Natureâ€**š**[™]hierarchical materials

Progress in Materials Science 52, 1263-1334 DOI: 10.1016/j.pmatsci.2007.06.001

Citation Report

ARTICLE

IF CITATIONS

1	Introducing materiomics. , 0, , 1-12.		0
2	Hierarchical structure of collagen composite systems: lessons from biology. Pure and Applied Chemistry, 1991, 63, 961-973.	0.9	37
3	Post-self-assembly experimentation on extruded collagen fibres for tissue engineering applications. Acta Biomaterialia, 2008, 4, 1646-1656.	4.1	58
4	The nanoindentation of soft tissue: Current and developing approaches. Jom, 2008, 60, 49-53.	0.9	31
5	Elasticity, strength and resilience: A comparative study on mechanical signatures of α-Helix, β-sheet and tropocollagen domains. Nano Research, 2008, 1, 63.	5.8	43
6	Mechanical properties of physiological and pathological models of collagen peptides investigated via steered molecular dynamics simulations. Journal of Biomechanics, 2008, 41, 3073-3077.	0.9	49
7	Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture. Progress in Materials Science, 2008, 53, 1101-1241.	16.0	168
8	Chirality independence in critical buckling forces of super carbon nanotubes. Solid State Communications, 2008, 148, 63-68.	0.9	14
9	Synchrotron radiation studies of non-crystalline systems. Annual Reports on the Progress of Chemistry Section C, 2008, 104, 35.	4.4	11
10	Effect of Temporal Changes in Bone Turnover on the Bone Mineralization Density Distribution: A Computer Simulation Study. Journal of Bone and Mineral Research, 2008, 23, 1905-1914.	3.1	67
11	Almost always bright. Nature Materials, 2008, 7, 612-613.	13.3	58
12	When the cracks begin to show. Nature Materials, 2008, 7, 610-612.	13.3	93
14	Editorial for Biointerphases in focus: research on biointerfaces with neutrons and synchrotron radiation. Biointerphases, 2008, 3, FB1-FB2.	0.6	1
15	From diffraction to imaging: New avenues in studying hierarchical biological tissues with x-ray microbeams (Review). Biointerphases, 2008, 3, FB16-FB26.	0.6	70
16	The effect of geometry on three-dimensional tissue growth. Journal of the Royal Society Interface, 2008, 5, 1173-1180.	1.5	413
17	Collagen. , 2008, , .		394
18	The bio-inspired design of novel materials. New Journal of Chemistry, 2008, 32, 1283.	1.4	1
19	Importance of the integrity of trabecular bone to the relationship between load and deformation of rat femora: an optical metrology study. Journal of Materials Chemistry. 2008. 18, 3855.	6.7	16

#	Article	IF	CITATIONS
21	Collagen: Structure and Mechanics, an Introduction. , 2008, , 1-13.		130
22	Stiffness gradients in vascular bundles of the palm <i>Washingtonia robusta</i> . Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2221-2229.	1.2	77
23	Intermolecular slip mechanism in tropocollagen nanofibrils. International Journal of Materials Research, 2009, 100, 921-925.	0.1	23
24	Increased Biocompatibility and Bioactivity after Energetic PVD Surface Treatments. Materials, 2009, 2, 1341-1387.	1.3	15
25	ROBUSTNESS-STRENGTH PERFORMANCE OF HIERARCHICAL ALPHA-HELICAL PROTEIN FILAMENTS. International Journal of Applied Mechanics, 2009, 01, 85-112.	1.3	36
26	Alport Syndrome mutation changes molecular structure and nanomechanics of type IV tropocollagen. Materials Research Society Symposia Proceedings, 2009, 1187, 26.	0.1	0
27	Thermodynamics of surface degradation, self-organization and self-healing for biomimetic surfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1607-1627.	1.6	77
28	Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1511-1539.	1.6	72
29	Biomaterials: Properties, variation and evolution. Integrative and Comparative Biology, 2009, 49, 15-20.	0.9	14
30	Amino acid sequence dependence of nanoscale deformation mechanisms in alpha-helical protein filaments. Journal of Strain Analysis for Engineering Design, 2009, 44, 517-531.	1.0	6
31	Cellular response to bioceramics. , 2009, , 136-155.		3
32	The material properties of acellular bone in a teleost fish. Journal of Experimental Biology, 2009, 212, 1413-1420.	0.8	64
33	Effect of cryo-induced microcracks on microindentation of hydrated cortical bone tissue. Materials Characterization, 2009, 60, 783-791.	1.9	12
34	Effect of microstructure on micromechanical performance of dry cortical bone tissues. Materials Characterization, 2009, 60, 1424-1431.	1.9	8
35	Size and Geometry Effects on Flow Stress in Bioinspired <i>de novo</i> Metalâ€matrix Nanocomposites. Advanced Engineering Materials, 2009, 11, 774-781.	1.6	3
36	Compositionally Graded Steels: A Strategy for Materials Development. Advanced Engineering Materials, 2009, 11, 992-999.	1.6	19
37	Mechanical Function of a Complex Threeâ€Dimensional Suture Joining the Bony Elements in the Shell of the Redâ€Eared Slider Turtle. Advanced Materials, 2009, 21, 407-412.	11.1	139
38	On the Fracture Toughness of Advanced Materials. Advanced Materials, 2009, 21, 2103-2110.	11.1	679

#	Article	IF	CITATIONS
39	Hollow Micro/Nanomaterials with Multilevel Interior Structures. Advanced Materials, 2009, 21, 3621-3638.	11.1	616
40	Strength of hierarchical materials. Microsystem Technologies, 2009, 15, 27-31.	1.2	2
41	A finite element study on the effects of disorder in cellular structures. Acta Biomaterialia, 2009, 5, 381-390.	4.1	50
42	New Suggestions for the Mechanical Control of Bone Remodeling. Calcified Tissue International, 2009, 85, 45-54.	1.5	50
43	Biomaterial systems for mechanosensing and actuation. Nature, 2009, 462, 442-448.	13.7	591
44	Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials, 2009, 8, 175-188.	13.3	307
45	In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures. Materials Science and Engineering C, 2009, 29, 2147-2153.	3.8	42
46	3D hierarchical computational model of wood as a cellular material with fibril reinforced, heterogeneous multiple layers. Mechanics of Materials, 2009, 41, 1034-1049.	1.7	106
47	Predicting failure in mammalian enamel. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 33-42.	1.5	59
48	Understanding the influence of structural hierarchy and its coupling with chemical environment on the strength of idealized tropocollagen–hydroxyapatite biomaterials. Journal of the Mechanics and Physics of Solids, 2009, 57, 1702-1717.	2.3	42
49	Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 2009, 57, 2919-2932.	3.8	278
50	Bioactive silica–collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomaterialia, 2009, 5, 1979-1990.	4.1	100
51	Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. Journal of Bone and Mineral Research, 2010, 25, 968-975.	3.1	108
52	Hierarchical Nanostructures Are Crucial To Mitigate Ultrasmall Thermal Point Loads. Nano Letters, 2009, 9, 2065-2072.	4.5	29
53	Hierarchically Sculptured Plant Surfaces and Superhydrophobicity. Langmuir, 2009, 25, 14116-14120.	1.6	165
54	Hierarchical Structure in Oriented Fibers of a Dendronized Polymer. Macromolecules, 2009, 42, 281-287.	2.2	45
55	Surface Plasmon Resonance Studies of Pullulan and Pullulan Cinnamate Adsorption onto Cellulose. Biomacromolecules, 2009, 10, 2451-2459.	2.6	37
56	The effect of tensile and compressive loading on the hierarchical strength of idealized tropocollagen–hydroxyapatite biomaterials as a function of the chemical environment. Journal of Physics Condensed Matter, 2009, 21, 205103.	0.7	23

#	Article	IF	Citations
57	Supernet Structures of Calcium Carbonate Mesocrystals Formed in a Blend System of Anionic/Nonionic Surfactants. Crystal Growth and Design, 2009, 9, 4720-4724.	1.4	19
58	Sacrificial Ionic Bonds Need To Be Randomly Distributed To Provide Shear Deformability. Nano Letters, 2009, 9, 3603-3607.	4.5	45
59	From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. Journal of Materials Chemistry, 2009, 19, 4973.	6.7	140
60	Alport Syndrome mutations in type IV tropocollagen alter molecular structure and nanomechanical properties. Journal of Structural Biology, 2009, 168, 503-510.	1.3	39
61	How Protein Materials Balance Strength, Robustness And Adaptability. Biophysical Journal, 2009, 96, 38a.	0.2	1
62	Molecular and Mesoscale Mechanisms of Osteogenesis Imperfecta Disease in Collagen Fibrils. Biophysical Journal, 2009, 97, 857-865.	0.2	123
63	Alpha-helical protein domains unify strength and robustness through hierarchical nanostructures. Nanotechnology, 2009, 20, 075103.	1.3	27
64	Biomimetic design of materials and biomaterials inspired by the structure of nacre. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1587-1605.	1.6	193
65	Biomimetics — a review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2009, 223, 919-939.	1.0	136
66	Architectured Structural Materials: A Parallel Between Nature and Engineering. Materials Research Society Symposia Proceedings, 2009, 1188, 209.	0.1	7
67	Calcium in biological systems. Advances in Inorganic Chemistry, 2009, , 251-366.	0.4	14
68	Biomimetics: lessons from nature–an overview. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1445-1486.	1.6	993
69	Spontaneous symmetry breaking: formation of Janus micelles. Soft Matter, 2009, 5, 999-1005.	1.2	74
70	<i>In Situ</i> Imaging of Barnacle (<i>Balanus amphitrite</i>) Cyprid Cement Using Confocal Raman Microscopy. Journal of Adhesion, 2009, 85, 139-151.	1.8	15
71	POLYMERIC NANOMATERIALS IN BIOMINERALIZATION. International Journal of Nanoscience, 2009, 08, 473-481.	0.4	0
72	Nanomechanical sequencing of collagen: tropocollagen features heterogeneous elastic properties at the nanoscale. Integrative Biology (United Kingdom), 2009, 1, 452-459.	0.6	34
73	Plasticity and toughness in bone. Physics Today, 2009, 62, 41-47.	0.3	281
74	Mechanical Function of a Complex Three-dimensional Suture Joining the Bony Elements in the Shell of the Red-eared Slider Turtle. Materials Research Society Symposia Proceedings, 2009, 1187, 19.	0.1	2

#	Article	IF	CITATIONS
75	Micro-to nano-biosensors and actuators integrated for responsive delivery of countermeasures. , 2010, , .		4
76	Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering. Journal of Physics: Conference Series, 2010, 247, 012031.	0.3	7
77	Microstructural and mechanical challenges in biomedical NiTi. Journal of Physics: Conference Series, 2010, 240, 012004.	0.3	2
78	Replication of wood into biomorphous nanocrystalline Y2O3:Eu3+ phosphor materials. Wood Science and Technology, 2010, 44, 547-560.	1.4	13
79	Improving the osteointegration and bone–implant interface by incorporation of bioactive particles in sol–gel coatings of stainless steel implants. Acta Biomaterialia, 2010, 6, 1601-1609.	4.1	96
80	The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials, 2010, 31, 5297-5305.	5.7	97
81	Tu(r)ning weakness to strength. Nano Today, 2010, 5, 379-383.	6.2	117
82	Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods. Biomechanics and Modeling in Mechanobiology, 2010, 9, 499-510.	1.4	50
83	Role of Molecular Level Interfacial Forces in Hard Biomaterial Mechanics: A Review. Annals of Biomedical Engineering, 2010, 38, 2040-2055.	1.3	31
84	Modelling Young's modulus for porous bones with microstructural variation and anisotropy. Journal of Materials Science: Materials in Medicine, 2010, 21, 463-472.	1.7	4
85	Nanometer cale Mapping of Elastic Modules in Biogenic Composites: The Nacre of Mollusk Shells. Advanced Functional Materials, 2010, 20, 2723-2728.	7.8	61
86	Musselâ€Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization. Advanced Functional Materials, 2010, 20, 2132-2139.	7.8	683
87	Revealing the Design Principles of Highâ€Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle. Advanced Materials, 2010, 22, 519-526.	11.1	285
88	Bioâ€Inspired Synthesis and Mechanical Properties of Calcite–Polymer Particle Composites. Advanced Materials, 2010, 22, 2082-2086.	11.1	122
89	Bioâ€Inspired Materials – Mining the Old Literature for New Ideas. Advanced Materials, 2010, 22, 4547-4550.	11.1	23
90	Selfâ€Healing of Internal Damage in Synthetic Vascular Materials. Advanced Materials, 2010, 22, 5159-5163.	11.1	176
92	Biomorphic Silicon Carbide Coated with an Electrodeposition of Nanostructured Hydroxyapatite/Collagen as Biomimetic Bone Filler and Scaffold. Advanced Engineering Materials, 2010, 12, B348.	1.6	10
93	Spontaneous Hierarchical Assembly of Crown Etherâ€like Macrocycles into Nanofibers and Microfibers Induced by Alkaliâ€Metal and Ammonium Salts. Chemistry - A European Journal, 2010, 16, 2453-2460.	1.7	37

#	Article	IF	CITATIONS
94	Nanostructure of collagen fibrils in human nucleus pulposus and its correlation with macroscale tissue mechanics. Journal of Orthopaedic Research, 2010, 28, 497-502.	1.2	40
95	Biomimetic Principles in Polymer and Material Science. Macromolecular Chemistry and Physics, 2010, 211, 166-170.	1.1	46
96	Directional dependence of hydroxyapatite-collagen interactions on mechanics of collagen. Journal of Biomechanics, 2010, 43, 1723-1730.	0.9	53
97	Strain transfer in the annulus fibrosus under applied flexion. Journal of Biomechanics, 2010, 43, 2141-2148.	0.9	15
98	Current issues in research on structure–property relationships in polymer nanocomposites. Polymer, 2010, 51, 3321-3343.	1.8	773
99	Original mechanism of failure initiation revealed through modelling of naturally occurring microstructures. Journal of the Mechanics and Physics of Solids, 2010, 58, 735-750.	2.3	30
100	On the mechanical properties of hierarchically structured biological materials. Biomaterials, 2010, 31, 6378-6385.	5.7	133
101	Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomaterialia, 2010, 6, 1505-1514.	4.1	148
102	Ab initio study of thermodynamic, structural, and elastic properties of Mg-substituted crystalline calcite. Acta Biomaterialia, 2010, 6, 4506-4512.	4.1	44
103	Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales. Biomaterials, 2010, 31, 1955-1963.	5.7	95
104	On the mechanics of fishscale structures. International Journal of Solids and Structures, 2010, 47, 2268-2275.	1.3	119
105	Scanning small-angle X-ray scattering analysis of the size and organization of the mineral nanoparticles in fluorotic bone using a stack of cards model. Journal of Applied Crystallography, 2010, 43, 1385-1392.	1.9	45
106	Multiscale mechanics of biological and biologically inspired materials and structures. Acta Mechanica Solida Sinica, 2010, 23, 471-483.	1.0	26
107	Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Materials, 2010, 9, 359-367.	13.3	1,131
108	Twin behaviour and size. Nature Materials, 2010, 9, 295-296.	13.3	15
109	How the weak become strong. Nature Materials, 2010, 9, 293-295.	13.3	5
110	Canaliculi in the tessellated skeleton of cartilaginous fishes. Journal of Applied Ichthyology, 2010, 26, 263-267.	0.3	30
111	Hierarchical nanomechanics of collagen microfibrils. Nature Precedings, 2010, , .	0.1	Ο

#	Article	IF	CITATIONS
112	Materiomics: biological protein materials, from nano to macro. Nanotechnology, Science and Applications, 2010, 3, 127.	4.6	45
113	TRANSVERSE ISOTROPIC ELASTIC PROPERTIES OF VERTEBRAL TRABECULAR BONE MATRIX MEASURED USING MICROINDENTATION UNDER DRY CONDITIONS (EFFECTS OF AGE, GENDER, AND VERTEBRAL LEVEL). Journal of Mechanics in Medicine and Biology, 2010, 10, 139-150.	0.3	13
114	Structural and mechanical design of tissue interfaces in the giant reed Arundo donax. Journal of the Royal Society Interface, 2010, 7, 499-506.	1.5	43
115	Macro- and micro-mechanical properties of red oak wood (Quercus rubra L.) treated with hemicellulases. Holzforschung, 2010, 64, .	0.9	29
116	Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory. Journal of Applied Physics, 2010, 108, .	1.1	22
118	Bioinspired engineering study of Plantae vascules for self-healing composite structures. Journal of the Royal Society Interface, 2010, 7, 921-931.	1.5	76
119	Characterization of the Orientation Parameters Around Crack Tips in Unfilled and Nanofilled Poly(propylene) Using inâ€situ Synchrotron Small and Wide Angle Scanning Scattering Techniques. Macromolecular Symposia, 2010, 296, 189-196.	0.4	1
120	Mechanical Properties of PP Composites Reinforced with BCTMP Aspen Fiber. Journal of Thermoplastic Composite Materials, 2010, 23, 513-542.	2.6	16
121	Biomimetics and Biotemplating of Natural Materials. MRS Bulletin, 2010, 35, 219-225.	1.7	79
122	Linking Genetics and Mechanics in Structural Protein Materials: A Case Study of an Alport Syndrome Mutation in Tropocollagen. Mathematics and Mechanics of Solids, 2010, 15, 755-770.	1.5	9
123	A Finite Element Model for Direction-Dependent Mechanical Response to Nanoindentation of Cortical Bone Allowing for Anisotropic Post-Yield Behavior of the Tissue. Journal of Biomechanical Engineering, 2010, 132, 081008.	0.6	33
124	Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective. Materials, 2010, 3, 2986-3005.	1.3	130
125	Biological Composites. Annual Review of Materials Research, 2010, 40, 1-24.	4.3	381
126	Bioinspired Polymeric Nanocomposites. Macromolecules, 2010, 43, 9217-9226.	2.2	43
127	Liquid crystal models of biological materials and processes. Soft Matter, 2010, 6, 3402.	1.2	193
128	On the Mechanistic Origins of Toughness in Bone. Annual Review of Materials Research, 2010, 40, 25-53.	4.3	560
129	Design and Synthesis of Biomimetic Multicomponent All-Bone-Minerals Bionanocomposites. Biomacromolecules, 2010, 11, 2545-2549.	2.6	19
130	Nanostructure and molecular mechanics of spider dragline silk protein assemblies. Journal of the Royal Society Interface, 2010, 7, 1709-1721.	1.5	234

#	Article	IF	CITATIONS
131	Hierarchical structure and fractal dimensions of tendon. Materials Science and Technology, 2010, 26, 1317-1319.	0.8	8
132	Effect of minimal defects in periodic cellular solids. Philosophical Magazine, 2010, 90, 1807-1818.	0.7	16
133	Molecular and Nanostructural Mechanisms of Deformation, Strength and Toughness of Spider Silk Fibrils. Nano Letters, 2010, 10, 2626-2634.	4.5	362
134	Self-Assembled Collagenâ^'Apatite Matrix with Bone-like Hierarchy. Chemistry of Materials, 2010, 22, 3307-3309.	3.2	81
135	Nanomechanical Properties of Supramolecular Self-Assembled Whiskers Determined by AFM Force Mapping. Langmuir, 2010, 26, 3020-3023.	1.6	30
136	Energy distribution in disordered elastic networks. Physical Review E, 2010, 82, 031902.	0.8	4
137	Green tribology: principles, research areas and challenges. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4677-4694.	1.6	94
138	Well-Defined Hierarchical Templates for Multimodal Porous Material Fabrication. Chemistry of Materials, 2010, 22, 4312-4319.	3.2	93
139	Coarse-Grained Model of Collagen Molecules Using an Extended MARTINI Force Field. Journal of Chemical Theory and Computation, 2010, 6, 1210-1218.	2.3	94
140	Bioactive Polymer/Hydroxyapatite (Nano)composites for Bone Tissue Regeneration. Advances in Polymer Science, 2010, , 97-207.	0.4	78
141	On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone, 2010, 46, 1475-1485.	1.4	171
142	Atomistic model of the spider silk nanostructure. Applied Physics Letters, 2010, 96, .	1.5	84
143	Biomaterials by freeze casting. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2099-2121.	1.6	288
144	Size-dependent effective modulus of hierarchical nanoporous foams. Europhysics Letters, 2010, 92, 16004.	0.7	11
145	Teeth: Among Nature's Most Durable Biocomposites. Annual Review of Materials Research, 2010, 40, 55-75.	4.3	91
147	ATOMISTICALLY-INFORMED MESOSCALE MODEL OF DEFORMATION AND FAILURE OF BIOINSPIRED HIERARCHICAL SILICA NANOCOMPOSITES. International Journal of Applied Mechanics, 2010, 02, 699-717.	1.3	22
148	Mechanical Principles of Biological Nanocomposites. Annual Review of Materials Research, 2010, 40, 77-100.	4.3	165
149	How protein materials balance strength, robustness, and adaptability. HFSP Journal, 2010, 4, 26-40.	2.5	13

ARTICLE IF CITATIONS Developing biocomposites as scaffolds in regenerative medicine., 2010,, 547-572. 150 0 Design of Hierarchically Porous Materials for Bone Tissue Regeneration. Key Engineering Materials, 0.4 2010, 441, 139-153. Bioinspired noncovalently crosslinked "fuzzy―carbon nanotube bundles with superior toughness 152 6.7 38 and strength. Journal of Materials Chemistry, 2010, 20, 10465. A modular approach towards functional decoration of peptide $\widehat{a} \in$ "polymer nanotapes. Chemical Communications, 2010, 46, 8938. Nanoindentation of wet and dry compact bone: Influence of environment and indenter tip geometry 154 0.7 35 on the indentation modulus. Philosophical Magazine, 2010, 90, 553-565. From fractal to multifractal super fibres and wool fibres with exceptional mechanical properties. 0.8 Materials Science and Technology, 2010, 26, 1323-1326. <i>Colloquium</i>: Failure of molecules, bones, and the Earth itself. Reviews of Modern Physics, 2010, 156 16.4 42 82, 1459-1487. Modification of bone-like apatite nanoparticle size and growth kinetics by alizarin red S. Nanoscale, 2.8 26 2010, 2, 2478. Heterogeneous microstructures of spherulites of lipid mixtures characterized with synchrotron 158 1.3 18 radiation microbeam X-ray diffraction. CrystEngComm, 2011, 13, 6694. The physics of tissue patterning and extracellular matrix organisation: how cells join forces. Soft 159 1.2 Matter, 2011, 7, 9549. Background and survey of bioreplication techniques. Bioinspiration and Biomimetics, 2011, 6, 031001. 160 1.5 53 Observations of Multiscale, Stress-Induced Changes of Collagen Orientation in Tendon by Polarized 2.6 Raman Spectroscopy. Biomacromolecules, 2011, 12, 3989-3996. Three-Dimensional Open Cell Structures: Evaluation and Fabrication by Additive Manufacturing. 163 0.3 4 Advanced Structured Materials, 2011, , 95-117. Biomimetics in Tribology. Biological and Medical Physics Series, 2011, , 25-49. 164 0.3 Steered Molecular Dynamics Study of Mechanical Response of Full Length and Short Collagen 165 1.4 37 Molecules. Journal of Nanomechanics & Micromechanics, 2011, 1, 104-110. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties. Biological and Medical Physics Series, 2011, , 105-123. Finite Element Analysis in Bone Research: A Computational Method Relating Structure to Mechanical 167 4 Function., 2011, , 91-111. Collagen: Materials Analysis and Implant Uses., 2011, , 261-278. 19

		CITATION REF	PORT	
#	Article		IF	CITATIONS
169	Extrafibrillar diffusion and intrafibrillar swelling at the nanoscale are associated with stress relaxation in the soft collagenous matrix tissue of tendons. Soft Matter, 2011, 7, 11243.		1.2	33
170	Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chemical Society Reviews, 2011, 40, 3764.		18.7	341
171	On optimal hierarchy of load-bearing biological materials. Proceedings of the Royal Society B Biological Sciences, 2011, 278, 519-525.	c	1.2	183
172	Primary Structure and Phosphorylation of Dentin Matrix Protein 1 (DMP1) and Dentin Phosp (DPP) Uniquely Determine Their Role in Biomineralization Biomacromolecules, 2011, 12, 29		2.6	101
173	A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanopar Nanoscale, 2011, 3, 3563.	ticles.	2.8	80
174	Structural hierarchies define toughness and defect-tolerance despite simple and mechanical inferior brittle building blocks. Scientific Reports, 2011, 1, 35.	y ,	1.6	163
177	Nanomechanics of functional and pathological amyloid materials. Nature Nanotechnology, 2 469-479.	.011, 6,	15.6	703
178	The organization of the osteocyte network mirrors the extracellular matrix orientation in bor Journal of Structural Biology, 2011, 173, 303-311.	ne.	1.3	192
179	A quantitative collagen fibers orientation assessment using birefringence measurements: Ca and application to human osteons. Journal of Structural Biology, 2011, 176, 302-306.	libration	1.3	41
180	Structural purity of magnetite nanoparticles in magnetotactic bacteria. Journal of the Royal Interface, 2011, 8, 1011-1018.	Society	1.5	72
181	Hierarchical Mesoporous Films: From Self-Assembly to Porosity with Different Length Scales. Chemistry of Materials, 2011, 23, 2501-2509.		3.2	135
182	3D Corporate Tourism: a concept for innovation in nanomaterials engineering. International of Materials Engineering Innovation, 2011, 2, 38.	Journal	0.2	8
183	A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects. Mechanics of Materials, 2011, 43, 487-495.		1.7	33
184	Biomimesis and biomorphic transformations: New concepts applied to bone regeneration. Jo Biotechnology, 2011, 156, 347-355.	urnal of	1.9	48
185	Flaw-tolerance in silk fibrils explains strength, extensibility and toughness of spider silk. Natu Precedings, 2011, , .	ire	0.1	0
186	Bone: A Composite Natural Material. , 0, , .			3
187	Xenogenic Tissues and Biomaterials for the Skeletal System. , 2011, , 387-404.			3
188	Friction in nature. International Journal of Design Engineering, 2011, 4, 71.		0.3	1

#	Article	IF	CITATIONS
189	Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature, 2011, 469, 194-197.	13.7	251
190	Mimicking natural bio-mineralization processes: A new tool for osteochondral scaffold development. Trends in Biotechnology, 2011, 29, 526-535.	4.9	111
191	Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy. Ultramicroscopy, 2011, 111, 1268-1275.	0.8	59
192	Compressive mechanical properties of demineralized and deproteinized cancellous bone. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 961-973.	1.5	77
193	Respective roles of organic and mineral components of human cortical bone matrix in micromechanical behavior: An instrumented indentation study. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1473-1482.	1.5	73
194	Role of damage mechanics in nanoindentation of lamellar bone at multiple sizes: Experiments and numerical modeling. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1852-1863.	1.5	33
195	Principal stiffness orientation and degree of anisotropy of human osteons based on nanoindentation in three distinct planes. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 2113-2127.	1.5	55
196	Viscoelastic fracture of biological composites. Journal of the Mechanics and Physics of Solids, 2011, 59, 2279-2293.	2.3	11
197	Optimizing the design of nanostructures for improved thermal conduction within confined spaces. Nanoscale Research Letters, 2011, 6, 422.	3.1	12
198	The impact of heparin intercalation at specific binding sites in telopeptide-free collagen type I fibrils. Biomaterials, 2011, 32, 7444-7453.	5.7	31
199	Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials, 2011, 32, 8892-8904.	5.7	250
200	Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications. Nanoscale, 2011, 3, 3984.	2.8	174
201	Effective elastic properties of nanoporous materials with hierarchical structure. Acta Materialia, 2011, 59, 6801-6808.	3.8	39
202	Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomaterialia, 2011, 7, 3547-3554.	4.1	302
203	Introducing students to bio-inspiration and biomimetic design: a workshop experience. International Journal of Technology and Design Education, 2011, 21, 471-485.	1.7	23
204	The Heterogeneous Mineral Content of Bone—Using Stochastic Arguments and Simulations to Overcome Experimental Limitations. Journal of Statistical Physics, 2011, 144, 316-331.	0.5	14
205	Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomechanics and Modeling in Mechanobiology, 2011, 10, 67-77.	1.4	55
206	A new model to simulate the elastic properties of mineralized collagen fibril. Biomechanics and Modeling in Mechanobiology, 2011, 10, 147-160.	1.4	64

#	Article	IF	CITATIONS
207	Minerals Form a Continuum Phase in Mature Cancellous Bone. Calcified Tissue International, 2011, 88, 351-361.	1.5	110
208	Fragility Fractures in Men with Idiopathic Osteoporosis Are Associated with Undermineralization of the Bone Matrix without Evidence of Increased Bone Turnover. Calcified Tissue International, 2011, 88, 378-387.	1.5	25
209	Bending efficiency through property gradients in bamboo, palm, and wood-based composites. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 744-755.	1.5	87
210	Cooperation of length scales and orientations in the deformation of bovine bone. Acta Biomaterialia, 2011, 7, 2943-2951.	4.1	26
211	Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomaterialia, 2011, 7, 2661-2671.	4.1	131
212	Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3889-3897.	1.1	44
213	Biominerals—hierarchical nanocomposites: the example of bone. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 47-69.	3.3	168
214	Artful interfaces within biological materials. Materials Today, 2011, 14, 70-78.	8.3	204
215	The peacock's train (<i>Pavo cristatus</i> and <i>Pavo cristatus</i> mut. alba) II. The molecular parameters of feather keratin plasticity. Journal of Experimental Zoology, 2011, 315A, 266-273.	1.2	5
216	Mapping Lattice Spacing and Composition in Biological Materials by Means of Microbeam Xâ€Ray Diffraction. Advanced Engineering Materials, 2011, 13, 784-792.	1.6	7
217	Superductile, Wavy Silica Nanostructures Inspired by Diatom Algae. Advanced Engineering Materials, 2011, 13, B405.	1.6	18
218	Bioinspired Strong and Highly Porous Glass Scaffolds. Advanced Functional Materials, 2011, 21, 1058-1063.	7.8	215
219	Bioinspired Design Criteria for Damageâ€Resistant Materials with Periodically Varying Microstructure. Advanced Functional Materials, 2011, 21, 3634-3641.	7.8	162
220	Multifunctional Highâ€Performance Biofibers Based on Wetâ€Extrusion of Renewable Native Cellulose Nanofibrils. Advanced Materials, 2011, 23, 2924-2928.	11.1	246
221	Metal Infiltration into Biomaterials by ALD and CVD: A Comparative Study. ChemPhysChem, 2011, 12, 791-798.	1.0	40
222	Nanosized hydroxyapatite and other calcium phosphates: Chemistry of formation and application as drug and gene delivery agents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 96B, 152-191.	1.6	438
223	Structural Adaptation of Trabecular Bone Revealed by Position Resolved Analysis of Proximal Femora of Different Primates. Anatomical Record, 2011, 294, 55-67.	0.8	30
224	Characterization of the Spatial Arrangement of Secondary Osteons in the Diaphysis of Equine and Canine Long Bones. Anatomical Record, 2011, 294, 1093-1102.	0.8	9

#	Article	IF	CITATIONS
225	An exponential law for stretching–relaxation properties of bone piezovoltages. International Journal of Solids and Structures, 2011, 48, 603-610.	1.3	17
226	The effects of hierarchy on the in-plane elastic properties of honeycombs. International Journal of Solids and Structures, 2011, 48, 1330-1339.	1.3	109
227	Hierarchical composites: Analysis of damage evolution based on fiber bundle model. Composites Science and Technology, 2011, 71, 450-460.	3.8	32
228	Fabrication and characterization of hierarchically organized nanoparticle-reinforced nanofibrous composite scaffolds. Acta Biomaterialia, 2011, 7, 193-202.	4.1	29
229	Bone nodules on chitosan–polygalacturonic acid–hydroxyapatite nanocomposite films mimic hierarchy of natural bone. Acta Biomaterialia, 2011, 7, 1173-1183.	4.1	39
230	The effects of water and microstructure on the mechanical properties of bighorn sheep (Ovis) Tj ETQq1 1 0.7843	14.rgBT /0 4.P	Dvgglock 10
231	Morphologic and nanomechanical characterization of bone tissue growth around bioactive sol–gel coatings containing wollastonite particles applied on stainless steel implants. Materials Science and Engineering C, 2011, 31, 545-552.	3.8	35
232	Wood as a bioinspiring material. Materials Science and Engineering C, 2011, 31, 1174-1183.	3.8	30
233	Mechanical adaptation of biological materials — The examples of bone and wood. Materials Science and Engineering C, 2011, 31, 1164-1173.	3.8	97
234	Bio-inspired design of multiscale structures for function integration. Nano Today, 2011, 6, 155-175.	6.2	655
235	Shaky foundations of hierarchical biological materials. Nano Today, 2011, 6, 332-338.	6.2	9
236	Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 153-161.	1.5	83
237	Biological materials: A materials science approach. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 626-657.	1.5	151
238	Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 129-145.	1.5	91
239	Plasticity of two structural proteins: Alpha-collagen and beta-keratin. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 733-743.	1.5	12
240	Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 879-887.	1.5	14
241	Size-dependent heterogeneity benefits the mechanical performance of bone. Journal of the Mechanics and Physics of Solids, 2011, 59, 64-74.	2.3	46
242	A study of the dynamic compressive behavior of Elk antler. Materials Science and Engineering C, 2011, 31, 1030-1041.	3.8	17

#	Article	IF	CITATIONS
243	The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: A finite element study based on sheep experiments. Journal of Biomechanics, 2011, 44, 517-523.	0.9	28
244	Calcium orthophosphates. Biomatter, 2011, 1, 121-164.	2.6	286
246	Role of modulus mismatch on crack propagation and toughness enhancement in bioinspired composites. Physical Review E, 2011, 84, 015102.	0.8	20
247	Mineral concentration dependent modulation of mechanical properties of bone-inspired bionanocomposite scaffold. Applied Physics Letters, 2011, 99, 013702.	1.5	4
248	Bond energy effects on strength, cooperativity and robustness of molecular structures. Interface Focus, 2011, 1, 734-743.	1.5	9
249	Backward emission angle of microscopic second-harmonic generation from crystallized type I collagen fiber. Journal of Biomedical Optics, 2011, 16, 075001.	1.4	3
250	STUDY ON TWO SCALE DESIGN OPTIMIZATION OF STRUCTURES AND MATERIALS WITH PERIODIC MICROSTRUCTURE. , 2011, , 195-218.		0
251	Imaging Mineralized Tissues in Vertebrates. , 2011, , 407-426.		7
252	Assembly Strategies for Fully Aligned and Dispersed Morphology Controlled Carbon Nanotube Reinforced Composites Grown in Net-Shape. Materials Research Society Symposia Proceedings, 2011, 1304, 1.	0.1	1
253	Tendons: Engineering of Functional Tissues. , 2011, , 537-572.		8
254	Mechanics of hierarchical 3-D nanofoams. Europhysics Letters, 2012, 97, 26002.	0.7	14
255	Biologically inspired crack delocalization in a high strain-rate environment. Journal of the Royal Society Interface, 2012, 9, 665-676.	1.5	35
256	A Multiscale Approach to Assess the Effect of Multilevel Structuring on the Properties of Hierarchical Lattice Materials. Materials Research Society Symposia Proceedings, 2012, 1420, 1.	0.1	0
257	Bone and its adaptation to mechanical loading: a review. International Materials Reviews, 2012, 57, 235-255.	9.4	41
258	Failure of bone at the sub-lamellar level using in situ AFM-SEM investigations. Materials Research Society Symposia Proceedings, 2012, 1424, 31.	0.1	0
259	Quantitative approach to the stochastics of bone remodeling. Europhysics Letters, 2012, 97, 28009.	0.7	4
260	Preparation and Mechanical Properties of Polyamide-6 Composites Reinforced with Fir Flour/SiO ₂ Hybrid Material. Polymer-Plastics Technology and Engineering, 2012, 51, 926-931.	1.9	14
261	Hierarchical fiber bundle model to investigate the complex architectures of biological materials. Physical Review E, 2012, 85, 011903.	0.8	37

