Applied Spectroscopy Reviews, 2009, 44, 534-551. 118 Groundwater Arsenic Removal Technologies Based on Sorbents., 2009, , 379-417. 9 Simultaneous Oxidation and Reduction of Arsenic by Zero-Valent Iron Nanoparticles: Understanding 1.5 the Significance of the Corea² Shell Structure. Journal of Physical Chemistry C, 2009, 113, 14591-14594. $\hat{a}\in \hat{c}$ Rice Polish $\hat{a}\in \hat{f}$ or the Removal of Arsenic from Aqueous Solution: Optimization of Process Variables. 120 1.8 23 Industrial & amp; Engineering Chemistry Research, 2009, 48, 4194-4201. Arsenic removal from groundwater through iron oxyhydroxide coated waste productsA paper submitted to the Journal of Environmental Engineering and Science.. Canadian Journal of Civil Engineering, 2009, 36, 881-888. Functionalized activated carbons for the removal of inorganic pollutants. Desalination and Water 122 1.0 7 Treatment, 2009, 11, 318-323. Coprecipitation of Arsenate with Metal Oxides. 3. Nature, Mineralogy, and Reactivity of Iron(III)â[°]Aluminum Precipitates. Environmental Science & amp; Technology, 2009, 43, 1515-1521. 4.6 44 Removal of As(V) from aqueous solution using glycidyl methacrylate resin immobilized with 124 1.0 11 Cu(II)-tetraethylenepentamine complex. Water Science and Technology: Water Supply, 2009, 9, 181-190. Emerging and Innovative Techniques for Arsenic Removal Applied to a Small Water Supply System. 54 Sustainability, 2009, 1, 1288-1304. Removal of arsenic from simulated groundwater by adsorption using iron-modified rice husk carbon. 126 0.3 12 Journal of Water and Environment Technology, 2009, 7, 43-56. Adsorption Based Technologies for Arsenic Removal from Aqueous Environment: A Review. Recent Patents on Engineering, 2010, 4, 92-101.

# 129	ARTICLE Fullâ€Scale Removal of Arsenate and Chromate from Water Using a Limestone and Ochreous Sludge Mixture as a Lowâ€Cost Sorbent Material. Water Environment Research, 2010, 82, 401-408.	IF 1.3	CITATIONS
130	The global arsenic crisis—a short introduction. , 2010, , 31-48.		0
131	Mechanisms of arsenic removal from water. Arsenic in the Environment, 2010, , 49-58.	0.0	0
132	Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano, 2010, 4, 3979-3986.	7.3	1,835
133	Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chemical Engineering Journal, 2010, 158, 599-607.	6.6	476
134	Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chemical Engineering Journal, 2010, 162, 178-185.	6.6	141
135	Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chemical Engineering Journal, 2010, 162, 989-996.	6.6	129
136	Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. Journal of Hazardous Materials, 2010, 174, 307-313.	6.5	166
137	Arsenic removal from aqueous solution using ferrous based red mud sludge. Journal of Hazardous Materials, 2010, 177, 131-137.	6.5	84
138	Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. Journal of Hazardous Materials, 2010, 178, 209-217.	6.5	102
139	Removal of arsenate from water by using an Fe–Ce oxide adsorbent: Effects of coexistent fluoride and phosphate. Journal of Hazardous Materials, 2010, 179, 208-214.	6.5	38
140	Preparation, characterization and application of a Ce–Ti oxide adsorbent for enhanced removal of arsenate from water. Journal of Hazardous Materials, 2010, 179, 1014-1021.	6.5	99
141	Arsenate removal from water by zero-valent iron/activated carbon galvanic couples. Journal of Hazardous Materials, 2010, 182, 108-114.	6.5	105
142	The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons. Journal of Hazardous Materials, 2010, 183, 381-388.	6.5	52
143	The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 2010, 15, 86-102.	1.4	554
144	Natural sorbent and catalyst to remove arsenic from natural and waste waters. Journal of Mining Science, 2010, 46, 197-202.	0.1	8
145	Iron(III) complex of an amino-functionalized poly(acrylamide)-grafted lignocellulosic residue as a potential adsorbent for the removal of chromium(VI) from water and industry effluents. Journal of Polymer Research, 2010, 17, 289-299.	1.2	13
146	Electrochemical peroxidation as a tool to remove arsenic and copper from smelter wastewater. Journal of Applied Electrochemistry, 2010, 40, 1031-1038.	1.5	22

#	Article	IF	CITATIONS
147	The characteristics of Escherichia coli adsorption of arsenic(III) from aqueous solution. World Journal of Microbiology and Biotechnology, 2010, 26, 249-256.	1.7	23
148	Synthesis and characterization of Fe-MCM-41 from rice husk silica by hydrothermal technique for arsenate adsorption. Environmental Geochemistry and Health, 2010, 32, 261-266.	1.8	13
149	Pollution magnet: nano-magnetite for arsenic removal from drinking water. Environmental Geochemistry and Health, 2010, 32, 327-334.	1.8	57
150	Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite. Environmental Geochemistry and Health, 2010, 32, 297-302.	1.8	34
151	Use of fly ash agglomerates for removal of arsenic. Environmental Geochemistry and Health, 2010, 32, 361-366.	1.8	18
152	Effect of competitive ions on the arsenic removal by mesoporous hydrous zirconium oxide from drinking water. Materials Research Bulletin, 2010, 45, 1628-1634.	2.7	32
153	Disposal of water treatment wastes containing arsenic — A review. Science of the Total Environment, 2010, 408, 1770-1778.	3.9	194
154	Possible treatments for arsenic removal in Latin American waters for human consumption. Environmental Pollution, 2010, 158, 1105-1118.	3.7	252
155	Treatment of Arsenic Contaminated Groundwater Using Calcium Impregnated Granular Activated Carbon in a Batch Reactor: Optimization of Process Parameters. Clean - Soil, Air, Water, 2010, 38, 129-139.	0.7	17
156	Preparation and characterization of iron(III) complex of an aminoâ€functionalized polyacrylamideâ€grafted lignocellulosics and its application as adsorbent for chromium(VI) removal from aqueous media. Journal of Applied Polymer Science, 2010, 115, 2069-2083.	1.3	15
157	Preparation of O arboxymethylâ€Nâ€ŧrimethyl chitosan chloride and flocculation of the wastewater in sugar refinery. Journal of Applied Polymer Science, 2010, 116, 2742-2748.	1.3	5
158	Modelling of liquid–liquid extraction and liquid membrane separation of arsenic species in environmental matrices. Separation and Purification Technology, 2010, 72, 319-325.	3.9	43
159	Silica coated magnetite particles for magnetic removal of Hg2+ from water. Journal of Colloid and Interface Science, 2010, 345, 234-240.	5.0	334
160	In situ ATR–FTIR studies on the competitive adsorption of arsenate and phosphate on ferrihydrite. Journal of Colloid and Interface Science, 2010, 351, 523-531.	5.0	63
161	The oxidative transformation of sodium arsenite at the interface of α-MnO2 and water. Journal of Hazardous Materials, 2010, 173, 675-681.	6.5	82
162	Biosorption studies on powder of stem of Acacia nilotica: Removal of arsenic from surface water. Journal of Hazardous Materials, 2010, 178, 941-948.	6.5	129
163	Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption. Journal of Hazardous Materials, 2010, 181, 91-104.	6.5	53
164	Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent. Journal of Hazardous Materials, 2010, 181, 419-425.	6.5	50

#	Article	IF	CITATIONS
165	As(III) removal using an iron-impregnated chitosan sorbent. Journal of Hazardous Materials, 2010, 182, 156-161.	6.5	85
166	Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. Journal of Hazardous Materials, 2010, 182, 162-168.	6.5	295
167	Arsenic content and fractionation in the surface sediments of the Guangzhou section of the Pearl River in Southern China. Journal of Hazardous Materials, 2010, 183, 264-270.	6.5	43
168	Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water. Journal of Hazardous Materials, 2010, 184, 515-522.	6.5	169
169	Manganese associated nanoparticles agglomerate of iron(III) oxide: Synthesis, characterization and arsenic(III) sorption behavior with mechanism. Journal of Hazardous Materials, 2010, 184, 832-842.	6.5	86
170	Application of simplex-centroid mixture design in developing and optimizing ceramic adsorbent for As(V) removal from water solution. Microporous and Mesoporous Materials, 2010, 131, 115-121.	2.2	37
171	Selective removal of arsenic(V) from a molybdate plant liquor by precipitation of magnesium arsenate. Hydrometallurgy, 2010, 104, 290-297.	1.8	33
172	Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water. Bioresource Technology, 2010, 101, 2173-2179.	4.8	34
173	As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: Behavior and mechanism. Chemical Engineering Journal, 2010, 161, 106-113.	6.6	258
174	Removal of arsenic by a granular Fe–Ce oxide adsorbent: Fabrication conditions and performance. Chemical Engineering Journal, 2010, 162, 164-170.	6.6	41
175	Enhancing sustainability of household water filters by mixing metallic iron with porous materials. Chemical Engineering Journal, 2010, 162, 635-642.	6.6	48
176	Coconut-based biosorbents for water treatment — A review of the recent literature. Advances in Colloid and Interface Science, 2010, 160, 1-15.	7.0	159
177	Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresource Technology, 2010, 101, 5815-5819.	4.8	106
178	Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal. Carbon, 2010, 48, 60-67.	5.4	162
179	Arsenic removal from drinking water using thin film composite nanofiltration membrane. Desalination, 2010, 252, 75-80.	4.0	151
180	Arsenate removal from synthetic wastewater by adsorption onto fly ash. Desalination, 2010, 263, 58-63.	4.0	40
181	Costs of Arsenic Treatment for Potable Water in California and Comparison to U.S. Environmental Protection Agency Affordability Metrics1. Journal of the American Water Resources Association, 2010, 46, 1238-1254.	1.0	11
182	Chitin and Chitosan as Multipurpose Natural Polymers for Groundwater Arsenic Removal and As2O3 Delivery in Tumor Therapy. Marine Drugs, 2010, 8, 1518-1525.	2.2	48

#	Article	IF	Citations
183	Removal of Arsenic from Aqueous Phase by Nanoparticle Agglomerates of Hydrous Iron(III)-Chromium(III) Bimetal Mixed Oxide: Effects of Background Ions on the As(V) Sorption Kinetics and Equilibrium. Water Quality Research Journal of Canada, 2010, 45, 437-449.	1.2	4
184	Lignins and Polyphenols in Bioremediation. , 2010, , 100-134.		2
185	New Approach: Waste Materials as Sorbents for Arsenic Removal from Water. Journal of Environmental Engineering, ASCE, 2010, 136, 1277-1286.	0.7	11
186	Water and Sustainability in Arid Regions. , 2010, , .		12
187	Biosorption in Environmental Remediation. , 2010, , 35-99.		11
188	Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling. Radiochimica Acta, 2010, 98, 807-812.	0.5	27
189	Adsorptive removal of arsenite from water using nanomagnetite. Desalination and Water Treatment, 2010, 24, 302-307.	1.0	10
190	Arsenic remediation of drinking water using iron-oxide coated coal bottom ash. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1446-1460.	0.9	17
191	Adsorption of arsenic by iron rich precipitates from two coal mine drainage sites on the West Coast of New Zealand. New Zealand Journal of Geology, and Geophysics, 2010, 53, 177-193.	1.0	13
192	Adsorption of As(V) from Water Using Nanomagnetite. Journal of Environmental Engineering, ASCE, 2010, 136, 399-404.	0.7	23
193	Self-Assembled Fabrication of Superparamagnetic Highly Stable Mesoporous Amorphous Iron Oxides. Journal of Physical Chemistry C, 2010, 114, 22493-22501.	1.5	30
194	Getting to the bottom of arsenic standards and guidelines. Environmental Science & Technology, 2010, 44, 4395-4399.	4.6	65
195	Adsorption and desorption properties of arsenate onto nano-sized iron-oxide-coated quartz. Water Science and Technology, 2010, 62, 378-386.	1.2	28
196	Evidence of Competitive Adsorption of Sb(III) and As(III) on Activated Alumina. Industrial & Engineering Chemistry Research, 2010, 49, 2521-2524.	1.8	22
197	Studies Relating to Removal of Arsenate by Electrochemical Coagulation: Optimization, Kinetics, Coagulant Characterization. Separation Science and Technology, 2010, 45, 1313-1325.	1.3	47
198	Copper Doping Improves Hydroxyapatite Sorption for Arsenate in Simulated Groundwaters. Environmental Science & Technology, 2010, 44, 1366-1372.	4.6	62
199	Thermodynamics of As(V) Adsorption onto Treated Granular Zeolitic Tuff from Aqueous Solutions. Journal of Chemical & Engineering Data, 2010, 55, 3170-3173.	1.0	5
200	Preparation and Evaluation of Fe-Al Binary Oxide for Arsenic Removal: Comparative Study with Single Metal Oxides. Separation Science and Technology, 2010, 45, 1975-1981.	1.3	46

#	Article	IF	CITATIONS
201	Equilibrium and Thermodynamics on Arsenic(III) Sorption Reaction in the Presence of Background Ions Occurring in Groundwater with Nanoparticle Agglomerates of Hydrous Iron(III) + Chromium(III) Mixed Oxide. Journal of Chemical & Engineering Data, 2010, 55, 2039-2047.	1.0	13
202	Global Water Pollution and Human Health. Annual Review of Environment and Resources, 2010, 35, 109-136.	5.6	1,381
203	Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water. Geochimica Et Cosmochimica Acta, 2010, 74, 5798-5816.	1.6	71
204	Effective passive treatment of high-strength acid mine drainage and raw municipal wastewater in PotosÃ , Bolivia using simple mutual incubations and limestone. Journal of Geochemical Exploration, 2010, 105, 34-42.	1.5	48
205	Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food and Chemical Toxicology, 2010, 48, 1393-1398.	1.8	91
206	Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere, 2010, 78, 224-231.	4.2	113
207	Chromate adsorption and pH buffering capacity of zinc hydroxy salts. Applied Clay Science, 2010, 48, 455-459.	2.6	25
208	Influence of operating parameters on the arsenic removal by nanofiltration. Water Research, 2010, 44, 97-104.	5.3	210
209	Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America – A critical analysis. Water Research, 2010, 44, 5828-5845.	5.3	103
210	Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Research, 2010, 44, 5722-5729.	5.3	139
211	As(III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution. Water Research, 2010, 44, 5713-5721.	5.3	109
212	The effect of crude oil on arsenate adsorption on goethite. Water Research, 2010, 44, 5673-5683.	5.3	41
213	Fabrication and characterization of iron oxide ceramic membranes for arsenic removal. Water Research, 2010, 44, 5702-5712.	5.3	69
214	pH-dependent effect of zinc on arsenic adsorption to magnetite nanoparticles. Water Research, 2010, 44, 5693-5701.	5.3	96
215	Polymerin and Lignimerin, as Humic Acid-like Sorbents from Vegetable Waste, for the Potential Remediation of Waters Contaminated with Heavy Metals, Herbicides, or Polycyclic Aromatic Hydrocarbons. Journal of Agricultural and Food Chemistry, 2010, 58, 10283-10299.	2.4	8
216	Solubility of mimetite Pb5(AsO4)3Cl at 5 - 55°C. Environmental Chemistry, 2010, 7, 268.	0.7	35
217	Arsenic exposure from drinking water and mortality in Bangladesh. Lancet, The, 2010, 376, 1641-1642.	6.3	6
218	Arsenic exposure from drinking water and mortality in Bangladesh – Authors' reply. Lancet, The, 2010, 376, 1642.	6.3	3

#	Article	IF	CITATIONS
219	Development of a Reactive Force Field for Ironâ^'Oxyhydroxide Systems. Journal of Physical Chemistry A, 2010, 114, 6298-6307.	1.1	199
220	Development of a Treated Laterite for Arsenic Adsorption: Effects of Treatment Parameters. Industrial & Engineering Chemistry Research, 2010, 49, 4873-4886.	1.8	43
221	Removal efficiency of arsenate and phosphate from aqueous solution using layered double hydroxide materials: intercalation vs. precipitation. Journal of Materials Chemistry, 2010, 20, 4684.	6.7	138
222	Removal of As(V) using iron oxide impregnated carbon prepared from Tamarind hull. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1207-1216.	0.9	10
223	Removal of Arsenite in Water Using Biogenic Schwertmannite as Adsorbent. , 2010, , 154-156.		0
224	Beads for Environmental Applications. , 2010, , 255-278.		0
225	Fe-Grown Carbon Nanofibers for Removal of Arsenic(V) in Wastewater. Industrial & Engineering Chemistry Research, 2010, 49, 7074-7084.	1.8	77
226	Bioremediation Technology. , 2010, , .		15
227	Adsorption and Coprecipitation of As(V) from Aqueous Solutions by Aluminum Hydroxide. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
228	Highly efficient production of various organic nanotubes with different surfaces and their application to an adsorbent. Soft Matter, 2010, 6, 4528.	1.2	30
229	Removal of As(III) from Aqueous Solution Using Functionalized Ultrafine Iron Oxide Nanoparticles. Separation Science and Technology, 2011, 46, 1017-1022.	1.3	25
230	Exposure to multiple metals from groundwater—a global crisis: Geology, climate change, health effects, testing, and mitigation. Metallomics, 2011, 3, 874.	1.0	65
231	Arsenic(III) immobilization on rice husk silica. , 2011, , .		1
232	Removal of arsenic from water using the adsorbent: New Zealand iron-sand. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1533-1538.	0.9	11
233	Oil Palm Biomass–Based Adsorbents for the Removal of Water Pollutants—A Review. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2011, 29, 177-222.	2.9	91
234	Differential Pair Distribution Function Study of the Structure of Arsenate Adsorbed on Nanocrystalline γ-Alumina. Environmental Science & Technology, 2011, 45, 9687-9692.	4.6	66
235	Porous Hierarchically Micro-/Nanostructured MgO: Morphology Control and Their Excellent Performance in As(III) and As(V) Removal. Journal of Physical Chemistry C, 2011, 115, 22242-22250.	1.5	142
236	Arsenic: An Overview of Applications, Health, and Environmental Concerns and Removal Processes. Critical Reviews in Environmental Science and Technology, 2011, 41, 435-519.	6.6	141

#	Article	IF	CITATIONS
237	Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/γ-phase-shell hierarchical nanostructures with strong As(v) removal capability. Journal of Materials Chemistry, 2011, 21, 5414.	6.7	131
238	Evaluation of a Renewable Resource-based Carbon-Iron Oxide Nanocomposite for Removal of Arsenic from Contaminated Water. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 348-354.	1.2	12
239	Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011, 2, 71-106.	1.4	1,247
240	Arsenic Hyperaccumulator Fern Pteris vittata: Utilities for Arsenic Phytoremediation and Plant Biotechnology. , 2011, , 261-269.		3
241	Study of arsenic(III) and arsenic(V) removal from waters using ferric hydroxide supported on silica gel prepared at low pH. Environmental Technology (United Kingdom), 2011, 32, 341-351.	1.2	16
242	Bioadsorption of Arsenic: An Artificial Neural Networks and Response Surface Methodological Approach. Industrial & Engineering Chemistry Research, 2011, 50, 9852-9863.	1.8	47
243	A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environmental Technology (United Kingdom), 2011, 32, 231-249.	1.2	224
244	The Adsorption of Arsenic Ions Using Beidellite, Zeolite, and Sepiolite Clays: A Study of Kinetic, Equilibrium and Thermodynamics. Separation Science and Technology, 2011, 46, 1005-1016.	1.3	16
245	Highly Sensitive SERS Detection of As ³⁺ lons in Aqueous Media using Glutathione Functionalized Silver Nanoparticles. ACS Applied Materials & Interfaces, 2011, 3, 3936-3941.	4.0	213
246	Removal of As ^V by Fe ^{III} -Loaded XAD7 Impregnated Resin Containing Di(2-ethylhexyl) Phosphoric Acid (DEHPA): Equilibrium, Kinetic, and Thermodynamic Modeling Studies. Journal of Chemical & Engineering Data, 2011, 56, 3830-3838.	1.0	22
247	Removal of Trace Arsenic To Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes. Journal of Chemical & Engineering Data, 2011, 56, 2077-2083.	1.0	132
248	Antimonite Removal Using Marine Algal Species. Industrial & Engineering Chemistry Research, 2011, 50, 9864-9869.	1.8	18
249	Natural Red Earth as a low cost material for arsenic removal: Kinetics and the effect of competing ions. Applied Geochemistry, 2011, 26, 648-654.	1.4	33
250	Theoretical studies of arsenite adsorption and its oxidation mechanism on a perfect TiO2 anatase (101) surface. Applied Surface Science, 2011, 258, 1192-1198.	3.1	31
251	In situ co-adsorption of arsenic and iron/manganese ions on raw clays. Applied Clay Science, 2011, 54, 166-171.	2.6	30
252	Adsorption capacity of iron- or iron–manganese-modified zeolite-rich tuffs for As(III) and As(V) water pollutants. Applied Clay Science, 2011, 54, 206-216.	2.6	64
253	Ecological restoration of arsenic contaminated soil by Arundo donax L. Ecological Engineering, 2011, 37, 1949-1956.	1.6	86
254	Neutron Pair Distribution Function Study of Two-Line Ferrihydrite. Environmental Science & Technology, 2011, 45, 9883-9890.	4.6	37

#	Article	IF	CITATIONS
255	FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers. Water Research, 2011, 45, 593-604.	5.3	96
256	Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Research, 2011, 45, 5745-5754.	5.3	69
257	Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration. Water Research, 2011, 45, 6575-6584.	5.3	35
258	Continuous flow method for the simultaneous determination of phosphate/arsenate based on their different kinetic characteristics. Talanta, 2011, 85, 1310-1316.	2.9	6
259	Synthesis, characterization and application of a novel mercapto- and amine-bifunctionalized silica for speciation/sorption of inorganic arsenic prior to inductively coupled plasma mass spectrometric determination. Talanta, 2011, 85, 1517-1525.	2.9	40
260	Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of Southern Africa. Physics and Chemistry of the Earth, 2011, 36, 1120-1128.	1.2	68
261	Study on the modification of fly ash and removal performance on Cr(III) in aqueous solution. , 2011, , .		0
262	Novel Passive Coâ€Treatment of Acid Mine Drainage and Municipal Wastewater. Journal of Environmental Quality, 2011, 40, 206-213.	1.0	30
263	Polymer/layered double hydroxide flame retardant nanocomposites. , 2011, , 332-359.		1
264	Preparation, characterization and As(V) adsorption behaviour of CNT-ferrihydrite composites. International Journal of Engineering, Science and Technology, 2011, 2, .	0.3	3
265	Evaluation of the Adsorption Potential of Synthesized Anatase Nanoparticles for Arsenic Removal. Materials Research Society Symposia Proceedings, 2011, 1317, 1.	0.1	0
266	Arsenic Removal from Contaminated Groundwater by Zero Valent Iron: a Mechanistic and Long-Term Performance Study. Soils and Foundations, 2011, 51, 369-377.	1.3	13
267	Exceptional As(III) Sorption Capacity by Highly Porous Magnesium Oxide Nanoflakes Made from Hydrothermal Synthesis. Journal of the American Ceramic Society, 2011, 94, 217-223.	1.9	72
268	Enhanced Arsenite Adsorption onto Litchiâ€Like Alâ€Doped Iron Oxides. Journal of the American Ceramic Society, 2011, 94, 584-591.	1.9	22
269	Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 2011, 92, 2355-2388.	3.8	697
270	Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management, 2011, 92, 3011-3022.	3.8	272
271	High efficiency removal of dissolved As(III) using iron nanoparticle-embedded macroporous polymer composites. Journal of Hazardous Materials, 2011, 192, 1002-1008.	6.5	91
272	Preparation, characterization and application of a copper (II)-bound polymeric ligand exchanger for selective removal of arsenate from water. Journal of Hazardous Materials, 2011, 193, 149-155.	6.5	15

# 273	ARTICLE Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles. Journal of Hazardous Materials, 2011, 193, 296-303.	IF 6.5	CITATIONS 86
274	Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III). Journal of Hazardous Materials, 2011, 196, 318-326.	6.5	48
275	Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. Journal of Hazardous Materials, 2011, 198, 143-150.	6.5	137
276	Effect of inorganic and organic ligands on the sorption/desorption of arsenate on/from Al–Mg and Fe–Mg layered double hydroxides. Journal of Hazardous Materials, 2011, 198, 291-298.	6.5	52
277	Arsenic(III) removal performances in the absence/presence of groundwater occurring ions of agglomerated Fe(III)–Al(III) mixed oxide nanoparticles. Journal of Industrial and Engineering Chemistry, 2011, 17, 834-844.	2.9	35
278	The structure of the mineral leogangite Cu10(OH)6(SO4)(AsO4)4·8H2O—Implications for arsenic accumulation and removal. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 82, 221-227.	2.0	12
279	Perlite incorporating \hat{I}^3 -Fe2O3 and $\hat{I}\pm$ -MnO2 nanomaterials: Preparation and evaluation of a new adsorbent for As(V) removal. Separation and Purification Technology, 2011, 82, 93-101.	3.9	52
280	Arsenic removal from drinking water through a hybrid ion exchange membrane – Coagulation process. Separation and Purification Technology, 2011, 83, 137-143.	3.9	66
281	Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2–Fe2O3 bi-composite. Journal of Colloid and Interface Science, 2011, 364, 205-212.	5.0	111
282	Equilibrium, kinetics and thermodynamic studies on phosphate biosorption from aqueous solutions by Fe(III)-treated Staphylococus xylosus biomass: Common ion effect. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 387, 43-49.	2.3	32
283	An efficient calix[4]arene appended resin for the removal of arsenic. Desalination, 2011, 278, 98-104.	4.0	10
284	Arsenic (V) removal with modifiable bulk and nano p(4-vinylpyridine)-based hydrogels: The effect of hydrogel sizes and quarternization agents. Desalination, 2011, 279, 344-352.	4.0	57
285	Arsenic removal from real arsenic-bearing groundwater by adsorption on iron-oxide-coated natural rock (IOCNR). Desalination, 2011, 280, 72-79.	4.0	69
286	Zero-valent iron and iron oxide-coated sand as a combination for removal of co-present chromate and arsenate from groundwater with humic acid. Environmental Pollution, 2011, 159, 377-382.	3.7	43
287	Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia. Environmental Pollution, 2011, 159, 3003-3008.	3.7	44
288	Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal. Environmental Pollution, 2011, 159, 2449-2453.	3.7	10
289	A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, 2011, 159, 3269-3282.	3.7	1,251
290	Removal of arsenic from arsenate complex contained in secondary zinc oxide. Hydrometallurgy, 2011, 109, 237-244.	1.8	40

#	Article	IF	CITATIONS
291	A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances, 2011, 29, 142-155.	6.0	307
292	Adsorption studies of arsenic on nano aluminium doped manganese copper ferrite polymer (MA, VA,) Tj ETQq1 1	0.784314	rgBT /Overld
293	Effect of cerium valence on As(V) adsorption by cerium-doped titanium dioxide adsorbents. Chemical Engineering Journal, 2011, 175, 207-212.	6.6	17
294	Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe). Chemosphere, 2011, 82, 278-283.	4.2	52
295	Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere, 2011, 83, 295-301.	4.2	98
296	Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere, 2011, 83, 211-225.	4.2	169
297	Influence of organic matter on arsenic removal by continuous flow electrocoagulation treatment of weakly mineralized waters. Chemosphere, 2011, 83, 21-28.	4.2	28
298	Removal processes for arsenic in constructed wetlands. Chemosphere, 2011, 84, 1032-1043.	4.2	138
299	One-step synthesis of mesoporous two-line ferrihydrite for effective elimination of arsenic contaminants from natural water. Dalton Transactions, 2011, 40, 2062.	1.6	38
300	Synthesis and adsorption properties of nanosized Mg-Al layered double hydroxides with Clâ^, NO 3 â^ or SO 4 2â° as interlayer anion. Materials Science-Poland, 2011, 29, 86-91.	0.4	15
301	Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects. Environmental Monitoring and Assessment, 2011, 174, 187-197.	1.3	82
302	High efficient As(III) removal by self-assembled zinc oxide micro-tubes synthesized by a simple precipitation process. Journal of Materials Science, 2011, 46, 5851-5858.	1.7	23
303	Ultrafine α-Fe2O3 nanoparticles grown in confinement of in situ self-formed "cage―and their superior adsorption performance on arsenic(III). Journal of Nanoparticle Research, 2011, 13, 2641-2651.	0.8	32
304	Synthesis, characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution. Journal of Hazardous Materials, 2011, 185, 63-70.	6.5	107
305	Importance of carbon surface chemistry in development of iron–carbon composite adsorbents for arsenate removal. Journal of Hazardous Materials, 2011, 186, 667-674.	6.5	48
306	Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: Isotherms and kinetic study. Journal of Hazardous Materials, 2011, 190, 36-44.	6.5	236
307	Fast kinetic and efficient removal of As(V) from aqueous solution using anion exchange resins. Journal of Hazardous Materials, 2011, 191, 1-7.	6.5	50
308	Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments. Journal of Hazardous Materials, 2011, 189, 647-652.	6.5	59

#	Article	IF	CITATIONS
309	Removal of anionic metals by amino-organoclay for water treatment. Journal of Hazardous Materials, 2011, 190, 652-658.	6.5	67
310	Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chemical Engineering Journal, 2011, 168, 1008-1015.	6.6	110
311	Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids and Surfaces B: Biointerfaces, 2011, 82, 267-276.	2.5	95
312	Impact of selected solution factors on arsenate and arsenite removal by nanoiron particles. Environmental Science and Pollution Research, 2011, 18, 857-864.	2.7	41
313	Removing arsenic from aqueous solution and long-term product storage. Jom, 2011, 63, 94-100.	0.9	53
314	Fabrication and evolution of multilayer silver nanofilms for surface-enhanced Raman scattering sensing of arsenate. Nanoscale Research Letters, 2011, 6, 263.	3.1	28
315	Are interventions to reduce the impact of arsenic contamination of groundwater on human health in developing countries effective?: a systematic review protocol. Environmental Evidence, 2011, 1, .	1.1	11
316	Removal of arsenic from simulated groundwater using GAC u in batch reactor: Kinetics and equilibrium studies. Canadian Journal of Chemical Engineering, 2011, 89, 921-931.	0.9	4
317	Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresource Technology, 2011, 102, 3260-3267.	4.8	72
318	Arsenate adsorption on an Fe–Ce bimetal oxide adsorbent: EXAFS study and surface complexation modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379, 109-115.	2.3	29
319	Treatment of high arsenic content wastewater by a combined physical–chemical process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379, 116-120.	2.3	39
320	Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Analytica Chimica Acta, 2011, 692, 96-102.	2.6	30
321	Conversion of fern (Pteris vittata L.) biomass from a phytoremediation trial in sub- and supercritical water conditions. Biomass and Bioenergy, 2011, 35, 872-883.	2.9	64
322	Influence of groundwater occurring ions on the kinetics of As(III) adsorption reaction with synthetic nanostructured Fe(III)–Cr(III) mixed oxide. Desalination, 2011, 266, 25-32.	4.0	27
323	Application of LECA modified with Fenton in arsenite and arsenate removal as an adsorbent. Desalination, 2011, 272, 212-217.	4.0	26
324	Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochimica Acta, 2011, 56, 5060-5070.	2.6	185
325	Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Applied Catalysis B: Environmental, 2011, 106, 46-46.	10.8	92
326	Removal of As(III) and As(V) from water by copper oxide incorporated mesoporous alumina. Journal of Hazardous Materials, 2011, 186, 367-375.	6.5	121

#	ARTICLE	IF	CITATIONS
327	Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles. Journal of Hazardous Materials, 2011, 186, 575-582.	6.5	50
328	Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. Journal of Hazardous Materials, 2011, 186, 1713-1719.	6.5	72
329	Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms. Journal of Hazardous Materials, 2011, 186, 1847-1854.	6.5	73
330	Gas-bubbled nano zero-valent iron process for high concentration arsenate removal. Journal of Hazardous Materials, 2011, 186, 2123-2128.	6.5	42
331	Oxidation of As(III) in aqueous solutions by means of macroporous redox copolymers with N-chlorosulfonamide pendant groups. Journal of Hazardous Materials, 2011, 189, 794-800.	6.5	9
332	Arsenic (III,V) removal from aqueous solution by ultrafine α-Fe2O3 nanoparticles synthesized from solvent thermal method. Journal of Hazardous Materials, 2011, 192, 131-8.	6.5	153
333	Studies on the removal of arsenic (III) from water by a novel hybrid material. Journal of Hazardous Materials, 2011, 192, 899-908.	6.5	49
334	Removal of aqueous As(III) and As(V) by hydrous titanium dioxide. Journal of Colloid and Interface Science, 2011, 353, 257-262.	5.0	77
335	A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: Synthesis, characterization and performance. Journal of Colloid and Interface Science, 2011, 354, 785-792.	5.0	111
336	Enhanced adsorption of arsenate onto a natural polymer-based sorbent by surface atom transfer radical polymerization. Journal of Colloid and Interface Science, 2011, 356, 234-239.	5.0	42
337	Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater. Journal of Colloid and Interface Science, 2011, 362, 477-485.	5.0	67
338	Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe–Al electrodes. Separation and Purification Technology, 2011, 77, 283-293.	3.9	152
339	Removal of arsenic from aqueous environments by native and chemically modified biomass of <i>Aspergillus niger</i> and <i>Neosartorya fischeri</i> . Environmental Technology (United) Tj ETQq0 0 0 rgBT (Overlock	101 7 f 50 257
340	The Extraction of Arsenic from Tailing Using NaOH and NaHS. Geosystem Engineering, 2011, 14, 165-168.	0.7	2
341	Influence of phosphorus, pH and S ^{2−} on as (III) adsorption by AA. , 2011, , .		0
343	ARSENIC REMEDIATION USING SURFACE FUNCTIONALIZED ULTRAFINE NANOPARTICLES. International Journal of Nanoscience, 2011, 10, 1167-1171.	0.4	0
344	Removal of Chromium(VI) by Zero Valent Iron: Effects of Environmental Factors. Advanced Materials Research, 2011, 356-360, 1093-1096.	0.3	0
345	Arsenic Removal from Wastewater Using Adsorptive Mediums. Advanced Materials Research, 0, 189-193, 404-409.	0.3	0

#	Article	IF	CITATIONS
346	Treatment and remediation methods for arsenic removal from the ground water. International Journal of Environmental Engineering, 2011, 3, 48.	0.1	49
347	Performance of P. vittata L. and C. demersum L. for Arsenic(III) Bioaccumulation and Short-Term Uptake. , 2011, , .		Ο
348	Technical Note: Effects of Arsenate (AS ⁵⁺) on Growth and Production of Glutathione (GSH) and Phytochelatins (PCS) in <i>Chlorella Vulgaris</i> . International Journal of Phytoremediation, 2011, 13, 834-844.	1.7	52
349	Arsenic Species Transformation and Transportation in Arsenic Removal by Fe-Mn Binary Oxide–Coated Diatomite: Pilot-Scale Field Study. Journal of Environmental Engineering, ASCE, 2011, 137, 1122-1127.	0.7	14
350	Biosorption of As(III) Ion on <i>Rhodococcus</i> sp. WB-12: Biomass Characterization and Kinetic Studies. Separation Science and Technology, 2011, 46, 2517-2525.	1.3	52
351	Arsenic Removal Behavior by Fe-Al Binary Oxide: Thermodynamic and Kinetic Study. Separation Science and Technology, 2011, 46, 2531-2538.	1.3	22
352	Enhanced Arsenic Sorption by Hydrated Iron (III) Oxide oated Materials—Mechanism and Performances. Water Environment Research, 2011, 83, 498-506.	1.3	27
353	A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. International Journal of Chemical Engineering, 2011, 2011, 1-31.	1.4	1,125
354	Determination of As(III) using developed dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2011, 91, 1453-1465.	1.8	13
355	As(III) and As(V) Removal on Manganese Dioxide. Advanced Materials Research, 2012, 573-574, 39-42.	0.3	1
356	Arsenic Removal via Cellulose-Based Organic/Inorganic Hybrid Materials from Drinking Water. Materials Science Forum, 2012, 730-732, 563-568.	0.3	0
357	Rapid Small-Scale Column Tests on the Adsorption of Arsenate by Cationic Surfactant-Modified GAC. Journal of Environmental Engineering, ASCE, 2012, 138, 880-885.	0.7	3
358	Application of low-cost adsorbents for arsenic removal: A review. Journal of Environmental Chemistry and Ecotoxicology, 2012, 4, .	0.2	28
359	The removal of arsenic from water with natural and modified clinoptilolite. Chemistry and Ecology, 2012, 28, 75-87.	0.6	15
360	Adsorption behaviour of methylene blue on carbon nanoparticles. Micro and Nano Letters, 2012, 7, 1060-1063.	0.6	9
361	Studies on arsenic adsorption by the use of aluminum anodizing sludge. Desalination and Water Treatment, 2012, 39, 235-247.	1.0	3
362	Maghemite nanoparticles for As(V) removal: desorption characteristics and adsorbent recovery. Environmental Technology (United Kingdom), 2012, 33, 1927-1936.	1.2	36
363	Adsorption of Fe(II) ions from aqueous phase by chitosan adsorbent: equilibrium, kinetic, and thermodynamic studies. Desalination and Water Treatment, 2012, 50, 348-359.	1.0	53

#	Article	IF	CITATIONS
364	ENHANCED ARSENIC REMOVAL FROM WATER BY ACTIVATED RED MUD BASED ON HYDRATED IRON(III) AND TITAN(IV) OXIDES. Chemical Engineering Communications, 2012, 199, 849-864.	1.5	9
365	Adsorption of arsenic (V) and phosphate onto MgAlNO <inf>3</inf> -LDHs. , 2012, , .		1
366	Biosorption of Arsenic from Contaminated Water onto Solid <i>Psidium guajava</i> Leaf Surface: Equilibrium, Kinetics, Thermodynamics, and Desorption Study. Bioremediation Journal, 2012, 16, 97-112.	1.0	16
367	Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 1173-1185.	0.9	21
368	Studies on the removal of arsenate from water through electrocoagulation using direct and alternating current. Desalination and Water Treatment, 2012, 48, 163-173.	1.0	26
369	Biosorption Characteristics of Indigenous Plant Material for Trivalent Arsenic Removal from Groundwater: Equilibrium and Kinetic Studies. Separation Science and Technology, 2012, 47, 1044-1054.	1.3	20
370	Arsenic(III) removal from low-arsenic water by adsorption with amorphous mesoporous TiO ₂ . Desalination and Water Treatment, 2012, 49, 359-367.	1.0	6
371	Biosorption of Pb (II) from aqueous solutions by modified of two kinds of marine algae, <i>Sargassum glaucescens</i> and <i>Gracilaria corticata</i> . Polish Journal of Chemical Technology, 2012, 14, 22-28.	0.3	5
372	Dissolution Characteristics and Morphology of Large-sized Scorodite Particles Synthesized from Fe(II) and As(V) in Aqueous Solution. High Temperature Materials and Processes, 2012, 31, 451-458.	0.6	5
373	Removal of Selenium and Arsenic Oxyanions Using Natural Goethite-Rich Iron Ore from Daitari, Orissa, India: Effect of Heat Treatment. Adsorption Science and Technology, 2012, 30, 867-879.	1.5	5
374	Best Practice Guide on Metals Removal from Drinking Water by Treatment. Water Intelligence Online, 0, 11, .	0.3	2
375	Adsorption of AsV in aqueous solutions on porous hematite prepared by thermal modification of a siderite - goethite concentrate. Environmental Chemistry, 2012, 9, 512.	0.7	30
376	Preparation and application of a magnetic composite (Mn3O4/Fe3O4) for removal of As(III) from aqueous solutions. Materials Research, 2012, 15, 403-408.	0.6	46
377	Use of Biomass for Removal of Arsenic Compounds. Latvian Journal of Chemistry, 2012, 51, 324-335.	0.1	2
378	As(III) and As(V) Adsorption by Hydrous Zirconium Oxide Nanoparticles Synthesized by a Hydrothermal Process Followed with Heat Treatment. Industrial & Engineering Chemistry Research, 2012, 51, 353-361.	1.8	95
379	Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO ₂ Capture Performance. ACS Applied Materials & Interfaces, 2012, 4, 5800-5806.	4.0	407
380	Effect of Phosphate on the Particle Size of Ferric Oxyhydroxides Anchored onto Activated Carbon: As(V) Removal from Water. Environmental Science & Technology, 2012, 46, 9577-9583.	4.6	58
381	Iron and 1,3,5-Benzenetricarboxylic Metal–Organic Coordination Polymers Prepared by Solvothermal Method and Their Application in Efficient As(V) Removal from Aqueous Solutions. Journal of Physical Chemistry C, 2012, 116, 8601-8607.	1.5	287

#	Article	IF	CITATIONS
382	Iron-complexed adsorptive membrane for As(V) species in water. Journal of Hazardous Materials, 2012, 233-234, 131-139.	6.5	14
383	Novel 3D Hierarchical Cotton-Candy-Like CuO: Surfactant-Free Solvothermal Synthesis and Application in As(III) Removal. ACS Applied Materials & Interfaces, 2012, 4, 1954-1962.	4.0	184
384	Removal of arsenate from ionic mixture by anion exchanger water-soluble polymers combined with ultrafiltration membranes. Polymer Bulletin, 2012, 69, 1007-1022.	1.7	11
385	Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environmental Chemistry Letters, 2012, 10, 217-224.	8.3	156
386	Nonliving biomass of marine macrophytes as arsenic(V) biosorbents. Journal of Applied Phycology, 2012, 24, 1495-1502.	1.5	33
387	Manganese-incorporated iron(III) oxide–graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	36
388	Competitive Sorption of Arsenate and Phosphate on Aluminum Mining By-product. Water, Air, and Soil Pollution, 2012, 223, 5433-5444.	1.1	18
389	The characteristics of waste Saccharomyces cerevisiae biosorption of arsenic(III). Environmental Science and Pollution Research, 2012, 19, 3371-3379.	2.7	36
390	Arsenic adsorption using copper (II) oxide nanoparticles. Chemical Engineering Research and Design, 2012, 90, 1387-1396.	2.7	252
391	Removal of arsenic from water using pine leaves. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 256-263.	2.7	99
392	Synthesis of Sludge@Carbon Nanocomposite for the Recovery of as (V) from Wastewater. Procedia Environmental Sciences, 2012, 16, 378-390.	1.3	10
393	Radiation-grafted copolymers for separation and purification purposes: Status, challenges and future directions. Progress in Polymer Science, 2012, 37, 1597-1656.	11.8	221
394	Individual and combined effects of water quality and empty bed contact time on As(V) removal by a fixed-bed iron oxide adsorber: Implication for silicate precoating. Water Research, 2012, 46, 5061-5070.	5.3	36
395	Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: Study of Fe(II) oxidation–precipitation parameters. Water Research, 2012, 46, 5255-5267.	5.3	98
396	Arsenic Adsorption by Fe Loaded on RH-MCM-41 Synthesized from Rice Husk Silica. Journal of Environmental Engineering, ASCE, 2012, 138, 119-128.	0.7	13
397	Manganese-incorporated iron(III) oxide–graphene magnetic nanocomposite: synthesis, characterization, and application for the arsenic(III)-sorption from aqueous solution. , 2012, , 149-162.		4
398	New Technology for Arsenic Removal from Mining Effluents. Journal of Materials Research and Technology, 2012, 1, 178-181.	2.6	28
399	Structural controls on OH site availability and reactivity at iron oxyhydroxide particle surfaces. Physical Chemistry Chemical Physics, 2012, 14, 2579.	1.3	46

#	Article	IF	CITATIONS
400	Tunable synthesis of novel 3D CuI hierarchical architectures and their excellent Cr(vi) removal capabilities. RSC Advances, 2012, 2, 12315.	1.7	9
401	Adsorption of arsenic (III) on multiwall carbon nanotube. , 2012, , .		2
402	Magnetic Self-Assembled Zeolite Clusters for Sensitive Detection and Rapid Removal of Mercury(II). ACS Applied Materials & Interfaces, 2012, 4, 431-437.	4.0	50
403	Iron(III) Modification of <i>Bacillus subtilis</i> Membranes Provides Record Sorption Capacity for Arsenic and Endows Unusual Selectivity for As(V). Environmental Science & Technology, 2012, 46, 2251-2256.	4.6	60
404	As(III) Sequestration by Iron Nanoparticles: Study of Solid-Phase Redox Transformations with X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 5303-5311.	1.5	128
405	High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres. Journal of Materials Chemistry, 2012, 22, 19898.	6.7	51
406	Influence of Zn(II) on the Adsorption of Arsenate onto Ferrihydrite. Environmental Science & Technology, 2012, 46, 13152-13159.	4.6	41
407	Evaluation of Iron(III) Chelated Polymer Grafted Lignocellulosics for Arsenic(V) Adsorption in a Batch Reactor System. Industrial & Engineering Chemistry Research, 2012, 51, 10682-10694.	1.8	16
408	Magnetic Iron Oxide Chestnutlike Hierarchical Nanostructures: Preparation and Their Excellent Arsenic Removal Capabilities. ACS Applied Materials & Interfaces, 2012, 4, 3987-3993.	4.0	109
409	Arsenic speciation and trace element analysis of the volcanic rÃo Agrio and the geothermal waters of Copahue, Argentina. Science of the Total Environment, 2012, 433, 371-378.	3.9	33
410	Anchorage of iron hydro(oxide) nanoparticles onto activated carbon to remove As(V) from water. Water Research, 2012, 46, 2973-2982.	5.3	96
411	Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Research, 2012, 46, 4111-4120.	5.3	101
412	Ion Exchange Technology: A Promising Approach for Anions Removal from Water. , 2012, , 413-434.		2
413	Remediation of arsenic and lead with nanocrystalline zinc sulfide. Nanotechnology, 2012, 23, 294014.	1.3	15
414	Optimization of As(V) adsorption on Fe-RH-MCM-41-immobilized GAC using Box–Behnken Design: Effects of pH, loadings, and initial concentrations. Applied Geochemistry, 2012, 27, 1027-1034.	1.4	43
415	Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. Journal of Hazardous Materials, 2012, 227-228, 461-468.	6.5	115
416	Properties of synthetic monosulfate as a novel material for arsenic removal. Journal of Hazardous Materials, 2012, 227-228, 402-409.	6.5	16
417	Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. Journal of Industrial and Engineering Chemistry, 2012, 18, 1418-1427.	2.9	224

ARTICLE IF CITATIONS # Preparation of new base-aluminum-chloride-loaded fiber as adsorbent for fast removal of arsenic(V) 4.8 9 418 from water. Chinese Chemical Letters, 2012, 23, 863-866. Arsenate adsorption from water using a novel fabricated copper ferrite. Chemical Engineering 6.6 Journal, 2012, 198-199, 440-448. Fixed bed adsorption of As(III) on iron-oxide-coated natural rock (IOCNR) and application to real 420 6.6 51 arsenic-bearing groundwater. Chemical Engineering Journal, 2012, 203, 285-293. Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V). 421 Chemical Engineering Journal, 2012, 204-206, 23-31. Development of an amino functionalized glycidylmethacrylate-grafted-titanium dioxide densified 422 cellulose for the adsorptive removal of $\operatorname{arsenic}(V)$ from aqueous solutions. Chemical Engineering 6.6 36 Journal, 2012, 209, 362-371. Adsorption of perchlorate from water using calcined iron-based layered double hydroxides. Applied 2.6 Clay Science, 2012, 65-66, 80-86. Molybdate sorption by Zn–Al sulphate layered double hydroxides. Applied Clay Science, 2012, 65-66, 424 2.6 33 128-133. Arundo donax as a potential biomonitor of trace element contamination in water and sediment. 425 2.9 Ecotoxicology and Environmental Safety, 2012, 80, 20-27. Uptake and Speciation of Inorganic Arsenic with Cellulose Fibre Coated with Yttrium Hydroxide Layer 426 2.6 14 as a Novel Green Sorbent. Chinese Journal of Chemistry, 2012, 30, 2225-2231. Solarâ€Lightâ€Driven Photodegradation and Antibacterial Activity of Hierarchical 1.3 TiO₂/ZnO/CuO Material. ChemPlusChem, 2012, 77, 941-948. Arsenic, asbestos and radon: emerging players in lung tumorigenesis. Environmental Health, 2012, 11, 428 1.7 60 89. Arsenic Removal from Water by Adsorption Using Iron Oxide Minerals as Adsorbents: A Review. 429 2.6 130 Mineral Processing and Extractive Metallurgy Review, 2012, 33, 301-315. Nanostructured Materials: Industrial Applications., 2012, , 265-306. 430 7 Fibrous Ion Exchangers., 2012, , 299-371. Polymerization of Silicate on Hematite Surfaces and Its Influence on Arsenic Sorption. Environmental 432 4.6 71 Science & amp; Technology, 2012, 46, 13235-13243. Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process. Springer 144 Briefs in Molecular Science, 2012, , 15-37. Binding Mechanisms of As(III) on Activated Carbon/Titanium Dioxide Nanocomposites: A potential 434 method for arsenic removal from water. Materials Research Society Symposia Proceedings, 2012, 1449, 0.1 1 159. Arsenic speciation analysis and remediation techniques in drinking water. Desalination and Water Treatment, 2012, 40, 231-243.