#	Article	IF	CITATIONS
262	Green nanotribology. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 347-358.	1.1	3
263	POLYMER SCAFFOLDS FOR REGENERATIVE THERAPIES — DESIGN OF HIERARCHICALLY ORGANIZED STRUCTURES AND THEIR MORPHOLOGICAL CHARACTERIZATION. Nano LIFE, 2012, 02, 1230005.	0.6	3
264	THE INFLUENCE OF THE ORIENTATION OF THE COLLAGEN DIPOLES ON SECOND HARMONIC GENERATION (SHG) WITH HIGH NA UNDER CRYSTALLIZED TYPE I COLLAGEN FIBER MODEL. International Journal of Modern Physics B, 2012, 26, 1250148.	1.0	0
265	The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 2012, 9, 2749-2766.	1.5	859
266	Unlocking Nature: Case Studies. Springer Series in Materials Science, 2012, , 299-356.	0.4	0
267	The Challenges of Biological Materials. Springer Series in Materials Science, 2012, , 61-107.	0.4	0
268	A Method for the Evaluation of Femoral Head Trabecular Bone Compressive Properties. Materials Science Forum, 2012, 730-732, 3-8.	0.3	3
269	Hierarchical structure of marine shell biomaterials: biomechanical functionalization of calcite by brachiopods. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 793-804.	0.4	36
270	Human bone regeneration from wood: a novel hierarchically organised nanomaterial. International Journal of Healthcare Technology and Management, 2012, 13, 171.	0.1	2
271	Biodegradable Bone Regeneration Synthetic Scaffolds: in Tissue Engineering. Current Stem Cell Research and Therapy, 2012, 7, 134-142.	0.6	27
272	Computer Models Describing Structural Changes in Living Bone on Two Different Length Scales. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1001-1006.	0.4	0
273	Calcium Salts Bone Regeneration Scaffolds: A Review Article. Current Stem Cell Research and Therapy, 2012, 7, 336-346.	0.6	6
274	Multi-Incident Beam Compact Time-Of-Flight SANS Instrument with 1 Millimeter Diameter beams. Journal of Physics: Conference Series, 2012, 340, 012027.	0.3	0
275	Influence of Shear Stress on Behaviors of Piezoelectric Voltages in Bone. Journal of Applied Biomechanics, 2012, 28, 387-393.	0.3	5
276	Synchrotron 3D SAXS analysis of bone nanostructure. Bioinspired, Biomimetic and Nanobiomaterials, 2012, 1, 123-131.	0.7	19
278	Application of small angle neutron scattering on the analysis of Korean compact jaw bone. Metals and Materials International, 2012, 18, 895-898.	1.8	1
279	Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science, 2012, 57, 1492-1704.	16.0	582
280	Rapid mineralization of porous gelatin scaffolds by electrodeposition for bone tissue engineering. Journal of Materials Chemistry, 2012, 22, 2111-2119.	6.7	44

#	Article	IF	CITATIONS
281	Mimicking the morphology of long bone. Open Chemistry, 2012, 10, 1949-1953.	1.0	5
282	Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol–gels to solid 3D silica composite structures. Soft Matter, 2012, 8, 9501.	1.2	68
283	A nature-inspired approach to reactor and catalysis engineering. Current Opinion in Chemical Engineering, 2012, 1, 281-289.	3.8	104
284	Materials by design: Merging proteins and music. Nano Today, 2012, 7, 488-495.	6.2	38
285	A review of combined experimental and computational procedures for assessing biopolymer structure–process–property relationships. Biomaterials, 2012, 33, 8240-8255.	5.7	76
286	Tuning the Mechanical Properties of Graphene Oxide Paper and Its Associated Polymer Nanocomposites by Controlling Cooperative Intersheet Hydrogen Bonding. ACS Nano, 2012, 6, 2008-2019.	7.3	409
287	Phase formation mechanism of the NiÂ+ÂZrÂ+Âpolytetrafluoroethylene reactive mixture. Journal of Thermal Analysis and Calorimetry, 2012, 110, 619-623.	2.0	3
288	Finite Element Modeling of the Cyclic Wetting Mechanism in the Active Part of Wheat Awns. Biointerphases, 2012, 7, 42.	0.6	5
289	Protein and peptide biotemplated metal and metal oxide nanoparticles and their patterning onto surfaces. Journal of Materials Chemistry, 2012, 22, 12423.	6.7	61
290	Comparative analysis of nanomechanics of protein filaments under lateral loading. Nanoscale, 2012, 4, 1177-1183.	2.8	30
291	The forward and backward second-harmonic generation from crystallized collagen fibre with tightly focused linearly polarized beams. Journal of Optics (United Kingdom), 2012, 14, 055301.	1.0	1
292	Design and construction principles in nature and architecture. Bioinspiration and Biomimetics, 2012, 7, 015002.	1.5	144
293	Structural Hierarchy Controls Deformation Behavior of Collagen. Biomacromolecules, 2012, 13, 2562-2569.	2.6	29
294	A Composite Matter of Alignment. Science, 2012, 335, 177-178.	6.0	15
295	Evaporative assembly of ordered microporous films and their hierarchical structures from amphiphilic random copolymers. Soft Matter, 2012, 8, 11897.	1.2	19
296	Elastic anisotropy of uniaxial mineralized collagen fibers measured using two-directional indentation. Effects of hydration state and indentation depth. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 12, 20-28.	1.5	29
297	Discontinuous crack-bridging model for fracture toughness analysis of nacre. Journal of the Mechanics and Physics of Solids, 2012, 60, 1400-1419.	2.3	233
298	Molecular origin of the sawtooth behavior and the toughness of nacre. Materials Science and Engineering C, 2012, 32, 1542-1547.	3.8	17

#	Article	IF	Citations
299	Elastic modulus of hard tissues. Journal of Biomechanics, 2012, 45, 672-678.	0.9	28
300	Titania and Silica Materials Derived from Chemically Dehydrated Porous Botanical Templates. Chemistry of Materials, 2012, 24, 4301-4310.	3.2	14
301	Natural stiffening increases flaw tolerance of biological fibers. Physical Review E, 2012, 86, 041902.	0.8	15
302	Extreme wettability and tunable adhesion: biomimicking beyond nature?. Soft Matter, 2012, 8, 2070-2086.	1.2	217
303	An Information Theoretic Argument on the Form of Damage Accumulation in Solids. Mechanics of Advanced Materials and Structures, 2012, 19, 184-195.	1.5	4
304	Collagen for bone tissue regeneration. Acta Biomaterialia, 2012, 8, 3191-3200.	4.1	686
305	Synthetic–Biological Hybrid Polymers. , 2012, , 543-586.		3
306	Collagen. , 2012, , 35-55.		30
307	Advanced biohybrid materials based on nanoclays for biomedical applications. Proceedings of SPIE, 2012, , .	0.8	9
311	Biomimetic graphene films and their properties. Nanoscale, 2012, 4, 4858.	2.8	84
312	Modeling Growth in Biological Materials. SIAM Review, 2012, 54, 52-118.	4.2	102
313	Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior. Science and Technology of Advanced Materials, 2012, 13, 043001.	2.8	57
315	Hierarchical Structures by Wetting Porous Templates with Electrospun Polymer Fibers. ACS Macro Letters, 2012, 1, 41-46.	2.3	41
316	Gold Nanoparticle Functionalized Artificial Nacre: Facile <i>in Situ</i> Growth of Nanoparticles on Montmorillonite Nanosheets, Self-Assembly, and Their Multiple Properties. ACS Nano, 2012, 6, 8250-8260.	7.3	73
317	New materials used for the consolidation of archaeological wood–past attempts, present struggles, and future requirements. Journal of Cultural Heritage, 2012, 13, S183-S190.	1.5	67
318	Micro-buckling in the nanocomposite structure of biological materials. Journal of the Mechanics and Physics of Solids, 2012, 60, 1771-1790.	2.3	16
319	The role of geometrical disorder on swelling anisotropy of cellular solids. Mechanics of Materials, 2012, 55, 49-59.	1.7	14
320	The effect of gamma irradiation on the anisotropy of bovine cortical bone. Medical Engineering and Physics, 2012, 34, 1117-1122.	0.8	16

# 321	ARTICLE Investigating the role of hierarchy on the strength of composite materials: evidence of a crucial synergy between hierarchy and material mixing. Nanoscale, 2012, 4, 1200.	IF 2.8	Citations 34
322	CHAPTER 5. Nacre from Mollusk Shells: Inspiration for High-performance Nanocomposites. RSC Green Chemistry, 2012, , 113-149.	0.0	6
323	The predominant role of collagenÂin the nucleation, growth, structureÂand orientationÂofÂbone apatite. Nature Materials, 2012, 11, 724-733.	13.3	482
324	The effect of processing on large, self-assembled amyloid fibers. Soft Matter, 2012, 8, 10298.	1.2	33
325	Cohesive behavior of soft biological adhesives: Experiments and modeling. Acta Biomaterialia, 2012, 8, 3349-3359.	4.1	54
328	From magnetotactic bacteria to hollow spirilla-shaped silica containing a magnetic chain. RSC Advances, 2012, 2, 8007.	1.7	2
329	In Situ Mechanical Testing of Hydrated Biological Nanofibers Using a Nanoindenter Transducer. Experimental Mechanics, 2012, 52, 1287-1295.	1.1	5
330	Green Tribology. Green Energy and Technology, 2012, , .	0.4	70
332	Thickness of Hydroxyapatite Nanocrystal Controls Mechanical Properties of the Collagen–Hydroxyapatite Interface. Langmuir, 2012, 28, 1982-1992.	1.6	103
333	Micrororobotics. , 2012, , 1436-1436.		0
334	Biomechanics of Osteoporosis: The Importance of Bone Resorption and Remodeling Processes. , 0, , .		7
335	Influence of the Molecular Structure and Morphology of Selfâ€Assembled 1,3,5â€Benzenetrisamide Nanofibers on their Mechanical Properties. Small, 2012, 8, 2563-2570.	5.2	35
336	A designed multiscale hierarchical assembly process to produce artificial nacre-like freestanding hybrid films with tunable optical properties. Journal of Materials Chemistry, 2012, 22, 13005.	6.7	19
337	Structure and function of ECM-inspired composite collagen type I scaffolds. Soft Matter, 2012, 8, 10200.	1.2	51
338	Physically Crosslinked Nanocomposites from Silicateâ€Crosslinked PEO: Mechanical Properties and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Macromolecular Bioscience, 2012, 12, 779-793.	2.1	116
339	Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. Journal of Bone and Mineral Research, 2012, 27, 825-834.	3.1	96
340	Porous scaffold architecture guides tissue formation. Journal of Bone and Mineral Research, 2012, 27, 1275-1288.	3.1	97
341	Composites Reinforced in Three Dimensions by Using Low Magnetic Fields. Science, 2012, 335, 199-204.	6.0	555

ARTICLE IF CITATIONS # Optimal Length Scales Emerging from Shear Load Transfer in Natural Materials: Application to 342 7.3 186 Carbon-Based Nanocomposite Design. ACS Nano, 2012, 6, 2333-2344. Structure and Mechanical Performance of a "Modern―Fish Scale. Advanced Engineering Materials, 343 1.6 2012, 14, B185. Screening the Incorporation of Amino Acids into an Inorganic Crystalline Host: the Case of Calcite. 344 7.8 124 Advanced Functional Materials, 2012, 22, 4216-4224. Hierarchical Calcite Crystals with Occlusions of a Simple Polyelectrolyte Mimic Complex Biomineral 345 Structures. Advanced Functional Materials, 2012, 22, 4668-4676. Towards Highâ€Performance Bioinspired Composites. Advanced Materials, 2012, 24, 5024-5044. 346 11.1 332 Tailoring Silicalite â1 Crystal Morphology with Molecular Modifiers. Angewandte Chemie - International Edition, 2012, 51, 3345-3349. Comparing the Structural Stability of PbS Nanocrystals Assembled in fcc and bcc Superlattice 349 6.6 66 Allotropes. Journal of the American Chemical Society, 2012, 134, 10787-10790. Hierarchical Composite Materials: Achieving What a Single-Phase Material Cannot. Jom, 2012, 64, 350 212-213. Novel hydroxyapatite/tussah silk fibroin/chitosan bone-like nanocomposites. Polymer Bulletin, 2012, 351 1.7 18 68, 1765-1776. Elastic moduli of untreated, demineralized and deproteinized cortical bone: Validation of a theoretical model of bone as an interpenetrating composite material. Acta Biomaterialia, 2012, 8, 4.1 64 1080-1092. Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular 353 3.8 50 materials. Composites Science and Technology, 2012, 72, 744-751. Bio-inspired design of aerospace composite joints for improved damage tolerance. Composite 354 3.1 Structures, 2012, 94, 995-1004. Functional grading in hierarchical honeycombs: Density specific elastic performance. Composite 355 3.1 48 Structures, 2012, 94, 2296-2305. Hierarchical honeycombs with tailorable properties. International Journal of Solids and Structures, 1.3 264 2012, 49, 1413-1419. Large scale fabrication of highly monodispersed rattle-type TiO2@void@SiO2 spheres via 357 5.015 synthesis-cum-organization process. Journal of Colloid and Interface Science, 2012, 369, 179-183. Hierarchical Dragonfly Wing: Microstructure-Biomechanical Behavior Relations. Journal of Bionic Engineering, 2012, 9, 185-191. 29 Physically based 3D finite element model of a single mineralized collagen microfibril. Journal of 359 0.8 45 Theoretical Biology, 2012, 301, 28-41. Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics. 3.8 Materials Science and Engineering C, 2012, 32, 929-936.

#	Article	IF	CITATIONS
361	Effect of temperature on friction and wear behaviour of CuO–zirconia composites. Journal of the European Ceramic Society, 2012, 32, 2235-2242.	2.8	17
362	Tunable nanomechanics of protein disulfide bonds in redox microenvironments. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5, 32-40.	1.5	52
363	Significance of fatigue for mechanical defibration. Cellulose, 2012, 19, 575-579.	2.4	7
364	Semi-analytical approaches to assess the crack driving force in periodically heterogeneous elastic materials. International Journal of Fracture, 2012, 173, 57-70.	1.1	21
365	Mixed numerical–experimental methods in wood micromechanics. Wood Science and Technology, 2013, 47, 183-202.	1.4	19
366	Micro-computed tomography and compressive characterization of trabecular bone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438, 199-205.	2.3	13
367	Hierarchical Structuring of Liquid Crystal Polymer–Laponite Hybrid Materials. Langmuir, 2013, 29, 11093-11101.	1.6	17
368	Non-ionic assembly of nanofibrillated cellulose and polyethylene glycol grafted carboxymethyl cellulose and the effect of aqueous lubrication in nanocomposite formation. Soft Matter, 2013, 9, 7448.	1.2	34
369	Deoxyguanosine Phosphate Mediated Sacrificial Bonds Promote Synergistic Mechanical Properties in Nacre-Mimetic Nanocomposites. Biomacromolecules, 2013, 14, 2531-2535.	2.6	22
370	Systematic numerical investigation of the role of hierarchy in heterogeneous bio-inspired materials. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 34-42.	1.5	4
372	Diverse applications of fibers surface-functionalized with nano- and microparticles. Composites Science and Technology, 2013, 79, 77-86.	3.8	6
373	Design of Threeâ€Dimensional Porous Carbon Materials: From Static to Dynamic Skeletons. Angewandte Chemie - International Edition, 2013, 52, 7930-7932.	7.2	30
374	Thermal, infrared spectroscopy and molecular modeling characterization of bone: An insight in the apatite-collagen type I interaction. Advances in Biological Chemistry, 2013, 03, 215-223.	0.2	7
375	Advanced Materials Modelling for Structures. Advanced Structured Materials, 2013, , .	0.3	7
376	Benchâ€Top Fabrication of Hierarchically Structured Highâ€Surfaceâ€Area Electrodes. Advanced Functional Materials, 2013, 23, 3030-3039.	7.8	70
377	Remineralization of dentin collagen by meta-stabilized amorphous calcium phosphate. CrystEngComm, 2013, 15, 6151.	1.3	39
379	Structural motifs and elastic properties of hierarchical biological tissues – A review. Journal of Structural Biology, 2013, 183, 149-164.	1.3	47
380	Layered Ceramics. , 2013, , 733-751.		2

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
381	Characterization and evaluation of wood strand composite load capacity with near infrared spectroscopy. Materials and Structures/Materiaux Et Constructions, 2013, 46, 1801-1810.	1.3	6
382	An anisotropic elastic-viscoplastic damage model for bone tissue. Biomechanics and Modeling in Mechanobiology, 2013, 12, 201-213.	1.4	64
383	Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomaterialia, 2013, 9, 8118-8127.	4.1	95
384	Mimicking Bone Nanostructure by Combining Block Copolymer Self-Assembly and 1D Crystal Nucleation. ACS Nano, 2013, 7, 8251-8257.	7.3	85
385	A comparison of proximal humeral cancellous bone of great apes and humans. Journal of Human Evolution, 2013, 65, 29-38.	1.3	37
386	Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose. Nanoscale, 2013, 5, 11837.	2.8	27
387	Microstructural evolution and nanoscale crystallography in scleractinian coral spherulites. Journal of Structural Biology, 2013, 183, 57-65.	1.3	24
388	Three-dimensional discrete element modeling of micromechanical bending tests of ceramic–polymer composite materials. Powder Technology, 2013, 248, 77-83.	2.1	17
389	Morphological and mechanical characterization of composite calcite/SWCNT–COOH single crystals. Nanoscale, 2013, 5, 6944.	2.8	20
390	The weak interfaces within tough natural composites: Experiments on three types of nacre. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 50-60.	1.5	82
391	Humidity and Multiscale Structure Govern Mechanical Properties and Deformation Modes in Films of Native Cellulose Nanofibrils. Biomacromolecules, 2013, 14, 4497-4506.	2.6	230
392	Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid. Materials, 2013, 6, 3826-3839.	1.3	41
393	Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. Journal of Experimental Botany, 2013, 64, 4635-4649.	2.4	96
394	Microstructure versus Flaw: Mechanisms of Failure and Strength in Nanostructures. Nano Letters, 2013, 13, 5703-5709.	4.5	58
395	A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomechanics and Modeling in Mechanobiology, 2013, 12, 1155-1168.	1.4	58
396	Mesoscale mechanics of wood cell walls under axial strain. Soft Matter, 2013, 9, 7138.	1.2	62
397	Tooth periodontal ligament: Direct 3D microCT visualization of the collagen network and how the network changes when the tooth is loaded. Journal of Structural Biology, 2013, 181, 108-115.	1.3	37
398	Bioinspired Crystallization of Continuous Calcium Phosphate Films on a Langmuir Monolayer of Zein Protein: Their Mechanical Performance, Hydrophilicity, and Biocompatibility. Crystal Growth and Design, 2013, 13, 3505-3513.	1.4	26

# 399	ARTICLE Influence of the Polymeric Interphase Design on the Interfacial Properties of (Fiber-Reinforced) Composites. ACS Applied Materials & Interfaces, 2013, 5, 2469-2478.	IF 4.0	CITATIONS
400	Towards patientâ€specific material modeling of trabecular bone postâ€yield behavior. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 250-272.	1.0	21
401	Physiological formation of fluorescent and conductive protein microfibers in live fibroblasts upon spontaneous uptake of biocompatible fluorophores. Integrative Biology (United Kingdom), 2013, 5, 1057.	0.6	15
402	Nanoscale Confinement Controls the Crystallization of Calcium Phosphate: Relevance to Bone Formation. Chemistry - A European Journal, 2013, 19, 14918-14924.	1.7	95
403	Hierarchical tube-in-tube structures prepared by electrophoretic deposition of nanostructured titanates into a TiO2 nanotube array. Chemical Communications, 2013, 49, 7007.	2.2	33
404	Fabrication of bionanocomposites comprising flat nanocrystals of calcium in collagen fibers exhibiting hardness comparable to metal. RSC Advances, 2013, 3, 20315.	1.7	6
405	Hydration and radiation effects on the residual stress state of cortical bone. Acta Biomaterialia, 2013, 9, 9503-9507.	4.1	15
406	Quantitative analysis of type I collagen fibril regulation by lumican and decorin using AFM. Journal of Structural Biology, 2013, 183, 394-403.	1.3	49
407	Structural and mechanical properties of the arthropod cuticle: Comparison between the fang of the spider Cupiennius salei and the carapace of American lobster Homarus americanus. Journal of Structural Biology, 2013, 183, 172-179.	1.3	40
408	All but diamonds – Biological materials are not forever. Acta Materialia, 2013, 61, 880-889.	3.8	20
409	Of mice, rats and men: Trabecular bone architecture in mammals scales to body mass with negative allometry. Journal of Structural Biology, 2013, 183, 123-131.	1.3	67
410	Structural and mechanical multi-scale characterization of white New-Zealand rabbit Achilles tendon. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 26, 81-89.	1.5	27
411	Mechanical properties of interfaces within a flax bundle—Part II: Numerical analysis. International Journal of Adhesion and Adhesives, 2013, 43, 54-59.	1.4	17
412	Towards bio-inspired engineering materials: Modeling and simulation of the mechanical behavior of hierarchical bovine dental structure. Computational Materials Science, 2013, 79, 390-401.	1.4	30
413	Crystal lattice tilting in prismatic calcite. Journal of Structural Biology, 2013, 183, 180-190.	1.3	63
414	Computational and experimental methodology for site-matched investigations of the influence of mineral mass fraction and collagen orientation on the axial indentation modulus of lamellar bone. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 195-205.	1.5	26
415	A complementary approach using analytical pyrolysis to evaluate collagen degradation and mineral fossilisation in archaeological bones: The case study of Vicenne-Campochiaro necropolis (Italy). Journal of Analytical and Applied Pyrolysis, 2013, 100, 173-180.	2.6	43
416	In plane stiffness of multifunctional hierarchical honeycombs with negative Poisson's ratio sub-structures. Composite Structures, 2013, 106, 681-689.	3.1	122

#	Article	IF	CITATIONS
417	Hydrolytic Activities of Crystalline Cellulose Nanofibers. Biomacromolecules, 2013, 14, 613-617.	2.6	37
418	Structural Interfaces and Attachments in Biology. , 2013, , .		20
420	Intermolecular interactions between natural polysaccharides and silk fibroin protein. Carbohydrate Polymers, 2013, 93, 561-573.	5.1	78
421	The Bone–Cartilage Interface. , 2013, , 91-118.		2
422	Materiomics: An â€ <i>omics</i> Approach to Biomaterials Research. Advanced Materials, 2013, 25, 802-824.	11.1	134
423	Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration. Nanoscale, 2013, 5, 5758.	2.8	59
424	Synthesis and applications of hierarchically porous catalysts. Chinese Journal of Catalysis, 2013, 34, 22-47.	6.9	60
425	Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 103, 25-37.	2.0	30
426	Broadband wave filtering of bioinspired hierarchical phononic crystal. Applied Physics Letters, 2013, 102, .	1.5	84
427	Bio-mimetic mechanisms of natural hierarchical materials: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 19, 3-33.	1.5	155
428	A Beaded-String Silicon Anode. ACS Nano, 2013, 7, 2717-2724.	7.3	68
429	Materials by design—A perspective from atoms to structures. MRS Bulletin, 2013, 38, 169-176.	1.7	30
430	Mechanical properties of hierarchical lattices. Mechanics of Materials, 2013, 62, 32-43.	1.7	80
431	Molecular mechanics of mineralized collagen fibrils in bone. Nature Communications, 2013, 4, 1724.	5.8	381
432	Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials. Journal of Materials Chemistry A, 2013, 1, 5469.	5.2	58
433	Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nature Materials, 2013, 12, 576-583.	13.3	228
434	Mechanical properties and scaling laws of nanoporous gold. Journal of Applied Physics, 2013, 113, .	1.1	171
435	Monitoring the healing process of rat bones using Raman spectroscopy. Journal of Molecular Structure, 2013, 1044, 308-313.	1.8	11

#	Article	IF	CITATIONS
436	Multi-scale modeling of biomaterials and tissues. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, , 13-55.	0.3	5
438	Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair. Advanced Functional Materials, 2013, 23, 5461-5476.	7.8	183
439	Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing. Advanced Functional Materials, 2013, 23, 4629-4638.	7.8	310
440	Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes. Nano Letters, 2013, 13, 3385-3390.	4.5	208
441	Facile Access to Large-Scale, Self-Assembled, Nacre-Inspired, High-Performance Materials with Tunable Nanoscale Periodicities. ACS Applied Materials & Interfaces, 2013, 5, 3738-3747.	4.0	121
442	Biological and Bioinspired Composites with Spatially Tunable Heterogeneous Architectures. Advanced Functional Materials, 2013, 23, 4423-4436.	7.8	160
443	Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 366-382.	1.5	83
444	A Biomimetic Composite from Solution Selfâ€Assembly of Chitin Nanofibers in a Silk Fibroin Matrix. Advanced Materials, 2013, 25, 4482-4487.	11.1	110
445	Study of the hydrothermal transformation of wood-derived calcium carbonate into 3D hierarchically organized hydroxyapatite. Chemical Engineering Journal, 2013, 217, 150-158.	6.6	27
446	Design and Preparation of a Core–Shell Metal–Organic Framework for Selective CO ₂ Capture. Journal of the American Chemical Society, 2013, 135, 9984-9987.	6.6	271
447	Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization. Journal of Structural Biology, 2013, 183, 205-215.	1.3	43
448	Mechanical properties of adhesives for bonding wood—A review. International Journal of Adhesion and Adhesives, 2013, 45, 32-41.	1.4	188
449	Nanoconfinement and the Strength of Biopolymers. Annual Review of Biophysics, 2013, 42, 651-673.	4.5	47
450	Do hierarchical structures assemble best via hierarchical pathways?. Soft Matter, 2013, 9, 6851.	1.2	32
451	Biomedical. Interface Science and Technology, 2013, 19, 385-427.	1.6	2
452	Amorphous Calcium Carbonate Stabilized by a Flexible Biomimetic Polymer Inspired by Marine Mussels. Crystal Growth and Design, 2013, 13, 1937-1942.	1.4	31
453	Recent Progress in the Replication of Hierarchical Biological Tissues. Advanced Functional Materials, 2013, 23, 4408-4422.	7.8	39
454	Layer-by-Layer Polyelectrolyte Deposition: A Mechanism for Forming Biocomposite Materials. Biomacromolecules, 2013, 14, 1715-1726.	2.6	18

#	Article	IF	CITATIONS
455	CHAPTER 2. Bone Structural Adaptation and Wolff's Law. RSC Smart Materials, 2013, , 17-45.	0.1	3
456	CHAPTER 8. The Mineralized Crustacean Cuticle: Hierarchical Structure and Mechanical Properties. RSC Smart Materials, 2013, , 180-196.	0.1	5
457	CHAPTER 15. Replicating Biological Design Principles in Synthetic Composites. RSC Smart Materials, 2013, , 322-358.	0.1	7
458	Micromechanics investigation of hygro-elastic behavior of cellular materials with multi-layered cell walls. Composite Structures, 2013, 95, 607-611.	3.1	13
459	A new approach to formulate the general strength theories for anisotropic discontinuous materials. Part A: The experimental base for a new approach to formulate the general strength theories for anisotropic materials on the basis of wood. Applied Mathematical Modelling, 2013, 37, 815-827.	2.2	10
460	Load-bearing in cortical bone microstructure: Selective stiffening and heterogeneous strain distribution at the lamellar level. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 152-165.	1.5	57
461	New insights into the Young's modulus of staggered biological composites. Materials Science and Engineering C, 2013, 33, 603-607.	3.8	15
462	Multilevel architectures in natural materials. Scripta Materialia, 2013, 68, 8-12.	2.6	63
463	Approaching theoretical strengths by synergistic internal and external size refinement. Scripta Materialia, 2013, 68, 225-228.	2.6	26
464	Identifying multiple forms of lateral disorder in cellulose fibres. Journal of Applied Crystallography, 2013, 46, 972-979.	1.9	19
465	Panoscopic Structures by Hierarchical Cascade Selfâ€Assembly of Inorganic Surfactants with Magnetic Heads Containing Dysprosium Ions. Angewandte Chemie - International Edition, 2013, 52, 13665-13670.	7.2	21
466	Imaging the Nanostructure of Bone and Dentin Through Small- and Wide-Angle X-Ray Scattering. Methods in Enzymology, 2013, 532, 391-413.	0.4	57
467	Chirality-specific hydrolysis of amino acid substrates by cellulose nanofibers. Chemical Communications, 2013, 49, 8827.	2.2	21
468	Natural Flexible Dermal Armor. Advanced Materials, 2013, 25, 31-48.	11.1	327
469	Mechanics of Platelet-Reinforced Composites Assembled Using Mechanical and Magnetic Stimuli. ACS Applied Materials & Interfaces, 2013, 5, 10794-10805.	4.0	85
470	Spatial Organization of Hydroxyapatite Nanorods on a Substrate via a Biomimetic Approach. Crystal Growth and Design, 2013, 13, 4213-4219.	1.4	18
471	Irregular Shaped, Assumably Semiâ€Crystalline Calciumphosphate Platelet Deposition at the Mineralization Front of Rabbit Femur Osteotomy: A <scp>HR</scp> â€ <scp>TEM</scp> Study. Scanning, 2013, 35, 169-182.	0.7	1
472	Characterization of Large Amyloid Fibers and Tapes with Fourier Transform Infrared (FT-IR) and Raman Spectroscopy. Applied Spectroscopy, 2013, 67, 1417-1426.	1.2	31

#	Article	IF	CITATIONS
473	Improving CT Image Analysis of Augmented Bone with Raman Spectroscopy. Journal of Applied Mathematics, 2013, 2013, 1-10.	0.4	2
474	Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue. Journal of the Royal Society Interface, 2013, 10, 20120953.	1.5	39
475	Three-dimensional distribution of polymorphs and magnesium in a calcified underwater attachment system by diffraction tomography. Journal of the Royal Society Interface, 2013, 10, 20130319.	1.5	25
476	Increasing silk fibre strength through heterogeneity of bundled fibrils. Journal of the Royal Society Interface, 2013, 10, 20130148.	1.5	48
477	Tough and stiff composites with simple building blocks. Journal of Materials Research, 2013, 28, 1295-1303.	1.2	31
478	Variable stiffness biological and bio-inspired materials. Journal of Intelligent Material Systems and Structures, 2013, 24, 529-540.	1.4	34
479	Hierarchical structure, mechanical properties and fabrication of biomimetic biomaterials. , 2013, , 67-90.		7
480	Facile Botanical Templating Strategies for the Growth of Porous Metal Oxides in Artificial Leaf-Like Macroscale Structures for Potential Use in Energy Related Catalysis. Materials Research Society Symposia Proceedings, 2013, 1539, 5401.	0.1	0
481	What is a Physicist Doing in the Jungle? Biomimetics of the Rainforest. Applied Mechanics and Materials, 2013, 461, 152-162.	0.2	4
482	Elastic fibres are broadly distributed in tendon and highly localized around tenocytes. Journal of Anatomy, 2013, 222, 573-579.	0.9	61
483	Production of 3D scaffolds applied to tissue engineering using chitosan swelling as a porogenic agent. Journal of Applied Polymer Science, 2013, 129, 614-625.	1.3	22
485	Synchrotron X-Ray Nanomechanical Imaging of Mineralized Fiber Composites. Methods in Enzymology, 2013, 532, 415-473.	0.4	8
486	Hierarchical chirality transfer in the growth of Towel Gourd tendrils. Scientific Reports, 2013, 3, 3102.	1.6	121
487	Biomimetic materials in regenerative medicine. , 2013, , 3-45.		7
488	Characterization of micro-anomalies from macro-scale response. , 2013, , .		2
489	Active Anti-erosion Protection Strategy in Tamarisk (Tamarix aphylla). Scientific Reports, 2013, 3, 3429.	1.6	23
490	At the moment of occurrence of a fragility hip fracture, men have higher mechanical properties values in comparison with women. BMC Musculoskeletal Disorders, 2013, 14, 295.	0.8	7
492	A Milestone in Biomineralization: From a Structural Assessment to a Genetic Concept of Mineral Formation. Or How the Enzyme Silicatein Forms a Solid Silica Rod. ACS Symposium Series, 2013, , 157-176.	0.5	1

#	Article	IF	CITATIONS
494	Simple Model for the Toughness of a Helical Structure Inspired by the Exoskeleton of Lobsters. Journal of the Physical Society of Japan, 2013, 82, 124802.	0.7	7
495	Nanomechanics of collagen microfibrils. Muscles, Ligaments and Tendons Journal, 2013, 3, 23-34.	0.1	26
496	Description of Wheat Straw Relaxation Behavior Based on a Fractionalâ€Order Constitutive Model. Agronomy Journal, 2013, 105, 134-142.	0.9	8
497	Polarized Raman Anisotropic Response of Collagen in Tendon: Towards 3D Orientation Mapping of Collagen in Tissues. PLoS ONE, 2013, 8, e63518.	1.1	61
498	Multiscale Model of Collagen Fibril in Bone: Elastic Response. Journal of Engineering Mechanics - ASCE, 2014, 140, 454-461.	1.6	13
499	Biomimetic Materials. , 2014, , 235-246.		1
500	Selectivity in Bone Targeting with Multivalent Dendritic Polyanion Dye Conjugates. Advanced Healthcare Materials, 2014, 3, 375-385.	3.9	21
501	Contact kinematics of biomimetic scales. Applied Physics Letters, 2014, 105, .	1.5	52
502	Combination of biological mechanisms for a concept study of a fracture-tolerant bio-inspired ceramic composite material. Journal of Materials Science, 2014, 49, 8040-8050.	1.7	15
503	Hierarchical perspective of bone toughness – from molecules to fracture. International Materials Reviews, 2014, 59, 245-263.	9.4	42
504	Molecular Engineering of Fracture Energy Dissipating Sacrificial Bonds Into Cellulose Nanocrystal Nanocomposites. Angewandte Chemie - International Edition, 2014, 53, 5049-5053.	7.2	49
505	Influence of sacrificial bonds on the mechanical behaviour of polymer chains. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 139-145.	0.7	17
506	EXPERIMENTAL VALIDATION OF A MEAN FILED MODEL OF MINERALIZED COLLAGEN FIBER ARRAYS AT TWO LEVELS OF HIERARCHY. Journal of Mechanics in Medicine and Biology, 2014, 14, 1450013.	0.3	13
507	Highly Enhanced Damping Figure of Merit in Biomimetic Hierarchical Staggered Composites. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	34
508	On the mechanics of sinusoidal interfaces between dissimilar elastic–plastic solids subject to dominant mode I. Engineering Fracture Mechanics, 2014, 131, 38-57.	2.0	20
509	Age Dependent Differences in Collagen Alignment of Glutaraldehyde Fixed Bovine Pericardium. BioMed Research International, 2014, 2014, 1-10.	0.9	22
510	The role of topology and thermal backbone fluctuations on sacrificial bond efficacy in mechanical metalloproteins. New Journal of Physics, 2014, 16, 013003.	1.2	15
511	The effect of magnetic field on electrochemically deposited calcium phosphate/collagen coatings. Bio-Medical Materials and Engineering, 2014, 24, 1851-1859.	0.4	1