#	Article	IF	CITATIONS
436	Bioremediation of Arsenic from Contaminated Water. , 2012, , 477-523.		1
437	Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin. Journal of Rare Earths, 2012, 30, 563-572.	2.5	56
438	Application of solar energy for water supply and sanitation in Arsenic affected rural areas: a study for Kaudikasa village, India. Journal of Cleaner Production, 2012, 37, 389-393.	4.6	19
439	Natural arsenic attenuation via metal arsenate precipitation in soils contaminated with metallurgical wastes: II. Cumulative evidence and identification of minor processes. Applied Geochemistry, 2012, 27, 2204-2214.	1.4	18
440	Characterization and modification of porous ceramic sorbent for arsenate removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 393-399.	2.3	7
441	Preliminary study on the potential of arsenic removal by subsurface flow constructed mesocosms. Ecological Engineering, 2012, 47, 101-104.	1.6	26
442	Enhanced arsenic removal by in situ formed Fe–Mn binary oxide in the aeration-direct filtration process. Journal of Hazardous Materials, 2012, 239-240, 308-315.	6.5	14
443	Selenite adsorption using leached residues generated by reduction roasting–ammonia leaching of manganese nodules. Journal of Hazardous Materials, 2012, 241-242, 486-492.	6.5	13
444	Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water. Journal of Hazardous Materials, 2012, 243, 319-325.	6.5	70
445	Heterogeneous Catalytic Oxidation of Aqueous Phenol on Red Mud-Supported Cobalt Catalysts. Industrial & Engineering Chemistry Research, 2012, 51, 15351-15359.	1.8	45
446	Electrocoagulation applications for industrial wastewaters: a critical review. Environmental Technology Reviews, 2012, 1, 2-45.	2.1	249
447	Quickly Removal of Arsenic from Aqueous Systems with the Fe/MnO ₂ Nano-Flowers. Advanced Materials Research, 0, 573-574, 568-572.	0.3	1
448	Photochemical treatment of As(III) with α-Fe2O3 synthesized from Jarosite Waste. RSC Advances, 2012, 2, 1112-1118.	1.7	9
449	Biological Removal and Recovery of Toxic Heavy Metals in Water Environment. Critical Reviews in Environmental Science and Technology, 2012, 42, 1007-1057.	6.6	101
450	Ion Exchange Technology I. , 2012, , .		13
451	Inorganic matrices: an answer to low drug solubility problem. Expert Opinion on Drug Delivery, 2012, 9, 1559-1572.	2.4	27
452	The Plant Family Brassicaceae. Environmental Pollution, 2012, , .	0.4	33
453	Ultrahigh arsenic sorption using iron oxide-graphene nanocomposite supercapacitor assembly. Journal of Applied Physics, 2012, 112, .	1.1	28

#	Article	IF	CITATIONS
454	Low-Cost Synthesis of Flowerlike α-Fe ₂ O ₃ Nanostructures for Heavy Metal Ion Removal: Adsorption Property and Mechanism. Langmuir, 2012, 28, 4573-4579.	1.6	409
455	Removal of arsenic from ammoniacal etching waste liquor by 3-(2-aminoethylamino)propyltrimethoxysilane functionalized silica gel sorbent. Desalination and Water Treatment, 2012, 50, 51-58.	1.0	10
456	Adsorption study on orange peel: Removal of Ni(II) ions from aqueous solution. African Journal of Biotechnology, 2012, 11, .	0.3	21
457	Arsenic mitigation measures in Bangladesh. Revue Des Sciences De L'Eau, 0, 25, 49-67.	0.2	3
458	CELLULOSIC SUBSTRATES FOR REMOVAL OF POLLUTANTS FROM AQUEOUS SYSTEMS: A REVIEW. 2. DYES. BioResources, 2012, 7, .	0.5	65
459	Highly Efficient Arsenic Removal Using a Composite of Ultrafine Magnetite Nanoparticles Interlinked by Silane Coupling Agents. International Journal of Environmental Research and Public Health, 2012, 9, 3711-3723.	1.2	6
460	Influence of organobentonite structure on toluene adsorption from water solution. Materials Research, 2012, 15, 944-953.	0.6	11
461	Arsenic removal from aqueous system using natural and modified (Kula ebonite and zeolite) adsorbents. Environmental Progress and Sustainable Energy, 2012, 31, 443-448.	1.3	7
462	Adsorption behavior of As(III) onto chitosan resin with As(III) as template ions. Journal of Applied Polymer Science, 2012, 125, 246-253.	1.3	26
463	Modified Activated Carbon as Solid Phase Extraction Adsorbent for the Preconcentration and Determination of Trace As(III) in Environmental Samples by Graphite Furnace Atomic Absorption Spectrometry. Chinese Journal of Chemistry, 2012, 30, 665-669.	2.6	15
464	Removal of Arsenic from Simulated Groundwater Using GAC a in Batch Reactor: Kinetics and Equilibrium Studies. Clean - Soil, Air, Water, 2012, 40, 506-514.	0.7	9
465	Modeling of the Removal of Arsenic Species from Simulated Groundwater Containing As, Fe, and Mn: A Neural Network Based Approach. Clean - Soil, Air, Water, 2012, 40, 285-289.	0.7	7
466	Poly(<i>N</i> â€Isopropylacrylamide)â€Based Microgels and Their Assemblies for Organicâ€Molecule Removal from Water. ChemPhysChem, 2012, 13, 2507-2515.	1.0	34
467	Surface Functionalization of Iron Oxide Nanoparticles and their Stability in Different Media. ChemPlusChem, 2012, 77, 576-583.	1.3	17
468	Biosorptive behaviour of mango leaf powder and rice husk for arsenic(III) from aqueous solutions. International Journal of Environmental Science and Technology, 2012, 9, 565-578.	1.8	49
469	Abiotic oxidation of Mn(II) and its effect on the oxidation of As(III) in the presence of nano-hematite. Ecotoxicology, 2012, 21, 1753-1760.	1.1	7
470	Arsenic removal by magnetic nanocrystalline barium hexaferrite. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	18
471	Removal of Arsenic from Aqueous Solutions by Sorption onto Sewage Sludge-Based Sorbent. Water, Air. and Soil Pollution. 2012. 223. 2311-2321.	1.1	38

#	Article	IF	CITATIONS
472	Ion Exchange Treatment of Groundwater Contaminated by Arsenic in the Presence of Sulphate. Breakthrough Experiments and Modeling. Water, Air, and Soil Pollution, 2012, 223, 2373-2386.	1.1	24
473	Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. Journal of Soils and Sediments, 2012, 12, 704-712.	1.5	34
474	Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions—a mini review. Carbohydrate Research, 2012, 356, 86-92.	1.1	108
475	Experimental and kinetic modeling of As(V) and As(III) adsorption on treated laterite using synthetic and contaminated groundwater: Effects of phosphate, silicate and carbonate ions. Chemical Engineering Journal, 2012, 191, 1-12.	6.6	84
476	The effect of substrate media on the removal of arsenic, boron and iron from an acidic wastewater in planted column reactors. Chemical Engineering Journal, 2012, 179, 119-130.	6.6	80
477	Lepidocrocite and its heat-treated forms as effective arsenic adsorbents in aqueous medium. Chemical Engineering Journal, 2012, 180, 159-169.	6.6	58
478	Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chemical Engineering Journal, 2012, 181-182, 174-181.	6.6	126
479	Performances of As(V) adsorption of calcined (250°C) synthetic iron(III)–aluminum(III) mixed oxide in the presence of some groundwater occurring ions. Chemical Engineering Journal, 2012, 183, 303-314.	6.6	27
480	Adsorption of fluoride, arsenate and phosphate in aqueous solution by cerium impregnated fibrous protein. Chemical Engineering Journal, 2012, 184, 205-212.	6.6	94
481	Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: Part B. Integration with silica monoliths and dynamic treatment. Chemical Engineering Journal, 2012, 185-186, 136-143.	6.6	36
482	Adsorption of As (III) and As (V) from water using magnetite Fe3O4-reduced graphite oxide–MnO2 nanocomposites. Chemical Engineering Journal, 2012, 187, 45-52.	6.6	317
483	TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chemical Engineering Journal, 2012, 191, 66-74.	6.6	76
484	Adsorption of arsenate from aqueous solution on binary mixed oxide of iron and silicon. Chemical Engineering Journal, 2012, 192, 90-98.	6.6	59
485	Arsenic(III) oxidation/adsorption behaviors on a new bimetal adsorbent of Mn-oxide-doped Al oxide. Chemical Engineering Journal, 2012, 192, 343-349.	6.6	92
486	Iron oxide nano-particles-immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters. Chemical Engineering Journal, 2012, 195-196, 103-111.	6.6	148
487	Zerovalent iron encapsulated chitosan nanospheres – A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems. Chemosphere, 2012, 86, 150-155.	4.2	163
488	Preparation of iron-impregnated tablet ceramic adsorbent for arsenate removal from aqueous solutions. Desalination, 2012, 286, 56-62.	4.0	25
489	Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide. Journal of Colloid and Interface Science, 2012, 365, 213-221.	5.0	74

#	Article	IF	CITATIONS
490	Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. Journal of Colloid and Interface Science, 2012, 375, 154-159.	5.0	172
491	Arsenic(III) sorption on nanostructured cerium incorporated manganese oxide (NCMO): A physical insight into the mechanistic pathway. Journal of Colloid and Interface Science, 2012, 377, 269-276.	5.0	38
492	Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. Science of the Total Environment, 2012, 429, 107-122.	3.9	61
493	Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites. Science of the Total Environment, 2012, 431, 426-435.	3.9	53
494	Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: Competitive adsorption effects. Separation and Purification Technology, 2012, 92, 100-105.	3.9	59
495	Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Separation and Purification Technology, 2012, 95, 10-15.	3.9	89
496	Atomistic models for disordered nanoporous carbons using reactive force fields. Microporous and Mesoporous Materials, 2012, 154, 24-37.	2.2	76
497	Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 2012, 107, 1-18.	3.8	132
498	Evaluation of arsenic immobilization in red mud by CO2 or waste acid acidification combined ferrous (Fe2+) treatment. Journal of Hazardous Materials, 2012, 199-200, 43-50.	6.5	10
499	Self-assembled mesoporous γ-Al2O3 spherical nanoparticles and their efficiency for the removal of arsenic from water. Journal of Hazardous Materials, 2012, 201-202, 170-177.	6.5	132
500	Preparation and characterization of La(III) encapsulated silica gel/chitosan composite and its metal uptake studies. Journal of Hazardous Materials, 2012, 203-204, 29-37.	6.5	81
501	Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. Journal of Hazardous Materials, 2012, 205-206, 40-46.	6.5	98
502	Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite. Journal of Hazardous Materials, 2012, 203-204, 317-325.	6.5	35
503	Adsorption of perchlorate from aqueous solution by the calcination product of Mg/(Al–Fe) hydrotalcite-like compounds. Journal of Hazardous Materials, 2012, 209-210, 318-325.	6.5	78
504	Arsenate removal from simulated groundwater with a Donnan dialyzer. Journal of Hazardous Materials, 2012, 215-216, 159-165.	6.5	14
505	Application of titanium dioxide in arsenic removal from water: A review. Journal of Hazardous Materials, 2012, 215-216, 1-16.	6.5	320
506	Effects of Mn(II) on the sorption and mobilization of As(V) in the presence of hematite. Journal of Hazardous Materials, 2012, 217-218, 301-306.	6.5	21
507	Equilibrium and dynamic studies of the removal of As(III) and As(V) from contaminated aqueous systems using a functionalized biopolymer. Journal of Chemical Technology and Biotechnology, 2012, 87, 546-552.	1.6	12

#	Article	IF	CITATIONS
508	General and Controllable Synthesis of Novel Mesoporous Magnetic Iron Oxide@Carbon Encapsulates for Efficient Arsenic Removal. Advanced Materials, 2012, 24, 485-491.	11.1	312
509	Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean Journal of Chemical Engineering, 2012, 29, 95-102.	1.2	72
510	Arsenic Removal from Water by Iron-Modified Bamboo Charcoal. Water, Air, and Soil Pollution, 2012, 223, 1033-1044.	1.1	57
511	An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region. Environmental Monitoring and Assessment, 2012, 184, 421-448.	1.3	56
512	Arsenic Removal from Natural Groundwater Using Cupric Oxide. Ground Water, 2013, 51, 83-91.	0.7	30
513	Removal of Cr(VI) and As(V) ions from aqueous solutions by polyacrylate and polystyrene anion exchange resins. Applied Water Science, 2013, 3, 653-664.	2.8	27
514	Removal of arsenic(III) and arsenic(V) on chemically modified low-cost adsorbent: batch and column operations. Applied Water Science, 2013, 3, 293-309.	2.8	88
515	Fabrication, Characterization and Application of Polymer Nanocomposites for Arsenic(III) Removal from Water. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 293-305.	1.9	35
516	Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media). Chemical Reviews, 2013, 113, 7728-7768.	23.0	435
517	Preparation and sorption studies of β-cyclodextrin–chitosan–glutaraldehyde terpolymers. Journal of Colloid and Interface Science, 2013, 393, 271-277.	5.0	47
518	Recovery of Uranium from Seawater: A Review of Current Status and Future Research Needs. Separation Science and Technology, 2013, 48, 367-387.	1.3	400
519	Bioremoval of antimony(III) from contaminated water using several plant wastes: Optimization of batch and dynamic flow conditions for sorption by green bean husk (Vigna radiata). Chemical Engineering Journal, 2013, 225, 192-201.	6.6	59
520	Preparation of highly developed mesoporous activated carbon by H4P2O7 activation and its adsorption behavior for oxytetracycline. Powder Technology, 2013, 249, 54-62.	2.1	46
521	Arsenic Removal from Drinking Water Using Low Pressure Membranes. Industrial & Engineering Chemistry Research, 2013, 52, 9958-9964.	1.8	21
522	Modern hybrid sorbents – New ways of heavy metal removal from waters. Chemical Engineering and Processing: Process Intensification, 2013, 70, 55-65.	1.8	18
523	Suitability of semi-quantitative inductive coupled plasma-mass spectrometry for multi-elemental screening in water contamination warning system. Journal of Applied Spectroscopy, 2013, 80, 437-448.	0.3	3
524	Particle-size effects on dissolved arsenic adsorption to an Australian laterite. Environmental Earth Sciences, 2013, 68, 2301-2312.	1.3	11
525	Superparamagnetic magnesium ferrite nanoadsorbent for effective arsenic (III, V) removal and easy magnetic separation. Water Research, 2013, 47, 3624-3634.	5.3	216

#	Article	IF	CITATIONS
526	Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate. Journal of Hazardous Materials, 2013, 260, 885-891.	6.5	100
527	Effect of Anatase/Rutile TiO ₂ Phase Composition on Arsenic Adsorption. Journal of Dispersion Science and Technology, 2013, 34, 1043-1052.	1.3	16
528	Arsenic removal using natural biomaterial-based sorbents. Environmental Geochemistry and Health, 2013, 35, 633-642.	1.8	32
529	Layer-by-layer loading iron onto mesoporous silica surfaces: Synthesis, characterization and application for As(V) removal. Microporous and Mesoporous Materials, 2013, 171, 139-146.	2.2	27
530	Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: Divergent reactions in the presence of organic ligands. Chemosphere, 2013, 93, 1936-1941.	4.2	43
531	An easy method to synthesize graphene oxide–FeOOH composites and their potential application in water purification. Materials Research Bulletin, 2013, 48, 2180-2185.	2.7	51
532	Use of peat-based sorbents for removal of arsenic compounds. Open Chemistry, 2013, 11, 988-1000.	1.0	4
533	Removal of As(V) using liquid-phase polymer-based retention (LPR) technique with regenerated cellulose membrane as a filter. Polymer Bulletin, 2013, 70, 2633-2644.	1.7	12
534	Kinetics and Thermodynamics of Sorption for As(V) on the Porous Biomorph-Genetic Composite of α-Fe2O3/Fe3O4/C with Eucalyptus Wood Hierarchical Microstructure. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	4
535	A Comparison Between a Low-Cost Sorbent and an Activated Carbon for the Adsorption of Heavy Metals from Water. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	43
536	As(V) retention on soils and forest by-products and other waste materials. Environmental Science and Pollution Research, 2013, 20, 6574-6583.	2.7	39
537	Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environmental Science and Pollution Research, 2013, 20, 1281-1291.	2.7	87
538	Recyclability of poly (N-isopropylacrylamide) microgel-based assemblies for organic dye removal from water. Colloid and Polymer Science, 2013, 291, 1795-1802.	1.0	33
539	Applications versus properties of Mg–Al layered double hydroxides provided by their syntheses methods: Alkoxide and alkoxide-free sol–gel syntheses and hydrothermal precipitation. Chemical Engineering Journal, 2013, 234, 284-299.	6.6	87
540	Evaluation of heavy metal contamination hazards in nuisance dust particles, in Kurdistan Province, western Iran. Journal of Environmental Sciences, 2013, 25, 1346-1354.	3.2	41
541	Tetravalent Manganese Feroxyhyte: A Novel Nanoadsorbent Equally Selective for As(III) and As(V) Removal from Drinking Water. Environmental Science & Technology, 2013, 47, 9699-9705.	4.6	89
542	New low-cost composite adsorbent synthesis and characterization. Desalination and Water Treatment, 2013, 51, 3497-3504.	1.0	3
543	Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. New Biotechnology, 2013, 30, 793-802.	2.4	104

#	Article	IF	CITATIONS
544	Arsenic removal from Pinctada martensii enzymatic hydrolysate by using Zr(IV)-loaded chelating resin. Journal of Ocean University of China, 2013, 12, 392-396.	0.6	1
545	Abiotic oxidation of Mn(II) induced oxidation and mobilization of As(III) in the presence of magnetite and hematite. Journal of Hazardous Materials, 2013, 254-255, 89-97.	6.5	28
546	Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43). Water Resources and Industry, 2013, 4, 51-67.	1.9	155
547	A novel arsenic removal process for water using cupric oxide nanoparticles. Journal of Colloid and Interface Science, 2013, 397, 96-102.	5.0	124
548	Preparation and evaluation of Ni-loaded activated carbon for enrichment of arsenic for analytical and environmental purposes. Microporous and Mesoporous Materials, 2013, 179, 1-9.	2.2	15
549	As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley). Journal of Environmental Management, 2013, 117, 242-252.	3.8	76
550	Removal of arsenic from groundwater by adsorption onto an acidified laterite by-product. Chemical Engineering Journal, 2013, 228, 565-574.	6.6	55
551	Implementation of the adsorbent iron-oxide-coated natural rock (IOCNR) on synthetic As(III) and on real arsenic-bearing sample with filter. Applied Surface Science, 2013, 284, 40-48.	3.1	26
552	Preparation of ferric oxide modified diatomite and its application in the remediation of As(III) species from solution. Microporous and Mesoporous Materials, 2013, 169, 185-191.	2.2	30
553	Oxidized and Ethylenediamine-Functionalized Multi-Walled Carbon Nanotubes for the Separation of Low Concentration Arsenate from Water. Separation Science and Technology, 2013, 48, 2047-2058.	1.3	25
554	Arsenic Waste Management: A Critical Review of Testing and Disposal of Arsenic-Bearing Solid Wastes Generated during Arsenic Removal from Drinking Water. Environmental Science & Technology, 2013, 47, 10799-10812.	4.6	170
555	Performance of FeOOH-brick based composite for Fe(II) removal from water in fixed bed column and mechanistic aspects. Chemical Engineering Research and Design, 2013, 91, 2732-2742.	2.7	23
556	Structural characterization and thermal and chemical stability of bioactive molecule–hydrotalcite (LDH) nanocomposites. Physical Chemistry Chemical Physics, 2013, 15, 13418.	1.3	41
557	Application of solar energy for water supply and sanitation in Arsenic affected rural areas: a study for Kaudikasa village, India. Journal of Cleaner Production, 2013, 60, 102-106.	4.6	18
558	Gasification of coal combustion ash for its reuse as adsorbent. Fuel, 2013, 106, 147-151.	3.4	16
559	Mobilization and re-adsorption of arsenate on ferrihydrite and hematite in the presence of oxalate. Journal of Hazardous Materials, 2013, 262, 701-708.	6.5	30
560	Nano-structured iron(III)–cerium(IV) mixed oxide: Synthesis, characterization and arsenic sorption kinetics in the presence of co-existing ions aiming to apply for high arsenic groundwater treatment. Applied Surface Science, 2013, 283, 471-481.	3.1	61
561	Impact of Iron Precipitant on Toxicity of Arsenic in Water: A Combined in Vivo and in Vitro Study. Environmental Science & Technology, 2013, 47, 3432-3438.	4.6	21

#	Article	IF	Citations
562	Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology. Desalination and Water Treatment, 2013, 51, 6676-6687.	1.0	36
563	Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia). Ecological Engineering, 2013, 51, 88-94.	1.6	63
564	Acclimation of arsenic-resistant Fe(II)-oxidizing bacteria in aqueous environment. International Biodeterioration and Biodegradation, 2013, 76, 86-91.	1.9	27
565	Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. Journal of Materials Chemistry A, 2013, 1, 11355.	5.2	151
566	Equilibrium modeling of As(III,V) sorption in the absence/presence of some groundwater occurring ions by iron(III)–cerium(IV) oxide nanoparticle agglomerates: A mechanistic approach of surface interaction. Chemical Engineering Journal, 2013, 228, 665-678.	6.6	37
567	Adsorptive removal of arsenic in saturated sand filter containing amended adsorbents. Ecological Engineering, 2013, 60, 345-353.	1.6	19
568	Arsenic and iron removal from groundwater by oxidation–coagulation at optimized pH: Laboratory and field studies. Journal of Hazardous Materials, 2013, 260, 618-626.	6.5	110
569	Decontamination of spent iron-oxide coated sand from filters used in arsenic removal. Chemosphere, 2013, 92, 196-200.	4.2	32
570	Removal of groundwater arsenic using a household filter with iron spikes and stainless steel. Journal of Environmental Management, 2013, 131, 103-109.	3.8	22
571	Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere, 2013, 93, 2690-2697.	4.2	63
572	Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid and Interface Science, 2013, 201-202, 68-93.	7.0	543
573	The Pyrolysis of Rose Stems To Obtain Activated Carbons: A Study on the Adsorption of Ni(II). Industrial & Engineering Chemistry Research, 2013, 52, 16197-16205.	1.8	3
574	Controllable Synthesis of Hierarchical Porous Fe ₃ O ₄ Particles Mediated by Poly(diallyldimethylammonium chloride) and Their Application in Arsenic Removal. ACS Applied Materials & Interfaces, 2013, 5, 12449-12459.	4.0	195
575	Improvement of aqueous mercury adsorption on activated coke by thiol-functionalization. Chemical Engineering Journal, 2013, 228, 925-934.	6.6	99
577	Treatment of wastewater containing arsenic using Rhazya stricta as a new adsorbent. Environmental Monitoring and Assessment, 2013, 185, 9669-9681.	1.3	23
578	Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration. Chemical Engineering Journal, 2013, 225, 271-279.	6.6	74
579	Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation. Water Research, 2013, 47, 6064-6074.	5.3	102
580	Removal of arsenic from drinking water: A comparative study between electrocoagulation-microfiltration and chemical coagulation-microfiltration processes. Separation and Purification Technology, 2013, 118, 645-651.	3.9	103

#	Article	IF	CITATIONS
581	Arsenate removal from aqueous media on iron-oxide-coated natural rock (IOCNR): a comprehensive batch study. Desalination and Water Treatment, 2013, 51, 7775-7790.	1.0	12
582	Feasibility of operating a solid–liquid bioreactor with used automobile tires as the sequestering phase for the biodegradation of inhibitory compounds. Journal of Environmental Management, 2013, 125, 7-11.	3.8	15
583	Synthesis and Evaluation of a Novel Hybrid Polymer Containing Manganese and Iron Oxides as a Sorbent for As(III) and As(V) Removal. Industrial & Engineering Chemistry Research, 2013, 52, 6453-6461.	1.8	32
584	Kinetic and thermodynamic aspects of arsenate adsorption on aluminum oxide modified palygorskite nanocomposites. Chemical Engineering Journal, 2013, 215-216, 579-585.	6.6	33
585	Influence of compost on the mobility of arsenic in soil and its uptake by bean plants (Phaseolus) Tj ETQq0 0 0 rgB1 128, 837-843.	7 /Overlocl 3.8	2 10 Tf 50 5 37
586	Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling. Water Research, 2013, 47, 6258-6268.	5.3	99
587	Synthesis of monodispersed \hat{l}_{\pm} -FeOOH nanorods with a high content of surface hydroxyl groups and enhanced ion-exchange properties towards As(v). RSC Advances, 2013, 3, 15805.	1.7	29
588	Waterâ€insoluble copolymer based on <i>N</i> â€methylâ€ <scp>d</scp> â€glucamine and quaternary ammonium groups with capability to remove arsenic. Environmental Progress and Sustainable Energy, 2014, 33, 1187-1193.	1.3	4
589	Removal of Cu ²⁺ and Ag ⁺ from aqueous solution on a chemically-carbonized sorbent from date palm leaflets. Environmental Technology (United Kingdom), 2013, 34, 395-406.	1.2	14
590	Surfactant-free preparation of nickel carbonate hydroxide in aqueous solution and its toxic ion-exchange properties. New Journal of Chemistry, 2013, 37, 534-539.	1.4	30
591	Effect of dissolved organic matter on arsenic removal by nanofiltration. Desalination and Water Treatment, 2013, 51, 2269-2274.	1.0	8
592	Arsenic Resistance and Bioaccumulation of an Indigenous Bacterium Isolated from Aquifer Sediments of Datong Basin, Northern China. Geomicrobiology Journal, 2013, 30, 549-556.	1.0	21
593	A study on adsorption mechanism of organoarsenic compounds on ferrihydrite by XAFS. Journal of Physics: Conference Series, 2013, 430, 012100.	0.3	4
594	Arsenic Removal from Water Using Flame-Synthesized Iron Oxide Nanoparticles with Variable Oxidation States. Aerosol Science and Technology, 2013, 47, 169-176.	1.5	35
595	Adsorption of lead, zinc and cadmium ions from contaminated water onto Peganum harmala seeds as biosorbent. International Journal of Environmental Science and Technology, 2013, 10, 93-102.	1.8	56
596	Defluoridation of drinking water using adsorption processes. Journal of Hazardous Materials, 2013, 248-249, 1-19.	6.5	263
597	Biosorption of arsenic from aqueous solution using dye waste. Environmental Science and Pollution Research, 2013, 20, 1161-1172.	2.7	23
598	Removal of arsenic(III) from aqueous solution using a low-cost by-product in Fe-removal plants—Fe-based backwashing sludge. Chemical Engineering Journal, 2013, 226, 393-401.	6.6	57

#	Article	IF	CITATIONS
599	Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides. Water Research, 2013, 47, 4159-4168.	5.3	150
600	Development of experimental design approach and ANN-based models for determination of Cr(VI) ions uptake rate from aqueous solution onto the solid biodiesel waste residue. Bioresource Technology, 2013, 148, 550-559.	4.8	69
601	As(III) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2. Chemical Geology, 2013, 347, 227-232.	1.4	38
602	Comparison of treated laterite as arsenic adsorbent from different locations and performance of best filter under field conditions. Journal of Hazardous Materials, 2013, 262, 1176-1186.	6.5	42
603	Photooxidation of Arsenite under 254 nm Irradiation with a Quantum Yield Higher than Unity. Environmental Science & Technology, 2013, 47, 9381-9387.	4.6	70
604	New data on arsenic sorption properties of Zn–Al sulphate layered double hydroxides: Influence of competition with other anions. Applied Clay Science, 2013, 80-81, 1-9.	2.6	28
605	Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions. Journal of Hazardous Materials, 2013, 260, 644-651.	6.5	65
606	Desorption of arsenic from exhaust activated carbons used for water purification. Journal of Hazardous Materials, 2013, 260, 451-458.	6.5	47
607	Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents: Impact of experimental conditions. Chemical Engineering Journal, 2013, 223, 116-128.	6.6	94
608	pH-conditioning for simultaneous removal of arsenic and iron ions from groundwater. Chemical Engineering Research and Design, 2013, 91, 405-414.	2.7	17
609	High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel, 2013, 109, 559-562.	3.4	39
610	Arsenite adsorption on cryogels embedded with iron-aluminium double hydrous oxides: Possible polishing step for smelting wastewater?. Journal of Hazardous Materials, 2013, 250-251, 469-476.	6.5	25
611	Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach. Applied Geochemistry, 2013, 38, 110-120.	1.4	84
612	Oxidation of arsenite in aqueous solutions by redox copolymer with N-bromosulfonamide functional groups. Reactive and Functional Polymers, 2013, 73, 108-113.	2.0	3
613	Applied ecology in India: scope of science and policy to meet contemporary environmental and socioâ€ecological challenges. Journal of Applied Ecology, 2013, 50, 4-14.	1.9	16
614	Development of a Fast and Clean Intercalation Method for Organic Molecules into Layered Double Hydroxides. Crystal Growth and Design, 2013, 13, 1162-1169.	1.4	40
615	Magnetic Fe3O4@NiO hierarchical structures: preparation and their excellent As(v) and Cr(vi) removal capabilities. RSC Advances, 2013, 3, 2754.	1.7	69
616	Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere, 2013, 92, 157-170.	4.2	270

#	Article	IF	CITATIONS
617	Ferrate(VI)-Induced Arsenite and Arsenate Removal by In Situ Structural Incorporation into Magnetic Iron(III) Oxide Nanoparticles. Environmental Science & Technology, 2013, 47, 3283-3292.	4.6	185
618	Arsenic sorption by nanocrystalline magnetite: An example of environmentally promising interface with geosphere. Journal of Hazardous Materials, 2013, 262, 1204-1212.	6.5	50
619	Removal of inorganic arsenic oxyanions using Ca–Fe(III) alginate beads. Desalination and Water Treatment, 2013, 51, 2162-2169.	1.0	6
620	Optimal parameters for bioleaching of realgar using <i>Acidithiobacillus ferrooxidans</i> under different growth conditions and mathematical analysis. Biocatalysis and Biotransformation, 2013, 31, 33-41.	1.1	8
622	Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Research, 2013, 47, 3497-3506.	5.3	82
623	Adsorption behavior of As(III) onto a copper ferrite generated from printed circuit board industry. Chemical Engineering Journal, 2013, 225, 433-439.	6.6	45
624	Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles. Journal of Environmental Management, 2013, 114, 225-231.	3.8	127
625	LC-ICPMS speciation of arsenite and arsenate oxyanion mixtures during their adsorption with dried sludge. Analytical Methods, 2013, 5, 1583.	1.3	2
626	α-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic. Journal of Materials Chemistry A, 2013, 1, 7729.	5.2	67
627	Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh. International Journal of Environmental Research and Public Health, 2013, 10, 18-46.	1.2	95
629	Two-step self-assembly of iron oxide into three-dimensional hollow magnetic porous microspheres and their toxic ion adsorption mechanism. Dalton Transactions, 2013, 42, 1921-1928.	1.6	61
630	Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chemical Engineering Journal, 2013, 226, 286-292.	6.6	389
631	Titanium Dioxide-Based Hybrid Ion-Exchange Media for Simultaneous Removal of Arsenic and Nitrate. ACS Symposium Series, 2013, , 223-236.	0.5	8
632	Hematite Nanoparticle Modified Granular Activated Carbon for Removal of Arsenic and Organic Co-Contaminants. ACS Symposium Series, 2013, , 205-222.	0.5	1
633	Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 2013, 130, 457-462.	4.8	563
634	Novel Fe loaded activated carbons with tailored properties for As(V) removal: Adsorption study correlated with carbon surface chemistry. Chemical Engineering Journal, 2013, 215-216, 105-112.	6.6	46
635	The optimization of As(V) removal over mesoporous alumina by using response surface methodology and adsorption mechanism. Journal of Hazardous Materials, 2013, 254-255, 301-309.	6.5	94
636	XANES evidence of arsenate removal from water with magnetic ferrite. Journal of Environmental Management, 2013, 120, 114-119.	3.8	17

#	Article	IF	CITATIONS
637	Facile synthesis of mesoporous Ce–Fe bimetal oxide and its enhanced adsorption of arsenate from aqueous solutions. Journal of Colloid and Interface Science, 2013, 398, 142-151.	5.0	90
638	Enhanced arsenite removal from water by Ti(SO4)2 coagulation. Water Research, 2013, 47, 4340-4348.	5.3	77
639	Nanostructured iron(III)-copper(II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Research, 2013, 47, 4022-4031.	5.3	290
640	One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. Journal of Materials Chemistry A, 2013, 1, 959-965.	5.2	296
641	Apple Peels—A Versatile Biomass for Water Purification?. ACS Applied Materials & Interfaces, 2013, 5, 4443-4449.	4.0	109
642	Determination of Trace Metals in Waste Water and Their Removal Processes. , 0, , .		37
643	Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Advances, 2013, 3, 7828.	1.7	115
644	Preparation and sorption studies of glutaraldehyde cross-linked chitosan copolymers. Journal of Colloid and Interface Science, 2013, 395, 205-211.	5.0	70
645	Vacuum membrane distillation for purifying waters containing arsenic. Desalination, 2013, 323, 17-21.	4.0	70
646	Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chemical Engineering Journal, 2013, 225, 607-615.	6.6	132
647	Biosorption of arsenite (As ⁺³) and arsenate (As ⁺⁵) from aqueous solution by <i>Arthrobacter</i> sp. biomass. Environmental Technology (United Kingdom), 2013, 34, 2701-2708.	1.2	121
648	A facile template free solution approach for the synthesis of dypingite nanowires and subsequent decomposition to nanoporous MgO nanowires with excellent arsenate adsorption properties. RSC Advances, 2013, 3, 5430.	1.7	36
649	Arsenic removal from drinking water with conventional and modified adsorbents: the factorial design of experiments. Desalination and Water Treatment, 2013, 51, 7304-7310.	1.0	4
650	Understanding Arsenate Reaction Kinetics with Ferric Hydroxides. Environmental Science & Technology, 2013, 47, 8342-8347.	4.6	80
651	Arsonic Acid As a Robust Anchor Group for the Surface Modification of Fe ₃ O ₄ . Langmuir, 2013, 29, 14912-14918.	1.6	8
652	Characterization of Arsenic Contamination on Rust from Ton Containers. Industrial & Engineering Chemistry Research, 2013, 52, 1396-1404.	1.8	11
653	Mg-doping: a facile approach to impart enhanced arsenic adsorption performance and easy magnetic separation capability to î±-Fe ₂ O ₃ nanoadsorbents. Journal of Materials Chemistry A, 2013, 1, 830-836.	5.2	57
654	Microscale Speciation of Arsenic and Iron in Ferric-Based Sorbents Subjected to Simulated Landfill Conditions. Environmental Science & Technology, 2013, 47, 12992-13000.	4.6	32

#	Article	IF	CITATIONS
656	Single Step Formation of C-TiO2Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination. International Journal of Photoenergy, 2013, 2013, 1-8.	1.4	10
657	Arsenic Removal from Aqueous Solution Using Pure and Metal-Doped Titania Nanoparticles Coated on Glass Beads: Adsorption and Column Studies. Journal of Nanomaterials, 2013, 2013, 1-17.	1.5	27
658	Arsenic Removal from Water Using Industrial By-Products. Journal of Chemistry, 2013, 2013, 1-9.	0.9	10
659	Functionalisation of cross-linked polyethylenimine for the removal of As from mining wastewater. Water S A, 2013, 39, .	0.2	1
660	Review of Arsenic Pollution and Treatment Progress in Nonferrous Metallurgy Industry. Advanced Materials Research, 0, 634-638, 3239-3243.	0.3	17
661	Microwave-Assisted Preparation and Physical Characterisation of Iron Oxyhydroxides Adsorbents for Arsenic Removal from Aqueous Solutions. Advanced Materials Research, 0, 634-638, 249-253.	0.3	2
662	Multi-analytical assessment of iron and steel slag characteristics to estimate the removal of metalloids from contaminated water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 887-895.	0.9	19
663	CHAPTER 2. Activated Carbon from Biomass for Water Treatment. RSC Green Chemistry, 2013, , 46-105.	0.0	7
664	Nanoscale Iron-Manganese Binary Oxide for As(III) Removal in Synthesized Groundwater. Applied Mechanics and Materials, 0, 319, 209-212.	0.2	1
665	Uptake of Arsenic(V) with Aluminum Modified MCM-41. Advanced Materials Research, 0, 807-809, 1518-1522.	0.3	0
666	Cu ²⁺ Removal by Hydroxyapatite Nanorods Prepared by Surfactant-Templated Method. Advanced Materials Research, 0, 807-809, 1258-1261.	0.3	1
667	Adsorption Behaviors of Arsenic(V) onto Fe-Based Backwashing Sludge Produced from Fe(II)-Removal Plants. Applied Mechanics and Materials, 2013, 295-298, 1321-1326.	0.2	4
668	Arsenic: from toxic compound to medical treatment. Geosystem Engineering, 2013, 16, 139-145.	0.7	0
669	Arsenic Removal from Aqueous Solutions bySalvadora persicaStem Ash. Journal of Chemistry, 2013, 2013, 1-8.	0.9	14
670	Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments. Minerals (Basel, Switzerland), 2013, 3, 337-351.	0.8	19
671	A Novel Solar Driven Photocatalyst: Well-Aligned Anodic WO _{3} Nanotubes. International Journal of Photoenergy, 2013, 2013, 1-6.	1.4	14
672	Lake Restoration of Arsenic Pollution by Manganese Ore. Advanced Materials Research, 2013, 726-731, 1659-1663.	0.3	0
673	Sorption of As(III) and As(V) on chemically synthesized manganese dioxide. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 422-428.	0.9	24

#	Article	IF	CITATIONS
674	Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal. Journal of Chemical Technology and Biotechnology, 2013, 88, 1058-1066.	1.6	21
675	Application of Polythiophene Nanocomposite Coated on Polystyrene and Poly(Vinyl Chloride) for Removal of Pb(II) from Aqueous Solution. Polymer-Plastics Technology and Engineering, 2013, 52, 1621-1625.	1.9	12
676	Removing Cd ²⁺ from water and wastewater by blowy sand; the effects of total hardness and pH. Desalination and Water Treatment, 2013, 51, 3463-3471.	1.0	6
677	Nanoclay-Supported Zero-Valent Iron as an Efficient Adsorbent Material for Arsenic. Advanced Materials Research, 0, 686, 296-304.	0.3	9
678	Role of NZVI, Metal oxide and carbon nanotube for ground water cleanup and their comparison- An overview. , 2013, , .		0
679	Predicting Arsenate Adsorption on Iron-Coated Sand Based on a Surface Complexation Model. Journal of Environmental Engineering, ASCE, 2013, 139, 368-374.	0.7	4
680	Arsenic(III) Removal at Low Concentrations by Biosorption using <i>Phanerochaete chrysosporium</i> Pellets. Separation Science and Technology, 2013, 48, 1111-1122.	1.3	12
681	Preparation of drinking water used in water supply systems of the towns Zrenjanin and Temerin by electrochemical methods. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 437-445.	0.9	9
682	Molybdenum Blue Spectrophotometry for Trace Arsenic in Ground Water Using a Soluble Membrane Filter and Calcium Carbonate Column. Analytical Sciences, 2013, 29, 67-72.	0.8	26
683	Arsenic removal from groundwater through iron oxyhydroxide coated waste products. Journal of Environmental Engineering and Science, 2013, 8, 223-230.	0.3	2
684	Are interventions to reduce the impact of arsenic contamination of groundwater on human health in developing countries effective? A systematic review. Environmental Evidence, 2013, 2, .	1.1	11
685	Adsorption of arsenic on pre-treated zeolite at different pH levels. Chemical Speciation and Bioavailability, 2013, 25, 280-284.	2.0	6
686	Arsenic Precipitation in the Bioleaching of Realgar Using <i>Acidithiobacillus ferrooxidans</i> . Hindawi Journal of Chemistry, 2013, 2013, 1-5.	1.6	7
687	Near-Stoichiometric Adsorption of Phosphate by Silica Gel Supported Nanosized Hematite. ISRN Inorganic Chemistry, 2013, 2013, 1-10.	0.2	2
688	Synthesis and Characterization of Hybrid-Magnetic Nanoparticles and Their Application for Removal of Arsenic from Groundwater. Scientific World Journal, The, 2013, 2013, 1-7.	0.8	16
689	Arsenic Removal from Aqueous Solutions Using Fe3O4-HBC Composite: Effect of Calcination on Adsorbents Performance. PLoS ONE, 2014, 9, e100704.	1.1	44
690	Selectively Adsorptive Extraction of Phenylarsonic Acids in Chicken Tissue by Carboxymethyl α-Cyclodextrin Immobilized Fe3O4 Magnetic Nanoparticles Followed Ultra Performance Liquid Chromatography Coupled Tandem Mass Spectrometry Detection. PLoS ONE, 2014, 9, e107147.	1.1	6
691	Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation. Scientific World Journal, The, 2014, 2014, 1-18.	0.8	400

#	Article	IF	CITATIONS
692	Arsenic mobility and toxicity in South and South-east Asia – a review on biogeochemistry, health and socio-economic effects, remediation and risk predictions. Environmental Chemistry, 2014, 11, 483.	0.7	34
693	Studies Regarding As(V) Adsorption from Underground Water by Fe-XAD8-DEHPA Impregnated Resin. Equilibrium Sorption and Fixed-Bed Column Tests. Molecules, 2014, 19, 16082-16101.	1.7	22
694	Preventing of Cathode Passivation/Deposition in Electrochemical Treatment Methods $\hat{a} \in$ '' A Case Study on Winery Wastewater with Electrocoagulation. , 0, , .		11
695	Effect of arbuscular mycorrhizal fungi (Glomus spp.) on growth and arsenic uptake of vetiver grass (Chrysopogon zizanioides L.) from contaminated soil and water systems. Journal of Soil Science and Plant Nutrition, 2014, , 0-0.	1.7	7
696	Nano-Adsorbent for Arsenates: Iron Oxyhydroxide Impregnated Microporous Activated Carbon. Current Environmental Engineering, 2014, 1, 51-58.	0.6	4
697	Change in Toxicity of Model Arsenic Contaminant in the Presence of Humates and Activated Zeolites. Modern Applied Science, 2014, 9, .	0.4	1
698	Point-of-Use Water Filtration for Arsenic: A Sustainable and Simple Solution in Resource-Poor Settings. International Journal for Service Learning in Engineering, 2014, 9, 79-91.	0.4	1
701	Performance and mechanism study on phosphate adsorption onto activated carbon fiber loading lanthanum and iron oxides. Desalination and Water Treatment, 0, , 1-10.	1.0	0
702	CHAPTER 9. Use of Nanotechnology against Heavy Metals Present in Water. , 2014, , 177-192.		2
703	Determination of Adsorption Characteristics of Metal Oxide Nanomaterials: Application as Adsorbents. Analytical Letters, 2014, 47, 871-884.	1.0	16
704	Improved pig slurry mechanical separation using chitosan and biochar. Biosystems Engineering, 2014, 127, 115-124.	1.9	14
705	Surface Modified Mesostructured Iron Oxyhydroxide: Synthesis, Ecotoxicity, and Application. Water Environment Research, 2014, 86, 2338-2346.	1.3	5
706	Efficient Removal of Arsenic (V) from Water Using Steelâ€Making Slag. Water Environment Research, 2014, 86, 524-531.	1.3	17
707	Adsorption/Oxidation of Arsenic in Groundwater by Nanoscale Feâ€Mn Binary Oxides Loaded on Zeolite. Water Environment Research, 2014, 86, 147-155.	1.3	53
709	Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: Characterization and behaviors. Applied Geochemistry, 2014, 48, 184-192.	1.4	31
710	Characteristics of arsenate removal from water by metal-organic frameworks (MOFs). Water Science and Technology, 2014, 70, 1391-1397.	1.2	104
711	A Review on Adsorption of Fluoride from Aqueous Solution. Materials, 2014, 7, 6317-6366.	1.3	213
712	Adsorption of Arsenite by Six Submerged Plants from Nansi Lake, China. Journal of Chemistry, 2014, 2014. 1-7.	0.9	2

#	Article	IF	CITATIONS
713	Dissolution and Solubility of the (<mml:math)="" 0<br="" etqq0="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML">Solid Solution in Aqueous Solution at 25°C and pH 2. Journal of Chemistry, 2014, 2014, 1-11.</mml:math>	0 rgBT /Ov 0.9	verlock 10 Tf 0
714	Application of Metal Oxide Heterostructures in Arsenic Removal from Contaminated Water. Journal of Nanomaterials, 2014, 2014, 1-10.	1.5	15
715	Green Adsorbents for Wastewaters: A Critical Review. Materials, 2014, 7, 333-364.	1.3	291
716	Liberation of Adsorbed and Co-Precipitated Arsenic from Jarosite, Schwertmannite, Ferrihydrite, and Goethite in Seawater. Minerals (Basel, Switzerland), 2014, 4, 603-620.	0.8	14
717	Arsenic removal of high-arsenic wastewater from gallium arsenide semiconductor production by enhanced two-stage treatment. Desalination and Water Treatment, 0, , 1-8.	1.0	1
718	Effectiveness of various sorbents and biological oxidation in the removal of arsenic species from groundwater. Environmental Chemistry, 2014, 11, 558.	0.7	8
719	A review: applications of iron nanomaterials in bioremediation and in detection of pesticide contamination. International Journal of Nanoparticles, 2014, 7, 73.	0.1	11
720	Effect of calcium on adsorptive removal of As(III) and As(V) by iron oxide-based adsorbents. Environmental Technology (United Kingdom), 2014, 35, 3153-3164.	1.2	11
721	Molecular Recognition and Scavenging of Arsenate from Aqueous Solution Using Dimetallic Receptors. Chemistry - A European Journal, 2014, 20, 17168-17177.	1.7	18
722	Magnetic BaFe12O19 nanofiber filter for effective separation of Fe3O4 nanoparticles and removal of arsenic. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	13
723	Blast furnace residues for arsenic removal from mining-contaminated groundwater. Environmental Technology (United Kingdom), 2014, 35, 2895-2902.	1.2	9
724	Arsenic Removal by Nanoscale Magnetite in Guanajuato, Mexico. Environmental Engineering Science, 2014, 31, 393-402.	0.8	23
725	Zeolitic Imidazolate Framework-8 with High Efficiency in Trace Arsenate Adsorption and Removal from Water. Journal of Physical Chemistry C, 2014, 118, 27382-27387.	1.5	194
726	Adsorption of As(III) from aqueous solutions by iron-impregnated quartz, lignite, and silica sand: kinetic study and equilibrium isotherm analysis. Desalination and Water Treatment, 2014, 52, 3178-3190.	1.0	3
727	Synthesis of Nanoporous Materials and their Functionalization for Environmental Applications. Materials Science Forum, 0, 783-786, 2005-2010.	0.3	1
728	Perspectives and Advances in Photocatalysis. , 2014, , 137-186.		0
729	Phosphonium grafted styrene–divinylbenzene resins impregnated with iron(III) and crown ethers for arsenic removal. Pure and Applied Chemistry, 2014, 86, 1729-1740.	0.9	24
730	Arsenic Adsorption onto Minerals: Connecting Experimental Observations with Density Functional Theory Calculations. Minerals (Basel, Switzerland), 2014, 4, 208-240.	0.8	58

#	Article	IF	CITATIONS
731	Comparison of PoraPak Rxn RP and XAD-2 adsorbents for monitoring dissolved hydrophobic organic contaminants. Environmental Monitoring and Assessment, 2014, 186, 7565-7577.	1.3	2
732	Removal of Heavy Metal Ions from Waste Water Using Modified Sands: A Brief Review. Key Engineering Materials, 0, 636, 65-68.	0.4	1
733	Nano-Mg/Al hydrotalcite: Physicochemical Characterization and Removal of As(III) from Aqueous solutions. Materials Research Society Symposia Proceedings, 2014, 1616, 1.	0.1	1
734	Separation/Preconcentration and Speciation Analysis of Trace Amounts of Arsenate and Arsenite in Water Samples Using Modified Magnetite Nanoparticles and Molybdenum Blue Method. Journal of Chemistry, 2014, 2014, 1-9.	0.9	15
735	An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation. International Journal of Photoenergy, 2014, 2014, 1-14.	1.4	42
736	A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Research on Chemical Intermediates, 2014, 40, 447-485.	1.3	189
737	Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 2014, 236, 513-528.	6.6	446
738	Prospects for Exploiting Bacteria for Bioremediation of Metal Pollution. Critical Reviews in Environmental Science and Technology, 2014, 44, 519-560.	6.6	58
739	Arsenate adsorption onto iron oxide amended rice husk char. Science of the Total Environment, 2014, 488-489, 554-561.	3.9	96
740	Distribution of As trapping along a ZVI/sand bed reactor. Chemical Engineering Journal, 2014, 246, 322-327.	6.6	7
741	Preparation and performance of arsenate (V) adsorbents derived from concrete wastes. Waste Management, 2014, 34, 1829-1835.	3.7	54
742	Agglomerated nanoparticles of hydrous Ce(IV)+Zr(IV) mixed oxide: Preparation, characterization and physicochemical aspects on fluoride adsorption. Applied Surface Science, 2014, 307, 665-676.	3.1	77
743	Ethylene diamine-assisted synthesis of iron oxide nanoparticles in high-boiling polyolys. Journal of Colloid and Interface Science, 2014, 417, 188-198.	5.0	21
744	Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chemical Engineering Journal, 2014, 251, 25-34.	6.6	170
745	Removal of arsenate from aqueous media by magnetic chitosan resin immobilized with molybdate oxoanions. International Journal of Environmental Science and Technology, 2014, 11, 1051-1062.	1.8	43
746	Adsorption of roxarsone by iron (hydr)oxide-modified multiwalled carbon nanotubes from aqueous solution and its mechanisms. International Journal of Environmental Science and Technology, 2014, 11, 785-794.	1.8	40
747	Advances in layered double hydroxide (LDH)-based elastomer composites. Progress in Polymer Science, 2014, 39, 594-626.	11.8	213
748	Development, characterization and evaluation of iron-coated honeycomb briquette cinders for the removal of As(V) from aqueous solutions. Arabian Journal of Chemistry, 2014, 7, 27-36.	2.3	25

#	Article	IF	CITATIONS
749	Removal and Recovery of Phosphate From Water Using Sorption. Critical Reviews in Environmental Science and Technology, 2014, 44, 847-907.	6.6	474
750	The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: adsorption behaviors and mechanisms. Environmental Science and Pollution Research, 2014, 21, 620-630.	2.7	32
751	The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments. Environmental Science and Pollution Research, 2014, 21, 495-506.	2.7	13
752	Organo-modified sericite in the remediation of an aquatic environment contaminated with As(III) or As(V). Environmental Science and Pollution Research, 2014, 21, 407-418.	2.7	16
753	Toxicity of arsenic in relation to soil properties: implications to regulatory purposes. Journal of Soils and Sediments, 2014, 14, 968-979.	1.5	71
754	Ca–alginate-entrapped nanoscale iron: arsenic treatability and mechanism studies. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	40
755	Evaluation of iron-based hybrid materials for heavy metal ions removal. Journal of Materials Science, 2014, 49, 2483-2495.	1.7	21
756	Arsenate adsorption on waste eggshell modified by goethite, α-MnO2 and goethite/α-MnO2. Chemical Engineering Journal, 2014, 237, 430-442.	6.6	75
757	Studies on the adsorption of chromium(VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science, 2014, 425, 36-43.	5.0	87
758	Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials, 2014, 356, 21-31.	1.0	238
759	Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 2014, 160, 191-202.	4.8	1,736
760	Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water. Journal of Hazardous Materials, 2014, 264, 293-302.	6.5	198
761	Arsenic concentration variability, health risk assessment, and source identification using multivariate analysis in selected villages of public water system, Lahore, Pakistan. Environmental Monitoring and Assessment, 2014, 186, 1241-1251.	1.3	62
762	Oxidation of As(III) to As(V) using ozone microbubbles. Chemosphere, 2014, 97, 120-124.	4.2	71
763	Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: A potential material for the treatment of various toxic heavy metals and its toxicity. Journal of Hazardous Materials, 2014, 267, 161-168.	6.5	36
764	Biomass sorbents for metalloid removal. Adsorption, 2014, 20, 275-286.	1.4	6
765	Synthesis and characterization of a new surface modified Amberlite-7HP resin by nano-iron oxide (Fe3O4) and its application for uranyl ions separation. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 1821-1832.	0.7	21
766	Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Environmental Science and Pollution Research, 2014, 21, 6729-6735.	2.7	22

#	Article	IF	CITATIONS
767	Behavior and mechanism of arsenate adsorption on activated natural siderite: evidences from FTIR and XANES analysis. Environmental Science and Pollution Research, 2014, 21, 1944-1953.	2.7	41
768	Investigation of sorbents synthesised by mechanical–chemical reaction for sorption of As(III) and As(V) from aqueous medium. Clean Technologies and Environmental Policy, 2014, 16, 395-403.	2.1	14
769	Effect of thermal regeneration of spent activated carbon on volatile organic compound adsorption performances. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1733-1738.	2.7	54
770	Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 2014, 268, 124-131.	6.5	339
771	The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis. Chemical Engineering Journal, 2014, 246, 217-228.	6.6	49
772	Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater. Journal of Environmental Chemical Engineering, 2014, 2, 642-651.	3.3	83
773	Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal, 2014, 246, 244-253.	6.6	66
774	Equilibrium and kinetics studies of arsenate adsorption by FePO4. Chemosphere, 2014, 99, 207-215.	4.2	54
775	Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. Journal of Environmental Chemical Engineering, 2014, 2, 802-810.	3.3	35
776	Platinum-like Behavior of Reduced Graphene Oxide as a Cocatalyst on TiO ₂ for the Efficient Photocatalytic Oxidation of Arsenite. Environmental Science and Technology Letters, 2014, 1, 185-190.	3.9	114
777	Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based As (V) sorbent. Journal of Polymer Research, 2014, 21, 1.	1.2	19
778	A facile solution approach for the synthesis of akaganéite (β-FeOOH) nanorods and their ion-exchange mechanism toward As(V) ions. Applied Surface Science, 2014, 290, 102-106.	3.1	92
779	Chitosan-Immobilized Pumice for the Removal of As(V) from Waters. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	11
780	Characterization of binary oxide photoactive material and its application for inorganic arsenic removal. Journal of Industrial and Engineering Chemistry, 2014, 20, 3658-3662.	2.9	10
781	Arsenic Removal from Natural Waters by Adsorption or Ion Exchange: An Environmental Sustainability Assessment. Industrial & Engineering Chemistry Research, 2014, 53, 18920-18927.	1.8	50
782	High ontent, Wellâ€Ðispersed γâ€Fe ₂ O ₃ Nanoparticles Encapsulated in Macroporous Silica with Superior Arsenic Removal Performance. Advanced Functional Materials, 2014, 24, 1354-1363.	7.8	118
783	Occurrence of arsenic in fruit of mango plant (Mangifera indica L.) and its relationship to soil properties. Catena, 2014, 113, 213-218.	2.2	11
784	Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. International Journal of Biological Macromolecules, 2014, 68, 125-130.	3.6	129

#	Article	IF	CITATIONS
785	Tailored zeolites for the removal of metal oxyanions: Overcoming intrinsic limitations of zeolites. Journal of Hazardous Materials, 2014, 274, 287-299.	6.5	73
786	Modeling of the adsorptive removal of arsenic: A statistical approach. Journal of Environmental Chemical Engineering, 2014, 2, 585-597.	3.3	85
787	Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Research, 2014, 48, 156-169.	5.3	140
788	Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. Chemical Engineering Journal, 2014, 237, 47-54.	6.6	130
789	Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 2014, 243, 14-23.	6.6	302
790	Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. Journal of Environmental Chemical Engineering, 2014, 2, 239-259.	3.3	395
791	Equilibria, kinetics, and spectroscopic analyses on the uptake of aqueous arsenite by two-line ferrihydrite. Environmental Technology (United Kingdom), 2014, 35, 251-261.	1.2	17
792	Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecological Engineering, 2014, 73, 798-808.	1.6	117
793	Structure and stability of arsenate adsorbed on α-Al 2 O 3 single-crystal surfaces investigated using grazing-incidence EXAFS measurement and DFT calculation. Chemical Geology, 2014, 389, 104-109.	1.4	12
795	Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions. Biomass and Bioenergy, 2014, 71, 299-310.	2.9	156
796	Feasibility studies on arsenic removal from aqueous solutions by electrodialysis. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 545-554.	0.9	21
797	Preparation and Characterization of Homopolymer Polyacrylonitrile-Based Fibrous Sorbents for Arsenic Removal. Environmental Engineering Science, 2014, 31, 593-601.	0.8	26
798	Size-controlled synthesis of uniform akaganeite nanorods and their encapsulation in alginate microbeads for arsenic removal. RSC Advances, 2014, 4, 21777-21781.	1.7	15
799	One-pot synthesis of thiol- and amine-bifunctionalized mesoporous silica and applications in uptake and speciation of arsenic. RSC Advances, 2014, 4, 49421-49428.	1.7	35
800	Enhanced arsenate removal performance of nanostructured goethite with high content of surface hydroxyl groups. Journal of Environmental Chemical Engineering, 2014, 2, 2312-2320.	3.3	13
801	Prediction of arsenic breakthrough in a pilot column of polymer-supported nanoparticles. Journal of Water Process Engineering, 2014, 3, 117-122.	2.6	5
802	Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale, 2014, 6, 1105-1112.	2.8	258
803	Necklace-like mesoporous MgO/TiO ₂ heterojunction structures with excellent capability for water treatment. Dalton Transactions, 2014, 43, 2348-2351.	1.6	27

#	Article	IF	CITATIONS
804	Nanocasted synthesis of ordered mesoporous cerium iron mixed oxide and its excellent performances for As(<scp>v</scp>) and Cr(<scp>vi</scp>) removal from aqueous solutions. Dalton Transactions, 2014, 43, 10767-10777.	1.6	59
805	Titanium Dioxide-Coated Carbon Nanotube Network Filter for Rapid and Effective Arsenic Sorption. Environmental Science & Technology, 2014, 48, 13871-13879.	4.6	115
806	Twenty years of global groundwater research: A Science Citation Index Expanded-based bibliometric survey (1993–2012). Journal of Hydrology, 2014, 519, 966-975.	2.3	67
807	Ultra-long magnetic nanochains for highly efficient arsenic removal from water. Journal of Materials Chemistry A, 2014, 2, 12974-12981.	5.2	33
808	Hydrothermal Synthesis of Hierarchical Copper Oxide Nanoparticles and its Potential Application as Adsorbent for Pb(II) with High Removal Capacity. Separation Science and Technology, 2014, 49, 2389-2399.	1.3	25
809	Ordered mesoporous MnO2 as a synergetic adsorbent for effective arsenic(iii) removal. Journal of Materials Chemistry A, 2014, 2, 2374.	5.2	50
810	Use of fly ash and fly ash agglomerates for As(III) adsorption from aqueous solution. Polish Journal of Chemical Technology, 2014, 16, 21-27.	0.3	8
811	Kinetic study of adsorption of arsenic onto New Zealand Ironsand (NZIS). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1474-1480.	0.9	2
812	Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1462-1473.	0.9	21
813	New insight into modulated up-conversion luminescent silica nanotubes as efficient adsorbents for colored effluents. Dalton Transactions, 2014, 43, 15457-15464.	1.6	9
814	New Functionalized Magnetic Materials for As5+ Removal: Adsorbent Regeneration and Reuse. Industrial & Engineering Chemistry Research, 2014, 53, 18928-18934.	1.8	42
815	Adsorption of arsenic on modified montmorillonite. Applied Clay Science, 2014, 97-98, 17-23.	2.6	92
816	Innovative impregnation process for production of γ-Fe2O3–activated carbon nanocomposite. Materials Science in Semiconductor Processing, 2014, 27, 56-62.	1.9	13
817	Study of As(III) and As(V) oxoanion adsorption onto single and mixed ferrite and hausmannite nanomaterials. Microchemical Journal, 2014, 117, 52-60.	2.3	26
818	Arsenic(V) removal in wetland filters treating drinking water with different substrates and plants. International Journal of Environmental Analytical Chemistry, 2014, 94, 618-638.	1.8	14
819	Evaluation of hybrid polymer containing iron oxides as As(III) and As(V) sorbent for drinking water purification. Reactive and Functional Polymers, 2014, 83, 24-32.	2.0	25
820	Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis. Science of the Total Environment, 2014, 494-495, 202-210.	3.9	19
821	Influence of calcination on magnetic honeycomb briquette cinders composite for the adsorptive removal of As(III) in fixed-bed column. Chemical Engineering Journal, 2014, 257, 1-9.	6.6	13

#	Article	IF	CITATIONS
822	Ionic Potential: A General Material Criterion for the Selection of Highly Efficient Arsenic Adsorbents. Journal of Materials Science and Technology, 2014, 30, 949-953.	5.6	20
823	Controllable synthesis of Mg–Fe layered double hydroxide nanoplates with specific Mg/Fe ratios and their effect on adsorption of As(<scp>v</scp>) from water. New Journal of Chemistry, 2014, 38, 4427.	1.4	28
824	Adsorption study using optimised 3D organised mesoporous silica coated with Fe and Al oxides for specific As(III) and As(V) removal from contaminated synthetic groundwater. Microporous and Mesoporous Materials, 2014, 198, 101-114.	2.2	28
825	Cobalt ferrite nanoparticles aggregated schwertmannite: A novel adsorbent for the efficient removal of arsenic. Journal of Water Process Engineering, 2014, 3, 1-9.	2.6	79
826	lron oxide waste to clean arsenic-contaminated water. Environmental Chemistry Letters, 2014, 12, 517-522.	8.3	17
827	The Management of Arsenic in the Mining Industry. Reviews in Mineralogy and Geochemistry, 2014, 79, 507-532.	2.2	18
828	Improved Diffusive Gradients in Thin Films (DGT) Measurement of Total Dissolved Inorganic Arsenic in Waters and Soils Using a Hydrous Zirconium Oxide Binding Layer. Analytical Chemistry, 2014, 86, 3060-3067.	3.2	79
829	Synthesis of Alumina-Modified Cigarette Soot Carbon As an Adsorbent for Efficient Arsenate Removal. Industrial & Engineering Chemistry Research, 2014, 53, 16051-16060.	1.8	40
830	Bio-Inspired Titanium Dioxide Materials with Special Wettability and Their Applications. Chemical Reviews, 2014, 114, 10044-10094.	23.0	489
831	Factors affecting arsenic and uranium removal with zero-valent iron: laboratory tests with Kanchan-type iron nail filter columns with different groundwaters. Environmental Chemistry, 2014, 11, 547.	0.7	22
832	Arsenic Removal from Water by Sugarcane Bagasse: An Application of Response Surface Methodology (RSM). Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	39
833	Synthesis of flower-like α-Fe2O3 and its application in wastewater treatment. Journal of Zhejiang University: Science A, 2014, 15, 671-680.	1.3	13
834	Arsenic Speciation and Sorption in Natural Environments. Reviews in Mineralogy and Geochemistry, 2014, 79, 185-216.	2.2	109
835	Arsenic Speciation in Newberyite (MgHPO ₄ ·3H ₂ O) Determined by Synchrotron X-ray Absorption and Electron Paramagnetic Resonance Spectroscopies: Implications for the Fate of Arsenic in Green Fertilizers. Environmental Science & Technology, 2014, 48, 6938-6946.	4.6	12
836	Adsorption of graphene for the removal of inorganic pollutants in water purification: a review. Adsorption, 2014, 20, 713-727.	1.4	124
837	CHAPTER 5. Arsenic Contamination: An Overview. , 2014, , 86-121.		1
838	Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. Journal of Environmental Health Science & Engineering, 2014, 12, 74.	1.4	75
839	Fe Doped TiO2 Prepared by Microwave-Assisted Hydrothermal Process for Removal of As(III) and As(V) from Water. Industrial & Engineering Chemistry Research, 2014, 53, 10841-10848.	1.8	32

#	Article	IF	CITATIONS
840	Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency. Journal of Colloid and Interface Science, 2014, 420, 74-79.	5.0	46
842	Ultrasonic assisted arsenate adsorption on solvothermally synthesized calcite modified by goethite, α-MnO2 and goethite/α-MnO2. Ultrasonics Sonochemistry, 2014, 21, 790-801.	3.8	37
843	Removal of arsenic from aqueous solution by adsorption on Leonardite. Chemical Engineering Journal, 2014, 240, 202-210.	6.6	77
844	Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere, 2014, 112, 1-8.	4.2	101
845	A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes. Applied Geochemistry, 2014, 41, 196-217.	1.4	285
846	Arsenic removal using bagasse fly ash-iron coated and sponge iron char. Journal of Environmental Chemical Engineering, 2014, 2, 1467-1473.	3.3	30
847	Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chemical Engineering Journal, 2014, 256, 187-204.	6.6	325
848	Synthesis, Characterization, and Adsorptive Properties of Magnetic Cellulose Nanocomposites for Arsenic Removal. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	32
849	Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Environmental Science and Pollution Research, 2014, 21, 9430-9442.	2.7	62
850	Recycling of nickel smelter slag for arsenic remediation—an experimental study. Environmental Science and Pollution Research, 2014, 21, 10096-10107.	2.7	13
851	Removal of As(III) and As(V) using iron-rich sludge produced from coal mine drainage treatment plant. Environmental Science and Pollution Research, 2014, 21, 10878-10889.	2.7	28
852	Concentration of arsenic by selected vegetables cultivated in the Yamuna flood plains (YFP) of Delhi, India. Environmental Earth Sciences, 2014, 72, 3281-3291.	1.3	23
853	Effect of ultrasound on sodium arsenate induction time and crystallization property during solution crystallization processes. Acoustical Physics, 2014, 60, 356-360.	0.2	8
854	Metallurgical Slag as an Efficient and Economical Adsorbent of Arsenic. , 2014, , 95-114.		13
855	Adsorption of metal ions by clays and inorganic solids. RSC Advances, 2014, 4, 28537-28586.	1.7	101
856	Reutilization of Porous Sintered Hematite Bodies as Effective Adsorbents for Arsenic(V) Removal from Water. Industrial & Engineering Chemistry Research, 2014, 53, 12689-12696.	1.8	11
857	Selective removal of arsenic(V) from natural water using N-methyl-d-glucamine functionalized poly(propylene) membranes. Journal of Environmental Chemical Engineering, 2014, 2, 2221-2228.	3.3	7
858	Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresource Technology, 2014, 169, 622-629.	4.8	319

#	ARTICLE	IF	CITATIONS
859	Facile Hydrothermal Synthesis of Nanostructured Hollow Iron–Cerium Alkoxides and Their Superior Arsenic Adsorption Performance. ACS Applied Materials & Interfaces, 2014, 6, 14016-14025.	4.0	69
860	Synthesis and arsenic adsorption performances of ferric-based layered double hydroxide with α-alanine intercalation. Chemical Engineering Journal, 2014, 252, 267-274.	6.6	75
861	Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters. Journal of Chemical Technology and Biotechnology, 2014, 89, 909-918.	1.6	59
862	As(V) adsorption on forest and vineyard soils and pyritic material with or without mussel shell: Kinetics and fractionation. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1007-1014.	2.7	28
863	Effect of arsenic on nitrification of simulated mining water. Bioresource Technology, 2014, 164, 149-154.	4.8	40
864	Preparation of microporous activated carbon and its modification for arsenic removal from water. Journal of Industrial and Engineering Chemistry, 2014, 20, 887-896.	2.9	98
865	A novel approach for arsenic adsorbents regeneration using MgO. Journal of Hazardous Materials, 2014, 265, 217-225.	6.5	77
866	Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chemical Engineering Journal, 2014, 248, 290-296.	6.6	85
867	Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Applied Geochemistry, 2014, 41, 11-33.	1.4	160
868	Characterization and evaluation of arsenic and boron adsorption onto natural geologic materials, and their application in the disposal of excavated altered rock. Geoderma, 2014, 213, 163-172.	2.3	52
869	Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chemical Engineering Journal, 2014, 249, 201-209.	6.6	92
870	A novel Zr-based nanoparticle-embedded PSF blend hollow fiber membrane for treatment of arsenate contaminated water: Material development, adsorption and filtration studies, and characterization. Journal of Membrane Science, 2014, 452, 433-445.	4.1	86
871	Competitive adsorption of humic acid and arsenate on nanoscale iron–manganese binary oxide-loaded zeolite in groundwater. Journal of Geochemical Exploration, 2014, 144, 220-225.	1.5	30
872	Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal. Journal of Hazardous Materials, 2014, 269, 89-97.	6.5	47
873	Removal of Arsenic and Phosphate from Aqueous Solution by Metal (Hydr-)oxide Coated Sand. ACS Sustainable Chemistry and Engineering, 2014, 2, 1128-1138.	3.2	62
874	An Ultrasensitive Simultaneous Multianalyte Immunoassay Based on Arsenic and Mercury Ions Labeled SiO2@Au Nanoparticle Probes. Chinese Journal of Analytical Chemistry, 2014, 42, 817-823.	0.9	5
875	Enhanced removal of trace arsenate by magnetic nanoparticles modified with arginine and lysine. Chemical Engineering Journal, 2014, 254, 340-348.	6.6	35
876	Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: A pilot-scale demonstration. Chemical Engineering Journal, 2014, 254, 115-123.	6.6	88

#	Article	IF	Citations
877	Improved arsenic(III) adsorption by Al2O3 nanoparticles and H2O2: Evidence of oxidation to arsenic(V) from X-ray absorption spectroscopy. Chemosphere, 2014, 113, 151-157.	4.2	43
878	Modified nanocrystalline natural zeolite for adsorption of arsenate from wastewater: Isotherm and kinetic studies. Microporous and Mesoporous Materials, 2014, 197, 101-108.	2.2	15
879	Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon, 2014, 77, 289-301.	5.4	212
880	Mn-feroxyhyte: The role of synthesis conditions on As(III) and As(V) removal capacity. Chemical Engineering Journal, 2014, 251, 192-198.	6.6	36
881	Magnetic nanoscale Fe–Mn binary oxides loaded zeolite for arsenic removal from synthetic groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 220-227.	2.3	96
882	Î ³ -Al2O3-based nanocomposite adsorbents for arsenic(V) removal: Assessing performance, toxicity and particle leakage. Science of the Total Environment, 2014, 473-474, 207-214.	3.9	32
883	Sorptive removal of arsenate using termite mound. Journal of Environmental Management, 2014, 132, 188-196.	3.8	22
884	Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension. Catalysis Today, 2014, 224, 83-88.	2.2	118
885	Life cycle analysis of two Hungarian drinking water arsenic removal technologies. Water Science and Technology: Water Supply, 2014, 14, 48-60.	1.0	4
886	Electroadsorption of Arsenic from Natural Water in Granular Activated Carbon. Frontiers in Materials, 2014, 1, .	1.2	20
888	Developing a viable concept for sustainable arsenic removal from groundwater in remote area—findings of pilot trials in rural Bihar, India. Arsenic in the Environment Proceedings, 2014, , 780-782.	0.0	0
889	Bacterial Diversity in Biological Filtration System for the Simultaneous Removal of Arsenic, Iron and Manganese from Groundwater. Journal of Water and Environment Technology, 2014, 12, 135-149.	0.3	5
891	Oxidation and adsorption of arsenic species by means of hybrid polymer containing manganese oxides. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
892	3. Arsenic Speciation and Sorption in Natural Environments. , 2014, , 185-216.		4
893	11. The Management of Arsenic in the Mining Industry. , 2014, , 507-532.		0
894	Study of phosphate removal from aqueous solution by zinc oxide. Journal of Water and Health, 2015, 13, 704-713.	1.1	17
895	Dynamic column adsorption of As on iron-oxide-coated natural rock (IOCNR) and sludge management. Desalination and Water Treatment, 2015, 55, 2171-2182.	1.0	2
896	Sludge-Derived Biochar for Arsenic(III) Immobilization: Effects of Solution Chemistry on Sorption Behavior. Journal of Environmental Quality, 2015, 44, 1119-1126.	1.0	67

#	Article	IF	CITATIONS
897	Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Scientific Reports, 2015, 5, 16613.	1.6	285
898	An Overview of Nanomaterials. , 2015, , 22-108.		4
899	READ-As and GEH sorption materials for the removal of antimony from water. Water Science and Technology: Water Supply, 2015, 15, 525-532.	1.0	2
900	Adsorbent capability testing using desorption efficiency method on palm oil fiber. AIP Conference Proceedings, 2015, , .	0.3	0
901	Adsorption of Arsenate on Iron Oxides as Influenced by Humic Acids. Journal of Environmental Quality, 2015, 44, 1729-1737.	1.0	9
902	Arsenic removal from groundwater by ion exchange and adsorption processes: comparison of two different materials. Water Science and Technology: Water Supply, 2015, 15, 981-989.	1.0	15
903	Distribution of iron in activated carbon composites: assessment of arsenic removal behavior. Water Science and Technology: Water Supply, 2015, 15, 990-998.	1.0	11
904	Structural Characterisation of Complex Layered Double Hydroxides and TGAâ€GCâ€MS Study on Thermal Response and Carbonate Contamination in Nitrate―and Organicâ€Exchanged Hydrotalcites. Chemistry - A European Journal, 2015, 21, 14975-14986.	1.7	53
905	Adsorption Properties of Arsenic(V) by Polyacrylamide Cryogel Containing Iron Hydroxide Oxide Particles Prepared by <i>in situ</i> Method. Resources Processing, 2015, 62, 17-23.	0.4	8
906	Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents. International Journal of Environmental Research and Public Health, 2015, 12, 13523-13541.	1.2	24
907	Testing Metallic Iron Filtration Systems for Decentralized Water Treatment at Pilot Scale. Water (Switzerland), 2015, 7, 868-897.	1.2	32
908	Chemical characterization of agroforestry solid residues aiming its utilization as adsorbents for metals in water. Revista Brasileira De Engenharia Agricola E Ambiental, 2015, 19, 77-83.	0.4	15
909	Dissolved Air Flotation of arsenic adsorbent particles. Ingenieria E Investigacion, 2015, 35, 36-42.	0.2	1
910	Synthesis of Magnetite Nanoparticles by Top-Down Approach from a High Purity Ore. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	55
911	Evaluation of a Novel Water Treatment Residual Nanoparticles as a Sorbent for Arsenic Removal. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	25
912	Synthesis of Three-Dimensional Fe ₃ O ₄ /Graphene Aerogels for the Removal of Arsenic Ions from Water. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	21
913	Mesoporous ZnAl ₂ O ₄ : an efficient adsorbent for the removal of arsenic from contaminated water. Dalton Transactions, 2015, 44, 11843-11851.	1.6	26
914	Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere, 2015, 134, 257-262.	4.2	198

#	Article	IF	CITATIONS
915	Copper Removal Using Electrosterically Stabilized Nanocrystalline Cellulose. ACS Applied Materials & Interfaces, 2015, 7, 11301-11308.	4.0	106
916	Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies. Environmental Science & amp; Technology, 2015, 49, 7726-7734.	4.6	314
917	Competitive adsorption of As(V) with co-existing ions on porous hematite in aqueous solutions. Journal of Environmental Chemical Engineering, 2015, 3, 1497-1503.	3.3	32
918	Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 2015, 93, 636-647.	5.4	89
919	Efficient arsenic(V) and arsenic(III) removal from acidic solutions with Novel Forager Sponge-loaded superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science, 2015, 453, 132-141.	5.0	44
920	Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. Journal of Hazardous Materials, 2015, 298, 28-35.	6.5	151
921	Removal of As(V) from wastewater by chemically modified biomass. Journal of Molecular Liquids, 2015, 206, 262-267.	2.3	23
922	In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study. Science of the Total Environment, 2015, 527-528, 38-46.	3.9	24
923	Engineering application of activated alumina adsorption dams for emergency treatment of arsenic-contaminated rivers. Environmental Technology (United Kingdom), 2015, 36, 2755-2762.	1.2	5
924	Cu doped Fe ₃ O ₄ magnetic adsorbent for arsenic: synthesis, property, and sorption application. RSC Advances, 2015, 5, 50011-50018.	1.7	85
925	Adsorption of arsenic(V) from aqueous solutions by goethite/silica nanocomposite. International Journal of Environmental Science and Technology, 2015, 12, 3905-3914.	1.8	28
926	Enhanced arsenic removal from drinking water by iron-enriched aluminosilicate adsorbent prepared from fly ash. Desalination and Water Treatment, 0, , 1-13.	1.0	17
927	Adsorption of As(V) on aluminum-, iron-, and manganese-(oxyhydr)oxides: equilibrium and kinetics. Desalination and Water Treatment, 2015, 56, 1829-1838.	1.0	14
928	Removal of As(V) from groundwater using functionalized magnetic adsorbent materials: Effects of competing ions. Separation and Purification Technology, 2015, 156, 699-707.	3.9	15
929	Application, Chemical Interaction and Fate of Iron Minerals in Polluted Sediment and Soils. Current Pollution Reports, 2015, 1, 265-279.	3.1	34
930	Removal of arsenic by a Bacillus arsenicus biofilm supported on GAC/MnFe 2 O 4 composite. Groundwater for Sustainable Development, 2015, 1, 105-128.	2.3	8
931	Novel carbon/manganese oxide nanocomposite for electrochemical detection of arsenic in water- a step towards portable real time sensor. , 2015, , .		0
932	Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions. Journal of Hazardous Materials, 2015, 286, 220-228.	6.5	101

#	Article	IF	CITATIONS
933	Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid and Interface Science, 2015, 448, 238-250.	5.0	130
934	MgAl layered double hydroxides with chloride and carbonate ions as interlayer anions for removal of arsenic and fluoride ions in water. RSC Advances, 2015, 5, 10412-10417.	1.7	97
935	Enhanced removal performance of arsenate and arsenite by magnetic graphene oxide with high iron oxide loading. Physical Chemistry Chemical Physics, 2015, 17, 4388-4397.	1.3	66
936	Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicology and Environmental Safety, 2015, 115, 119-125.	2.9	60
937	Detection of ion adsorption at solid–liquid interfaces using internal reflection ellipsometry. Sensors and Actuators B: Chemical, 2015, 210, 649-655.	4.0	25
938	Visual colorimetry for determination of trace arsenic in groundwater based on improved molybdenum blue spectrophotometry. Analytical Methods, 2015, 7, 2794-2799.	1.3	22
939	Neuro fuzzy approach for arsenic(III) and chromium(VI) removal from water. Journal of Water Process Engineering, 2015, 5, 58-75.	2.6	43
940	Adsorption of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon in the presence of co-existing ions. International Biodeterioration and Biodegradation, 2015, 102, 256-264.	1.9	40
941	Revisiting the use of gold and silver functionalised nanoparticles as colorimetric and fluorometric chemosensors for metal ions. Sensors and Actuators B: Chemical, 2015, 212, 297-328.	4.0	123
942	Arsenic Removal from Groundwater by Goethite Impregnated Calcium Alginate Beads. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	41
943	A dynamic intraparticle model for fluid–solid adsorption kinetics. Computers and Chemical Engineering, 2015, 74, 66-74.	2.0	35
944	Ceramic membrane materials and process for the removal of As(III)/As(V) ions from water. Journal of Water Process Engineering, 2015, 5, 42-47.	2.6	21
945	Polymerization of silicate on TiO2 and its influence on arsenate adsorption: An ATR-FTIR study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 469, 180-186.	2.3	18
946	Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions. Open Chemistry, 2015, 13, .	1.0	102
947	Arsenic removal from aqueous solutions by ultrafiltration assisted with polyacrylamide: an application of response surface methodology. Desalination and Water Treatment, 2015, 56, 736-743.	1.0	6
948	Effective removal of As (III) from drinking water samples by chitosan-coated magnetic nanoparticles. Desalination and Water Treatment, 2015, 56, 2092-2104.	1.0	19
949	Synthesis of some novel adsorbents for antimicrobial activity and removal of arsenic from drinking water. Korean Journal of Chemical Engineering, 2015, 32, 661-666.	1.2	3
950	Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides. Environmental Science & Technology, 2015, 49, 2319-2327.	4.6	118

#	Article	IF	CITATIONS
951	Anaerobic nitrate reduction with oxidation of Fe(II) by Citrobacter Freundii strain PXL1 – a potential candidate for simultaneous removal of As and nitrate from groundwater. Ecological Engineering, 2015, 77, 196-201.	1.6	61
952	Characteristics and mechanisms of arsenate adsorption onto manganese oxideâ€doped aluminum oxide. Environmental Progress and Sustainable Energy, 2015, 34, 1009-1018.	1.3	23
953	Thiol-functionalized chitin nanofibers for As (III) adsorption. Polymer, 2015, 60, 9-17.	1.8	69
954	Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 2015, 151, 326-342.	3.8	480
955	The effects of soil amendments on arsenic concentrations in soil solutions after long-term flooded incubation. Soil Science and Plant Nutrition, 2015, 61, 592-602.	0.8	20
956	Heavy metals screening of rice bran oils and its relation to composition. European Journal of Lipid Science and Technology, 2015, 117, 1452-1462.	1.0	17
957	Adsorption of Arsenic from Aqueous Solutions by Iron Oxide Coated Sand Fabricated with Acid Mine Drainage. Separation Science and Technology, 2015, 50, 267-275.	1.3	22
958	Rapid oxidation and immobilization of arsenic by contact glow discharge plasma in acidic solution. Chemosphere, 2015, 125, 220-226.	4.2	17
959	The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Research, 2015, 75, 224-248.	5.3	762
960	Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite. Journal of Colloid and Interface Science, 2015, 448, 331-338.	5.0	93
961	Arsenic sorption onto titanium dioxide, granular ferric hydroxide and activated alumina: Batch and dynamic studies. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 424-431.	0.9	22
962	Porous hybrid materials in the remediation of water contaminated with As(III) and As(V). Chemical Engineering Journal, 2015, 270, 496-507.	6.6	44
963	Antimony Removal from Water by Adsorption to Iron-Based Sorption Materials. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	15
964	Fluoride in Drinking Water: Health Effects and Remediation. Environmental Chemistry for A Sustainable World, 2015, , 105-151.	0.3	17
965	Highly efficient removal of arsenic(III) from aqueous solution by zeolitic imidazolate frameworks with different morphology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 358-366.	2.3	113
966	Adsorption of monothioarsenate on amorphous aluminum hydroxide under anaerobic conditions. Chemical Geology, 2015, 407-408, 46-53.	1.4	25
967	Adsorption behavior and removal mechanism of arsenic on graphene modified by iron–manganese binary oxide (FeMnO _x /RGO) from aqueous solutions. RSC Advances, 2015, 5, 67951-67961.	1.7	107
968	Bio-Sand filter to treat arsenic contaminated drinking water. Desalination and Water Treatment, 2015, 53, 2999-3006.	1.0	4

#	Article	IF	CITATIONS
969	Immobilization of arsenate in kaolinite by the addition of magnesium oxide: An experimental and modeling investigation. Journal of Hazardous Materials, 2015, 300, 680-687.	6.5	13
970	Characterization of Phosphate and Arsenate Adsorption onto Keggin-Type Al ₃₀ Cations by Experimental and Theoretical Methods. Inorganic Chemistry, 2015, 54, 8367-8374.	1.9	23
971	Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrylonitril-co-acrylamidopropyl-trimethyl ammonium chloride)-based hydrogels. Journal of Environmental Management, 2015, 161, 243-251.	3.8	34
972	Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water. Scientific Reports, 2015, 5, 11110.	1.6	44
973	Hybrid [polysulfone–Zero Valent Iron] membranes: Synthesis, characterization and application for AsIII remediation. Chemical Engineering Journal, 2015, 281, 651-660.	6.6	24
974	Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment. Journal of Hazardous Materials, 2015, 300, 522-529.	6.5	42
975	Magnetic adsorbents for the treatment of water/wastewater—A review. Journal of Water Process Engineering, 2015, 7, 244-265.	2.6	324
976	Bifunctional polymeric microspheres for efficient uranium sorption from aqueous solution: synergistic interaction of positive charge and amidoxime group. RSC Advances, 2015, 5, 64286-64292.	1.7	38
977	Modelling of optimum conditions for bioaccumulation of As(III) and As(V) by response surface methodology (RSM). Journal of Environmental Chemical Engineering, 2015, 3, 1986-2001.	3.3	9
978	The oxidation of As(III) in groundwater using biological manganese removal filtration columns. Environmental Technology (United Kingdom), 2015, 36, 2732-2739.	1.2	7
979	Synthesis and characterization of bentonite based inorgano–organo-composites and their performances for removing arsenic from water. Applied Clay Science, 2015, 114, 239-246.	2.6	28
980	Synthesis of diatom–FeOx composite for removing trace arsenic to meet drinking water standards. Journal of Colloid and Interface Science, 2015, 457, 169-173.	5.0	28
981	An X-ray absorption study of synthesis- and As adsorption-induced microstructural modifications in Fe oxy-hydroxides. Journal of Hazardous Materials, 2015, 298, 203-209.	6.5	22
982	Green walnut shell as a new material for removal of Cr(VI) ions from aqueous solutions. Desalination and Water Treatment, 2015, 55, 431-439.	1.0	17
983	SERS detection of arsenic in water: A review. Journal of Environmental Sciences, 2015, 36, 152-162.	3.2	80
984	Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Applied Surface Science, 2015, 353, 1087-1094.	3.1	82
985	Superior As(<scp>iii</scp>) removal performance of hydrous MnOOH nanorods from water. RSC Advances, 2015, 5, 53280-53288.	1.7	40
986	Phytoremediation in Constructed Wetlands. , 2015, , 243-263.		21

#	Article	IF	CITATIONS
987	Adsorption of arsenic(V) oxyanion from aqueous solutions by using protonated chitosan flakes. Separation Science and Technology, 2015, , 150615133810006.	1.3	2
988	Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresource Technology, 2015, 193, 243-249.	4.8	135
989	Arsenate and antimonate adsorption competition on 6-line ferrihydrite monitored by infrared spectroscopy. Applied Geochemistry, 2015, 61, 224-232.	1.4	16
990	Sorption of polluting metal ions on a palm tree frond sawdust studied by the means of modified carbon paste electrodes. Talanta, 2015, 144, 318-323.	2.9	7
991	Phenylurea herbicide sorption to biochars and agricultural soil. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2015, 50, 544-551.	0.7	37
992	Experimental Study to Remediate Acid Fuchsin Dye Using Laccase-Modified Zeolite from Aqueous Solutions. Polish Journal of Environmental Studies, 2015, 24, 115-124.	0.6	18
993	The costs of small drinking water systems removing arsenic from groundwater. Journal of Water Supply: Research and Technology - AQUA, 2015, 64, 219-234.	0.6	23
994	Uptake of Arsenic(V) Using Alumina Functionalized Highly Ordered Mesoporous SBA-15 (Al _{<i>x</i>} -SBA-15) as an Effective Adsorbent. Journal of Chemical & Engineering Data, 2015, 60, 1300-1310.	1.0	32
995	CHAPTER 1. The Search for Functional Porous Carbons from Sustainable Precursors. RSC Green Chemistry, 2015, , 3-49.	0.0	5
996	Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes. Water Research, 2015, 76, 181-186.	5.3	27
997	Adsorption of arsenic by natural pozzolan in a fixed bed: Determination of operating conditions and modeling. Journal of Water Process Engineering, 2015, 6, 166-173.	2.6	19
998	Coagulation of methylated arsenic from drinking water: Influence of methyl substitution. Journal of Hazardous Materials, 2015, 293, 97-104.	6.5	30
999	Regeneration of iron-based adsorptive media used for removing arsenic from groundwater. Water Research, 2015, 77, 85-97.	5.3	41
1000	Primary sewage sludge-derived activated carbon: characterisation and application in wastewater treatment. Clean Technologies and Environmental Policy, 2015, 17, 1619-1631.	2.1	27
1001	Abatement of Cr(VI) and As(III) by MnO2 loaded MCM-41 in wastewater treatment. Korean Journal of Chemical Engineering, 2015, 32, 1667-1677.	1.2	7
1002	A Short Review on Mitigation of Metals from Groundwater Using Dried Hyacinth Root. Water Quality, Exposure, and Health, 2015, 7, 423-433.	1.5	2
1003	Removal of arsenic from groundwater in West Bengal, India using CuO nanoparticle adsorbent. Environmental Earth Sciences, 2015, 73, 3593-3601.	1.3	15
1004	A bibliometric analysis of research on arsenic in drinking water during the 1992–2012 period: An outlook to treatment alternatives for arsenic removal. Journal of Water Process Engineering, 2015, 6, 105-119.	2.6	51

C_{1T}	ATI	ON.	DEDODT
UI.	AH	UN.	Report

#	Article	IF	CITATIONS
1005	Graphene Aerogels Decorated with α-FeOOH Nanoparticles for Efficient Adsorption of Arsenic from Contaminated Waters. ACS Applied Materials & Interfaces, 2015, 7, 9758-9766.	4.0	167
1006	Evaluation of Novel Modified Activated Alumina as Adsorbent for Arsenic Removal. , 2015, , 121-136.		1
1007	Arsenic in Soil: Availability and Interactions with Soil Microorganisms. Soil Biology, 2015, , 113-126.	0.6	8
1008	Current status and challenges of ion imprinting. Journal of Materials Chemistry A, 2015, 3, 13598-13627.	5.2	234
1009	Achieving sub-10 ppb arsenic levels with iron based biomass-silica gel composites. Chemical Engineering Journal, 2015, 279, 1-8.	6.6	15
1010	Carbon nanosphere adsorbents for removal of arsenate and selenate from water. Environmental Science: Nano, 2015, 2, 245-250.	2.2	36
1011	Application of biopolymer composites in arsenic removal from aqueous medium: A review. Journal of Radiation Research and Applied Sciences, 2015, 8, 255-263.	0.7	54
1012	Well-dispersed magnetic iron oxide nanocrystals on sepiolite nanofibers for arsenic removal. RSC Advances, 2015, 5, 25236-25243.	1.7	50
1013	Materials Characterization. , 2015, , .		4
1014	Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. Journal of Materials Chemistry A, 2015, 3, 13114-13188.	5.2	206
1015	Ab initio modeling of Fe(<scp>ii</scp>) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces. Physical Chemistry Chemical Physics, 2015, 17, 14518-14531.	1.3	60
1016	Drinking water studies: A review on heavy metal, application of biomarker and health risk assessment (a special focus in Malaysia). Journal of Epidemiology and Global Health, 2015, 5, 297.	1.1	103
1017	Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: Material performance. Chemical Engineering Journal, 2015, 279, 66-78.	6.6	48
1018	As(III) adsorption and antimicrobial properties of Cu–chitosan/alumina nanocomposite. Chemical Engineering Journal, 2015, 273, 610-621.	6.6	37
1019	Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide. Water Science and Technology, 2015, 71, 622-629.	1.2	23
1020	Arsenic removal by nanoparticles: a review. Environmental Science and Pollution Research, 2015, 22, 8094-8123.	2.7	142
1021	Understanding Regeneration of Arsenate-Loaded Ferric Hydroxide-Based Adsorbents. Environmental Engineering Science, 2015, 32, 353-360.	0.8	16
1022	As(III) and As(V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads. Journal of Hazardous Materials, 2015, 292, 146-154.	6.5	56

#	Article	IF	CITATIONS
1023	Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate. Journal of Hazardous Materials, 2015, 294, 70-79.	6.5	63
1024	Target induced aggregation of modified Au@Ag nanoparticles for surface enhanced Raman scattering and its ultrasensitive detection of arsenic(<scp>iii</scp>) in aqueous solution. RSC Advances, 2015, 5, 77755-77759.	1.7	29
1025	As(III) Adsorption and Oxidation by Metal (Hydro) Oxides Enriched on Alligator Weed Root. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	0
1026	Antimony (Sb) – pollution and removal techniques – critical assessment of technologies. Toxicological and Environmental Chemistry, 2015, 97, 1296-1318.	0.6	43
1027	Magnetically driven Bi ₂ O ₃ /BiOCl-based hybrid microrobots for photocatalytic water remediation. Journal of Materials Chemistry A, 2015, 3, 23670-23676.	5.2	100
1028	Arsenate Adsorption from Aqueous Solution onto Fe(III)-Modified Crop Straw Biochars. Environmental Engineering Science, 2015, 32, 922-929.	0.8	22
1029	Effect of Iron(II) on Arsenic Sequestration by δ-MnO ₂ : Desorption Studies Using Stirred-Flow Experiments and X-Ray Absorption Fine-Structure Spectroscopy. Environmental Science & Technology, 2015, 49, 13360-13368.	4.6	26
1030	Development of a method for speciation of inorganic arsenic in waters using solid phase extraction and electrothermal atomic absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2015, 95, 1395-1411.	1.8	11
1031	Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations. Chemosphere, 2015, 138, 383-389.	4.2	26
1032	Clean Water for Developing Countries. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 217-246.	3.3	43
1033	Arsenic Adsorption and its Fractions on Aquifer Sediment: Effect of pH, Arsenic Species, and Iron/Manganese Minerals. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	46
1034	Reusability of Al-F Hydroxide Precipitates Generated in Adsorption and Coagulation Treatment of Fluoride for Adsorptive Removal of Arsenic. Environmental Engineering Science, 2015, 32, 613-621.	0.8	3
1035	Redox Processes in Water Remediation Technologies. Environmental Chemistry for A Sustainable World, 2015, , 199-253.	0.3	4
1036	Synthesis of tin oxide nanospheres under ambient conditions and their strong adsorption of As(<scp>iii</scp>) from water. Dalton Transactions, 2015, 44, 18207-18214.	1.6	17
1037	Uptake Kinetics of Arsenic in Upland Rice Cultivar Zhonghan 221 Inoculated with Arbuscular Mycorrhizal Fungi. International Journal of Phytoremediation, 2015, 17, 1073-1080.	1.7	7
1038	SD/MnFe2O4 composite, a biosorbent for As(III) and As(V) removal from wastewater: Optimization and isotherm study. Journal of Molecular Liquids, 2015, 212, 382-404.	2.3	52
1039	Big bluestem as a bioenergy crop: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 740-756.	8.2	25
1040	Selective membrane for detecting nitrate based on planar electromagnetic sensors array. , 2015, , .		9

#	Article	IF	CITATIONS
1041	Kinetic modeling of AS(III) and AS(V) adsorption by a novel tetravalent manganese feroxyhyte. Journal of Colloid and Interface Science, 2015, 460, 1-7.	5.0	11
1042	Iron oxide-modified nanoporous geopolymers for arsenic removal from ground water. Resource-efficient Technologies, 2015, 1, 19-27.	0.1	27
1043	The pore surface diffusion model as a tool for rapid screening of novel nanomaterial-enhanced hybrid ion-exchange media. Environmental Science: Water Research and Technology, 2015, 1, 448-456.	1.2	11
1044	Arsenate removal from contaminated water by a highly adsorptive nanocomposite ultrafiltration membrane. New Journal of Chemistry, 2015, 39, 8263-8272.	1.4	28
1045	Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 2015, 162, 306-325.	3.8	427
1046	Adsorption of arsenic in dacitic tuff pretreated with magnesium oxide. Water Science and Technology: Water Supply, 2015, 15, 181-187.	1.0	3
1047	Rational design of nanomaterials for water treatment. Nanoscale, 2015, 7, 17167-17194.	2.8	176
1048	Arsenic removal from aqueous system using modified chestnut shell. Desalination and Water Treatment, 2015, 56, 1029-1036.	1.0	9
1049	Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics. Waste Management, 2015, 45, 407-411.	3.7	62
1050	Simultaneous photooxidation and sorptive removal of As(III) by TiO2 supported layered double hydroxide. Journal of Environmental Management, 2015, 161, 228-236.	3.8	22
1051	Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. Journal of Environmental Management, 2015, 163, 155-162.	3.8	120
1052	Immobilization of arsenic in aqueous solution by waterworks alum sludge: prospects in China. International Journal of Environmental Studies, 2015, 72, 989-1001.	0.7	5
1053	Investigation on <i>Melia azedarach</i> biomass for arsenic remediation from contaminated water. Desalination and Water Treatment, 2015, 53, 1632-1640.	1.0	7
1054	The potential of clinoptilolite-rich tuffs from Croatia and Serbia for the reduction of toxic concentrations of cations and anions in aqueous solutions. Applied Clay Science, 2015, 116-117, 111-119.	2.6	7
1055	Synthesis of Mn ₃ O ₄ /CeO ₂ Hybrid Nanotubes and Their Spontaneous Formation of a Paper-like, Free-Standing Membrane for the Removal of Arsenite from Water. ACS Applied Materials & Interfaces, 2015, 7, 26291-26300.	4.0	41
1056	Arsenic Adsorption on Lanthanum-Impregnated Activated Alumina: Spectroscopic and DFT Study. ACS Applied Materials & Interfaces, 2015, 7, 26735-26741.	4.0	75
1057	South African sands as an alternative to zero valent iron for arsenic removal from an industrial effluent: Batch experiments. Journal of Environmental Chemical Engineering, 2015, 3, 488-498.	3.3	6
1058	Arsenic removal from aqueous solutions by adsorption using novel MIL-53(Fe) as a highly efficient adsorbent. RSC Advances, 2015, 5, 5261-5268.	1.7	244

		CITATION REPORT		
#	Article		IF	CITATIONS
1059	Three-step vacuum separation for treating arsenic sulphide residue. Vacuum, 2015, 11	1, 170-175.	1.6	11
1060	Production of porous aluminium and iron sulphated oxyhydroxides using industrial gra coagulants for optimised arsenic removal from groundwater. Journal of Industrial and B Chemistry, 2015, 25, 56-66.	de Engineering	2.9	17
1061	Natural Nanoparticles: Implications for Environment and Human Health. Critical Reviev Environmental Science and Technology, 2015, 45, 861-904.	vs in	6.6	76
1062	One-step synthesis of aluminum magnesium oxide nanocomposites for simultaneous r arsenic and lead ions in water. RSC Advances, 2015, 5, 8190-8193.	removal of	1.7	24
1063	UV irradiation and UV-H2O2 advanced oxidation of the roxarsone and nitarsone organ Water Research, 2015, 70, 74-85.	oarsenicals.	5.3	92
1064	Concurrent removal of As(III) and As(V) using green low cost functionalized biosorben officinarum bagasse. Journal of Environmental Chemical Engineering, 2015, 3, 113-123	t – Saccharum I.	3.3	41
1065	Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite. Journa Production, 2015, 87, 897-905.	l of Cleaner	4.6	40
1066	Removal of arsenic from aqueous systems by use of magnetic Fe3O4@TiO2 nanoparti Chemical Intermediates, 2015, 41, 3531-3541.	cles. Research on	1.3	21
1067	Arsenic Removal from Natural Water Using Low Cost Granulated Adsorbents: A Review Air, Water, 2015, 43, 13-26.	ı. Clean - Soil,	0.7	81
1068	Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framewor nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 201		2.3	429
1069	Simultaneous As(III) and Cd removal from copper smelting wastewater using granular Water Research, 2015, 68, 572-579.	TiO2 columns.	5.3	61
1070	Sustainable carbon materials. Chemical Society Reviews, 2015, 44, 250-290.		18.7	997
1071	Facile one-pot preparation of goethite/parabutlerite nanocomposites and their remova mechanism toward As(V) ions. Applied Surface Science, 2015, 324, 355-362.	l properties and	3.1	9
1072	Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite Technology, 2015, 175, 391-395.	e. Bioresource	4.8	535
1073	Arsenic removal from water employing a combined system: photooxidation and adsorp Environmental Science and Pollution Research, 2015, 22, 3865-3875.	otion.	2.7	12
1074	Removal of arsenic from drinking water using dual treatment process. Clean Technolog Environmental Policy, 2015, 17, 1065-1076.	gies and	2.1	25
1075	Arsenate removal with 3-mercaptopropanoic acid-coated superparamagnetic iron oxide Journal of Colloid and Interface Science, 2015, 438, 227-234.	e nanoparticles.	5.0	46
1076	Crosslinked polyDADMAC gels as highly selective and reusable arsenate binding mater Engineering Journal, 2015, 262, 607-615.	ials. Chemical	6.6	24

#	Article	IF	Citations
1077	Surface characterization of mesoporous carbon cryogel and its application in arsenic (III) adsorption from aqueous solutions. Microporous and Mesoporous Materials, 2015, 201, 271-276.	2.2	27
1078	Controllable sonochemical synthesis of Cu2O/Cu2(OH)3NO3 composites toward synergy of adsorption and photocatalysis. Applied Catalysis B: Environmental, 2015, 164, 234-240.	10.8	48
1079	Sorption of As(III) by calix[4]arene modified XAD-4 resin: kinetic and thermodynamic approach. Journal of the Iranian Chemical Society, 2015, 12, 727-735.	1.2	4
1080	A study of ion adsorption onto surface functionalized silica particles. Chemical Engineering Journal, 2015, 262, 119-124.	6.6	13
1081	Arsenic(III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. International Journal of Environmental Science and Technology, 2015, 12, 1283-1294.	1.8	137
1082	Application of a high-surface-area schwertmannite in the removal of arsenate and arsenite. International Journal of Environmental Science and Technology, 2015, 12, 1559-1568.	1.8	49
1083	Sorption and desorption of tetracycline on layered manganese dioxide birnessite. International Journal of Environmental Science and Technology, 2015, 12, 1695-1704.	1.8	30
1084	Modified chitosan for the collection of reactive blue 4, arsenic and mercury from aqueous media. Carbohydrate Polymers, 2015, 117, 123-132.	5.1	23
1085	Nickel/nickel boride nanoparticles coated resin: A novel adsorbent for arsenic(III) and arsenic(V) removal. Powder Technology, 2015, 269, 470-480.	2.1	63
1086	Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 2015, 68, 206-216.	5.3	448
1087	Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water. Radiation Physics and Chemistry, 2015, 106, 235-241.	1.4	37
1088	Phytoremediation. , 2015, , 63-84.		2
1089	Arsenic(III,V) adsorption onto charred dolomite: Charring optimization and batch studies. Chemical Engineering Journal, 2015, 259, 663-671.	6.6	92
1090	Equilibrium and thermodynamic studies for the removal of As(V) ions from aqueous solution using dried plants as adsorbents. Arabian Journal of Chemistry, 2016, 9, S988-S999.	2.3	63
1091	Influence of Humic Substances on the Arsenate Immobilization Performance by Magnesium Oxide. Journal of MMIJ, 2016, 132, 137-143.	0.4	1
1092	Biological Wastes the Tool for Biosorption of Arsenic. Journal of Bioremediation & Biodegradation, 2016, 07, .	0.5	10
1093	Removal of Chromium with The Complexing Agents from Industrial Effluents. Oriental Journal of Chemistry, 2016, 32, 2209-2213.	0.1	4
1094	Fe ₃ O ₄ /Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal. Journal of Chemistry, 2016, 2016, 1-10.	0.9	62

ARTICLE IF CITATIONS Adsorption Characteristics of Different Adsorbents and Iron(III) Salt for Removing As(V) from Water. 1095 0.9 9 Food Technology and Biotechnology, 2016, 54, 250-255. The possibilities of water purification using phytofiltration methods: a review of recent progress. 1096 0.3 Biotechnologia, 2016, 4, 315-322. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives. International 1097 320 1.2 Journal of Environmental Research and Public Health, 2016, 13, 62. Adsorption of inorganic ions from aqueous solutions using mineral sorbent - tripoli. MATEC Web of 1098 0.1 Conferences, 2016, 85, 01017. Methods for Utilization of Red Mud and Its Management., 2016, , 485-524. 1099 11 Sorption of V and VI group metalloids (As, Sb, Te) on modified peat sorbents. Open Chemistry, 2016, 14, 46-59. 1.0 A greener approach for impressive removal of As(<scp>iii</scp>)/As(<scp>v</scp>) from an ultra-low 1101 concentration using a highly efficient chitosan thiomer as a new adsorbent. RSC Advances, 2016, 6, 1.7 34 64946-64961. Adsorption Behavior and Removal Mechanism of Arsenic from Water by Fe(III)-Modified 13X Molecular 1.1 10 Sieves. Water, Air, and Soil Pollution, 2016, 227, 1. Removal of Arsenic by Alumina: Effects of Material Size, Additives, and Water Contaminants. Clean -1103 0.7 25 Soil, Air, Water, 2016, 44, 496-505. Modeling the Efficiency of the Iron Coprecipitation-Filtration Process for the Removal of Arsenate at 1104 Low Initial Concentrations. Journal of Environmental Engineering, ASCE, 2016, 142, 04016047. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable 1105 2.4 139 approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose, 2016, 23, 2389-2407. Herbicide-Impacted Sediment Remediation. I: Delineation and Treatability Study. Journal of Hazardous, 1.2 1106 Toxic, and Radioactive Waste, 2016, 20, 04015018. Highâ€Throughput Preparation of New Photoactive Nanocomposites. ChemSusChem, 2016, 9, 1279-1289. 1107 3.6 18 Hexagonal sheet-like mesoporous titanium phosphate for highly efficient removal of lead ion from 1108 1.7 water. RSC Advances, 2016, 6, 67136-67142. Utilization of annealed aluminum hydroxide waste with incorporated fluoride for adsorptive removal of heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 1109 2.36 95-104. Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environmental Pollution, 168 2016, 216, 575-583. Ecotoxicity of arsenic contaminated sludge after mixing with soils and addition into composting and 1111 6.5 17 vermicomposting processes. Journal of Hazardous Materials, 2016, 317, 585-592. Leaching of arsenic from glazed and nonglazed potteries into foods. Science of the Total Environment, 2016, 569-570, 1530-1535

#	Article	IF	CITATIONS
1113	Anionic Pollutant Removal by Biomass-Based Adsorbents. , 2016, , 455-490.		0
1114	Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to <i>Daphnia magna</i> : The role of certain arsenic species. Environmental Toxicology and Chemistry, 2016, 35, 1852-1859.	2.2	24
1115	Electrophoretic deposition of adsorbed arsenic on fine iron oxide particles in tap water. AIP Conference Proceedings, 2016, , .	0.3	0
1116	3D AlOOH/Fe Micro/Nanostructures: Facile Synthesis, Characterization and Application for Arsenic Removal. Key Engineering Materials, 2016, 712, 288-294.	0.4	0
1117	Rapid and efficient removal of arsenic from water using electrospun CuO–ZnO composite nanofibers. RSC Advances, 2016, 6, 115021-115028.	1.7	19
1118	Competition of Various Ions Present in Shallow Aquifer Water in Respect of Arsenic Removal by Hydrated Ferric Oxide. Asian Journal of Water, Environment and Pollution, 2016, 12, 25-33.	0.4	1
1119	Removal of trace As(V) from aqueous solution by Fe(III)-loaded porous amidoximated polyacrylonitrile. Water Science and Technology: Water Supply, 2016, 16, 1603-1613.	1.0	4
1120	Binary Fe and Mn Oxide Nanoparticle Supported Polymeric Anion Exchanger for Arsenic Adsorption: Role of Oxides, Supported Materials, and Preparation Solvent. Key Engineering Materials, 0, 718, 105-109.	0.4	6
1121	Chapter 12 Adsorptive Removal of Arsenic from Water Sources Using Novel Nanocomposite Mixed Matrix Membranes. Advances in Industrial and Hazardous Wastes Treatment Series, 2016, , 413-438.	0.0	0
1122	Chapter 8 Arsenic in the Environment Source, Characteristics, and Technologies for Pollution Elimination. Advances in Industrial and Hazardous Wastes Treatment Series, 2016, , 255-288.	0.0	0
1123	Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization. Water Science and Technology, 2016, 73, 3064-3071.	1.2	15
1124	Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way. Scientific Reports, 2016, 6, 26031.	1.6	18
1125	Rational Design of Next-generation Nanomaterials and Nanodevices for Water Applications. , 2016, , .		2
1127	Monitoring of a pilot GFO filter for removal of low-concentration arsenic in water. Water Practice and Technology, 2016, 11, 702-711.	1.0	6
1128	Synthesis of Fe-Cu bimetallic nanoparticles: Effect of percentage of Cu in the removal of As present in aqueous matrices. Arsenic in the Environment Proceedings, 2016, , 503-504.	0.0	1
1129	Electrospun nanofibrous polyethylenimine mat: a potential adsorbent for the removal of chromate and arsenate from drinking water. RSC Advances, 2016, 6, 30739-30746.	1.7	21
1130	Functionalized hybrid material precursor to chitosan in the efficient remediation of aqueous solutions contaminated with As(V). Journal of Environmental Chemical Engineering, 2016, 4, 1537-1544.	3.3	15
1131	In Situ Oxidation and Efficient Simultaneous Adsorption of Arsenite and Arsenate by Mg–Fe–LDH with Persulfate Intercalation. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	16

#	Article	IF	CITATIONS
1132	Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams. Environmental Sciences: Processes and Impacts, 2016, 18, 429-444.	1.7	43
1133	Predictive approach for simultaneous biosorption and bioaccumulation of arsenic by Corynebacterium glutamicum MTCC 2745 biofilm supported on NL/MnFe 2 O 4 composite. Journal of Water Process Engineering, 2016, 11, 8-31.	2.6	14
1134	Influence of pH on arsenic(III) removal by fly ash. Separation Science and Technology, 2016, 51, 2612-2619.	1.3	11
1135	Differential pulse anodic stripping voltammetry for detection of As (III) by Chitosan-Fe(OH)3 modified glassy carbon electrode: A new approach towards speciation of arsenic. Talanta, 2016, 158, 235-245.	2.9	66
1136	Aminated glycidyl methacrylates as a support media for goethite nanoparticle enabled hybrid sorbents for arsenic removal: From copolymer synthesis to full-scale system modeling. Resource-efficient Technologies, 2016, 2, 15-22.	0.1	4
1137	The global menace of arsenic and its conventional remediation - A critical review. Chemosphere, 2016, 158, 37-49.	4.2	403
1138	Radiation induced emulsion graft polymerization of 4-vinylpyridine onto PE/PP nonwoven fabric for As(V) adsorption. Radiation Physics and Chemistry, 2016, 127, 13-20.	1.4	28
1139	Synthesis and characterization of ZnO:CeO2:nanocellulose:PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydrate Polymers, 2016, 148, 397-405.	5.1	65
1140	Facile synthesis of Fe 3 O 4 @Cu(OH) 2 composites and their arsenic adsorption application. Chemical Engineering Journal, 2016, 299, 15-22.	6.6	108
1141	Utilization of co-existing iron in arsenic removal from groundwater by oxidation-coagulation at optimized pH. Journal of Environmental Chemical Engineering, 2016, 4, 2683-2691.	3.3	40
1142	Novel chitosan goethite bionanocomposite beads for arsenic remediation. Water Research, 2016, 101, 1-9.	5.3	99
1143	Effect of nickel substitution on structural, optical, magnetic properties and photocatalytic activity of ZnS nanoparticles. Materials Science in Semiconductor Processing, 2016, 49, 68-75.	1.9	18
1144	Using Kaolin in Reduction of Arsenic in Rice Grains: Effect of Different Types of Kaolin, pH and Arsenic Complex. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 556-561.	1.3	9
1145	Supermacroporous hybrid polymeric cryogels for efficient removal of metallic contaminants and microbes from water. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 636-645.	1.8	16
1146	Arsenate removal using a hybrid system of adsorbents and a microfiltration membrane. Desalination and Water Treatment, 2016, 57, 29439-29447.	1.0	1
1147	Exploring Arsenic Adsorption at low Concentration onto Modified Leonardite. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	7
1148	Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides. Journal of Industrial and Engineering Chemistry, 2016, 37, 361-365.	2.9	86
1149	Optimization of As(III) removal in hard water by electrocoagulation using central composite design with response surface methodology. Desalination and Water Treatment, 0, , 1-7.	1.0	3

#	Article	IF	CITATIONS
1150	Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chemical Engineering Journal, 2016, 301, 83-91.	6.6	204
1151	Zeta potential-assisted sorption of uranyl tricarbonate complex from aqueous solution by polyamidoxime-functionalized colloidal particles. Physical Chemistry Chemical Physics, 2016, 18, 13026-13032.	1.3	9
1152	ZnCl 2 -activated biochar from biogas residue facilitates aqueous As(III) removal. Applied Surface Science, 2016, 377, 361-369.	3.1	124
1153	Competitive adsorption between arsenic and fluoride from binary mixture on chemically treated laterite. Journal of Environmental Chemical Engineering, 2016, 4, 2417-2430.	3.3	40
1154	Using Fe–Mn binary oxide three-dimensional nanostructure to remove arsenic from aqueous systems. Water Science and Technology: Water Supply, 2016, 16, 516-524.	1.0	3
1155	Hierarchical iron containing Î ³ -MnO 2 hollow microspheres: A facile one-step synthesis and effective removal of As(III) via oxidation and adsorption. Chemical Engineering Journal, 2016, 301, 139-148.	6.6	106
1156	Zirconium/PVA modified flat-sheet PVDF membrane as a cost-effective adsorptive and filtration material: A case study on decontamination of organic arsenic in aqueous solutions. Journal of Colloid and Interface Science, 2016, 477, 191-200.	5.0	26
1157	Alginate beads containing water treatment residuals for arsenic removal from water—formation and adsorption studies. Environmental Science and Pollution Research, 2016, 23, 24527-24539.	2.7	57
1158	Adsorption isotherm and kinetic studies of As(V) removal from aqueous solution using cattle bone char. Journal of Water Supply: Research and Technology - AQUA, 2016, 65, 244-252.	0.6	25
1159	Arsenic removal from groundwater by Anjili tree sawdust impregnated with ferric hydroxide and activated alumina. Water Science and Technology: Water Supply, 2016, 16, 115-127.	1.0	11
1160	Superparamagnetic iron oxide nanoparticle-loaded polyacrylonitrile nanofibers with enhanced arsenate removal performance. Environmental Science: Nano, 2016, 3, 1165-1173.	2.2	17
1161	Fenton-Like Catalysis and Oxidation/Adsorption Performances of Acetaminophen and Arsenic Pollutants in Water on a Multimetal Cu–Zn–Fe-LDH. ACS Applied Materials & Interfaces, 2016, 8, 25343-25352.	4.0	89
1162	Carbon fibers modified with molybdenum for sorption of arsenic(V). Russian Journal of Applied Chemistry, 2016, 89, 727-731.	0.1	3
1163	Biosorptive uptake of Fe 2+ , Cu 2+ and As 5+ by activated biochar derived from Colocasia esculenta : Isotherm, kinetics, thermodynamics, and cost estimation. Journal of Advanced Research, 2016, 7, 597-610.	4.4	98
1164	Fe(III)–Sn(IV) mixed binary oxide-coated sand preparation and its use for the removal of As(III) and As(V) from water: Application of isotherm, kinetic and thermodynamics. Journal of Molecular Liquids, 2016, 224, 431-441.	2.3	82
1165	As(V) removal using a magnetic layered double hydroxide composite. Separation Science and Technology, 2016, 51, 2948-2957.	1.3	9
1166	Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale. Water Research, 2016, 106, 135-145.	5.3	44
1167	Metal Oxides: Nanostructured Metal Oxides for Gas Sensing Applications. , 2016, , 552-567.		0

ARTICLE IF CITATIONS Factors controlling the adsorption of acid blue 113 dye from aqueous solution by dried C. edulis plant 1168 0.6 14 as natural adsorbent. Arabian Journal of Geosciences, 2016, 9, 1. Optimization of process variables and mechanism of arsenic (V) adsorption onto cellulose nanocomposite. Journal of Molecular Liquids, 2016, 224, 290-302. 2.3 Bioaccumulation of As(III)/As(V) ions by living cells of <i>Corynebacterium glutamicum</i> MTCC 2745. 1170 1.3 4 Separation Science and Technology, 2016, 51, 2970-2990. Overcoming implementation barriers for nanotechnology in drinking water treatment. 1171 101 Environmental Science: Nano, 2016, 3, 1241-1253. The Removal of arsenite [As(III)] and arsenate [As(V)] ions from wastewater using TFA and TAFA resins: Computational intelligence based reaction modeling and optimization. Journal of Environmental 1172 3.3 9 Chemical Engineering, 2016, 4, 4275-4286. Highly Efficient Coaxial TiO₂â€PtPd Tubular Nanomachines for Photocatalytic Water 7.8 101 Purification with Multiple Locomotion Strategies. Advanced Functional Materials, 2016, 26, 6995-7002. Arsenic toxicity to Chlorella pyrenoidosa and its phycoremediation. Acta Ecologica Sinica, 2016, 36, 1174 0.9 13 256-268. Arsenate Accumulation, Distribution, and Toxicity Associated with Titanium Dioxide Nanoparticles in 4.6 67 <i>Daphnia magna</i>. Environmental Science & amp; Technology, 2016, 50, 9636-9643. Treatment of arsenic-rich waters using granular iron hydroxides. Desalination and Water Treatment, 1176 1.0 8 2016, 57, 26376-26381. Developments in Arsenic Management in the Gold Industry., 2016, , 739-751. Biosorptive Performance of Bacillus arsenicus MTCC 4380 Biofilm Supported on Sawdust/MnFe2O4 Composite for the Removal of As(III) and As(V). Water Conservation Science and Engineering, 2016, 1, 1178 4 0.9 103-125. Adsorption Study of Arsenic Removal by Novel Hybrid Copper Impregnated Tufa Adsorbents in a Batch System. Clean - Śoil, Air, Water, 2016, 44, 1477-1488. A novel graphene oxide coated biochar composite: synthesis, characterization and application for 1180 1.7 57 Cr(<scp>vi</scp>) removal. RSC Advances, 2016, 6, 85202-85212. A property-performance correlation and mass transfer study of As(v) adsorption on three mesoporous aluminas. RSC Advances, 2016, 6, 80630-80639. 1.7 Arsenic Speciation by Sequential Extraction from As-Fe Precipitates Formed Under Different 1182 1.1 8 Coagulation Conditions. Water, Air, and Soil Pollution, 2016, 227, 1. Antimony Removal from Aqueous Solutions by the Use of Zn-Al Sulphate Layered Double Hydroxide. 14 Water, Air, and Soil Pollution, 2016, 227, 1. Degradation of roxarsone in a sulfate radical mediated oxidation process and formation of 1184 1.7 35 polynitrated by-products. RSC Advances, 2016, 6, 82040-82048. Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 2016, 132, 42-52.