#	Article	IF	CITATIONS
512	Multiscale structural gradients enhance the biomechanical functionality of the spider fang. Nature Communications, 2014, 5, 3894.	5.8	76
513	Biomimetics: Structure–Function Patterns Approach. Journal of Mechanical Design, Transactions of the ASME, 2014, 136, .	1.7	32
514	Ultrasonic Assembly of Biologically Inspired Anisotropic Short Fibre Reinforced Composites. , 2014, , .		1
515	Relationship between the v2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone. Journal of Biomedical Optics, 2014, 19, 065002.	1.4	55
516	Nanocellulose-modified Wood Adhesives. Materials and Energy, 2014, , 253-264.	2.5	7
517	An in silico parametric model of vertebrae trabecular bone based on density and microstructural parameters to assess risk of fracture in osteoporosis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 1281-1295.	1.0	4
518	Optical Properties of Self-Organized Gold Nanorod–Polymer Hybrid Films. Langmuir, 2014, 30, 13781-13790.	1.6	9
519	Composite biomedical foams for engineering bone tissue. , 2014, , 249-280.		8
521	Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure. Journal of Applied Physics, 2014, 116, .	1.1	37
522	First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. Europhysics Letters, 2014, 107, 28006.	0.7	93
523	Modular Peptide-Based Hybrid Nanoprobes for Bio-Imaging and Bio-Sensing. Materials Research Society Symposia Proceedings, 2014, 1621, 155-161.	0.1	3
524	Calcifying tissue regeneration via biomimetic materials chemistry. Journal of the Royal Society Interface, 2014, 11, 20140537.	1.5	15
525	Quantifying Cooperativity via Geometric Gyration-Based Metrics of Coupled Macromolecules. Journal of Nanomechanics & Micromechanics, 2014, 4, .	1.4	1
526	Variation of mechanical properties of single bamboo fibers (<i>Dendrocalamus latiflorus</i> Munro) with respect to age and location in culms. Holzforschung, 2014, 68, 291-297.	0.9	25
527	Anomalous thermal expansion behaviors of wood under dry and low-temperature conditions. Holzforschung, 2014, 68, 567-574.	0.9	3
528	Crystallization and preliminary X-ray analysis of the C-type lectin domain of the spicule matrix protein SM50 fromStrongylocentrotus purpuratus. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 260-262.	0.4	2
529	From Chemical Solutions to Inorganic Nanostructured Materials: A Journey into Evaporation-Driven Processes. Chemistry of Materials, 2014, 26, 709-723.	3.2	70
530	Compressive efficiency of stretch–stretch-hybrid hierarchical composite lattice cores. Materials & Design, 2014, 56, 731-739.	5.1	31

#	Article	IF	CITATIONS
531	Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls. Experimental Gerontology, 2014, 55, 19-28.	1.2	62
532	Perturbation analysis of crack front in simple cantilever plate peeling experiment. International Journal of Adhesion and Adhesives, 2014, 53, 29-33.	1.4	5
533	Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading. Composites Part A: Applied Science and Manufacturing, 2014, 56, 262-271.	3.8	84
534	On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment. Biomechanics and Modeling in Mechanobiology, 2014, 13, 1003-1023.	1.4	27
535	Bioâ€Inspired Band Gap Engineering of Zinc Oxide by Intracrystalline Incorporation of Amino Acids. Advanced Materials, 2014, 26, 477-481.	11.1	82
536	Tensile strength analysis of palm leaf sheath fiber with Weibull distribution. Composites Part A: Applied Science and Manufacturing, 2014, 62, 45-51.	3.8	39
537	Synthesis and patterning of tunable multiscale materials with engineered cells. Nature Materials, 2014, 13, 515-523.	13.3	329
538	Improvements of strength and fracture resistance by spatial material property variations. Acta Materialia, 2014, 68, 279-294.	3.8	69
539	Elastic properties of natural single nanofibres. RSC Advances, 2014, 4, 11225.	1.7	10
540	Mechanics of anisotropic hierarchical honeycombs. International Journal of Mechanical Sciences, 2014, 81, 126-136.	3.6	104
541	On the mechanical properties of hierarchical lattices. Mechanics of Materials, 2014, 72, 19-32.	1.7	43
542	The effects of ageing on the biomechanical properties of root dentine and fracture. Journal of Dentistry, 2014, 42, 305-311.	1.7	32
543	Creating hierarchical structures in cellulosic fibre reinforced polymer composites for advanced performance. , 2014, , 84-102.		4
544	Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. , 2014, , 3-65.		58
545	Hierarchically Structured Vanadium Pentoxide–Polymer Hybrid Materials. ACS Nano, 2014, 8, 5089-5104.	7.3	23
546	Effect of Fiber's Interfaces Cohesive Strength in Unidirectional Fibrous Structural Material on <scp>SIF</scp> and Fracture Energy. Advanced Engineering Materials, 2014, 16, 522-527.	1.6	4
547	Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter, 2014, 10, 4436.	1.2	111
548	Interfaces within flax fibre bundle: Experimental characterization and numerical modelling. Journal of Composite Materials, 2014, 48, 3263-3269.	1.2	3

#	Article	IF	CITATIONS
549	Modelling the mechanics of partially mineralized collagen fibrils, fibres and tissue. Journal of the Royal Society Interface, 2014, 11, 20130835.	1.5	74
550	Thermoresponsive Nanocellulose Hydrogels with Tunable Mechanical Properties. ACS Macro Letters, 2014, 3, 266-270.	2.3	163
551	Cellulose Nanofiber/Nanocrystal Reinforced Capsules: A Fast and Facile Approach Toward Assembly of Liquid-Core Capsules with High Mechanical Stability. Biomacromolecules, 2014, 15, 1852-1859.	2.6	71
552	Celluloseâ€Based Biotemplated Silica Structuring. Advanced Engineering Materials, 2014, 16, 699-712.	1.6	16
553	What's Inside the Box? – Lengthâ€Scales that Govern Fracture Processes of Polymer Fibers. Advanced Materials, 2014, 26, 412-417.	11.1	36
554	Magneto-responsive nanocomposites: Preparation and integration of magnetic nanoparticles into films, capsules, and gels. Advances in Colloid and Interface Science, 2014, 207, 3-13.	7.0	38
555	Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 1590-1601.	0.9	24
556	Feather structure, biomechanics and biomimetics: the incredible lightness of being. Journal of Ornithology, 2014, 155, 323-336.	0.5	32
557	The Mechanical Role of Metal Ions in Biogenic Proteinâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 12026-12044.	7.2	229
558	Hierarchical Nanoporous Glass with Antireflectivity and Superhydrophilicity by One-Pot Etching. Langmuir, 2014, 30, 14494-14497.	1.6	36
560	A toolbox of oligopeptide-modified polymers for tailored elastomers. Nature Communications, 2014, 5, 4728.	5.8	32
561	Bone substitutes based on biomineralization. , 2014, , 3-29.		8
562	Systematic Study of the Effects of Polyamines on Calcium Carbonate Precipitation. Chemistry of Materials, 2014, 26, 2703-2711.	3.2	72
563	Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nature Materials, 2014, 13, 1102-1107.	13.3	72
564	Hierarchical, self-similar structure in native squid pen. Soft Matter, 2014, 10, 5541-5549.	1.2	40
565	Bio-inspired engineering of a zinc oxide/amino acid composite: synchrotron microstructure study. CrystEngComm, 2014, 16, 3268-3273.	1.3	25
566	Bio-inspired formation of functional calcite/metal oxide nanoparticle composites. Nanoscale, 2014, 6, 852-859.	2.8	35
567	Byssal threads inspired ionic cross-linked narce-like graphene oxide paper with superior mechanical strength. RSC Advances, 2014, 4, 40390-40395.	1.7	50

#	Article	IF	CITATIONS
568	Mechanics of biological networks: from the cell cytoskeleton to connective tissue. Soft Matter, 2014, 10, 1864.	1.2	150
569	Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Advances, 2014, 4, 32451-32456.	1.7	21
570	Strain rate hardening: A hidden but critical mechanism for biological composites?. Acta Biomaterialia, 2014, 10, 5064-5073.	4.1	45
572	Scanning Electron Microscope Analysis of Gunshot Defects to Bone: An Underutilized Source of Information on Ballistic Trauma. Journal of Forensic Sciences, 2014, 59, 1473-1486.	0.9	14
573	Mechanical Stability of Surface Architecture—Consequences for Superhydrophobicity. ACS Applied Materials & Interfaces, 2014, 6, 18380-18394.	4.0	75
574	Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale, 2014, 6, 7877-7888.	2.8	66
575	Confinement Increases the Lifetimes of Hydroxyapatite Precursors. Chemistry of Materials, 2014, 26, 5830-5838.	3.2	48
576	Strain-engineered manufacturing of freeform carbon nanotube microstructures. Nature Communications, 2014, 5, 4512.	5.8	54
577	Fiberâ€Assisted Molding (FAM) of Surfaces with Tunable Curvature to Guide Cell Alignment and Complex Tissue Architecture. Small, 2014, 10, 4851-4857.	5.2	41
578	Mechanical and structural properties of bone in non-critical and critical healing in rat. Acta Biomaterialia, 2014, 10, 4009-4019.	4.1	40
579	Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 9-26.	1.5	56
580	Change in Organic Molecule Adhesion on α-Alumina (Sapphire) with Change in NaCl and CaCl ₂ Solution Salinity. Langmuir, 2014, 30, 8741-8750.	1.6	26
581	Self-Healing of Hierarchical Materials. Langmuir, 2014, 30, 1123-1133.	1.6	17
582	Molecular dynamics simulation of strong interaction mechanisms at wet interfaces in clay–polysaccharide nanocomposites. Journal of Materials Chemistry A, 2014, 2, 9541-9547.	5.2	27
583	Micromechanical devices with controllable stiffness fabricated from regular 3D porous materials. Journal of Micromechanics and Microengineering, 2014, 24, 105006.	1.5	17
584	Designing nacre-like materials for simultaneous stiffness, strength and toughness: Optimum materials, composition, microstructure and size. Journal of the Mechanics and Physics of Solids, 2014, 73, 22-37.	2.3	130
585	Modeling microdamage behavior of cortical bone. Biomechanics and Modeling in Mechanobiology, 2014, 13, 1227-1242.	1.4	23
586	Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 2014, 6, 6267-6292.	2.8	168

#	Article	IF	CITATIONS
587	Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskeletal Disorders, 2014, 15, 114.	0.8	64
588	The bone-implant interface – nanoscale analysis of clinically retrieved dental implants. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1729-1737.	1.7	55
589	Exploring the significance of structural hierarchy in material systems—A review. Applied Physics Reviews, 2014, 1, 021302.	5.5	29
590	On flaw tolerance of nacre: a theoretical study. Journal of the Royal Society Interface, 2014, 11, 20131016.	1.5	54
591	Hybrid Wood Materials with Magnetic Anisotropy Dictated by the Hierarchical Cell Structure. ACS Applied Materials & Interfaces, 2014, 6, 9760-9767.	4.0	96
592	<i>In situ</i> cell–matrix mechanics in tendon fascicles and seeded collagen gels: implications for the multiscale design of biomaterials. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 39-47.	0.9	13
593	Rapid alterations of avian medullary bone material during the daily egg-laying cycle. Bone, 2014, 69, 109-117.	1.4	73
594	Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2014, 67, 181-200.	3.8	636
595	3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. Journal of Structural Biology, 2014, 187, 266-275.	1.3	80
596	Biological materials by design. Journal of Physics Condensed Matter, 2014, 26, 073101.	0.7	22
597	Elastic and transport properties of the tailorable multifunctional hierarchical honeycombs. Composite Structures, 2014, 107, 698-710.	3.1	47
598	The role of angular reflection in assessing elastic properties of bone by scanning acoustic microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 438-450.	1.5	1
599	Cement lines and interlamellar areas in compact bone as strain amplifiers – Contributors to elasticity, fracture toughness and mechanotransduction. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 235-251.	1.5	34
600	Bone hierarchical structure in three dimensions. Acta Biomaterialia, 2014, 10, 3815-3826.	4.1	501
601	In situ micropillar compression reveals superior strength and ductility but an absence ofÂdamage inÂlamellar bone. Nature Materials, 2014, 13, 740-747.	13.3	154
602	Dimensions of Biological Cellulose Nanocrystals Maximize Fracture Strength. ACS Macro Letters, 2014, 3, 64-69.	2.3	67
603	Novel, highly-filled ceramic–polymer composites synthesized by a spouted bed spray granulation process. Composites Science and Technology, 2014, 90, 154-159.	3.8	51
604	Orthodontic debonding: methods, risks and future developments. Orthodontic Update, 2014, 7, 6-13.	0.1	1

#	Article	IF	CITATIONS
606	Toward a better understanding of mineral microstructure in bony tissues. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 71-84.	0.7	7
607	Timescales of self-healing in human bone tissue and polymeric ionic liquids. Bioinspired, Biomimetic and Nanobiomaterials, 2014, 3, 123-130.	0.7	15
609	Hierarchical Tubular Structures Grown from the Gel/Liquid Interface. Chemistry - A European Journal, 2014, 20, 16112-16120.	1.7	28
610	Multiscale Replication of Iridescent Butterfly Wings. Materials Today: Proceedings, 2014, 1, 221-224.	0.9	5
611	Mapping Dynamical Mechanical Properties of Osteonal Bone by Scanning Acoustic Microscopy in Time-of-Flight Mode. Microscopy and Microanalysis, 2014, 20, 924-936.	0.2	8
612	Biomineralization: A confluence of materials science, biophysics, proteomics, and evolutionary biology. MRS Bulletin, 2015, 40, 473-477.	1.7	16
613	Unraveling the internal microstructure of biogenic and bioinspired calcite single crystals. MRS Bulletin, 2015, 40, 499-508.	1.7	13
614	Elemental and Phase Analysis of the Stomatopod Dactyl Club by X-Ray Mapping. Microscopy and Microanalysis, 2015, 21, 2007-2008.	0.2	1
615	Promoting convergence: The Phi spiral in abduction of mouse corneal behaviors. Complexity, 2015, 20, 22-38.	0.9	7
616	Honeycomb phononic crystals with self-similar hierarchy. Physical Review B, 2015, 92, .	1.1	103
617	Bio-Based and Bio-Inspired Cellular Materials. , 2015, , 1-37.		0
618	Additive Manufacturing of a Microbial Fuel Cell—A detailed study. Scientific Reports, 2015, 5, 17373.	1.6	71
		1.0	
619	Protein-mediated hydroxyapatite composite layer formation on nanotubular titania. Bioinspired, Biomimetic and Nanobiomaterials, 2015, 4, 155-165.	0.7	6
619 620			6 12
	Biomimetic and Nanobiomaterials, 2015, 4, 155-165. Synergy of multi-scale toughening and protective mechanisms at hierarchical branch-stem interfaces.	0.7	
620	Biomimetic and Nanobiomaterials, 2015, 4, 155-165. Synergy of multi-scale toughening and protective mechanisms at hierarchical branch-stem interfaces. Scientific Reports, 2015, 5, 14522.	0.7	12
620 621	 Biomimetic and Nanobiomaterials, 2015, 4, 155-165. Synergy of multi-scale toughening and protective mechanisms at hierarchical branch-stem interfaces. Scientific Reports, 2015, 5, 14522. Toughening in electrospun fibrous scaffolds. APL Materials, 2015, 3, . 	0.7 1.6 2.2	12 22

#	Article	IF	CITATIONS
625	Large-scale parallel alignment of platelet-shaped particles through gravitational sedimentation. Scientific Reports, 2015, 5, 9984.	1.6	40
626	Flow Behavior of Wood Treated with Melamine Formaldehyde Resin under Non-Equilibrium Thermal-Compression. Advanced Materials Research, 0, 1119, 278-282.	0.3	2
628	Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales. Angewandte Chemie, 2015, 127, 5473-5478.	1.6	12
629	Directional Materials—Nanoporous Organosilica Monoliths with Multiple Gradients Prepared Using Click Chemistry. Angewandte Chemie - International Edition, 2015, 54, 10465-10469.	7.2	28
630	Bio-inspired scale-like surface textures and their tribological properties. Bioinspiration and Biomimetics, 2015, 10, 044001.	1.5	112
631	Ultrastructural evaluation of shrinkage artefacts induced by fixatives and embedding resins on osteocyte processes and pericellular space dimensions. Journal of Biomedical Materials Research - Part A, 2015, 103, 1565-1576.	2.1	22
632	Regeneration of Human Bone Using Different Bone Substitute Biomaterials. Clinical Implant Dentistry and Related Research, 2015, 17, 150-162.	1.6	33
633	Biological Archetypes for Self-Healing Materials. Advances in Polymer Science, 2015, , 307-344.	0.4	36
635	Mechanical properties of the hierarchical honeycombs with stochastic Voronoi sub-structures. Europhysics Letters, 2015, 111, 56007.	0.7	4
636	Compression Responses of Bio-Cellular Luffa Sponges. BioResources, 2015, 10, .	0.5	4
637	Tetracycline Loaded Collagen/Hydroxyapatite Composite Materials for Biomedical Applications. Journal of Nanomaterials, 2015, 2015, 1-5.	1.5	8
638	Anisotropy in Bone Demineralization Revealed by Polarized Far-IR Spectroscopy. Molecules, 2015, 20, 5835-5850.	1.7	5
639	A Bone Sample Containing a Bone Graft Substitute Analyzed by Correlating Density Information Obtained by X-ray Micro Tomography with Compositional Information Obtained by Raman Microscopy. Materials, 2015, 8, 3831-3853.	1.3	3
640	Self-assembly of "patchy―nanoparticles: a versatile approach to functional hierarchical materials. Chemical Science, 2015, 6, 3663-3673.	3.7	124
641	Registering 2D and 3D imaging data of bone during healing. Connective Tissue Research, 2015, 56, 133-143.	1.1	9
642	In situ growth of a polyphosphazene nanoparticle coating on a honeycomb surface: facile formation of hierarchical structures for bioapplication. Chemical Communications, 2015, 51, 5698-5701.	2.2	15
643	Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nature Communications, 2015, 6, 7352.	5.8	67
644	Composite materiomics. , 2015, , 903-944.		2

#	Article	IF	Citations
 647	Mechanics of organic-inorganic biointerfaces—Implications for strength and creep properties. MRS Bulletin, 2015, 40, 349-358.	1.7	31
648	Toward architecturing of metal composites by twist extrusion. Materials Research Letters, 2015, 3, 161-168.	4.1	12
649	Senile coconut palms: Functional design and biomechanics of stem green tissue. Wood Material Science and Engineering, 0, , 1-20.	1.1	2
650	Scaling Crossover in Crack-Tip Stresses and a Robust Scaling Law for Fracture Strength. Journal of the Physical Society of Japan, 2015, 84, 114602.	0.7	1
651	Molecular Modeling: A Review of Nanomechanics Based on Molecular Modeling. , 2015, , 37-60.		0
652	Multiscale Characterization of Biological Systems. , 2015, , .		1
653	pH-Dependent Selective Protein Adsorption into Mesoporous Silica. Journal of Physical Chemistry C, 2015, 119, 27072-27079.	1.5	62
654	A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties. Acta Biomaterialia, 2015, 28, 13-22.	4.1	5
655	Deformation twinning and the role of amino acids and magnesium in calcite hardness from molecular simulation. Physical Chemistry Chemical Physics, 2015, 17, 20178-20184.	1.3	27
656	Cellulose-hemicellulose interaction in wood secondary cell-wall. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 085010.	0.8	71
657	Multi-scale thermal stability of a hard thermoplastic protein-based material. Nature Communications, 2015, 6, 8313.	5.8	54
658	Effect of Surface Hydrophobicity on the Function of the Immobilized Biomineralization Protein Mms6. Industrial & Engineering Chemistry Research, 2015, 54, 10284-10292.	1.8	6
659	Bio-inspired functional wood-based materials – hybrids and replicates. International Materials Reviews, 2015, 60, 431-450.	9.4	98
660	Damage Mechanisms of Hierarchical Composites: Computational Modelling. Physical Mesomechanics, 2015, 18, 416-423.	1.0	6
661	Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. International Materials Reviews, 2015, 60, 413-430.	9.4	132
662	Micro/Macroporous System: MFIâ€Type Zeolite Crystals with Embedded Macropores. Advanced Materials, 2015, 27, 1066-1070.	11.1	93
663	Quantitative analysis of imprint shape and its relation to mechanical properties measured by microindentation in bone. Journal of Biomechanics, 2015, 48, 210-216.	0.9	12
665	Fatigue of self-healing hierarchical soft nanomaterials: The case study of the tendon in sportsmen. Journal of Materials Research, 2015, 30, 2-9.	1.2	6

#	Article	IF	CITATIONS
666	On the relationship between the dynamic behavior and nanoscale staggered structure of the bone. Journal of the Mechanics and Physics of Solids, 2015, 78, 17-31.	2.3	27
667	Quantitative 3D Xâ€ray Imaging of Densification, Delamination and Fracture in a Microâ€Composite under Compression. Advanced Engineering Materials, 2015, 17, 545-553.	1.6	19
668	Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. Journal of Physics Condensed Matter, 2015, 27, 103102.	0.7	205
669	Morphological Transformations in the Magnetite Biomineralizing Protein Mms6 in Iron Solutions: A Small-Angle X-ray Scattering Study. Langmuir, 2015, 31, 2818-2825.	1.6	25
670	Biomimetic and nanostructured hybrid bioactive glass. Biomaterials, 2015, 50, 1-9.	5.7	22
671	Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder – The peacock's tail coverts shaft and its components. Acta Biomaterialia, 2015, 17, 137-151.	4.1	48
672	Traction–separation laws and stick–slip shear phenomenon of interfaces between cellulose nanocrystals. Journal of the Mechanics and Physics of Solids, 2015, 78, 526-539.	2.3	53
673	Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal?. Progress in Materials Science, 2015, 71, 93-168.	16.0	580
674	Tissue-scale anisotropy and compressibility of tendon in semi-confined compression tests. Journal of Biomechanics, 2015, 48, 1092-1098.	0.9	34
675	The Vertebrate Integument Volume 2. , 2015, , .		4
675 676	The Vertebrate Integument Volume 2., 2015, , . Functionalization of Metallic Glasses through Hierarchical Patterning. Nano Letters, 2015, 15, 963-968.	4.5	4 98
		4.5 5.8	
676	Functionalization of Metallic Glasses through Hierarchical Patterning. Nano Letters, 2015, 15, 963-968.		98
676 677	Functionalization of Metallic Glasses through Hierarchical Patterning. Nano Letters, 2015, 15, 963-968. Osmotic pressure induced tensile forces in tendon collagen. Nature Communications, 2015, 6, 5942. Interlayer structure and self-healing in suspensions of brush-stabilized nanoplatelets with smectic	5.8	98 167
676 677 678	 Functionalization of Metallic Glasses through Hierarchical Patterning. Nano Letters, 2015, 15, 963-968. Osmotic pressure induced tensile forces in tendon collagen. Nature Communications, 2015, 6, 5942. Interlayer structure and self-healing in suspensions of brush-stabilized nanoplatelets with smectic order. Soft Matter, 2015, 11, 954-971. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based 	5.8 1.2	98 167 12
676 677 678 680	 Functionalization of Metallic Glasses through Hierarchical Patterning. Nano Letters, 2015, 15, 963-968. Osmotic pressure induced tensile forces in tendon collagen. Nature Communications, 2015, 6, 5942. Interlayer structure and self-healing in suspensions of brush-stabilized nanoplatelets with smectic order. Soft Matter, 2015, 11, 954-971. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices. Tissue Engineering - Part B: Reviews, 2015, 21, 298-313. Biologically Inspired Dynamic Material Systems. Angewandte Chemie - International Edition, 2015, 54, 	5.8 1.2 2.5	98 167 12 205
 676 677 678 680 681 	 Functionalization of Metallic Glasses through Hierarchical Patterning. Nano Letters, 2015, 15, 963-968. Osmotic pressure induced tensile forces in tendon collagen. Nature Communications, 2015, 6, 5942. Interlayer structure and self-healing in suspensions of brush-stabilized nanoplatelets with smectic order. Soft Matter, 2015, 11, 954-971. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices. Tissue Engineering - Part B: Reviews, 2015, 21, 298-313. Biologically Inspired Dynamic Material Systems. Angewandte Chemie - International Edition, 2015, 54, 3400-3416. Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano- and 	5.8 1.2 2.5 7.2	 98 167 12 205 142

#	ARTICLE	IF	CITATIONS
686	Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals. Materials Horizons, 2015, 2, 434-441.	6.4	7
687	Self-assembly concepts for multicompartment nanostructures. Nanoscale, 2015, 7, 11841-11876.	2.8	279
688	Synergistic toughening of hard, nacre-mimetic MoSi2 coatings by self-assembled hierarchical structure. Scientific Reports, 2014, 4, 4239.	1.6	7
689	Molecular Dynamics Simulation of Size Effect on the Mechanical Properties of Amorphous Silica. Journal of Nano Research, 2015, 30, 59-67.	0.8	3
690	Wood microstructure – A cellular composite. , 2015, , 3-26.		15
691	Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths. Journal of the Mechanics and Physics of Solids, 2015, 81, 41-57.	2.3	54
692	Morphogenesis and mechanostabilization of complex natural and 3D printed shapes. Science Advances, 2015, 1, e1400052.	4.7	48
693	Binary Synergy Strengthening and Toughening of Bio-Inspired Nacre-like Graphene Oxide/Sodium Alginate Composite Paper. ACS Nano, 2015, 9, 8165-8175.	7.3	152
694	Fabrication of nanocellulose–hydroxyapatite composites and their application as water-resistant transparent coatings. Journal of Materials Chemistry B, 2015, 3, 5858-5863.	2.9	39
695	Remarkable shape memory effect of a natural biopolymer in aqueous environment. Biomaterials, 2015, 65, 13-21.	5.7	59
696	Morphological, chemical and kinetic characterisation of zein protein-induced biomimetic calcium phosphate films. Journal of Materials Chemistry B, 2015, 3, 6213-6223.	2.9	9
697	Electrochemically designed interfaces: Hydroxyapatite coated macro-mesoporous titania surfaces. Applied Surface Science, 2015, 350, 62-68.	3.1	17
698	Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chemical Reviews, 2015, 115, 6265-6311.	23.0	630
699	A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nature Materials, 2015, 14, 785-789.	13.3	509
700	Hydrothermal synthesis of magnetic wood composites and improved wood properties by precipitation with CoFe ₂ O ₄ /hydroxyapatite. RSC Advances, 2015, 5, 45919-45927.	1.7	27
701	Structural orientation dependent sub-lamellar bone mechanics. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 52, 63-71.	1.5	22
702	Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level. Bone, 2015, 76, 158-168.	1.4	55
704	Elastic Properties of Human Osteon and Osteonal Lamella Computed by a Bidirectional Micromechanical Model and Validated by Nanoindentation. Journal of Biomechanical Engineering, 2015, 137, 081002.	0.6	7

#	Article	IF	CITATIONS
705	Effect of Hydrogel Matrices on Calcite Crystal Growth Morphology, Aggregate Formation, and Co-Orientation in Biomimetic Experiments and Biomineralization Environments. Crystal Growth and Design, 2015, 15, 2667-2685.	1.4	41
706	Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales. Angewandte Chemie - International Edition, 2015, 54, 5383-5388.	7.2	78
707	Fragility of Bone Material Controlled by Internal Interfaces. Calcified Tissue International, 2015, 97, 201-212.	1.5	78
708	Synchrotron X-ray phase nano-tomography-based analysis of the lacunar–canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis. Biomechanics and Modeling in Mechanobiology, 2015, 14, 267-282.	1.4	83
709	The connection between cellular mechanoregulation and tissue patterns during bone healing. Medical and Biological Engineering and Computing, 2015, 53, 829-842.	1.6	18
710	Towards a deeper understanding of structural biomass recalcitrance using phase-contrast tomography. Biotechnology for Biofuels, 2015, 8, 40.	6.2	9
711	Hierarchically decorated electrospun poly(\$\$ varepsilon \$\$ ε -caprolactone)/nanohydroxyapatite composite nanofibers for bone tissue engineering. Journal of Materials Science, 2015, 50, 4174-4186.	1.7	17
712	Electrospun hydroxyethyl cellulose nanofibers functionalized with calcium phosphate coating for bone tissue engineering. RSC Advances, 2015, 5, 29497-29504.	1.7	54
713	Mechanical properties of hierarchically structured wood–cement composites. Construction and Building Materials, 2015, 84, 253-260.	3.2	14
714	Light-Controlled Hierarchical Self-Assembly of Polyelectrolytes and Supramolecular Polymers. ACS Macro Letters, 2015, 4, 43-47.	2.3	28
715	Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment. ACS Biomaterials Science and Engineering, 2015, 1, 295-304.	2.6	75
716	Structure–mechanics relationships in mineralized tendons. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 52, 72-84.	1.5	11
717	Sensitive Humidityâ€Driven Reversible and Bidirectional Bending of Nanocellulose Thin Films as Bioâ€Inspired Actuation. Advanced Materials Interfaces, 2015, 2, 1500080.	1.9	104
718	Functionalization of biomineral reinforcement in crustacean cuticle: Calcite orientation in the partes incisivae of the mandibles of Porcellio scaber and the supralittoral species Tylos europaeus (Oniscidea, Isopoda). Journal of Structural Biology, 2015, 190, 173-191.	1.3	24
719	From Bacteria to Mollusks: The Principles Underlying the Biomineralization of Iron Oxide Materials. Angewandte Chemie - International Edition, 2015, 54, 4728-4747.	7.2	95
720	Strength and toughness of biocomposites consisting of soft and hard elements: A few fundamental models. MRS Bulletin, 2015, 40, 333-339.	1.7	14
721	Self-Assembling a Polyoxometalate–PEG Hybrid into a Nanoenhancer To Tailor PEG Properties. Macromolecules, 2015, 48, 2723-2730.	2.2	35
722	Bone microdamage, remodeling and bone fragility: how much damage is too much damage?. BoneKEy Reports, 2015, 4, 644.	2.7	89

	CITATION R	EPORT	
#	Article	IF	CITATIONS
723	A comprehensive multiscale moisture transport analysis: From porous reference silicates to cement-based materials. European Physical Journal: Special Topics, 2015, 224, 1749-1768.	1.2	8
724	Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure. ACS Nano, 2015, 9, 10637-10646.	7.3	166
725	Nanostructure and mechanical properties of the osteocyte lacunar-canalicular network-associated by quantitative nanomechanical mapping. Nano Research, 2015, 8, 3250-3260.	5.8	15
726	A multi-scale biomechanical model based on the physiological structure and lignocellulose components of wheat straw. Carbohydrate Polymers, 2015, 133, 135-143.	5.1	10
727	Transformation of vaterite nanoparticles to hydroxycarbonate apatite in a hydrogel scaffold: relevance to bone formation. Journal of Materials Chemistry B, 2015, 3, 7079-7089.	2.9	28
728	Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment. Journal of Applied Physics, 2015, 117, .	1.1	47
729	Understanding emergent functions in self-assembled fibrous networks. Nanotechnology, 2015, 26, 352501.	1.3	0
730	In-plane stiffness of the anisotropic multifunctional hierarchical honeycombs. Composite Structures, 2015, 131, 616-624.	3.1	53
731	Highâ€Performance TiO ₂ Nanoparticle/DOPAâ€Polymer Composites. Macromolecular Rapid Communications, 2015, 36, 1129-1137.	2.0	14
732	Cement-based composites reinforced with localized and magnetically oriented Al2O3 microplatelets. Cement and Concrete Research, 2015, 78, 245-251.	4.6	11
733	Characterizing moisture-dependent mechanical properties of organic materials: humidity-controlled static and dynamic nanoindentation of wood cell walls. Philosophical Magazine, 2015, 95, 1992-1998.	0.7	27
734	Matriarch: A Python Library for Materials Architecture. ACS Biomaterials Science and Engineering, 2015, 1, 1009-1015.	2.6	12
735	Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nature Nanotechnology, 2015, 10, 1077-1083.	15.6	310
736	Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions. Journal of Chemical Physics, 2015, 143, 064904.	1.2	38
737	Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proceedings of the United States of America, 2015, 112, 12321-12326.	3.3	435
738	Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nature Communications, 2015, 6, 8127.	5.8	93
739	Silk–Its Mysteries, How It Is Made, and How It Is Used. ACS Biomaterials Science and Engineering, 2015, 1, 864-876.	2.6	85
740	Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences of America, 2015, 112, 11502-11507.	3.3	496

#	Article	IF	CITATIONS
741	Injection-molded hydroxyapatite/polyethylene bone-analogue biocomposites via structure manipulation. Journal of Materials Chemistry B, 2015, 3, 7585-7593.	2.9	11
742	Physical properties of continuous matrix of porous natural hydroxyapatite related to the pyrolysis temperature of animal bones precursors. Journal of Analytical and Applied Pyrolysis, 2015, 116, 202-214.	2.6	22
743	Extra dimension for bone analysis. Nature, 2015, 527, 308-309.	13.7	12
744	Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography. Nature, 2015, 527, 349-352.	13.7	170
745	Teleost fish scales amongst the toughest collagenous materials. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 52, 95-107.	1.5	67
746	Electrochromic properties of self-organized multifunctional V ₂ O ₅ –polymer hybrid films. Journal of Materials Chemistry C, 2015, 3, 950-954.	2.7	26
747	The past, present and future in scaffold-based tendon treatments. Advanced Drug Delivery Reviews, 2015, 84, 257-277.	6.6	171
748	Bio-inspired hierarchical design of composite T-joints with improved structural properties. Composites Part B: Engineering, 2015, 69, 222-231.	5.9	46
749	Molecular deformation mechanisms of the wood cell wall material. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42, 198-206.	1.5	82
750	Imaging collagen type I fibrillogenesis with high spatiotemporal resolution. Ultramicroscopy, 2015, 149, 86-94.	0.8	24
751	Strength and toughness of bio-fusion materials. Polymer Journal, 2015, 47, 99-105.	1.3	0
752	Poromechanical modeling of moisture induced swelling anisotropy in cellular tissues of softwoods. RSC Advances, 2015, 5, 3560-3566.	1.7	8
753	Antifouling Surfaces and Materials. , 2015, , .		19
754	The influence of yield surface shape and damage in the depth-dependent response of bone tissue to nanoindentation using spherical and Berkovich indenters. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 492-505.	0.9	21
755	Bioinspired Polymeric Nanocomposites for Regenerative Medicine. Macromolecular Chemistry and Physics, 2015, 216, 248-264.	1.1	123
756	The 3D structure of the collagen fibril network in human trabecular bone: Relation to trabecular organization. Bone, 2015, 71, 189-195.	1.4	63
757	Multiscale Modeling in Biomechanics and Mechanobiology. , 2015, , .		14
759	Elastic Modulus of Mechanical Model for Mineralized Collagen Fibrils. Journal of Hard Tissue Biology, 2016, 25, 75-80.	0.2	3

		CITATION REPORT	
#	Article	IF	Citations
760	Laser surface modification and the tissue $\hat{a} \in \hat{a}$ implant interface. , 2016, , 253-280.		4
761	Post-yield and failure properties of cortical bone. BoneKEy Reports, 2016, 5, 829.	2.7	63
762	Collagen. , 2016, , .		2
763	Nature-Inspired Nanotechnology and Smart Magnetic Activation: Two Groundbreaking Approaches Toward a New Generation of Biomaterials for Hard Tissue Regeneration. , 2016, , .		3
764	Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone Remodelling. Advances in Materials Science and Engineering, 2016, 2016, 1-10.	1.0	4
765	Biological Structures: Failure of Bone and Teeth. , 2016, , .		Ο
766	Fabrication of Custom Pattern Reinforced AZ31 Multilayer Composite Using Ultrasonic Spray Deposition. , 2016, , .		0
767	Biomaterial Wood: Wood-Based and Bioinspired Materials. , 2016, , 259-281.		6
768	Drug-Delivery Applications ofÂCellulose Nanofibrils. , 2016, , 95-117.		3
769	Cocowood Fibrovascular Tissue System—Another Wonder of Plant Evolution. Frontiers in Plant Science, 2016, 7, 1141.	1.7	5
770	Laser surface modification of biological hard tissues. , 2016, , 221-251.		1
771	A Sinusoidally Architected Helicoidal Biocomposite. Advanced Materials, 2016, 28, 6835-6844.	11.1	158
772	Smart Hierarchical Bioâ€Based Materials by Formation of Stimuliâ€Responsive Hydrogels inside the Microporous Structure of Wood. Advanced Materials Interfaces, 2016, 3, 1600233.	1.9	50
773	Ein einfacher Zugang zu funktionalen Mustern auf Cellulosepapier durch Kombination von Laserdruck und materialspezifischer Peptidadsorption. Angewandte Chemie, 2016, 128, 11435-114	40. ^{1.6}	7
774	Easy Access to Functional Patterns on Cellulose Paper by Combining Laser Printing and Materialâ€ 5 pecific Peptide Adsorption. Angewandte Chemie - International Edition, 2016, 55, 11266	5-11270. 7.2	41
775	Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspiration and Biomimetics, 2016, 11, 035004.	1.5	18
776	Gas barrier properties of bio-inspired Laponite–LC polymer hybrid films. Bioinspiration and Biomimetics, 2016, 11, 035005.	1.5	7
777	Boneâ€Inspired Materials by Design: Toughness Amplification Observed Using 3D Printing and Testi Advanced Engineering Materials, 2016, 18, 1354-1363.	ng. 1.6	138

ARTICLE IF CITATIONS Biomimetic Design Method for Innovation and Sustainability., 2016,,. 778 44 Self-healing Materials. Advances in Polymer Science, 2016, , . 779 0.4 54 Experimental validation of a nonlinear $\langle i \rangle \hat{l} / 4 \langle l \rangle$ FE model based on cohesive $\hat{a} \in \mathbf{f}$ rictional plasticity for 780 trabecular bone. International Journal for Numerical Methods in Biomedical Engineering, 2016, 32, 1.0 36 e02739. Inherent Role of Water in Damage Tolerance of the Prismatic Mineral–Organic Biocomposite in the Shell of <i>Pinna Nobilis</i>. Advanced Functional Materials, 2016, 26, 3663-3669. Biomimetic Nanostructured Interfaces for Hierarchical Composites. Advanced Materials Interfaces, 782 1.9 26 2016, 3, 1500404. Microcontact Printing., 2016, , 2157-2167. 3D Printing of Hierarchical Silk Fibroin Structures. ACS Applied Materials & amp; Interfaces, 2016, 8, 784 4.0 71 34677-34685. Mechanical Properties of Nanostructures., 2016, , 1937-1946. 785 European Society of Biomechanics S.M. Perren Award 2016: A statistical damage model for bone tissue 786 0.9 11 based on distinct compressive and tensile cracks. Journal of Biomechanics, 2016, 49, 3616-3625. MEMS on Flexible Substrates., 2016, , 2010-2019. 788 Magnetron Sputtering., 2016, , 1903-1903. 0 Micro-/Nanostructured Icephobic Materials., 2016, , 2125-2128. 789 Function by internal structure–preface to the special issue on bioinspired hierarchical materials. 791 1.5 9 Bioinspiration and Biomimetics, 2016, 11, 060301. Sugary interfaces mitigate contact damage where stiff meets soft. Nature Communications, 2016, 7, 11923. 792 5.8 Insights from the Plant World: A Fractal Analysis Approach to Tune Mechanical Rigidity of 793 0.3 0 Scaffolding Matrix in Thin Films. Advanced Materials Research, 0, 1141, 57-64. Biomimetic Flow Sensors., 2016, , 309-322. 794 795 Microbial Fuel Cell., 2016, , 2137-2137. 0 Multilamellar Vesicle (MLV)., 2016, , 2285-2285.

#	Article	IF	CITATIONS
797	MEMS Resonant Infrared Detectors. , 2016, , 2028-2028.		0
798	Models for Tumor Growth. , 2016, , 2244-2254.		0
799	The biomechanics of seed germination. Journal of Experimental Botany, 2017, 68, erw428.	2.4	124
800	Modification of Carbon Nanotubes. , 2016, , 2254-2254.		0
801	Passive and active mechanical properties of biotemplated ceramics revisited. Bioinspiration and Biomimetics, 2016, 11, 065001.	1.5	6
802	Supracolloidal reconfigurable polyhedra via hierarchical self-assembly. Soft Matter, 2016, 12, 9633-9640.	1.2	9
803	Correlative multiscale tomography of biological materials. MRS Bulletin, 2016, 41, 549-556.	1.7	19
804	Protein viscosity, mineral fraction and staggered architecture cooperatively enable the fastest stress wave decay in load-bearing biological materials. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 339-355.	1.5	23
805	Preparation of biomorphic porous zinc oxide by wood template method. Ceramics International, 2016, 42, 10704-10710.	2.3	21
807	3D printed bionic nanodevices. Nano Today, 2016, 11, 330-350.	6.2	116
808	Self-assembled hierarchically structured organic–inorganic composite systems. Bioinspiration and Biomimetics, 2016, 11, 035002.	1.5	14
809	Fracture toughness enhancement of brittle nanostructured materials by spatial heterogeneity: A micromechanical proof for CrN/Cr and TiN/SiOx multilayers. Materials and Design, 2016, 104, 227-234.	3.3	60
810	Gradual conversion of cellular stress patterns into pre-stressed matrix architecture during <i>in vitro</i> tissue growth. Journal of the Royal Society Interface, 2016, 13, 20160136.	1.5	37
811	A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Materials Science and Engineering C, 2016, 67, 599-610.	3.8	77
812	A New Wrinkle in Biosensors: Wrinkled electrodes could be a breakthrough for lab-on-a-chip devices. IEEE Nanotechnology Magazine, 2016, 10, 6-18.	0.9	8
813	Micro architected porous material with high strength and controllable stiffness. , 2016, , .		0
814	AFM-based mechanical characterization of single nanofibres. Nanoscale, 2016, 8, 8414-8426.	2.8	49
815	Hierarchically Structured Nanomaterials for Electrochemical Energy Conversion. Angewandte Chemie - International Edition, 2016, 55, 122-148.	7.2	207

#	Article	IF	CITATIONS
816	Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. New Journal of Chemistry, 2016, 40, 4016-4026.	1.4	57
817	Strong and Tough Layered Nanocomposites with Buried Interfaces. ACS Nano, 2016, 10, 4816-4827.	7.3	62
818	Roadmap across the mesoscale for durable and sustainable cement paste – A bioinspired approach. Construction and Building Materials, 2016, 115, 13-31.	3.2	39
819	Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone, 2016, 93, 196-211.	1.4	207
820	Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomaterials Research, 2016, 20, 10.	3.2	54
821	Nanoscale bioactive glass activates osteoclastic differentiation of RAW 264.7 cells. Nanomedicine, 2016, 11, 1093-1105.	1.7	15
822	Tuning hardness in calcite by incorporation of amino acids. Nature Materials, 2016, 15, 903-910.	13.3	183
823	<i>In Situ</i> Formation of Nanohybrid Shish-Kebabs during Electrospinning for the Creation of Hierarchical Shish-Kebab Structures. Macromolecules, 2016, 49, 3550-3558.	2.2	43
824	Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine. , 2016, , 119-144.		4
825	Tensile versus AFM testing of electrospun PVA nanofibers: Bridging the gap from Microscale to nanoscale. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2418-2424.	2.4	10
826	An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 25152-25161.	4.0	19
827	Hierarchical Assembly of Cylindrical Block Comicelles Mediated by Spatially Confined Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2016, 138, 12902-12912.	6.6	62
828	3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics. Advanced Materials, 2016, 28, 9993-9999.	11.1	373
829	The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11717-11725.	3.3	75
830	Protein-based Engineered Nanostructures. Advances in Experimental Medicine and Biology, 2016, , .	0.8	13
831	Natural Composite Systems for Bioinspired Materials. Advances in Experimental Medicine and Biology, 2016, 940, 143-166.	0.8	7
832	Fast-condensing nanofoams: Suppressing localization of intense stress waves. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 450-462.	2.6	4
833	Insights to regenerate materials: learning from nature. Smart Materials and Structures, 2016, 25, 084001.	1.8	1

#	Article	IF	CITATIONS
834	Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. Bioinspiration and Biomimetics, 2016, 11, 055006.	1.5	35
835	Great apes anticipate that other individuals will act according to false beliefs. Science, 2016, 354, 110-114.	6.0	494
836	Octocoral <i>Sarcophyton auritum</i> Verseveldt & Benayahu, 1978: Microanatomy and Presence of Collagen Fibers. Biological Bulletin, 2016, 230, 68-77.	0.7	7
838	Cooperative behavior of a sacrificial bond network and elastic framework in providing self-healing capacity in mussel byssal threads. Journal of Structural Biology, 2016, 196, 329-339.	1.3	54
839	Mechanical behavior of enamel rods under micro-compression. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 183-194.	1.5	13
840	Macromolecular recognition directs calcium ions to coccolith mineralization sites. Science, 2016, 353, 590-593.	6.0	86
841	Shaping it up. , 2016, , 3-50.		1
842	Enhanced protective role in materials with gradient structural orientations: Lessons from Nature. Acta Biomaterialia, 2016, 44, 31-40.	4.1	73
843	Effects of Ti5Si3 characteristics adjustment on microstructure and tensile properties of in-situ (Ti5Si3+TiBw)/Ti6Al4V composites with two-scale network architecture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 595-605.	2.6	56
844	Macromolecular Decoration of Nanoparticles for Guiding Self&;#x02010;Assembly in 2D and 3D. , 0, , 159-192.		7
845	Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Materials and Design, 2016, 110, 705-719.	3.3	176
846	Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate. Chemistry - A European Journal, 2016, 22, 12347-12357.	1.7	51
847	Patterns of activity adaptation in humeral trabecular bone in Neolithic humans and presentâ€day people. American Journal of Physical Anthropology, 2016, 159, 106-115.	2.1	46
848	Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content. Journal of Bone and Mineral Research, 2016, 31, 380-390.	3.1	58
850	Nano-Apatites with Designed Chemistry and Crystallinity for Bone Regeneration and Nanomedical Applications. , 2016, , 61-98.		1
851	A perspective on structural and computational work on collagen. Physical Chemistry Chemical Physics, 2016, 18, 24802-24811.	1.3	30
852	Supramolecular Nanotube of Chaperonin GroEL: Length Control for Cellular Uptake Using Single-Ring GroEL Mutant as End-Capper. Journal of the American Chemical Society, 2016, 138, 11152-11155.	6.6	28
854	Cortical Bone as a Biomimetic Model for the Design of New Composites. Procedia Structural Integrity, 2016, 2, 1319-1326.	0.3	10

	CITATION	N REPORT	
#	Article	IF	CITATIONS
855	Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354, 107-110.	6.0	706
856	Hierarchical Structure of the Derma Affected by Chemical Treatment and Filling with Bentonite: Diagnostics with a Method of Standard Contact Porosimetry. Springer Proceedings in Physics, 2016, , 277-290.	0.1	3
857	Solving conflicting functional requirements by hierarchical structuring—Examples from biological materials. MRS Bulletin, 2016, 41, 667-671.	1.7	24
858	Hierarchical lightweight composite materials for structural applications. MRS Bulletin, 2016, 41, 672-677.	1.7	40
859	Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion. Scientific Reports, 2016, 6, 26590.	1.6	34
860	Fracture toughness anomalies: Viewpoint of topological constraint theory. Acta Materialia, 2016, 121, 234-239.	3.8	84
861	Characteristic lengths in natural bundle assemblies arising from fiber-matrix energy competition: A floquet-based homogenization theory. European Journal of Mechanics, A/Solids, 2016, 60, 145-165.	2.1	4
862	Nanocomposites: an overview. Emerging Materials Research, 2016, 5, 5-43.	0.4	26
863	Light-Adaptive Supramolecular Nacre-Mimetic Nanocomposites. Nano Letters, 2016, 16, 5176-5182.	4.5	42
864	Preparation of TiO2 microspheres with flower-like morphology through a water-in-oil emulsion route assisted by solvothermal treatment. Particuology, 2016, 29, 172-176.	2.0	1
865	Bio-inspired heterogeneous composites for broadband vibration mitigation. Scientific Reports, 2016, 5, 17865.	1.6	59
866	Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6362-E6371.	3.3	57
867	Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles. Nature Communications, 2016, 7, 12371.	5.8	43
868	Biologically Inspired Nanomaterials and Nanobiomagnetism: A Synergy among New Emerging Concepts in Regenerative Medicine. , 2016, , 1-20.		1
869	A materials science vision of extracellular matrix mineralization. Nature Reviews Materials, 2016, 1, .	23.3	148
870	Structure and mechanics of interfaces in biological materials. Nature Reviews Materials, 2016, 1, .	23.3	486
871	Fabrication of Metal Laminate Composites with Interface Reinforcement by Semi-Solid Sintering. Solid State Phenomena, 2016, 256, 205-215.	0.3	0
872	Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone. ACS Applied Materials & Interfaces, 2016, 8, 29997-30004.	4.0	25

#	Article	IF	CITATIONS
873	Theory and Simulation of Cholesteric Film Formation Flows of Dilute Collagen Solutions. Langmuir, 2016, 32, 11799-11812.	1.6	19
874	Impact resistance of oil-immersed lignum vitae. Scientific Reports, 2016, 6, 30090.	1.6	12
875	Influence of water and oil immersion on the tribological properties of Excentrodendron hsienmu. Science China Technological Sciences, 2016, 59, 1673-1679.	2.0	5
876	Continuum damage modeling and simulation of hierarchical dental enamel. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 045014.	0.8	19
877	Synthetic Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023929.	2.3	84
878	The Orientation of Nanoscale Apatite Platelets in Relation to Osteoblastic–Osteocyte Lacunae on Trabecular Bone Surface. Calcified Tissue International, 2016, 98, 193-205.	1.5	32
879	Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62, 515-533.	1.5	12
880	Vibrations and spatial patterns in biomimetic surfaces: using the shark-skin effect to control blood clotting. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160133.	1.6	17
881	Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix. International Journal of Biological Macromolecules, 2016, 88, 179-188.	3.6	50
882	Effects of high-dose gamma irradiation on tensile properties of human cortical bone: Comparison of different radioprotective treatment methods. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 475-483.	1.5	4
883	Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs. Composite Structures, 2016, 144, 1-13.	3.1	153
884	Exploring biomass deconstruction by phase-contrast tomography. Industrial Crops and Products, 2016, 86, 289-294.	2.5	4
885	Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation. Analytical Chemistry, 2016, 88, 3826-3835.	3.2	18
886	Property and Shape Modulation of Carbon Fibers Using Lasers. ACS Applied Materials & Interfaces, 2016, 8, 16351-16358.	4.0	10
887	Stress-shielding, growth and remodeling of pulmonary artery reinforced with copolymer scaffold and transposed into aortic position. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1141-1157.	1.4	37
888	Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. Biomacromolecules, 2016, 17, 2417-2426.	2.6	49
889	Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells. Acta Biomaterialia, 2016, 31, 33-49.	4.1	16
890	Structural studies of hydrated samples of amorphous calcium phosphate and phosphoprotein nanoclusters. European Biophysics Journal, 2016, 45, 405-412.	1.2	12

#	Article	IF	CITATIONS
891	A Hierarchical Self-Assembly System Built Up from Preorganized Tripodal Helical Metal Complexes. Journal of the American Chemical Society, 2016, 138, 794-797.	6.6	47
892	3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomaterialia, 2016, 30, 357-367.	4.1	163
893	Additive manufacturing of biologically-inspired materials. Chemical Society Reviews, 2016, 45, 359-376.	18.7	344
894	Investigating fracture of nanoscale metal–ceramic multilayers in the transmission electron microscope. Scripta Materialia, 2016, 115, 42-45.	2.6	16
895	Design of aerogels, cryogels and xerogels of cellulose with hierarchical porous structures. Materials and Design, 2016, 92, 345-355.	3.3	99
896	The new frontiers in computational modeling of material structures. CAD Computer Aided Design, 2016, 77, 73-85.	1.4	44
897	Mineralization of wood by calcium carbonate insertion for improved flame retardancy. Holzforschung, 2016, 70, 867-876.	0.9	81
898	Micromechanical design of hierarchical composites using global load sharing theory. Journal of the Mechanics and Physics of Solids, 2016, 90, 1-17.	2.3	11
899	Bionanocomposite from self-assembled building blocks of nacre-like crystalline polymorph of chitosan with clay nanoplatelets. RSC Advances, 2016, 6, 33501-33509.	1.7	12
900	Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renewable and Sustainable Energy Reviews, 2016, 60, 394-407.	8.2	220
901	Can tailored non-linearity of hierarchical structures inform future material development?. Extreme Mechanics Letters, 2016, 7, 1-9.	2.0	6
902	Modelling of bone fracture and strength at different length scales: a review. Interface Focus, 2016, 6, 20150055.	1.5	98
903	Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanicalÂproperties. Nature Materials, 2016, 15, 522-528.	13.3	140
904	Approaching theoretical strength in glassy carbonÂnanolattices. Nature Materials, 2016, 15, 438-443.	13.3	488
905	Mechanics of filled cellular materials. Mechanics of Materials, 2016, 97, 26-47.	1.7	6
906	Condensation on slippery asymmetric bumps. Nature, 2016, 531, 78-82.	13.7	656
907	Low-Cost and Effective Fabrication of Biocompatible Nanofibers from Silk and Cellulose-Rich Materials. ACS Biomaterials Science and Engineering, 2016, 2, 526-534.	2.6	34
908	Confluent 3D-assembly of fibrous structures. Composites Science and Technology, 2016, 127, 95-105.	3.8	24

#	Article	IF	CITATIONS
909	In-plane crushing of a hierarchical honeycomb. International Journal of Solids and Structures, 2016, 85-86, 57-66.	1.3	111
910	Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach. Theoretical and Applied Mechanics Letters, 2016, 6, 81-96.	1.3	249
911	Calcium phosphates in biomedical applications: materials for the future?. Materials Today, 2016, 19, 69-87.	8.3	642
912	Water-assisted self-healing and property recovery in a natural dermal armor of pangolin scales. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 14-22.	1.5	20
913	3D metallic glass cellular structures. Acta Materialia, 2016, 105, 35-43.	3.8	69
914	Structural Description of the Interface of Pickering Emulsions Stabilized by Cellulose Nanocrystals. Biomacromolecules, 2016, 17, 496-502.	2.6	203
915	Emerging Approaches in Synchrotron Studies of Materials from Cultural and Natural History Collections. Topics in Current Chemistry, 2016, 374, 7.	3.0	17
916	Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis. Bone, 2016, 84, 15-24.	1.4	40
917	Calcium orthophosphates (CaPO4): occurrence and properties. Progress in Biomaterials, 2016, 5, 9-70.	1.8	171
918	Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. Journal of Archaeological Science, 2016, 65, 1-10.	1.2	29
919	A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56, 57-67.	1.5	57
920	The mechanics of tessellations – bioinspired strategies for fracture resistance. Chemical Society Reviews, 2016, 45, 252-267.	18.7	139
921	Ecotribology: Development, Prospects, and Challenges. Materials Forming, Machining and Tribology, 2016, , 1-39.	0.7	2
922	Label-free mapping of microstructural organisation in self-aligning cellular collagen hydrogels using image correlation spectroscopy. Acta Biomaterialia, 2016, 30, 258-264.	4.1	12
923	Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45, 3353-3376.	18.7	463
924	The springtail cuticle as a blueprint for omniphobic surfaces. Chemical Society Reviews, 2016, 45, 323-341.	18.7	191
925	Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid distillate. Arabian Journal of Chemistry, 2016, 9, 179-189.	2.3	63
926	Large deformability derived from a cell–cell slip mechanism in intercellular regions of solid wood. Acta Mechanica, 2017, 228, 2751-2758.	1.1	4

#	Article	IF	CITATIONS
927	Collagen Cross-Linking: Biophysical, Biochemical, and Biological Response Analysis. Tissue Engineering - Part A, 2017, 23, 1064-1077.	1.6	64
928	Intrinsic material property differences in bone tissue from patients suffering low-trauma osteoporotic fractures, compared to matched non-fracturing women. Bone, 2017, 97, 233-242.	1.4	24
929	Colloidal processing: enabling complex shaped ceramics with unique multiscale structures. Journal of the American Ceramic Society, 2017, 100, 458-490.	1.9	119
930	Hierarchical Spring-Block Model for Multiscale Friction Problems. ACS Biomaterials Science and Engineering, 2017, 3, 2845-2852.	2.6	13
931	Combined Experimental and Theoretical Approach to the Kinetics of Magnetite Crystal Growth from Primary Particles. Journal of Physical Chemistry Letters, 2017, 8, 1132-1136.	2.1	17
932	Advanced Structural Materials by Bioinspiration. Advanced Engineering Materials, 2017, 19, 1600787.	1.6	103
933	Drying-Induced Self-Similar Assembly of Megamolecular Polysaccharides through Nano and Submicron Layering. Langmuir, 2017, 33, 4954-4959.	1.6	17
934	Engineering strategies for chitin nanofibers. Journal of Materials Chemistry B, 2017, 5, 2547-2559.	2.9	78
935	Bionic building energy efficiency and bionic green architecture: A review. Renewable and Sustainable Energy Reviews, 2017, 74, 771-787.	8.2	64
936	Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science, 2017, 355, 1055-1057.	6.0	297
937	Nature-inspired design of strong, tough glass-ceramics. MRS Bulletin, 2017, 42, 220-225.	1.7	42
938	Multi-scale simulations of apatite–collagen composites: from molecules to materials. Frontiers of Materials Science, 2017, 11, 1-12.	1.1	7
939	Lessons from tooth enamel. Nature, 2017, 543, 42-43.	13.7	11
940	Architected cellular ceramics with tailored stiffness via direct foam writing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1832-1837.	3.3	187
0.41			
941	Finding local order in cellular systems. New Journal of Physics, 2017, 19, 011002.	1.2	0
941 942	Finding local order in cellular systems. New Journal of Physics, 2017, 19, 011002. Design of Hierarchical Structures for Synchronized Deformations. Scientific Reports, 2017, 7, 41183.	1.2 1.6	0

#	Article	IF	CITATIONS
945	Enhancing wood resistance to humidity with nanostructured ZnO coatings. Nano Structures Nano Objects, 2017, 10, 57-68.	1.9	22
946	Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. Journal of Materials Chemistry A, 2017, 5, 16003-16024.	5.2	237
947	Modeling porous structures with fractal rough topography based on triply periodic minimal surface for additive manufacturing. Rapid Prototyping Journal, 2017, 23, 257-272.	1.6	10
948	Enhanced resistance of nanocellular silica to dynamic indentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 693, 121-128.	2.6	0
949	Mimicking the loading adaptation of bone microstructure with aluminum foams. Materials and Design, 2017, 126, 207-218.	3.3	23
950	Lightâ€Fueled, Spatiotemporal Modulation of Mechanical Properties and Rapid Selfâ€Healing of Grapheneâ€Doped Supramolecular Elastomers. Advanced Functional Materials, 2017, 27, 1700767.	7.8	55
951	Lamellar Ceramic Semicrystallineâ€Polymer Composite Fabricated by Freeze Casting. Advanced Engineering Materials, 2017, 19, 1700214.	1.6	8
952	Re-entrant inclusions in cellular solids: From defects to reinforcements. Composite Structures, 2017, 176, 195-204.	3.1	20
953	A finite strain integral-type anisotropic damage model for fiber-reinforced materials: Application in soft biological tissues. Computer Methods in Applied Mechanics and Engineering, 2017, 322, 262-295.	3.4	21
954	High surface area biopolymeric-ceramic scaffolds for hard tissue engineering. Biomedical Physics and Engineering Express, 2017, 3, 035012.	0.6	13
955	Multiscale Modeling of Muscular-Skeletal Systems. Annual Review of Biomedical Engineering, 2017, 19, 435-457.	5.7	32
956	Preparation of magnesium oxide and magnesium silicate replicas retaining the hierarchical structure of pine wood. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 341-349.	0.3	3
957	Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 2017, 88, 467-498.	16.0	554
958	Spinning Hierarchical Gold Nanowire Microfibers by Shear Alignment and Intermolecular Self-Assembly. ACS Nano, 2017, 11, 4934-4942.	7.3	34
959	Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition. ACS Nano, 2017, 11, 478-489.	7.3	54
960	Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 2017, 46, 481-558.	18.7	1,030
961	Multilevel hierarchical structures of double-network polymers in a dried state. Polymer, 2017, 108, 493-501.	1.8	2
962	Analyzing the Heterogeneous Hierarchy of Cultural Heritage Materials: Analytical Imaging. Annual Review of Analytical Chemistry, 2017, 10, 247-270.	2.8	13

#	Article	IF	CITATIONS
963	Mechanical energy dissipation in natural ceramic composites. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 21-29.	1.5	14
964	Bone tissue regenerative medicine via bioactive nanomaterials. , 2017, , 769-792.		3
965	Functional Adaptation of the Calcaneus in Historical Foot Binding. Journal of Bone and Mineral Research, 2017, 32, 1915-1925.	3.1	15
966	Composition dependent Equation of State of cellulose based plant tissues in the presence of electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 314-322.	2.3	1
967	Preparation of biomimetic hierarchically helical fiber actuators from carbon nanotubes. Nature Protocols, 2017, 12, 1349-1358.	5.5	48
968	MicroCT-based finite element models as a tool for virtual testing of cortical bone. Medical Engineering and Physics, 2017, 46, 12-20.	0.8	18
969	A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering. Materials Science and Engineering C, 2017, 80, 232-242.	3.8	65
970	"Toward seashells under stress†Bioinspired concepts to design tough layered ceramic composites. Journal of the European Ceramic Society, 2017, 37, 3823-3839.	2.8	27
971	Mechanical properties of crossed-lamellar structures in biological shells: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 54-71.	1.5	87
972	Selective functionalization of laser printout patterns on cellulose paper sheets coated with surface-specific peptides. Journal of Materials Chemistry A, 2017, 5, 16144-16149.	5.2	11
973	Nanostructured raspberry-like gelatin microspheres for local delivery of multiple biomolecules. Acta Biomaterialia, 2017, 58, 67-79.	4.1	19
974	Thermodynamic Aspects of Molluscan Shell Ultrastructural Morphogenesis. Advanced Functional Materials, 2017, 27, 1700506.	7.8	27
975	Twisting cracks in Bouligand structures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 38-57.	1.5	181
976	Bone grafts and biomaterials substitutes for bone defect repair: AÂreview. Bioactive Materials, 2017, 2, 224-247.	8.6	1,176
977	Virus-directed formation of electrocatalytically active nanoparticle-based Co ₃ O ₄ tubes. Nanoscale, 2017, 9, 6334-6345.	2.8	44
978	Rhubarb petioles inspire biodegradable cellulose fibre-reinforced PLA composites with increased impact strength. Composites Part A: Applied Science and Manufacturing, 2017, 98, 218-226.	3.8	20
980	Programmable snapping composites with bio-inspired architecture. Bioinspiration and Biomimetics, 2017, 12, 026012.	1.5	33
981	Ferroelectric glass-ceramics. MRS Bulletin, 2017, 42, 213-219.	1.7	18

#	Article	IF	CITATIONS
982	Nanostructure of Lignocellulose and Its Importance for Biomass Conversion into Chemicals and Biofuels. , 2017, , 21-38.		0
983	Nano-scale modulus mapping of biological composite materials: Theory and practice. Progress in Materials Science, 2017, 87, 292-320.	16.0	41
984	Computational modeling of interfacial behaviors in nanocomposite materials. International Journal of Solids and Structures, 2017, 115-116, 43-52.	1.3	10
985	Compartmentalized Spherical Collagen Microparticles for Anisotropic Cell Culture Microenvironments. Advanced Healthcare Materials, 2017, 6, 1601463.	3.9	29
986	Geologically-inspired strong bulk ceramics made with water at room temperature. Nature Communications, 2017, 8, 14655.	5.8	138
987	Hierarchical Architectures to Enhance Structural and Functional Properties of Brittle Materials. Advanced Engineering Materials, 2017, 19, 1600683.	1.6	10
988	Multiscale Analysis of Mineralized Collagen Combining X-ray Scattering and Fluorescence with Raman Spectroscopy under Controlled Mechanical, Thermal, and Humidity Environments. ACS Biomaterials Science and Engineering, 2017, 3, 2853-2859.	2.6	4
989	The influence of the hybridisation configuration on the mechanical properties of hybrid self reinforced polyamide 12/carbon fibre composites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 141-151.	3.8	21
990	Staggered Fibrils and Damageable Interfaces Lead Concurrently and Independently to Hysteretic Energy Absorption and Inhomogeneous Strain Fields in Cyclically Loaded Antler Bone. ACS Biomaterials Science and Engineering, 2017, 3, 2779-2787.	2.6	28
991	LINEAR ELECTROMAGNETIC ARRAY ARTIFICIAL MUSCLE DESIGN AND SIMULATION FOR A QUADRUPED ROBOT. Journal of Mechanics in Medicine and Biology, 2017, 17, 1740020.	0.3	1
992	Anisotropic Growth of Hydroxyapatite in Stretched Double Network Hydrogel. ACS Nano, 2017, 11, 12103-12110.	7.3	41
993	Structure and rheology of dual-associative protein hydrogels under nonlinear shear flow. Soft Matter, 2017, 13, 8511-8524.	1.2	9
994	Next generation tissue engineering of orthopedic soft tissue-to-bone interfaces. MRS Communications, 2017, 7, 289-308.	0.8	43
995	Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures. Advanced Materials, 2017, 29, 1703045.	11.1	266
996	Wood Composites with Wettability Patterns Prepared by Controlled and Selective Chemical Modification of a Three-Dimensional Wood Scaffold. ACS Sustainable Chemistry and Engineering, 2017, 5, 11686-11694.	3.2	8
997	Correlative Tomography for Additive Manufacturing of Biomedical Implants. Microscopy and Microanalysis, 2017, 23, 342-343.	0.2	4
998	Morphogenesis of Biomineralized Calcitic Prismatic Tissue in Mollusca Fully Described by Classical Hierarchical Grain Boundary Motion. Crystal Growth and Design, 2017, 17, 5023-5027.	1.4	12
999	Setting Directions: Anisotropy in Hierarchically Organized Porous Silica. Chemistry of Materials, 2017, 29, 7969-7975.	3.2	16

#	Article	IF	CITATIONS
1000	Bone Material Quality. Learning Materials in Biosciences, 2017, , 1-15.	0.2	1
1001	Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication. Nature Communications, 2017, 8, 14539.	5.8	148
1002	Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry. Scientific Reports, 2017, 7, 11844.	1.6	41
1003	3D printed stretching-dominated micro-trusses. Materials and Design, 2017, 134, 272-280.	3.3	94
1004	Mass production of bulk artificial nacre with excellent mechanical properties. Nature Communications, 2017, 8, 287.	5.8	293
1005	Nanolattices: An Emerging Class of Mechanical Metamaterials. Advanced Materials, 2017, 29, 1701850.	11.1	356
1006	New insights and perspectives into biological materials for flexible electronics. Chemical Society Reviews, 2017, 46, 6764-6815.	18.7	322
1007	Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Developmental Biology, 2017, 428, 283-292.	0.9	52
1008	Nano-scaled Ti 5 Si 3 evolution and Strength Enhancement of titanium matrix composites with two-scale architecture via heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 359-369.	2.6	49
1009	Using oxidized amylose as carrier of linalool for the development of antibacterial wound dressing. Carbohydrate Polymers, 2017, 174, 1095-1105.	5.1	35
1010	Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomaterialia, 2017, 60, 302-314.	4.1	58
1011	3D-printing a â€~family' of biomimetic models to explain armored grasping in syngnathid fishes. Bioinspiration and Biomimetics, 2017, 12, 066007.	1.5	9
1012	A straightforward thiol–ene click reaction to modify lignocellulosic scaffolds in water. Green Chemistry, 2017, 19, 4017-4022.	4.6	18
1013	Nanoporous Metals with Structural Hierarchy: A Review. Advanced Engineering Materials, 2017, 19, 1700389.	1.6	103
1014	Three-Dimensional-Moldable Nanofiber-Reinforced Transparent Composites with a Hierarchically Self-Assembled "Reverse―Nacre-like Architecture. ACS Applied Materials & Interfaces, 2017, 9, 30177-30184.	4.0	35
1015	Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy. Science, 2017, 358, 1294-1298.	6.0	97
1016	Coherent nanoparticles in calcite. Science, 2017, 358, 1254-1255.	6.0	10
1017	Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2017, 9, 42797-42805.	4.0	92