#	Article	IF	CITATIONS
1186	Experimental Investigation of Arsenic (III, V) Removal from Aqueous Solution Using Synthesized α-Fe2O3/MCM-41 Nanocomposite Adsorbent. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	8
1187	Adsorption and oxidation study on arsenite removal from aqueous solutions by polyaniline/polyvinyl alcohol composite. Journal of Water Process Engineering, 2016, 14, 101-107.	2.6	21
1188	Geochemical mobility of arsenic in the surficial waters from Argentina. Environmental Earth Sciences, 2016, 75, 1.	1.3	9
1189	Competitive and non-competitive cadmium, copper and lead sorption/desorption on wheat straw affecting sustainability in vineyards. Journal of Cleaner Production, 2016, 139, 1496-1503.	4.6	34
1190	Adsorptive potential of dispersible chitosan coated iron-oxide nanocomposites toward the elimination of arsenic from aqueous solution. Chemical Engineering Research and Design, 2016, 104, 185-195.	2.7	63
1191	Rapid and effective preparation of a HPEI modified biosorbent based on cellulose fiber with a microwave irradiation method for enhanced arsenic removal in water. Journal of Materials Chemistry A, 2016, 4, 15851-15860.	5.2	83
1192	Effective cementation and removal of arsenic with copper powder in a hydrochloric acid system. RSC Advances, 2016, 6, 70832-70841.	1.7	13
1193	Preparation of magnetic Fe3O4@SiO2@mTiO2–Au spheres with well-designed microstructure and superior photocatalytic activity. Journal of Materials Science, 2016, 51, 9602-9612.	1.7	27
1194	Porous graphene oxide based inverse spinel nickel ferrite nanocomposites for the enhanced adsorption removal of arsenic. RSC Advances, 2016, 6, 73776-73789.	1.7	57
1195	Water footprinting and mining: Where are the limitations and opportunities?. Journal of Cleaner Production, 2016, 135, 1098-1116.	4.6	128
1196	Amorphous nanosized Al–Ti–Mn trimetal hydrous oxides: synthesis, characterization and enhanced performance in arsenic removal. RSC Advances, 2016, 6, 100732-100742.	1.7	23
1197	Electrospun membrane composed of poly[acrylonitrile-co-(methyl acrylate)-co-(itaconic acid)] terpolymer and ZVI nanoparticles and its application for the removal of arsenic from water. RSC Advances, 2016, 6, 110288-110300.	1.7	20
1198	Arsenic removal from water using metal and metal oxide modified zeolites. Arsenic in the Environment Proceedings, 2016, , 482-483.	0.0	1
1199	Magnetically Separated <i>meso</i> -g-C ₃ N ₄ /Fe ₃ O ₄ : Bifuctional Composites for Removal of Arsenite by Simultaneous Visible-Light Catalysis and Adsorption. Industrial & Engineering Chemistry Research, 2016, 55, 12060-12067.	1.8	42
1200	Rationalization of liquid assisted grinding intercalation yields of organic molecules into layered double hydroxides by multivariate analysis. RSC Advances, 2016, 6, 108431-108439.	1.7	11
1201	Simultaneous decrease of arsenic and cadmium in rice (<i>Oryza sativa</i> L.) plants cultivated under submerged field conditions by the application of iron-bearing materials. Soil Science and Plant Nutrition, 2016, 62, 340-348.	0.8	50
1202	Phycoremediation Potential of Botryococcus braunii: Bioremediation and Toxicity of As(III) and As(V). Water Conservation Science and Engineering, 2016, 1, 49-68.	0.9	6
1204	Adsorption of Oxyanions from Industrial Wastewater using Perlite-Supported Magnetite. Water Environment Research, 2016, 88, 408-414.	1.3	14

#	Article	IF	CITATIONS
1205	Monitoring the role of Mn and Fe in the As-removal efficiency of tetravalent manganese feroxyhyte nanoparticles from drinking water: An X-ray absorption spectroscopy study. Journal of Colloid and Interface Science, 2016, 477, 148-155.	5.0	19
1206	Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review. Environmental Science and Pollution Research, 2016, 23, 13789-13801.	2.7	55
1207	Investigation on Elimination of As(III) and As(V) from Wastewater Using Bacterial Biofilm Supported on Sawdust/MnFe2O4 Composite. Water Conservation Science and Engineering, 2016, 1, 21-48.	0.9	12
1208	Assessment of seasonal variation for air pollutant accumulation by Zizyphus tree under washing treatment. Environmental Monitoring and Assessment, 2016, 188, 343.	1.3	5
1209	Removal of As(V) from aqueous solution by Ce-Fe bimetal mixed oxide. Journal of Environmental Chemical Engineering, 2016, 4, 2892-2899.	3.3	34
1210	Corynebacterium glutamicum MTCC 2745 immobilized on granular activated carbon/MnFe 2 O 4 composite: A novel biosorbent for removal of As(III) and As(V) ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 159-179.	2.0	15
1211	Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants. Applied Surface Science, 2016, 386, 84-95.	3.1	58
1212	Aluminum substituted nickel ferrite (Ni–Al–Fe): a ternary metal oxide adsorbent for arsenic adsorption in aqueous medium. RSC Advances, 2016, 6, 55608-55617.	1.7	47
1213	Kinetic, mechanistic and thermodynamic studies of removal of arsenic using Bacillus arsenicus MTCC 4380 immobilized on surface of granular activated carbon/MnFe2O4 composite. Groundwater for Sustainable Development, 2016, 2-3, 53-72.	2.3	7
1214	Techno-economic evaluation of simultaneous arsenic and fluoride removal from synthetic groundwater by electrocoagulation process: optimization through response surface methodology. Desalination and Water Treatment, 2016, 57, 28847-28863.	1.0	30
1215	Long-term influence of aeration on arsenic trapping in a ZVI/sand bed reactor. RSC Advances, 2016, 6, 54479-54485.	1.7	10
1216	Zinc peroxide functionalized synthetic graphite: An economical and efficient adsorbent for adsorption of arsenic (III) and (V). Journal of Environmental Chemical Engineering, 2016, 4, 2964-2975.	3.3	22
1217	Co-electrodeposited rGO/MnO2 nanohybrid for arsenite detection in water by stripping voltammetry. Sensors and Actuators B: Chemical, 2016, 237, 652-659.	4.0	31
1218	Adsorption kinetic properties of As(III) on synthetic nano Fe-Mn binary oxides. Journal of Earth Science (Wuhan, China), 2016, 27, 699-706.	1.1	4
1219	Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis. Bioresource Technology, 2016, 218, 134-139.	4.8	17
1220	A metal–organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation. Chemical Communications, 2016, 52, 8869-8872.	2.2	30
1221	Arsenic Uptake and Accumulation in Okra (Abelmoschus esculentus) as Affected by Different Arsenical Speciation. Bulletin of Environmental Contamination and Toxicology, 2016, 96, 395-400.	1.3	17
1222	Batch and column test analyses for hardness removal using natural and homoionic clinoptilolite: breakthrough experiments and modeling. Sustainable Water Resources Management, 2016, 2, 183-197.	1.0	9

#	Article	IF	CITATIONS
1223	Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by <i>Pseudogulbenkiania</i> Sp. Strain 2002. Environmental Science & Technology, 2016, 50, 6449-6458.	4.6	63
1224	Removal mechanism of arsenate by bimetallic and trimetallic hydrocalumites depending on arsenate concentration. Applied Clay Science, 2016, 134, 26-33.	2.6	14
1225	Evaluating adsorption media for simultaneous removal of arsenate and cadmium from metallurgical wastewater. Journal of Environmental Chemical Engineering, 2016, 4, 2795-2801.	3.3	9
1226	Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media. Science of the Total Environment, 2016, 563-564, 965-970.	3.9	14
1227	Modified and unmodified low-cost iron-containing solid wastes as adsorbents for efficient removal of As(III) and As(V) from mine water. Journal of Cleaner Production, 2016, 133, 1095-1104.	4.6	25
1228	Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (AsIII) uptake: The evolution of the Fe-phases under ambient conditions. Journal of Hazardous Materials, 2016, 312, 243-253.	6.5	17
1229	Sequestering of As(III) and As(V) from wastewater using a novel neem leaves/MnFe ₂ O ₄ composite biosorbent. International Journal of Phytoremediation, 2016, 18, 1237-1257.	1.7	18
1230	Adsorption performance and mechanism of As(V) uptake over mesoporous Y–Al binary oxide. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 204-211.	2.7	15
1231	Feasible water flow filter with facilely functionalized Fe3O4-non-oxidative graphene/CNT composites for arsenic removal. Journal of Environmental Chemical Engineering, 2016, 4, 3246-3252.	3.3	32
1232	Triboelectric Nanogenerator for Sustainable Wastewater Treatment via a Selfâ€Powered Electrochemical Process. Advanced Energy Materials, 2016, 6, 1501778.	10.2	84
1233	Mapping of arsenic contamination severity in Bahraich district of Ghagra basin, Uttar Pradesh, India. Geomatics, Natural Hazards and Risk, 2016, 7, 101-112.	2.0	9
1234	Adsorption of As(V) on zirconium-based adsorbents. Desalination and Water Treatment, 2016, 57, 1766-1778.	1.0	3
1235	Removal of lead ions using hydroxyapatite nano-material prepared from phosphogypsum waste. Journal of Saudi Chemical Society, 2016, 20, 357-365.	2.4	94
1236	Hybrid materials in the remediation of arsenic contaminated waters: a physico-chemical study. Desalination and Water Treatment, 2016, 57, 1995-2005.	1.0	0
1237			
	A statistical experimental investigation on arsenic removal using capacitive deionization. Desalination and Water Treatment, 2016, 57, 3254-3260.	1.0	24
1238		1.0 1.0	24 9
1238 1239	and Water Treatment, 2016, 57, 3254-3260. Investigation of synchronous arsenic and salinity rejection via nanofiltration system and membrane		

#	Article	IF	CITATIONS
1241	Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller's earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): Effect of Fe 0 loading on adsorption activity. Journal of Environmental Chemical Engineering, 2016, 4, 681-694.	3.3	50
1242	Characterization and modelling of biosorptive performance of living cells of Bacillus arsenicus MTCC 4380 for the removal of As(III) and As(V). Journal of Water Process Engineering, 2016, 9, 135-154.	2.6	7
1243	Removal As(V) by sulfated mesoporous Fe–Al bimetallic adsorbent: Adsorption performance and uptake mechanism. Journal of Environmental Chemical Engineering, 2016, 4, 711-718.	3.3	12
1244	Removal of arsenic (V) from aqueous medium using manganese oxide coated lignocellulose/silica adsorbents. Toxicological and Environmental Chemistry, 0, , 1-12.	0.6	6
1245	Adsorption of As(V) inside the pores of porous hematite in water. Journal of Hazardous Materials, 2016, 307, 312-317.	6.5	66
1246	Monodispersed hierarchical γ-AlOOH/Fe(OH) ₃ micro/nanoflowers for efficient removal of heavy metal ions from water. RSC Advances, 2016, 6, 6695-6701.	1.7	17
1247	The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Advances, 2016, 6, 14778-14791.	1.7	323
1248	A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size. Applied Surface Science, 2016, 367, 552-558.	3.1	27
1249	Comparative study on arsenate removal mechanism of MgO and MgO/TiO ₂ composites: FTIR and XPS analysis. New Journal of Chemistry, 2016, 40, 2878-2885.	1.4	74
1250	Performance evaluation of montmorillonite and modified montmorillonite by polyethyleneimine in removing arsenic from water resources. Desalination and Water Treatment, 2016, 57, 21645-21653.	1.0	3
1251	Dietary Strategies To Reduce the Bioaccessibility of Arsenic from Food Matrices. Journal of Agricultural and Food Chemistry, 2016, 64, 923-931.	2.4	29
1252	Low-cost aluminum and iron oxides supported on dioctahedral and trioctahedral smectites: A comparative study of the effectiveness on the heavy metal adsorption from water. Applied Clay Science, 2016, 119, 321-332.	2.6	27
1253	Redox processes in water remediation. Environmental Chemistry Letters, 2016, 14, 15-25.	8.3	40
1254	Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 2016, 286, 640-662.	6.6	612
1255	Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber. Journal of Environmental Management, 2016, 166, 574-578.	3.8	20
1256	Adsorptive removal of arsenic(V) from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption. Journal of Molecular Liquids, 2016, 214, 149-156.	2.3	107
1257	Green synthesis of \hat{I}_{\pm} -Fe 2 O 3 nanoparticles for arsenic(V) remediation with a novel aspect for sludge management. Journal of Environmental Chemical Engineering, 2016, 4, 639-650.	3.3	96
1258	Release of arsenic from metal oxide sorbents under simulated mature landfill conditions. Chemosphere, 2016, 151, 84-93.	4.2	4

#	Article	IF	CITATIONS
1259	Functional metal sulfides and selenides for the removal of hazardous dyes from Water. Journal of Photochemistry and Photobiology B: Biology, 2016, 159, 33-41.	1.7	54
1260	Novel 3D lightweight carbon foam as an effective adsorbent for arsenic(<scp>v</scp>) removal from contaminated water. RSC Advances, 2016, 6, 29899-29908.	1.7	25
1261	Arsenate removal from groundwater by modified alkaline residue. Desalination and Water Treatment, 2016, 57, 20401-20410.	1.0	3
1262	Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 2016, 312, 208-215.	6.5	146
1263	Adsorption of Arsenic (V) to Titanium Dioxide Nanoparticles: Effect of Particle Size, Solid Concentration, and Other Metals. Environmental Engineering Science, 2016, 33, 299-305.	0.8	7
1264	A density functional theory study of arsenic immobilization by the Al(<scp>iii</scp>)-modified zeolite clinoptilolite. Physical Chemistry Chemical Physics, 2016, 18, 11297-11305.	1.3	14
1265	Simultaneous arsenate and alkali removal from alkaline wastewater by in-situ formation of Zn–Al layered double hydroxide. Microporous and Mesoporous Materials, 2016, 227, 137-143.	2.2	11
1266	Magnetic and density characteristics of a heavily polluted soil with municipal solid waste incinerator residues: Significance for remediation strategies. International Journal of Mineral Processing, 2016, 149, 119-126.	2.6	7
1267	Removal of Arsenic (III) from natural contaminated water using magnetic nanocomposite: kinetics and isotherm studies. Journal of the Iranian Chemical Society, 2016, 13, 1175-1188.	1.2	16
1268	Removal of As(III) and Cr(VI) from aqueous solutions using "green―zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecological Engineering, 2016, 90, 42-49.	1.6	129
1269	Fabrication and testing of zirconium-based nanoparticle-doped activated carbon fiber for enhanced arsenic removal in water. RSC Advances, 2016, 6, 27020-27030.	1.7	34
1270	Removal of As(III) and As(V) from water using iron doped amino functionalized sawdust: Characterization, adsorptive performance and UF membrane separation. Chemical Engineering Journal, 2016, 292, 163-173.	6.6	60
1271	Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment. Chemosphere, 2016, 150, 650-658.	4.2	21
1272	As(III) removal and speciation of Fe (Oxyhydr)oxides during simultaneous oxidation of As(III) and Fe(II). Chemosphere, 2016, 147, 337-344.	4.2	49
1273	Vinegar-amended anaerobic biosand filter for the removal of arsenic and nitrate from groundwater. Journal of Environmental Management, 2016, 171, 21-28.	3.8	14
1274	Superparamagnetic nanomaterial Fe ₃ O ₄ –TiO ₂ for the removal of As(V) and As(III) from aqueous solutions. Environmental Technology (United Kingdom), 2016, 37, 1790-1801.	1.2	28
1275	Adsorption of arsenic with struvite and hydroxylapatite in phosphate-bearing solutions. Chemosphere, 2016, 146, 574-581.	4.2	24
1276	Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads. Journal of Industrial and Engineering Chemistry, 2016, 35, 277-286.	2.9	127

ARTICLE IF CITATIONS Facile crystal-structure-controlled synthesis of iron oxides for adsorbents and anode materials of 1277 2.0 17 lithium batteries. Materials Chemistry and Physics, 2016, 170, 239-245. Removal of anionic pollutants from liquids by biomass materials: A review. Journal of Molecular 1278 2.3 Liquids, 2016, 215, 565-595. Removal of arsenic from contaminated water utilizing tea waste. International Journal of 1279 1.8 12 Environmental Science and Technology, 2016, 13, 843-848. A comparative study on enhanced arsenic(V) and arsenic(III) removal by iron oxide and manganese oxide pillared clays from ground water. Journal of Environmental Chemical Engineering, 2016, 4, 1280 1224-1230. Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water. Environmental Science 1281 4.6 33 & Technology, 2016, 50, 2507-2513. Inorganic phosphate-triggered release of anti-cancer arsenic trioxide from a self-delivery system: an in vitro and in vivo study. Nanoscale, 2016, 8, 6094-6100. 2.8 Interactions between reactive oxygen groups on nanoporous carbons and iron oxyhydroxide 1283 1.4 9 nanoparticles: effect on arsenic(V) removal. Adsorption, 2016, 22, 181-194. Preparation and adsorption properties of magnetic mesoporous Fe₃C/carbon aerogel for 1284 9 arsenic removal from water. Desalination and Water Treatment, 2016, 57, 24467-24475. Absorption and translocation of copper and arsenic in an aquatic macrophyte Myriophyllum 1285 alterniflorum DC. in oligotrophic and eutrophic conditions. Environmental Science and Pollution 2.7 13 Research, 2016, 23, 11129-11136. Magnetite nanoparticles coated sand for arsenic removal from drinking water. Environmental Earth 1.3 Sciences, 2016, 75, 1. Understanding arsenic mobilization using reactive transport modeling of groundwater hydrochemistry in the Datong basin study plot, China. Environmental Sciences: Processes and Impacts, 1287 1.7 6 2016, 18, 371-385. Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis. Composite Interfaces, 2016, 23, 1288 1.3 36 327-372. Arsenic sorption onto an aluminum oxyhydroxide-poly[(4-vinylbenzyl)trimethylammonium chloride] 1289 1.7 8 hybrid sorbent. RSC Advances, 2016, 6, 28379-28387. Water treatment residuals containing iron and manganese oxides for arsenic removal from water $\hat{a} \in$ Characterization of physicochemical properties and adsorption studies. Chemical Engineering Journal, 2016, 294, 210-221. 1290 6.6 Low temperature synthesized ultrathin $\hat{1}^3$ -Fe₂O₃ nanosheets show similar adsorption behaviour for As(<scp>iii</scp>) and As(<scp>v</scp>). Journal of Materials Chemistry A, 1291 5.245 2016, 4, 7606-7614. A theoretical investigation of the removal of methylated arsenic pollutants with silicon doped 1292 graphene. RSC Advances, 2016, 6, 28500-28511. Performance of nanofiltration and reverse osmosis membranes for arsenic removal from drinking 1293 1.0 41 water. Desalination and Water Treatment, 2016, 57, 20422-20429. Removal of arsenic from wastewaters by cryptocrystalline magnesite: complimenting experimental 1294 results with modelling. Journal of Cleaner Production, 2016, 113, 318-324.

#	Article	IF	CITATIONS
1295	Sulfidization of As(V)-containing schwertmannite and its impact on arsenic mobilization. Chemical Geology, 2016, 420, 270-279.	1.4	45
1296	Monodispersed hierarchical aluminum/iron oxides composites micro/nanoflowers for efficient removal of As(V) and Cr(VI) ions from water. Journal of Alloys and Compounds, 2016, 662, 421-430.	2.8	36
1297	Study of the kinetics of arsenic removal from wastewater using Bacillus arsenicus biofilms supported on a Neem leaves/MnFe 2 O 4 composite. Ecological Engineering, 2016, 88, 195-216.	1.6	21
1298	Chelating magnetic copolymer composite modified by click reaction for removal of heavy metal ions from aqueous solution. Chemical Engineering Journal, 2016, 289, 286-295.	6.6	48
1299	Evaluation of the mixed oxides produced from hydrotalcite-like compound's thermal treatment in arsenic uptake. Applied Clay Science, 2016, 121-122, 146-153.	2.6	16
1300	Rapid degradation of p -arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process. Water Research, 2016, 89, 59-67.	5.3	121
1301	Kinetic and Thermodynamic Studies of Zn ²⁺ Adsorption Onto Superparamagnetic Poly (styrene-co-acrylic acid) Hydrogel. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 608-616.	0.6	0
1302	Effect of anion type on the synthesis of mesoporous nanostructured MgO, and its excellent adsorption capacity for the removal of toxic heavy metal ions from water. RSC Advances, 2016, 6, 6038-6047.	1.7	85
1303	Effects of dissolved ions and natural organic matter on electrocoagulation of As(III) in groundwater. Journal of Environmental Chemical Engineering, 2016, 4, 1008-1016.	3.3	27
1304	Arsenic mitigation by chitosan-based porous magnesia-impregnated alumina: performance evaluation in continuous packed bed column. International Journal of Environmental Science and Technology, 2016, 13, 243-256.	1.8	22
1305	Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Critical Reviews in Environmental Science and Technology, 2016, 46, 467-499.	6.6	161
1306	Arsenic(V) biosorption by charred orange peel in aqueous environments. International Journal of Phytoremediation, 2016, 18, 442-449.	1.7	90
1307	Application of statistical design of experiments for optimization of As(V) biosorption by immobilized bacterial biomass. Ecological Engineering, 2016, 86, 13-23.	1.6	40
1308	Comparative evaluation of magnetite–graphene oxide and magnetite-reduced graphene oxide composite for As(III) and As(V) removal. Journal of Hazardous Materials, 2016, 304, 196-204.	6.5	202
1309	Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Applied Clay Science, 2016, 119, 385-392.	2.6	95
1310	A review of technologies for manganese removal from wastewaters. Journal of Environmental Chemical Engineering, 2016, 4, 468-487.	3.3	175
1311	Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe 3 O 4 @ZIF-8 nanoparticles for preconcentration. Microchemical Journal, 2016, 124, 578-583.	2.3	58
1312	The use of artificial neural network for modelling of phycoremediation of toxic elements As(III) and As(V) from wastewater using Botryococcus braunii. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 155, 130-145.	2.0	42

#	Article	IF	CITATIONS
1313	Solar-driven flash vaporization membrane distillation for arsenic removal from groundwater: Experimental investigation and analysis of performance parameters. Chemical Engineering and Processing: Process Intensification, 2016, 99, 51-57.	1.8	31
1314	Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 2016, 157, 141-161.	3.9	977
1315	Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex. Water Research, 2016, 88, 889-896.	5.3	58
1316	Comparison of Fe–Al-modified natural materials by an electrochemical method and chemical precipitation for the adsorption of F ^Ⱂ and As(V). Environmental Technology (United) Tj ETQq1 1 0.3	78 4.3 14 rg	;BT1‡Overlock
1317	Modified Magnetite Nanoparticles for Hexavalent Chromium Removal from Water. Journal of Dispersion Science and Technology, 2016, 37, 1303-1314.	1.3	26
1318	Arsenate and arsenite adsorption onto Al-containing ferrihydrites. Implications for arsenic immobilization after neutralization of acid mine drainage. Applied Geochemistry, 2016, 64, 2-9.	1.4	60
1319	A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 2016, 46, 406-433.	6.6	945
1320	Efficient use of novel hybrid materials in the ultra-trace determination of arsenic from aqueous solutions: an electrochemical study. Desalination and Water Treatment, 2016, 57, 18730-18738.	1.0	8
1321	Novel ZnO/Zn–Cr hydrotalcite-like anionic clay as a high-performance and recyclable material for efficient photocatalytic removal of organic dye under simulated solar irradiation. Research on Chemical Intermediates, 2016, 42, 4359-4372.	1.3	6
1322	Arsenic removal from naturally contaminated waters: a review of methods combining chemical and biological treatments. Rendiconti Lincei, 2016, 27, 51-58.	1.0	45
1323	Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution. Journal of Hazardous Materials, 2016, 302, 57-64.	6.5	134
1324	Fixed-bed column study for As(III) and As(V) removal and recovery by bacterial cells immobilized on Sawdust/MnFe2O4 composite. Biochemical Engineering Journal, 2016, 105, 114-135.	1.8	49
1325	A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta, 2016, 146, 285-290.	2.9	142
1326	Biosorption of As(V) onto dried alligator weed root: role of metal (hydro) oxides. International Journal of Phytoremediation, 2016, 18, 315-320.	1.7	1
1327	Ce–Fe-modified zeolite-rich tuff to remove Ba2+-like 226Ra2+ in presence of As(V) and Fâ^' from aqueous media as pollutants of drinking water. Journal of Hazardous Materials, 2016, 302, 341-350.	6.5	19
1328	Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp Environmental Science and Pollution Research, 2016, 23, 2663-2668.	2.7	39
1329	Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal. Journal of Hazardous Materials, 2016, 302, 375-385.	6.5	24
1330	Application of granular activated carbon/MnFe2O4 composite immobilized on C. glutamicum MTCC 2745 to remove As(III) and As(V): Kinetic, mechanistic and thermodynamic studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 298-314.	2.0	21

#	Article	IF	CITATIONS
1331	Comparison of ion exchange process configurations for arsenic removal from natural waters. Desalination and Water Treatment, 2016, 57, 13770-13781.	1.0	14
1332	Acumulación de arsénico y cobre por briófitas creciendo en un ambiente acuático cerca de las colas de una mina de cobre. Mine Water and the Environment, 2016, 35, 265-272.	0.9	9
1333	Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 2017, 322, 163-171.	6.5	301
1334	Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp and paper sludge. Applied Water Science, 2017, 7, 2175-2186.	2.8	150
1335	Surfactant free fabrication of copper sulphide (CuS–Cu 2 S) nanoparticles from single source precursor for photocatalytic applications. Journal of Saudi Chemical Society, 2017, 21, 390-398.	2.4	40
1336	Ecotoxicity of nanosized magnetite to crustacean Daphnia magna and duckweed Lemna minor. Hydrobiologia, 2017, 798, 141-149.	1.0	24
1337	Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO 2 and zero-valent iron. Catalysis Today, 2017, 280, 149-154.	2.2	50
1338	Removal of Dissolved Arsenic by Pyrite Ash Waste. Mine Water and the Environment, 2017, 36, 255-263.	0.9	11
1339	Sustainable conversion of agriculture wastes into activated carbons: energy balance and arsenic removal from water. Environmental Technology (United Kingdom), 2017, 38, 353-360.	1.2	10
1340	Ceria modified activated carbon: an efficient arsenic removal adsorbent for drinking water purification. Applied Water Science, 2017, 7, 1223-1230.	2.8	33
1341	Effects of pore size and dissolved organic matters on diffusion of arsenate in aqueous solution. Journal of Environmental Sciences, 2017, 52, 190-196.	3.2	4
1342	Modeling of the adsorptive removal of arsenic(III) using plant biomass: a bioremedial approach. Applied Water Science, 2017, 7, 1307-1321.	2.8	38
1343	Synthesis of magnetite/non-oxidative graphene composites and their application for arsenic removal. Separation and Purification Technology, 2017, 178, 40-48.	3.9	94
1344	Zn ²⁺ –Silica Modified Cobalt Ferrite Magnetic Nanostructured Composite for Efficient Adsorption of Cationic Pollutants from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 1280-1286.	3.2	26
1345	CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity. Scientific Reports, 2017, 7, 40955.	1.6	75
1346	Adsorption of arsenate, phosphate and humic acids onto acicular goethite nanoparticles recovered from acid mine drainage. Journal of Environmental Chemical Engineering, 2017, 5, 652-659.	3.3	24
1347	Biosorption of As(III) and As(V) on the surface of TW/MnFe2O4 composite from wastewater: kinetics, mechanistic and thermodynamics. Applied Water Science, 2017, 7, 2689-2715.	2.8	23
1348	Siderite dissolution coupled to iron oxyhydroxide precipitation in the presence of arsenic revealed by nanoscale imaging. Chemical Geology, 2017, 449, 123-134.	1.4	27

	CITATION	Report	
#	Article	IF	Citations
1349	Arsenic treatment and power generation with a dual-chambered fuel cell with anionic and cationic membranes using NaHCO3 anolyte and HCl or NaCl catholyte. Chemosphere, 2017, 172, 138-146.	4.2	20
1350	Efficient As(III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation. Journal of Colloid and Interface Science, 2017, 495, 168-177.	5.0	81
1351	Heavy metals removal by EDTA-functionalized chitosan graphene oxide nanocomposites. RSC Advances, 2017, 7, 9764-9771.	1.7	156
1352	Adsorption of As(III) and As(V) in groundwater by Fe–Mn binary oxide-impregnated granular activated carbon (IMIGAC). Journal of the Taiwan Institute of Chemical Engineers, 2017, 72, 62-69.	2.7	48
1353	Synthesis, characterization and exploitation of nano-TiO 2 /feldspar-embedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As). Chemical Engineering Journal, 2017, 316, 370-382.	6.6	55
1354	Removal of trace arsenic to below drinking water standards using a Mn–Fe binary oxide. RSC Advances, 2017, 7, 1490-1497.	1.7	23
1355	Evaluation of iron-coated ZSM-5 zeolite for removal of As(III) from aqueous solutions in batch and column systems. Water Science and Technology: Water Supply, 2017, 17, 10-23.	1.0	3
1356	Effect of the redox dynamics on microbial-mediated As transformation coupled with Fe and S in flow-through sediment columns. Journal of Hazardous Materials, 2017, 329, 280-289.	6.5	30
1357	Arsenic removal with phosphorene and adsorption in solution. Materials Letters, 2017, 190, 280-282.	1.3	21
1358	Arsenic adsorption on cobalt and manganese ferrite nanoparticles. Journal of Materials Science, 2017, 52, 6205-6215.	1.7	48
1359	Chemical reactive features of novel amino acids intercalated layered double hydroxides in As(III) and As(V) adsorption. Chemosphere, 2017, 176, 57-66.	4.2	30
1360	Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3027-3038.	3.2	84
1361	Investigation of the performance determinants in the treatment of arsenic-contaminated water by continuous electrodeionization. Separation and Purification Technology, 2017, 179, 381-392.	3.9	30
1362	Arsenic removal from water by photocatalytic functional Fe2O3–TiO2 porous ceramic. Journal of Porous Materials, 2017, 24, 1227-1235.	1.3	29
1363	Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: A factorial design analysis. Chemical Engineering Research and Design, 2017, 107, 518-527.	2.7	170
1364	Arsenic Adsorption Using the Adsorbent Synthesised from Oyster Shell. Key Engineering Materials, 0, 728, 327-334.	0.4	4
1365	Prediction of phycoremediation of As(III) and As(V) from synthetic wastewater by Chlorella pyrenoidosa using artificial neural network. Applied Water Science, 2017, 7, 3949-3971.	2.8	10
1366	High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 161-172.	2.3	165

#	Article	IF	CITATIONS
1367	Application of AMC UF membranes blended with hydrophilic CA-graft copolymer for rejection of Fe(II)/(III) ions using various ligands. Journal of Industrial and Engineering Chemistry, 2017, 51, 54-63.	2.9	4
1368	ARSENIC REMOVAL FROM WATER BY ADSORPTION ON IRON-CONTAMINATED CRYPTOCRYSTALLINE GRAPHITE. Surface Review and Letters, 2017, 24, 1750099.	0.5	2
1369	Waste walnut shell valorization to iron loaded biochar and its application to arsenic removal. Resource-efficient Technologies, 2017, 3, 29-36.	0.1	23
1370	Surface modification of nanozymes. Nano Research, 2017, 10, 1125-1148.	5.8	406
1371	Fabrication of a GNP/Fe–Mg Binary Oxide Composite for Effective Removal of Arsenic from Aqueous Solution. ACS Omega, 2017, 2, 218-226.	1.6	58
1372	Physicochemical properties of synthetic nano-birnessite and its enhanced scavenging of Co2+ and Sr2+ ions from aqueous solutions. Materials Chemistry and Physics, 2017, 193, 63-72.	2.0	33
1374	Aluminum Substituted Cobalt Ferrite (Coâ^'Alâ^'Fe) Nano Adsorbent for Arsenic Adsorption in Aqueous Systems and Detailed Redox Behavior Study with XPS. ACS Applied Materials & Interfaces, 2017, 9, 11587-11598.	4.0	97
1375	Macroporous alginate/ferrihydrite hybrid beads used to remove anionic dye in batch and fixed-bed reactors. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 129-135.	2.7	9
1376	A comparative investigation on the inhibition kinetics of bioaccumulation of As(III) and As(V) ions using Bacillus arsenicus MTCC 4380. Ecohydrology and Hydrobiology, 2017, 17, 148-163.	1.0	2
1377	Adsorptive removal of arsenic from groundwater using chemically treated iron ore slime incorporated mixed matrix hollow fiber membrane. Separation and Purification Technology, 2017, 179, 357-368.	3.9	52
1378	Bacterial iron-oxide nanowires from biofilm waste as a new adsorbent for the removal of arsenic from water. RSC Advances, 2017, 7, 3941-3948.	1.7	23
1379	Enhancement of particle aggregation in the presence of organic matter during neutralization of acid drainage in a stream confluence and its effect on arsenic immobilization. Chemosphere, 2017, 180, 574-583.	4.2	16
1380	A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials. Environmental Science and Pollution Research, 2017, 24, 13295-13306.	2.7	73
1381	Polyphenylene sulfideâ€based adsorption resins: synthesis, characterization and adsorption performance for Hg(II) and As(V). Polymers for Advanced Technologies, 2017, 28, 1735-1742.	1.6	8
1382	Porous Nanobimetallic Fe–Mn Cubes with High Valent Mn and Highly Efficient Removal of Arsenic(III). ACS Applied Materials & Interfaces, 2017, 9, 14868-14877.	4.0	42
1383	Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon. Applied Surface Science, 2017, 416, 618-627.	3.1	119
1384	Enhanced removal of As(III)/(V) from water by simultaneously supported and stabilized Fe-Mn binary oxide nanohybrids. Chemical Engineering Journal, 2017, 322, 710-721.	6.6	108
1385	Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere, 2017, 181, 418-432.	4.2	245

#	Article	IF	CITATIONS
1386	Optimization of As(V) Removal from Contaminated Water with Mesoporous Alumina: Effects of pH, Contact Time, Concentration and Temperature. Journal of Environmental Engineering, ASCE, 2017, 143, 04017043.	0.7	5
1387	Arsenic Removal from Mine Waters with Sorption Techniques. Mine Water and the Environment, 2017, 36, 199-208.	0.9	13
1388	Bioremediation of As(III) and As(V) from wastewater using living cells of Bacillus arsenicus MTCC 4380. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 25-47.	1.7	4
1389	Removal of arsenic from alkaline process waters of gold cyanidation by use of Fe3O4@SiO2@TiO2 nanosorbents. Minerals Engineering, 2017, 110, 40-46.	1.8	24
1390	Arsenic adsorption using Fe(III)-loaded porous amidoximated acrylonitrile/itaconic copolymers. Water Science and Technology: Water Supply, 2017, 17, 698-706.	1.0	3
1391	Synthesis of AG@AgCl Core–Shell Structure Nanowires and Its Photocatalytic Oxidation of Arsenic (III) Under Visible Light. Nanoscale Research Letters, 2017, 12, 247.	3.1	24
1392	Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe 2 O 4 magnetic nanoparticles. Chemosphere, 2017, 181, 328-336.	4.2	196
1393	High and fast adsorption efficiency of simultaneous As+3, As+5 and Fâ^' by Al-doped magnetite synthesized via AACVD. Journal of Alloys and Compounds, 2017, 718, 414-424.	2.8	10
1394	Removal or storage of environmental pollutants and alternative fuel sources with inorganic adsorbents via host–guest encapsulation. Journal of Materials Chemistry A, 2017, 5, 10746-10771.	5.2	35
1395	Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins. Nanoscale, 2017, 9, 7947-7959.	2.8	36
1396	Preparation of TiO2@ZIF-8 for the removal of As(III) in water. Water Science and Technology: Water Supply, 2017, 17, 1730-1739.	1.0	8
1397	Microbeads in Commercial Facial Cleansers: Threatening the Environment. Clean - Soil, Air, Water, 2017, 45, 1600683.	0.7	37
1398	Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO 2 -Fe 3 O 4 magnetic nanoparticles. Applied Surface Science, 2017, 416, 656-665.	3.1	68
1399	Structural and electronic analysis of Li/Al layered double hydroxides and their adsorption for CO 2. Applied Surface Science, 2017, 416, 411-423.	3.1	26
1400	Rapid and efficient catalytic oxidation of As(III) with oxygen over a Pt catalyst at increased temperature. Chemical Engineering Journal, 2017, 325, 270-278.	6.6	8
1401	Efficient purification of arsenic-contaminated water using amyloid–carbon hybrid membranes. Chemical Communications, 2017, 53, 5714-5717.	2.2	72
1402	Removal of As(III) and As(V) from wastewater using Corynebacterium glutamicum MTCC 2745 immobilized on Sawdust/MnFe2O4 composite: kinetic, mechanistic and thermodynamic modelling. Sustainable Water Resources Management, 2017, 3, 297-320.	1.0	3
1403	Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environmental Pollution, 2017, 227, 372-379.	3.7	58

#	Article	IF	CITATIONS
1404	Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management, 2017, 197, 732-749.	3.8	272
1405	<scp>FeOOH</scp> and <scp>Mn₈O₁₀Cl₃</scp> modified zeolites for As(V) removal in aqueous medium. Journal of Chemical Technology and Biotechnology, 2017, 92, 1948-1960.	1.6	23
1406	Removal of arsenite by a microbial bioflocculant produced from swine wastewater. Chemosphere, 2017, 181, 759-766.	4.2	28
1407	Engineering metal (hydr)oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: A critical review with emphasis on factors governing sorption processes. Science of the Total Environment, 2017, 598, 258-271.	3.9	69
1408	Genetic analysis of arsenic metabolism in Micrococcus luteus BPB1, isolated from the Bengal basin. Annals of Microbiology, 2017, 67, 79-89.	1.1	5
1409	One-pot synthesis of a ceria–graphene oxide composite for the efficient removal of arsenic species. Nanoscale, 2017, 9, 3367-3374.	2.8	48
1410	Effective ultrasound-assisted removal of heavy metal ions As(III), Hg(II), and Pb(II) from aqueous solution by new MgO/CuO and MgO/MnO2 nanocomposites. Journal of the Iranian Chemical Society, 2017, 14, 613-621.	1.2	20
1411	Novel Magnetically Doped Epoxide Functional Cross-linked Hydrophobic Poly(lauryl methacrylate) Composite Polymer Particles for Removal of As(III) from Aqueous Solution. Industrial & Engineering Chemistry Research, 2017, 56, 7747-7756.	1.8	13
1413	Magnetic Carbon Nanocages: An Advanced Architecture with Surface- and Morphology-Enhanced Removal Capacity for Arsenites. ACS Sustainable Chemistry and Engineering, 2017, 5, 5782-5792.	3.2	31
1414	Arsenic(V) Removal from Drinking Water by Polyaluminum Chloride in a Sand Filter Medium. Journal of Environmental Engineering, ASCE, 2017, 143, .	0.7	3
1415	Stability of tungsten oxide nanotubes film for improving photocatalytic oxidation reaction. Corrosion Engineering Science and Technology, 2017, 52, 405-410.	0.7	1
1416	Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Applied Surface Science, 2017, 425, 272-281.	3.1	72
1417	Synthesis, characterization and trivalent arsenic sorption potential of Ce-Al nanostructured mixed oxide. IOP Conference Series: Materials Science and Engineering, 2017, 188, 012003.	0.3	4
1418	Arsenic and Its Effect on Major Crop Plants: Stationary Awareness to Paradigm with Special Reference to Rice Crop. , 2017, , 123-143.		5
1419	pH mediated facile preparation of hydrotalcite based adsorbent for enhanced arsenite and arsenate removal: Insights on physicochemical properties and adsorption mechanism. Journal of Molecular Liquids, 2017, 240, 240-252.	2.3	26
1420	Arsenic Contamination in the Environment. , 2017, , .		19
1421	Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic(V) and chromium(VI) from aqueous solution. Journal of Physics and Chemistry of Solids, 2017, 109, 78-88.	1.9	53
1422	Effective, Low ost Recovery of Toxic Arsenate Anions from Water by Using Hollow‧phere Geode Traps. Chemistry - an Asian Journal, 2017, 12, 1952-1964.	1.7	36

ARTICLE IF CITATIONS Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl 1423 6.5 48 intermetallic. Journal of Hazardous Materials, 2017, 338, 364-371. Human health implications, risk assessment and remediation of As-contaminated water: A critical 1424 170 review. Science of the Total Environment, 2017, 601-602, 756-769. Removal of arsenic ions using hexagonal boron nitride and graphene nanosheets: a molecular 1425 0.9 20 dynamics study. Molecular Simulation, 2017, 43, 985-996. Iron-oxide modified sericite alginate beads: A sustainable adsorbent for the removal of As(V) and Pb(II) 1426 from aqueous solutions. Journal of Molecular Liquids, 2017, 240, 497-503. The removal efficiency and insight into the mechanism of para arsanilic acid adsorption on Fe-Mn 1427 3.9 32 framework. Science of the Total Environment, 2017, 601-602, 713-722. Remediation of groundwater contaminated with arsenic through enhanced natural attenuation: Batch and column studies. Water Research, 2017, 122, 545-556. 5.3 Potential uses of pumped urban groundwater: a case study in Sant Adrià del BesÃ²s (Spain). 1429 0.9 18 Hydrogeology Journal, 2017, 25, 1745-1758. Transport behavior of the pharmaceutical compounds carbamazepine, sulfamethoxazole, gemfibrozil, ibuprofen, and naproxen, and the lifestyle drug caffeine, in saturated laboratory columns. Science of the Total Environment, 2017, 590-591, 708-719. 1430 3.9 Fabrication of Coreâ€"Shell CMNP@PmPD Nanocomposite for Efficient As(V) Adsorption and Reduction. 1431 3.2 57 ACS Sustainable Chemistry and Engineering, 2017, 5, 4399-4407. Modeling fate and transport of arsenic in a chlorinated distribution system. Environmental 1432 Modelling and Software, 2017, 93, 322-331. Preconcentration on metal organic framework UiO-66 for slurry sampling hydride generation-atomic 1433 fluorescence spectrometric determination of ultratrace arsenic. Microchemical Journal, 2017, 133, 31 2.3441-447. Evaluation of Alâ€based nanoparticleâ€impregnated sawdust as an adsorbent from byproduct for the removal of arsenic(V) from aqueous solutions. Environmental Progress and Sustainable Energy, 2017, 1.3 36, 1314-1322. Optimization of arsenite removal by adsorption onto organically modified montmorillonite clay: 1435 1.2 25 Experimental & theoretical approaches. Korean Journal of Chemical Engineering, 2017, 34, 376-383. Effect of competing ions and causticization on the ammonia adsorption by a novel poly ligand 1436 1.2 14 exchanger (PLE) ammonia adsorption reagent. Water Science and Technology, 2017, 75, 1294-1308. Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar. 1437 278 6.6 Chemical Engineering Journal, 2017, 314, 223-231. Recycled-tire pyrolytic carbon made functional: A high-arsenite [As(III)] uptake material PyrC 350 ®. 1438 Journal of Hazardous Materials, 2017, 326, 177-186. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by 1439 electrocoagulation process: Parametric and cost evaluation. Journal of Environmental Management, 3.8 148 2017, 190, 102-112. Sorption of arsenic to biogenic iron (oxyhydr)oxides produced in circumneutral environments. 1440 1.6 Geochimica Et Cosmochimica Acta, 2017, 198, 194-207.

#	Article	IF	CITATIONS
1441	Chemically Modified Cellulose Filter Paper for Heavy Metal Remediation in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 1965-1973.	3.2	192
1442	Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 2017, 7, 387-419.	1.2	407
1443	Calix[4]pyrrole for the removal of arsenic (III) and arsenic (V) from water. Journal of Hazardous Materials, 2017, 326, 61-68.	6.5	30
1444	Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic. Environmental Science and Pollution Research, 2017, 24, 10939-10948.	2.7	6
1445	A study on the potential of doped electrospun polystyrene fibers in arsenic filtration. Journal of Environmental Chemical Engineering, 2017, 5, 232-239.	3.3	9
1446	Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications. Progress in Materials Science, 2017, 86, 25-74.	16.0	324
1448	A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering, 2017, 5, 391-399.	3.3	90
1449	Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. Journal of Molecular Liquids, 2017, 229, 230-240.	2.3	162
1450	Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Nanotechnology, 2017, 28, 042001.	1.3	69
1451	Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. , 2017, , .		9
1451 1452		1.2	9 50
	Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. , 2017, , . Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water:	1.2	
1452	Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. , 2017, , . Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egyptian Journal of Petroleum, 2017, 26, 553-563. Comparison of Arsenic Adsorption on Goethite and Amorphous Ferric Oxyhydroxide in Water. Water,		50
1452 1453	Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. , 2017, , . Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egyptian Journal of Petroleum, 2017, 26, 553-563. Comparison of Arsenic Adsorption on Goethite and Amorphous Ferric Oxyhydroxide in Water. Water, Air, and Soil Pollution, 2017, 228, 1. Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves. Water, Air,	1.1	50 13
1452 1453 1454	Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. , 2017, , . Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egyptian Journal of Petroleum, 2017, 26, 553-563. Comparison of Arsenic Adsorption on Goethite and Amorphous Ferric Oxyhydroxide in Water. Water, Air, and Soil Pollution, 2017, 228, 1. Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves. Water, Air, and Soil Pollution, 2017, 228, 1. Arsenic transport and adsorption modeling in columns using a copper nanoparticles composite.	1.1	50 13 35
1452 1453 1454 1455	Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. , 2017, , . Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egyptian Journal of Petroleum, 2017, 26, 553-563. Comparison of Arsenic Adsorption on Goethite and Amorphous Ferric Oxyhydroxide in Water. Water, Air, and Soil Pollution, 2017, 228, 1. Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves. Water, Air, and Soil Pollution, 2017, 228, 1. Arsenic transport and adsorption modeling in columns using a copper nanoparticles composite. Journal of Water Process Engineering, 2017, 19, 212-219. Selective, Photoenhanced Trapping/Detrapping of Arsenate Anions Using Mesoporous Blobfish Head	1.1 1.1 2.6	50 13 35 9
1452 1453 1454 1455 1456	Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications. , 2017, , . Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: isotherm, kinetic and thermodynamic studies. Egyptian Journal of Petroleum, 2017, 26, 553-563. Comparison of Arsenic Adsorption on Goethite and Amorphous Ferric Oxyhydroxide in Water. Water, Air, and Soil Pollution, 2017, 228, 1. Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves. Water, Air, and Soil Pollution, 2017, 228, 1. Arsenic transport and adsorption modeling in columns using a copper nanoparticles composite. Journal of Water Process Engineering, 2017, 19, 212-219. Selective, Photoenhanced Trapping/Detrapping of Arsenate Anions Using Mesoporous Blobfish Head TiO _{2 TiO_{2 Removal of Toxic Compounds from Water by Membrane Distillation (Case Study on Arsenic). Green}}	1.1 1.1 2.6 3.2	 50 13 35 9 51

#	Article	IF	CITATIONS
1460	Arsenic-related microorganisms in groundwater: a review on distribution, metabolic activities and potential use in arsenic removal processes. Reviews in Environmental Science and Biotechnology, 2017, 16, 647-665.	3.9	42
1462	Tetragonal nanostructured zirconia modified hematite mesoporous composite for efficient adsorption of toxic cations from wastewater. Journal of Environmental Chemical Engineering, 2017, 5, 5285-5292.	3.3	6
1463	Copper removal from aqueous solutions using a polyelectrolyte derived from sunflower oil: Physico-chemical aspects. Journal of Environmental Chemical Engineering, 2017, 5, 5512-5520.	3.3	1
1464	Removal of arsenic from water by porous charred granulated attapulgite-supported hydrated iron oxide in bath and column modes. Journal of Cleaner Production, 2017, 166, 88-97.	4.6	84
1465	Novel Dendrimerlike Magnetic Biosorbent Based on Modified Orange Peel Waste: Adsorption–Reduction Behavior of Arsenic. ACS Sustainable Chemistry and Engineering, 2017, 5, 9692-9700.	3.2	59
1466	Novel Applications and Future Perspectives of Nanocomposites. Springer Series on Polymer and Composite Materials, 2017, , 333-398.	0.5	2
1467	Effective adsorbent for arsenic removal: core/shell structural nano zero-valent iron/manganese oxide. Environmental Science and Pollution Research, 2017, 24, 24235-24242.	2.7	35
1468	Metal–support interactions in catalysts for environmental remediation. Environmental Science: Nano, 2017, 4, 2076-2092.	2.2	79
1469	Conventional as well as Emerging Arsenic Removal Technologies—a Critical Review. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	67
1470	Efficient and Rapid Removal of Environmental Malignant Arsenic(III) and Industrial Dyes Using Reusable, Recoverable Ternary Iron Oxide - ORMOSIL - Reduced Graphene Oxide Composite. ACS Sustainable Chemistry and Engineering, 2017, 5, 5912-5921.	3.2	41
1471	Mechanisms of Synergistic Removal of Low Concentration As(V) by nZVI@Mg(OH) ₂ Nanocomposite. Journal of Physical Chemistry C, 2017, 121, 21411-21419.	1.5	18
1472	Efficient Removal of Heavy Metals from Polluted Water with High Selectivity for Mercury(II) by 2-Imino-4-thiobiuret–Partially Reduced Graphene Oxide (IT-PRGO). ACS Applied Materials & Interfaces, 2017, 9, 34230-34242.	4.0	134
1473	Carbon nanosphere–iron oxide nanocomposites as high-capacity adsorbents for arsenic removal. RSC Advances, 2017, 7, 36138-36148.	1.7	25
1474	Optimization, Kinetics, and Equilibrium Studies on the Removal of Lead(II) from an Aqueous Solution Using Banana Pseudostem as an Adsorbent. Engineering, 2017, 3, 409-415.	3.2	28
1475	Inorganically modified clay minerals: Preparation, characterization, and arsenic adsorption in contaminated water and soil. Applied Clay Science, 2017, 147, 1-10.	2.6	66
1476	One-pot synthesis of ternary zero-valent iron/phosphotungstic acid/g-C3N4 composite and its high performance for removal of arsenic(V) from water. Applied Surface Science, 2017, 425, 423-431.	3.1	16
1477	Lessons Learned from Arsenic Mitigation among Private Well Households. Current Environmental Health Reports, 2017, 4, 373-382.	3.2	19
1478	Reducing As availability in calcareous soils using nanoscale zero valent iron. Environmental Science and Pollution Research, 2017, 24, 20438-20445.	2.7	20

		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
1479	A novel sort of porous ceramic foam ball with modified surface for arsenic removal from aqueous solution. Journal of Iron and Steel Research International, 2017, 24, 661-668.	1.4	3
1481	Cellular concrete-supported cost-effective adsorbents for aqueous arsenic and heavy metals abatement. Journal of Environmental Chemical Engineering, 2017, 5, 3930-3941.	3.3	19
1482	Simultaneous trapping of Cr(III) and organic dyes by a pH-responsive resin containing zwitterionic aminomethylphosphonate ligands and hydrophobic pendants. Chemical Engineering Journal, 2017, 330, 663-674.	6.6	44
1483	Nano-Hydroxyapatite Prepared from Eggshell-Derived Calcium-Precursor using Reverse Microemulsions as Nanoreactor. Materials Today: Proceedings, 2017, 4, 5497-5506.	0.9	16
1484	Biosorptive uptake of arsenic(V) by steam activated carbon from mung bean husk: equilibrium, kinetics, thermodynamics and modeling. Applied Water Science, 2017, 7, 4479-4495.	2.8	18
1485	A QM/MM study to investigate selectivity of nanoporous graphene membrane for arsenate and chromate removal from water. Chemical Physics Letters, 2017, 685, 371-376.	1.2	7
1486	Cigarette soot activated carbon modified with Fe3O4 nanoparticles as an effective adsorbent for As(III) and As(V): Material preparation, characterization and adsorption mechanism study. Journal of Molecular Liquids, 2017, 243, 395-405.	2.3	59
1487	lron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Chemical Engineering Research and Design, 2017, 111, 592-626.	2.7	248
1488	Folic Acid-Polyaniline Hybrid Hydrogel for Adsorption/Reduction of Chromium(VI) and Selective Adsorption of Anionic Dye from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 9325-9337.	3.2	109
1489	Effectively uptake arsenate from water by mesoporous sulphated zirconia: Characterization, adsorption, desorption, and uptake mechanism. Canadian Journal of Chemical Engineering, 2017, 95, 543-549.	0.9	4
1490	Synthesis and characterization of magnetic activated carbon developed from palm kernel shells. Nanotechnology for Environmental Engineering, 2017, 2, 1.	2.0	60
1491	Predictive modeling and validation of arsenite removal by a one pot synthesized bioceramic buttressed manganese doped iron oxide nanoplatform. RSC Advances, 2017, 7, 32866-32876.	1.7	7
1492	CuO and Cu2(OH)3Cl loaded gel-type anion exchange hybrid polymers obtained via tetrachlorocuprate ionic form. Journal of Environmental Chemical Engineering, 2017, 5, 5668-5676.	3.3	11
1493	Adsorption of As(V) from contaminated water over chitosan coated magnetite nanoparticle: Equilibrium and kinetics study. Environmental Nanotechnology, Monitoring and Management, 2017, 8, 297-305.	1.7	11
1494	Removal of arsenic III and V from laboratory solutions and contaminated groundwater by metallurgical slag through anion-induced precipitation Environmental Science and Pollution Research, 2017, 24, 25034-25046.	2.7	15
1495	Mg(OH) ₂ –MgO@reduced graphene oxide nanocomposites: the roles of composition and nanostructure in arsenite sorption. Journal of Materials Chemistry A, 2017, 5, 24484-24492.	5.2	26
1496	2Dâ€Fe ₃ O ₄ Nanosheets for Effective Arsenic Removal. Journal of Contemporary Water Research and Education, 2017, 160, 132-143.	0.7	9
1497	Celluloseâ€based Materials for the Removal of Heavy Metals from Wastewater – An Overview. ChemBioEng Reviews, 2017, 4, 240-256.	2.6	125

#	Article	IF	CITATIONS
1498	Treatment of acidic mine drainage in an adsorption process using calcium silicate modified with Fe(III). Hydrometallurgy, 2017, 172, 19-29.	1.8	19
1499	Competitive Adsorption of Arsenic and Fluoride onto Economically Prepared Aluminum Oxide/Hydroxide Nanoparticles: Multicomponent Isotherms and Spent Adsorbent Management. Industrial & Engineering Chemistry Research, 2017, 56, 8081-8094.	1.8	47
1500	A mechano-responsive supramolecular metal–organic framework (supraMOF) gel material rich in ZIF-8 nanoplates. Chemical Communications, 2017, 53, 8502-8505.	2.2	25
1501	Combined effects of co-existing anions on the removal of arsenic from groundwater by electrocoagulation process: Optimization through response surface methodology. Journal of Environmental Chemical Engineering, 2017, 5, 3792-3802.	3.3	24
1502	Arsenate removal from aqueous solution by siderite synthesized under high temperature and high pressure. Environmental Science and Pollution Research, 2017, 24, 19402-19411.	2.7	8
1504	Bio-transfer factors and temporal variation of heavy metals in different sexes of three species of edible brackish water fish. Environmental Science and Pollution Research, 2017, 24, 18680-18690.	2.7	6
1505	Arsenic Removal from Contaminated Water Using the CaO–SiO2–FeO Glassy Phase in Steelmaking Slag. Journal of Sustainable Metallurgy, 2017, 3, 470-485.	1.1	7
1506	The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Critical Reviews in Environmental Science and Technology, 2017, 47, 1042-1105.	6.6	190
1507	Post-modification of nanoporous silica type SBA-15 by bis(3-triethoxysilylpropyl)tetrasulfide as an efficient adsorbent for arsenic removal. Powder Technology, 2017, 319, 271-278.	2.1	33
1508	Microfibrillar Polysaccharide-Derived Biochars as Sodium Benzoate Adsorbents. ACS Omega, 2017, 2, 2959-2966.	1.6	6
1509	Ranking traditional and nano-enabled sorbents for simultaneous removal of arsenic and chromium from simulated groundwater. Science of the Total Environment, 2017, 601-602, 1008-1014.	3.9	19
1510	Adsorption of aromatic organoarsenic compounds by ferric and manganese binary oxide and description of the associated mechanism. Chemical Engineering Journal, 2017, 309, 577-587.	6.6	95
1511	Developing sustainable graphene-doped titanium nano tube coated to superparamagnetic nanoparticles for arsenic recovery. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 311-318.	2.7	8
1512	Unveiling the potentialities of activated carbon in recovering palladium from model leaching solutions. Separation and Purification Technology, 2017, 174, 183-193.	3.9	22
1513	Synthesis and characterization of hybrid iron oxide silicates for selective removal of arsenic oxyanions from contaminated water. Journal of Colloid and Interface Science, 2017, 488, 335-347.	5.0	36
1514	New polymeric/inorganic hybrid sorbents based on red mud and nanosized magnetite for large scale applications in As(V) removal. Chemical Engineering Journal, 2017, 311, 117-125.	6.6	32
1515	Adsorptive properties of As(III) from aqueous solution using magnetic nickel ferrite (NiFe ₂ O ₄) nanoparticles: Isotherm and kinetic studies. Separation Science and Technology, 2017, 52, 21-34.	1.3	11
1516	Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions. Chemosphere, 2017, 169, 99-106.	4.2	53