#	Article	IF	CITATIONS
1018	Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Science Robotics, 2017, 2, .	9.9	594
1019	Quantification of stiffness measurement errors in resonant ultrasound spectroscopy of human cortical bone. Journal of the Acoustical Society of America, 2017, 142, 2755-2765.	0.5	17
1020	Solid-State NMR Spectroscopy: The Magic Wand to View Bone at Nanoscopic Resolution. Annual Reports on NMR Spectroscopy, 2017, 92, 365-413.	0.7	17
1021	Bio-inspired synthetic approaches: from hierarchical, hybrid supramolecular assemblies to CaCO3-based microspheres. Dalton Transactions, 2017, 46, 6456-6463.	1.6	5
1022	Synergistic Reinforcing Mechanisms in Cellulose Nanofibrils Composite Hydrogels: Interfacial Dynamics, Energy Dissipation, and Damage Resistance. Biomacromolecules, 2017, 18, 2623-2632.	2.6	60
1023	Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics. ACS Applied Materials & Interfaces, 2017, 9, 24161-24168.	4.0	42
1024	Bioinspired Multifunctional Ceramic Plateletâ€Reinforced Piezoelectric Polymer Composite. Advanced Engineering Materials, 2017, 19, 1600570.	1.6	11
1025	The synergic role of collagen and citrate in stabilizing amorphous calcium phosphate precursors with platy morphology. Acta Biomaterialia, 2017, 49, 555-562.	4.1	41
1026	The processing of optically active functional hierarchical nanoparticles. Advanced Powder Technology, 2017, 28, 3-22.	2.0	14
1027	Vertically oriented structure and its fracture behavior of the Indonesia white-pearl oyster. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 211-223.	1.5	19
1028	Crack propagation in staggered structures of biological and biomimetic composites. Computational Materials Science, 2017, 126, 238-243.	1.4	13
1029	Insight into the collagen assembly in the presence of lysine and glutamic acid: An in vitro study. Materials Science and Engineering C, 2017, 70, 689-700.	3.8	35
1030	Cohesive fracture of elastically heterogeneous materials: An integrative modeling and experimental study. Journal of the Mechanics and Physics of Solids, 2017, 98, 87-105.	2.3	30
1031	Extreme Biomimetics. , 2017, , .		16
1032	Hydrothermal Synthesis of Spongin-Based Materials. , 2017, , 251-274.		3
1033	Nanohydroxyapatite-coated hydroxyethyl cellulose/poly (vinyl) alcohol electrospun scaffolds and their cellular response. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 115-122.	1.8	15
1034	On the Attenuation of Light by a Polydimethylsiloxane (PDMS) Foam and Its Implementation as a Weight Sensor. Mapan - Journal of Metrology Society of India, 2017, 32, 1-6.	1.0	1
1035	2D Motion Structures of N-Fold Rotational Symmetry. , 2017, , .		Ο

#	Article	IF	CITATIONS
1036	Tissue engineering and biomimetics with bioceramics. , 2017, , 407-432.		2
1037	The role of biomaterials in the treatment of meniscal tears. PeerJ, 2017, 5, e4076.	0.9	11
1038	Replicating Natural Design Strategies In Bio-Inspired Composites. , 2017, , 158-167.		0
1039	12. Patterns of mineral organization in carbonate biological hard materials. , 2017, , 245-272.		12
1040	Chimeric biomolecules. , 2017, , 285-324.		2
1041	Stomatal Opening: The Role of Cell-Wall Mechanical Anisotropy and Its Analytical Relations to the Bio-composite Characteristics. Frontiers in Plant Science, 2017, 8, 2061.	1.7	32
1042	Imaging of neuronal tissues by x-ray diffraction and x-ray fluorescence microscopy: evaluation of contrast and biomarkers for neurodegenerative diseases. Biomedical Optics Express, 2017, 8, 4331.	1.5	20
1043	2.21 Xenogenic Tissues and Biomaterials for the Skeletal System â [~] †. , 2017, , 471-504.		0
1044	Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials, 2017, 10, 334.	1.3	703
1045	3.10 Finite Element Analysis in Bone Research: A Computational Method Relating Structure to Mechanical Function â~†. , 2017, , 169-196.		13
1046	3.26 Imaging Mineralized Tissues in Vertebrates â~†. , 2017, , 549-578.		2
1047	3.4 Developments in High-Resolution CT: Studying Bioregeneration by Hard X-Ray Synchrotron-Based Microtomography â~†. , 2017, , 58-77.		3
1048	Scanning X-ray diffraction on cardiac tissue: automatized data analysis and processing. Journal of Synchrotron Radiation, 2017, 24, 1163-1172.	1.0	20
1049	2.15 Collagen: Materials Analysis and Implant Uses â~†. , 2017, , 332-350.		3
1050	Demineralization of cortical bone for improvement of Charpy impact fracture characteristics. Journal of Biomechanical Science and Engineering, 2017, 12, 16-00267-16-00267.	0.1	8
1051	Nano-mechanical characterization of the wood cell wall by AFM studies: comparison between AC- and QIâ,,¢ mode. Plant Methods, 2017, 13, 60.	1.9	37
1052	Estrategias mecánicas de las plantas arborescentes: enseñanzas estructurales de los árboles. Ingeniare, 2017, 25, 510-523.	0.1	5
1053	Bio-inspired micro-to-nanoporous polymers with tunable stiffness. Beilstein Journal of Nanotechnology, 2017, 8, 906-914.	1.5	7

#	Article	IF	CITATIONS
1054	Developing biocomposites as scaffolds in regenerative medicine. , 2017, , 543-568.		2
1055	Bioinspired Wood Nanotechnology for Functional Materials. Advanced Materials, 2018, 30, e1704285.	11.1	341
1056	Understanding biomineralization in the fossil record. Earth-Science Reviews, 2018, 179, 95-122.	4.0	41
1057	Strong and Flexible Nanocomposites of Carboxylated Cellulose Nanofibril Dispersed by Industrial Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 5524-5532.	3.2	38
1058	Seamless modulus gradient structures for highly resilient, stretchable system integration. Materials Today Physics, 2018, 4, 28-35.	2.9	29
1059	Broadband locally resonant metamaterials with graded hierarchical architecture. Journal of Applied Physics, 2018, 123, .	1.1	43
1060	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	11.1	493
1061	Impact energy absorption of bio-inspired tubular sections with structural hierarchy. Composite Structures, 2018, 195, 199-210.	3.1	91
1062	Thermal Superinsulating Materials Made from Nanofibrillated Cellulose-Stabilized Pickering Emulsions. ACS Applied Materials & Interfaces, 2018, 10, 16193-16202.	4.0	87
1063	Armours for soft bodies: how far can bioinspiration take us?. Bioinspiration and Biomimetics, 2018, 13, 041004.	1.5	27
1064	Nanofibrils in nature and materials engineering. Nature Reviews Materials, 2018, 3, .	23.3	455
1065	Plant and algal structure: from cell walls to biomechanicalÂfunction. Physiologia Plantarum, 2018, 164, 56-66.	2.6	19
1066	Strong Anisotropy and Ultralow Percolation Threshold in Multiscale Composites Modified by Carbon Nanotubes Coated Hollow Glass Fiber. Advanced Engineering Materials, 2018, 20, 1800077.	1.6	2
1067	Hydroxyapatite Crystal Thickness and Buckling Phenomenon in Bone Nanostructure During Mechanical Tests. Annals of Biomedical Engineering, 2018, 46, 627-639.	1.3	1
1068	Modeling and simulation in tribology across scales: An overview. Tribology International, 2018, 125, 169-199.	3.0	335
1069	Seeded Mineralization Leads to Hierarchical CaCO ₃ Thin Coatings on Fibers for Oil/Water Separation Applications. Langmuir, 2018, 34, 2942-2951.	1.6	33
1070	A three-dimensional hydroxyapatite/polyacrylonitrile composite scaffold designed for bone tissue engineering. RSC Advances, 2018, 8, 1730-1736.	1.7	25
1071	Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554, 224-228.	13.7	970

	Сітатіо	on Report	
#	Article	IF	CITATIONS
1072	Nature-Inspired Optimization of Transport in Porous Media. , 2018, , 203-232.		5
1073	Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion capacitors. Energy Storage Materials, 2018, 12, 145-152.	9.5	174
1074	Confocal mapping of myelin figures with micro-Raman spectroscopy. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	3
1075	Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170045.	1.6	94
1076	Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Science Advances, 2018, 4, eaar3219.	4.7	86
1077	Thermal changes in young and mature bone nanostructure probed with Ca 2p excitations. Biomedical Physics and Engineering Express, 2018, 4, 035031.	0.6	8
1078	Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy. Composite Structures, 2018, 192, 289-299.	3.1	57
1079	Bioinspired Adaptive Gel Materials with Synergistic Heterostructures. Chinese Journal of Polymer Science (English Edition), 2018, 36, 683-696.	2.0	25
1080	Biomimetic fluoridated hydroxyapatite coating with micron/nano-topography on magnesium alloy for orthopaedic application. Chemical Engineering Journal, 2018, 339, 7-13.	6.6	32
1081	In-plane crashworthiness of bio-inspired hierarchical honeycombs. Composite Structures, 2018, 192, 516-527.	3.1	95
1082	Electrospun nanofibres to mimic natural hierarchical structure of tissues: application in musculoskeletal regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e604-e619.	1.3	29
1083	Strength, toughness, and reliability of a porous glass/biopolymer composite scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1209-1217.	1.6	18
1084	Physics of muscle contraction. Reports on Progress in Physics, 2018, 81, 036602.	8.1	45
1085	Swelling interactions of earlywood and latewood across a growth ring: global and local deformations. Wood Science and Technology, 2018, 52, 91-114.	1.4	29
1086	Correlations between nanostructure and micromechanical properties of healing bone. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 258-266.	1.5	22
1087	Nano-, meso- and macro-swelling characterization of impregnated compression wood cell walls. Wood Science and Technology, 2018, 52, 421-443.	1.4	3
1088	Designing novel structures with hierarchically synchronized deformations. Extreme Mechanics Letters, 2018, 19, 1-6.	2.0	8
1089	Biomimetic Structural Materials: Inspiration from Design and Assembly. Annual Review of Physical Chemistry, 2018, 69, 23-57.	4.8	96

#	Article	IF	CITATIONS
1090	Using supramolecular associations to create stable cellular structures in amorphous soft polymers. Polymers for Advanced Technologies, 2018, 29, 2868-2879.	1.6	2
1091	Microstructure-guided numerical simulations to predict the thermal performance of a hierarchical cement-based composite material. Cement and Concrete Composites, 2018, 87, 20-28.	4.6	23
1092	A new pushâ€pull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 991-1001.	1.7	9
1093	Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure. Cellulose, 2018, 25, 429-437.	2.4	18
1094	Multifunctional Cellular Materials Based on 2D Nanomaterials: Prospects and Challenges. Advanced Materials, 2018, 30, 1704850.	11.1	47
1095	Nanostructural Evolution of Sugarcane Rind and Pith Submitted to Hydrothermal Pretreatments. Journal of Renewable Materials, 2018, 6, 152-159.	1.1	1
1096	Modulation of the Self-Assembly of Collagen by Phytic Acid: An In Vitro Study. Macromolecular Research, 2018, 26, 1233-1240.	1.0	12
1097	Synthesis of nano-Bi2MoO6/calcined mussel shell composite with enhanced visible light photocatalytic activity. IOP Conference Series: Earth and Environmental Science, 2018, 186, 012014.	0.2	0
1098	Reversible Control of Spacing in Charged Lamellar Membrane Hydrogels by Hydrophobically Mediated Tethering with Symmetric and Asymmetric Double-End-Anchored Poly(ethylene glycol)s. ACS Applied Materials & Interfaces, 2018, 10, 44152-44162.	4.0	5
1099	Botanically Templated Monolithic Macrostructured Zinc Oxide Materials for Photocatalysis. Inorganics, 2018, 6, 103.	1.2	2
1100	In-Line X-Ray Phase Tomography of Bone and Biomaterials for Regenerative Medicine. Fundamental Biomedical Technologies, 2018, , 91-109.	0.2	0
1101	Hierarchical Combinatorial Design and Optimization of Quasi-Periodic Metamaterial Structures. , 2018,		2
1102	Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews, 2018, 118, 11575-11625.	23.0	1,008
1103	Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Science Translational Medicine, 2018, 10, .	5.8	111
1105	Self-healing Materials and Defense Mechanisms. Springer Series in Materials Science, 2018, , 911-958.	0.4	1
1106	Estimation of the effective properties of two-dimensional cellular materials: a review. Theoretical and Applied Mechanics Letters, 2018, 8, 209-230.	1.3	29
1107	FIBERBOTS: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Construction Robotics, 2018, 2, 67-79.	1.2	20
1108	Drug-Loaded Biomimetic Ceramics for Tissue Engineering. Pharmaceutics, 2018, 10, 272.	2.0	43

#	Article	IF	CITATIONS
1109	Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing. International Journal of Mechanical Sciences, 2018, 149, 150-163.	3.6	91
1110	Biomineralizationâ€Inspired Material Design for Bone Regeneration. Advanced Healthcare Materials, 2018, 7, e1800700.	3.9	74
1111	Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures. Advanced Materials, 2018, 30, e1800940.	11.1	158
1112	Lightweight Microlattice With Tunable Mechanical Properties Using 3D Printed Shape Memory Polymer. , 2018, , .		0
1113	Hydration-induced nano- to micro-scale self-recovery of the tooth enamel of the giant panda. Acta Biomaterialia, 2018, 81, 267-277.	4.1	19
1114	Exploring mussel byssus fabrication with peptide-polymer hybrids: Role of pH and metal coordination in self-assembly and mechanics of histidine-rich domains. European Polymer Journal, 2018, 109, 229-236.	2.6	26
1115	Crashworthiness of hierarchical circular-joint quadrangular honeycombs. Thin-Walled Structures, 2018, 133, 180-191.	2.7	46
1116	Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening. Acta Biomaterialia, 2018, 80, 217-227.	4.1	35
1117	CROSS-LINKS MULTISCALE EFFECTS ON BONE ULTRASTRUCTURE BIOMECHANICAL BEHAVIOR. Journal of Mechanics in Medicine and Biology, 2018, 18, 1850062.	0.3	1
1118	Bio-inspired method based on bone architecture to optimize the structure of mechanical workspieces. Materials and Design, 2018, 160, 708-717.	3.3	28
1119	Insights into the Exceptional Crystallographic Order of Biominerals Using Dark-Field X-ray Microscopy. Microscopy and Microanalysis, 2018, 24, 90-91.	0.2	8
1120	Fabrication of Superhydrophobic Al5083 Aluminum Alloy for Marine Applications. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 899-908.	0.3	12
1121	Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts. PLoS ONE, 2018, 13, e0204309.	1.1	22
1122	Tailored disorder in calcite organization in tergite cuticle of the supralittoral isopod Tylos europaeus Arcangeli, 1938. Journal of Structural Biology, 2018, 204, 464-480.	1.3	8
1123	Mechanical Properties of Architected Nanomaterials Made from Organic–Inorganic Nanocrystals. Jom, 2018, 70, 2205-2217.	0.9	20
1124	Advances in bionanocomposites for biomedical applications. , 2018, , 379-399.		3
1125	Bone physiology as inspiration for tissue regenerative therapies. Biomaterials, 2018, 185, 240-275.	5.7	259
1126	Heteropore covalent organic frameworks: a new class of porous organic polymers with well-ordered hierarchical porosities. Organic Chemistry Frontiers, 2018, 5, 3341-3356.	2.3	62

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
1127	A Perspective on Bioâ€Mediated Material Structuring. Advanced Materials, 2018, 30, e1703656.	11.1	18
1128	Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature, 2018, 561, 226-230.	13.7	267
1129	A hierarchical zeolitic Murray material with a mass transfer advantage promotes catalytic efficiency improvement. Inorganic Chemistry Frontiers, 2018, 5, 2829-2835.	3.0	18
1130	Patterning Porosity in Hydrogels by Arresting Phase Separation. ACS Applied Materials & Interfaces, 2018, 10, 34604-34610.	4.0	10
1131	First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Scientific Reports, 2018, 8, 13696.	1.6	49
1132	Review on Electromechanical Coupling Properties of Biomaterials. ACS Applied Bio Materials, 2018, 1, 936-953.	2.3	80
1133	Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices. Langmuir, 2018, 34, 10897-10904.	1.6	53
1134	In situ synthesis of hydroxyapatite/carboxymethyl cellulose composites for bone regeneration applications. Colloid and Polymer Science, 2018, 296, 1729-1737.	1.0	21
1135	Hierarchical Polymer Structures Using Templates and the Modified Breath Figure Method. Langmuir, 2018, 34, 7472-7478.	1.6	9
1136	Residual Strain and Stress in Biocrystals. Advanced Materials, 2018, 30, e1707263.	11.1	35
1137	Cellulose Mineralization as a Route for Novel Functional Materials. Advanced Functional Materials, 2018, 28, 1705042.	7.8	50
1138	Protein disorder–order interplay to guide the growth of hierarchical mineralized structures. Nature Communications, 2018, 9, 2145.	5.8	119
1139	Late stages of mineralization and their signature on the bone mineral density distribution. Connective Tissue Research, 2018, 59, 74-80.	1.1	8
1140	Biomineralization of Calcium Phosphate and Calcium Carbonate within Iridescent Chitosan/Iota-Carrageenan Multilayered Films. Langmuir, 2018, 34, 8994-9003.	1.6	15
1141	Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. ACS Nano, 2018, 12, 6926-6937.	7.3	203
1142	The constitutive relation of self-healing hierarchical fiber bundle materials. Journal of Materials Science, 2018, 53, 14858-14870.	1.7	6
1143	Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS ONE, 2018, 13, e0195820.	1,1	65
1144	Hierarchical Biomineralization: from Nature's Designs to Synthetic Materials for Regenerative Medicine and Dentistry. Advanced Healthcare Materials, 2018, 7, e1800178.	3.9	60

#	Article	IF	CITATIONS
1145	Influence of Cross-Linking Method and Disinfection/Sterilization Treatment on the Structural, Biophysical, Biochemical, and Biological Properties of Collagen-Based Devices. ACS Biomaterials Science and Engineering, 2018, 4, 2739-2747.	2.6	12
1146	Self-assembling oxidized silk fibroin nanofibrils with controllable fractal dimensions. Journal of Materials Chemistry B, 2018, 6, 4656-4664.	2.9	14
1147	Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Progress in Polymer Science, 2018, 85, 1-56.	11.8	312
1148	Stress-Induced Orientation of Cocontinuous Nanostructures within Randomly End-Linked Copolymer Networks. ACS Macro Letters, 2018, 7, 828-833.	2.3	11
1149	The role of phosphorylation and dephosphorylation of shell matrix proteins in shell formation: an <i>in vivo</i> and <i>in vitro</i> study. CrystEngComm, 2018, 20, 3905-3916.	1.3	14
1150	6.4 Bioinspired Composite Materials: Processing Strategies Across Length Scales. , 2018, , 73-96.		0
1151	Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Materials Horizons, 2018, 5, 939-945.	6.4	354
1152	Biomimetic twisted plywood structural materials. National Science Review, 2018, 5, 703-714.	4.6	79
1153	Unique Collagen Fibers for Biomedical Applications. Marine Drugs, 2018, 16, 102.	2.2	32
1154	Sound Absorption Characterization of Natural Materials and Sandwich Structure Composites. Aerospace, 2018, 5, 75.	1.1	45
1155	Xyloglucan adsorption for measuring the specific surface area on various never-dried cellulose nanofibers. Nordic Pulp and Paper Research Journal, 2018, 33, 186-193.	0.3	4
1156	Bioactive metallic surfaces for bone tissue engineering. , 2018, , 79-110.		5
1157	Al2O3/graphene reinforced bio-inspired interlocking polyurethane composites with superior mechanical and thermal properties for solid propulsion fuel. Composites Science and Technology, 2018, 167, 42-52.	3.8	45
1158	Bioinspired Structural Hierarchy within Macroscopic Volumes of Synthetic Composites. Advanced Healthcare Materials, 2018, 7, e1800466.	3.9	7
1159	The quest for mechanically and biologically functional soft biomaterials via soft network composites. Advanced Drug Delivery Reviews, 2018, 132, 214-234.	6.6	35
1160	Wood made denser and stronger. Nature, 2018, 554, 172-173.	13.7	18
1161	3D Printing and Electrospinning of Composite Hydrogels for Cartilage and Bone Tissue Engineering. Polymers, 2018, 10, 285.	2.0	142
1162	Cell-layer dependent adhesion differences in wood bonds. Composites Part A: Applied Science and Manufacturing, 2018, 114, 21-29.	3.8	10

		CITATION REPORT		
#	Article		IF	CITATIONS
1163	Young's modulus of trabecular bone at the tissue level: A review. Acta Biomaterialia, 201	8, 78, 1-12.	4.1	129
1164	Investigation of inner mechanism of anisotropic mechanical property of antler bone. Journal o Mechanical Behavior of Biomedical Materials, 2018, 88, 1-10.	of the	1.5	7
1165	Nanometrology of Biomass for Bioenergy: The Role of Atomic Force Microscopy and Spectros Plant Cell Characterization. Frontiers in Energy Research, 2018, 6, .	scopy in	1.2	13
1166	An Automated Step-Wise Micro-Compression Device for 3D Dynamic Image-Guided Failure A Bone Tissue on a Microstructural Level Using Time-Lapsed Tomography. Frontiers in Materials		1.2	10
1167	Fabrication of hierarchical meso/macroporous TiO2 scaffolds by evaporation-induced self-ass technique for bone tissue engineering applications. Materials Characterization, 2018, 144, 3		1.9	8
1170	Graphene-Based Nanomaterials for Tissue Engineering in the Dental Field. Nanomaterials, 20	18, 8, 349.	1.9	101
1171	Applicability of hierarchical fiber bundle materials to mechanical environments. International of Fracture, 2018, 212, 105-112.	Journal	1.1	1
1172	Progress on discontinuously reinforced titanium matrix composites. Journal of Alloys and Compounds, 2018, 767, 1196-1215.		2.8	156
1173	3D magnetic printing of bio-inspired composites with tunable mechanical properties. Journal Materials Science, 2018, 53, 14274-14286.	of	1.7	28
1174	Utilization of Proteins and Peptides to Create Organic-Hydroxyapatite Hybrids. Protein and P Letters, 2018, 25, 25-33.	eptide	0.4	7
1175	Biomineralization process generating hybrid nano- and micro-carriers. , 2018, , 19-42.			2
1176	Quantitative morphological analysis and digital modeling of polydisperse anisotropic carbon Carbon, 2018, 136, 11-20.	foam.	5.4	2
1177	Enhanced Water Retention Maintains Energy Dissipation in Dehydrated Metal-Coordinate Po Networks: Another Role for Fe-Catechol Cross-Links?. Chemistry of Materials, 2018, 30, 3648	lymer }-3655.	3.2	34
1178	Self-Assembly of α-Helical Polypeptides into Microscopic and Enantiomorphic Spirals. Journal American Chemical Society, 2018, 140, 11387-11394.	of the	6.6	38
1179	Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterials. Physical Applied, 2018, 10, .	Review	1.5	80
1180	Structure design, fabrication, properties of laminated ceramics: A review. International Journa Lightweight Materials and Manufacture, 2018, 1, 126-141.	al of	1.3	15
1181	The Rise of Hierarchical Nanostructured Materials from Renewable Sources: Learning from Na ACS Nano, 2018, 12, 7425-7433.	ature.	7.3	128
1182	Fracture Fixation Biomechanics and Biomaterials. , 2018, , 401-428.			3

#	Article	IF	CITATIONS
1183	Binary colloidal crystals (BCCs): Interactions, fabrication, and applications. Advances in Colloid and Interface Science, 2018, 261, 102-127.	7.0	33
1184	Stiff auxetics: Hierarchy as a route to stiff, strong lattice based auxetic meta-materials. Scientific Reports, 2018, 8, 12437.	1.6	47
1185	Small-angle X-ray scattering tensor tomography: model of the three-dimensional reciprocal-space map, reconstruction algorithm and angular sampling requirements. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 12-24.	0.0	46
1186	Deproteinization of Cortical Bone: Effects of Different Treatments. Calcified Tissue International, 2018, 103, 554-566.	1.5	16
1188	Metal–Organic Framework Nanoparticles. Advanced Materials, 2018, 30, e1800202.	11.1	539
1189	On the Materials Science of Nature's Arms Race. Advanced Materials, 2018, 30, e1705220.	11.1	63
1190	Phase separation events induce the coexistence of distinct nanofeatures in electrospun fibres of poly(ethyl cyanoacrylate) and polycaprolactone. Materials Today Communications, 2018, 16, 135-141.	0.9	10
1191	Bone matrix development in steroid-induced osteoporosis is associated with a consistently reduced fibrillar stiffness linked to altered bone mineral quality. Acta Biomaterialia, 2018, 76, 295-307.	4.1	20
1192	A Review of Nanofiber Shish Kebabs and Their Potential in Creating Effective Biomimetic Bone Scaffolds. Regenerative Engineering and Translational Medicine, 2018, 4, 107-119.	1.6	13
1193	The Mechanical Role of Collagen Fibers in the Intervertebral Disc. , 2018, , 105-123.		7
1194	The Vertebral Bone. , 2018, , 71-87.		0
1195	White paper on the future of plasma science for optics and glass. Plasma Processes and Polymers, 2019, 16, 1700250.	1.6	22
1196	X-ray diffraction imaging of cardiac cells and tissue. Progress in Biophysics and Molecular Biology, 2019, 144, 151-165.	1.4	12
1197	Biological hierarchically structured porous materials (Bio-HSPMs) for biomedical applications. Journal of Porous Materials, 2019, 26, 655-675.	1.3	10
1198	Black Soldier Fly Larvae Rearrange under Compression. Integrative and Comparative Biology, 2019, 59, 1646-1652.	0.9	4
1199	Twoâ€Phase Emulgels for Direct Ink Writing of Skinâ€Bearing Architectures. Advanced Functional Materials, 2019, 29, 1902990.	7.8	60
1200	Abstraction and operator characterization of fractal ladder viscoelastic hyper-cell for ligaments and tendons. Applied Mathematics and Mechanics (English Edition), 2019, 40, 1429-1448.	1.9	11
1201	Exploiting spatial heterogeneity and response characterization in non-uniform architected materials inspired by slime mould growth. Bioinspiration and Biomimetics, 2019, 14, 064001.	1.5	1

#	Article	IF	CITATIONS
1202	Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation. Nanoscale, 2019, 11, 16214-16221.	2.8	23
1203	Direct Observation of Failure in Ice-Templated Ceramics Under Dynamic and Quasistatic Compressive Loading Conditions. Journal of Dynamic Behavior of Materials, 2019, 5, 463-483.	1.1	7
1204	Biomaterials for bone tissue engineering scaffolds: a review. RSC Advances, 2019, 9, 26252-26262.	1.7	502
1205	Oxidizing and Nano-dispersing the Natural Silk Fibers. Nanoscale Research Letters, 2019, 14, 250.	3.1	9
1206	Mechanoregulation of Bone Remodeling and Healing as Inspiration for Self-Repair in Materials. Biomimetics, 2019, 4, 46.	1.5	15
1207	Microstructure and Size Effects on the Mechanics of Two Dimensional, High Aspect Ratio Nanoparticle Assemblies. Frontiers in Materials, 2019, 6, .	1.2	7
1208	Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR. Materials Science and Engineering C, 2019, 104, 109959.	3.8	27
1209	Novel additive manufacturing of photocurable ceramic slurry containing freezing vehicle as porogen for hierarchical porous structure. Ceramics International, 2019, 45, 21321-21327.	2.3	21
1210	Nanodot-to-Rod Transition and Particle Attachment in Self-Organized Polycrystalline Aggregates. Crystal Growth and Design, 2019, 19, 4218-4223.	1.4	9
1211	Influence of gel-strength and magnesium doping on the organization of calcite/hydrogel mesocrystal composites. European Journal of Mineralogy, 2019, 31, 217-229.	0.4	6
1212	Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites. Journal of Colloid and Interface Science, 2019, 555, 104-114.	5.0	38
1213	Energy absorption of muscle-inspired hierarchical structure: Experimental investigation. Composite Structures, 2019, 226, 111250.	3.1	42
1214	A framework for selfâ€evolving computational material models inspired by deep learning. International Journal for Numerical Methods in Engineering, 2019, 120, 1202-1226.	1.5	10
1215	Bio-inspired AlSiCN/Ti hierarchical coatings with high toughness by efficient energy dissipation. Results in Physics, 2019, 14, 102358.	2.0	5
1216	Highly Ordered Sub-10 nm Patterns Based on Multichain Columns of Side-Chain Liquid Crystalline Polymers. Macromolecules, 2019, 52, 5033-5041.	2.2	19
1217	Macroscopic and microscopic mechanical behaviors of climbing tendrils. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 702-710.	1.5	6
1218	Graph theoretical approaches for the characterization of damage in hierarchical materials. European Physical Journal B, 2019, 92, 1.	0.6	4
1219	Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. Advanced Materials, 2019, 31, e1901561.	11.1	342

#	Article	IF	Citations
1220	Mineral-Chitin Composites in Molluscs. Biologically-inspired Systems, 2019, , 57-93.	0.4	3
1221	The extreme mechanics of micro- and nanoarchitected materials. MRS Bulletin, 2019, 44, 758-765.	1.7	48
1222	Porous Carbons Derived from Collagenâ€Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2019, 29, 1905095.	7.8	94
1223	Selfâ€Healing Polymers Based on Coordination Bonds. Advanced Materials, 2020, 32, e1903762.	11.1	343
1224	Rational design of crystalline two-dimensional frameworks with highly complicated topological structures. Nature Communications, 2019, 10, 4609.	5.8	54
1225	Frictional Damping from Biomimetic Scales. Scientific Reports, 2019, 9, 14628.	1.6	18
1226	Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
1227	Natureâ€Inspired Nacreâ€Like Composites Combining Human Toothâ€Matching Elasticity and Hardness with Exceptional Damage Tolerance. Advanced Materials, 2019, 31, e1904603.	11.1	73
1228	Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics, 2019, 11, 575.	2.0	74
1229	Interplay of various fracture mechanisms in bio-inspired staggered structure. Mechanics of Materials, 2019, 139, 103215.	1.7	18
1230	Characterization of fracture in topology-optimized bioinspired networks. Physical Review E, 2019, 100, 042402.	0.8	8
1231	Tailorable twisting of biomimetic scale-covered substrate. Europhysics Letters, 2019, 127, 24002.	0.7	13
1232	Monte Carlo Type Simulations of Mineralized Collagen Fibril Based on Two Scale Asymptotic Homogenization. Journal of Biomechanical Engineering, 2019, 141, .	0.6	3
1233	Plant-Derived Nanocellulose as Structural and Mechanical Reinforcement of Freeze-Cast Chitosan Scaffolds for Biomedical Applications. Biomacromolecules, 2019, 20, 3733-3745.	2.6	42
1234	Influence of Gelatin–Agarose Composites and Mg on Hydrogel-Carbonate Aggregate Formation and Architecture. Crystal Growth and Design, 2019, 19, 5696-5715.	1.4	16
1235	Computational Modeling of the Mechanical Behavior of 3D Hybrid Organic–Inorganic Nanocomposites. Jom, 2019, 71, 3951-3961.	0.9	6
1236	Atomistic Simulation of Anistropic Crystal Structures at Nanoscale. , 2019, , .		3
1237	Digital Light Processing of Freeze-cast Ceramic Layers for Macroporous Calcium Phosphate Scaffolds with Tailored Microporous Frameworks. Materials, 2019, 12, 2893.	1.3	17

#	Article	IF	CITATIONS
1238	Biomimetic tough helicoidally structured material through novel electrospinning based additive manufacturing. MRS Advances, 2019, 4, 2345-2354.	0.5	7
1239	Fabrication of flax fibre-reinforced cellulose propionate thermoplastic composites. Composites Science and Technology, 2019, 183, 107791.	3.8	15
1240	A numerical study on the in-plane dynamic crushing of self-similar hierarchical honeycombs. Mechanics of Materials, 2019, 138, 103151.	1.7	38
1241	Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing. ACS Applied Materials & Interfaces, 2019, 11, 42549-42560.	4.0	60
1242	Deformation Mechanisms of "Two-Part―Natural Adhesive in Bone Interfibrillar Nano-Interfaces. ACS Biomaterials Science and Engineering, 2019, 5, 5916-5924.	2.6	6
1243	Mimicking the bioelectrocatalytic function of recombinant CotA laccase through electrostatically self-assembled bioconjugates. Nanoscale, 2019, 11, 1549-1554.	2.8	9
1244	Hard-Sphere Close-Packing Models: Possible Applications for Developing Promising Ceramic and Refractory Materials (Review). Glass and Ceramics (English Translation of Steklo I Keramika), 2019, 75, 345-351.	0.2	6
1246	3D printing of sacrificial templates into hierarchical porous materials. Scientific Reports, 2019, 9, 409.	1.6	81
1247	Insight into the role of grafting density in the self-assembly of acrylic acid-grafted-collagen. International Journal of Biological Macromolecules, 2019, 128, 885-892.	3.6	19
1248	Designing hierarchical metamaterials by topology analysis with tailored Poisson's ratio and Young's modulus. Composite Structures, 2019, 214, 359-378.	3.1	52
1249	Structural hierarchy confers error tolerance in biological materials. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2875-2880.	3.3	19
1250	Biological growth and synthetic fabrication of structurally colored materials. Journal of Optics (United Kingdom), 2019, 21, 073001.	1.0	37
1251	Mesostructured Nonwovens with Penguin Downy Featherâ€Like Morphology—Topâ€Down Combined with Bottomâ€Up. Advanced Functional Materials, 2019, 29, 1903166.	7.8	24
1252	A comprehensive review of selected biological armor systems – From structure-function to bio-mimetic techniques. Composite Structures, 2019, 225, 111172.	3.1	21
1253	Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis. Cellulose, 2019, 26, 6713-6724.	2.4	19
1254	Mechanics of Strong and Tough Cellulose Nanopaper. Applied Mechanics Reviews, 2019, 71, .	4.5	74
1255	Electronic and atomic structure of subchondral femoral bone in intact and osteoarthritic knee compartments. European Physical Journal D, 2019, 73, 1.	0.6	6
1256	Encoding Reversible Hierarchical Structures with Supramolecular Peptide–DNA Materials. Bioconjugate Chemistry, 2019, 30, 1864-1869.	1.8	18

#	Article	IF	CITATIONS
1257	Extracellular matrix composition during bone regeneration in the human dental alveolar socket. Bone, 2019, 127, 244-249.	1.4	12
1258	Additive Manufacturing of 3D Structures Composed of Wood Materials. Advanced Materials Technologies, 2019, 4, 1900158.	3.0	32
1259	Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall. Colloids and Interfaces, 2019, 3, 46.	0.9	43
1260	A constitutive relation for the tissue composed of type-I collagen fibers under uniaxial tension. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 222-228.	1.5	7
1261	Crack propagation through sandwich bones due to low-velocity projectile impact. International Journal of Legal Medicine, 2019, 133, 1443-1459.	1.2	6
1262	Modular Programming of Hierarchy and Diversity in Multivariate Polymer/Metal–Organic Framework Hybrid Composites. Journal of the American Chemical Society, 2019, 141, 10342-10349.	6.6	42
1263	Spotting plants' microfilament morphologies and nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13188-13193.	3.3	5
1264	Bioprocess-inspired fabrication of materials with new structures and functions. Progress in Materials Science, 2019, 105, 100571.	16.0	76
1265	Resolving Form–Structure–Function Relationships in Plants with MRI for Biomimetic Transfer. Integrative and Comparative Biology, 2019, 59, 1713-1726.	0.9	7
1266	Physicochemical characterization of barrier membranes for bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 13-20.	1.5	25
1267	Improved mechanical performance of graphene oxide based artificial nacre composites by regulating the micro-laminated structure and interface bonding. Composites Science and Technology, 2019, 179, 63-68.	3.8	19
1268	Rising Up: Hierarchical Metal–Organic Frameworks in Experiments and Simulations. Advanced Materials, 2019, 31, e1901744.	11.1	103
1269	Transparent Wood for Thermal Energy Storage and Reversible Optical Transmittance. ACS Applied Materials & Interfaces, 2019, 11, 20465-20472.	4.0	139
1270	Damage shielding mechanisms in hierarchical composites in nature with potential for design of tougher structural materials. Royal Society Open Science, 2019, 6, 181733.	1.1	9
1271	Multiscale homogenization and localization of materials with hierarchical porous microstructures. Composite Structures, 2019, 222, 110905.	3.1	17
1272	An Overview of Bioinspired and Biomimetic Self-Repairing Materials. Biomimetics, 2019, 4, 26.	1.5	87
1273	Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale. Acta Biomaterialia, 2019, 89, 313-329.	4.1	36
1274	High-resolution large-area imaging of nanoscale structure and mineralization of a sclerosing osteosarcoma in human bone. Journal of Structural Biology, 2019, 207, 56-66.	1.3	4