#	Article	IF	CITATIONS
1517	Effective and selective adsorption of As(III) via imprinted magnetic Fe 3 O 4 /HTCC composite nanoparticles. Journal of Environmental Chemical Engineering, 2017, 5, 16-25.	3.3	34
1518	Preparation and Characterization of a Novel Activated Laurocherry/Calcium Alginate Biomorphous Monolithic Composite and its Application in Methylene Blue Adsorption. Advances in Intelligent Systems and Computing, 2017, , 49-56.	0.5	0
1519	Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy, 2017, 174, 258-281.	1.8	296
1520	Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review. Environmental Science and Pollution Research, 2017, 24, 73-91.	2.7	56
1521	Investigation of mechanism and critical parameters for removal of arsenic from water using Zr–TiO2 composite. Environmental Technology (United Kingdom), 2017, 38, 2233-2240.	1.2	3
1522	Tuning and Characterizing Nanocellulose Interface for Enhanced Removal of Dual-Sorbate (As ^V and Cr ^{VI}) from Water Matrices. ACS Sustainable Chemistry and Engineering, 2017, 5, 518-528.	3.2	47
1523	Bioremediation of Heavy Metals from Saline Water Using Hypersaline Dissimilatory Sulfate-Reducing Bacteria. , 2017, , 15-28.		5
1524	Occurrence and methods to remove arsenic and fluoride contamination in water. Environmental Chemistry Letters, 2017, 15, 125-149.	8.3	67
1525	Removal of Cu2+ and SO42â^' from aqueous solutions on surface functionalized dehydrated carbon from date palm leaflets. Journal of Water Process Engineering, 2017, 15, 62-71.	2.6	11
1526	Potential of Micranthemum umbrosum for phytofiltration of organic arsenic species from oxic water environment. International Journal of Environmental Science and Technology, 2017, 14, 285-290.	1.8	6
1528	Toxicity and bioremediation of As(III) and As(V) in the green microalgae <i>Botryococcus braunii</i> : A laboratory study. International Journal of Phytoremediation, 2017, 19, 157-173.	1.7	7
1529	Fabrication of efficient and selective total arsenic sensor using the hybrid materials modified carbon paste electrodes. Journal of Electroanalytical Chemistry, 2017, 784, 109-114.	1.9	15
1530	Interaction of arsenic with biochar in soil and water: A critical review. Carbon, 2017, 113, 219-230.	5.4	292
1531	Iron supported on bioinspired green silica for water remediation. Chemical Science, 2017, 8, 567-576.	3.7	27
1532	Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Applied Clay Science, 2017, 135, 9-15.	2.6	185
1533	Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method. Journal of Magnetism and Magnetic Materials, 2017, 426, 459-466.	1.0	37
1534	Nanoparticles Infused Mesoporous Material for Water Treatment Processes. , 2017, , .		0
1535	Characterization of ZrO2 Nano Particles Prepared by Glycothermal Method and their Efficiency as Adsorbent of As(III) and As(V) from Waste Water. , 2017, 07, .		1

		CITATION REPORT		
#	Article		IF	CITATIONS
1536	PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water. Membranes, 2017	', 7, 57.	1.4	23
1537	Oncogenomic disruptions in arsenic-induced carcinogenesis. Oncotarget, 2017, 8, 2573	6-25755.	0.8	47
1538	As(V) Sorption/Desorption on Different Waste Materials and Soil Samples. International Environmental Research and Public Health, 2017, 14, 803.	Journal of	1.2	10
1539	Graphene-Supported Spinel CuFe2O4 Composites: Novel Adsorbents for Arsenic Remova Media. Sensors, 2017, 17, 1292.	al in Aqueous	2.1	29
1540	Wheat Straw as a Bio-Sorbent for Arsenate, Chromate, Fluoride, and Nickel. Water (Swit 9, 690.	zerland), 2017,	1.2	7
1541	Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prep Biomass. Journal of Nanomaterials, 2017, 2017, 1-10.	pared from	1.5	22
1542	Regenerating an Arsenic Removal Iron-Based Adsorptive Media System, Part 1: The Regeneration, 2017, 109, E121-E121.	neration	0.2	11
1543	Arsenic Oxyanions Removal from Waste Water by Accelerated Carbonation. Journal of M 1 -3.	IMIJ, 2017, 133,	0.4	3
1544	Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifersâ€ among Cabuya Fibers, Broom Fibers and ZVI. International Journal of Environmental Rese Public Health, 2017, 14, 684.		1.2	14
1545	Heating Changes Bio-Schwertmannite Microstructure and Arsenic(III) Removal Efficiency (Basel, Switzerland), 2017, 7, 9.	. Minerals	0.8	17
1546	Development and characterization of a hybrid mesoporous material infused with metallion nanoparticles for water treatment. Nanomaterials and Nanotechnology, 2017, 7, 18479		1.2	1
1547	Fe-sericite-alginate composite beads: Preparation characterization and eco-friendly applic removal of arsenate and lead from petroleum industry wastewater. , 2017, , .	cation for		0
1548	Removal of arsenic(III,V) by a granular Mn-oxide-doped Al oxide adsorbent: surface chara and performance. Environmental Science and Pollution Research, 2017, 24, 18505-1851		2.7	17
1549	Utilization of Fe-Oxide Composites for as Removal from Aqueous Solutions. Solid State F 262, 630-633.	Phenomena, 0,	0.3	0
1550	Implementation of ferric hydroxide-based media for removal of toxic metalloids. E3S Wel Conferences, 2017, 22, 00175.	b of	0.2	1
1551	Heavy Metal Uptake Potential of Aquatic Plants through Phytoremediation Technique - A Journal of Bioremediation & Biodegradation, 2017, 08, .	Review.	0.5	37
1553	Microbial Reduction of Cr (VI) into Cr (III) by Locally Isolated Pseudomonas Aeruginosa. I Conference Series: Materials Science and Engineering, 2017, 180, 012279.	OP	0.3	1
1555	Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mix Minerals. Chemical Reviews, 2018, 118, 3251-3304.	ed-Valent Iron	23.0	319

#	Article	IF	CITATIONS
1556	Iron Mesh-Based Metal Organic Framework Filter for Efficient Arsenic Removal. Environmental Science & Technology, 2018, 52, 4275-4284.	4.6	100
1557	Recycling Spent Cr Adsorbents as Catalyst for Eliminating Methylmercaptan. Environmental Science & Technology, 2018, 52, 3669-3675.	4.6	53
1558	Highly Efficient Arsenite [As(III)] Adsorption by an [MIL-100(Fe)] Metal–Organic Framework: Structural and Mechanistic Insights. Journal of Physical Chemistry C, 2018, 122, 4859-4869.	1.5	30
1559	H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of the Total Environment, 2018, 628-629, 1139-1148.	3.9	128
1560	Removal of uranium(VI) from aqueous solution using graphene oxide functionalized with diethylenetriaminepentaacetic phenylenediamine. Journal of Nuclear Science and Technology, 2018, 55, 781-791.	0.7	25
1561	Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47, 2322-2356.	18.7	1,438
1562	Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 2018, 22, 949-978.	2.4	243
1563	Efficient oxidation and sorption of arsenite using a novel titanium(IV)-manganese(IV) binary oxide sorbent. Journal of Hazardous Materials, 2018, 353, 410-420.	6.5	59
1564	Review—Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. Journal of the Electrochemical Society, 2018, 165, B3098-B3118.	1.3	147
1565	Efficient removal of arsenate from oxic contaminated water by colloidal humic acid-coated goethite: Batch and column experiments. Journal of Cleaner Production, 2018, 189, 510-518.	4.6	32
1566	Removal of arsenic and mercury species from water by covalent triazine framework encapsulated γ-Fe2O3 nanoparticles. Journal of Hazardous Materials, 2018, 353, 312-319.	6.5	83
1567	Room-Temperature Synthesis of Magnetic Metal–Organic Frameworks Composites in Water for Efficient Removal of Methylene Blue and As(V). Industrial & Engineering Chemistry Research, 2018, 57, 6201-6209.	1.8	22
1568	Efficient removal of arsenic(III) from aqueous media using magnetic polyaniline-doped strontium–titanium nanocomposite. Environmental Science and Pollution Research, 2018, 25, 16864-16874.	2.7	32
1569	Removal of arsenic from gold cyanidation process waters by use of cerium-based magnetic adsorbents. Minerals Engineering, 2018, 122, 84-90.	1.8	14
1570	Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces. Journal of Hazardous Materials, 2018, 353, 340-347.	6.5	26
1571	Three-Dimensional Macroporous Alginate Scaffolds Embedded with Akaganeite Nanorods for the Filter-Based High-Speed Preparation of Arsenic-Free Drinking Water. ACS Applied Nano Materials, 2018, 1, 1940-1948.	2.4	19
1572	Leaf-extract mediated zero-valent iron for oxidation of Arsenic (III): Preparation, characterization and kinetics. Chemical Engineering Journal, 2018, 347, 91-100.	6.6	60
1573	Arsenic effects on some photophysical parameters of Cichorium intybus under different radiation and water irrigation regimes. Chemosphere, 2018, 204, 398-404.	4.2	5

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1574	Yttrium-doped iron oxide magnetic adsorbent for enhancement in arsenic removal and ease in separation after applications. Journal of Colloid and Interface Science, 2018, 521, 252-260.	5.0	60
1575	Application of ZnO nanorods as an adsorbent material for the removal of As(III) from aqueous solution: kinetics, isotherms and thermodynamic studies. International Journal of Industrial Chemistry, 2018, 9, 17-25.	3.1	45
1576	Magnetization and modification of ETS-4 titanosilicate for removal of fluoride from aqueous solutions. Journal of Alloys and Compounds, 2018, 744, 271-280.	2.8	9
1577	Treatment of high arsenic content lead copper matte by a pressure oxidative leaching combined with cyclone and vertical electro-deposition method. Separation and Purification Technology, 2018, 199, 282-288.	3.9	15
1578	Removal of metal(oid)s from contaminated water using iron-coated peat sorbent. Chemosphere, 2018, 198, 290-296.	4.2	25
1579	Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environmental Science and Pollution Research, 2018, 25, 11729-11745.	2.7	53
1580	House hold unit for the treatment of fluoride, iron, arsenic and microorganism contaminated drinking water. Chemosphere, 2018, 199, 728-736.	4.2	39
1581	Adsorption Study for the Separation of Isonicotinic Acid from Aqueous Solution Using Activated Carbon/Fe ₃ O ₄ Composites. Journal of Chemical & Engineering Data, 2018, 63, 436-445.	1.0	30
1582	Mass balance of arsenic fluxes in rivers impacted by gold mining activities in Paracatu (Minas Gerais) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
1583	Efficiency evaluation of arsenic(III) adsorption of novel graphene oxide@iron-aluminium oxide composite for the contaminated water purification. Separation and Purification Technology, 2018, 197, 388-400.	3.9	63
1584	Iron and Arsenic Speciation During As(III) Oxidation by Manganese Oxides in the Presence of Fe(II): Molecular-Level Characterization Using XAFS, Mössbauer, and TEM Analysis. ACS Earth and Space Chemistry, 2018, 2, 256-268.	1.2	32
1587	Effects of lead, cadmium, chromium, and arsenic on the sorption of lindane and norfloxacin by river biofilms, particles, and sediments. Environmental Science and Pollution Research, 2018, 25, 4632-4642.	2.7	18
1588	Biosorptive removal of arsenite and arsenate from aqueous medium using low-cost adsorbent derived from â€~Pods of green peas': Exploration of kinetics, thermodynamics and adsorption isotherms. Korean Journal of Chemical Engineering, 2018, 35, 456-469.	1.2	3
1589	Pyrolysis of arsenic-bearing gypsum sludge being substituted for calcium flux in smelting process. Journal of Analytical and Applied Pyrolysis, 2018, 130, 19-28.	2.6	19
1590	Preparation of polyethylene polyamine@tannic acid encapsulated MgAl-layered double hydroxide for the efficient removal of copper (II) ions from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 92-101.	2.7	155
1591	Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316, 214-222.	2.2	36
1592	Highly active magnesium oxide nano materials for the removal of arsenates and phosphates from aqueous solutions. Nano Structures Nano Objects, 2018, 13, 74-81.	1.9	15

1593Highly porous copper ferrite foam: A promising adsorbent for efficient removal of As(III) and As(V)6.5631593from water. Journal of Hazardous Materials, 2018, 347, 15-24.6.563

#	Article	lF	CITATIONS
1594	Application of Box–Behnken Design in response surface methodologyÂfor adsorptive removal of arsenic from aqueous solutionÂusing CeO2/Fe2O3/graphene nanocomposite. Materials Chemistry and Physics, 2018, 207, 233-242.	2.0	51
1595	Arsenic exposure to breast-fed infants: contaminated breastfeeding in the first month of birth. Environmental Science and Pollution Research, 2018, 25, 6680-6684.	2.7	12
1596	As(V) removal from aqueous solution using a low-cost adsorbent coir pith ash: Equilibrium and kinetic study. Environmental Technology and Innovation, 2018, 9, 198-209.	3.0	16
1597	Application of two-dimensional leaf-shaped zeolitic imidazolate framework (2D ZIF-L) as arsenite adsorbent: Kinetic, isotherm and mechanism. Journal of Molecular Liquids, 2018, 250, 269-277.	2.3	91
1598	Adsorptive removal of arsenic by novel iron/olivine composite: Insights into preparation and adsorption process by response surface methodology and artificial neural network. Journal of Environmental Management, 2018, 209, 176-187.	3.8	55
1599	Arsenic adsorption and plant availability in an agricultural soil irrigated with As-rich water: Effects of Fe-rich amendments and organic and inorganic fertilisers. Journal of Environmental Management, 2018, 209, 262-272.	3.8	26
1600	Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects. Water Research, 2018, 133, 110-122.	5.3	120
1601	Highly selective determination of ultratrace inorganic arsenic species using novel functionalized miniaturized membranes. Analytica Chimica Acta, 2018, 1008, 57-65.	2.6	20
1602	Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal. Journal of Colloid and Interface Science, 2018, 514, 760-768.	5.0	75
1603	Nano tin ferrous oxide decorated graphene oxide sheets for efficient arsenic (III) removal. Nano Structures Nano Objects, 2018, 13, 82-92.	1.9	26
1604	Removal of mercury(II) from aqueous solutions via Box–Behnken experimental design by synthesized hierarchical nanoporous ZSM-5 zeolite. Journal of the Iranian Chemical Society, 2018, 15, 1741-1754.	1.2	5
1605	Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: Kinetics and thermodynamic. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 51-62.	1.7	28
1606	Impact of ageing on the fate of molybdate-zerovalent iron nanohybrid and its subsequent effect on cyanobacteria (Microcystis aeruginosa) growth in aqueous media. Water Research, 2018, 140, 135-147.	5.3	14
1607	Adsorption characteristics of arsenic and phosphate onto iron impregnated biochar derived from anaerobic granular sludge. Korean Journal of Chemical Engineering, 2018, 35, 1409-1413.	1.2	32
1608	Modelling the two-dimensional growth and oriented attachment of goethite nanorods synthesized via oxidation of aqueous ferrous hydroxide slurries. Chemical Engineering Journal, 2018, 347, 798-807.	6.6	5
1609	Solidification/Stabilization of Arsenic in Red Mud upon Addition of Fe (III) or Fe (III) and Al (III) Dissolved in H ₂ SO ₄ . Journal of Water and Environment Technology, 2018, 16, 115-126.	0.3	10
1610	Enhanced adsorption of uranium by modified red muds: adsorption behavior study. Environmental Science and Pollution Research, 2018, 25, 18096-18108.	2.7	27
1611	Arsenic removal through supercritical carbon dioxide-assisted modified magnetic starch (starch–Fe3O4) nanoparticles. Nanotechnology for Environmental Engineering, 2018, 3, 1.	2.0	10

#	Article	IF	CITATIONS
1612	Utilization of coal fly ash and drinking water sludge to remove anionic As(V), Cr(VI), Mo(VI) and Se(IV) from mine waters. Journal of Environmental Chemical Engineering, 2018, 6, 2470-2479.	3.3	15
1613	Development of a Cryptosporidium-arsenic multi-risk assessment model for infant formula prepared with tap water in France. Food Research International, 2018, 108, 558-570.	2.9	2
1614	Removal of monoethylene glycol from wastewater by using Zr-metal organic frameworks. Journal of Colloid and Interface Science, 2018, 523, 75-85.	5.0	26
1615	Synthesis of magnetite from raw mill scale and its application for arsenate adsorption from contaminated water. Chemosphere, 2018, 203, 90-95.	4.2	44
1616	Heterogeneous Fenton decontamination of organoarsenicals and simultaneous adsorption of released arsenic with reduced secondary pollution. Chemical Engineering Journal, 2018, 344, 1-11.	6.6	70
1617	Removal of As(V) and Sb(V) in aqueous solution by Mg/Al-layered double hydroxide-incorporated polyethersulfone polymer beads (PES-LDH). Environmental Geochemistry and Health, 2018, 40, 2119-2129.	1.8	16
1618	Environmental Risks of Nano Zerovalent Iron for Arsenate Remediation: Impacts on Cytosolic Levels of Inorganic Phosphate and MgATP ^{2–} in <i>Arabidopsis thaliana</i> . Environmental Science & Technology, 2018, 52, 4385-4392.	4.6	24
1619	Arsenic sorption on zero-valent iron-biochar complexes. Water Research, 2018, 137, 153-163.	5.3	234
1620	A review on modification methods of adsorbents for elemental mercury from flue gas. Chemical Engineering Journal, 2018, 346, 692-711.	6.6	147
1621	Development of low-cost iron mixed porous pellet adsorbent by mixture design approach and its application for arsenate and arsenite adsorption from water. Adsorption Science and Technology, 2018, 36, 372-392.	1.5	10
1622	Removal of As(V) and Sb(V) in water using magnetic nanoparticle-supported layered double hydroxide nanocomposites. Journal of Geochemical Exploration, 2018, 184, 247-254.	1.5	35
1623	Magnetic hetero-structures as prospective sorbents to aid arsenic elimination from life water streams. Water Science, 2018, 32, 151-170.	0.5	12
1624	Equilibrium, kinetics, and thermodynamics studies of polypyrrole adsorbent for arsenic ions. Water Science and Technology: Water Supply, 2018, 18, 240-250.	1.0	3
1625	Evaluation of natural quartz and zeolitic tuffs for As(V) removal from aqueous solutions: a mechanistic approach. International Journal of Environmental Science and Technology, 2018, 15, 217-230.	1.8	1
1626	Arsenic and Boron Levels in Irrigation Water, Soil, and Green Leafy Vegetables. International Journal of Vegetable Science, 2018, 24, 115-121.	0.6	14
1627	Electrochemical deposition for the separation and recovery of metals using carbon nanotube-enabled filters. Environmental Science: Water Research and Technology, 2018, 4, 58-66.	1.2	14
1628	As(III) and As(V) adsorption on manganese ferrite nanoparticles. Journal of Molecular Structure, 2018, 1154, 524-534.	1.8	68
1629	Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environmental Pollution, 2018, 232, 31-41.	3.7	297

#	Article	IF	CITATIONS
1630	Enhanced photocatalytic reduction of cadmium on calcium ferrite-based nanocomposites by simulated solar radiation. Materials Letters, 2018, 211, 142-145.	1.3	6
1631	Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials, 2018, 344, 1-11.	6.5	430
1632	Facile synthesis of novel calcined magnetic orange peel composites for efficient removal of arsenite through simultaneous oxidation and adsorption. Journal of Colloid and Interface Science, 2018, 511, 155-164.	5.0	44
1633	Synthesis of Fe ₂ O ₃ -coated and HCI-treated bauxite ore waste for the adsorption of arsenic (III) from aqueous solution: Isotherm and kinetic models. Chemical Engineering Communications, 2018, 205, 34-46.	1.5	10
1634	Arsenic Level and Risk Assessment of Groundwater in Vehari, Punjab Province, Pakistan. Exposure and Health, 2018, 10, 229-239.	2.8	76
1635	High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chemical Engineering Journal, 2018, 335, 1-12.	6.6	87
1636	Chemical and toxicological assessment of arsenic sorption onto Fe-sericite composite powder and beads. Ecotoxicology and Environmental Safety, 2018, 147, 80-85.	2.9	18
1637	Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex. Journal of Hazardous Materials, 2018, 344, 322-332.	6.5	65
1638	Synthesis of magnetic orderly mesoporous α-Fe2O3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III,V) removal. Journal of Hazardous Materials, 2018, 343, 304-314.	6.5	120
1639	Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. Journal of Environmental Management, 2018, 205, 253-261.	3.8	125
1640	A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Reviews in Chemical Engineering, 2018, 34, 855-873.	2.3	58
1641	Adsorptive removal of arsenic from aqueous solutions using magnetite nanoparticles and silicaâ€coated magnetite nanoparticles. Environmental Progress and Sustainable Energy, 2018, 37, 951-960.	1.3	27
1642	In situ arsenic oxidation and sorption by a Fe-Mn binary oxide waste in soil. Journal of Hazardous Materials, 2018, 342, 724-731.	6.5	70
1643	One-step and acid free synthesis of γ-Fe 2 O 3 /SBA-15 for enhanced arsenic removal. Microporous and Mesoporous Materials, 2018, 258, 26-32.	2.2	38
1644	Adsorption combined with superconducting high gradient magnetic separation technique used for removal of arsenic and antimony. Journal of Hazardous Materials, 2018, 343, 36-48.	6.5	66
1645	Adsorption of low-concentration arsenic from water by co-modified bentonite with manganese oxides and poly(dimethyldiallylammonium chloride). Journal of Environmental Chemical Engineering, 2018, 6, 156-168.	3.3	60
1646	Efficient degradation of p-arsanilic acid with arsenic adsorption by magnetic CuO-Fe3O4 nanoparticles under visible light irradiation. Chemical Engineering Journal, 2018, 334, 1527-1536.	6.6	86
1647	Synthesis of MgO/TiO2/Ag composites with good adsorption combined with photodegradation properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 228, 123-131	1.7	11

		15	Circum
#	ARTICLE Transcriptional Activity of Arsenic-Reducing Bacteria and Genes Regulated by Lactate and Biochar	IF	CITATIONS
1648	during Arsenic Transfórmation in Flooded Paddy Soil. Environmental Science & Technology, 2018, 52, 61-70.	4.6	105
1649	Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As(III) from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 59-68.	2.3	146
1650	Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II). Nanotechnology, 2018, 29, 105601.	1.3	1
1651	Adsorption of organic dyes from aqueous solutions using surfactant exfoliated graphene. Journal of Environmental Chemical Engineering, 2018, 6, 495-504.	3.3	67
1652	Trace Element Removal in Distributed Drinking Water Treatment Systems by Cathodic H ₂ O ₂ Production and UV Photolysis. Environmental Science & Technology, 2018, 52, 195-204.	4.6	22
1653	Chemical states of arsenic contained in sewage sludge incineration ash and insolubilized material. Journal of Material Cycles and Waste Management, 2018, 20, 955-964.	1.6	1
1654	Removal and Recovery of Metals by Using Bio-electrochemical System. , 2018, , 307-333.		2
1655	A highly stable indium based metal organic framework for efficient arsenic removal from water. Dalton Transactions, 2018, 47, 799-806.	1.6	69
1656	Removal of arsenic from gold processing circuits by use of novel magnetic nanoparticles. Canadian Metallurgical Quarterly, 2018, 57, 399-404.	0.4	4
1657	Electrosorption of As(III) in aqueous solutions with activated carbon as the electrode. Applied Surface Science, 2018, 434, 816-821.	3.1	41
1658	A novel biodegradable arsenic adsorbent by immobilization of iron oxyhydroxide (FeOOH) on the root powder of long-root Eichhornia crassipes. Chemosphere, 2018, 192, 258-266.	4.2	46
1659	Comparing adsorption of arsenic and antimony from single-solute and bi-solute aqueous systems onto ZIF-8. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 164-172.	2.3	50
1660	Time Resolved Direct Determination of Arsenate in the Presence of Arsenite on Pencil Graphite Electrode Modified by Graphene Oxide and Zirconium. Electroanalysis, 2018, 30, 154-161.	1.5	4
1661	Synthesis of magnetically modified mesoporous nanoparticles and their application in simultaneous determination of Pb(II), Cd(II) and Cu(II). Research on Chemical Intermediates, 2018, 44, 1689-1709.	1.3	19
1662	Mineralogical and geochemical characterization of waste rocks from a gold mine in northeastern Thailand: application for environmental impact protection. Environmental Science and Pollution Research, 2018, 25, 3488-3500.	2.7	15
1663	Phytofiltration of arsenic by aquatic moss (Warnstorfia fluitans). Environmental Pollution, 2018, 237, 1098-1105.	3.7	34
1664	Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water. Chemical Engineering Journal, 2018, 334, 1518-1526.	6.6	104
1665	Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods. Journal of Magnetism and Magnetic Materials, 2018, 456, 451-460.	1.0	111

ARTICLE IF CITATIONS Sorption–desorption of antimony species onto calcined hydrotalcite: Surface structure and control 6.5 26 1666 of competitive anions. Journal of Hazardous Materials, 2018, 344, 649-656. Characteristics of a novel adsorbent Fe $\hat{a}\in$ Mg-type hydrotalcite and its adsorption capability of As(III) and Cr(VI) from aqueous solution. Journal of Industrial and Engineering Chemistry, 2018, 59, 56-63. Sustainable magnet-responsive nanomaterials for the removal of arsenic from contaminated water. 1668 6.5 54 Journal of Hazardous Materials, 2018, 342, 260-269. Environmental behavior, potential phytotoxicity, and accumulation of copper oxide nanoparticles and 1669 arsenic in rice plants. Environmental Toxicology and Chemistry, 2018, 37, 11-20. Review on utilization of biochar for metal-contaminated soil and sediment remediation. Journal of 1670 3.2 197 Environmental Sciences, 2018, 63, 156-173. Securing The Future: Clay-Based Solutions For a Comprehensive and Sustainable Potable-Water Supply System. Clays and Clay Minerals, 2018, 66, 315-328. 1671 Segerstromite, Ca3(As5+O4)2[As3+(OH)3]2, the first mineral containing As3+(OH)3, the arsenite 1672 molecule, from the Cobriza mine in the Atacama Region, Chile. American Mineralogist, 2018, 103, 0.9 1 1497-1501. Arsenic: A Low-Cost Household Level Treatment for Rural Settings in Developing Countries. Journal 0.1 of Pollution Effects & Control, 2018, 06, . Functionalized nanocomposite for simultaneous removal of antibiotics and As(<scp>iii</scp>) in 1674 2.2 12 swine urine aqueous solution and soil. Environmental Science: Nano, 2018, 5, 2978-2992. Arsenic in Rice Soils and Potential Agronomic Mitigation Strategies to Reduce Arsenic Bioavailability: 2.1 A Review. Pedosphere, 2018, 28, 363-382. New composite materials based on activated carbon fibers with specific adsorption and catalytic 1676 3 0.9 properties. Materials Today: Proceedings, 2018, 5, 25997-26001. Furfural-Mediated Synthesis of Mesoporous Ti0.5Sn0.5O2 Solid-Solution Microspheres for Effective 1.5 Photocatalytic Removal of As(III). Journal of Physical Chemistry C, 2018, 122, 28045-28054. CeO₂ Nanowire-BODIPY-Adenosine Triphosphate Fluorescent Sensing Platform for Highly 1678 3.2 15 Specific and Sensitive Detection of Arsenate. Analytical Chemistry, 2018, 90, 14507-14513. On the Rehydration of Organic Layered Double Hydroxides to form Low-Ordered Carbon/LDH 1679 1.2 Nanocompósites. Inorganics, 2018, 6, 79. Unique Surface Enhanced Raman Scattering Substrate for the Study of Arsenic Speciation and 1680 1.1 23 Detection. Journal of Physical Chemistry A, 2018, 122, 9474-9482. Preparation and characterization of oyster shell powder-treated rice husk ash adsorbent pellet for As(İII) removal. MATEC Web of Conferences, 2018, 192, 01003. Novel 2D Nanosheets with Potential Applications in Heavy Metal Purification: A Review. Advanced 1682 1.9 67 Materials Interfaces, 2018, 5, 1801094. Efficient Uptake of Cd(II) and Pb(II) Ions by Aromatic Polyamidoximes. Industrial & Amp; Engineering 1.8 Chemistry Research, 0, , .

#	Article	IF	CITATIONS
1684	Effect of Physical and Chemical Activation on Arsenic Sorption Separation by Grape Seeds-Derived Biochar. Separations, 2018, 5, 59.	1.1	10
1685	Equilibrium, kinetic and thermodynamic studies of biosorption of zinc ions from industrial wastewater using derived composite biosorbents from walnut shell. African Journal of Environmental Science and Technology, 2018, 12, 335-356.	0.2	12
1686	A critical review on arsenic removal from water using iron-based adsorbents. RSC Advances, 2018, 8, 39545-39560.	1.7	313
1687	Synthesis, characterization, and property test of crystalline polyferric sulfate adsorbent used in treatment of contaminated water with a high As(III) content. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 1217-1225.	2.4	8
1688	Photoelectrocatalytic oxidation of As(III) over hematite photoanodes: A sensible indicator of the presence of highly reactive surface sites. Electrochimica Acta, 2018, 292, 828-837.	2.6	13
1689	Removal of Fluoride and Arsenate from Aqueous Solutions by Aluminum-Modified Guava Seeds. Applied Sciences (Switzerland), 2018, 8, 1807.	1.3	26
1690	Enhanced removal of arsenite and arsenate by a multifunctional Fe-Ti-Mn composite oxide: Photooxidation, oxidation and adsorption. Water Research, 2018, 147, 264-275.	5.3	129
1691	An Aminosalicylic Acidâ€Modified Cellulose Composite Used for Mercury (II) Removal from Single and Quarternary Aqueous Solutions. ChemistrySelect, 2018, 3, 10096-10102.	0.7	19
1692	Opportunities and constraints of using the innovative adsorbents for the removal of cobalt(II) from wastewater: A review. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 435-456.	1.7	41
1693	Synthesis and characterization of pure and Al-substituted akaganeites and evaluation of their performance to adsorb As(V). Journal of Environmental Chemical Engineering, 2018, 6, 7044-7053.	3.3	7
1694	Novel cotton fabric adsorbent for efficient As(V) adsorption. Environmental Science and Pollution Research, 2018, 25, 34610-34622.	2.7	22
1695	Bio-adsorbents for the Removal of Heavy Metals from Water. , 2018, , .		6
1696	Fabrication of Economical Thiol-Tethered Bifunctional Iron Composite as Potential Commercial Applicant for Arsenic Sorption Application. Industrial & Engineering Chemistry Research, 2018, 57, 12959-12972.	1.8	19
1697	Synthesis and Properties Characterization of Crystalline Polyferric Sulfate Adsorbent Used for Treating High As(III)-content Contaminated Water. Minerals, Metals and Materials Series, 2018, , 1225-1232.	0.3	0
1698	Mimicking DNA alkylation: Removing genotoxin impurities from API streams with a solvent stable polybenzimidazole-adenine polymer. Reactive and Functional Polymers, 2018, 131, 258-265.	2.0	5
1699	Extraction Kinetics of As(V) by Aliquat-336 Using Asymmetric PVDF Hollow-Fiber Membrane Contactors. Membranes, 2018, 8, 53.	1.4	5
1700	Deep oxidation and removal of arsenite in groundwater by rationally positioning oxidation and adsorption sites in binary Fe-Cu oxide/TiO2. Chemical Engineering Journal, 2018, 354, 825-834.	6.6	42
1701	Development of an anion imprinted polymer for high and selective removal of arsenite from wastewater. Science of the Total Environment, 2018, 639, 110-117.	3.9	30

#	Article	IF	CITATIONS
1702	Ultrafine Mn ferrite by anchoring in a cellulose framework for efficient toxic ions capture and fast water/oil separation. Carbohydrate Polymers, 2018, 196, 117-125.	5.1	19
1703	The influence of irrigation-induced water table fluctuation on iron redistribution and arsenic immobilization within the unsaturation zone. Science of the Total Environment, 2018, 637-638, 191-199.	3.9	13
1704	Thermally stable hybrid polyarylidene(azomethine-ether)s polymers (PAAP): an ultrasensitive arsenic(III) sensor approach. Designed Monomers and Polymers, 2018, 21, 82-98.	0.7	15
1705	Rapid and effective removal of As(III) and As(V) using spore@Ti4+ microspheres. Chemosphere, 2018, 206, 742-749.	4.2	12
1706	Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Water Research, 2018, 141, 357-365.	5.3	42
1707	Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite. Journal of Molecular Liquids, 2018, 264, 253-260.	2.3	41
1708	Stabilization mechanism of arsenic in mine waste using basic oxygen furnace slag: The role of water contents on stabilization efficiency. Chemosphere, 2018, 208, 916-921.	4.2	14
1709	Wastewater Treatment: An Overview. Environmental Chemistry for A Sustainable World, 2018, , 1-21.	0.3	32
1710	Multifunctional photoactive and selective adsorbent for arsenite and arsenate: Evaluation of nano titanium dioxide-enabled chitosan cross-linked with copper. Journal of Hazardous Materials, 2018, 358, 145-154.	6.5	47
1711	Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2018, , 23-71.	0.3	83
1712	Arsenate and arsenite adsorption onto iron-coated cork granulates. Science of the Total Environment, 2018, 642, 1075-1089.	3.9	70
1713	A Comparative Study on Removal of Hazardous Anions from Water by Adsorption: A Review. International Journal of Chemical Engineering, 2018, 2018, 1-21.	1.4	70
1714	Fabrication of One Dimensional MnO 2 â€īiO 2 Nanoâ€Heterostructures for Enhanced Hole Mediated Oxidation of As(III) in Potable Water. ChemCatChem, 2018, 10, 4369-4379.	1.8	10
1715	Pillared Interlayered Clays for Pollution Remediation. Environmental Chemistry for A Sustainable World, 2018, , 353-376.	0.3	3
1716	Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells. Science of the Total Environment, 2018, 645, 471-481.	3.9	40
1717	Enhanced adsorption of arsenate and antimonate by calcined Mg/Al layered double hydroxide: Investigation of comparative adsorption mechanism by surface characterization. Chemosphere, 2018, 211, 903-911.	4.2	59
1718	Encapsulation of scorodite using crystalline polyferric sulfate precipitated from the Fe(II)-SO42â^'-O2-H2O system. Hydrometallurgy, 2018, 180, 78-87.	1.8	16
1719	Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Science of the Total Environment, 2018, 645, 1444-1455.	3.9	96

#	Article	IF	CITATIONS
1720	A review on graphene oxide and its composites preparation and their use for the removal of As3+and As5+ from water under the effect of various parameters: Application of isotherm, kinetic and thermodynamics. Chemical Engineering Research and Design, 2018, 119, 138-163.	2.7	115
1721	Efficient multistep arsenate removal onto magnetite modified fly ash. Journal of Environmental Management, 2018, 224, 263-276.	3.8	31
1722	Iron Oxides Minimize Arsenic Mobility in Soil Material Saturated with Saline Wastewater. Journal of Environmental Quality, 2018, 47, 873-883.	1.0	1
1723	Removal of antimony and arsenic from circum-neutral mine drainage in PoproÄ ; Slovakia: a field treatment system using low-cost iron-based material. Environmental Earth Sciences, 2018, 77, 1.	1.3	15
1724	Electroanalytical detection of heavy metals using metallophthalocyanine and silica-coated iron oxide composites. Chemical Papers, 2018, 72, 3043-3056.	1.0	15
1725	Selective and Efficient Arsenic Recovery from Water through Quaternary Amino-Functionalized Silica. Polymers, 2018, 10, 626.	2.0	5
1726	Facet-dependent contaminant removal properties of hematite nanocrystals and their environmental implications. Environmental Science: Nano, 2018, 5, 1790-1806.	2.2	93
1727	Aluminum metal–organic frameworks for sorption in solution: A review. Coordination Chemistry Reviews, 2018, 374, 236-253.	9.5	89
1728	Metal Reactivity in Laboratory Burned Wood from a Watershed Affected by Wildfires. Environmental Science & Technology, 2018, 52, 8115-8123.	4.6	8
1729	Arsenic Retention on Technosols Prepared with Nanoparticles and Ferric Soil from Mine Drainage Water. Journal of Nanotechnology, 2018, 2018, 1-8.	1.5	1
1730	Arsenic removal from water by metal-organic framework MIL-88A microrods. Environmental Science and Pollution Research, 2018, 25, 27196-27202.	2.7	61
1731	Immobilization of powdery calcium silicate hydrate via PVA covalent cross-linking process for phosphorus removal. Science of the Total Environment, 2018, 645, 937-945.	3.9	31
1732	Granulated Bog Iron Ores as Sorbents in Passive (Bio)Remediation Systems for Arsenic Removal. Frontiers in Chemistry, 2018, 6, 54.	1.8	2
1733	Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water. Chemical Engineering Journal, 2018, 334, 1808-1819.	6.6	150
1734	Antioil Ag ₃ PO ₄ Nanoparticle/Polydopamine/Al ₂ O ₃ Sandwich Structure for Complex Wastewater Treatment: Dynamic Catalysis under Natural Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 8019-8028.	3.2	134
1735	Development of bark-based magnetic iron oxide particle (BMIOP), a bio-adsorbent for removal of arsenic (III) from water. Environmental Science and Pollution Research, 2018, 25, 19657-19674.	2.7	21
1736	Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes. Chemosphere, 2018, 205, 414-425.	4.2	72
1737	Investigation of Arsenic Removal from Water by Iron-Mixed Mesoporous Pellet in a Continuous Fixed-Bed Column. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	9

#	Article	IF	CITATIONS
1738	Remediation of arsenic-contaminated soils via waste-reclaimed treatment agents: Batch and field studies. Minerals Engineering, 2018, 127, 90-97.	1.8	7
1739	Recent Advances of Multifunctional Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-28.	0.6	0
1740	Simple and energy-saving modifications of coal fly ash to remove simultaneously six toxic metal cations from mine effluents. Journal of Environmental Chemical Engineering, 2018, 6, 5498-5509.	3.3	21
1741	Quantifying Transport of Arsenic in Both Natural Soils and Relatively Homogeneous Porous Media using Stochastic Models. Soil Science Society of America Journal, 2018, 82, 1057-1070.	1.2	6
1742	Ultrasensitive point-of-care testing of arsenic based on a catalytic reaction of unmodified gold nanoparticles. New Journal of Chemistry, 2018, 42, 14857-14862.	1.4	5
1743	Identification of a new high-molecular-weight Feâ^'citrate species at low citrate-to-Fe molar ratios: Impact on arsenic removal with ferric hydroxide. Chemosphere, 2018, 212, 50-55.	4.2	3
1744	Density Functional Theory Study of Arsenate Adsorption onto Alumina Surfaces. Minerals (Basel,) Tj ETQq0 0 0 rg	BT /Overlc 0.8	21 10 Tf 50

1745	Influence of Mining Activities on Quality of Groundwater. Handbook of Environmental Chemistry, 2018, , 303-331.	0.2	2
1746	Arsenic Contamination of Groundwater in Indus River Basin of Pakistan. Springer Hydrogeology, 2018, , 393-403.	0.1	9
1747	Metal–Organic Framework-74 for Ultratrace Arsenic Removal from Water: Experimental and Density Functional Theory Studies. ACS Applied Nano Materials, 2018, 1, 3283-3292.	2.4	53
1748	Photoreductive dissolution of schwertmannite induced by oxalate and the mobilization of adsorbed As(V). Chemosphere, 2018, 208, 294-302.	4.2	21
1749	Charcoal as an adsorbent for textile wastewater treatment. Separation Science and Technology, 2018, 53, 2797-2812.	1.3	38
1750	Organic Arsenicals as Functional Motifs in Polymer and Biomaterials Science. Macromolecular Rapid Communications, 2018, 39, 1800205.	2.0	11
1751	Immobilization of hydrous iron oxides in porous alginate beads for arsenic removal from water. Environmental Science: Water Research and Technology, 2018, 4, 1114-1123.	1.2	14
1752	Removal of Cd(II), Pb(II) and Cr(III) from water using modified residues of Anacardium occidentale L Applied Water Science, 2018, 8, 1.	2.8	23
1753	Synthetic Iron Oxides for Adsorptive Removal of Arsenic. Water, Air, and Soil Pollution, 2018, 229, 203.	1.1	37
1754	Highly Efficient Utilization of Soluble Fe in the Removal of Arsenic during Oxidative Flocculation of Fe(II). Bulletin of the Chemical Society of Japan, 2018, 91, 998-1007.	2.0	4
1755	Evaluation of multiple PRPs' contributions to soil contamination in reclaimed sites around an abandoned smelter. Science of the Total Environment, 2018, 642, 314-321.	3.9	9

#	Article	IF	CITATIONS
1756	Arsenic removal from water/wastewater using layered double hydroxide derived adsorbents, a critical review. RSC Advances, 2018, 8, 22694-22709.	1.7	79
1757	Modified activated carbon with interconnected fibrils of iron-oxyhydroxides using Mn2+ as morphology regulator, for a superior arsenic removal from water. Journal of Environmental Sciences, 2019, 76, 403-414.	3.2	29
1758	Identification of arsenic-tolerant and arsenic-sensitive rice (Oryza sativa L.) cultivars on the basis of arsenic accumulation assisted stress perception, morpho-biochemical responses, and alteration in genomic template stability. Protoplasma, 2019, 256, 193-211.	1.0	38
1759	Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 145-155.	8.3	1,575
1760	Evaluation of hybrid anion exchanger containing cupric oxide for As(III) removal from water. Journal of Hazardous Materials, 2019, 370, 117-125.	6.5	37
1761	Functionalized Nanosize Graphene and Its Derivatives for Removal of Contaminations and Water Treatment. , 2019, , 133-185.		5
1762	Removal of Arsenic from Water Using Graphene Oxide Nano-hybrids. , 2019, , 221-237.		6
1764	Efficient removal of As(III) by Cu nanoparticles intercalated in carbon nanotube membranes for drinking water treatment. Chemical Engineering Journal, 2019, 355, 341-350.	6.6	78
1765	Development and characterization of yttrium-ferric binary composite for treatment of highly concentrated arsenate wastewater. Journal of Hazardous Materials, 2019, 361, 348-356.	6.5	38
1766	Dual-functional millisphere of anion-exchanger-supported nanoceria for synergistic As(III) removal with stoichiometric H2O2: Catalytic oxidation and sorption. Chemical Engineering Journal, 2019, 360, 982-989.	6.6	27
1767	Removal of thallium in water/wastewater: A review. Water Research, 2019, 165, 114981.	5.3	86
1768	Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents. Environmental Science and Pollution Research, 2019, 26, 29748-29762.	2.7	81
1769	Simultaneous redox conversion and sequestration of chromate(VI) and arsenite(III) by iron(III)-alginate based photocatalysis. Applied Catalysis B: Environmental, 2019, 259, 118046.	10.8	46
1770	The effect of γ-FeOOH on enhancing arsenic adsorption from groundwater with DMAPAAQ + FeOOH gel composite. Scientific Reports, 2019, 9, 11909.	1.6	22
1771	Spatial modelling of Cs-137 and Sr-90 fallout after the Fukushima Nuclear Power Plant accident. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322, 431-454.	0.7	5
1772	Carbothermal preparation of magnetic-responsible ferrihydrite based on Fe-rich precipitates for immobilization of arsenate and antimonate: Batch and spectroscopic studies. Chemosphere, 2019, 237, 124489.	4.2	9
1773	Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe3O4 nanocomposites for capacitive deionization of Cr(VI) ions. Science of the Total Environment, 2019, 691, 713-726.	3.9	113
1774	Kinetics of Arsenic Removal in Waste Acid by the Combination of CuSO4 and Zero-Valent Iron. Processes, 2019, 7, 401.	1.3	7

#	Article	IF	CITATIONS
1775	Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environmental Chemistry Letters, 2019, 17, 1645-1666.	8.3	94
1776	Mycoremediation of Environmental Pollutants from Contaminated Soil. , 2019, , 239-274.		10
1777	Efficient As(III) removal directly as basic iron arsenite by in-situ generated Fe(III) hydroxide from ferrous sulfate on the surface of CaCO3. Applied Surface Science, 2019, 493, 569-576.	3.1	27
1778	Anomalous concentrations of arsenic, fluoride and radon in volcanic-sedimentary aquifers from central Italy: Quality indexes for management of the water resource. Environmental Pollution, 2019, 253, 525-537.	3.7	26
1779	Treatment of Contaminated Groundwater via Arsenate Removal Using Chitosan-Coated Bentonite. Molecules, 2019, 24, 2464.	1.7	19
1780	Synergistic effects of activated carbon and nano-zerovalent copper on the performance of hydroxyapatite-alginate beads for the removal of As3+ from aqueous solution. Journal of Cleaner Production, 2019, 235, 875-886.	4.6	108
1781	Arsenic in Argentina: Technologies for arsenic removal from groundwater sources, investment costs and waste management practices. Science of the Total Environment, 2019, 690, 778-789.	3.9	78
1782	Study on the performance and interaction of different synthetic iron oxides for arsenic uptake using 76As radiotracer. Applied Radiation and Isotopes, 2019, 153, 108807.	0.7	7
1783	Adsorption behavior of arsenicals on MIL-101(Fe): The role of arsenic chemical structures. Journal of Colloid and Interface Science, 2019, 554, 692-704.	5.0	202
1784	Dietary Compounds To Reduce In Vivo Inorganic Arsenic Bioavailability. Journal of Agricultural and Food Chemistry, 2019, 67, 9032-9038.	2.4	14
1785	Highly Efficient and Stable Removal of Arsenic by Live Cell Fabricated Magnetic Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 3566.	1.8	8
1786	Accident Trend Prediction of Heavy Metal Pollution in the Heshangshan Drinking Water Source Area Based on Integrating a Two-Dimensional Water Quality Model and GIS. Sustainability, 2019, 11, 3998.	1.6	8
1787	Hydrothermal carbonisation of peat-based spent sorbents loaded with metal(loid)s. Environmental Science and Pollution Research, 2019, 26, 23730-23738.	2.7	11
1788	Development of an advanced hybrid process coupling TiO2 photocatalysis and zeolite-based adsorption for water and wastewater treatment. Korean Journal of Chemical Engineering, 2019, 36, 1201-1207.	1.2	13
1789	Differential alteration in reproductive toxicity of medaka fish on exposure to nanoscale zerovalent iron and its oxidation products. Environmental Pollution, 2019, 252, 1920-1932.	3.7	17
1790	lon flotation removal of a range of contaminant ions from drinking water. Journal of Environmental Chemical Engineering, 2019, 7, 103263.	3.3	26
1791	Sensitive and Selective in Vitro Recognition of Biologically Toxic As(III) by Rhodamine Based Chemoreceptor. ACS Sustainable Chemistry and Engineering, 2019, 7, 13687-13697.	3.2	34
1792	··A novel laminated Fe3O4/CaO2 composite for ultratrace arsenite oxidation and adsorption in aqueous solutions. Journal of Environmental Chemical Engineering, 2019, 7, 103427.	3.3	14

#	Article	IF	CITATIONS
1793	Highly efficient removal of As(V) with modified electrolytic manganese residues (M-EMRs) as a novel adsorbent. Journal of Alloys and Compounds, 2019, 811, 151973.	2.8	44
1794	The potential of microplastics as carriers of metals. Environmental Pollution, 2019, 255, 113363.	3.7	367
1795	Fixed-bed Column Studies on Removal of As (V) by Radiation Grafted Polymer "Chitosan-g-MAETC― Analytical Chemistry Letters, 2019, 9, 486-503.	0.4	4
1796	Packed bed column investigation on As(V) adsorption using magnetic iron oxide/bagasse biomass carbon composite adsorbent. IOP Conference Series: Materials Science and Engineering, 0, 490, 032032.	0.3	5
1797	Simplified Batch and Fixed-Bed Design System for Efficient and Sustainable Fluoride Removal from Water Using Slow Pyrolyzed Okra Stem and Black Gram Straw Biochars. ACS Omega, 2019, 4, 19513-19525.	1.6	37
1798	Computational Insight into the Mechanism of Arsenous Acid Adsorption on Magnetite (311) Surface. Industrial & Engineering Chemistry Research, 2019, 58, 19197-19201.	1.8	16
1799	Applications of Nanotechnology in Water and Wastewater Treatment: A Review. Asian Journal of Water, Environment and Pollution, 2019, 16, 81-86.	0.4	67
1800	Actinide and Lanthanide Adsorption onto Hierarchically Porous Carbons Beads: A High Surface Affinity for Pu. Nanomaterials, 2019, 9, 1464.	1.9	8
1801	β-Cyclodextrin-loaded minerals as novel sorbents for enhanced adsorption of Cd2+ and Pb2+ from aqueous solutions. Science of the Total Environment, 2019, 693, 133676.	3.9	45
1802	Mining Rock Wastes for Water Treatment: Potential Reuse of Fe- and Mn-Rich Materials for Arsenic Removal. Water (Switzerland), 2019, 11, 1897.	1.2	7
1803	Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America. Science of the Total Environment, 2019, 694, 133427.	3.9	113
1805	Elimination of the adverse effect of calcite slimes on the sulfidization flotation of malachite in the presence of water glass. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 324-329.	2.3	29
1806	Designing of Functionalized MWCNTs/Anodized Stainless Steel Heterostructure Electrode for Anodic Oxidation of Low Concentration As(III) in Drinking Water. ChemistrySelect, 2019, 4, 9367-9375.	0.7	7
1807	In situ synthesis of adsorptive β-Bi ₂ O ₃ /BiOBr photocatalyst with enhanced degradation efficiency. Journal of Materials Research, 2019, 34, 3450-3461.	1.2	12
1808	Adsorption properties of arsenic on sulfated TiO2 adsorbents. Journal of Industrial and Engineering Chemistry, 2019, 80, 444-449.	2.9	23
1809	Oxalic Acid-Induced Photodissolution of Ferrihydrite and the Fate of Loaded As(V): Kinetics and Mechanism. Nanomaterials, 2019, 9, 1143.	1.9	3
1810	As(V) removal using biochar produced from an agricultural waste and prediction of removal efficiency using multiple regression analysis. Environmental Science and Pollution Research, 2019, 26, 32175-32188.	2.7	23
1811	Alginate-based biotechnology: a review on the arsenic removal technologies and future possibilities. Journal of Water Supply: Research and Technology - AQUA, 2019, 68, 369-389.	0.6	16

#	Article	IF	CITATIONS
1812	Functionalization of zigzag graphene nanoribbon with DNA nucleobases-A DFT study. Applied Surface Science, 2019, 496, 143667.	3.1	7
1813	Elementary lodine-Doped Activated Carbon as an Oxidizing Agent for the Treatment of Arsenic-Enriched Drinking Water. Water (Switzerland), 2019, 11, 1778.	1.2	2
1814	Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. Journal of Environmental Management, 2019, 250, 109429.	3.8	145
1815	Detoxification of water and wastewater by advanced oxidation processes. Science of the Total Environment, 2019, 696, 133961.	3.9	230
1816	Facile preparation of ionotropically crosslinked chitosan-alginate nanosorbents by water-in-oil (W/O) microemulsion technique: Optimization and study of arsenic (V) removal. Journal of Water Process Engineering, 2019, 32, 100920.	2.6	18
1817	Heavy metals risk assessment in drinking water: An integrated probabilistic-fuzzy approach. Journal of Environmental Management, 2019, 250, 109514.	3.8	44
1818	Carbon-/Zeolite-Supported TiO2 for Sorption/Photocatalysis Applications in Water Treatment. , 2019, , .		0
1819	Kinetic and isotherm studies on adsorption of arsenic using silica based catalytic media. Journal of Water Process Engineering, 2019, 32, 100939.	2.6	19
1820	Bioaccumulation and biotransformation of arsenic by the brown macroalga Sargassum patens C. Agardh in seawater: effects of phosphate and iron ions. Journal of Applied Phycology, 2019, 31, 2669-2685.	1.5	28
1821	Immobilization of arsenic as scorodite by a thermoacidophilic mixed culture via As(III)-catalyzed oxidation with activated carbon. Journal of Hazardous Materials, 2019, 368, 221-227.	6.5	38
1822	A simple and novel method to enhance As (V) removal by zero valent iron and activated iron media through air injection at intervals. Chemosphere, 2019, 222, 415-421.	4.2	9
1823	Exploiting π–π Interactions to Design an Efficient Sorbent for Atrazine Removal from Water. ACS Applied Materials & Interfaces, 2019, 11, 6097-6103.	4.0	96
1824	Arsenate and arsenite removal from contaminated water by iron oxides nanoparticles formed inside a bacterial exopolysaccharide. Journal of Environmental Chemical Engineering, 2019, 7, 102908.	3.3	29
1825	Removal of As(<scp>iii</scp>) and As(<scp>v</scp>) from water using green, silica-based ceramic hollow fibre membranes <i>via</i> direct contact membrane distillation. RSC Advances, 2019, 9, 3367-3376.	1.7	25
1826	Adsorption of As(V) from Water over a Hydroxyl-Alumina Modified Paddy Husk Ash Surface and Its Sludge Immobilization. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	9
1827	Nanoscale Zerovalent Iron Particles for Treatment of Metalloids. , 2019, , 157-199.		5
1828	Arsenic(V) adsorption on ferric oxyhydroxide gel at high alkalinity for securely recycling of arsenic-bearing copper slag. Applied Surface Science, 2019, 478, 213-220.	3.1	31
1829	Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Environmental Pollution, 2019, 252, 967-973.	3.7	53

#	Article	IF	Citations
1830	Amino modification of rice straw-derived biochar for enhancing its cadmium (II) ions adsorption from water. Journal of Hazardous Materials, 2019, 379, 120783.	6.5	86
1831	Arsenic removal by copper-impregnated natural mineral tufa part II: a kinetics and column adsorption study. Environmental Science and Pollution Research, 2019, 26, 24143-24161.	2.7	15
1832	Structural modification of nano bentonite by aluminum, iron pillarization and 3D growth of silica mesoporous framework for arsenic removal from gold mine wastewater. Journal of Hazardous Materials, 2019, 378, 120779.	6.5	38
1833	Granular activated charcoal from peanut (Arachis hypogea) shell as a new candidate for stabilization of arsenic in soil. Microchemical Journal, 2019, 149, 104030.	2.3	9
1834	Mechanism of As(V) removal by green synthesized iron nanoparticles. Journal of Hazardous Materials, 2019, 379, 120811.	6.5	59
1835	Preparation of magnetic hydrogel microspheres of lignin derivate for application in water. Science of the Total Environment, 2019, 685, 847-855.	3.9	66
1836	Morphology Controlled Fabrication of Highly Permeable Carbon Coated Rod-Shaped Magnesium Oxide as a Sustainable Arsenite Adsorbent. Industrial & Engineering Chemistry Research, 2019, 58, 10352-10363.	1.8	11
1837	Sustainable Agriculture Reviews 36. Sustainable Agriculture Reviews, 2019, , .	0.6	12
1838	Cross-Linked Chitosan-Based Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019, , 381-425.	0.6	12
1839	Enhancing cadmium removal by low-cost nanocomposite adsorbents from aqueous solutions; a continuous system. Composites Part B: Engineering, 2019, 173, 106963.	5.9	18
1840	A critical review of corrosion development and rust removal techniques on the structural/environmental performance of corroded steel bridges. Journal of Cleaner Production, 2019, 233, 126-146.	4.6	57
1841	Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review. Journal of Environmental Management, 2019, 246, 314-323.	3.8	155
1842	Improvement of aqueous solution coexisting with arsenite and arsenate using iron mixed porous clay pellets in batch and fixed-bed column studies. Water Science and Technology: Water Supply, 2019, 19, 1929-1937.	1.0	4
1843	Application of Inorganic Fe(III)-Based Sorbent for Arsenic Sorption. Materials Science Forum, 2019, 946, 601-607.	0.3	0
1844	A review on the potential uses of red mud as amendment for pollution control in environmental media. Environmental Science and Pollution Research, 2019, 26, 22106-22125.	2.7	71
1845	Pellet adsorbent derived from molasses and dewatered alum sludge for arsenic removal. Journal of CO2 Utilization, 2019, 33, 31-36.	3.3	11
1846	Treatment of metal (loid) contaminated solutions using iron-peat as sorbent: is landfilling a suitable management option for the spent sorbent?. Environmental Science and Pollution Research, 2019, 26, 21425-21436.	2.7	8
1847	Nanotechnology for Phytoremediation of Heavy Metals: Mechanisms of Nanomaterial-Mediated Alleviation of Toxic Metals. , 2019, , 315-327.		9

#	Article	IF	CITATIONS
1848	Enhanced arsenic removal from water and easy handling of the precipitate sludge by using FeSO4 with CaCO3 to Ca(OH)2. Chemosphere, 2019, 231, 134-139.	4.2	35
1849	Arsenic adsorption and removal by a new starch stabilized ferromanganese binary oxide in water. Journal of Environmental Management, 2019, 245, 160-167.	3.8	51
1850	Stability of amine-functionalized CO ₂ adsorbents: a multifaceted puzzle. Chemical Society Reviews, 2019, 48, 3320-3405.	18.7	260
1851	Natural dolomite as a low-cost adsorbent for efficient removal of As(III) from aqueous solutions. Materials Research Express, 2019, 6, 085535.	0.8	6
1852	Changes in Phytoplankton Production after the Introduction of Heavy Metals into Ecosystem with Subsequent Cleaning by Humic Sorbent. Water Resources, 2019, 46, 242-248.	0.3	5
1853	A New Hollow-Fiber Adsorbent Material for Removing Arsenic from Groundwater. Journal of Chemistry, 2019, 2019, 1-9.	0.9	1
1854	Performance and mechanism of arsenic removal in waste acid by combination of CuSO4 and zero-valent iron. Chemical Engineering Journal, 2019, 375, 121928.	6.6	32
1855	Loading NiCo alloy nanoparticles onto nanocarbon for electrocatalytic conversion of arsenite into arsenate. Electrochemistry Communications, 2019, 104, 106477.	2.3	9
1856	Mineralogy and Weathering of Realgar-Rich Tailings At a Former As-Sb-Cr Mine At Lojane, North Macedonia. Canadian Mineralogist, 2019, , 1-21.	0.3	2
1857	Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges. Chemosphere, 2019, 232, 96-112.	4.2	130
1858	Comparison of properties and aquatic arsenic removal potentials of organically modified smectite adsorbents. Journal of Hazardous Materials, 2019, 377, 124-131.	6.5	29
1859	Photoreductive Dissolution of Schwertmannite with Incorporated As(V) Induced by Oxalate and the Mobilization of As(V). Transactions of Tianjin University, 2019, 25, 258-265.	3.3	1
1860	A new method for separation of As–Pb alloys: Vacuum distillation-condensation. Vacuum, 2019, 166, 140-146.	1.6	5
1861	Arsenic sensor development based on modification with (<i>E</i>)- <i>N</i> ′-(2-nitrobenzylidine)-benzenesulfonohydrazide: a real sample analysis. New Journal of Chemistry, 2019, 43, 9066-9075.	1.4	148
1862	Arsenic and arsenic health effects. AIP Conference Proceedings, 2019, , .	0.3	2
1863	Arsenic Contamination and Associated Health Risk (Brief Review). Oriental Journal of Chemistry, 2019, 35, 563-570.	0.1	2
1864	As(III) Removal from Aqueous Solution by Calcium Titanate Nanoparticles Prepared by the Sol Gel Method. Nanomaterials, 2019, 9, 733.	1.9	13
1865	Simultaneous Removal of Arsenite and Fluoride from Groundwater using Batch Electrochemical Coagulation Process-Role of Aluminum with Iron Electrodes. Oriental Journal of Chemistry, 2019, 35, 85-97.	0.1	6

#	Article	IF	CITATIONS
1866	The environmental impact of ancient iron mining and smelting on Elba Island, Italy – A geochemical soil survey of the Magazzini site. Journal of Geochemical Exploration, 2019, 205, 106307.	1.5	12
1867	Formation of active Fe(OH)3 in situ for enhancing arsenic removal from water by the oxidation of Fe(II) in air with the presence of CaCO3. Journal of Cleaner Production, 2019, 227, 1-9.	4.6	55
1868	Metal-organic frameworks for aquatic arsenic removal. Water Research, 2019, 158, 370-382.	5.3	154
1869	Magnetite-Coated Boron Nitride Nanosheets for the Removal of Arsenic(V) from Water. ACS Applied Materials & Interfaces, 2019, 11, 19017-19028.	4.0	50
1870	Removal of Hazardous Oxyanions from the Environment Using Metal-Oxide-Based Materials. Materials, 2019, 12, 927.	1.3	77
1871	PBA-loaded albite-base ceramic foam in application to adsorb harmful ions of Cd, Cs and As(V) in water. Multidiscipline Modeling in Materials and Structures, 2019, 15, 659-672.	0.6	8
1872	Assessing potential of nanofiltration for sulfuric acid plant effluent reclamation: Operational and economic aspects. Separation and Purification Technology, 2019, 222, 369-380.	3.9	18
1873	Prevention of Deficit in Neuropsychiatric Disorders through Monitoring of Arsenic and Its Derivatives as Well as Through Bioinformatics and Cheminformatics. International Journal of Molecular Sciences, 2019, 20, 1804.	1.8	9
1874	Selected Sorption Materials for Removal of Heavy Metals from Water. IOP Conference Series: Earth and Environmental Science, 2019, 221, 012123.	0.2	0
1875	Application of metallurgical slag to treat geothermal wastewater with high concentrations of arsenic and boron. International Journal of Environmental Science and Technology, 2019, 16, 2373-2384.	1.8	5
1876	Removal of As(III) from aqueous solution by the oyster shell powder–treated rice husk ash composite (OS-TRHA) pellet. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2019, 42, 411-419.	0.6	1
1877	Removal of toxic/radioactive metal ions by metal-organic framework-based materials. Interface Science and Technology, 2019, , 217-279.	1.6	15
1878	Application of nZVI and its composites into the treatment of toxic/radioactive metal ions. Interface Science and Technology, 2019, , 281-330.	1.6	13
1879	Core–shell structured zero-valent manganese (ZVM): a novel nanoadsorbent for efficient removal of As(<scp>iii</scp>) and As(<scp>v</scp>) from drinking water. Journal of Materials Chemistry A, 2019, 7, 9933-9947.	5.2	47
1880	Iron-impregnated granular activated carbon for arsenic removal: Application to practical column filters. Journal of Environmental Management, 2019, 239, 235-243.	3.8	76
1881	A novel tri-metal composite incorporated polyacrylamide hybrid material for the removal of arsenate, chromate and fluoride from aqueous media. Environmental Technology and Innovation, 2019, 14, 100353.	3.0	8
1882	Selective recovery of ferrous oxalate and removal of arsenic and other metals from soil-washing wastewater using a reduction reaction. Journal of Cleaner Production, 2019, 221, 635-643.	4.6	43
1883	Evaluation of the adsorptive properties of locally available alumino-silicate clay in As(III) and As(V) remediation from groundwater. Physics and Chemistry of the Earth, 2019, 112, 28-35.	1.2	7

#	Article	IF	CITATIONS
1884	Enhanced arsenate removal from aqueous solution by Mn-doped MgAl-layered double hydroxides. Environmental Science and Pollution Research, 2019, 26, 12014-12024.	2.7	27
1885	Investigation of green functionalization of multiwall carbon nanotubes and its application in adsorption of benzene, toluene & p-xylene from aqueous solution. Journal of Cleaner Production, 2019, 221, 323-338.	4.6	33
1886	Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chemical Reviews, 2019, 119, 3510-3673.	23.0	1,427
1887	Spatial distribution of arsenic in groundwater of Iran, a review. Journal of Geochemical Exploration, 2019, 201, 88-98.	1.5	50
1888	An arsenic trioxide nanoparticle prodrug (ATONP) potentiates a therapeutic effect on an aggressive hepatocellular carcinoma model <i>via</i> enhancement of intratumoral arsenic accumulation and disturbance of the tumor microenvironment. Journal of Materials Chemistry B, 2019, 7, 3088-3099.	2.9	11
1889	Drug loading-release behaviour of mesoporous materials SBA-15 and CMK-3 using ibuprofen molecule as drug model. Journal of Physics: Conference Series, 2019, 1153, 012065.	0.3	3
1890	pH effects of the arsenite photocatalytic oxidation reaction on different anatase TiO2 facets. Chemosphere, 2019, 225, 434-442.	4.2	28
1891	In situ synthesis of hierarchical cobalt-aluminum layered double hydroxide on boehmite surface for efficient removal of arsenate from aqueous solutions: Effects of solution chemistry factors and sorption mechanism. Chemical Engineering Journal, 2019, 368, 914-923.	6.6	40
1892	Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt) Tj ETQq0 0 0 r	gBT /Overl 4.2	ock 10 Tf 50
1893	Al–Mg–Ca-Layered Double Oxides for Efficient Removal of As(V) from Water: The Role of Amides. Journal of Chemical & Engineering Data, 2019, 64, 1594-1604.	1.0	14
1894	Removal of Pb(<scp>ii</scp>) and Cd(<scp>ii</scp>) from wastewater using arginine cross-linked chitosan–carboxymethyl cellulose beads as green adsorbent. RSC Advances, 2019, 9, 7890-7902.	1.7	107
1895	Polyextremophilic Bacteria from High Altitude Andean Lakes: Arsenic Resistance Profiles and Biofilm Production. BioMed Research International, 2019, 2019, 1-11.	0.9	15
1896	The recycling and reuse of steelmaking slags — A review. Resources, Conservation and Recycling, 2019, 146, 244-255.	5.3	155
1897	Toward Realizing Multifunctionality: Photoactive and Selective Adsorbents for the Removal of Inorganics in Water Treatment. Accounts of Chemical Research, 2019, 52, 1206-1214.	7.6	32
1898	Increased As Adsorption on Maghemite-Containing Red Mud Prepared by the Alkali Fusion-Leaching Method. Minerals (Basel, Switzerland), 2019, 9, 60.	0.8	21
1899	Chitosan based composite sorbents for arsenic removal. Russian Chemical Bulletin, 2019, 68, 9-16.	0.4	7
1900	Remediation of arsenic from contaminated seawater using manganese spinel ferrite nanoparticles: Ecotoxicological evaluation in Mytilus galloprovincialis. Environmental Research, 2019, 175, 200-212.	3.7	28
1901	Understanding the Ion Exchange Process in LDH Nanomaterials by Fast In Situ XRPD and PCA-Assisted Kinetic Analysis. Journal of Nanomaterials, 2019, 2019, 1-9.	1.5	16

#	Article	IF	CITATIONS
1902	Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research?. Environment International, 2019, 127, 52-69.	4.8	101
1903	Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. Journal of Hazardous Materials, 2019, 373, 810-819.	6.5	79
1904	Transformation processes of metals associated with urban road dust: A critical review. Critical Reviews in Environmental Science and Technology, 2019, 49, 1675-1699.	6.6	21
1905	Removal of Arsenic from Synthetic Groundwater Using Sulfur-Enhanced Cement-Based Filter Media. Journal of Hazardous, Toxic, and Radioactive Waste, 2019, 23, .	1.2	6
1906	Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review. Chemical Engineering Research and Design, 2019, 126, 60-97.	2.7	156
1907	Water Pollution Remediation Techniques with Special Focus on Adsorption. Nanotechnology in the Life Sciences, 2019, , 39-68.	0.4	2
1908	Oxyanion-Binding in a Bioinspired Nanoparticle-Assembled Hybrid Microsphere Structure: Effective Removal of Arsenate/Chromate From Water. ACS Applied Nano Materials, 2019, 2, 1525-1532.	2.4	9
1909	Modeling transport of arsenic through modified granular natural siderite filters for arsenic removal. Geoscience Frontiers, 2019, 10, 1755-1764.	4.3	5
1910	Transforming the Global Arsenic and Fluoride Crisis Into an Economic Enterprise: Role of Hybrid Anion Exchange Nanotechnology (HAIX-Nano) in Ballia, Uttar Pradesh and Nalhati, West Bengal. , 2019, , 327-354.		0
1911	Facile surface modification of mesoporous silica with heterocyclic silanes for efficiently removing arsenic. Chinese Chemical Letters, 2019, 30, 1133-1136.	4.8	24
1912	Physical and chemical characterization of dissolved arsenic in the South China Sea. Marine Chemistry, 2019, 209, 128-138.	0.9	4
1913	Addressing the Arsenic Issue in the Lower Mekong Region—The Challenges and Systematic Approaches. , 2019, , 259-270.		0
1914	Well-dispersed TiO2 nanoparticles anchored on Fe3O4 magnetic nanosheets for efficient arsenic removal. Journal of Environmental Management, 2019, 237, 63-74.	3.8	67
1915	Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization. Clean Technologies and Environmental Policy, 2019, 21, 795-813.	2.1	57
1916	Mesoporous spinel CoFe ₂ O ₄ as an efficient adsorbent for arsenite removal from water: high efficiency <i>via</i> control of the particle assemblage configuration. Environmental Science: Nano, 2019, 6, 1156-1167.	2.2	16
1917	Adsorption of arsenate from aqueous solution by ferric oxide-impregnated Dowex Marathon MSA anion exchange resin: application of non-linear isotherm modeling and thermodynamic studies. Environmental Earth Sciences, 2019, 78, 1.	1.3	5
1918	Adsorption in Water Treatment. , 2019, , .		16
1919	Adsorption of arsenic (V) on magnetite-enriched particles separated from the mill scale. Environmental Earth Sciences, 2019, 78, 1.	1.3	20

#	Article	IF	CITATIONS
1920	Reconstructing human–landscape interactions in the context of ancient iron smelting on Elba Island, Italy, using sedimentological evidence. Geoarchaeology - an International Journal, 2019, 34, 336-359.	0.7	3
1921	Applications of biological sulfate reduction for remediation of arsenic – A review. Chemosphere, 2019, 222, 932-944.	4.2	77
1923	Removal of Heavy Metals in Drinking Water by Iron-based Sorption Materials. IOP Conference Series: Earth and Environmental Science, 2019, 362, 012109.	0.2	3
1924	Photoxidation of As3+ to As5+ in the presence of TiO2 under lighting conditions of a lamp and sunlight. , 2019, , .		0
1925	Arsenic Removal from Water by Adsorption onto Iron Oxide/Nano-Porous Carbon Magnetic Composite. Applied Sciences (Switzerland), 2019, 9, 3732.	1.3	62
1926	Sorbents Based on Magnetite Nanoparticles for Biomedical Applications. Nanotechnologies in Russia, 2019, 14, 33-40.	0.7	5
1927	Adsorptive Removal of Arsenic from Aqueous Environment. Journal of Chemical Engineering of Japan, 2019, 52, 829-834.	0.3	5
1928	Assessment of arsenic concentration along a surface water flow path from Zarshuran gold mine to the downstream residential area. Environmental Earth Sciences, 2019, 78, 1.	1.3	10
1929	Antimony(III/V) removal from industrial wastewaters: treatment of spent catalysts formally used in the SOHIO acrylonitrile process. Water Science and Technology, 2019, 80, 529-540.	1.2	9
1930	Arsenic(III) Removal by Nanostructured Dialdehyde Cellulose–Cysteine Microscale and Nanoscale Fibers. ACS Omega, 2019, 4, 22008-22020.	1.6	66
1931	Arsenite and chromate sequestration onto ferrihydrite, siderite and goethite nanostructured minerals: Isotherms from flow-through reactor experiments and XAS measurements. Journal of Hazardous Materials, 2019, 362, 358-367.	6.5	42
1932	β–cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb2+ removal. Journal of Hazardous Materials, 2019, 362, 206-213.	6.5	68
1933	Exceptional adsorption of arsenic by zirconium metal-organic frameworks: Engineering exploration and mechanism insight. Journal of Colloid and Interface Science, 2019, 539, 223-234.	5.0	213
1934	Evaluation of the effectiveness of in situ stabilization in the field aged arsenic-contaminated soil: Chemical extractability and biological response. Journal of Hazardous Materials, 2019, 367, 137-143.	6.5	31
1935	Calcium ion incorporated hydrous iron(III) oxide: synthesis, characterization, and property exploitation towards water remediation from arsenite and fluoride. Environmental Science and Pollution Research, 2019, 26, 4618-4632.	2.7	10
1936	Simultaneous removal of arsenic and fluoride from synthetic solution through continuous electrocoagulation: Operating cost and sludge utilization. Journal of Environmental Chemical Engineering, 2019, 7, 102829.	3.3	51
1937	Technology alternatives for decontamination of arsenic-rich groundwater—A critical review. Environmental Technology and Innovation, 2019, 13, 277-303.	3.0	101
1938	Arsenite oxidation by a facultative chemolithotrophic Delftia spp. BAs29 for its potential application in groundwater arsenic bioremediation. International Biodeterioration and Biodegradation, 2019, 136, 55-62.	1.9	42

#	Article	IF	Citations
1939	Low‣evel Arsenic Removal from Drinking Water. Global Challenges, 2019, 3, 1700047.	1.8	8
1940	Assessment of red mud as sorptive landfill liner for the retention of arsenic (V). Journal of Environmental Management, 2019, 232, 271-285.	3.8	36
1941	Catalytic degradation of Oâ€cresol using H ₂ O ₂ onto Algerian Clayâ€Na. Water Environment Research, 2019, 91, 165-174.	1.3	6
1942	Agronomic Strategies for Reducing Arsenic Risk in Rice. Current Topics in Environmental Health and Preventive Medicine, 2019, , 181-198.	0.1	6
1943	Arsenic Contamination in Asia. Current Topics in Environmental Health and Preventive Medicine, 2019, , \cdot	0.1	4
1944	Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Journal of Environmental Management, 2019, 232, 117-130.	3.8	56
1945	Impact of eutrophication on arsenic cycling in freshwaters. Water Research, 2019, 150, 191-199.	5.3	47
1946	Recent Advances of Multifunctional Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 37-64.	0.6	2
1947	Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe3O4 nanoparticles for As(V) removal from water. Journal of Environmental Chemical Engineering, 2019, 7, 102875.	3.3	34
1948	Interaction of arsenic(III) and arsenic(V) on manganese dioxide: XPS and electrochemical investigations. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 277-285.	0.9	17
1949	Preparation of Fe–Co based MOF-74 and its effective adsorption of arsenic from aqueous solution. Journal of Environmental Sciences, 2019, 80, 197-207.	3.2	115
1950	Performance of Freshly Generated Magnesium Hydroxide (FGMH) for Reactive Dye Removal. Colloids and Interface Science Communications, 2019, 28, 34-40.	2.0	22
1951	Synthesis and adsorption behavior of mesoporous alumina and Fe-doped alumina for the removal of dominant arsenic species in contaminated waters. Journal of Environmental Chemical Engineering, 2019, 7, 102901.	3.3	50
1952	Preparation and characterization of a novel hydrophilic PVDF/PVA/Al 2 O 3 nanocomposite membrane for removal of As(V) from aqueous solutions. Polymer Composites, 2019, 40, 2452-2461.	2.3	23
1953	Redox synergistic Mn-Al-Fe and Cu-Al-Fe ternary metal oxide nano adsorbents for arsenic remediation with environmentally stable As(0) formation. Journal of Hazardous Materials, 2019, 364, 519-530.	6.5	45
1954	Functionalized magnetic nanomaterials for rapid and effective adsorptive removal of fluoroquinolones: Comprehensive experimental cum computational investigations. Journal of Hazardous Materials, 2019, 364, 621-634.	6.5	26
1955	Performance comparison of hematite (α-Fe2O3)-polymer composite and core-shell nanofibers as point-of-use filtration platforms for metal sequestration. Water Research, 2019, 148, 492-503.	5.3	41
1956	A novel nanostructured Fe-Ti-Mn composite oxide for highly efficient arsenic removal: Preparation and performance evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 364-372.	2.3	48

#	Article	IF	CITATIONS
1957	Enhanced coagulation process by Fe-Mn bimetal nano-oxides in combination with inorganic polymer coagulants for improving As(V) removal from contaminated water. Journal of Cleaner Production, 2019, 208, 384-392.	4.6	47
1958	Treatment and Recycling of Wastewater from Pharmaceutical Industry. Applied Environmental Science and Engineering for A Sustainable Future, 2019, , 267-302.	0.2	9
1959	Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III). Environmental Pollution, 2019, 245, 711-718.	3.7	18
1960	Separation of arsenic(V) by composite adsorbents of metal oxide nanoparticles immobilized on silica flakes and use of adsorbent coated alumina tubes as an alternative method. Journal of Water Process Engineering, 2019, 27, 134-142.	2.6	13
1961	Sustainable and Affordable Composites Built Using Microstructures Performing Better than Nanostructures for Arsenic Removal. ACS Sustainable Chemistry and Engineering, 2019, 7, 3222-3233.	3.2	26
1962	Clay based nanocomposites for removal of heavy metals from water: A review. Journal of Environmental Management, 2019, 232, 803-817.	3.8	234
1963	Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environmental Chemistry Letters, 2019, 17, 729-754.	8.3	388
1964	Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal. Chemosphere, 2019, 219, 504-509.	4.2	70
1965	Review of processes controlling arsenic retention and release in soils and sediments of Bengal basin and suitable iron based technologies for its removal. Groundwater for Sustainable Development, 2019, 8, 358-367.	2.3	42
1966	Arsenite removal from groundwater in a batch electrocoagulation process: Optimization through response surface methodology. Separation Science and Technology, 2019, 54, 775-785.	1.3	27
1967	Magnetic Fe3O4@CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic(III/V) from water. Applied Surface Science, 2019, 466, 746-756.	3.1	94
1968	Facile chemical synthesis and novel application of zinc oxysulfide nanomaterial for instant and superior adsorption of arsenic from water. Journal of Cleaner Production, 2019, 208, 458-469.	4.6	40
1969	Activated carbons of varying pore structure eliminate the bioavailability of 2,3,7,8-tetrachlorodibenzo-p-dioxin to a mammalian (mouse) model. Science of the Total Environment, 2019, 650, 2231-2238.	3.9	6
1970	Direct epitaxial synthesis of magnetic Fe3O4@UiO-66 composite for efficient removal of arsenate from water. Microporous and Mesoporous Materials, 2019, 276, 68-75.	2.2	102
1971	Facile fabrication of composition-tunable Fe/Mg bimetal-organic frameworks for exceptional arsenate removal. Chemical Engineering Journal, 2019, 357, 579-588.	6.6	124
1972	Arsenic surface complexation behavior in aqueous systems onto Al substituted Ni, Co, Mn, and Cu based ferrite nano adsorbents. Journal of Hazardous Materials, 2019, 361, 383-393.	6.5	22
1973	Bacteria immobilization on neem leaves/MnFe2O4 composite surface for removal of As(III) and As(V) from wastewater. Arabian Journal of Chemistry, 2019, 12, 3263-3288.	2.3	22
1974	Application of an agro-industrial waste for the removal of As (III) in a counter-current multiphase fluidized bed. International Journal of Environmental Science and Technology, 2019, 16, 279-294.	1.8	10

#	Article	IF	CITATIONS
1975	Bioadsorption of arsenic from aqueous solution by the extremophilic bacterium <i>Acidithiobacillus ferrooxidans</i> DLC-5. Biocatalysis and Biotransformation, 2019, 37, 35-43.	1.1	11
1976	Simultaneous removal of arsenic and antimony from mining wastewater using granular TiO2: Batch and field column studies. Journal of Environmental Sciences, 2019, 75, 269-276.	3.2	39
1977	A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Separation and Purification Technology, 2019, 214, 31-39.	3.9	75
1978	Evaluation of natural goethite on the removal of arsenate and selenite from water. Journal of Environmental Sciences, 2019, 76, 133-141.	3.2	42
1979	Acid functionalized-nanoporous carbon/MnO2 composite for removal of arsenic from aqueous medium. Arabian Journal of Chemistry, 2019, 12, 5200-5211.	2.3	17
1980	FeOOH-modified clay sorbents for arsenic removal from aqueous solutions. Environmental Technology and Innovation, 2019, 13, 364-372.	3.0	37
1981	Freeze-drying as the post-processing technique improving adsorptive properties of waste Fe/Mn oxides entrapped in polymer beads towards As(III) and As(V). Separation Science and Technology, 2020, 55, 487-500.	1.3	9
1982	Toxic Metals in Industrial Wastewaters and Phytoremediation Using Aquatic Macrophytes for Environmental Pollution Control: An Eco-Remedial Approach. , 2020, , 257-282.		7
1983	As(III) removal under the presence of competitive anions using the calcined ground oyster shell as the adsorbent. Separation Science and Technology, 2020, 55, 395-405.	1.3	3
1984	Polyvinyl alcohol-stabilized granular Fe–Mn binary oxide as an effective adsorbent for simultaneous removal of arsenate and arsenite. Environmental Technology (United Kingdom), 2020, 41, 2564-2574.	1.2	6
1985	An ultrasound assisted reductive method for preparation of MnO ₂ : modification of XAD and application in removal of arsenic. Separation Science and Technology, 2020, 55, 1715-1723.	1.3	4
1986	Value adding industrial solid wastes: impact of industrial solid wastes upon copper removal performance of synthesized low cost adsorbents. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 835-848.	1.2	7
1987	Arsenic removal from groundwater in Kütahya, Turkey, by novel calcined modified hydrotalcite. Environmental Geochemistry and Health, 2020, 42, 1335-1345.	1.8	5
1988	Overview of biochar production from preservative-treated wood with detailed analysis of biochar characteristics, heavy metals behaviors, and their ecotoxicity. Journal of Hazardous Materials, 2020, 384, 121356.	6.5	73
1989	Removal of Cr(VI) species from water with a newly-designed adsorptive treatment train. Separation and Purification Technology, 2020, 234, 116041.	3.9	9
1990	A multifunctional gelatine–quaternary ammonium copolymer: An efficient material for reducing dye emission in leather tanning process by superior anionic dye adsorption. Journal of Hazardous Materials, 2020, 383, 121142.	6.5	47
1991	Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam. Science of the Total Environment, 2020, 699, 134267.	3.9	43
1992	Adsorption behavior and mechanism of arsenic on mesoporous silica modified by iron-manganese binary oxide (FeMnOx/SBA-15) from aqueous systems. Journal of Hazardous Materials, 2020, 384, 121229.	6.5	62

		TIATION REI	PORT	
#	Article		IF	CITATIONS
1993	Waste sludge derived adsorbents for arsenate removal from water. Chemosphere, 2020, 239, 12483	32.	4.2	34
1994	Removal of arsenic from aqueous solution using microflower-like δ-Bi2O3 as adsorbent: adsorption characteristics and mechanisms. Journal of Dispersion Science and Technology, 2020, 41, 2026-2030	5.	1.3	6
1995	Biosorption of Arsenic: An Emerging Eco-technology of Arsenic Detoxification in Drinking Water. Advances in Water Security, 2020, , 207-230.		0.8	9
1996	Removal of arsenic(III) from aqueous solution by concreteâ€based adsorbents. Canadian Journal of Chemical Engineering, 2020, 98, 353-359.		0.9	9
1997	Fresh Water Pollution Dynamics and Remediation. , 2020, , .			34
1998	Arsenic Water Resources Contamination. Advances in Water Security, 2020, , .		0.8	6
1999	Wonders of Nanotechnology for Remediation of Polluted Aquatic Environs. , 2020, , 319-339.			24
2000	Thermodynamic, kinetic and equilibrium isotherm studies of As(V) adsorption by Fe(III)-impregnated bentonite. Environment, Development and Sustainability, 2020, 22, 5273-5295.		2.7	17
2001	Determining optimum carob powder adsorbtion for cleaning wastewater: intelligent optimization with electro-search algorithm. Wireless Networks, 2020, 26, 5665-5679.		2.0	1
2002	Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry. Chemical Engineering Journal, 2020, 381, 122559.		6.6	62
2003	Metal organic framework UiO-66 and activated carbon composite sorbent for the concurrent adsorption of cationic and anionic metals. Chemosphere, 2020, 238, 124656.		4.2	57
2004	Influence of the structure and composition of Fe–Mn binary oxides on rGO on As(III) removal from aquifers. Journal of Environmental Sciences, 2020, 88, 133-144.		3.2	21
2005	Synthesis of green marine algal-based biochar for remediation of arsenic(V) from contaminated waters in batch and column mode of operation. International Journal of Phytoremediation, 2020, 22, 279-286.	1	1.7	39
2006	Remediation of bio-refinery wastewater containing organic and inorganic toxic pollutants by adsorption onto chitosan-based magnetic nanosorbent. Water Quality Research Journal of Canada, 2020, 55, 36-51.		1.2	24
2007	Migratory effects of arsenic as a hydrogeological pollutant on the quality of wastewater treatment sludge. Water and Environment Journal, 2020, 34, 320-332.		1.0	0
2008	Microporous carbon fibers prepared by carbonization of cellulose as carriers of particles of active substances. Chemical Papers, 2020, 74, 1359-1365.		1.0	2
2009	A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environmental Technology and Innovation, 2020, 17, 100519.		3.0	120
2010	Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. Science of the Total Environment, 2020, 702, 134893.		3.9	122

#	Article	IF	Citations
2011	Arsenic Adsorption on Iron-Modified Montmorillonite: Kinetic Equilibrium and Surface Complexes. Environmental Engineering Science, 2020, 37, 22-32.	0.8	11
2012	Arsenic(V) removal by granular adsorbents made from water treatment residuals materials and chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124036.	2.3	71
2013	Ethylene glycol-induced metal alkoxides via phase-transfer catalyst as multi-talented adsorbents for boosted adsorption performance of toxic anions/oxyanions from waters. Separation and Purification Technology, 2020, 235, 116247.	3.9	10
2014	Arsenite simultaneous sorption and oxidation by natural ferruginous manganese ores with various ratios of Mn/Fe. Chemical Engineering Journal, 2020, 382, 123040.	6.6	48
2015	Efficient removal of As(III) from aqueous solution by S-doped copper-lanthanum bimetallic oxides: Simultaneous oxidation and adsorption. Chemical Engineering Journal, 2020, 384, 123274.	6.6	28
2016	Separation and preconcentration of arsenite and other heavy metal ions using graphene oxide laminated with protein molecules. Journal of Hazardous Materials, 2020, 384, 121479.	6.5	28
2017	Bacillus firmus strain FSS2C ameliorated oxidative stress in wheat plants induced by azo dye (reactiveÂ) 1.1	Tj ETQq0 0
2018	Impact of air pollution on intestinal redox lipidome and microbiome. Free Radical Biology and Medicine, 2020, 151, 99-110.	1.3	67
2019	Engineered Pyrogenic Materials as Tools to Affect Arsenic Mobility in Old Mine Site Soil of Mediterranean Region. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 265-272.	1.3	2
2020	Iron-Incorporated Activated Carbon Synthesis from Biomass Mixture for Enhanced Arsenic Adsorption. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	24
2021	Removing arsenic from water with an original and modified natural manganese oxide ore: batch kinetic and equilibrium adsorption studies. Environmental Science and Pollution Research, 2020, 27, 5490-5502.	2.7	23
2022	Maghemite and Graphene Oxide Embedded Polyacrylonitrile Electrospun Nanofiber Matrix for Remediation of Arsenate Ions. ACS Applied Polymer Materials, 2020, 2, 604-617.	2.0	34
2023	Recyclable high-affinity arsenate sorbents based on porous Fe2O3/La2O2CO3 composites derived from Fe-La-C frameworks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124018.	2.3	28
2024	Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control. Chemosphere, 2020, 247, 125822.	4.2	11

2025	Arsenic remediation onto redox and photo-catalytic/electrocatalytic Mn-Al-Fe impregnated rGO: Sustainable aspects of sludge as supercapacitor. Chemical Engineering Journal, 2020, 390, 124000.	6.6	59
2026	Efficient removal of arsenate from water by lanthanum immobilized electrospun chitosan nanofiber. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124417.	2.3	25
2027	A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. Journal of Hazardous Materials, 2020, 388, 121815.	6.5	98
2028	Simultaneous removal of selenite and selenate from drinking water using mesoporous activated alumina. Applied Water Science, 2020, 10, 1.	2.8	20

#	Article	IF	CITATIONS
2029	Synthesis optimization and X-ray absorption spectroscopy investigation of polymeric anion exchanger supported binary Fe/Mn oxides nanoparticles for enhanced As(III) removal. Reactive and Functional Polymers, 2020, 147, 104441.	2.0	20
2030	Efficient removal of arsenic using plastic waste char: Prevailing mechanism and sorption performance. Journal of Water Process Engineering, 2020, 33, 101095.	2.6	44
2031	Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation. Science of the Total Environment, 2020, 706, 135943.	3.9	93
2032	Stabilization of soil arsenic by natural limonite after mechanical activation and the associated mechanisms. Science of the Total Environment, 2020, 708, 135118.	3.9	16
2033	Simultaneous removal of butylparaben and arsenite by MOF-derived porous carbon coated lanthanum oxide: Combination of persulfate activation and adsorption. Chemical Engineering Journal, 2020, 391, 123552.	6.6	39
2034	Selective removal of high concentration arsenate from aqueous solution by magnetic Fe–Y binary oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125242.	2.3	9
2035	Selective Removal of As(V) Ions from Acid Mine Drainage Using Polymer Inclusion Membranes. Minerals (Basel, Switzerland), 2020, 10, 909.	0.8	11
2036	Effect Factor of Arsenite and Arsenate Removal by a Manufactured Material: Activated Carbon-Supported Nano-TiO ₂ . Journal of Chemistry, 2020, 2020, 1-12.	0.9	7
2037	Fabrication of chitosan/graphene oxide-gadolinium nanorods as a novel nanocomposite for arsenic removal from aqueous solutions. Journal of Molecular Liquids, 2020, 320, 114410.	2.3	40
2038	Agro-Waste Derived Biomass Impregnated with TiO2 as a Potential Adsorbent for Removal of As(III) from Water. Catalysts, 2020, 10, 1125.	1.6	26
2039	Removal of inorganic arsenic from water using metal organic frameworks. Journal of Environmental Sciences, 2020, 97, 162-168.	3.2	14
2040	Effective removal of arsenic from an aqueous solution by ferrihydrite/goethite graphene oxide composites using the modified Hummers method. Journal of Environmental Chemical Engineering, 2020, 8, 104416.	3.3	17
2041	Removal of arsenic contaminants using a novel porous nanoadsorbent with superior magnetic recovery. Chemical Engineering Science: X, 2020, 8, 100069.	1.5	4
2042	Facile Synthesis of Manganese Dioxide Nanoparticles for Efficient Removal of Aqueous As(III). Journal of Chemical & Engineering Data, 2020, 65, 3988-3997.	1.0	10
2043	Aerobic oxidation of arsenite to arsenate by Cu(ii)–chitosan/O2 in Fenton-like reaction, a XANES investigation. Environmental Science: Water Research and Technology, 2020, 6, 2713-2722.	1.2	0
2044	Bionanocomposites in water treatment. , 2020, , 505-518.		10
2045	As(V) and As(III) sequestration by starch functionalized magnetite nanoparticles: influence of the synthesis route onto the trapping efficiency. Science and Technology of Advanced Materials, 2020, 21, 524-539.	2.8	13
2046	Nanofiltration for Arsenic Removal: Challenges, Recent Developments, and Perspectives. Nanomaterials, 2020, 10, 1323.	1.9	76

#	Article	IF	CITATIONS
2047	Câ^'As Bond Formation Reactions for the Preparation of Organoarsenic(III) Compounds. Chemistry - an Asian Journal, 2020, 15, 2428-2436.	1.7	10
2048	Arsenate Adsorption on Fly Ash, Chitosan and Their Composites and Its Relations with Surface, Charge and Pore Properties of the Sorbents. Materials, 2020, 13, 5381.	1.3	6
2049	Magnetically recoverable nanoparticles for the simultaneous removal of Sb and As from water. Environmental Advances, 2020, 2, 100013.	2.2	8
2050	Adsorptive Removal of Arsenic by Mesoporous Iron Oxide in Aquatic Systems. Water (Switzerland), 2020, 12, 3147.	1.2	15
2051	3D-printed integrative probeheads for magnetic resonance. Nature Communications, 2020, 11, 5793.	5.8	18
2052	Adsorption of Inorganic As(III) from Aqueous Solutions by Iron-Manganese Oxide. Scientific World, 2020, 13, 46-50.	0.1	1
2053	Development of a fast and sensitive method for the determination of As(III) at trace levels in urine by differential pulse anodic voltammetry using a simple graphene screen–printed electrode. Microchemical Journal, 2020, 159, 105393.	2.3	10
2054	Review: Efficiently performing periodic elements with modern adsorption technologies for arsenic removal. Environmental Science and Pollution Research, 2020, 27, 39888-39912.	2.7	26
2055	Unprecedented arsenic photo-oxidation behavior of few- and multi-layer Ti3C2Tx nano-sheets. Applied Materials Today, 2020, 20, 100769.	2.3	25
2056	Arsenic (III) Removal from a High-Concentration Arsenic (III) Solution by Forming Ferric Arsenite on Red Mud Surface. Minerals (Basel, Switzerland), 2020, 10, 583.	0.8	7
2057	Lanthanum hydroxide: a highly efficient and selective adsorbent for arsenate removal from aqueous solution. Environmental Science and Pollution Research, 2020, 27, 42868-42880.	2.7	28
2058	Treatment of aqueous arsenic – A review of biosorbent preparation methods. Journal of Environmental Management, 2020, 273, 111126.	3.8	35
2059	Functional iron chitosan microspheres synthesized by ionotropic gelation for the removal of arsenic (V) from water. International Journal of Biological Macromolecules, 2020, 164, 1575-1583.	3.6	29
2060	Cellulose-Supported Nanosized Zinc Oxide: Highly Efficient Bionanomaterial for Removal of Arsenic from Water. ACS Symposium Series, 2020, , 253-267.	0.5	4
2061	Sb(III) and Sb(V) removal from water by a hydroxyl-intercalated, mechanochemically synthesized Mg-Fe-LDH. Applied Clay Science, 2020, 196, 105766.	2.6	51
2062	Defect Control in Zr-Based Metal–Organic Framework Nanoparticles for Arsenic Removal from Water. ACS Applied Nano Materials, 2020, 3, 8997-9008.	2.4	96
2063	Removal of Trace Arsenite through Simultaneous Photocatalytic Oxidation and Adsorption by Magnetic Fe ₃ O ₄ @PpPDA@TiO ₂ Core–Shell Nanoparticles. ACS Applied Nano Materials, 2020, 3, 8495-8504.	2.4	47
2064	Self-assembled Fe3+@spores as a sustainable heterogeneous Fenton catalyst for arsenite removal. Journal of Environmental Chemical Engineering, 2020, 8, 104485.	3.3	7

#	Article	IF	Citations
2065	Multifunctional Iron oxide embedded reduced graphene oxide as a versatile adsorbent candidate for effectual arsenic and dye removal. Colloids and Interface Science Communications, 2020, 39, 100319.	2.0	25
2066	Removing arsenate from water using modified manganese oxide ore: Column adsorption and waste management. Journal of Environmental Chemical Engineering, 2020, 8, 104491.	3.3	12
2067	New insight into continuous recirculation-process for treating arsenate using bacterial biosorbent. Bioresource Technology, 2020, 316, 123961.	4.8	9
2068	Selective Immobilization of Antimony Using Brucite-rich Precipitate Produced during In Situ Hypochlorous Acid Formation through Seawater Electrolysis in a Nuclear Power Plant. Energies, 2020, 13, 4493.	1.6	2
2069	Removal of arsenic from water by an iron-loaded resin prepared from Pinus pinaster bark tannins. Euro-Mediterranean Journal for Environmental Integration, 2020, 5, 1.	0.6	7
2070	Recent Developments in Aqueous Arsenic(III) Remediation Using Biomass-Based Adsorbents. ACS Symposium Series, 2020, , 197-251.	0.5	2
2071	Arsenic removal using Prosopis spicigera L. wood (PsLw) carbon–iron oxide composite. Applied Water Science, 2020, 10, 1.	2.8	4
2072	Magnetically recoverable carbon-coated iron carbide with arsenic adsorptive removal properties. SN Applied Sciences, 2020, 2, 1.	1.5	6
2073	The Role of Temperature on the Impact of Remediated Water towards Marine Organisms. Water (Switzerland), 2020, 12, 2148.	1.2	12
2074	Selective Arsenic Removal from Groundwaters Using Redox-Active Polyvinylferrocene-Functionalized Electrodes: Role of Oxygen. Environmental Science & Technology, 2020, 54, 12081-12091.	4.6	30
2075	Polymerized Molecular Receptors as Adsorbents to Remove Micropollutants from Water. Accounts of Chemical Research, 2020, 53, 2314-2324.	7.6	61
2076	Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents – a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 160-180.	5.4	16
2077	Selective adsorption behavior of ion-imprinted magnetic chitosan beads for removal of Cu(II) ions from aqueous solution. Chinese Journal of Chemical Engineering, 2021, 39, 103-111.	1.7	6
2078	Improved arsenite adsorption using iron-impregnated marble dust with surface functionalized by quaternary ammonium ions. International Journal of Environmental Science and Technology, 2021, 18, 2955-2974.	1.8	2
2079	Photooxidation based on UV/H2O2 process for arsenic removal from aqueous solutions. IOP Conference Series: Materials Science and Engineering, 2020, 962, 042080.	0.3	0
2080	Mn-Fe Layered Double Hydroxide Intercalated with Ethylene-Diaminetetraacetate Anion: Synthesis and Removal of As(III) from Aqueous Solution around pH 2–11. International Journal of Environmental Research and Public Health, 2020, 17, 9341.	1.2	4
2081	Activated carbon/titanium dioxide composite to adsorb volatile organic compounds associated with human body odor. Heliyon, 2020, 6, e05455.	1.4	2
2082	Present status of hybrid materials for potable water decontamination: a review. Environmental Science: Water Research and Technology, 2020, 6, 3214-3248.	1.2	19

#	Article	IF	CITATIONS
2083	Removal of arsenite from aqueous solutions using ultrasonic irradiation in the presence of a lead electrode. Japanese Journal of Applied Physics, 2020, 59, SKKD01.	0.8	4
2084	Ironmaking and Steelmaking Slags as Sustainable Adsorbents for Industrial Effluents and Wastewater Treatment: A Critical Review of Properties, Performance, Challenges and Opportunities. Sustainability, 2020, 12, 2118.	1.6	38
2085	Arsenic removal with zero-valent iron filters in Burkina Faso: Field and laboratory insights. Science of the Total Environment, 2020, 737, 139466.	3.9	37
2086	An oxacalix[4]arene derived dual sensing fluorescent probe for the detection of As(<scp>v</scp>) and Cr(<scp>vi</scp>) oxyanions in aqueous media. Dalton Transactions, 2020, 49, 7459-7466.	1.6	28
2087	Treatment of Arseniteâ€Contaminated Water by Electrochemical Advanced Oxidation Processes. ChemElectroChem, 2020, 7, 2418-2423.	1.7	24
2088	Reduction in drinking water arsenic exposure and health risk through arsenic treatment among private well households in Maine and New Jersey, USA. Science of the Total Environment, 2020, 738, 139683.	3.9	13
2089	Direct Arsenic Removal from Water Using Non-Membrane, Low-Temperature Directional Solvent Extraction. Journal of Chemical & Engineering Data, 2020, 65, 2938-2946.	1.0	17
2090	Selective, highly efficient extraction of Cr(III), Pb(II) and Fe(III) from complex water environment with a tea residue derived porous gel adsorbent. Bioresource Technology, 2020, 311, 123520.	4.8	53
2091	Efficient capture of arsenate from alkaline smelting wastewater by acetate modulated yttrium based metal-organic frameworks. Chemical Engineering Journal, 2020, 397, 125292.	6.6	27
2093	Nanoadsorbents for wastewater treatment: nextÂgeneration biotechnological solution. International Journal of Environmental Science and Technology, 2020, 17, 4095-4132.	1.8	64
2094	Adsorption behaviour of 1,3,5-trinitroperhydro-1,3,5-triazine, 2,4-dinitroanisole and 3-nitro-1,2,4-triazol-5-one on commercial activated carbons. Chemosphere, 2020, 255, 126848.	4.2	20
2095	Optimisation of arsenate removal from water by an integrated ion-exchange membrane process coupled with Fe co-precipitation. Separation and Purification Technology, 2020, 246, 116894.	3.9	17
2096	Efficient As(III) Removal by Novel MoS ₂ -Impregnated Fe-Oxide–Biochar Composites: Characterization and Mechanisms. ACS Omega, 2020, 5, 13224-13235.	1.6	19
2097	Formation of hydroperoxo (–OOH) species on the surface of self-doped Bi2.15WO6: reactivity towards As(iii) oxidation. Physical Chemistry Chemical Physics, 2020, 22, 12456-12464.	1.3	11
2098	A Hybrid {Silk@Zirconium MOF} Material as Highly Efficient AsIII-sponge. Scientific Reports, 2020, 10, 9358.	1.6	6
2099	Rapid characterization of arsenic adsorption on single magnetite nanoparticles by collisions at microelectrodes. Environmental Science: Nano, 2020, 7, 1999-2009.	2.2	5
2100	Nanoconfined hydrous titanium oxides with excellent acid stability for selective and efficient removal of As(V) from acidic wastewater. Chemical Engineering Journal, 2020, 400, 125907.	6.6	24
2101	Iron and zirconium modified luffa fibre as an effective bioadsorbent to remove arsenic from drinking water. Chemosphere, 2020, 258, 127370.	4.2	24

#	Article	IF	CITATIONS
2102	Wastewater Treatment Technologies: A Bibliometric Analysis. Science and Technology Libraries, 2020, 39, 383-394.	0.8	12
2103	Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 2020, 8, 104196.	3.3	192
2104	Comparison of bioaccessibility and relative bioavailability of arsenic in rice bran: The inÂvitro with PBET/SHIME and inÂvivo with mice model. Chemosphere, 2020, 259, 127443.	4.2	16
2105	In-situ incorporation of ruthenium/copper nanoparticles in mesoporous silica derived from rice husk ash for catalytic acetylation of glycerol. Renewable Energy, 2020, 160, 564-574.	4.3	27
2106	N-methyl-D-glucamine based cryogels as reusable sponges to enhance heavy metals removal from water. Chemical Engineering Journal, 2020, 399, 125753.	6.6	13
2107	Utilization of olive pomace in nano MgO modification for sorption of Ni(II) and Cu(II) metal ions from aqueous solutions. Arabian Journal of Chemistry, 2020, 13, 6510-6522.	2.3	30
2108	Heterostructured MWCNTs@PANI@TiO ₂ Nanocomposites for Enhanced Adsorption of As(III) from Aqueous Solution: Adsorption and Photocatalytic Oxidation Behaviors. Industrial & Engineering Chemistry Research, 2020, 59, 11743-11756.	1.8	38
2109	N-Alkylated chitosan coupled to the liquid-phase polymer-based retention (LPR) technique to remove arsenic (V) from aqueous systems. Journal of Hazardous Materials, 2020, 400, 123216.	6.5	8
2110	Arsenate removal from contaminated water using Fe ₂ O ₃ -clinoptilolite powder and granule. Environmental Technology (United Kingdom), 2022, 43, 116-130.	1.2	15
2111	Polystyrene Magnetic Nanocomposites as Antibiotic Adsorbents. Polymers, 2020, 12, 1313.	2.0	32
2112	Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption. Environmental Science & Technology, 2020, 54, 9769-9790.	4.6	117
2113	Znâ€MOFâ€74 as pHâ€Responsive Drugâ€Đelivery System of Arsenic Trioxide. ChemNanoMat, 2020, 6, 122	9-1.236.	46
2114	Cellulose-based adsorbents loaded with zero-valent iron for removal of metal ions from contaminated water. Environmental Science and Pollution Research, 2020, 27, 33234-33247.	2.7	17
2115	The fabrication and arsenic removal performance of cellulose nanocrystal-containing absorbents based on the "bridge joint―effect of iron ions. Carbohydrate Polymers, 2020, 237, 116129.	5.1	32
2116	Efficiency of eight modified materials for As(V) removal from synthetic and real mine effluents. Minerals Engineering, 2020, 151, 106310.	1.8	6
2117	Arsenic bioaccumulation in arsenic-contaminated soil: a review. Chemical Papers, 2020, 74, 2743-2757.	1.0	19
2118	Hausmannite as potential As(V) filter. Macroscopic and spectroscopic study of As(V) adsorption and desorption by citric acid. Environmental Pollution, 2020, 262, 114196.	3.7	15
2119	Chemical characterizations of biochar from palm oil trunk for palm oil mill effluent (POME) treatment. Materials Today: Proceedings, 2020, 31, 191-197.	0.9	12

CITATION REPC	DRT

#	Article	IF	CITATIONS
2120	Core–Shell Structured Magnetic γ-Fe ₂ O ₃ @PANI Nanocomposites for Enhanced As(V) Adsorption. Industrial & Engineering Chemistry Research, 2020, 59, 7554-7563.	1.8	38
2121	Acid Dye Removal from Aqueous Solution by Using Neodymium(III) Oxide Nanoadsorbents. Nanomaterials, 2020, 10, 556.	1.9	67
2122	The influence of ZSM-5 structure on As(V) adsorption performance: pseudomorphic transformation and grafting of rare-earth Ce onto ZSM-5. Journal of Materials Science, 2020, 55, 8145-8154.	1.7	14
2123	Rapid Preparation of TiO _{2–<i>x</i>} and Its Photocatalytic Oxidation for Arsenic Adsorption under Visible Light. Langmuir, 2020, 36, 3853-3861.	1.6	9
2124	Ultra-Sensitive and Selective Detection of Arsenic(III) via Electroanalysis over Cobalt Single-Atom Catalysts. Analytical Chemistry, 2020, 92, 6128-6135.	3.2	59
2125	A new oneâ€dimensional coordination polymer synthesized from zinc and guanazole: Superior capture of organic arsenics. Applied Organometallic Chemistry, 2020, 34, e5637.	1.7	1
2126	Molecularly imprinted nanoparticles (nanoMIPs): an efficient new adsorbent for removal of arsenic from water. Journal of Materials Science, 2020, 55, 6810-6825.	1.7	15
2127	MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review. Chemosphere, 2020, 251, 126388.	4.2	116
2128	Deep removal of arsenite from water with no need for pre-oxidation or in-line oxidation. Chemical Engineering Journal, 2020, 401, 126046.	6.6	16
2129	Comparative evaluation of wheat straw and press mud biochars for Cr(VI) elimination from contaminated aqueous solution. Environmental Technology and Innovation, 2020, 19, 101017.	3.0	18
2130	Removal of Arsenic(III) Ion from Aqueous Media Using Complex Nickel-Aluminum and Nickel-Aluminum-Zirconium Hydroxides. Water (Switzerland), 2020, 12, 1697.	1.2	8
2131	Fabrication of Efficient Calix[4]arene-Adorned Magnetic Nanoparticles for the Removal of Cr(VI)/As(V) anions from Aqueous Solutions. Polycyclic Aromatic Compounds, 2022, 42, 1023-1034.	1.4	3
2132	Heavy metal precipitation from sulfide produced from anaerobic sulfidogenic reactor. Materials Today: Proceedings, 2020, 32, 936-942.	0.9	8
2133	Application of Monoclinic Bismuth Vanadate in Photooxidation of Arsenic-Polluted Water. Transactions of the ASABE, 2020, 63, 1649-1655.	1.1	0
2134	Removal of aqueous Cr(VI) using magnetic-gelatin supported on Brassica-straw biochar. Journal of Dispersion Science and Technology, 2021, 42, 1710-1722.	1.3	10
2135	Sustainable Low-Concentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide–Biochar Nanocomposite Adsorbents—A Mechanistic Study. ACS Omega, 2020, 5, 2575-2593.	1.6	64
2136	Preparation of modified Chinese medical stone and its performance on the removal of low-concentration ammonium from water. Research on Chemical Intermediates, 2020, 46, 2035-2054.	1.3	3
2137	First-principles study on adsorption behavior of as on the kaolinite (001) and (00\$\$ar {1}\$\$) surfaces. Adsorption, 2020, 26, 443-452.	1.4	7

#	Article	IF	CITATIONS
2138	From classic methodologies to application of nanomaterials for soil remediation: an integrated view of methods for decontamination of toxic metal(oid)s. Environmental Science and Pollution Research, 2020, 27, 10205-10227.	2.7	40
2139	Basic oxygen furnace slag: Review of current and potential uses. Minerals Engineering, 2020, 149, 106234.	1.8	65
2140	Microrespirometric assessment of the metal–organic framework [Co ₂ (btec)(bipy)(DMF) ₂] _n ("MOF-Coâ€) to prevent inhibition by arsenic in activated sludge. Environmental Science: Water Research and Technology, 2020, 6, 1153-1162.	1.2	4
2141	Influence of surface chemistry of activated carbon electrodes on electro-assisted adsorption of arsenate. Journal of Hazardous Materials, 2020, 392, 122349.	6.5	15
2142	Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environmental Pollution, 2020, 262, 114221.	3.7	63
2143	Influences of pH on transport of arsenate (As5+) through different reactive media using column experiments and transport modeling. Scientific Reports, 2020, 10, 3512.	1.6	12
2144	Integration of sequencing batch reactor and homo-catalytic advanced oxidation processes for the treatment of textile wastewater. Nanotechnology for Environmental Engineering, 2020, 5, 1.	2.0	7
2145	Oxidative stress, metabolic and histopathological alterations in mussels exposed to remediated seawater by GO-PEI after contamination with mercury. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2020, 243, 110674.	0.8	28
2146	Simple, Rapid and Sensitive Detection of Phenylarsine Oxide in Drinking Water Using Quartz Crystal Microbalance: A Novel Surface Functionalization Technique. ChemistrySelect, 2020, 5, 2057-2062.	0.7	7
2147	Naturally derived carbon for E. coli and arsenic removal from water in rural India. Environmental Technology and Innovation, 2020, 18, 100661.	3.0	6
2148	Removal of As(V) using low cost adsorbents: aerocrete and vermiculite modified with iron oxy-hydroxide. Adsorption, 2020, 26, 387-396.	1.4	6
2149	The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environmental Technology and Innovation, 2020, 17, 100602.	3.0	47
2150	Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale, 2020, 12, 4790-4815.	2.8	269
2151	As(III) removal by Fe(III)-amidoximated PAN in the presence of H2O2 through simultaneous oxidation and adsorption. Water Science and Technology: Water Supply, 2020, 20, 565-573.	1.0	1
2152	Arsenic Sorption on Chitosan-Based Sorbents: Comparison of the Effect of Molybdate and Tungstate Loading on As(V) Sorption Properties. Journal of Polymers and the Environment, 2020, 28, 934-947.	2.4	24
2153	Response Surface Methodology Approach Applied to the Study of Arsenic (V) Migration by Facilitated Transport in Polymer Inclusion Membranes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	8
2154	Laser synthesis of magnetite-partially reduced graphene oxide nanocomposites for arsenate removal from water. Journal of Materials Science, 2020, 55, 5351-5363.	1.7	19
2155	Novel sorbents from low-cost materials for water treatment. , 2020, , 265-359.		2

#	Article	IF	CITATIONS
2156	Redox-Assisted Arsenic(III) Adsorption for Removal from Aqueous Solution by Cerium(IV)-Incorporated Zirconium Oxide Nanocomposites. Journal of Chemical & Engineering Data, 2020, 65, 885-895.	1.0	12
2157	Carrier-microencapsulation of arsenopyrite using Al-catecholate complex: nature of oxidation products, effects on anodic and cathodic reactions, and coating stability under simulated weathering conditions. Heliyon, 2020, 6, e03189.	1.4	50
2158	Packed Bed Column for Adsorption of Arsenic on Mixed-Valent Iron [Fe(II)-Fe(III)] Oxide Synthesized from Industrial Waste. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	11
2159	Facile synthesis of flower-like CoFe2O4 particles for efficient sorption of aromatic organoarsenicals from aqueous solution. Journal of Colloid and Interface Science, 2020, 568, 63-75.	5.0	21
2160	Synthesis, application and mechanisms of Ferro-Manganese binary oxide in water remediation: A review. Chemical Engineering Journal, 2020, 388, 124313.	6.6	54
2161	Can water remediated by manganese spinel ferrite nanoparticles be safe for marine bivalves?. Science of the Total Environment, 2020, 723, 137798.	3.9	11
2162	Effects of pre and post-ozonation on POFA hollow fibre ceramic adsorptive membrane for arsenic removal in water. Journal of the Taiwan Institute of Chemical Engineers, 2020, 110, 100-111.	2.7	19
2163	Fe ₃ O ₄ @MOF Magnetic Nanocomposites: Synthesis and Applications. European Journal of Inorganic Chemistry, 2020, 2020, 1916-1937.	1.0	65
2164	Batch and Column Arsenate Sorption Using <i>Turbinaria ornata</i> Seaweed Derived Biochar: Experimental Studies and Mathematical Modeling. ChemistrySelect, 2020, 5, 3661-3668.	0.7	15
2165	Novel preparation of fungal conidiophores biomass as adsorbent for removal of phosphorus from aqueous solution. Environmental Science and Pollution Research, 2020, 27, 20757-20769.	2.7	6
2166	Synthesis & characterization of ion imprinted polymer for arsenic removal from water: A value addition to the groundwater resources. Chemical Engineering Journal, 2020, 394, 124900.	6.6	25
2167	Evaluation of the influence of main groundwater ions on arsenic removal by limestones through column experiments. Science of the Total Environment, 2020, 727, 138459.	3.9	14
2168	Effect of chemical activation process on adsorption of As(V) ion from aqueous solution by mechano-thermally synthesized zinc ferrite nanopowder. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 526-537.	2.4	6
2169	Iron oxide nanoparticles modified with ionic liquid as an efficient adsorbent for fluoride removal from groundwater. Environmental Technology and Innovation, 2020, 19, 100842.	3.0	20
2170	Enhanced removal for H2S by Cu-ordered mesoporous carbon foam. Journal of Hazardous Materials, 2020, 396, 122710.	6.5	21
2171	A critical review on arsenic removal from water using biochar-based sorbents: The significance of modification and redox reactions. Chemical Engineering Journal, 2020, 396, 125195.	6.6	243
2172	Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms. Journal of Hazardous Materials, 2020, 395, 122623.	6.5	174
2173	Arsenic (V) removal from water using hydrotalcites as adsorbents: A critical review. Applied Clay Science, 2020, 191, 105615.	2.6	44