#	Article	IF	CITATIONS
1275	Radial-Concentric Freeze Casting Inspired by Porcupine Fish Spines. Ceramics, 2019, 2, 161-179.	1.0	23
1276	Buildup of Multi-Ionic Supramolecular Network Facilitated by In-Situ Intercalated Organic Montmorillonite in 1,2-Polybutadiene. Polymers, 2019, 11, 492.	2.0	8
1277	Hierarchical silica monolithic tablets as novel carriers for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 141, 12-20.	2.0	4
1278	Structural and functional imaging of large and opaque plant specimens. Journal of Experimental Botany, 2019, 70, 3659-3678.	2.4	24
1279	Interface properties and their effect on the mechanical performance of flax fibre thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 2019, 122, 8-17.	3.8	37
1280	Hierarchically structured composites and porous materials from soft templates: fabrication and applications. Journal of Materials Chemistry A, 2019, 7, 8030-8049.	5.2	68
1281	Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradients. Advanced Science, 2019, 6, 1802190.	5.6	62
1282	Ternary Supramolecular Ensembles of Cellulose Nanocrystals Exhibiting Multiscale Deformation and Mechano/Chemoresponsive Selective Reflection of Circularly Polarized Light. ACS Sustainable Chemistry and Engineering, 2019, 7, 6851-6858.	3.2	18
1283	High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: fabrication, in vitro and in vivo biocompatibility evaluation. Composites Science and Technology, 2019, 175, 100-110.	3.8	50
1284	Lessons from nature for green science and technology: an overview and bioinspired superliquiphobic/philic surfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180274.	1.6	17
1285	Elastic Wave Propagation in Hierarchical Honeycombs With Woodpile-Like Vertexes. Journal of Vibration and Acoustics, Transactions of the ASME, 2019, 141, .	1.0	5
1286	Design of textured multi-layered structures via magnetically assisted slip casting. Soft Matter, 2019, 15, 3886-3896.	1.2	24
1287	Optimized biological tools: ultrastructure of rodent and bat teeth compared to human teeth. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 247-253.	0.7	1
1288	Biomimetic hard and tough nanoceramic Ti–Al–N film with self-assembled six-level hierarchy. Nanoscale, 2019, 11, 7986-7995.	2.8	19
1289	Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism. Science Robotics, 2019, 4, .	9.9	52
1290	Composite scaffolds for bone and osteochondral defects. , 2019, , 297-337.		2
1291	Bioactive glass–based composites in bone tissue engineering: synthesis, processing, and cellular responses. , 2019, , 397-439.		0
1292	Healing through Histidine: Bioinspired Pathways to Self-Healing Polymers via Imidazole–Metal Coordination. Biomimetics, 2019, 4, 20.	1.5	63

#	Article	IF	CITATIONS
1293	Filtered Mechanosensing Using Snapping Composites with Embedded Mechano-Electrical Transduction. ACS Nano, 2019, 13, 4752-4760.	7.3	24
1294	Architectured Polymeric Materials Produced by Additive Manufacturing. Springer Series in Materials Science, 2019, , 257-285.	0.4	3
1295	Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Acta Biomaterialia, 2019, 90, 254-266.	4.1	31
1296	Hygrothermal aging and structural damage of a jute/poly (lactic acid) (PLA) composite observed by X-ray tomography. Composites Science and Technology, 2019, 173, 15-23.	3.8	48
1297	Emergence in Biomimetic Materials Systems. , 2019, , 97-115.		4
1298	Micromechanical properties of longitudinally compressed wood. European Journal of Wood and Wood Products, 2019, 77, 341-351.	1.3	12
1299	Emergence and Modularity in Life Sciences. , 2019, , .		7
1300	Bending Strength of 3D-Printed Zirconia Ceramic Cellular Structures. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012019.	0.3	7
1301	A Material Perspective of Wood, Smoke, and BBQ. Matter, 2019, 1, 1092-1095.	5.0	6
1302	Biomimetics for high-performance flexible tactile sensors and advanced artificial sensory systems. Journal of Materials Chemistry C, 2019, 7, 14816-14844.	2.7	65
1303	Anisotropic Epitaxial Behavior in the Amorphous Phase-Mediated Hydroxyapatite Crystallization Process: A New Understanding of Orientation Control. Journal of Physical Chemistry Letters, 2019, 10, 7611-7616.	2.1	15
1304	Twist-to-bend ratio: an important selective factor for many rod-shaped biological structures. Scientific Reports, 2019, 9, 17182.	1.6	14
1305	Nature-Inspired Processes and Structures: New Paradigms to Develop Highly Bioactive Devices for Hard Tissue Regeneration. , 2019, , .		4
1306	Bone Healing in the Presence of a Biodegradable PBS-DLA Copolyester and Its Composite Containing Hydroxyapatite. ACS Omega, 2019, 4, 19765-19771.	1.6	9
1307	Nature-Inspired, Ultra-Lightweight Structures with Gyroid Cores Produced by Additive Manufacturing and Reinforced by Unidirectional Carbon Fiber Ribs. Materials, 2019, 12, 4134.	1.3	43
1308	Visualization of the Stimuli-responsive Surface Behavior of Functionalized Wood Material by Chemical Force Microscopy. Scientific Reports, 2019, 9, 18569.	1.6	7
1309	Analysis of tension and bending fracture behavior in moso bamboo (<i>Phyllostachys pubescens</i>) using synchrotron radiation micro-computed tomography (SRμCT). Holzforschung, 2019, 73, 1051-1058.	0.9	14
1310	Bioorthogonal surface modified α-TCP-based bone filler for enhancement of apatite formation and bioactivity. Ceramics International, 2019, 45, 5981-5986.	2.3	3

ARTICLE IF CITATIONS Enhanced tunable fracture properties of the high stiffness hierarchical honeycombs with stochastic 1311 2.0 7 Voronoi substructures. Results in Physics, 2019, 12, 1190-1196. Nanopores in nanocrystalline gold. Materialia, 2019, 5, 100195. 1.3 Spatiotemporal Control Strategies for Bone Formation through Tissue Engineering and Regenerative 1313 3.9 20 Medicine Approaches. Advanced Healthcare Materials, 2019, 8, e1801044. Recent developments in the conservation of materials properties of historical wood. Progress in 1314 Materials Science, 2019, 102, 167-221. Texture-guided generative structural designs under local control. CAD Computer Aided Design, 2019, 1315 1.4 11 108, 1-11. Mechanical performance of vertex-based hierarchical vs square thin-walled multi-cell structure. 2.7 86 Thin-Walled Structures, 2019, 134, 102-110. Computational investigation of ultrastructural behavior of bone using a cohesive finite element 1317 1.4 25 approach. Biomechanics and Modeling in Mechanobiology, 2019, 18, 463-478. Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary design. 3.3 26 Materials and Design, 2019, 161, 80-85. The potential of three-dimensional printing technologies to unlock the development of new 1319 â€~bio-inspired' dental materials: an overview and research roadmap. Journal of Prosthodontic 1.1 17 Research, 2019, 63, 131-139. Processing Lignocellulose-Based Composites into an Ultrastrong Structural Material. ACS Nano, 7.3 53 2019, 13, 371-376. Woodâ€Inspired 3Dâ€Printed Helical Composites with Tunable and Enhanced Mechanical Performance. 1321 7.8 54 Advanced Functional Materials, 2019, 29, 1805888. Osseointegration and current interpretations of the bone-implant interface. Acta Biomaterialia, 2019, 4.1 200 84, 1-15. Structurally Controlled Cellular Architectures for Highâ€Performance Ultraâ€Lightweight Materials. 1323 11.1 79 Advanced Materials, 2019, 31, e1803670. Engineering the crack path in lattice cellular materials through bio-inspired micro-structural 1324 24 alterations. Extreme Mechanics Letters, 2019, 26, 8-17. Fabrication of supramolecular cyclodextrinâ€"fullerene nonwovens by electrospinning. Beilstein 1325 1.3 3 Journal of Organic Chemistry, 2019, 15, 89-95. Modeling the Compressive Behavior of Anisotropic, Nanometerâ€Scale Structured Silica. Advanced Engineering Materials, 2019, 21, 1801097. Third harmonic generation imaging and analysis of the effect of low gravity on the 1327 1.1 10 lacuno-canalicular network of mouse bone. PLoS ONE, 2019, 14, e0209079. Hierarchical Toughening of Nacreâ€Like Composites. Advanced Functional Materials, 2019, 29, 1806800. 89

#	Article	IF	CITATIONS
1329	Fatigueless structures inspired by nature: A case study. Material Design and Processing Communications, 2019, 1, e27.	0.5	5
1330	Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials. Acta Biomaterialia, 2019, 86, 96-108.	4.1	31
1331	The fracture mechanics of biological and bioinspired materials. MRS Bulletin, 2019, 44, 46-52.	1.7	31
1332	Influence of natural templates in the synthesis of nickel aluminate and the evaluation in methanol detection. Materials Research Express, 2019, 6, 055903.	0.8	1
1333	Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particles. Biomacromolecules, 2019, 20, 693-704.	2.6	202
1334	Same solution synthesis and self-assembly of porous silica nanoparticles into microspheres. Applied Surface Science, 2019, 467-468, 634-639.	3.1	8
1335	External fields for the fabrication of highly mineralized hierarchical architectures. Journal of Materials Research, 2019, 34, 169-193.	1.2	21
1336	DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 2019, 158, 420-478.	1.4	440
1337	Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. International Journal of Impact Engineering, 2019, 125, 163-172.	2.4	154
1338	Buckling of stomatopod-dactyl-club-inspired functional gradient plates: A numerical study. Composite Structures, 2019, 207, 801-815.	3.1	9
1339	Evolution of structure and residual stress of a fcc/hex-AlCrN multi-layered system upon thermal loading revealed by cross-sectional X-ray nano-diffraction. Acta Materialia, 2019, 162, 55-66.	3.8	35
1340	Bioactive Glass Scaffolds for Bone Tissue Engineering. , 2019, , 417-442.		7
1341	Electrospun poly(ε aprolactone) nanofiber shish kebabs mimic mineralized bony surface features. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1141-1149.	1.6	15
1342	Mechanical properties of spider-web hierarchical honeycombs subjected to out-of-plane impact loading. Journal of Sandwich Structures and Materials, 2020, 22, 771-796.	2.0	53
1343	Vegetable hierarchical structures as template for bone regeneration: New bio eramization process for the development of a bone scaffold applied to an experimental sheep model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 600-611.	1.6	10
1344	Beyond density: Mesostructural features of impact resistant wood. Materials Today Communications, 2020, 22, 100697.	0.9	5
1345	An arterial constitutive model accounting for collagen content and cross-linking. Journal of the Mechanics and Physics of Solids, 2020, 136, 103682.	2.3	29
1346	Bone regeneration response in an experimental long bone defect orthotopically implanted with alginateâ€pullulanâ€glassâ€ceramic composite scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1129-1140	1.6	17

#	Article	IF	Citations
1347	A comparison between the failure modes observed in biological and synthetic polymer nanocomposites. Polymer-Plastics Technology and Materials, 2020, 59, 241-270.	0.6	4
1348	Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020, 7, 73-83.	4.6	60
1349	Nonâ€Equilibrium, Lightâ€Adaptive, Steadyâ€6tate Reconfiguration of Mechanical Patterns in Bioinspired Nanocomposites. Advanced Functional Materials, 2020, 30, 1905309.	7.8	15
1350	Crashworthiness design of self-similar graded honeycomb-filled composite circular structures. Construction and Building Materials, 2020, 233, 117344.	3.2	44
1351	Bioprocessâ€Inspired Microscale Additive Manufacturing of Multilayered TiO ₂ /Polymer Composites with Enamelâ€Like Structures and High Mechanical Properties. Advanced Functional Materials, 2020, 30, 1904880.	7.8	33
1352	Design, Fabrication, and Mechanics of 3D Microâ€/Nanolattices. Small, 2020, 16, e1902842.	5.2	62
1353	Modulating the Mechanical Performance of Macroscale Fibers through Shearâ€Induced Alignment and Assembly of Protein Nanofibrils. Small, 2020, 16, e1904190.	5.2	39
1354	Ceramics with the signature of wood: a mechanical insight. Materials Today Bio, 2020, 5, 100032.	2.6	16
1355	Biomimic Vein-Like Transparent Conducting Electrodes with Low Sheet Resistance and Metal Consumption. Nano-Micro Letters, 2020, 12, 19.	14.4	22
1356	Topologically reconfigurable mechanical metamaterials with motion structures. Mechanics of Materials, 2020, 143, 103317.	1.7	7
1357	The Emergence of Complexity from a Simple Model for Tissue Growth. Journal of Statistical Physics, 2020, 180, 459-473.	0.5	4
1358	Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomaterialia, 2020, 104, 221-230.	4.1	25
1359	Seed-mediated evolution of hierarchical metal–organic framework quaternary superstructures. Chemical Science, 2020, 11, 1643-1648.	3.7	36
1360	Meta-biomaterials. Biomaterials Science, 2020, 8, 18-38.	2.6	90
1361	The geometrical structure of interfaces in dental enamel: A FIB-STEM investigation. Acta Biomaterialia, 2020, 104, 17-27.	4.1	14
1362	Reduction of fibrillar strain-rate sensitivity in steroid-induced osteoporosis linked to changes in mineralized fibrillar nanostructure. Bone, 2020, 131, 115111.	1.4	9
1363	Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Advanced Functional Materials, 2020, 30, 1908121.	7.8	59
1364	Inconel-steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients. Additive Manufacturing, 2020, 32, 101027.	1.7	16

#	Article	IF	CITATIONS
1365	Extrafibrillar matrix yield stress and failure envelopes for mineralised collagen fibril arrays. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 105, 103563.	1.5	5
1366	Bio-inspired anisotropic polymeric heart valves exhibiting valve-like mechanical and hemodynamic behavior. Science China Materials, 2020, 63, 629-643.	3.5	12
1367	Tough Ordered Mesoporous Elastomeric Biomaterials Formed at Ambient Conditions. ACS Nano, 2020, 14, 241-254.	7.3	8
1368	On the Strength of Hair across Species. Matter, 2020, 2, 136-149.	5.0	18
1369	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	1.3	52
1370	Top-down peeling bacterial cellulose to high strength ultrathin films and multifunctional fibers. Chemical Engineering Journal, 2020, 391, 123527.	6.6	33
1371	A Review on Recent Advances in the Constitutive Modeling of Bone Tissue. Current Osteoporosis Reports, 2020, 18, 696-704.	1.5	21
1372	In-plane compression of 3D-printed self-similar hierarchical honeycombs – Static and dynamic analysis. Thin-Walled Structures, 2020, 157, 106990.	2.7	63
1373	Hierarchical growth of Au nanograss with intense built-in hotspots for plasmonic applications. Journal of Materials Chemistry C, 2020, 8, 16073-16082.	2.7	10
1374	Reticular Materials for Artificial Photoreduction of CO ₂ . Advanced Energy Materials, 2020, 10, 2002091.	10.2	92
1375	Largeâ€5cale Assembly of Peptideâ€Based Hierarchical Nanostructures and Their Antiferroelectric Properties. Small, 2020, 16, e2003986.	5.2	6
1376	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures. , 2020, , 3-19.		1
1377	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0
1378	FEM exploration of the potential of silica diatom frustules for vibrational MEMS applications. Sensors and Actuators A: Physical, 2020, 315, 112270.	2.0	7
1379	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
1380	Nanobeam X-ray fluorescence and diffraction computed tomography on human bone with a resolution better than 120Ânm. Journal of Structural Biology, 2020, 212, 107631.	1.3	18
1381	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
1382	Bioinspired Anisotropic Chitosan Hybrid Hydrogel. ACS Applied Bio Materials, 2020, 3, 6959-6966.	2.3	19

#	Article	IF	CITATIONS
1383	Ultrastrong Hierarchical Porous Materials via Colloidal Assembly and Oxidation of Metal Particles. Advanced Functional Materials, 2020, 30, 2003550.	7.8	31
1384	Effect of stitch patterns on moisture responsiveness of seamless knitted wool fabrics for activewear. International Journal of Clothing Science and Technology, 2020, 33, 175-187.	0.5	2
1385	Bio-Inspired Platelet-Reinforced Polymers with Enhanced Stiffness and Damping Behavior. ACS Applied Polymer Materials, 2020, 2, 3557-3565.	2.0	7
1386	Fresh and Hardened Properties of Extrusion-Based 3D-Printed Cementitious Materials: A Review. Sustainability, 2020, 12, 5628.	1.6	43
1387	Hierarchy-induced X-ray linear dichroism in cortical bone. Emergent Materials, 2020, 3, 515-520.	3.2	4
1388	Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. , 2020, , 1217-1236.		4
1389	Heterogeneity of the osteocyte lacuno-canalicular network architecture and material characteristics across different tissue types in healing bone. Journal of Structural Biology, 2020, 212, 107616.	1.3	7
1390	Nanomechanics of Biomaterials – from Cells to Shells. Israel Journal of Chemistry, 2020, 60, 1171-1184.	1.0	7
1391	Hierarchical supramolecular assembly of a single peptoid polymer into a planar nanobrush with two distinct molecular packing motifs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31639-31647.	3.3	38
1392	Fabrication of hydrogel coatings by atmospheric-pressure plasma polymerization. Materials Today, 2020, 41, 316-317.	8.3	7
1393	Strategies for simultaneous strengthening and toughening via nanoscopic intracrystalline defects in a biogenic ceramic. Nature Communications, 2020, 11, 5678.	5.8	20
1394	Temperature-responsive collagen–PNIPAAm conjugate: preparation and fibrillogenesis. New Journal of Chemistry, 2020, 44, 21261-21270.	1.4	7
1395	Hierarchical Toughening of a Biomimetic Bulk Cement Composite. ACS Applied Materials & Interfaces, 2020, 12, 53297-53309.	4.0	22
1396	Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today, 2020, 35, 100936.	6.2	134
1397	Thermoinduced Crystallization-Driven Self-Assembly of Bioinspired Block Copolymers in Aqueous Solution. Biomacromolecules, 2020, 21, 3411-3419.	2.6	13
1398	The consequences of dehydration-hydration on bone anisotropy and implications on the sublamellar organization of mineralized collagen fibrils. Journal of Biomechanics, 2020, 104, 109737.	0.9	2
1399	A Facile Synthesis Process and Evaluations of α-Calcium Sulfate Hemihydrate for Bone Substitute. Materials, 2020, 13, 3099.	1.3	9
1400	A Framework to Achieve Multifunctionality in Biomimetic Adaptive Building Skins. Buildings, 2020, 10, 114.	1.4	18

ARTICLE IF CITATIONS Study on the Self-Organization of an Fe-Mn-C-B Coating during Friction with Surface-Active Lubricant. 1401 1.3 8 Materials, 2020, 13, 3025. Experimental design and evaluation of a moisture responsive sports bra. Fashion and Textiles, 2020, 7, . 1402 1.3 Wood and the Activity of Dead Tissue. Advanced Materials, 2021, 33, e2001412. 29 1403 11.1 Advanced bio-inspired structural materials: Local properties determine overall performance. 1404 8.3 Materials Today, 2020, 41, 177-199. Mechanical, thermal, hygroscopic and acoustic properties of bio-aggregates – lime and alkali activated insulating composite materials: A review of current status and prospects for miscanthus as 1405 1.7 9 an innovative resource in the South West of England. Sustainable Materials and Technologies, 2020, 26, e00211 Type I Collagen-Fibrin Mixed Hydrogels: Preparation, Properties and Biomedical Applications. Gels, 2.1 2020, 6, 36. X-Ray Structural Analysis of Single Adult Cardiomyocytes: Tomographic Imaging and Microdiffraction. 1407 0.2 5 Biophysical Journal, 2020, 119, 1309-1323. Bioinspired Design of Dental Functionally Graded Multilayer Structures., 2020, , 140-166. 1409 Bionic Organs., 2020, , 167-192. 1410 1 1411 Bioinspired Design of Nanostructures., 2020, , 212-232. Flying of Insects., 2020, , 271-299. 5 1412 Bioinspired Building Envelopes., 2020, , 343-354. Computational Approach of the Cortical Bone Mechanical Behavior Based on an Elastic Viscoplastic 1415 1.3 6 Damageable Constitutive Model. International Journal of Applied Mechanics, 2020, 12, 2050081. Bio-Inspired Toughening of Composites in 3D-Printing. Materials, 2020, 13, 4714. 1416 1.3 Kinetically Controlled Sequential Seeded Growth: A General Route to Crystals with Different 1417 7.3 25 Hierarchies. ACS Nano, 2020, 14, 15953-15961. Anisotropic Dynamics and Mechanics of Macromolecular Crystals Containing Lattice-Patterned 1418 Polymer Networks. Journal of the American Chemical Society, 2020, 142, 19402-19410. Nacre toughening due to cooperative plastic deformation of stacks of co-oriented aragonite 1419 2.9 24 platelets. Communications Materials, 2020, 1, . 1420 Human Cortical Bone as a Structural Material., 2020, , 20-44.

#	Article	IF	CITATIONS
1421	Synthesis of Bioâ€Inspired Guanine Microplatelets: Morphological and Crystallographic Control. Chemistry - A European Journal, 2020, 26, 16228-16235.	1.7	13
1422	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5
1423	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
1424	Site-Dependent Peculiarities of Calcium Bonds in Bone Tissue. Journal of Physical Chemistry Letters, 2020, 11, 7839-7842.	2.1	4
1425	Biomimetic peptide enriched nonwoven scaffolds promote calcium phosphate mineralisation. RSC Advances, 2020, 10, 28332-28342.	1.7	7
1426	Nanostructured Biomaterials for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 922.	2.0	72
1427	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
1428	Lilypad aggregation: localised self-assembly and metal sequestration at a liquid–vapour interface. Chemical Science, 2020, 11, 7501-7510.	3.7	5
1429	On the Failure of Classic Elasticity in Predicting Elastic Wave Propagation in Gyroid Lattices for Very Long Wavelengths. Symmetry, 2020, 12, 1243.	1.1	9
1430	Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7, 1667-1701.	4.6	164
1431	Raman Spectroscopy Methods to Characterize the Mechanical Response of Soft Biomaterials. Biomacromolecules, 2020, 21, 3485-3497.	2.6	10
1432	Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing. PLoS ONE, 2020, 15, e0238606.	1.1	18
1433	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
1434	Functional principles of baobab fruit pedicels – anatomy and biomechanics. Annals of Botany, 2020, 126, 1215-1223.	1.4	0
1435	Beyond What Meets the Eye: Imaging and Imagining Wood Mechanical–Structural Properties. Advanced Materials, 2021, 33, e2001613.	11.1	46
1436	Assessing the role of loading direction on the uniaxial compressive response of multilayered ice-templated alumina-epoxy composites. Materialia, 2020, 14, 100895.	1.3	8
1437	Properties and role of interfaces in multimaterial 3D printed composites. Scientific Reports, 2020, 10, 22285.	1.6	38
1438	Hardness, an Important Indicator of Bone Quality, and the Role of Collagen in Bone Hardness. Journal of Functional Biomaterials, 2020, 11, 85.	1.8	22

#	Article	IF	CITATIONS
1439	Hierarchical square honeycomb metamaterials with low-frequency broad bandgaps and flat energy bands characteristics. Journal of Applied Physics, 2020, 128, 235102.	1.1	5
1440	Deproteinized young bone reveals a continuous mineral phase and its contribution to mechanical properties with age. Journal of Materials Research and Technology, 2020, 9, 15421-15432.	2.6	2
1441	Applying Bio-Inspired hierarchical design to jamming technology: Improving density-efficient mechanical properties and opening application spaces. Journal of Materials Research and Technology, 2020, 9, 15555-15565.	2.6	3
1442	The Role of Scaffolds in Tendon Tissue Engineering. Journal of Functional Biomaterials, 2020, 11, 78.	1.8	36
1443	Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5, 642-666.	23.3	616
1444	Magnesium-rich nanoprecipitates in calcite: atomistic mechanisms responsible for toughening in <i>Ophiocoma wendtii</i> . Physical Chemistry Chemical Physics, 2020, 22, 10056-10062.	1.3	4
1445	Light, Strong, and Ductile Architectures Achieved by Silk Fiber "Welding―Processing. ACS Omega, 2020, 5, 11955-11961.	1.6	1
1446	Hierarchical phononic crystals for filtering multiple target frequencies of ultrasound. Scientific Reports, 2020, 10, 8070.	1.6	8
1447	Bioinspired Poly(vinyl alcohol) Film Actuator Powered by Water Evaporation under Ambient Conditions. Macromolecular Materials and Engineering, 2020, 305, 2000145.	1.7	13
1448	Rationally designed chimeric solidâ€binding peptides for tailoring solid interfaces. Medical Devices & Sensors, 2020, 3, e10065.	2.7	10
1449	Emerging Bioinspired Artificial Woods. Advanced Materials, 2021, 33, e2001086.	11.1	54
1450	A simple approach to prepare self-assembled, nacre-inspired clay/polymer nanocomposites. Soft Matter, 2020, 16, 5497-5505.	1.2	16
1451	Cholla cactus frames as lightweight and torsionally tough biological materials. Acta Biomaterialia, 2020, 112, 213-224.	4.1	8
1452	Structure and composition of the tunic in the sea pineapple Halocynthia roretzi: A complex cellulosic composite biomaterial. Acta Biomaterialia, 2020, 111, 290-301.	4.1	13
1453	Novel micro-scale specimens for mode-dependent fracture testing of brittle materials: A case study on GaAs single crystals. Materials and Design, 2020, 193, 108765.	3.3	18
1454	Continuous Formation of Ultrathin, Strong Collagen Sheets with Tunable Anisotropy and Compaction. ACS Biomaterials Science and Engineering, 2020, 6, 4236-4246.	2.6	23
1455	Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis. Composites Part B: Engineering, 2020, 196, 108138.	5.9	6
1456	Hierarchical biofabrication of biomimetic collagen-elastin vascular grafts with controllable properties via lyophilisation. Acta Biomaterialia, 2020, 112, 52-61.	4.1	23

#	Article	IF	CITATIONS
1457	Ultradurable Superhydrophobic Natural Rubberâ€Based Elastomer Enabled by Modified Multiscale Leather Collagen Fibers. Advanced Materials Interfaces, 2020, 7, 2000344.	1.9	8
1458	Deformation behavior of normal human enamel: A study by nanoindentation. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108, 103799.	1.5	27
1459	3D ink-extrusion printing and sintering of Ti, Ti-TiB and Ti-TiC microlattices. Additive Manufacturing, 2020, 35, 101412.	1.7	12
1460	ZrB ₂ -Based "Brick-and-Mortar―Composites Achieving the Synergy of Superior Damage Tolerance and Ablation Resistance. ACS Applied Materials & Interfaces, 2020, 12, 33246-33255.	4.0	38
1461	Coulomb friction in twisting of biomimetic scale-covered substrate. Bioinspiration and Biomimetics, 2020, 15, 056013.	1.5	8
1462	Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomaterialia, 2020, 112, 75-86.	4.1	23
1463	The Biomaterial Age: The Transition Toward a More Sustainable Society will Be Determined by Advances in Controlling Biological Processes. Matter, 2020, 2, 1352-1355.	5.0	17
1464	The influence of structural gradients in large pore organosilica materials on the capabilities for hosting cellular communities. RSC Advances, 2020, 10, 17327-17335.	1.7	3
1465	An inspiration from the microstructure of the cortical bone in goat tibia. Bioinspired, Biomimetic and Nanobiomaterials, 2020, 9, 53-63.	0.7	2
1466	Processed Bamboo as a Novel Formaldehyde-Free High-Performance Furniture Biocomposite. ACS Applied Materials & Interfaces, 2020, 12, 30824-30832.	4.0	74
1467	Biochemomechanics of the thoracic aorta in health and disease. Progress in Biomedical Engineering, 2020, 2, 032002.	2.8	13
1468	A Phase Field Approach to Trabecular Bone Remodeling. Frontiers in Applied Mathematics and Statistics, 2020, 6, .	0.7	2
1469	Sonification based <i>de novo</i> protein design using artificial intelligence, structure prediction, and analysis using molecular modeling. APL Bioengineering, 2020, 4, 016108.	3.3	36
1470	Tunable hierarchical wrinkling: From models to applications. Journal of Applied Physics, 2020, 127, .	1.1	46
1471	Effects of dispersion and fixation of collagen fiber network on its flame retardancy. Polymer Degradation and Stability, 2020, 175, 109122.	2.7	10
1472	Additive manufacturing for bone tissue engineering scaffolds. Materials Today Communications, 2020, 24, 101024.	0.9	76
1473	Connectivity and plasticity determine collagen network fracture. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8326-8334.	3.3	44
1474	Review on calcium―and magnesiumâ€based silicates for bone tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2020, 108, 1546-1562.	2.1	65

#	Article	IF	CITATIONS
1475	Modelling and testing of large-scale masonry elements under three-point bending – Tough and strong nacre-like structure enlarged by a factor of 20,000. Engineering Fracture Mechanics, 2020, 229, 106961.	2.0	25
1476	Circular manufacturing of chitinous bio-composites via bioconversion of urban refuse. Scientific Reports, 2020, 10, 4632.	1.6	33
1477	Block copolymer hierarchical structures from the interplay of multiple assembly pathways. Polymer Chemistry, 2020, 11, 2305-2311.	1.9	2
1478	Quantitative and qualitative bone imaging: A review of synchrotron radiation microtomography analysis in bone research. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103887.	1.5	11
1479	Surface effects on the elastic modulus of regular polygonal prism nanoporous materials. Acta Mechanica, 2020, 231, 3451-3460.	1.1	3
1480	DRY & WET: meniscus splitting from a mixture of polysaccharides and water. Polymer Journal, 2020, 52, 1185-1194.	1.3	4
1481	Natural arrangement of fiber-like aragonites and its impact on mechanical behavior of mollusk shells: A review. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103940.	1.5	19
1482	Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomaterialia, 2020, 107, 1-24.	4.1	48
1483	Cellular Geometry Sensing at Different Length Scales and its Implications for Scaffold Design. Materials, 2020, 13, 963.	1.3	50
1484	Length scale parameter of single trabecula in cancellous bone. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1917-1923.	1.4	8
1485	The flexural property and its synergistic mechanism of multibody molded beetle elytron plates. Science China Technological Sciences, 2020, 63, 768-776.	2.0	11
1486	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
1487	Anisotropic and curved lattice members enhance the structural integrity and mechanical performance of architected metamaterials. International Journal of Solids and Structures, 2020, 193-194, 287-301.	1.3	33
1488	Effect of microstructure on porosity of random fibrous networks. Journal of the Textile Institute, 2020, 111, 1713-1723.	1.0	3
1489	Design and Synthesis of Fluorescent Nanocelluloses for Sensing and Bioimaging Applications. ChemPlusChem, 2020, 85, 487-502.	1.3	34
1490	Compressive ductility and fracture resistance in CuZr-based shape-memory metallic-glass composites. International Journal of Plasticity, 2020, 128, 102687.	4.1	33
1491	Cellâ€Instructive Multiphasic Gelâ€inâ€Gel Materials. Advanced Functional Materials, 2020, 30, 1908857.	7.8	34
1492	Modular Total Synthesis in Reticular Chemistry. Journal of the American Chemical Society, 2020, 142, 3069-3076.	6.6	42

#	Article	IF	CITATIONS
1493	Bioinspired functional organohydrogels with synergistic multiphases heterostructure. Polymer, 2020, 190, 122214.	1.8	12
1494	Numerical modeling of the effects hydration and number of hydrogen bonds on the mechanical properties of the tropocollagen molecule. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 299-306.	1.0	3
1495	Composite Reinforcement Architectures: A Review of Field-Assisted Additive Manufacturing for Polymers. Journal of Composites Science, 2020, 4, 1.	1.4	38
1496	Fabrication of Asymmetrical and Gradient Hierarchy Structures of Poly- <i>p</i> -xylylenes on Multiscale Regimes Based on a Vapor-Phase Sublimation and Deposition Process. Chemistry of Materials, 2020, 32, 1120-1130.	3.2	18
1497	Artificial Wooden Nacre: A High Specific Strength Engineering Material. ACS Nano, 2020, 14, 2036-2043.	7.3	57
1498	Flourishing Selfâ€Healing Surface Materials: Recent Progresses and Challenges. Advanced Materials Interfaces, 2020, 7, 1901959.	1.9	30
1499	Polyphosphoester-modified Cellulose Nanocrystals for Stabilizing Pickering Emulsion Polymerization of Styrene. Chinese Journal of Polymer Science (English Edition), 2020, 38, 921-931.	2.0	11
1500	Intrinsic-to-extrinsic transition in fracture toughness through structural design: A lesson from nature. Extreme Mechanics Letters, 2020, 37, 100685.	2.0	7
1501	Hierarchical zeolites: synthesis, structural control, and catalytic applications. Emergent Materials, 2020, 3, 225-245.	3.2	22
1502	Investigation of bone matrix composition, architecture and mechanical properties reflect structure-function relationship of cortical bone in glucocorticoid induced osteoporosis. Bone, 2020, 136, 115334.	1.4	10
1503	On Simulating the Formation of Structured, Crystalline Systems via Non-classical Pathways. Frontiers in Materials, 2020, 7, .	1.2	1
1504	Distinctive Optical Properties of Hierarchically Ordered Nanostructures Selfâ€Assembled from Multiblock Copolymer/Nanoparticle Mixtures. Macromolecular Rapid Communications, 2020, 41, 2000131.	2.0	6
1505	An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing. Biomechanics and Modeling in Mechanobiology, 2020, 19, 2127-2147.	1.4	16
1506	Delignification and Ionic Liquid Treatment of Wood toward Multifunctional High-Performance Structural Materials. ACS Applied Materials & Interfaces, 2020, 12, 23532-23542.	4.0	42
1507	Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. Journal of Applied Physics, 2020, 127, .	1.1	77
1508	Probing the Role of Bone Lamellar Patterns through Collagen Microarchitecture Mapping, Numerical Modeling, and 3Dâ€Printing. Advanced Engineering Materials, 2020, 22, .	1.6	10
1509	Bioinspired Materials with Selfâ€Adaptable Mechanical Properties. Advanced Materials, 2020, 32, e1906970.	11.1	49
1510	Photocurable ceramic/monomer feedstocks containing terpene crystals as sublimable porogen for UV curing-assisted 3D plotting. Journal of the European Ceramic Society, 2020, 40, 3469-3477.	2.8	16

#	Article	IF	CITATIONS
1511	Wood–Gelatin Bio-Composite Membranes with Tunable Flux. ACS Sustainable Chemistry and Engineering, 2020, 8, 7205-7213.	3.2	12
1512	Performance of a 3D printed cellular structure inspired by bone. Thin-Walled Structures, 2020, 151, 106713.	2.7	45
1513	Materials science perspective of multifunctional materials derived from collagen. International Materials Reviews, 2021, 66, 160-187.	9.4	20
1514	Preparation and Application of Hierarchical Porous Carbon Materials from Waste and Biomass: A Review. Waste and Biomass Valorization, 2021, 12, 1699-1724.	1.8	87
1515	Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture. ACS Biomaterials Science and Engineering, 2021, 7, 2864-2879.	2.6	41
1516	Coral-Derived Collagen Fibers for Engineering Aligned Tissues. Tissue Engineering - Part A, 2021, 27, 187-200.	1.6	8
1517	Hydration-induced reversible deformation of biological materials. Nature Reviews Materials, 2021, 6, 264-283.	23.3	58
1518	Facile and green synthesis of mechanically flexible and flame-retardant clay/graphene oxide nanoribbon interconnected networks for fire safety and prevention. Chemical Engineering Journal, 2021, 405, 126620.	6.6	116
1519	3D printing of lightweight, super-strong yet flexible all-cellulose structure. Chemical Engineering Journal, 2021, 405, 126668.	6.6	68
1520	A multiscale study of structural and compositional changes in a natural nanocomposite: Osteoporotic bone with chronic endogenous steroid excess. Bone, 2021, 143, 115666.	1.4	7
1521	Design optimization of a novel bio-inspired 3D porous structure for crashworthiness. Composite Structures, 2021, 255, 112897.	3.1	56
1522	The cyanobacterial polysaccharide sacran: characteristics, structures, and preparation of LC gels. Polymer Journal, 2021, 53, 81-91.	1.3	11
1523	Hierarchically-porous metallic scaffolds via 3D extrusion and reduction of oxide particle inks with salt space-holders. Additive Manufacturing, 2021, 37, 101637.	1.7	8
1524	Inspiration from Nature's body armours – A review of biological and bioinspired composites. Composites Part B: Engineering, 2021, 205, 108513.	5.9	94
1525	Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioactive Materials, 2021, 6, 1491-1511.	8.6	161
1526	Structural and mechanical properties of fish scales for the bio-inspired design of flexible body armors: A review. Acta Biomaterialia, 2021, 121, 41-67.	4.1	51
1527	The Earth's Lithosphere Inspires Materials Design. Advanced Materials, 2021, 33, 2005473.	11.1	13
1528	Nucleation and growth of cholesteric collagen tactoids: A time-series statistical analysis based on integration of direct numerical simulation (DNS) and long short-term memory recurrent neural neural neural of Colloid and Interface Science, 2021, 582, 859-873	5.0	21

#	Article	IF	CITATIONS
1529	Bioinspired approaches for toughening of fibre reinforced polymer composites. Materials and Design, 2021, 199, 109336.	3.3	26
1530	High pressure laminates reinforced with electrospun cellulose acetate nanofibers. Carbohydrate Polymers, 2021, 254, 117461.	5.1	11
1531	Unveiling a new shear stress transfer mechanism in composites with helically wound hierarchicalÂfibres. International Journal of Mechanical Sciences, 2021, 192, 106135.	3.6	10
1532	Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana. Composite Structures, 2021, 262, 113349.	3.1	8
1533	EML Webinar Overview: Advanced materials toward a sustainable future—Mechanics design. Extreme Mechanics Letters, 2021, 42, 101107.	2.0	14
1534	Natural load-bearing protein materials. Progress in Materials Science, 2021, 120, 100767.	16.0	31
1536	Reinforcement of bio-apatite by zinc substitution in the incisor tooth of a prawn. Acta Biomaterialia, 2021, 120, 116-123.	4.1	11
1537	Design optimization of interconnected porous structures using extended triply periodic minimal surfaces. Journal of Computational Physics, 2021, 425, 109909.	1.9	10
1539	WebNet: A biomateriomic three-dimensional spider web neural net. Extreme Mechanics Letters, 2021, 42, 101034.	2.0	10
1540	A microstructure-based study on compact human bones: hierarchical length scale parameter. Acta Mechanica, 2021, 232, 73-88.	1.1	2
1541	Crashworthiness optimization of bio-inspired hierarchical honeycomb under axial loading. International Journal of Crashworthiness, 2021, 26, 26-37.	1.1	13
1542	Bioprocess-inspired synthesis of multilayered chitosan/CaCO ₃ composites with nacre-like structures and high mechanical properties. Journal of Materials Chemistry B, 2021, 9, 5691-5697.	2.9	3
1544	Isolation of Nanofibrils from Animal Silks. Methods in Molecular Biology, 2021, 2347, 139-148.	0.4	0
1545	Nacreous aramid-mica bulk materials with excellent mechanical properties and environmental stability. IScience, 2021, 24, 101971.	1.9	15
1546	Alignment of Au nanorods along <i>de novo</i> designed protein nanofibers studied with automated image analysis. Soft Matter, 2021, 17, 6109-6115.	1.2	4
1547	Concentric chiral nematic polymeric fibers from cellulose nanocrystals. Nanoscale Advances, 2021, 3, 5111-5121.	2.2	11
1548	Complex fluids in animal survival strategies. Soft Matter, 2021, 17, 3022-3036.	1.2	15
1549	3D printing of biphasic inks: beyond single-scale architectural control. Journal of Materials Chemistry C, 2021, 9, 12489-12508.	2.7	14

#	Article	IF	CITATIONS
1550	In situ mechanical reinforcement of polymer hydrogels via metal-coordinated crosslink mineralization. Nature Communications, 2021, 12, 667.	5.8	60
1551	A perspective on musical representations of folded protein nanostructures. Nano Futures, 2021, 5, 012501.	1.0	7
1552	Evaluation of the effect of a remineralising paste containing strontium doped nanohydroxyapatite with Non-Collagenous protein analogue - chitosan on the characteristics of partially demineralized dentin -An invitro study. Materials Today: Proceedings, 2021, 46, 5958-5963.	0.9	2
1553	Measurement Method of Fracture Surface Orientations of Cortical Bones Under Multidirectional External Loads. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	2.4	2
1554	Synthesis and Assembly of Recombinant Collagen. Methods in Molecular Biology, 2021, 2347, 83-96.	0.4	1
1555	Bioinspired nanostructures for tailoring mechanical properties. , 2021, , 711-729.		Ο
1556	Depolymerization of supramolecular polymers by a covalent reaction; transforming an intercalator into a sequestrator. Chemical Science, 2021, 12, 13572-13579.	3.7	11
1557	Bio-Inspired Lotus-Fiber-like Spiral Hydrogel Bacterial Cellulose Fibers. Nano Letters, 2021, 21, 952-958.	4.5	97
1558	The dynamic behavior of fractal-like tubes with Sierpinski hierarchy under axial loading. Engineering With Computers, 2022, 38, 1285-1298.	3.5	6
1559	Bone multiscale mechanics. , 2021, , 1-47.		0
1559 1560	Bone multiscale mechanics. , 2021, , 1-47. Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. Materials Science and Engineering C, 2021, 120, 111679.	3.8	0 6
	Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo.	3.8 3.2	
1560	Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. Materials Science and Engineering C, 2021, 120, 111679. Collagen mineralization and its applications in hard tissue repair. Materials Chemistry Frontiers, 2021,		6
1560 1561	Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. Materials Science and Engineering C, 2021, 120, 111679. Collagen mineralization and its applications in hard tissue repair. Materials Chemistry Frontiers, 2021, 5, 7071-7087. Dynamics of topological defects and structural synchronization in a forming periodic tissue. Nature	3.2	6
1560 1561 1562	Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. Materials Science and Engineering C, 2021, 120, 111679. Collagen mineralization and its applications in hard tissue repair. Materials Chemistry Frontiers, 2021, 5, 7071-7087. Dynamics of topological defects and structural synchronization in a forming periodic tissue. Nature Physics, 2021, 17, 410-415.	3.2 6.5	6 11 16
1560 1561 1562 1563	Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. Materials Science and Engineering C, 2021, 120, 111679. Collagen mineralization and its applications in hard tissue repair. Materials Chemistry Frontiers, 2021, 5, 7071-7087. Dynamics of topological defects and structural synchronization in a forming periodic tissue. Nature Physics, 2021, 17, 410-415. Special Issue on Biomineralization: From Cells to Biomaterials. Acta Biomaterialia, 2021, 120, 1-3. Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nature	3.2 6.5 4.1	6 11 16 2
1560 1561 1562 1563 1564	Sponge-like processed D-periodic self-assembled atelocollagen supports bone formation in vivo. Materials Science and Engineering C, 2021, 120, 111679. Collagen mineralization and its applications in hard tissue repair. Materials Chemistry Frontiers, 2021, 5, 7071-7087. Dynamics of topological defects and structural synchronization in a forming periodic tissue. Nature Physics, 2021, 17, 410-415. Special Issue on Biomineralization: From Cells to Biomaterials. Acta Biomaterialia, 2021, 120, 1-3. Electrical switching of high-performance bioinspired nanocellulose nanocomposites. Nature Communications, 2021, 12, 1312. In-plane dynamic crushing behaviors of joint-based hierarchical honeycombs with different	3.2 6.5 4.1 5.8	6 11 16 2 28

#	Article	IF	CITATIONS
1569	Conformational Transitions upon Maturation Rule Surface and pH-Responsiveness of α-Lactalbumin Microparticulates. ACS Applied Bio Materials, 2021, 4, 1876-1887.	2.3	15
1570	Stiff, strong and tough laminated glasses with bio-inspired designs. Bioinspiration and Biomimetics, 2021, 16, 026020.	1.5	5
1571	Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams. ACS Applied Materials & Interfaces, 2021, 13, 8976-8984.	4.0	34
1572	Hierarchicallyâ€Ordered Zeolites: A Critical Assessment. Advanced Materials Interfaces, 2021, 8, 2001841.	1.9	56
1573	A microstructure-based constitutive model of anisotropic cellulose nanopaper with aligned nanofibers. Extreme Mechanics Letters, 2021, 43, 101158.	2.0	12
1574	Coarse-Grained Simulation of Mechanical Properties of Single Microtubules With Micrometer Length. Frontiers in Molecular Biosciences, 2020, 7, 632122.	1.6	6
1575	Mechanical and Acoustic Behavior of 3Dâ€Printed Hierarchical Mathematical Fractal Menger Sponge. Advanced Engineering Materials, 2021, 23, 2001471.	1.6	32
1576	Structural information of biopolymer nanofibrils by infrared nanospectroscopy. Polymer, 2021, 219, 123534.	1.8	2
1577	Mechanical Behavior and High Formability of Palm Leaf Materials. Advanced Energy and Sustainability Research, 2021, 2, 2000080.	2.8	6
1578	Influence Mechanism of the Trabecular and Chamfer Radii on the Three-point Bending Properties of Trabecular Beetle Elytron Plates. Journal of Bionic Engineering, 2021, 18, 409-418.	2.7	5
1579	Delignified Wood from Understanding the Hierarchically Aligned Cellulosic Structures to Creating Novel Functional Materials: A Review. Advanced Sustainable Systems, 2021, 5, 2000251.	2.7	70
1580	Predicting strength of Finnish birch veneers based on three different failure criteria. Holzforschung, 2021, 75, 847-856.	0.9	8
1581	Topology optimization of multi-scale structures: a review. Structural and Multidisciplinary Optimization, 2021, 63, 1455-1480.	1.7	206
1582	Breast cancer–secreted factors perturb murine bone growth in regions prone to metastasis. Science Advances, 2021, 7, .	4.7	29
1583	Nanofibrous Gelatin-Based Biomaterial with Improved Biomimicry Using D-Periodic Self-Assembled Atelocollagen. Biomimetics, 2021, 6, 20.	1.5	5
1584	Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair. Advanced Functional Materials, 2021, 31, 2010068.	7.8	107
1585	Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science, 2021, 371, 1026-1033.	6.0	88
1586	Nanofibril-mediated fracture resistance of bone. Bioinspiration and Biomimetics, 2021, 16, 035001.	1.5	12

#	Article	IF	CITATIONS
1587	The evolution of thecideide microstructures and textures: traced from Triassic to Holocene. Lethaia, 2021, 54, 558.	0.6	2
1589	Nanostructure of bone tissue probed with Ca 2p and O 1s NEXAFS spectroscopy. Nano Express, 2021, 2, 020009.	1.2	1
1590	Quantitative Backscattered Electron Imaging of Bone Using a Thermionic or a Field Emission Electron Source. Calcified Tissue International, 2021, 109, 190-202.	1.5	16
1591	Prediction of cross section fracture path of cortical bone through nanoindentation array. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104303.	1.5	5
1592	Ultrathin polymer fibers hybridized with bioactive ceramics: A review on fundamental pathways of electrospinning towards bone regeneration. Materials Science and Engineering C, 2021, 123, 111853.	3.8	28
1593	Optimization of 3D network topology for bioinspired design of stiff and lightweight bone-like structures. Materials Science and Engineering C, 2021, 123, 112010.	3.8	8
1594	Toughening Mechanism of Unidirectional Stretchable Composite. Frontiers in Robotics and AI, 2021, 8, 673307.	2.0	5
1595	Bio-inspired lamellar hydroxyapatite/magnesium composites prepared by directional freezing and pressureless infiltration. Ceramics International, 2021, 47, 11183-11192.	2.3	5
1596	Optimized Hierarchical Structure and Chemical Gradients Promote the Biomechanical Functions of the Spike of Mantis Shrimps. ACS Applied Materials & amp; Interfaces, 2021, 13, 17380-17391.	4.0	8
1597	Soft Ferrofluid Actuator Based on 3D-Printed Scaffold Removal. 3D Printing and Additive Manufacturing, 2021, 8, 126-135.	1.4	2
1598	A Theoretical Study on the Mechanical Significance of Mineralized Collagen Fibril Orientation in Osteonal Lamellar Bone Samples. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 0, , .	0.2	0
1599	Nanofibrous Matrix of Defined Composition Sustains Human Induced Pluripotent Stem Cell Culture. ACS Applied Bio Materials, 2021, 4, 3035-3040.	2.3	1
1600	Improved strength and toughness of bioinspired Bouligand architecture composite by discontinuous carbon fiber. Journal of Physics: Conference Series, 2021, 1906, 012030.	0.3	4
1601	3D Interrelationship between Osteocyte Network and Forming Mineral during Human Bone Remodeling. Advanced Healthcare Materials, 2021, 10, e2100113.	3.9	29
1602	Fractional-order viscoelastic model of musculoskeletal tissues: correlation with fractals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20200990.	1.0	11
1603	Learning from nature: Bio-inspiration for damage-tolerant high-performance fibre-reinforced composites. Composites Science and Technology, 2021, 208, 108669.	3.8	45
1604	Introduction: biopolymers and biocomposites. ChemistrySelect, 2021, .	0.7	0
1605	Controlled shape memory effects of magnetic polymer nanocomposites by induction heating. Green Materials, 0, , 1-15.	1.1	1

#	Article	IF	CITATIONS
1607	Podosome-Driven Defect Development in Lamellar Bone under the Conditions of Senile Osteoporosis Observed at the Nanometer Scale. ACS Biomaterials Science and Engineering, 2021, 7, 2255-2267.	2.6	0
1608	Natural Cornstalk Pith as an Effective Energy Absorbing Cellular Material. Journal of Bionic Engineering, 2021, 18, 600-610.	2.7	5
1609	Hypermineralization of Hearing-Related Bones by a Specific Osteoblast Subtype. Journal of Bone and Mineral Research, 2020, 36, 1535-1547.	3.1	9
1610	Deformation mechanisms in ice-templated alumina–epoxy composites for the different directions of uniaxial compressive loading. Materialia, 2021, 16, 101054.	1.3	7
1611	Supramicellar Nanofibrils with End-to-End Coupled Uniform Cylindrical Micelle Subunits via One-Step Assembly from a Liquid Crystalline Block Copolymer. Macromolecules, 2021, 54, 6845-6853.	2.2	21
1612	Image-Based Polygonal Lattices for Mechanical Modeling of Biological Materials: 2D Demonstrations. ACS Biomaterials Science and Engineering, 2021, , .	2.6	1
1613	Separating effects of bone-quality changes at multiple scales in steroid-induced osteoporosis: Combining multiscale experimental and modelling approaches. Mechanics of Materials, 2021, 157, 103821.	1.7	0
1614	Finite element analysis of the impact of bone nanostructure on its piezoelectric response. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1689-1708.	1.4	8
1615	Recent progress in biomaterials for heart valve replacement: Structure, function, and biomimetic design. View, 2021, 2, 20200142.	2.7	9
1616	On the Possibility of Describing the Microstructure of Human Dentin as Soft Matrix Filled by Solid Particles. Journal of Physics: Conference Series, 2021, 1945, 012057.	0.3	Ο
1617	Localized surface acetylation of aqueous counter collision cellulose nanofibrils using a Pickering emulsion as an interfacial reaction platform. Carbohydrate Polymers, 2021, 261, 117845.	5.1	18
1618	Effects of Fatigue Damage on the Microscopic Modulus of Cortical Bone Using Nanoindentation. Materials, 2021, 14, 3252.	1.3	Ο
1619	A constitutive relation of hierarchical composite fibrous materials. International Journal of Fracture, 2021, 229, 215.	1.1	0
1620	Assessing the Interfacial Dynamic Modulus of Biological Composites. Materials, 2021, 14, 3428.	1.3	5
1622	Joining soft tissues to bone: Insights from modeling and simulations. Bone Reports, 2021, 14, 100742.	0.2	11
1623	Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization. Frontiers in Chemistry, 2021, 9, 682883.	1.8	26
1625	3D printed self-similar AlSi10Mg alloy hierarchical honeycomb architectures under in-plane large deformation. Thin-Walled Structures, 2021, 164, 107795.	2.7	34
1626	A Unique Marine-Derived Collagen: Its Characterization towards Biocompatibility Applications for Tissue Regeneration. Marine Drugs, 2021, 19, 419.	2.2	4

#	Article	IF	CITATIONS
1627	Innovative Biomaterials for the Treatment of Bone Cancer. International Journal of Molecular Sciences, 2021, 22, 8214.	1.8	17
1628	Multiscale and multimodal X-ray analysis: Quantifying phase orientation and morphology of mineralized turkey leg tendons. Acta Biomaterialia, 2021, 129, 169-177.	4.1	2
1629	A colored hydrophobic peptide film based on self-assembled two-fold topology. Journal of Colloid and Interface Science, 2021, 594, 326-333.	5.0	3
1630	Topologically engineered 3D printed architectures with superior mechanical strength. Materials Today, 2021, 48, 72-94.	8.3	37
1631	An experimentally informed statistical elasto-plastic mineralised collagen fibre model at the micrometre and nanometre lengthscale. Scientific Reports, 2021, 11, 15539.	1.6	8
1632	Air–Water Interface Assembly of Protein Nanofibrils Promoted by Hydrophobic Additives. ACS Sustainable Chemistry and Engineering, 2021, 9, 9289-9299.	3.2	12
1633	Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science, 2021, 120, 100823.	16.0	117
1634	Diversifying Composition Leads to Hierarchical Composites with Design Flexibility and Structural Fidelity. ACS Nano, 2021, 15, 14095-14104.	7.3	9
1635	Fast Opticalâ€Thermal Responsive Intelligent Glass Realized by Hydrated Poly(N â€Isopropylacrylamide) Film. Macromolecular Materials and Engineering, 2021, 306, 2100272.	1.7	0
1636	Sensitivity of the stress field of the proximal femur predicted by CTâ€based FE analysis to modeling uncertainties. Journal of Orthopaedic Research, 2022, 40, 1163-1173.	1.2	1
1637	Hierarchically Architected Polyvinylidene Fluoride Piezoelectric Foam for Boosted Mechanical Energy Harvesting and Self-Powered Sensor. ACS Applied Materials & Interfaces, 2021, 13, 37252-37261.	4.0	30
1638	Increasing fracture toughness via architected porosity. Materials and Design, 2021, 205, 109696.	3.3	25
1639	A Microvascularâ€Based Multifunctional and Reconfigurable Metamaterial. Advanced Materials Technologies, 2021, 6, 2100433.	3.0	5
1640	Toughening of interface networks through the introduction of weak links. Acta Materialia, 2021, 215, 117090.	3.8	7
1641	Structural and chemical variations in Mg-calcite skeletal segments of coralline red algae lead to improved crack resistance. Acta Biomaterialia, 2021, 130, 362-373.	4.1	6
1642	High-strength and multi-functional gypsum with unidirectionally porous architecture mimicking wood. Chemical Engineering Journal Advances, 2021, 7, 100114.	2.4	4
1643	Advanced materials design based on waste wood and bark. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200345.	1.6	9
1644	Modelling the influence of fibre internal structure on the measured modulus of technical natural fibres. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106478.	3.8	7

#	Article	IF	CITATIONS
1645	Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particles. ACS Applied Materials & Interfaces, 2021, 13, 41034-41045.	4.0	11
1646	Protein Assembly by Design. Chemical Reviews, 2021, 121, 13701-13796.	23.0	123
1647	Elastic local buckling behaviour of beetle elytron plate. Thin-Walled Structures, 2021, 165, 107922.	2.7	10
1648	Crystallization by Amorphous Particle Attachment: On the Evolution of Texture. Advanced Materials, 2021, 33, e2101358.	11.1	13
1649	Architecturing materials at mesoscale: some current trends. Materials Research Letters, 2021, 9, 399-421.	4.1	51
1650	Hierarchical self-assembly of polydisperse colloidal bananas into a two-dimensional vortex phase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	4
1651	Chiral hierarchical structure of bone minerals. Nano Research, 2022, 15, 1295-1302.	5.8	15
1652	Multifunctionality as design principle for contact lens materials. Multifunctional Materials, 2021, 4, 042001.	2.4	3
1653	In situ observation of shrinking and swelling of normal and compression Chinese fir wood at the tissue, cell and cell wall level. Wood Science and Technology, 2021, 55, 1359-1377.	1.4	13
1654	Broadening band gaps of shear horizontal waves of metamaterials via graded hierarchical architectures. Composite Structures, 2021, 271, 114118.	3.1	9
1655	Review: 3D printing hydrogels for the fabrication of soilless cultivation substrates. Applied Materials Today, 2021, 24, 101088.	2.3	15
1656	Torsion—Resistant Structures: A Nature Addressed Solution. Materials, 2021, 14, 5368.	1.3	10
1657	Impact-Resistant and Tough 3D Helicoidally Architected Polymer Composites Enabling Next-Generation Lightweight Silicon Photovoltaics Module Design and Technology. Polymers, 2021, 13, 3315.	2.0	4
1658	Bundling of Cellulose Nanofibers in PEO Matrix by Aqueous Electrospinning. Journal of Fiber Science and Technology, 2021, 77, 223-230.	0.2	2
1659	Nitrogen doped carbon spheres from Tamarindus indica shell decorated with vanadium pentoxide; photoelectrochemical water splitting, photochemical hydrogen evolution & degradation of Bisphenol A. Chemosphere, 2022, 287, 132348.	4.2	20
1660	Substrate Partitioning into Protein Macromolecular Frameworks for Enhanced Catalytic Turnover. ACS Nano, 2021, 15, 15687-15699.	7.3	19
1661	Microtensile failure mechanisms in lamellar bone: Influence of fibrillar orientation, specimen size and hydration. Acta Biomaterialia, 2021, 131, 391-402.	4.1	9
1662	Disparate micro-mechanical behaviors of adjacent bone lamellae through in situ SEM micropillar compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141903.	2.6	5

#	Article	IF	CITATIONS
1664	Enthalpy of collagen interfibrillar bonds in fetal membranes. Journal of Biomechanics, 2021, 126, 110632.	0.9	0
1665	Advances in mechanics of hierarchical composite materials. Composites Science and Technology, 2021, 214, 108970.	3.8	72
1666	SEM-EDS and microindentation-driven large-area high-resolution chemomechanical mapping and computational homogenization of cementitious materials. Materials Today Communications, 2021, 28, 102698.	0.9	2
1667	Microscale compressive behavior of hydrated lamellar bone at high strain rates. Acta Biomaterialia, 2021, 131, 403-414.	4.1	13
1668	Mammalian enamel: A universal tissue and diverse source of inspiration. Acta Biomaterialia, 2021, 136, 402-411.	4.1	5
1669	Aggravated stress fluctuation and mechanical size effects of nanoscale lamellar bone pillars. NPG Asia Materials, 2021, 13, .	3.8	6
1670	Biomimetic Woodâ€Inspired Batteries: Fabrication, Electrochemical Performance, and Sustainability within a Circular Perspective. Advanced Sustainable Systems, 2021, 5, 2100236.	2.7	8
1671	Hydroxyapatite-reinforced alginate fibers with bioinspired dually aligned architectures. Carbohydrate Polymers, 2021, 267, 118167.	5.1	14
1672	Encoding hierarchical assembly pathways of proteins with DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
1673	Quantifying solid-state mechanical mixing by high-pressure torsion. Journal of Alloys and Compounds, 2021, 878, 160419.	2.8	11
1674	Skeletal muscle: Modeling the mechanical behavior by taking the hierarchical microstructure into account. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104670.	1.5	7
1675	A stochastic scan strategy for grain structure control in complex geometries using electron beam powder bed fusion. Additive Manufacturing, 2021, 46, 102092.	1.7	21
1676	Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Materials Science and Engineering Reports, 2021, 146, 100641.	14.8	93
1677	Removal of glycosaminoglycans affects the in situ mechanical behavior of extrafibrillar matrix in bone. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104766.	1.5	8
1678	Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure. Composite Structures, 2021, 276, 114575.	3.1	12
1679	Hierarchical sheet triply periodic minimal surface lattices: Design, geometric and mechanical performance. Materials and Design, 2021, 209, 109931.	3.3	31
1680	Energy absorption performance of honeycombs with curved cell walls under quasi-static compression. International Journal of Mechanical Sciences, 2021, 210, 106746.	3.6	42
1681	From nature to additive manufacturing: Biomimicry of porcupine quill. Materials and Design, 2021, 210, 110041.	3.3	15

		CITATION REPO	DRT	
#	ARTICLE		IF	Citations
1682	A hybrid potential of mean force approach for simulation of fracture in heterogeneous media Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114084.	.•	3.4	4
1683	Development and application of fish scale wastes as versatile natural biomaterials. Chemical Engineering Journal, 2022, 428, 131102.		6.6	52
1684	Hard tissues and orthopedic soft tissues. , 2022, , 125-147.			0
1685	Structure of Collagen. Methods in Molecular Biology, 2021, 2347, 17-25.		0.4	15
1686	Bio-inspired design. , 2021, , 467-489.			2
1687	Beam network model for fracture of materials with hierarchical microstructure. International Journal of Fracture, 2021, 227, 243-257.		1.1	8
1688	Microstructure study of fractured polar bear hair for toughening, strengthening, stiffening do <i>via</i> energy dissipation and crack deflection mechanisms in materials. Molecular System and Engineering, 2021, 6, 997-1002.		1.7	3
1689	Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 2021, 23	, 2198-2232.	4.6	48
1690	Synchrotron X-ray Imaging Combined with Multiscale Modeling Applied to Biological Soft Tis Soft Matter, 2021, , 34-60.	sues. RSC	0.2	0
1691	Biomimetic photonic materials derived from chitin and chitosan. Journal of Materials Chemis 2021, 9, 796-817.	cry C,	2.7	44
1692	Collagenous Mineralized Tissues: Composition, Structure, and Biomineralization. Biology of Extracellular Matrix, 2021, , 55-74.	ſ	0.3	0
1694	Helical Microstructures of the Mineralized Coralline Red Algae Determine Their Mechanical Properties. Advanced Science, 2020, 7, 2000108.		5.6	11
1695	Hierarchical Nanomechanics of Collagen Fibrils: Atomistic and Molecular Modeling. , 2008, ,	175-247.		5
1697	Numerical Analysis of the Response of Biomimetic Cellular Materials Under Static and Dynam Loadings. , 2014, , 55-89.	nic		3
1698	Fabrication of Gelatin/Bioactive Glass Hybrid Scaffolds for Bone Tissue-Engineering. IFMBE Proceedings, 2014, , 1630-1633.		0.2	2
1699	Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine. , 2	2015, , 1-26.		1
1700	Biomimetic Research: A Dialogue Between the Disciplines. Biologically-inspired Systems, 201	6,,1-5.	0.4	5
1701	Adaptive Stiffness and Joint-Free Kinematics: Actively Actuated Rod-Shaped Structures in Pla Animals and Their Biomimetic Potential in Architecture and Engineering. Biologically-inspired 2016, , 135-167.	nts and Systems,	0.4	7

#	Article	IF	CITATIONS
1702	Micromechanics of Bone Modeled as a Composite Material. , 2018, , 281-306.		4
1703	Local Mechanical Properties by Atomic Force Microscopy Nanoindentations. Nanoscience and Technology, 2009, , 165-198.	1.5	1
1704	Micromechanics of Cell Walls. Signaling and Communication in Plants, 2011, , 27-52.	0.5	22
1705	Green Nanotribology and Sustainable Nanotribology in the Frame of the Global Challenges for Humankind. Green Energy and Technology, 2012, , 105-125.	0.4	7
1706	Multiscale Optimization of Joints of Dissimilar Materials in Nature and Lessons for Engineering Applications. Advanced Structured Materials, 2013, , 65-75.	0.3	1
1707	Nano-tribology and Materials in MEMS. , 2013, , .		10
1708	On the Success and Limitations of Reductionism in Physics. The Frontiers Collection, 2015, , 13-39.	0.1	1
1709	Antifouling Self-Cleaning Surfaces. , 2015, , 1-29.		3
1710	Bone Tissue and Biomaterial Design Based on the Anisotropic Microstructure. Springer Series in Biomaterials Science and Engineering, 2015, , 3-30.	0.7	6
1711	Synchrotron X-Ray Phase Nanotomography for Bone Tissue Characterization. , 2016, , 1-42.		3
1712	Hierarchical Biological Materials. Biologically-inspired Systems, 2010, , 125-136.	0.4	3
1713	Protein Microgels from Amyloid Fibril Networks. Advances in Experimental Medicine and Biology, 2019, 1174, 223-263.	0.8	10
1714	Biomechanical properties enhancement of gamma radiation-sterilized cortical bone using antioxidants. Radiation and Environmental Biophysics, 2020, 59, 571-581.	0.6	3
1715	Developments in High-Resolution CT: Studying Bioregeneration by Hard X-ray Synchrotron-Based Microtomography. , 2011, , 47-62.		3
1716	New Method to Study Molecular Interactions in Fats–Synchrotron Radiation Microbeam X-ray Diffraction. , 2012, , 339-363.		2
1717	Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neck. Bone, 2020, 137, 115446.	1.4	9
1718	Biological stenciling of mineralization in the skeleton: Local enzymatic removal of inhibitors in the extracellular matrix. Bone, 2020, 138, 115447.	1.4	31
1720	Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits. ACS Nano, 2021, 15, 3646-3673.	7.3	108

ARTICLE IF CITATIONS Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing 1721 5.8 41 condensed liquid phases. Nature Communications, 2020, 11, 862. Random fuse model in the presence of self-healing. New Journal of Physics, 2020, 22, 033005. 1.2 1723 Multiscale Nature Inspired Chemical Engineering., 2009, 536-559. 6 Additive manufacturing of polymer-based structures by extrusion technologies. Oxford Open 1724 0.5 Materials Science, 2020, 1, . Mimicking high strength lightweight novel structures inspired from the trabecular bone microarchitecture. Philosophical Transactions Series A, Mathematical, Physical, and Engineering 1725 1.6 8 Sciences, 2020, 378, 20190448. Biomimetic hierarchical micro/nano texturing of TiAlV alloys by femtosecond laser processing for the control of cell adhesion and migration. Physical Review Materials, 2020, 4, . Small-angle scattering model for efficient characterization of wood nanostructure and moisture 1728 1.9 34 behaviour. Journal of Applied Crystallography, 2019, 52, 369-377. High-speed tensor tomography: iterative reconstruction tensor tomography (IRTT) algorithm. Acta 1729 20 Crystallographica Section A: Foundations and Advances, 2019, 75, 223-238. Development of Damage-Tolerant and Fracture-Resistant Materials by Utilizing the Material 1730 1.1 21 Inhomogeneity Effect. Journal of Applied Mechanics, Transactions ASME, 2019, 86, . Exploring the Fracture Toughness of Tessellated Materials With the Discrete-Element Method. 1.1 Journal of Applied Mechanics, Transactions ASME, 2019, 86, . Influence of Grain Size Distribution on Ductile Intergranular Crack Growth Resistance. Journal of 1732 1.1 5 Applied Mechanics, Transactions ASME, 2020, 87, . Coarse-Graining Parameterization and Multiscale Simulation of Hierarchical Systems. Part I., 2010, , 13-34. Intricate Multiscale Mechanical Behaviors of Natural Fish-Scale Composites., 2013,,. 1734 2 Silicate Ceramics and its Composites for Hard Tissue Applications., 2016, 131-182. 1736 Material properties and osteoporosis. F1000Research, 2019, 8, 1481. 0.8 5 DRY & WET: <i>In vitro</i> Dissipative Structures of Microtubules and Polysaccharides by Interfacial Instability. Kobunshi Ronbunshu, 2018, 75, 396-405. Determination of the linear elastic stiffness and hygroexpansion of softwood by a multilayered unit 1738 0.4 5 cell using poromechanics. Interaction and Multiscale Mechanics, 2012, 5, 229-265. Polarization induced contrast X-ray fluorescence at submicrometer resolution reveals nanometer 1739 1.5 apatite crystal orientations across entire tooth sections. Biomedical Optics Express, 2019, 10, 18.