#	Article	IF	CITATIONS
2174	Removal mechanism of arsenic (V) by stainless steel slags obtained from scrap metal recycling. Journal of Environmental Chemical Engineering, 2020, 8, 103833.	3.3	18
2175	Spinel-type ferrite nanoparticles for removal of arsenic(V) from water. Environmental Science and Pollution Research, 2020, 27, 22523-22534.	2.7	9
2176	Production of electrolytic iron from red mud in alkaline media. Journal of Environmental Management, 2020, 266, 110547.	3.8	11
2177	Challenges of arsenic removal from municipal wastewater by coagulation with ferric chloride and alum. Science of the Total Environment, 2020, 725, 138351.	3.9	56
2178	Biomimic-Inspired and Recyclable Nanogel for Contamination Removal from Water and the Application in Treating Bleaching Effluents. Industrial & Engineering Chemistry Research, 2020, 59, 8622-8631.	1.8	7
2179	Preparation of a new adsorbent for the removal of arsenic and its simulation with artificial neural network-based adsorption models. Journal of Environmental Chemical Engineering, 2020, 8, 103928.	3.3	42
2180	Functional Catechol–Metal Polymers via Interfacial Polymerization for Applications in Water Purification. ACS Applied Materials & Interfaces, 2020, 12, 19044-19053.	4.0	25
2181	Assessment of Heavy Metal Removal in Different Bioelectrochemical Systems: A Review. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24, .	1.2	24
2182	Remediation of Arsenic by Metal/ Metal Oxide Based Nanocomposites/ Nanohybrids: Contamination Scenario in Groundwater, Practical Challenges, and Future Perspectives. Separation and Purification Reviews, 2021, 50, 283-314.	2.8	14
2183	Green reclaiming of riboflavin from crystallization mother liquor by macroporous resin and electrodialysis. Environment, Development and Sustainability, 2021, 23, 3114-3129.	2.7	2
2184	Cucurbiturils for environmental and analytical chemistry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 99, 1-12.	0.9	15
2185	Synthesis, characterization and application of novel MnO and CuO impregnated biochar composites to sequester arsenic (As) from water: Modeling, thermodynamics and reusability. Journal of Hazardous Materials, 2021, 401, 123338.	6.5	112
2186	Efficient removal of arsenic (III) from aqueous solutions by new layered hydroxides (Ca–Fe–Cl LDHs). Journal of Dispersion Science and Technology, 2021, 42, 998-1008.	1.3	8
2187	Fate and Transport of Subsurface Pollutants. Microorganisms for Sustainability, 2021, , .	0.4	6
2188	Removal of As(V) by iron-based nanoparticles synthesized via the complexation of biomolecules in green tea extracts and an iron salt. Science of the Total Environment, 2021, 764, 142883.	3.9	23
2189	Simultaneous removal of fluoride and arsenic from water by hybrid Al-Fe electrocoagulation: process optimization through surface response method. Separation Science and Technology, 2021, 56, 2648-2658.	1.3	19
2190	Structural evolution of arsenopyrite and dearsenification by mechanical activation. Journal of Environmental Chemical Engineering, 2021, 9, 104682.	3.3	4
2191	Ferroelectric membrane for water purification with arsenic as model pollutant. Chemical Engineering Journal, 2021, 403, 126426.	6.6	5

#	Article	IF	CITATIONS
2192	Comparison of Arsenate Adsorption from Neutral pH Aqueous Solutions Using Two Different Iron-Trimesate Porous Solids: Kinetics, Equilibrium Isotherms, and Synchrotron X-Ray Absorption Experiments. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1185-1194.	1.9	5
2193	Selective removal of arsenic in water: A critical review. Environmental Pollution, 2021, 268, 115668.	3.7	117
2194	Projecting the sorption capacity of heavy metal ions onto microplastics in global aquatic environments using artificial neural networks. Journal of Hazardous Materials, 2021, 402, 123709.	6.5	76
2195	Dual-functional Sites for Selective Adsorption of Mercury and Arsenic ions in [SnS4]4-/MgFe-LDH from Wastewater. Journal of Hazardous Materials, 2021, 403, 123940.	6.5	52
2196	Rapid adsorption of As(V) from aqueous solution by ZnO embedded in mesoporous aluminosilicate nanocomposite adsorbent: Parameter optimization, kinetic, and isotherms studies. Surfaces and Interfaces, 2021, 23, 100636.	1.5	12
2197	Evaluation of arsenic sorption performance using dendritic anatase and polycrystalline rutile nano-TiO2 for environmental applications. International Journal of Environmental Science and Technology, 2021, 18, 2113-2124.	1.8	1
2198	Elimination of nickel (II) ions using various natural/modified clay minerals: A review. Materials Today: Proceedings, 2021, 37, 2033-2040.	0.9	9
2199	Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. Journal of Molecular Liquids, 2021, 321, 114455.	2.3	159
2200	Synthesis of novel Mg–Al–Fe-type hydrotalcite with various Mg/Al/Fe ratios and its selective adsorption of As(V) from water. Journal of Environmental Chemical Engineering, 2021, 9, 104557.	3.3	5
2201	Recent development of chromogenic and fluorogenic chemosensors for the detection of arsenic species: Environmental and biological applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 119047.	2.0	32
2202	Applications of chitosan in environmental remediation: A review. Chemosphere, 2021, 266, 128934.	4.2	131
2203	Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: An approach to technology transfer. Journal of Colloid and Interface Science, 2021, 587, 767-779.	5.0	28
2204	Optimization of Arsenate Adsorption over Aluminum-Impregnated Tea Waste Biochar Using RSM–Central Composite Design and Adsorption Mechanism. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	15
2205	Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Chemical Engineering Research and Design, 2021, 148, 604-623.	2.7	48
2206	Surface plasmon resonance measurement of arsenic in low concentration using polypyrrole-graphene quantum dots layer. Measurement: Journal of the International Measurement Confederation, 2021, 173, 108546.	2.5	10
2207	Recycling spent iron-based disposable-chemical-warmer as adsorbent for as(v) removal from aqueous solution. Resources, Conservation and Recycling, 2021, 168, 105284.	5.3	5
2208	Efficient removal of arsenic by electrodeposited CuFeOx foam. Separation and Purification Technology, 2021, 255, 117673.	3.9	4
2209	Arsenic removal by iron-oxidizing bacteria in a fixed-bed coconut husk column: Experimental study and numerical modeling. Environmental Pollution, 2021, 272, 115977.	3.7	15

#	Article	IF	CITATIONS
2210	An integrated green methodology for the continuous biological removal and fixation of arsenic from acid wastewater through the GAC-catalyzed As(III) oxidation. Chemical Engineering Journal, 2021, 421, 127758.	6.6	11
2211	Synthesis of uniform-sized and microporous MIL-125(Ti) to boost arsenic removal by chemical adsorption. Polyhedron, 2021, 196, 114980.	1.0	30
2212	Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater. Water Research, 2021, 190, 116683.	5.3	102
2213	Synthesis and characterization of gold nanoparticles (AuNPs) and ZnO decorated zirconia as a potential adsorbent for enhanced arsenic removal from aqueous solution. Journal of Molecular Structure, 2021, 1228, 129482.	1.8	11
2214	Phytomanagement of As-contaminated matrix: Physiological and molecular basis. , 2021, , 61-79.		23
2215	Modelling heavy metals contamination in groundwater of Southern Punjab, Pakistan. International Journal of Environmental Science and Technology, 2021, 18, 2221-2236.	1.8	4
2216	Adsorption at Natural Minerals/Water Interfaces. Engineering Materials, 2021, , .	0.3	6
2217	Impacts of petroleum exploitation activities on the speciation of inorganic arsenic in groundwater. Environmental Forensics, 2021, 22, 241-250.	1.3	3
2218	Preparation of carbon/Al2O3/nZVI magnetic nanophase materials produced from drinking water sludge for the removal of As(V) from aqueous solutions. Environmental Science and Pollution Research, 2021, 28, 7261-7270.	2.7	3
2219	Development and Status of the Treatment Technology for Acid Mine Drainage. Mining, Metallurgy and Exploration, 2021, 38, 315-327.	0.4	14
2220	Environmental Remediation Through Carbon Based Nano Composites. Green Energy and Technology, 2021, , .	0.4	10
2221	Groundwater quality evaluation using Shannon information theory and human health risk assessment in Yazd province, central plateau of Iran. Environmental Science and Pollution Research, 2021, 28, 1108-1130.	2.7	72
2222	Current Scenario of Groundwater Arsenic Contamination in West Bengal and Its Mitigation Approach. , 2021, , 193-216.		1
2223	Low Dimensional Nanostructures: Measurement and Remediation Technologies Applied to Trace Heavy Metals in Water. , 0, , .		3
2224	Arsenic Stress Responses and Accumulation in Rice. , 2021, , 281-313.		7
2225	Oryza sativa as a tool for assessing arsenic efficacy of arsenic remediation of agricultural soils by sulfidated zerovalent iron nanoparticles. IEEE Transactions on Nanobioscience, 2021, PP, 1-1.	2.2	0
2226	Adsorptive removal of as (III) by aluminium Oxide/Hydroxide nanoparticles: Modelling of column studies. Materials Today: Proceedings, 2021, 47, 1457-1460.	0.9	0
2227	Ameliorative effect of graphene nanosheets against arsenic-induced toxicity in mice by oral exposure. Environmental Science and Pollution Research, 2021, 28, 21577-21588.	2.7	6

#	Article	IF	CITATIONS
2228	Conducting Polymer Based Nanoadsorbents for Removal of Heavy Metal Ions/Dyes from Wastewater. Engineering Materials, 2021, , 135-157.	0.3	3
2229	Arsenic Contamination of Groundwater and Its Mitigation Strategies. , 2021, , 107-119.		Ο
2230	Iron oxide coated hollow poly(methylmethacrylate) as an efficient adsorption media for removal of arsenic from water. RSC Advances, 2021, 11, 13376-13385.	1.7	7
2231	Nanoclays as Eco-friendly Adsorbents of Arsenic for Water Purification. , 2021, , 455-470.		0
2232	Arsenic removal technologies: field applications and sustainability. , 2021, , 271-292.		0
2233	Iron oxide xerogels for improved water quality monitoring of arsenic(<scp>iii</scp>) in resource-limited environments <i>via</i> solid-phase extraction, preservation, storage, transportation, and analysis of trace contaminants (SEPSTAT). Analytical Methods, 2021, 13, 2165-2174.	1.3	2
2234	Magnetic hybrid nanoparticles for environmental remediation. , 2021, , 591-615.		0
2235	Arsenic contamination in water resources and its health risk assessment. , 2021, , 187-198.		1
2236	Efficient Degradation of Organoarsenic by UV/Chlorine Treatment: Kinetics, Mechanism, Enhanced Arsenic Removal, and Cytotoxicity. Environmental Science & Technology, 2021, 55, 2037-2047.	4.6	33
2237	Characterization and Application of Fe-Magnetic Materials and Nanomaterials for Application in the Aqueous Matrices Decontamination. Environmental Chemistry for A Sustainable World, 2021, , 347-383.	0.3	1
2238	Characterization and physicochemical properties of nanomaterials. , 2021, , 97-121.		1
2239	Metal Oxides for Removal of Arsenic Contaminants from Water. Environmental Chemistry for A Sustainable World, 2021, , 147-194.	0.3	1
2240	Approaches for Impregnation of Activated Carbon for Wastewater Treatment. , 2022, , 816-829.		0
2241	Adsorption-Based Removal of Heavy Metals from Water Using Nano-akagan $ ilde{A}$ ©ites. , 2021, , 1925-1951.		0
2242	Plant derived nanoparticles and their biotechnological applications. Comprehensive Analytical Chemistry, 2021, , 331-362.	0.7	6
2243	Removal of trivalent chromium from tannery wastewater using solid wastes. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	8
2244	Developments in Nanoadsorbents for the Treatment of Arsenic-Contaminated Water. , 2021, , 325-361.		2
2245	Functional Nanocomposites for Groundwater Treatment. Chemistry in the Environment, 2021, , 246-274.	0.2	0

		CITATION REPORT		
#	Article		IF	Citations
2246	Adsorption Based Removal of Heavy Metals from Water Using Nano-Akagan \tilde{A} ©ites. , 20	021,,1-27.		0
2247	Iron-alginate beads doped with green synthesised â€~nano-CeO2-ZrO2' as an effect removal of highly toxic Arsenic-ions from polluted water. International Journal of Environ Analytical Chemistry, 0, , 1-19.	ive adsorbent for hmental	1.8	4
2248	Adsorption Studies of Arsenic(V) by CuO Nanoparticles Synthesized by Phyllanthus em Leaf-Extract-Fueled Solution Combustion Synthesis. Sustainability, 2021, 13, 2017.	olica	1.6	9
2249	Mechanical activation of TiO2/Fe2O3 nanocomposite for arsenic adsorption: effect of b ratio and milling time. Journal of Nanostructure in Chemistry, 2021, 11, 619-632.	all-to-powder	5.3	16
2250	Evaluating the adsorption of Shanghai silty clay to Cd(II), Pb(II), As(V), and Cr(VI): kinet and thermodynamic studies. Environmental Monitoring and Assessment, 2021, 193, 13	c, equilibrium, 1.	1.3	27
2251	Cobalt-loaded resin can effectively remove arsenic in wastewater. Environmental Techn Innovation, 2021, 21, 101354.	ology and	3.0	6
2252	Insights into conventional and recent technologies for arsenic bioremediation: A systen Environmental Science and Pollution Research, 2021, 28, 18870-18892.	natic review.	2.7	59
2253	Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality Health in Under-Developed Countries and Remote Communities—A Review. Applied S (Switzerland), 2021, 11, 1926.	and Human ciences	1.3	59
2254	Immobilised Humic Substances as Low-Cost Sorbents for Emerging Contaminants. App (Switzerland), 2021, 11, 3021.	lied Sciences	1.3	2
2255	Synthesis of magnetic core-shell amino adsorbent by using uniform design and respons analysis (RSM) and its application for the removal of Cu2+, Zn2+, and Pb2+. Environme Pollution Research, 2021, 28, 36399-36414.		2.7	8
2256	Competitive adsorption geometries for the arsenate As(V) and phosphate P(V) oxyanio surfaces: Experiments and theory. American Mineralogist, 2021, 106, 374-388.	ns on magnetite	0.9	24
2257	Preâ€deposited dynamic membrane adsorber formed of microscale conventional iron o adsorbents to remove arsenic from water: application study and mathematical modelin Chemical Technology and Biotechnology, 2021, 96, 1504-1514.		1.6	25
2258	Adsorption Characteristics of Phosphate Ions by Pristine, CaCl2 and FeCl3-Activated Bio Originated from Tangerine Peels. Separations, 2021, 8, 32.	ochars	1.1	10
2259	Evaluating the effect of seed-priming for improving arsenic tolerance in rice. Journal of B Biochemistry and Biotechnology, 2022, 31, 197-201.	Plant	0.9	15
2260	Evaluation of Fe-Mg Binary Oxide for As (III) Adsorption—Synthesis, Characterization a Modelling. Nanomaterials, 2021, 11, 805.	and Kinetic	1.9	15
2261	Simultaneous removal of harmful anions from geothermal waters using OHâ~' intercalar batch and field column studies. Environmental Science and Pollution Research, 2021, 2	ted Mg-Fe-LDH: 8, 39345-39356.	2.7	3
2262	Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality Indo-Gangetic plain. Journal of Environmental Management, 2021, 281, 111814.	' in the	3.8	45
2263	Mechanism of As(V) adsorption from aqueous solution by chitosan-modified diatomite Journal of Dispersion Science and Technology, 0, , 1-14.	adsorbent.	1.3	3

#	Article	IF	CITATIONS
2264	Arsenic sequestration by iron oxide coated geopolymer microspheres. Journal of Cleaner Production, 2021, 291, 125931.	4.6	24
2265	Study of the effect of the LDH cations precursors in the removal of arsenic in aqueous solution. Water Science and Technology, 2021, 83, 2518-2525.	1.2	0
2266	Evaluation of hyper-cross-linked polymers performances in the removal of hazardous heavy metal ions: A review. Separation and Purification Technology, 2021, 260, 118221.	3.9	60
2267	Fe and As geochemical self-removal dynamics in mineral waters: evidence from the Ferrarelle groundwater system (Riardo Plain, Southern Italy). Environmental Geochemistry and Health, 2022, 44, 2065-2082.	1.8	3
2268	Environmentally Friendly Anticorrosive Polymeric Coatings. Applied Sciences (Switzerland), 2021, 11, 3446.	1.3	54
2269	Facile synthesis of magnetic ionic liquids/gold nanoparticles/porous silicon composite SERS substrate for ultra-sensitive detection of arsenic. Applied Surface Science, 2021, 545, 148992.	3.1	27
2270	Suppression of arsenopyrite oxidation by microencapsulation using ferric-catecholate complexes and phosphate. Chemosphere, 2021, 269, 129413.	4.2	38
2271	COMPARATIVE STUDY OF REMOVAL POLLUTANTS (HEAVY METALS) BY AGRICULTURAL WASTES AND OTHER CHEMICAL FROM THE AQUEOUS SOLUTIONS. Iraqi Journal of Agricultural Sciences, 2021, 52, 392-402.	0.1	2
2272	Correlating Bedrock Folds to Higher Rates of Arsenic Detection in Groundwater, S <scp>outheast</scp> Wisconsin, <scp>USA</scp> . Ground Water, 2021, 59, 829-838.	0.7	4
2273	Enhanced removal of As(III) and As(V) from water by a novel zirconium-chitosan modified spherical sodium alginate composite. International Journal of Biological Macromolecules, 2021, 176, 304-314.	3.6	24
2275	Simultaneous removal of arsenic, fluoride, and manganese from synthetic wastewater by Vetiveria zizanioides. Environmental Science and Pollution Research, 2021, 28, 44216-44225.	2.7	10
2276	Arsenic release through refractory gold ore processing. Immobilization and decontamination approaches. Current Opinion in Environmental Science and Health, 2021, 20, 100236.	2.1	4
2277	Removal of arsenate using graphene oxide-iron modified clinoptilolite-based composites: adsorption kinetic and column study. Journal of Analytical Science and Technology, 2021, 12, .	1.0	11
2278	Modified activated carbon loaded with bio-synthesized Ag/ZnO nanocomposite and its application for the removal of Cr (VI) ions from aqueous solution. Surfaces and Interfaces, 2021, 23, 100928.	1.5	12
2279	Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geoscience Frontiers, 2021, 12, 101129.	4.3	22
2280	Effluent treatment using activated carbon adsorbents: a bibliometric analysis of recent literature. Environmental Science and Pollution Research, 2021, 28, 32224-32235.	2.7	7
2281	Arsenite Removal from Water by Oxidation-Coagulation Treatment Using Different Oxidizing Agents. Journal of Water Chemistry and Technology, 2021, 43, 210-217.	0.2	3
2282	A bifunctional <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e1605" altimg="si75.svg"><mml:mi>î±</mml:mi></mml:math> -FeOOH@GCA nanocomposite for enhanced adsorption of arsenic and photo Fenton-like catalytic conversion of As(III). Environmental Technology and Innovation. 2021. 22. 101437.	3.0	38

#	Article	IF	CITATIONS
2283	Application of a novel nanocomposites carbon nanotubes functionalized with mesoporous silica-nitrenium ions (CNT-MS-N) in nitrate removal: Optimizations and nonlinear and linear regression analysis. Environmental Technology and Innovation, 2021, 22, 101428.	3.0	18
2284	Insights into the Adsorption and Photocatalytic Oxidation Behaviors of Boron-Doped TiO ₂ /g-C ₃ N ₄ Nanocomposites toward As(III) in Aqueous Solution. Industrial & Engineering Chemistry Research, 2021, 60, 7003-7013.	1.8	27
2285	Detection and removal of arsenic contamination from aqueous media using nanomaterials. Materials Today: Proceedings, 2021, 47, 2912-2912.	0.9	0
2286	Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105081.	2.6	281
2287	Porous walnut-like La2O2CO3 derived from metal-organic frameworks for arsenate removal: A study of kinetics, isotherms, and mechanism. Chemosphere, 2021, 271, 129528.	4.2	18
2288	Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. Reviews in Inorganic Chemistry, 2022, 42, 197-227.	1.8	14
2289	Arsenic uptake and bioaccumulation in plants: A review on remediation and socio-economic perspective in Southeast Asia. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100430.	1.7	16
2290	Evaluation of Arsenic and Nutrients Uptake of Tomato Plant at Various Arsenic Concentrations of Irrigation Waters. Communications in Soil Science and Plant Analysis, 2021, 52, 2388-2400.	0.6	0
2291	Potential Use of Agro/Food Wastes as Biosorbents in the Removal of Heavy Metals. , 0, , .		8
2292	Arsenic sensing using Al/Fe doped armchair graphene nanoribbons: Theoretical investigations. Journal of Physics and Chemistry of Solids, 2021, 152, 109975.	1.9	6
2293	Selective adsorption of arsenic over phosphate by transition metal cross-linked chitosan. Chemical Engineering Journal, 2021, 412, 128582.	6.6	44
2294	Pelletized adsorbent of alum sludge and bentonite for removal of arsenic. Environmental Pollution, 2021, 277, 116747.	3.7	22
2295	Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media. Marine Pollution Bulletin, 2021, 166, 112247.	2.3	33
2296	Small-scale membrane-based arsenic removal for decentralized applications–Developing a conceptual approach for future utilization. Water Research, 2021, 196, 116978.	5.3	23
2297	Magnetic zeolitic imidazolate frameworks composite as an efficient adsorbent for arsenic removal from aqueous solution. Journal of Hazardous Materials, 2021, 412, 125298.	6.5	28
2298	A review on arsenic removal from coal combustion: Advances, challenges and opportunities. Chemical Engineering Journal, 2021, 414, 128785.	6.6	68
2299	Phenolic compounds removal from aqueous solution by composite of alumina-zirconia. International Journal of Environmental Analytical Chemistry, 0, , 1-21.	1.8	3
2300	A review on the use of lignocellulosic materials for arsenic adsorption. Journal of Environmental Management 2021 288 112397	3.8	43

#	Article	IF	CITATIONS
2301	Silica derived from rice husk ash and loaded with iron oxide for As(III) adsorption from water: experimental and modelling studies. International Journal of Environmental Analytical Chemistry, 2023, 103, 5771-5794.	1.8	4
2303	Removal of naphthalene from wastewaters by adsorption: a review of recent studies. International Journal of Environmental Science and Technology, 2022, 19, 4555-4586.	1.8	8
2304	Arsenic (III) removal by mechanochemically sulfidated microscale zero valent iron under anoxic and oxic conditions. Water Research, 2021, 198, 117132.	5.3	45
2305	An effective separation of toxic arsenic from aquatic environment using electrochemical ion exchange process. Journal of Hazardous Materials, 2021, 412, 125240.	6.5	57
2306	A Review on Organic Adsorbents for the Removal of Toxic Metals from Waste Water. Asian Journal of Advanced Research and Reports, 0, , 75-85.	0.0	2
2307	Groundwater arsenic contamination in the Bengal Delta Plain is an important public health issue. Human Biology and Public Health, 0, 1, .	0.0	1
2308	Recovery and recycle of wastewater contaminated with heavy metals using adsorbents incorporated from waste resources and nanomaterials-A review. Chemosphere, 2021, 273, 129677.	4.2	37
2309	Waste foundry dust (WFD) as a reactive material for removing As(III) and Cr(VI) from aqueous solutions. Journal of Hazardous Materials, 2021, 412, 125290.	6.5	17
2310	Superparamagnetic nanoadsorbents for the removal of trace As(III) in drinking water. Environmental Advances, 2021, 4, 100046.	2.2	9
2311	Enhanced activation of ultrasonic pre-treated softwood biochar for efficient heavy metal removal from water. Journal of Environmental Management, 2021, 290, 112569.	3.8	24
2312	Arsenic bioaccessibility in rice grains via modified physiologically-based extraction test (MPBET): Correlation with mineral elements and comparison with As relative bioavailability. Environmental Research, 2021, 198, 111198.	3.7	14
2313	Recovery and purification of rare earth elements from wastewater and sludge using a porous magnetic composite of β-cyclodextrin and silica doped with PC88A. Separation and Purification Technology, 2021, 266, 118589.	3.9	24
2314	Fluoride and Arsenite Removal by Adsorption on La2O3-CeO2/Laterite. Journal of Nanomaterials, 2021, 2021, 1-13.	1.5	10
2315	Future perspectives and mitigation strategies towards groundwater arsenic contamination in West Bengal, India. Environmental Quality Management, 2022, 31, 75-97.	1.0	33
2316	Defective Bismuth Oxide as Effective Adsorbent for Arsenic Removal from Water and Wastewater. Toxics, 2021, 9, 158.	1.6	11
2317	The Influence of Temperature Increase on the Toxicity of Mercury Remediated Seawater Using the Nanomaterial Graphene Oxide on the Mussel Mytilus galloprovincialis. Nanomaterials, 2021, 11, 1978.	1.9	4
2318	Comprehensive recovery of arsenic and antimony from arsenic-rich copper smelter dust. Journal of Hazardous Materials, 2021, 413, 125365.	6.5	34
2319	Nano and micro architectured cues as smart materials to mitigate recalcitrant pharmaceutical pollutants from wastewater. Chemosphere, 2021, 274, 129785.	4.2	53

#	Article	IF	CITATIONS
2320	Highly efficient removal of As(III) by Fe-Mn-Ca composites with the synergistic effect of oxidation and adsorption. Science of the Total Environment, 2021, 777, 145289.	3.9	20
2321	Removal of As(III) and As(V) from water using reduced GO-Fe ⁰ filled PANI composite. Journal of Applied Water Engineering and Research, 2022, 10, 117-128.	1.0	4
2322	Adsorption Behavior of Precious Metals and Hazardous Elements on a Crosslinked Polyvinylamine Resin. Kagaku Kogaku Ronbunshu, 2021, 47, 111-117.	0.1	0
2323	Structure-tunable trivalent Fe-Al-based bimetallic organic frameworks for arsenic removal from contaminated water. Journal of Molecular Liquids, 2022, 346, 117101.	2.3	21
2324	Java plum and amaltash seed biomass based bio-adsorbents for synthetic wastewater treatment. Environmental Pollution, 2021, 280, 116890.	3.7	30
2325	Contemporary practices in groundwater arsenic remediation and wastewater management in West Bengal, India: a systematic review. International Journal of Advanced Technology and Engineering Exploration, 2021, 8, 797-823.	0.6	14
2326	Current status and future prospects of nanomedicine for arsenic trioxide delivery to solid tumors. Medicinal Research Reviews, 2022, 42, 374-398.	5.0	26
2327	Testing of Chemically Activated Cellulose Fibers as Adsorbents for Treatment of Arsenic Contaminated Water. Materials, 2021, 14, 3731.	1.3	16
2328	Oxygen-rich poly-bisvanillonitrile embedded amorphous zirconium oxide nanoparticles as reusable and porous adsorbent for removal of arsenic species from water. Journal of Hazardous Materials, 2021, 413, 125356.	6.5	11
2329	Stitch and copolymerization of thin-film composite membranes to enhance hydrophilicity and organics resistance for the separation of glycerol-based wastewater. Journal of Hazardous Materials, 2021, 413, 125446.	6.5	4
2330	A critical review on the research trends and emerging technologies for arsenic decontamination from water. Groundwater for Sustainable Development, 2021, 14, 100607.	2.3	33
2331	Straw biochar enhanced removal of heavy metal by ferrate. Journal of Hazardous Materials, 2021, 416, 126128.	6.5	39
2332	Adsorption of Si(OH)4 and Al(OH)4 onto arsenopyrite surface: Exploring the sealing feasibility of geopolymer to arsenopyrite. Minerals Engineering, 2021, 170, 107017.	1.8	12
2333	Complete arsenite removal from groundwater by UV activated potassium persulfate and iron oxide impregnated granular activated carbon. Chemosphere, 2021, 277, 130225.	4.2	30
2334	Effects of coexisting ions on simultaneous removal of fluoride and arsenic from water by hybrid Al–Fe electrocoagulation. International Journal of Environmental Science and Technology, 2022, 19, 6667-6680.	1.8	6
2335	Facile synthesis of Sn(II)-MOF using waste PET bottles as an organic precursor and its derivative SnO2 NPs: Role of surface charge reversal in adsorption of toxic ions. Journal of Environmental Chemical Engineering, 2021, 9, 105288.	3.3	23
2336	Low-cost laterite-laden household filters for removing arsenic from groundwater in Vietnam and waste management. Chemical Engineering Research and Design, 2021, 152, 154-163.	2.7	6
2337	Mesoporous cerium oxide-anchored magnetic polyhedrons derived from MIL-100(Fe) for enhanced removal of arsenite from aqueous solution. Journal of Hazardous Materials, 2021, 415, 125709.	6.5	15

#	Article	IF	CITATIONS
2338	Self-condensation route to Al13-magadiite complex for arsenate removal. Journal of Solid State Chemistry, 2021, 300, 122225.	1.4	3
2339	Adsorption of arsenic (III) from aqueous solution by a novel phosphorus-modified biochar obtained from Taraxacum mongolicum Hand-Mazz: Adsorption behavior and mechanistic analysis. Journal of Environmental Management, 2021, 292, 112764.	3.8	24
2340	Highly efficient As(III) removal in water using millimeter-sized porous granular MgO-biochar with high adsorption capacity. Journal of Hazardous Materials, 2021, 416, 125822.	6.5	32
2341	Low-Dose CaO ₂ Enhanced Arsenite Coagulation via Elevating Solution pH and Persistently Oxidizing As(III) into As(V). ACS ES&T Water, 2021, 1, 2119-2127.	2.3	8
2342	Graphene oxide-MnO2-goethite microsphere impregnated alginate: A novel hybrid nanosorbent for As (III) and As (V) removal from groundwater. Journal of Water Process Engineering, 2021, 42, 102129.	2.6	32
2343	Removal of arsenic from wastewater by using different technologies and adsorbents: a review. International Journal of Environmental Science and Technology, 2022, 19, 9243-9266.	1.8	19
2344	Enriching Trace Level Adsorption Affinity of As3+ Ion Using Hydrothermally Synthesized Iron-Doped Hydroxyapatite Nanorods. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 47-62.	1.9	8
2345	Photocatalysis for Heavy Metal Treatment: A Review. Processes, 2021, 9, 1729.	1.3	41
2346	Novel monomers with N â€methyl―D ―glucamine segments and their application in structured porous materials for arsenic capture. Journal of Applied Polymer Science, 2022, 139, 51610.	1.3	2
2347	A new method for highly efficient separation and determination of arsenic species in natural water using silica modified with polyamines. Analytica Chimica Acta, 2021, 1178, 338824.	2.6	10
2348	Sorption of lead (II) and strontium (II) ions from aqueous solutions onto non-living Chlorella Vulgaris Alga/ Date pit activated carbon composite. Carbon Letters, 2022, 32, 495-512.	3.3	9
2349	Specifically designed amine functional group doped sludge biochar for inorganic and organic arsenic removal. Sustainable Environment Research, 2021, 31, .	2.1	4
2350	Comparison of the effects of competitive adsorption and reductive dissolution on migration of arsenic in lake sediment. Chemistry and Ecology, 2021, 37, 827-839.	0.6	0
2351	Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation. Water Research, 2021, 203, 117539.	5.3	10
2352	Selenium alleviates arsenic induced stress by modulating growth, oxidative stress, antioxidant defense and thiol metabolism in rice seedlings. International Journal of Phytoremediation, 2022, 24, 763-777.	1.7	13
2353	High-efficiency degradation of p-arsanilic acid and arsenic immobilization with iron encapsulated B/N-doped carbon nanotubes at natural solution pH. Science of the Total Environment, 2021, 785, 147152.	3.9	9
2354	Trace Key Mechanistic Features of the Arsenite Sequestration Reaction with Nanoscale Zerovalent Iron. Journal of the American Chemical Society, 2021, 143, 16538-16548.	6.6	12
2355	A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. Journal of Hazardous Materials, 2021, 418, 126299.	6.5	113

#	Article	IF	CITATIONS
2356	Fate of arsenic in living systems: Implications for sustainable and safe food chains. Journal of Hazardous Materials, 2021, 417, 126050.	6.5	69
2357	A novel arsenic immobilization strategy via a two-step process: Arsenic concentration from dilute solution using schwertmannite and immobilization in Ca–Fe–AsO4 compounds. Journal of Environmental Management, 2021, 295, 113052.	3.8	19
2358	Aunano/Fe-MOF hybrid electrode for highly sensitive determination of trace As(III). Journal of Electroanalytical Chemistry, 2021, 899, 115642.	1.9	8
2359	Advances in As contamination and adsorption in soil for effective management. Journal of Environmental Management, 2021, 296, 113274.	3.8	16
2360	Adsorption of As(III) from aqueous solutions using MnO2 strengthened WTRs-chitosan beads made by homogenous method with freeze-drying. Reactive and Functional Polymers, 2021, 167, 105016.	2.0	6
2361	Experiments and simulation of co-migration of copper-resistant microorganisms and copper ions in saturated porous media. Journal of Contaminant Hydrology, 2021, 242, 103857.	1.6	3
2362	Arsenic removal via a novel hydrochar from livestock waste co-activated with thiourea and γ-Fe2O3 nanoparticles. Journal of Hazardous Materials, 2021, 419, 126457.	6.5	28
2363	Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 2021, 183, 735-742.	5.4	37
2364	Green reaction-type nucleation seed accelerator prepared from coal fly ash ground in water environment. Construction and Building Materials, 2021, 306, 124840.	3.2	14
2365	Exposure of humic acid-coated goethite colloids to groundwater does not affect their adsorption of metal(loid)s and their impact on Daphnid mobility. Science of the Total Environment, 2021, 797, 149153.	3.9	3
2366	Fabrication of self-assembled 0D-2D Bi2MoO6-g-C3N4 photocatalytic composite membrane based on PDA intermediate coating with visible light self-cleaning performance. Journal of Colloid and Interface Science, 2021, 601, 229-241.	5.0	39
2367	Effective removal of water-soluble methylated arsenic contaminants with phosphorene oxide nanoflakes: A DFT study. Journal of Molecular Liquids, 2021, 341, 117423.	2.3	3
2368	POSS modified NixOy-decorated TiO2 nanosheets: Nanocomposites for adsorption and photocatalysis. Applied Surface Science, 2021, 566, 150604.	3.1	6
2369	Removal of water-soluble inorganic arsenicals with phosphorene oxide nanoadsorbents: A first-principles study. Chemical Engineering Journal, 2021, 426, 131471.	6.6	4
2370	Experimental and theoretical studies of cadmium adsorption over Fe2O3 sorbent in incineration flue gas. Chemical Engineering Journal, 2021, 425, 131647.	6.6	26
2371	Biochar as environmental armour and its diverse role towards protecting soil, water and air. Science of the Total Environment, 2022, 806, 150444.	3.9	63
2372	Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies. Environmental Research, 2022, 203, 111782.	3.7	150
2373	Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: A review. Science of the Total Environment, 2022, 803, 149918.	3.9	44

		CITATION REPORT		
# 2374	ARTICLE Amidoxime-functionalized covalent organic framework as simultaneous luminescent se adsorbent for organic arsenic from water. Chemical Engineering Journal, 2022, 429, 13		IF 6.6	CITATIONS
2375	Sorption of arsenic by composts and biochars derived from the organic fraction of mur wastes: Kinetic, isotherm and oral bioaccessibility study. Environmental Research, 2022		3.7	21
2376	Enhanced removal of As(III) by heterogeneous catalytic oxidation of As(III) on Fe-bioch H2O2 and hydroxylamine. Chemical Engineering Journal, 2022, 428, 131200.	ar fibers with	6.6	18
2377	Establishing the state-of-the-art on the adsorption of coexisting pnictogens in water: A review. Chemosphere, 2022, 286, 131947.	literature	4.2	0
2378	Strategies to cope with the emerging waste water contaminants through adsorption re 61-106.	egimes. , 2022, ,		7
2379	Low-Cost Nanoparticles for Remediation of Arsenic Contaminated Water and Soils. , 20	021,,217-251.		2
2380	Multifunctional organic-inorganic materials for water treatment. , 2021, , 529-540.			2
2381	Close band center and rapid adsorption kinetics facilitate selective electrochemical ser metal ions. Chemical Communications, 2021, 57, 3820-3823.	ising of heavy	2.2	6
2382	Water purification: Removal of Heavy metals Using Metal-Organic Frameworks (MOFs)	. , 2021, , 239-268.		2
2383	Arsenic pollution and human health issues $\hat{a} \in $ special reference to Bengal Delta. , 202	1, , 281-305.		2
2384	Bioremediation of heavy metals from wastewater treatment plants by microorganisms.	.,2021,,411-434.		1
2387	Graphene and its derivatives for environmental applications. , 2021, , 219-259.			0
2388	Eco-Friendly Nanostructured Materials for Arsenic Removal from Aqueous Basins. , 202	.1, , 1-24.		0
2389	A state-of-the-art review on wastewater treatment techniques: the effectiveness of ads method. Environmental Science and Pollution Research, 2021, 28, 9050-9066.	orption	2.7	366
2390	Removal of arsenic from contaminated groundwater using biochar: a technical review. Journal of Environmental Science and Technology, 2022, 19, 651-664.	International	1.8	25
2391	Nanoclays as Eco-friendly Adsorbents of Arsenic for Water Purification. , 2020, , 1-17.			4
2392	Fungal Enzymes for Bioremediation of Contaminated Soil. Fungal Biology, 2019, , 189-	215.	0.3	6
2393	Nanotechnology in Wastewater and the Capacity of Nanotechnology for Sustainability Environmental Chemistry for A Sustainable World, 2020, , 1-45.		0.3	4

ARTICLE IF CITATIONS Some Effective Methods for Treatment of Wastewater from Cu Production. Environmental Chemistry 2394 0.3 1 for A Sustainable World, 2021, , 313-440. Arsenic removal by magnetic nanocrystalline barium hexaferrite., 2012, , 163-169. 2395 A Low-Cost Arsenic Removal Method for Application in the Brahmaputra-Ganga Plains: Arsiron 2396 2 Nilogon., 2015, , 289-298. Neural Modeling Adsorption of Copper, Chromium, Nickel, and Lead from Aqueous Solution by Natural Wastes., 2015, , 341-356. Applications of Nanoparticles in the Treatment of Wastewater., 2017, , 1-25. 2398 4 Iron Oxide Nanoparticles to Remove Arsenic from Water. Sustainable Agriculture Reviews, 2017, , 2399 279-299. Applications of Nanoparticles in the Treatment of Wastewater., 2019, , 275-299. 1 Arsenic and Water Quality Challenges in South America., 2010, , 275-293. 2401 Current Status of Toxic Metals Addition to Environment and Its Consequences. Environmental 2402 0.4 28 Pollution, 2012, , 35-69. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic 2403 pollutants from industrial wastewater. International Journal of Environmental Science and 1.8 Technology, 2021, 18, 3273-3294. The adsorptive removal of As (III) using biomass of arsenic resistant Bacillus thuringiensis strain WS3: 2404 2.9 47 Characteristics and modelling studies. Ecotoxicology and Environmental Safety, 2019, 172, 176-185. A review on coal fly ash-based adsorbents for mercury and arsenic removal. Journal of Cleaner 4.6 106 Production, 2020, 267, 122143. Simultaneous removal and oxidation of arsenic from water by Î'-MnO2 modified activated carbon. 2406 3.2 43 Journal of Environmental Sciences, 2020, 94, 147-160. Efficient oxidation and adsorption of As(III) and As(V) in water using a Fenton-like reagent, 2407 63 (ferrihydrite)-loaded biochar. Science of the Total Environment, 2020, 715, 136957. One-Pot Synthesis of a Magnetic TiO₂/PTh/Î³-Fe₂O₃ Heterojunction 2408 Nanocomposite for Removing Trace Arsenite via Simultaneous Photocatalytic Oxidation and 32 1.8 Adsorption. Industrial & amp; Engineering Chemistry Research, 2021, 60, 528-540. Hydrogen Evolution from Water Coupled with the Oxidation of As(III) in a Photocatalytic System. ACS 2409 Applied Materials & amp; Interfaces, 2015, 7, 28429-28437. CHAPTER 17. Detection of Environmental Pollutants by Surface-Enhanced Raman Spectroscopy. RSC 2410 0.02 Detection Science, 0, , 477-503. Chapter 2. Polymer–Layered Double Hydroxide Nanocomposites by Emulsion and Suspension 2411 Polymerization. RSC Nanoscience and Nanotechnology, 2010, , 32-63.

#	Article	IF	CITATIONS
2412	Nanomaterials for Water Remediation. RSC Green Chemistry, 2013, , 135-154.	0.0	3
2414	Adsorption mechanisms for heavy metal removal using low cost adsorbents: A review. IOP Conference Series: Earth and Environmental Science, 2020, 614, 012166.	0.2	26
2415	Significance of bio-treatment by acid washing for enlargement of arsenic desorption in indigenous arsenic-resistant bacteria from gold mine. Malaysian Journal of Fundamental and Applied Sciences, 2020, 16, 190-195.	0.4	11
2416	The global arsenic crisisâ \in "a short introduction. Arsenic in the Environment, 2010, , 3-19.	0.0	3
2417	Arsenite oxidase. , 2018, , 100-116.		1
2418	Arsenic in the environment. Arsenic in the Environment, 2012, , 1-23.	0.0	7
2419	Adsorption of Arsenic from Alkaline Solutions. Kagaku Kogaku Ronbunshu, 2017, 43, 185-192.	0.1	4
2420	Effect of pH and Treatment Time on the Removal of Arsenic Species from Simulated Groundwater by Using Fe ³⁺ and Ca ²⁺ Impregnated Granular Activated Charcoals. Chemical Engineering and Science, 2013, 1, 27-31.	0.6	6
2421	Removal of Arsenic from Drinking Water by Hydroxyapatite Nano Particles. Current World Environment Journal, 2014, 9, 331-338.	0.2	17
2422	The Absortion Behavior of As Ion on PVC Absorbent Containing Al(OH). Journal of the Korean Society of Mineral and Energy Resources Engineers, 2016, 53, 506-510.	0.1	2
2423	Land treatment Methods A review on Available Methods and its Ability to Remove Pollutants. Oriental Journal of Chemistry, 2015, 31, 957-966.	0.1	2
2424	Reuse of Textile Wastewater After Treating with Combined Process of Chemical Coagulation and Electrocoagulation. Polish Journal of Environmental Studies, 2019, 28, 2565-2570.	0.6	3
2425	TREATMENT OF DISTILLERIES AND BREWERIES SPENT WASH WASTEWATER. International Journal of Research in Engineering and Technology, 2014, 03, 204-214.	0.1	5
2426	ARSENIC CONTAMINATED GROUNDWATER IN CHINA AND ITS TREATMENT OPTIONS, A REVIEW. Applied Ecology and Environmental Research, 2019, 17, 1655-1683.	0.2	42
2427	Magnetite Nanoparticles (MNPs) Used as Cadmium Metal Removal from the Aqueous Solution from Mill Scales Waste Sources. Sains Malaysiana, 2020, 49, 847-858.	0.3	6
2428	Groundwater Arsenic Contamination in West Bengal: Current Scenario, Effects and Probable Ways of Mitigation. International Letters of Natural Sciences, 0, 13, 45-58.	1.0	15
2429	Effect of pH and total phosphorus concentration of overlying water on arsenic mobilization in the sediments containing high arsenic and iron salts. Hupo Kexue/Journal of Lake Sciences, 2015, 27, 1101-1106.	0.3	1
2430	Toward a Multidisciplinary Strategy for the Classification and Reuse of Iron and Manganese Mining Wastes. Chemistry Journal of Moldova, 2020, 15, 21-30.	0.3	3

#	Article	IF	CITATIONS
2431	PRELIMINARY EVALUATION OF LOCALLY AVAILABLE ORGANIC SUBSTRATES FOR VERTICAL FLOW PASSIVE TREATMENT CELLS IN POTOSÃ, BOLIVIA. Journal of the American Society of Mining and Reclamation, 2009, 2009, 1177-1196.	0.3	1
2432	PERFORMANCE OF AN ECOLOGICALLY-ENGINEERED MULTI-STAGE ACID MINE DRAINAGE AND MUNICIPAL WASTEWATER PASSIVE CO-TREATMENT SYSTEM. Journal of the American Society of Mining and Reclamation, 2009, 2009, 1412-1432.	0.3	3
2433	WATER QUALITY IMPACTS FROM IN-STREAM MINE TAILINGS IN RIO TARAPAYA, POTOSÃ, BOLIVIA. Journal of the American Society of Mining and Reclamation, 2011, 2011, 635-654.	0.3	2
2435	Study of arsenic (V) removal of water by using agglomerated alumina. Nova Scientia, 2019, 11, 01-25.	0.0	3
2436	Southeast Asian Water Environment 4. Water Intelligence Online, 0, 9, .	0.3	4
2437	Acid Treatment of Crushed Brick (from Central African Republic) and its Ability (After FeOOH Coating) to Adsorb Ferrous Ions from Aqueous Solutions. Open Materials Science Journal, 2012, 6, 50-59.	0.2	6
2439	An overview of main arsenic removal technologies. Acta Chimica Slovaca, 2018, 11, 107-113.	0.5	47
2440	Arsenic Content in Arable Land of the ZÄbkowice District. Civil and Environmental Engineering Reports, 2014, 12, 69-81.	0.2	1
2441	ARSENIC ADSORPTION INTO THE FIXED BED COLUMN FROM DRINKING GROUNDWATER. , 2018, , .		2
2442	REMOVAL OF SOME ENVIRONMENTALLY RELEVANT HEAVY METALS USING LOW-COST NATURAL SORBENTS. Environmental Engineering and Management Journal, 2009, 8, 353-372.	0.2	35
2443	Treatment of pulp and paper mill effluent using low cost adsorbents: An overview. Journal of Applied and Natural Science, 2018, 10, 695-704.	0.2	10
2444	Adsorption of As(V) by the Novel and Efficient Adsorbent Cerium-Manganese Modified Biochar. Water (Switzerland), 2020, 12, 2720.	1.2	18
2445	FIXED-BED COLUMN ADSORPTION OF ARSENIC(V) BY POROUS COMPOSITE OF MAGNETITE/HEMATITE/CARBON WITH EUCALYPTUS WOOD MICROSTRUCTURE. Journal of Environmental Engineering and Landscape Management, 2018, 26, 38-56.	0.4	15
2446	Removal of Antimony from Water Using GEH Sorption Material at Different Filter Bed Volumes. , 0, , .		1
2447	Bioadsorbtion of Arsenic by Prepared and Commercial Crab Shell Chitosan. Biotechnology, 2008, 8, 160-165.	0.5	13
2448	Equilibrium and Kinetic Studies on the Biosorption of As (III) and As (V) by the Marine Algae Turbinaria conoides. Research Journal of Environmental Sciences, 2011, 5, 779-789.	0.5	10
2449	Functionalized Magnetic Nanoparticles for Environmental Remediation. Advances in Chemical and Materials Engineering Book Series, 2015, , 518-551.	0.2	12
2450	Recent Trends and Advancement in Nanotechnology for Water and Wastewater Treatment. Advances in Civil and Industrial Engineering Book Series, 2016, , 208-252.	0.2	3

#	Article	IF	CITATIONS
2451	Hydrothermal Degradation of Congo Red in Hot Compressed Water and its Kinetics. Journal of Chemical Engineering & Process Technology, 2013, 04, .	0.1	5
2452	Advances in Water Quality Monitoring of Inorganics: Current Trends. Journal of Water Resource and Protection, 2013, 05, 40-48.	0.3	2
2453	Kinetic and Thermodynamic Study of Arsenic (V) Adsorption on P and W Aluminum Functionalized Zeolites and Its Regeneration. Journal of Water Resource and Protection, 2013, 05, 58-67.	0.3	3
2454	Continuous-Flow Removal of Arsenic in Drinking Water by Filtering down through Fe ₃ O ₄ @SiO <sub& Magnetic Composite. Journal of Water Resource and Protection, 2016, 08, 619-630.</sub& 	.a mp ;gt;28	kamp;lt;/suba
2455	Removal of Methylene Blue, Rhodamine B and Ammonium Ion from Aqueous Solution by Adsorption onto Sintering Porous Materials Prepared from Coconut Husk Waste. Open Journal of Inorganic Non-metallic Materials, 2015, 05, 21-30.	2.7	10
2456	The effect of Cl ^{â^`} , PO ₄ ^{3â^`} , and SiO ₃ ^{2â^`} on the adsorption of As(V) and As(III) on bauxite in water. International Journal of Engineering, Science and Technology, 2016, 7, 30.	0.3	2
2457	Adsorption Characteristics of As(V) onto Cationic Surfactant-Modified Activated Carbon. Environmental Engineering Research, 2009, 14, 153-157.	1.5	12
2458	Activated Carbon and Manganese Coated Activated Carbon Precursor to Dead Biomass in the Remediation of Arsenic Contaminated Water. Environmental Engineering Research, 0, , 41-48.	1.5	15
2459	Iron Mixed Ceramic Pellet for Arsenic Removal from Groundwater. Environmental Engineering Research, 2013, 18, 163-168.	1.5	7
2460	Use of hybrid materials in the trace determination of As(V) from aqueous solutions: An electrochemical study. Environmental Engineering Research, 2017, 22, 186-192.	1.5	12
2461	Low cost, highly sensitive and selective electrochemical detection of arsenic (III) using silane grafted based nanocomposite. Environmental Engineering Research, 2020, 25, 579-587.	1.5	20
2463	Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study. Bulletin of the Korean Chemical Society, 2013, 34, 2358-2366.	1.0	4
2464	Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters. Bulletin of the Korean Chemical Society, 2014, 35, 605-609.	1.0	13
2465	Mg-Fe-Hidrotalsit (FeHT) Kullanarak Sudan As(III) Adsorpsiyonu. Ekoloji, 2010, 74, 77-88.	0.4	6
2466	Removal of Heavy Metal lons by using Calcium Carbonate Extracted from Starfish Treated by Protease and Amylase. Journal of Analytical Science and Technology, 2011, 2, 75-82.	1.0	35
2467	Adsorption of Arsenite from Aqueous Solutions Using Granola Modified Lemon Peel. Avicenna Journal of Environmental Health Engineering, 2017, 4, 11667-11667.	0.3	3
2468	Arsenic interactions with bog iron ores – As(III) and As(V) adsorption-desorption study [abstract] Geology Geophysics & Environment, 2016, 42, 133.	1.0	2
2469	Synthesis of Anion-Exchange Materials from Concrete Sludge and Evaluation of Their Ability to Remove Harmful Anions (Borate, Fluoride, and Chromate). International Journal of Chemical Engineering and Applications (IJCEA), 2014, 5, 298-302.	0.3	8

ARTICLE IF CITATIONS Development of Microbe Carrier for Bioremediation of Zn, As by using Desulfovibrio Desulfuricans 2470 0.1 3 and Zeolite in Artificial Sea Water. KSBB Journal, 2015, 30, 114-118. Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and 2471 Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan. Korean 0.2 Chemical Engineering Research, 2014, 52, 620-626. Phytoremediation Potential of Phragmites Karka For Arsenic Contaminated Soil And Water. IOSR 2472 3 0.1 Journal of Environmental Science, Toxicology and Food Technology, 2014, 8, 84-92. A comprehensive study on amalgamation of sustainable solar powered distillation for arsenic and fluoride removal from groundwater. Environmental Science and Pollution Research, 2021, 28, 2473 2.7 67909-67924. Highly Efficient Iron Oxide Nanoparticles Immobilized on Cellulose Nanofibril Aerogels for Arsenic 2474 1.9 14 Removal from Water. Nanomaterials, 2021, 11, 2818. Nanomaterials as adsorbents for As(III) and As(V) removal from water: A review. Journal of Hazardous 6.5 Materials, 2022, 424, 127572. Amorphous Silica Slab Models with Variable Surface Roughness and Silanol Density for Use in 2476 1.5 11 Simulations of Dynamics and Catalysis. Journal of Physical Chemistry C, 2021, 125, 23418-23434. Adsorption of organic and inorganic arsenic from aqueous solution: Optimization, characterization 4.2 19 and performance of Fe–Mn–Zr ternary magnetic sorbent. Chemosphere, 2022, 288, 132634. Health Risk Assessment of Arsenic in the Drinking Water of Upper Sindh, Pakistan. Engineering, 2478 0.8 2 Technology & Applied Science Research, 2021, 11, 7558-7563. UiO-66(Zr)-derived t-zirconia with abundant lattice defect for remarkably enhanced arsenic removal. 2479 4.2 Chemosphere, 2022, 288, 132594. Removal of high-concentration of arsenic in acidic wastewater through zero-valent aluminium 2480 1.8 9 powder and characterisation of products. Hydrometallurgy, 2021, 206, 105767. Effective remediation of arsenate from contaminated water by zirconium modified pomegranate peel 2481 3.3 as an anion exchanger. Journal of Environmental Chemical Engineering, 2021, 9, 106552 2482 Natural red earth. Arsenic in the Environment, 2008, , 521-525. 0.0 1 Arsenic in the environment and its remediation by a novel filtration method. Arsenic in the 2483 Environment, 2008, , 605-614. Origin of Arsenic in Drinking Waters in the West Backa District of Serbia. NATO Science for Peace and 2484 0.1 0 Security Series C: Environmental Security, 2009, , 41-50. GCMS Prediction of Organochlorine Herbicide Sorption Rate: A Batch Kinetic Studies. Trends in 2486 Applied Sciences Research, 2011, 6, 451-462. Efficient methods for arsenic removal from groundwater. International Journal of Safety and 2487 0.5 1 Security Engineering, 2011, 1, 326-342. 2488 Dynamic Speckle technique to analysis of hydro-adsorption processes in clay surfaces., 2012, , .

		CITATION	Report	
#	Article		IF	CITATIONS
2489	Arsenic adsorption characteristics of biogenic iron oxides in comparison to chemogen Japanese Journal of Water Treatment Biology, 2012, 48, 145-156.	ic iron oxides.	0.2	0
2490				

#	Article	IF	CITATIONS
2508	Removal of arsenic (III) and arsenic (V) from water using material based on the natural minerals. Arsenic in the Environment Proceedings, 2016, , 480-481.	0.0	0
2510	Arsenic adsorption behavior on aluminum substituted cobalt ferrite adsorbents for drinking water application. Arsenic in the Environment Proceedings, 2016, , 541-542.	0.0	1
2511	OBSOLETE: Arsenic. , 2017, , .		0
2512	Functionalized Magnetic Nanoparticles for Environmental Remediation. , 2017, , 705-741.		2
2513	Recent Trends and Advancement in Nanotechnology for Water and Wastewater Treatment. , 2017, , 1745-1779.		1
2514	Kinetics and Thermodynamic Studies of the Arsenite Oxidation by K-OMS2. International Journal of Chemical Engineering and Applications (IJCEA), 2017, 8, 189-193.	0.3	0
2515	Toxic Metals Contamination in the Environment. , 2017, , 209-240.		1
2516	Ferric hydroxide-based media for removal of toxic arsenic species. Kinetic, equilibrium and thermodynamic studies. Environmental Protection Engineering, 2018, 44, .	0.1	0
2517	A Comprehensive Study on the Potential of Fermentation Biowaste (<i>Escherichia coli</i>) as a Biosorbent for the Removal of Various Ionic Pollutants. Journal of Korea Society of Waste Management, 2018, 35, 268-275.	0.1	0
2518	Research Progress on Heavy Metal Adsorption by Fruit-Shell Biomass in Water. Water Pollution and Treatment, 2019, 07, 119-130.	0.0	0
2519	Arsenic(v) removal from aqueous solutions using ferromagnetic activated carbon: equilibrium and kinetic studies. Revue Des Sciences De L'Eau, 0, 32, 179-192.	0.2	4
2520	Toxic Elements in Bangladesh's Drinking Water. Microorganisms for Sustainability, 2019, , 273-296.	0.4	0
2521	Biogenic Material With Iron Nanoparticles for As(V) Removal. Nanotechnology in the Life Sciences, 2019, , 55-75.	0.4	0
2522	La ruta de trimetilsililación para preparar sÃłice modificada con grupos mercapto y su empleo como adsorbente de arsénico de fuentes de agua. Acta Universitaria, 0, 29, 1-14.	0.2	0
2523	Cinética de la adsorción de fluoruro y arsénico usando nano-fibras de alúmina. CienciaUAT, 2019, 14, 45.	0.3	1
2524	Modifiye Edilmiş Pomza Kullanılarak Sulu Ortamlardan Adsorpsiyon Prosesi ile Arsenat (V) Giderimi. Journal of Natural and Applied Sciences, 0, , 80-90.	0.1	4
2526	Development of Yttrium(III)–Incorporated Magnetite for Adsorptive Removal of Arsenic and a Study of the Adsorption Mechanism. Kagaku Kogaku Ronbunshu, 2019, 45, 168-176.	0.1	0
2527	Đ¡Đ¾Ñ€Đ±ĐµĐ½Ñ,Ñ‹ Đ½Đ° Đ¾ÑĐ½Đ¾Đ2е Đ½Đ°Đ½Đ¾Ñ‡Đ°ÑÑ,Đ,ц Đ¼Đ°Đ³Đ½ĐµÑ,Đ,Ñ,а ĐƊ»Ñ€); Ñ€Ð ,м	⅁ ֈⅆ ⅁¹∕₂еÐ ^ℸ ∕

#	Article	IF	CITATIONS
2528	Exploratory study on rapid identification of arsenic in water based on Raman spectroscopy. , 2019, , .		0
2530	An overview of As(V) removal from water by adsorption technology. Annals of Musculoskeletal Medicine, 2020, , 015-020.	0.6	3
2531	High efficient arsenic removal by In-layer sulphur of layered double hydroxide. Journal of Colloid and Interface Science, 2022, 608, 2358-2366.	5.0	13
2532	Highly Sensitive and Stable Determination of As(III) under Near-Neutral Conditions: Benefit from the Synergetic Catalysis of Pt Single Atoms and Active S Atoms over Pt ₁ /MoS ₂ . Analytical Chemistry, 2021, 93, 15115-15123.	3.2	20
2533	Study and Application of Various Activated Carbons and Ash used in Water Purification Techniques: A Review. Current World Environment Journal, 2020, 15, 384-397.	0.2	1
2534	A combination approach using two functionalized magnetic nanoparticles for speciation analysis of inorganic arsenic. Talanta, 2022, 237, 122939.	2.9	10
2535	Synergistic removal of As(V) from aqueous solution by nanozero valent iron loaded with zeolite 5A synthesized from fly ash. Journal of Hazardous Materials, 2022, 424, 127428.	6.5	19
2536	Influence of cations on As(III) removal from simulated groundwaters by double potential step chronoamperometry (DPSC) employing polyvinylferrocene (PVF) functionalized electrodes. Journal of Hazardous Materials, 2022, 424, 127472.	6.5	3
2539	Bifunctional Ionic Covalent Organic Networks for Enhanced Simultaneous Removal of Chromium(VI) and Arsenic(V) Oxoanions via Synergetic Ion Exchange and Redox Process. Small, 2021, 17, e2104703.	5.2	13
2540	Examples in the detection of heavy metal ions based on surface-enhanced Raman scattering spectroscopy. Nanophotonics, 2021, 10, 4419-4445.	2.9	26
2541	Synthesis of Oxidant Functionalised Cationic Polymer Hydrogel for Enhanced Removal of Arsenic (III). Gels, 2021, 7, 197.	2.1	9
2544	Magnetic Separation of Impurities from Hydrometallurgy Solutions and Waste Water Using Magnetic Iron Ore Seeding. , 0, , .		1
2545	Arsenic Pollution in Groundwater and Its In Situ Microbial Remediation Technologies. Microorganisms for Sustainability, 2021, , 183-197.	0.4	1
2546	Metal Oxyhydroxide Composites for Halogens and Metalloid Removal. Environmental Chemistry for A Sustainable World, 2021, , 57-91.	0.3	0
2548	Electroanalytical Techniques for the Remediation of Heavy Metals from Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 471-511.	0.3	11
2549	ARSENIC POLLUTION AND REMEDIAL MEASURES IN WEST BENGAL: AN OVERVIEW. , 2020, , 52-56.		Ο
2550	Polyvinylamine-grafted polypropylene membranes for adsorptive removal of Cr(VI) from water. Reactive and Functional Polymers, 2022, 170, 105108.	2.0	10
2551	Adsorptive and reductive removal of toxic and radioactive metal ions by nanoscale zero-valent iron–based nanomaterials from wastewater. , 2022, , 195-228.		0

#	Article	IF	CITATIONS
2553	Generalised Equation for the Effect of pH on Arsenic Removal Efficiency Using Natural Adsorbents. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	0
2554	Antimony Mobilisation and Attenuation During Ore Processing at Orogenic Gold Mines, Southern New Zealand. Mine Water and the Environment, 0, , 1.	0.9	1
2555	Bio-Zirconium Metal–Organic Framework Regenerable Bio-Beads for the Effective Removal of Organophosphates from Polluted Water. Polymers, 2021, 13, 3869.	2.0	17
2556	Guanidinium-Based Ionic Covalent-Organic Nanosheets for Sequestration of Cr(VI) and As(V) Oxoanions in Water. ACS Applied Nano Materials, 2021, 4, 13319-13328.	2.4	6
2557	Bioaccumulation of arsenic(V) from wastewater by live and dead <i>Spirogyra</i> sp Journal of Basic Microbiology, 2022, 62, 489-497.	1.8	3
2558	Acidity-dependent mobilization of antimony and arsenic in sediments near a mining area. Journal of Hazardous Materials, 2022, 426, 127790.	6.5	12
2559	Regenerated cellulose membrane incorporating photocatalytic zinc oxide as a bifunctional membrane for decoloration of methylene blue. Polymers for Advanced Technologies, 0, , .	1.6	2
2560	Contribution of H-Abstraction to Photocatalytic Oxidation of As(III) by Bi _{2.15} WO ₆ . Journal of Physical Chemistry C, 2021, 125, 26492-26502.	1.5	4
2561	Adsorptive Removal of Copper (II) Ions from Aqueous Solution Using a Magnetite Nano-Adsorbent from Mill Scale Waste: Synthesis, Characterization, Adsorption and Kinetic Modelling Studies. Nanoscale Research Letters, 2021, 16, 168.	3.1	24
2562	Effect of Biochar and PGPR on the Growth and Nutrients Content of Einkorn Wheat (Triticum) Tj ETQq1 1 0.784	314 rgBT 1.3	/Overlock 10 14
2562 2563		314 rgBT 1.3 1.2	/Overlock 10 14
	Effect of Biochar and PGPR on the Growth and Nutrients Content of Einkorn Wheat (Triticum) Tj ETQq1 1 0.784 Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings, 2021, 11,	1.0	14
2563	Effect of Biochar and PGPR on the Growth and Nutrients Content of Einkorn Wheat (Triticum) Tj ETQq1 1 0.784 Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings, 2021, 11, 1407.	1.2	15
2563 2564	Effect of Biochar and PGPR on the Growth and Nutrients Content of Einkorn Wheat (Triticum) Tj ETQq1 1 0.784 Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings, 2021, 11, 1407. Application of Modern Research Methods for the Physicochemical Characterization of Ion Exchangers. Materials, 2021, 14, 7067. Synergistic activation of sulfite for As(III) oxidation by basic copper(II) carbonate in homogeneous and	1.3	15 9
2563 2564 2565	Effect of Biochar and PGPR on the Growth and Nutrients Content of Einkorn Wheat (Triticum) Tj ETQq1 1 0.784 Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings, 2021, 11, 1407. Application of Modern Research Methods for the Physicochemical Characterization of Ion Exchangers. Materials, 2021, 14, 7067. Synergistic activation of sulfite for As(III) oxidation by basic copper(II) carbonate in homogeneous and heterogeneous processes at near-neutral conditions. Chemical Engineering Journal, 2022, 433, 133662. Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined	1.3 1.2 1.3 6.6	15 9 14
2563 2564 2565 2566	Effect of Biochar and PGPR on the Growth and Nutrients Content of Einkorn Wheat (Triticum) Tj ETQq1 1 0.784 Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings, 2021, 11, 1407. Application of Modern Research Methods for the Physicochemical Characterization of Ion Exchangers. Materials, 2021, 14, 7067. Synergistic activation of sulfite for As(III) oxidation by basic copper(II) carbonate in homogeneous and heterogeneous processes at near-neutral conditions. Chemical Engineering Journal, 2022, 433, 133662. Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico. Toxics, 2021, 9, 307. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation.	1.3 1.2 1.3 6.6 1.6	15 9 14 1
2563 2564 2565 2566 2567	Effect of Biochar and PGPR on the Growth and Nutrients Content of Einkorn Wheat (Triticum) Tj ETQq1 1 0.784 Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review. Coatings, 2021, 11, 1407. Application of Modern Research Methods for the Physicochemical Characterization of Ion Exchangers. Materials, 2021, 14, 7067. Synergistic activation of sulfite for As(III) oxidation by basic copper(II) carbonate in homogeneous and heterogeneous processes at near-neutral conditions. Chemical Engineering Journal, 2022, 433, 133662. Presence of Arsenic in Potential Sources of Drinking Water Supply Located in a Mineralized and Mined Area of the Sierra Madre Oriental in Mexico. Toxics, 2021, 9, 307. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. Environmental Science and Pollution Research, 2022, 29, 9462-9489. Supramolecular Ion-Exchange Resins Based on Calixarene Derivatives for Pollutant Removal from Aquatic Environmental Samples. Environmental Footprints and Eco-design of Products and Processes,	1.3 1.2 1.3 6.6 1.6 2.7	15 9 14 1 6

ARTICLE IF CITATIONS Alkaline refining of crude lead: a method of arsenic removal and the behavior of arsenic in the 2571 0.4 0 process. Metallurgical Research and Technology, 2022, 119, 105. Fluoride ions sorption using functionalized magnetic metal oxides nanocomposites: a review. 2572 2.7 Environmental Science and Pollution Research, 2022, 29, 9640. Impacts of ammonium ion on triclinic birnessites towards the transformation of As(III). 2573 3.7 4 Environmental Pollution, 2022, 298, 118815. Low-temperature preparation of cupric spinel for room-temperature removal of hydrogen sulfide to value-added product ammonia formation. Journal of Environmental Chemical Engineering, 2022, 10, 2574 107044. In situ formation of silver nanoparticles via hydride generation: A miniaturized/portable visual colorimetric system for arsenic detection in environmental water samples. Analytica Chimica Acta, 2575 9 2.6 2022, 1192, 339366. Synthesis and characterization of magnetic Fe3O4@SiO2-MIL-53(Fe) metal-organic framework and its application for efficient removal of arsenate from surface and groundwater. Journal of 3.3 Environmental Chemical Engineering, 2022, 10, 107144. Arsenic adsorption on Mn3O4 surface: As(OH)3/AsO(OH)3 oxidation mechanism. Applied Surface 2577 3.1 6 Science, 2022, 580, 152213. In-silico docking, synthesis, structure analysis, DFT calculations and energy frameworks of metal 2578 1.8 complexes to regress angiogenesis activity. Journal of Molecular Structure, 2022, 1253, 132272. Modeling of continuous adsorption of greywater pollutants onto sawdust activated carbon bed 2579 3.3 16 integrated with sand column. Journal of Environmental Chemical Engineering, 2022, 10, 107155. Ultrasensitive determination and non-chromatographic speciation of inorganic arsenic in foods and water by photochemical vapor generation-ICPMS using CdS/MIL-100(Fe) as adsorbent and 4.2 photocatalyst. Food Chemistry, 2022, 375, 131841. Multifunctional hybrid membranes for photocatalytic and adsorptive removal of water contaminants 2581 4.2 14 of emerging concern. Chemosphere, 2022, 293, 133548. Characterization of BiVO4 Modified TiO2 and its Application in the Water Treatment., 2020, , . Iron oxides nanoparticles supported in a mesoporous matrix for the arsenic remotion of water., 2021, 2583 0 Robust Al³⁺ MOF with Selective As(V) Sorption and Efficient Luminescence Sensing Properties toward Cr(VI). Inorganic Chemistry, 2022, 61, 2017-2030. 2584 Binding of As3+ and As5+ to Fe(III) Oxyhydroxide Clusters and the Influence of Aluminum Substitution: 2585 2 1.1 A Molecular Perspective. Journal of Physical Chemistry A, 2022, 126, 670-684. Waste seeds of Mangifera indica, Artocarpus heterophyllus, and Schizizium commune as biochar for heavy metal removal from simulated wastewater. Biomass Conversion and Biorefinery, 2023, 13, 2586 13393-13402. Potential applications of spent adsorbents and catalysts: Re-valorization of waste. Science of the 2587 3.9 25 Total Environment, 2022, 823, 153370. As(III, V) Uptake from Nanostructured Iron Oxides and Oxyhydroxides: The Complex Interplay between 2588 Sorbent Surface Chemistry and Arsenic Equilibria. Nanomaterials, 2022, 12, 326.

#	Article	IF	CITATIONS
2589	Efficient Sorption of Arsenic on Nanostructured Fe-Cu Binary Oxides: Influence of Structure and Crystallinity. Frontiers in Chemistry, 2021, 9, 840446.	1.8	2
2590	Influence of Water Treatment and Wastewater Treatment on the Changes in Residues of Important Elements in Drinking Water. Molecules, 2022, 27, 972.	1.7	4
2591	Arsenite phytotoxicity and metabolite redistribution in lettuce (Lactuca sativa L.). Science of the Total Environment, 2022, 820, 153271.	3.9	3
2592	MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. Journal of Hazardous Materials, 2022, 429, 128271.	6.5	105
2593	The role of doped-Mn on enhancing arsenic removal by MgAl-LDHs. Journal of Environmental Sciences, 2022, 120, 125-134.	3.2	4
2594	Removal of Arsenate in drinking water sources by combined coagulation process. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 247-254.	0.4	0
2595	Effective immobilization of arsenic in waters and sediments using novel zirconium-loaded lanthanum-modified bentonite capping. Journal of Environmental Chemical Engineering, 2022, , 107343.	3.3	2
2596	Aqueous Arsenic Speciation with Hydrogeochemical Modeling and Correlation with Fluorine in Groundwater in a Semiarid Region of Mexico. Water (Switzerland), 2022, 14, 519.	1.2	12
2597	Arsenic immobilization in calcareous soils amended with native and chemically modified sewage sludge biochar: kinetics and equilibrium studies. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	1
2598	Synthesis of a granular composite based on polyvinyl alcohol-Fe:Ce bimetallic oxide particles for the selective adsorption of As(V) from water. Journal of Water Process Engineering, 2022, 46, 102621.	2.6	8
2600	Effects of Phosphate, Silicate, Humic Acid, and Calcium on the Release of As(V) Co-Precipitated with Fe(lii) and Fe(li) During Aging. SSRN Electronic Journal, 0, , .	0.4	0
2601	A Review on Multi-Synergistic and Surface-Complexation Parameters of Metal-Oxide Adsorbent Systems Towards Arsenic Species. SSRN Electronic Journal, 0, , .	0.4	0
2602	A Review on Multi-Synergistic and Surface-Complexation Parameters of Metal-Oxide Adsorbent Systems Towards Arsenic Species. SSRN Electronic Journal, 0, , .	0.4	0
2603	Effect of O-substitution in imidazole based Zn(<scp>ii</scp>) dual fluorescent probes in the light of arsenate detection in potable water: a combined experimental and theoretical approach. Dalton Transactions, 2022, 51, 7174-7187.	1.6	8
2604	Optimized Scalable Synthesis and Granulation of Mil-88b(Fe) Mof for Efficient Arsenate Removal. SSRN Electronic Journal, 0, , .	0.4	0
2605	Role of Graphene Oxide Based Nanocomposites in Arsenic Purification from Ground Water. Engineering Materials, 2022, , 369-388.	0.3	1
2606	Non-woven fabric coated with candle soot for water remediation. Journal of the Australian Ceramic Society, 2022, 58, 617-625.	1.1	1
2607	Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers, 2022, 14, 783.	2.0	99

#	Article	IF	CITATIONS
2608	Investigation of the arsenic(V) retention performance of the nano-sorbent (M-TACA) synthesized by click chemistry. Journal of Dispersion Science and Technology, 2023, 44, 566-576.	1.3	2
2609	Adsorption and Its Mechanism of Arsenate in Aqueous Solutions by Red Soil. Water (Switzerland), 2022, 14, 579.	1.2	0
2610	Nanotechnology: a novel and sustainable approach towards heavy metal stress alleviation in plants. Nanotechnology for Environmental Engineering, 2023, 8, 27-40.	2.0	13
2611	Process and mechanism of hydrothermal stabilization for arsenic sulfide sludge containing elemental sulfur. Transactions of Nonferrous Metals Society of China, 2022, 32, 1041-1049.	1.7	4
2612	Heavy Metal Ions Removal From Wastewater Using Cryogels: A Review. Frontiers in Sustainability, 2022, 3, .	1.3	32
2613	Arsenic in Africa: potential sources, spatial variability, and the state of the art for arsenic removal using locally available materials. Groundwater for Sustainable Development, 2022, 18, 100746.	2.3	23
2614	Eco-friendly synthesis by Rosemary extract and characterization of Fe3O4@SiO2 magnetic nanocomposite as a potential adsorbent for enhanced arsenic removal from aqueous solution: isotherm and kinetic studies. Biomass Conversion and Biorefinery, 2024, 14, 5109-5123.	2.9	3
2615	Electro-oxidation of tannery wastewater to achieve zero discharge – a step towards sustainability. Environmental Technology (United Kingdom), 2022, , 1-9.	1.2	5
2616	Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Chemical Engineering Research and Design, 2022, 160, 704-733.	2.7	86
2617	Arsenic bioaccumulation and biotransformation in aquatic organisms. Environment International, 2022, 163, 107221.	4.8	43
2618	Exploring a novel family of poly(amide-imide)s as promising cationic sorbents for water remediation. Reactive and Functional Polymers, 2022, 174, 105240.	2.0	2
2619	Uranium in groundwater in parts of India and world: A comprehensive review of sources, impact to the environment and human health, analytical techniques, and mitigation technologies. Geosystems and Geoenvironment, 2022, 1, 100043.	1.7	36
2620	Removal of arsenic by metal organic framework/chitosan/carbon nanocomposites: Modeling, optimization, and adsorption studies. International Journal of Biological Macromolecules, 2022, 208, 794-808.	3.6	16
2621	Aquatic arsenic removal with a Zr-MOF constructed via in situ nitroso coupling. Separation and Purification Technology, 2022, 288, 120700.	3.9	15
2622	Review on arsenic removal using biochar-based materials. Groundwater for Sustainable Development, 2022, 17, 100740.	2.3	26
2623	Arsenotrophy: A pragmatic approach for arsenic bioremediation. Journal of Environmental Chemical Engineering, 2022, 10, 107528.	3.3	13
2624	Highly efficient size-sieving-based removal of arsenic(III) via defect-free interfacially-polymerized polyamide thin-film composite membranes. Journal of Membrane Science, 2022, 652, 120477.	4.1	6
2625	Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application. Chemosphere, 2022, 299, 134364.	4.2	37

#	Article	IF	Citations
2626	A review on the management of arsenic-laden spent adsorbent: Insights of global practices, process criticality, and sustainable solutions. Environmental Technology and Innovation, 2022, 27, 102500.	3.0	14
2627	Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. International Journal of Molecular Sciences, 2021, 22, 13383.	1.8	38
2628	Sorption of Arsenic(III) from wastewater using Prosopis spicigera L. wood (PsLw) carbon-polyaniline composite. Journal of Applied and Natural Science, 2021, 13, 1283-1293.	0.2	0
2629	A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water. Economic and Environmental Geology, 2021, 54, 689-698.	0.2	2
2630	Simultaneous adsorption of As(III) and Pb(II) by the iron-sulfur codoped biochar composite: Competitive and synergistic effects. Journal of Environmental Sciences, 2023, 125, 14-25.	3.2	20
2631	Membrane-based electrochemical technologies: III. Selective ion removal and recovery. , 2022, , 403-444.		1
2632	Understanding the slight inhibition of high As(III) stress on nitritation process: Insights from arsenic speciation and microbial community analyses. Journal of Hazardous Materials, 2022, 435, 128957.	6.5	3
2633	Tailoring the arsenic(III) removal ability from water using metal-organic frameworks via metal exchange – A computational study. Journal of Molecular Liquids, 2022, 358, 119167.	2.3	1
2634	Isolation and characterization of heavy metals and non-metallic pollutant-tolerant microorganism from wastewater of Tollygunge Canal (Kolkata) West Bengal, India. , 2022, 77, 2359-2369.		3
2635	Effect of mixing on nickel tartrate and Ni/NiO core/shell nanoparticles: Implications for morphology, magnetic, optical, dielectric and adsorption properties. Optical Materials, 2022, 127, 112321.	1.7	9
2636	Arsenic (III) oxidation and removal from artificial mine wastewater by blowing O2 nanobubbles. Journal of Water Process Engineering, 2022, 47, 102780.	2.6	4
2640	Eco-friendly Nanostructured Materials for Arsenic Removal from Aqueous Basins. , 2022, , 1355-1378.		0
2641	Arsenic removal from household drinking water by biochar and biochar composites: A focus on scale-up. , 2022, , 277-320.		0
2642	Retention of oxyanions on biochar surface. , 2022, , 233-276.		1
2643	A Review of Techniques for Arsenic Removal From Water. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 341-374.	0.3	1
2644	Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angewandte Chemie, 0, , .	1.6	2
2645	Trap Inlaid Cationic Hybrid Composite Material for Efficient Segregation of Toxic Chemicals from Water. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
2646	Oxygen Scavenging Hybrid Nanostructure: Localization of Different Iron Nanoparticles on Montmorillonite Clays Host. ACS Omega, 2022, 7, 16391-16401.	1.6	3

#	Article	IF	CITATIONS
2647	Effects of low molecular weight organic acids with different functional groups on arsenate adsorption on birnessite. Journal of Hazardous Materials, 2022, 436, 129108.	6.5	10
2648	Immobilization of arsenic in wastewater from regeneration of fixed-bed adsorbent by co-precipitation with zirconium nano-sludge for disposal in landfills. Journal of Environmental Chemical Engineering, 2022, 10, 107756.	3.3	6
2650	High Efficiency Adsorption Removal of Arsenilic Acid and Arsenate(V) by Iron-Modified Corncob Biochar. Bulletin of Environmental Contamination and Toxicology, 2022, 109, 379-385.	1.3	2
2651	Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. Journal of Environmental Management, 2022, 317, 115356.	3.8	54
2652	Enhanced Removal of As(âĦ(â¢) by Zirconium-Modified Magnetic Carbon Nanocomposites Derived from Cellulose. SSRN Electronic Journal, 0, , .	0.4	1
2653	Zwitterionic Ammonium-SulfonatoÂGrafted Cellulose: An Efficient Absorbent for Thallium Removal. SSRN Electronic Journal, 0, , .	0.4	0
2654	Improvement of As(V) Adsorption by Reduction of Granular to Micro-Sized Ferric Hydroxide. Processes, 2022, 10, 1029.	1.3	3
2655	In situ stabilization of arsenic in soil with organoclay, organozeolite, birnessite, goethite and lanthanum-doped magnetic biochar. Pedosphere, 2022, 32, 764-776.	2.1	8
2656	Isolation and characterisation of Fe(II)-oxidising bacteria and their application in the removal of arsenic in an aqueous solution. Environmental Technology (United Kingdom), 0, , 1-11.	1.2	1
2658	ARSENIC REMOVAL TECHNOLOGIES: MAPPING GLOBAL RESEARCH ACTIVITIES (1970-2019). Kocaeli Journal of Science and Engineering, 0, , .	0.3	0
2659	As(<scp>iii</scp>) removal through catalytic oxidation and Fe(<scp>iii</scp>) precipitation. RSC Advances, 2022, 12, 16843-16846.	1.7	2
2660	Potential Applications of Biorenewable Nanocomposite Materials for Electrocatalysis, Energy Storage, and Wastewater Treatment. ACS Symposium Series, 0, , 25-46.	0.5	4
2661	lsıl işlem ile modifiye edilmiş arıtma çamuru kullanılarak sabit yataklı kolonda arsenik ve antimon giderimi. Journal of the Faculty of Engineering and Architecture of Gazi University, 0, , .	0.3	1
2662	In Situ Remediation of Arsenic-Contaminated Groundwater by Injecting an Iron Oxide Nanoparticle-Based Adsorption Barrier. Water (Switzerland), 2022, 14, 1998.	1.2	3
2663	Arsenic removal technologies for middle- and low-income countries to achieve the SDG-3 and SDC-6 targets: A review. Environmental Advances, 2022, 9, 100262.	2.2	9
2664	Environmental application of amine functionalised magnetite nanoparticles grafted graphene oxide chelants. Environmental Science and Pollution Research, 2022, 29, 86485-86498.	2.7	9
2665	Simultaneous removal of arsenate and arsenite in water using a novel functional halloysite nanotube composite. Environmental Science and Pollution Research, 2022, 29, 77131-77144.	2.7	3
2666	Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. Toxics, 2022, 10, 340.	1.6	7

#	Article	IF	CITATIONS
2667	A Review and Analysis of Water Research, Development, and Management in Bangladesh. Water (Switzerland), 2022, 14, 1834.	1.2	2
2668	Iron-loaded magnetic alginate-chitosan double-gel interpenetrated porous beads for phosphate removal from water: Preparation, adsorption behavior and pH stability. Reactive and Functional Polymers, 2022, 177, 105328.	2.0	25
2669	Life cycle assessment (LCA) of the arsenic and fluoride removal from groundwater through adsorption and electrocoagulation: A comparative study. Chemosphere, 2022, 304, 135243.	4.2	16
2670	Quantifying Sulfidization and Non-Sulfidization in Long-Term In-Situ Microbial Colonized As(V)-Ferrihydrite Coated Sand Columns: Insights into as Mobility. SSRN Electronic Journal, 0, , .	0.4	0
2671	ZnAl ₂ O ₄ Nanomaterial as a Naked-Eye Arsenate Sensor: A Combined Experimental and Computational Mechanistic Approach. ACS Applied Materials & Interfaces, 2022, 14, 32457-32473.	4.0	2
2672	Hydroxylation of UiO-66 Metal–Organic Frameworks for High Arsenic(III) Removal Efficiency. Inorganic Chemistry, 2022, 61, 11342-11348.	1.9	9
2673	Development and characterization of N-substituted derivative of 2-sulfanylacetamide on <i>Phyllanthus emblica</i> seed coat as novel adsorbent for remediation of As(III) from water. Water Practice and Technology, 2022, 17, 1742-1757.	1.0	2
2674	Phase transformation of nanosized zero-valent iron modulated by As(III) determines heavy metal passivation. Water Research, 2022, 221, 118804.	5.3	18
2675	Synthesis, characterization and arsenate binding events of new mononuclear copper(II) complexes. Journal of the Indian Chemical Society, 2022, 99, 100637.	1.3	0
2676	Effects of phosphate, silicate, humic acid, and calcium on the release of As(V) co-precipitated with Fe(II) during aging. Journal of Hazardous Materials, 2022, 438, 129478.	6.5	2
2677	Removal of hazardous ions from aqueous solutions: Current methods, with a focus on green ion flotation. Journal of Environmental Management, 2022, 319, 115666.	3.8	14
2678	Synergistic removal of As(III) and Cd(II) by sepiolite-modified nanoscale zero-valent iron and a related mechanistic study. Journal of Environmental Management, 2022, 319, 115658.	3.8	18
2679	ARSENIC ATTENUATION BY GEOSYNTHETIC SORPTION SHEET UNDER DIFFERENT OVERBURDEN PRESSURE CONDITIONS. Geosynthetics Engineering Journal, 2021, 36, 117-124.	0.0	0
2680	Application of biochar-based materials for remediation of arsenic contaminated soil and water: Preparation, modification, and mechanisms. Journal of Environmental Chemical Engineering, 2022, 10, 108292.	3.3	31
2681	Adsorption of As(III) and As(V) by Fe/C composite nanoparticles synthesized via a one-pot hydrothermal approach without the addition of carbon sources. Environmental Research, 2022, 214, 113899.	3.7	5
2682	Precipitation of arsenic-bearing solids as a secondary control on arsenic speciation in groundwater: Evidence from field study and geochemical analysis. Geochimica Et Cosmochimica Acta, 2022, 333, 308-332.	1.6	3
2683	Treatment of As-contaminated drinking water using a nano zero-valent iron/copper slag nanocomposite. Journal of Water Process Engineering, 2022, 49, 103011.	2.6	9
2684	Practical application of PAC sludge-valorized biochars to the mitigation of methyl arsenic in wetlands. Chemical Engineering Journal, 2022, 450, 138148.	6.6	3

#	Article	IF	CITATIONS
2686	Application of laterite soil in removing chloride ion from drinking water. Water Practice and Technology, 2022, 17, 1570-1581.	1.0	1
2687	Metal–Organic Framework Aerogel for Full pH Range Operation and Trace Adsorption of Arsenic in Water. ACS Applied Materials & Interfaces, 2022, 14, 40005-40013.	4.0	6
2688	Enhanced Stability of Scorodite in Oxic and Anoxic Systems via Surface Coating with Hydroxyapatite and Fluorapatite. Minerals (Basel, Switzerland), 2022, 12, 1014.	0.8	2
2689	Adsorption of arsenic in aqueous solution onto iron impregnated bagasse fly ash. Journal of Environmental Health Science & Engineering, 2022, 20, 861-879.	1.4	4
2690	Novel green technology for wastewater treatment: Geo-material/geopolymer applications for heavy metal removal from aquatic media. International Journal of Sediment Research, 2023, 38, 33-48.	1.8	10
2691	Effectively arsenic(V) and fluoride removal in geothermal water using magnetic Fe3O4@MgO nanoparticles. Chinese Chemical Letters, 2023, 34, 107748.	4.8	4
2692	<scp>Arylâ€aryl</scp> linked <scp>twoâ€dimensional</scp> covalent organic frameworks/cellulose composite monolith with hierarchical structure for aqueous dyes adsorption. Journal of Applied Polymer Science, 0, , .	1.3	2
2693	Optimization of Arsenic Removal from Aqueous Solutions Using Amidoxime Resin Hosted by Mesoporous Silica. ACS Omega, 2022, 7, 31069-31080.	1.6	6
2694	Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: A review. Science of the Total Environment, 2022, 852, 158201.	3.9	26
2695	Removal and regeneration of As(V) in aqueous solutions by adsorption on calcined fluorapatite. International Journal of Environmental Science and Technology, 2023, 20, 5197-5206.	1.8	4
2696	Removal of Arsenic From Water With Low Cost and Environmentally-benign Adsorbents. Journal of the Institute of Science and Technology, 2022, 12, 1395-1404.	0.3	1
2697	Arsenic removal by pomelo peel biochar coated with iron. Chemical Engineering Research and Design, 2022, 186, 252-265.	2.7	7
2698	Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering, 2022, 183, 106740.	1.6	39
2699	Arsenic removal from groundwater by membrane technology: Advantages, disadvantages, and effect on human health. Groundwater for Sustainable Development, 2022, 19, 100815.	2.3	22
2700	Functionalized polyvinyl alcohol aerogel for efficient and selective removal of arsenite from aqueous matrices. Chemical Engineering Journal, 2022, 450, 138232.	6.6	6
2701	Arsenic profiling of groundwater in river cities of Lahore, Hyderabad and Muzaffarabad in Pakistan. Human and Ecological Risk Assessment (HERA), 2022, 28, 1043-1064.	1.7	2
2702	Fabrication of lanthanum-modified MOF-808 for phosphate and arsenic(V) removal from wastewater. Journal of Environmental Chemical Engineering, 2022, 10, 108527.	3.3	29
2703	Optimized scalable synthesis and granulation of MIL-88B(Fe) for efficient arsenate removal. Journal of Environmental Chemical Engineering, 2022, 10, 108556.	3.3	3

#	Article	IF	CITATIONS
2704	Electro-oxidation of heavy metals contaminated water using banana waste-derived activated carbon and Fe3O4 nanocomposites. Environmental Research, 2022, 215, 114293.	3.7	5
2705	Supramolecular Gels for the Sensing and Extraction of Heavy Metal Ions from Wastewater. Journal of Molecular Structure, 2023, 1272, 134152.	1.8	2
2706	Hazardous elements in plants: sources, effect and management. , 2022, , 113-128.		0
2707	Cost-effective adsorbents. , 2022, , 515-553.		4
2708	Enhancing mechanism of arsenic(<scp>iii</scp>) adsorption by MnO ₂ -loaded calcined MgFe layered double hydroxide. RSC Advances, 2022, 12, 25833-25843.	1.7	5
2709	Characterization of Arsenic (III and V) Adsorption on Natural Schwertmannite Formed in Acid Coal Mine Drainage: Batch Studies and Spectroscopic Observations. SSRN Electronic Journal, 0, , .	0.4	0
2710	Significance of clay-based nanocomposites for treatment of wastewater. Current Directions in Water Scarcity Research, 2022, , 553-565.	0.2	0
2711	Nanocomposite Based Adsorbent for Enhanced Arsenic Removal: Determination of Adsorption Mechanism, Kinetic Study, and Factors Affecting the Adsorption Capability of Nanomaterials. SSRN Electronic Journal, 0, , .	0.4	2
2712	Oxidative sorption of arsenite from water by iron: a mechanistic perspective. Environmental Science: Water Research and Technology, 2022, 8, 2466-2490.	1.2	2
2713	A review of arsenic mitigation strategies in community water supplies with insights from South Asia: options, opportunities and constraints. Environmental Science: Water Research and Technology, 0, , .	1.2	5
2714	Arsenic Oxidation and Removal from Water via Core–Shell MnO2@La(OH)3 Nanocomposite Adsorption. International Journal of Environmental Research and Public Health, 2022, 19, 10649.	1.2	4
2715	Thermodynamics, Kinetics, and Mechanisms of the Co-Removal of Arsenate and Arsenite by Sepiolite-Supported Nanoscale Zero-Valent Iron in Aqueous Solution. International Journal of Environmental Research and Public Health, 2022, 19, 11401.	1.2	8
2716	Synthesis of novel clay-based nanocomposite materials and its application in the remediation of arsenic contaminated water. International Journal of Environmental Science and Technology, 2023, 20, 10285-10296.	1.8	3
2718	Machine learning approaches for predicting arsenic adsorption from water using porous metal–organic frameworks. Scientific Reports, 2022, 12, .	1.6	15
2719	Arsenic removal from water and soils using pristine and modified biochars. Biochar, 2022, 4, .	6.2	30
2721	Removal of Thallium from Aqueous Solutions by Adsorption onto Alumina Nanoparticles. Processes, 2022, 10, 1826.	1.3	4
2722	Parametric Optimization of Ball-Milled Bimetallic Nanoadsorbents for the Effective Removal of Arsenic Species. Solids, 2022, 3, 549-568.	1.1	1
2724	Coordination engineering strategy of iron single-atom catalysts boosts anti-Cu(II) interference detection of As(III) with a high sensitivity. Journal of Hazardous Materials, 2023, 442, 130122.	6.5	12

#	Article	IF	CITATIONS
2725	Ultrasound-assisted and hydroalcoholic-freezing combination modification for the preparation of biomass sorbent from waste peach wood branches to efficient removal of methylene blue. Biomass Conversion and Biorefinery, 0, , .	2.9	2
2726	Fast arsenate As(V) adsorption and removal from water using aluminium Al(III) fixed on Kapok fibres. Environmental Pollution, 2022, 314, 120236.	3.7	4
2727	N-Substituted 2-Sulfanylacetamide Prunus armeniaca: Synthesis, Characterization, and Adsorption Studies for As(III) Remediation. Russian Journal of Applied Chemistry, 2022, 95, 742-755.	0.1	0
2728	On As(III) Adsorption Characteristics of Innovative Magnetite Graphene Oxide Chitosan Microsphere. Materials, 2022, 15, 7156.	1.3	7
2729	A two-step biosorption methodology for efficient and rapid removal of Fe(II) following As(V) from aqueous solution using abundant biomaterials. International Journal of Environmental Science and Technology, 0, , .	1.8	0
2730	Arsenic removal performance and mechanism from water on iron hydroxide nanopetalines. Scientific Reports, 2022, 12, .	1.6	2
2731	Ferrous Industrial Wastes—Valuable Resources for Water and Wastewater Decontamination. International Journal of Environmental Research and Public Health, 2022, 19, 13951.	1.2	4
2732	Iron Oxyhydroxide-Covalent Organic Framework Nanocomposite for Efficient As(III) Removal in Water. ACS Applied Materials & Interfaces, 2022, 14, 50163-50170.	4.0	7
2734	Magnetic nanocomposite adsorbents for abatement of arsenic species from water and wastewater. Environmental Science and Pollution Research, 2022, 29, 82681-82708.	2.7	1
2735	Sustainability appraisal of arsenic mitigation policy innovations in West Bengal, India. Infrastructure Asset Management, 2023, 10, 17-37.	1.2	36
2736	L-Histidine immobilized montmorillonite for As(III) adsorption and statistical verification of data by PDF, AICcorrected and AADR models. Applied Water Science, 2022, 12, .	2.8	3
2737	Remediation of arsenic contaminated groundwater by electrocoagulation: Process optimization using response surface methodology. Minerals Engineering, 2022, 189, 107881.	1.8	2
2738	Elevated Adsorption of Lead and Arsenic over Silver Nanoparticles Deposited on Poly(amidoamine) Grafted Carbon Nanotubes. Nanomaterials, 2022, 12, 3852.	1.9	13
2739	Efficient As(V) and Hg(â;) removal from acidic wastewater by a sulphydryl functionalized UIO-66-NH2. Inorganic Chemistry Communication, 2022, 146, 110069.	1.8	2
2740	Efficient removal of arsenic and phosphate contaminants by diatomite-modified schwertmannite. Journal of Environmental Chemical Engineering, 2022, 10, 108808.	3.3	1
2741	Efficient aqueous molybdenum removal using commercial Douglas fir biochar and its iron oxide hybrids. Journal of Hazardous Materials, 2023, 443, 130257.	6.5	4
2742	Quantifying sulfidization and non-sulfidization in long-term in-situ microbial colonized As(V)-ferrihydrite coated sand columns: Insights into As mobility. Science of the Total Environment, 2023, 858, 160066.	3.9	0
2743	Synergistic Effect of As(III)/Fe(II) Oxidation by Acidianus brierleyi and the Exopolysaccharide Matrix for As(V) Removal and Bioscorodite Crystallization: A Data-Driven Modeling Insight. Processes, 2022, 10, 2363.	1.3	0

#	Article	IF	CITATIONS
2744	Development of Efficient and Recyclable ZnO–CuO/g–C3N4 Nanocomposite for Enhanced Adsorption of Arsenic from Wastewater. Nanomaterials, 2022, 12, 3984.	1.9	3
2745	Adsorptive removal of arsenate from aqueous solution by iron oxide coated calcined freshwater snail shell. International Journal of Environmental Analytical Chemistry, 0, , 1-20.	1.8	0
2746	Computational modelling of geochemical speciation of the trace metals in the wastewater treatment process optimization. Applied Water Science, 2022, 12, .	2.8	1
2747	Synthesis and characterization of metal oxide based ion exchanger from chicken egg shell biomass for the removal of arsenic from water. Sustainable Chemistry and Pharmacy, 2022, 30, 100870.	1.6	5
2748	Recent advances and remaining barriers to the development of electrospun nanofiber and nanofiber composites for point-of-use and point-of-entry water treatment systems. Journal of Hazardous Materials Advances, 2022, 8, 100204.	1.2	3
2749	Novel protein nanofibril–carbon hybrid adsorbent efficiently removes As(<scp>iii</scp>), As(<scp>v</scp>) and other toxic elements from synthetic and natural waters in batch and rapid small-scale column tests. Environmental Science: Water Research and Technology, 0, , .	1.2	0
2750	Solvent-induced facile synthesis of MnFe2O4 and the As(V) removal mechanism study. Journal of Molecular Liquids, 2023, 371, 120845.	2.3	3
2751	UV–vis spectrophotometer and smartphone RGB dual mode detection of inorganic arsenic based on hydride generation iodine–starch system. Microchemical Journal, 2023, 186, 108298.	2.3	8
2752	An insight into the potential of dolomite powder as a sorbent in the elimination of heavy metals: A review. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100276.	2.9	6
2753	Arsenic removal from solution using nano-magnetic compound: optimization modeling by response surface method. Environmental Monitoring and Assessment, 2023, 195, .	1.3	4
2754	Zwitterionic ammonium-sulfonato grafted cellulose for efficient thallium removal and adsorption mechanism study. International Journal of Biological Macromolecules, 2023, 227, 1059-1069.	3.6	8
2755	Coupling few-layer MXene nanosheets with NiFe layered double hydroxide as 3D composites for the efficient removal of Cr(VI) and 1-naphthol. Journal of Molecular Liquids, 2023, 371, 121082.	2.3	3
2756	The Twelve Principles of Circular Hydrometallurgy. Journal of Sustainable Metallurgy, 2023, 9, 1-25.	1.1	17
2757	Characterization of arsenic (III and V) adsorption on natural schwertmannite formed in acid coal mine drainage: Batch studies and spectroscopic observations. Journal of Environmental Chemical Engineering, 2023, 11, 109170.	3.3	1
2758	Overview on recent advances of magnetic metal–organic framework (MMOF) composites in removal of heavy metals from aqueous system. Environmental Science and Pollution Research, 0, , .	2.7	2
2759	A Bibliometric Analysis of Publications on Drinking Water Research in India. Current Journal of Applied Science and Technology, 0, , 24-42.	0.3	0
2760	A Comparison of Technologies for Remediation of Arsenic-Bearing Water: The Significance of Constructed Wetlands. Environmental Science and Engineering, 2023, , 223-245.	0.1	3
2763	Stable and recyclable lanthanum hydroxide–doped graphene oxide biopolymer foam for superior aqueous arsenate removal: Insight mechanisms, batch, and column studies. Chemosphere, 2023, 313, 137615.	4.2	7

#	Article	IF	CITATIONS
2764	Modified Biosorbents as Potential Biomaterials for Arsenic Removal from Contaminated Water. Environmental Science and Engineering, 2023, , 335-354.	0.1	0
2765	FeSx@MOF-808 composite for efficient As(III) removal from wastewater: behavior and mechanism. Journal of Hazardous Materials, 2023, 446, 130681.	6.5	14
2766	Adding value to wastewater bioremediation by lipid extraction from <i>Oedogonium intermedium</i> . Chemical Engineering and Technology, 0, , .	0.9	0
2767	Emerging 2D MXene -based adsorbents for hazardous pollutants removal. Desalination, 2023, 549, 116314.	4.0	17
2768	Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives. Environmental Research, 2023, 221, 115247.	3.7	16
2769	Magnetite based green bio composite for uranium exclusion from aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332, 297-310.	0.7	4
2770	Formation of structural defects within Fe-UiO-66 for effective adsorption of arsenic from water. International Journal of Environmental Science and Technology, 2023, 20, 10075-10088.	1.8	1
2771	Nghiên cứu cháº; tạo váºt liệu tổ hợp Fe2O3 và MgO trên ná»n graphen Ä'a lá»›p ứng dụng lÃi trong nước. , 2022, , 91-99.	n váºt liá»:	‡u há⁰¥p phá
2772	Preparation of magnetic core-shell Ce-doped zirconia and its As(III) adsorption properties. Transactions of Nonferrous Metals Society of China, 2022, 32, 4156-4170.	1.7	1
2773	A review on different arsenic removal techniques used for decontamination of drinking water. Environmental Pollutants and Bioavailability, 2023, 35, .	1.3	15
2774	Tunable sulphur doping in CuFe ₂ O ₄ for the efficient removal of arsenic through arsenomolybdate complex adsorption: kinetics, isothermal and mechanistic studies. Environmental Science: Water Research and Technology, 2023, 9, 1147-1160.	1.2	4
2775	A novel strategy for arsenic removal from acid wastewater via strong reduction processing. Environmental Science and Pollution Research, 2023, 30, 43886-43900.	2.7	3
2776	2D Organic Materials: Status and Challenges. Advanced Science, 2023, 10, .	5.6	13
2777	A novel bio-ceramic hollow fibre membrane based hydroxyapatite derived from Tilapia fish bone for hybrid arsenic separation/adsorption from water. Materials Today: Proceedings, 2023, , .	0.9	1
2778	Fabrication, characterization and performance analysis of a two-step arsenic bio-filter column using Delftia spp. BAs29 and fired red mud pellets. Environmental Geochemistry and Health, 0, , .	1.8	0
2779	Eco-Friendly Synthesized of CuO Nanoparticles Using Anchusa strigosa L. Flowers and Study its Adsorption Activity. Baghdad Science Journal, 0, , .	0.4	1
2780	Recent progress, bottlenecks, improvement strategies and the way forward of membrane distillation technology for arsenic removal from water: A review. Journal of Water Process Engineering, 2023, 52, 103504.	2.6	12
2781	Chitosan a versatile adsorbent in environmental remediation in the era of circular economy-a mini review. Sustainable Chemistry and Pharmacy, 2023, 32, 101004.	1.6	8

#	Article	IF	Citations
2782	Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions. Chinese Journal of Chemical Engineering, 2023, 60, 26-36.	1.7	3
2783	Effect of Fe/SiO2 ratio and cooling regime on As stability in copper smelting slag. Journal of Non-Crystalline Solids, 2023, 606, 122190.	1.5	0
2784	Metal–Organic Framework with a Redox-Active Bridge Enables Electrochemically Highly Selective Removal of Arsenic from Water. Environmental Science & Technology, 2023, 57, 6342-6352.	4.6	8
2785	Biochar performance evaluation for heavy metals removal from industrial wastewater based on machine learning: Application for environmental protection. Separation and Purification Technology, 2023, 312, 123399.	3.9	18
2786	As(III) removal by a recyclable granular adsorbent through dopping Fe-Mn binary oxides into graphene oxide chitosan. International Journal of Biological Macromolecules, 2023, 237, 124184.	3.6	6
2787	The effective adsorption of arsenic from polluted water using modified Halloysite nanoclay. Arabian Journal of Chemistry, 2023, 16, 104652.	2.3	13
2788	Facile synthesis of UiO-66/PAN adsorptive membrane for effective arsenic removal. Materials Today Sustainability, 2023, 22, 100354.	1.9	1
2789	Removal and environmentally safe disposal of As(III) and As(V)-loaded ferrihydrite/biosilica composites. Journal of Environmental Management, 2023, 335, 117489.	3.8	2
2790	Enhanced simultaneous arsenite oxidation and sorption by Mn-modified biochar: Insight into the mechanisms under optimal modification condition. Journal of Environmental Chemical Engineering, 2023, 11, 109612.	3.3	2
2791	Arsenic-Involving Intermolecular Interactions in Crystal Structures: The Dualistic Behavior of As(III) as Electron-Pair Donor and Acceptor. Crystal Growth and Design, 2023, 23, 1033-1048.	1.4	0
2792	MOF based coated adsorption system for water desalination and cooling integrated with Pre-treatment unit. Sustainable Energy Technologies and Assessments, 2023, 56, 103006.	1.7	1
2793	Simultaneous removal of As(III) and organics in Fenton fluidized bed: The favorable co-crystallization of As(V) and Fe(III). Separation and Purification Technology, 2023, 311, 123263.	3.9	1
2794	Removal of As(V) from aqueous solution using modified Fe ₃ O ₄ nanoparticles. Royal Society Open Science, 2023, 10, .	1.1	3
2795	Removal of arsenic from semiarid area groundwater using a biosorbent from watermelon peel waste. Heliyon, 2023, 9, e13251.	1.4	5
2797	Effective biosorption of As(V) from polluted water using Fe(III)-modified Pomelo (Citrus maxima) peel: A batch, column, and thermodynamic study. Heliyon, 2023, 9, e13465.	1.4	1
2798	Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review. Journal of Composites Science, 2023, 7, 59.	1.4	14
2799	Recent advances in the hybridization of cellulose and semiconductors: Design, fabrication and emerging multidimensional applications: A review. International Journal of Biological Macromolecules, 2023, 233, 123551.	3.6	4
2800	Characterization of wastewater and effluents remediation through nanotechnology for efficient reclamation and reuse. , 2023, , 65-83.		0

#	Article	IF	CITATIONS
2801	Preparation of novel Polyvinylidene fluoride/boehmite composite membrane made using nonsolvent induced phase separation method for arsenate ion removal from water. Polymer Engineering and Science, 2023, 63, 821-829.	1.5	2
2802	Prototype Experiments Assessing Arsenic and Iron Removal Efficiencies through Adsorption Using Natural Skye Sand. Water (Switzerland), 2023, 15, 785.	1.2	1
2803	Recent Advances in Thallium Removal from Water Environment by Metal Oxide Material. International Journal of Environmental Research and Public Health, 2023, 20, 3829.	1.2	5
2804	A review on multi-synergistic transition metal oxide systems towards arsenic treatment: Near molecular analysis of surface-complexation (synchrotron studies/modeling tools). Advances in Colloid and Interface Science, 2023, 314, 102859.	7.0	6
2805	Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS Environmental Au, 2023, 3, 135-152.	3.3	8
2808	Evaluation of sol-gel-modified activated alumina adsorbent for arsenic removal from drinking water. , 2023, , 133-149.		0
2809	Postsynthesis of β-FeOOH/SBA-15 composites via mild ozone treatment: Effective surfactant removal and perfect property preservation for enhanced arsenic adsorption. Journal of Environmental Chemical Engineering, 2023, 11, 109597.	3.3	0
2810	Arsenic Removal by Adsorbents from Water for Small Communities' Decentralized Systems: Performance, Characterization, and Effective Parameters. Clean Technologies, 2023, 5, 352-402.	1.9	4
2811	Recycled Smelter Slags for In Situ and Ex Situ Water and Wastewater Treatment—Current Knowledge and Opportunities. Processes, 2023, 11, 783.	1.3	2
2812	Multifunctional Cross-Linked Shrimp Waste-Derived Chitosan/MgAl-LDH Composite for Removal of As(V) from Wastewater and Antibacterial Activity. ACS Omega, 2023, 8, 10051-10061.	1.6	10
2813	Kinetic Study of the Influence of Humic Acids on the Oxidation of As(III) by Acid Birnessite. ACS ES&T Water, 2023, 3, 1060-1070.	2.3	7
2814	Removal of arsenic in freshwater wetland waters using fly ash modified with zirconium-manganese binary oxides. Ecohydrology and Hydrobiology, 2023, , .	1.0	1
2815	Stimulation of oxalate root exudate in arsenic speciation and fluctuation with phosphate and iron in anoxic mangrove sediment. Marine Pollution Bulletin, 2023, 189, 114823.	2.3	2
2816	N-Substituted 2-Sulfanylacetamide Prunus Armeniaca: Synthesis, Characterization, and Adsorption Studies for As(III) Remediation. Russian Journal of Applied Chemistry, 2022, 95, 1467-1480.	0.1	0
2817	A review on the design and application of bi-functionalized adsorbents to remove different pollutants from water. Journal of Water Process Engineering, 2023, 53, 103636.	2.6	3
2818	Water Pollutants Removal by Coated Quartz Sand. , 0, , .		0
2819	Thermal Fabrication of Magnetic Fe3O4 (Nanoparticle)@Carbon Sheets from Waste Resources for the Adsorption of Dyes: Kinetic, Equilibrium, and UV–Visible Spectroscopy Investigations. Nanomaterials, 2023, 13, 1266.	1.9	5
2820	Bioinorganic Nanoparticles for the Remediation of Environmental Pollution: Critical Appraisal and Potential Avenues. Bioinorganic Chemistry and Applications, 2023, 2023, 1-26.	1.8	3

# 2821	ARTICLE Comparison between Different Technologies (Zerovalent Iron, Coagulation-Flocculation, Adsorption) for Arsenic Treatment at High Concentrations. Water (Switzerland), 2023, 15, 1481.	IF 1.2	CITATIONS
2822	The removal efficiency of emerging organic contaminants, heavy metals and dyes: intrinsic limits at low concentrations. Environmental Science: Water Research and Technology, 2023, 9, 1558-1565.	1.2	2
2823	Adsorption Technology and Mechanism of Roxarsone and Arsenic(V) Combined Pollution in Wastewater by Modified Plant Ash Biochar. Russian Journal of Physical Chemistry A, 2023, 97, 248-256.	0.1	1
2824	Low-Cost Biomass Adsorbents for Arsenic Removal from Wastewater. Clean Energy Production Technologies, 2023, , 153-170.	0.3	0
2825	Efficient removal of chromium by a novel biochar-microalga complex: Mechanism and performance. Environmental Technology and Innovation, 2023, 31, 103156.	3.0	4
2842	Microbial biochemical pathways of arsenic biotransformation and their application for bioremediation. Folia Microbiologica, 0, , .	1.1	0
2849	Date Palm Byproducts for WasteWater Treatment. Materials Horizons, 2023, , 251-269.	0.3	0
2856	Plants, animals, and fisheries waste-mediated bioremediation of contaminants of environmental and emerging concern (CEECs)—a circular bioresource utilization approach. Environmental Science and Pollution Research, 2023, 30, 84999-85045.	2.7	0
2859	Consequences of arsenic exposure in Plant-health status: an overview. , 0, , .		0
2860	Arsenic in Environment - Sources, Implications and Remedies. , 0, , .		1
2868	Biochar-based materials for adsorption of heavy metals from wastewater. , 2023, , 265-288.		0
2870	H3PO4 and NaOH Treated Canola Straw Biochar for Arsenic Adsorption. Lecture Notes in Civil Engineering, 2023, , 1019-1032.	0.3	0
2885	Prevalence of Uranium in groundwater of rural and urban regions of India. , 2024, , 213-234.		0
2888	A review on arsenic removal from wastewater using carbon nanotube and graphene-based nanomaterials as adsorbents. Nanotechnology for Environmental Engineering, 0, , .	2.0	0
2922	Effect of landfill leachate on arsenic migration and transformation in shallow groundwater systems. Environmental Science and Pollution Research, 2024, 31, 5032-5042.	2.7	1
2924	A Perspective on Environmental and Disposal Assessment of Magnetic Sorbents. Nanostructure Science and Technology, 2024, , 157-168.	0.1	0
2927	Arsenic and Environment: A Systematic Review on Arsenic Sources, Uptake Mechanism in Plants, Health Hazards and Remediation Strategies. Topics in Catalysis, 2024, 67, 325-341.	1.3	0
2931	Arsenic and iron removal by zero-valent iron and electrocoagulation. , 2024, , 69-90.		0

#	Article	IF	CITATIONS
2933	Overlooked Adsorptive Route and Challenges in Arsenic Decontamination Using Iron Oxide Nanomaterials. Chemistry Africa, 0, , .	1.2	0
2940	Advancements in utilizing almond-shell-based materials for the adsorptive removal of hazardous pollutants from water: a 10-year review. Euro-Mediterranean Journal for Environmental Integration, 0, , .	0.6	0
2950	Role of nanomaterials for alleviating heavy metal(oid) toxicity in plants. , 2024, , 289-306.		0
2952	Techniques of Arsenic Remediation on Household and Commercial Scale. Emerging Contaminants and Associated Treatment Technologies, 2024, , 281-291.	0.4	0
2955	Treatment and Operational Efficiencies of Several Natural and Synthetic Sands on Treating Arsenic Through Adsorption. Emerging Contaminants and Associated Treatment Technologies, 2024, , 221-233.	0.4	0