ARTICLE IF CITATIONS # Implementation of artifact-free circular dichroism SHG imaging of collagen. Optics Express, 2019, 27, 1740 1.7 16 22685. Circular dichroism second-harmonic generation microscopy probes the polarity distribution of collagen fibrils. Optica, 2020, 7, 1469. 1741 4.8 Microfibril Orientation Dominates the Microelastic Properties of Human Bone Tissue at the Lamellar 1742 1.1 56 Length Scale. PLoS ONE, 2013, 8, e58043. Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level. PLoS 1743 1.1 185 ONE, 2013, 8, e62172. Investigating the Signature of Aquatic Resource Use within Pleistocene Hominin Dietary Adaptations. 1744 1.1 30 PLoS ONE, 2013, 8, e69899. Multi-Scale Modelling of Deformation and Fracture in a Biomimetic Apatite-Protein Composite: Molecular-Scale Processes Lead to Resilience at the $\hat{1}$ /4m-Scale. PLoS ONE, 2016, 11, e0157241. 1745 1.1 Atomistically Informed Mesoscale Model of Alpha-Helical Protein Domains. International Journal for 1746 0.8 12 Multiscale Computational Engineering, 2009, 7, 237-250. Multifunctional materials for bone cancer treatment. International Journal of Nanomedicine, 2014, 9, 3.3 64 2713. Multiscale inorganic hierarchically materials: towards an improved orthopaedic regenerative 1748 1.0 5 medicine. Current Topics in Medicinal Chemistry, 2015, 15, 2290-2305. Density profile and micromorphology variation of densified wood from three fast growth hardwood 1749 0.2 species in Costa Rica. Wood and Fiber Science, 2020, 52, 266-279. Friction in nature. WIT Transactions on Ecology and the Environment, 2008, , . 1750 7 0.0 Biotemplating: polysaccharides in materials engineering. WIT Transactions on Ecology and the 0.0 Environment, 2010, , . Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent. Oral Health & Amp; Preventive Dentistry, 1752 0.3 39 2018, 16, 7-19. Melt-blown compostable polyester films with lignin. Tappi Journal, 2017, 16, 111-121. 1753 0.2 Numerical and Experimental Study of the Mechanical Response of Diatom Frustules. Nanomaterials, 1754 19 1.9 2020, 10, 959. Dynamic Mechanical Behavior of Hierarchical Resin Honeycomb by 3D Printing. Polymers, 2021, 13, 19. 2.0 Nanoporous metals processed by dealloying and their applications. AIMS Materials Science, 2018, 5, 1756 0.7 33 1141-1183. Biomimetic Materials in Our World: A Review.. IOSR Journal of Applied Chemistry, 2013, 5, 22-35.

#	Article	IF	CITATIONS
1758	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society Reviews, 2021, 50, 12915-12984.	18.7	15
1759	Changes in bone's micromechanical properties caused by fatigue fracture. International Journal of Fracture, 2021, 231, 243-255.	1.1	0
1760	Effect of Directional Stretching on Properties of PVA-HA-PAA Composite Hydrogel. Journal of Bionic Engineering, 2021, 18, 1202-1214.	2.7	8
1761	Designing Composites with Target Effective Young's Modulus using Reinforcement Learning. , 2021, , .		4
1762	Preparation and Characterization of Chitosan and Inclusive Compound-Layered Gold Nanocarrier to Improve the Antiproliferation Effect of Tamoxifen Citrate in Colorectal Adenocarcinoma (Caco-2) and Breast Cancer (MCF-7) Cells. Turkish Journal of Pharmaceutical Sciences, 2022, 19, 391-399.	0.6	3
1763	Mechanics of colloidal supraparticles under compression. Science Advances, 2021, 7, eabj0954.	4.7	20
1764	Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374, 465-471.	6.0	137
1765	Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nature Reviews Chemistry, 2021, 5, 753-772.	13.8	111
1766	Structurally anisotropic hydrogels for tissue engineering. Trends in Chemistry, 2021, 3, 1002-1026.	4.4	28
1767	Bamboo's tissue structure facilitates large bending deflections. Bioinspiration and Biomimetics, 2021, 16, 065005.	1.5	7
1768	Fibrillar Collagen: A Review of the Mechanical Modeling of Strain-Mediated Enzymatic Turnover. Applied Mechanics Reviews, 2021, 73, .	4.5	16
1769	3D Printing and Chemical Dealloying of a Hierarchically Micro- and Nanoporous Catalyst for Wastewater Purification. ACS Applied Materials & Interfaces, 2021, 13, 48709-48719.	4.0	40
1771	Mechanical properties of unidirectional bio-inspired composites with two non-self-similar hierarchical structures. Mechanics of Materials, 2021, 163, 104082.	1.7	0
1773	Computational Scale Linking in Biological Protein Materials. , 2010, , 491-531.		0
1774	Multiscale Modeling of Biological Protein Materials – Deformation and Failure. Challenges and Advances in Computational Chemistry and Physics, 2010, , 473-533.	0.6	0
1775	Combining Atomic Force Microscopy and Depth-Sensing Instruments for the Nanometer-Scale Mechanical Characterization of Soft Matter. Nanoscience and Technology, 2010, , 199-223.	1.5	2
1776	Challenges and Outlook. , 2010, , 263-274.		1
1777	Coarse-Graining Parameterization and Multiscale Simulation of Hierarchical Systems. Part I: Theory and Model Formulation. , 2010, , 27-48.		2

96

#	Article	IF	CITATIONS
1778	The Mechanical Performance of Teleost Fish Scales. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 117-123.	0.3	2
1781	Hierarchically Structured Biomaterials for Tissue Engineering. Journal of Tissue Science & Engineering, 2012, 03, .	0.2	0
1782	Green Tribology, its History, Challenges, and Perspectives. Green Energy and Technology, 2012, , 3-22.	0.4	1
1784	Green and Biomimetic Tribology. , 2013, , 605-636.		1
1785	Biomimetic Inspiration Regarding Nano-Tribology and Materials Issues in MEMS. , 2013, , 53-79.		1
1786	La science des matériauxÂ: du matériau de rencontre au matériau sur mesure. , 2013, , .		1
1787	Green Tribology and Biomimetics. , 0, , 949-962.		0
1788	Molecular Modeling of the Microstructure of Soft Materials. , 2013, , .		0
1792	Multiscaling for Molecular Models to Predict Lab Scale Sample Properties: A Review of Phenomenological Models. , 2015, , 61-80.		0
1793	The Science of Materials: From Materials Encountered by Chance to Customized Materials. , 2015, , .		0
1797	Biomimetics. , 2016, , 337-346.		0
1798	Mechanical Properties of Hierarchical Protein Materials. , 2016, , 1915-1926.		0
1799	Informative Potential of Multiscale Observations in Archaeological Biominerals Down to Nanoscale. , 2016, , 75-122.		0
1800	Chapter 8. Biological and Bio-inspired Heterogeneous Composites: From Resilient Palm Trees to Stretchable Electronics. RSC Polymer Chemistry Series, 2016, , 286-304.	0.1	1
1801	A Quality Assurance Scheme of Higher Engineering Education Accreditation Based on Expert Opinions Integration. , 2016, , .		0
1803	Long-term Effects of Pre and Postnatal Food Restriction in Mechanical and Structural Properties of Rat Femur. Current Nutrition and Food Science, 2016, 12, 200-207.	0.3	0
1804	Natural Bone and Tooth: Structure and Properties. Indian Institute of Metals Series, 2017, , 45-85.	0.2	2
1805	Control Over Nanocrystalline Apatite Formation: What Can the X-Ray Total Scattering Approach Tell Us. , 2017, , 211-225.		6

\sim			<u> </u>	
CIT.	ΔΤΙ	ON	REP	JBT
\sim			IVEL V	

#	Article	IF	CITATIONS
1806	Development and Characterization of Poss Reinforced Siliconized Epoxy Nanocomposites. , 2017, , 323-342.		0
1807	Structures and Composition of the Crab Carapace: An Archetypal Material in Biomimetic Mechanical Design. Results and Problems in Cell Differentiation, 2018, 65, 569-584.	0.2	6
1808	Mechanisms of Selective Mass Transport through Graphene Oxide Membranes. RSC Nanoscience and Nanotechnology, 2018, , 97-114.	0.2	0
1809	Micromechanics of Hierarchical Materials: Modeling and Perspectives. , 2018, , 1-18.		0
1810	Bone Defect Animal Model for Hybrid Polymer Matrix Nano Composite as Bone Substitute Biomaterials. Al-Khawarizmi Engineering Journal, 2018, 14, 149-155.	0.3	0
1811	Hierarchical Biological Materials. Biologically-inspired Systems, 2019, , 69-80.	0.4	0
1812	Micromechanics of Hierarchical Materials: Modeling and Perspectives. , 2019, , 1293-1310.		0
1814	Toughening in a nacre-like soft-hard layered structure due to weak nonlinearity in the soft layer. Physical Review Materials, 2019, 3, .	0.9	0
1815	Biomecánica de los árboles: crecimiento, anatomÃa y morfologÃa. Madera Bosques, 2019, 25, .	0.1	1
1816	New Functions Emerging from Peptide–DNA Materials. RSC Soft Matter, 2020, , 459-486.	0.2	0
1817	The Nature and Implications of Uniformity in the Hierarchical Organization of Nanomaterials*. , 2020, , 199-225.		0
1818	Bone Organic-Inorganic Phase Ratio Is a Fundamental Determinant of Bone Material Quality. Applied Bionics and Biomechanics, 2021, 2021, 1-7.	0.5	1
1819	Biomimetic Mechanically Strong One-Dimensional Hydroxyapatite/Poly(<scp>d</scp> , <scp>l</scp> -lactide) Composite Inducing Formation of Anisotropic Collagen Matrix. ACS Nano, 2021, 15, 17480-17498.	7.3	27
1820	Tribological properties and self-compensating lubrication mechanisms of Ni3Al matrix bio-inspired shell-like composite structure. Applied Surface Science, 2022, 573, 151462.	3.1	17
1821	A linear systems model of the hydrothermal isometric tension test for assessing collagenous tissue quality. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104916.	1.5	1
1823	Architectured hierarchical porous metals enabled by additive manufacturing. Australian Journal of Mechanical Engineering, 2021, 19, 669-679.	1.5	3
1825	Energy-absorbing wood composite for improved damage tolerance inspired by mollusc shells. Materials Research Express, 2020, 7, 095101.	0.8	2
1827	Hierarchical self-assembly into chiral nanostructures. Chemical Science, 2022, 13, 633-656.	3.7	63

#	Article	IF	CITATIONS
1828	Insight into the influence of the anatomical properties of wood on the tribological properties. Journal of Cleaner Production, 2022, 330, 129800.	4.6	5
1829	Design and optimization of a young balsa wood inspired lattice structure. Materials Today: Proceedings, 2022, 59, 196-202.	0.9	1
1830	Thermo-mechanical analysis of wood through an asymptotic homogenisation approach. Construction and Building Materials, 2021, , 125617.	3.2	2
1831	Advances in Fieldâ€Assisted 3D Printing of Bioâ€Inspired Composites: From Bioprototyping to Manufacturing. Macromolecular Bioscience, 2022, 22, e2100332.	2.1	19
1832	Hierarchical porous materials made by stereolithographic printing of photo-curable emulsions. Scientific Reports, 2021, 11, 22316.	1.6	18
1833	Graphene family nanomaterials- opportunities and challenges in tissue engineering applications. FlatChem, 2021, 30, 100315.	2.8	20
1834	Gold Nanopolyhedron-Based Superlattice Sheets as Flexible Surface-Enhanced Raman Scattering Sensors for Detection of 4-Aminothiophenol. ACS Applied Nano Materials, 2021, 4, 12498-12505.	2.4	8
1835	Applications of artificial intelligence in dentistry: A comprehensive review. Journal of Esthetic and Restorative Dentistry, 2022, 34, 259-280.	1.8	71
1836	Brillouin and Raman Micro-Spectroscopy: A Tool for Micro-Mechanical and Structural Characterization of Cortical and Trabecular Bone Tissues. Materials, 2021, 14, 6869.	1.3	7
1837	Emerging Trends in Additively Manufactured Materials and Novel Flexible/Stretchable Conductor Technologies. Engineering Materials, 2022, , 201-243.	0.3	0
1838	Crashworthiness optimization of a multicellular thin-walled tube with triangular cells. Mechanics of Advanced Materials and Structures, 2022, 29, 7277-7293.	1.5	6
1839	Diffusion of water in palm leaf materials. Journal of the Royal Society Interface, 2021, 18, 20210483.	1.5	2
1840	Tribological properties of the rotary friction welding of wood. Tribology International, 2022, 167, 107396.	3.0	2
1841	Lead(II) ions adsorption onto amyloid particulates: An in depth study. Journal of Colloid and Interface Science, 2022, 610, 347-358.	5.0	11
1842	A Polarized Raman Spectroscopic Method for Advanced Analyses of the Osteon Lamellar Structure of Human Bone. SSRN Electronic Journal, 0, , .	0.4	0
1843	Topological optimization of hierarchical honeycomb acoustic metamaterials for low-frequency extreme broad band gaps. Applied Acoustics, 2022, 188, 108579.	1.7	15
1844	Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. Materials Horizons, 2022, 9, 908-933.	6.4	15
1845	Turning industrial paints superhydrophobic via femtosecond laser surface hierarchical structuring. Progress in Organic Coatings, 2022, 163, 106625.	1.9	11

#	Article	IF	CITATIONS
1846	Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus. Thin-Walled Structures, 2022, 171, 108816.	2.7	28
1847	Hierarchical structured as-cast CrFeNiMn0.5Cu0.5 high entropy alloy with excellent tensile strength/ductility properties. Scripta Materialia, 2022, 210, 114473.	2.6	33
1848	Hierarchically oriented structure and enhanced toughness achieved by in situ microfibrillation of Polymethyl Methacrylate and Polyacrylate@rGO microspheres. Composites Science and Technology, 2022, 219, 109244.	3.8	5
1850	Unveiling the Variability and Multiscale Structure of Soybean Hulls for Biotechnological Valorization. Waste and Biomass Valorization, 2022, 13, 2095.	1.8	1
1851	Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. Advanced Materials, 2022, 34, e2106259.	11.1	24
1852	Mesocrystalline Ordering and Phase Transformation of Iron Oxide Biominerals in the Ultrahard Teeth of <i>Cryptochiton stelleri</i> . Small Structures, 2022, 3, .	6.9	11
1853	Recent Advances in Synthetic and Natural Biomaterialsâ€Based Therapy for Bone Defects. Macromolecular Bioscience, 2022, 22, e2100383.	2.1	14
1854	Recent Advances in the Synthesis and Application of Three-Dimensional Graphene-Based Aerogels. Molecules, 2022, 27, 924.	1.7	14
1855	Stress-driven method bio-inspired by long bone structure for mechanical part mass reduction by removing geometry at macro and cell-unit scales. Materials and Design, 2022, 213, 110318.	3.3	4
1856	Biomimetic adaptive building skins: design and performance. , 2022, , 181-200.		0
1857	Programmed hierarchical radial association of anisotropic foldamer assemblies. Nanoscale, 2022, 14, 1700-1705.	2.8	1
1858	Structural Mechanisms in Soft Fibrous Tissues: A Review. Frontiers in Materials, 2022, 8, .	1.2	15
1859	An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose. Microscopy Research and Technique, 2022, 85, 1990-2015.	1.2	14
1860	Bibliometric survey and network analysis of biomimetics and nature inspiration in engineering science. Bioinspiration and Biomimetics, 2022, 17, 031001.	1.5	4
1861	Controlling failure regimes in Brick-and-Mortar structures. Extreme Mechanics Letters, 2022, 51, 101596.	2.0	6
1862	Brillouin–Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. Journal of the Royal Society Interface, 2022, 19, 20210642.	1.5	8
1863	Toward continuous high-performance bacterial cellulose macrofibers by implementing grading-stretching in spinning. Carbohydrate Polymers, 2022, 282, 119133.	5.1	7
1864	Super durable graphene aerogel inspired by deep-sea glass sponge skeleton. Carbon, 2022, 191, 153-163.	5.4	14

#	Article	IF	CITATIONS
1865	Modular penetration and controlled release (MP-CR): improving the internal modification of natural hierarchical materials with smart nanoparticles. Materials Horizons, 2022, 9, 1309-1316.	6.4	6
1866	Multiscale approach incorporating tropocollagen scale to assess the effect of molecular age-related modifications on elastic constants of cortical bone based on finite element and homogenization methods. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 128, 105130.	1.5	1
1867	Evading strength and ductility trade-off in an inverse nacre structured magnesium matrix nanocomposite. Acta Materialia, 2022, 228, 117730.	3.8	36
1868	Crushing analysis and optimization for bio-inspired hierarchical 3D cellular structure. Composite Structures, 2022, 286, 115333.	3.1	14
1869	Review on materials and structures inspired by bamboo. Construction and Building Materials, 2022, 325, 126656.	3.2	28
1870	Analysis of heterogeneous structures of non-separated scales using curved bridge nodes. Computer Methods in Applied Mechanics and Engineering, 2022, 392, 114582.	3.4	6
1871	Biomimetic course design exploration for improved NASA zero gravity exercise equipment. , 2022, , 187-209.		1
1872	Soft while strong mechanical shock tolerable e-skins. Journal of Materials Chemistry A, 2022, 10, 8186-8194.	5.2	4
1873	Statistical aspects of interface adhesion and detachment of hierarchically patterned structures. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 023301.	0.9	3
1875	Strain rate induced toughening of individual collagen fibrils. Applied Physics Letters, 2022, 120, 114101.	1.5	3
1876	Optimallyâ€Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing. Advanced Materials, 2022, 34, e2109304.	11.1	21
1877	Modeling Impact Mechanics of 3D Helicoidally Architected Polymer Composites Enabled by Additive Manufacturing for Lightweight Silicon Photovoltaics Technology. Polymers, 2022, 14, 1228.	2.0	2
1878	Self-organized rod undulations on pre-stretched textiles. Bioinspiration and Biomimetics, 2022, 17, 036007.	1.5	3
1879	On the utility of hierarchical self-healing fiber bundle materials under different environments. Biomechanics and Modeling in Mechanobiology, 2022, , 1.	1.4	0
1880	Hierarchical structure design of <i>Strombus gigas</i> shell inspired laminated artificial composites and the mechanical performance optimization strategy. Mechanics of Advanced Materials and Structures, 0, , 1-11.	1.5	3
1881	Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces. Acta Biomaterialia, 2022, 142, 1-13.	4.1	24
1882	Micromixing with In-Flight Charging of Polymer Solutions in a Single Step Enables High-Throughput Production of Micro- and Nanofibers. ACS Omega, 2022, 7, 12549-12555.	1.6	3
1883	Extreme strain rate deformation of nacre-inspired graphene/copper nanocomposites under laser-induced hypersonic micro-projectile impact. Composites Part B: Engineering, 2022, 235, 109763.	5.9	13

#	Article	IF	CITATIONS
1884	Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. Advanced Materials, 2022, 34, e2110267.	11.1	15
1885	Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane. Biomacromolecules, 2022, 23, 1693-1702.	2.6	2
1886	Reticular Nanoscience: Bottom-Up Assembly Nanotechnology. Journal of the American Chemical Society, 2022, 144, 7531-7550.	6.6	38
1887	One-step preparation of functionally hierarchical and structurally hierarchical biomimetic bioceramics composed of porous hydroxyapatite and carbon fiber reinforced hydroxyapatite composites. Materials Chemistry and Physics, 2022, 283, 126012.	2.0	2
1888	Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews, 2022, 9, .	5.5	11
1889	Bio-inspired synthesis of flavonoids incorporated CaCO3: Influence on the phase, morphology and mechanical strength of the composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128720.	2.3	2
1890	3D hierarchically structured Ce1-xGdxO2-x/2 mixed oxide particles: the role of microstructure, porosity and multi-level architecture stability in soot and propane oxidation Materials Research Bulletin, 2022, 151, 111816.	2.7	3
1891	Hierarchical Multiscale Hydrogels with Identical Compositions Yet Disparate Properties via Tunable Phase Separation. Advanced Functional Materials, 2022, 32, .	7.8	17
1892	General Background of SERS Sensing and Perspectives on Polymerâ€Supported Plasmonâ€Active Multiscale and Hierarchical Sensor Particles. Advanced Optical Materials, 2022, 10, 2102001.	3.6	5
1893	Sustainability in Heritage Wood Conservation: Challenges and Directions for Future Research. Forests, 2022, 13, 18.	0.9	7
1894	Fire Behavior of Wood-Based Composite Materials. Polymers, 2021, 13, 4352.	2.0	13
1895	Water-in-elastomer micro-emulsions as phantom materials in photoacoustic imaging and multimodal theranostics. , 2021, , .		0
1896	Sustainable Multiscale High-Haze Transparent Cellulose Fiber Film via a Biomimetic Approach. , 2022, 4, 87-92.		32
1898	A Time-Dependent Hierarchical Model for Elastic and Inelastic Scattering Data Analysis of Aerogels and Similar Soft Materials. Gels, 2022, 8, 236.	2.1	0
1899	Fabrication and mechanical properties of nacre-like alumina with addition of silicon nitride. Ceramics International, 2022, , .	2.3	0
1900	Can 3D-Printed Bioactive Glasses Be the Future of Bone Tissue Engineering?. Polymers, 2022, 14, 1627.	2.0	20
1901	Macroscale double networks: highly dissipative soft composites. Polymer Journal, 2022, 54, 943-955.	1.3	4
1902	High-Mg calcite nanoparticles within a low-Mg calcite matrix: A widespread phenomenon in biomineralization. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120177119.	3.3	10

#	Article	IF	CITATIONS
1903	Precision materials: Computational design methods of accurate protein materials. Current Opinion in Structural Biology, 2022, 74, 102367.	2.6	2
1904	Supramolecular modulation of the mechanical properties of amino acid-functionalized cellulose nanocrystal films. Materials Today Chemistry, 2022, 24, 100886.	1.7	7
1905	CHAPTER 1. Mechanochemistry: Inspiration from Biology. RSC Polymer Chemistry Series, 0, , 1-35.	0.1	0
1912	Untangling the mechanisms of lattice distortions in biogenic crystals across scales. Advanced Materials, 2022, , 2200690.	11.1	3
1913	A piecewise constitutive model for collagen fiber tissues. Journal of Materials Science: Materials in Medicine, 2022, 33, 39.	1.7	0
1914	Evaluation of imaging setups for quantitative phase contrast nanoCT of mineralized biomaterials. Journal of Synchrotron Radiation, 2022, 29, 843-852.	1.0	8
1915	Multifunctionality of Nanoengineered Selfâ€5ensing Lattices Enabled by Additive Manufacturing. Advanced Engineering Materials, 2022, 24, .	1.6	8
1916	Analysing fracture properties of bio-inspired 3D printed suture structures. Thin-Walled Structures, 2022, 176, 109317.	2.7	7
1917	Development of metallic wood with enhanced physical, mechanical, and thermal conduction properties based on a self-driven penetration mechanism. Industrial Crops and Products, 2022, 183, 114960.	2.5	3
1918	Documenting the Anisotropic Stiffness of Hard Tissues with Resonant Ultrasound Spectroscopy. Advances in Experimental Medicine and Biology, 2022, 1364, 279-295.	0.8	0
1919	Flax-based natural composites hierarchically reinforced by cast or printed carbon fibres. Composites Science and Technology, 2022, 226, 109527.	3.8	9
1920	π–π Interlocking Effect for Designing Biodegradable Nanorods with Controlled Lateral Surface Curvature. Chemistry of Materials, 2022, 34, 4937-4945.	3.2	6
1921	Pressiometric sounding applied to the recognition and geotechnical study of the foundation soil of an industrial building: Case of the crushing center in Jorf Lasfar (El Jadida -Morocco). Materials Today: Proceedings, 2022, , .	0.9	0
1922	Orientation-dependent micromechanical behavior of nacre: In situ TEM experiments and finite element simulations. Acta Biomaterialia, 2022, 147, 120-128.	4.1	8
1923	A nonlocality-based homogenization method for dynamics of metamaterials. Composite Structures, 2022, 295, 115716.	3.1	9
1924	Symmetry-Breaking and Self-Sorting in Block Copolymer-Based Multicomponent Nanocomposites. ACS Nano, 2022, 16, 9368-9377.	7.3	5
1925	Revealing the Structural Coloration of Selfâ€Assembled Chitin Nanocrystal Films. Advanced Materials, 2022, 34, .	11.1	19
1926	Nacreâ€Inspired Nanocomposite Films with Enhanced Mechanical and Barrier Properties by Selfâ€Assembly of Poly(Lactic Acid) Coated Mica Nanosheets. Advanced Functional Materials, 2022, 32, .	7.8	48

\sim		<u>_</u>	
		Repo	DT
	IIAI	KLPU	ALC L

#	Article	IF	CITATIONS
1927	The Non lassical Crystallization Mechanism of a Composite Biogenic Guanine Crystal. Advanced Materials, 2022, 34, .	11.1	16
1928	A Polarized Raman Spectroscopic Method for Advanced Analyses of the Osteon Lamellar Structure of Human Bone. Methods and Protocols, 2022, 5, 41.	0.9	0
1929	Shape and interaction decoupling for colloidal preassembly. Science Advances, 2022, 8, .	4.7	7
1931	Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. Advanced Materials, 2023, 35, .	11.1	33
1932	End-to-end prediction of multimaterial stress fields and fracture patterns using cycle-consistent adversarial and transformer neural networks. Biomedical Engineering Advances, 2022, 4, 100038.	2.2	19
1933	Crumpled sheets, fractal dimension, and wrinkles in research. Matter, 2022, 5, 1627-1629.	5.0	2
1934	Hierarchical tensile structures with ultralow mechanical dissipation. Nature Communications, 2022, 13, .	5.8	21
1935	Topology of Connective Tissues: A Key Parameter in Cellular Heterogeneity, Beyond Composition and Stiffness. SSRN Electronic Journal, 0, , .	0.4	0
1936	Grow with the flow $\hat{a} \in ``$ observing the formation of rheotactically patterned bacterial cellulose networks. Materials Advances, 0, , .	2.6	1
1938	Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer. Advanced Materials Technologies, 2022, 7, .	3.0	12
1939	Micro-scale fracture toughness of textured alumina ceramics. Journal of the European Ceramic Society, 2023, 43, 2943-2950.	2.8	6
1940	Comparison of the 3D-Microstructure Between Alveolar and Iliac Bone for Enhanced Bioinspired Bone Graft Substitutes. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
1941	Atom probe tomography for biomaterials and biomineralization. Acta Biomaterialia, 2022, 148, 44-60.	4.1	11
1943	Tough, Bioinspired Transparent Glass eramics. Advanced Engineering Materials, 2022, 24, .	1.6	5
1944	Bi-directional freezing to fabricate freeze-cast ceramics with orientation gradient and uniaxial compressive deformation behavior of infiltrated composites. Materialia, 2022, 24, 101492.	1.3	1
1945	Chiral growth of thin biomaterials induced by anisotropic structural mechanics. Journal of Mechanics in Medicine and Biology, 0, , .	0.3	0
1946	Damage delocalisation in skeletal muscle-inspired hierarchical armoured structures for impact protection. Composite Structures, 2022, 297, 115947.	3.1	3
1947	Form-function relationship between trabecular bone architecture and biomechanical function in the horse humerus. Procedia CIRP, 2022, 110, 299-304.	1.0	1

#	Article	IF	Citations
1948	Multi-layered alginate hydrogel structures and bacteria encapsulation. Chemical Communications, 2022, 58, 8584-8587.	2.2	9
1949	Material Removal of Hip Stem Prosthesis Using Bio-Inspiration from Trabecular Bone. Procedia CIRP, 2022, 110, 265-270.	1.0	2
1950	4D printing of natural fiber composite. , 2022, , 297-333.		1
1951	The characterization of bovine compact bone fatigue damage using terahertz spectroscopy. Zeitschrift Fur Medizinische Physik, 2022, , .	0.6	1
1952	Assessment of Optimal Conditions for Marine Invertebrate Cell-Mediated Mineralization of Organic Matrices. Biomimetics, 2022, 7, 86.	1.5	0
1953	In-plane crushing of a novel sinusoid-curved honeycomb under static and dynamic loadings. International Journal of Crashworthiness, 2023, 28, 418-434.	1.1	0
1954	Strengthening Engineered Nanocrystal Three-Dimensional Superlattices via Ligand Conformation and Reactivity. ACS Nano, 2022, 16, 11692-11707.	7.3	8
1955	A Mechanical Model for Elastic Wave Propagation in Nacre-Like Materials With Brick-and-Mortar Microstructures. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	7
1956	Hierarchical Porous Ceramics with Distinctive Microstructures by Emulsion-Based Direct Ink Writing. ACS Applied Materials & Interfaces, 2022, 14, 32196-32205.	4.0	31
1957	Strong and Tough Nacre-Inspired Graphene Oxide Composite with Hierarchically Similar Structure. ACS Nano, 2022, 16, 10509-10516.	7.3	10
1958	Mechanically Reinforced Artificial Enamel by Mg ²⁺ -Induced Amorphous Intergranular Phases. ACS Nano, 2022, 16, 10422-10430.	7.3	8
1959	Scanning x-ray microdiffraction: In situ molecular imaging of tissue and materials. Current Opinion in Structural Biology, 2022, 75, 102421.	2.6	4
1960	Heterostructured stainless steel: Properties, current trends, and future perspectives. Materials Science and Engineering Reports, 2022, 150, 100691.	14.8	65
1961	A theoretical model of fracture of biological composites considering complex structural arrangement of microstructures. Journal of the Mechanics and Physics of Solids, 2022, 167, 105001.	2.3	4
1962	Mechanical performance of bio-inspired hierarchical honeycomb metamaterials. International Journal of Solids and Structures, 2022, 254-255, 111866.	1.3	9
1963	Powder 3D Printing of Bone Scaffolds with Uniform and Gradient Pore Sizes Using Cuttlebone-Derived Calcium Phosphate and Glass-Ceramic. Materials, 2022, 15, 5139.	1.3	5
1964	Characterizing the Mechanical Behavior of Bone and Bone Surrogates in Compression Using pQCT. Materials, 2022, 15, 5065.	1.3	3
1965	Oriented attachment and aggregation as a viable pathway to self-assembled organic/inorganic hybrid materials. CrystEngComm, 0, , .	1.3	1

#	Article	IF	CITATIONS
1966	Multilayered Nanocomposites Prepared through Quadruple-Layering Approach towards Enhanced Mechanical Performance. Molecules, 2022, 27, 4852.	1.7	1
1967	Three-dimensional printing of photonic colloidal glasses into objects with isotropic structural color. Nature Communications, 2022, 13, .	5.8	19
1968	Strain-Induced Self-Rolling of Electrochemically Deposited Co(OH)2 Films into Organic–Inorganic Microscrolls. Crystals, 2022, 12, 1072.	1.0	0
1969	Thermodynamics of Extra-Toughness and Hidden-Length in Polymeric Materials with Sacrificial Bonds. Applied Mechanics, 2022, 3, 935-955.	0.7	3
1970	Bioinspired laminated bioceramics with high toughness for bone tissue engineering. International Journal of Energy Production and Management, 2022, 9, .	1.9	3
1971	Hierarchical nano-helix as a new reinforcing unit for simultaneously ultra-strong and super-tough alginate fibers. Carbohydrate Polymers, 2022, 297, 119998.	5.1	1
1972	Mature bone mechanoregulation modelling for the characterization of the osseointegration performance of periodic cellular solids. Materialia, 2022, 25, 101552.	1.3	1
1973	Customized behavioral characteristics of localized hierarchical 2D chiral metastructures. Materials Today Communications, 2022, 33, 104251.	0.9	3
1975	Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics, 2022, 7, 112.	1.5	21
1976	Hierarchical Multiresolution Design of Bioinspired Structural Composites Using Progressive Reinforcement Learning. Advanced Theory and Simulations, 2022, 5, .	1.3	18
1977	Machine Learning in Tissue Engineering. Tissue Engineering - Part A, 2023, 29, 2-19.	1.6	14
1978	Design of soft matter for additive processing. , 2022, 1, 592-600.		4
1979	Fracture resistance of 3D nano-architected lattice materials. Extreme Mechanics Letters, 2022, 56, 101883.	2.0	6
1980	Deciphering structural biological materials: Viewing from the mechanics perspective and their prospects. Composites Part B: Engineering, 2022, 245, 110213.	5.9	16
1981	Skeletal-based microstructure representation and featurization through descriptors. Computational Materials Science, 2022, 214, 111668.	1.4	2
1982	In-plane dynamic crashing behavior and energy absorption of novel bionic honeycomb structures. Composite Structures, 2022, 299, 116064.	3.1	40
1983	Analysis of the topological motifs of the cellular structure of the tri-spine horseshoe crab (Tachypleus tridentatus) and its associated mechanical properties. Bioinspiration and Biomimetics, 0, , .	1.5	0
1984	Advanced microscopic characterisation of multi-scale high-resolution mechanical behaviour of a nacre-inspired composite. Composites Communications, 2022, 35, 101315.	3.3	0

#	Article	IF	CITATIONS
1985	Mechanoregulation modelling of stretching versus bending dominated periodic cellular solids. Materials Today Communications, 2022, 33, 104315.	0.9	3
1986	Biomimetic formation of fluorapatite nanorods in confinement and the opposite effects of additives on the crystallization kinetics. Materials Chemistry Frontiers, 2022, 6, 2678-2689.	3.2	4
1987	Micro- and Nanopatterned Substrates for Studies on the Mechanobiology of Cell–Matrix Adhesions. Biomaterials Science Series, 2022, , 135-151.	0.1	0
1989	Plant Fibers. Engineering Materials, 2022, , 7-23.	0.3	0
1990	Collagen pre-strain discontinuity at the bone—Cartilage interface. PLoS ONE, 2022, 17, e0273832.	1.1	2
1992	Biomedical Materials and Devices with Focus on Orthopaedic and Cardio-vascular Problems. , 0, , .		0
1993	Energy absorption of multilayer aluminum foam-filled structures under lateral compression loading. Mechanics of Advanced Materials and Structures, 2024, 31, 659-675.	1.5	8
1994	Design, manufacture, and characterisation of hierarchical metamaterials for simultaneous ultra-broadband sound-absorbing and superior mechanical performance. Virtual and Physical Prototyping, 2023, 18, .	5.3	17
1996	Bamboo-Inspired Renewable, Lightweight, and Vibration-Damping Laminated Structural Materials for the Floor of a Railroad Car. ACS Applied Materials & Interfaces, 2022, 14, 42645-42655.	4.0	9
1997	Schwarzites and schwarzynes based load-bear resistant 3D printed hierarchical structures. Additive Manufacturing, 2022, , 103180.	1.7	1
1998	Effect of topology on strength and energy absorption of PA12 non-auxetic strut-based lattice structures. Journal of Materials Research and Technology, 2022, 21, 1595-1613.	2.6	9
1999	The peculiarities of charge distribution and spatiotemporal changes in electronic and atomic structure of bone tissue. Journal of Materials Chemistry A, 2022, 10, 22686-22693.	5.2	1
2000	Bone fragility: conceptual framework, therapeutic implications, and COVID-19-related issues. Therapeutic Advances in Musculoskeletal Disease, 2022, 14, 1759720X2211334.	1.2	4
2001	Hydroxyapatite-collagen- carboxylic carbon quantum dot composite loaded with chrysin supported the proliferation and differentiation of human bone marrow derived mesenchymal stem cells. Frontiers in Materials, 0, 9, .	1.2	0
2002	From Nano- to Macromechanical Properties of Wood via the Hierarchy of Its Structural Units and Size Effects (A Review). Bulletin of the Russian Academy of Sciences: Physics, 2022, 86, 1207-1218.	0.1	0
2003	Impactâ€Resistant Hydrogels by Harnessing 2D Hierarchical Structures. Advanced Materials, 2023, 35, .	11.1	16
2004	Prolonged in situ self-healing in structural composites via thermo-reversible entanglement. Nature Communications, 2022, 13, .	5.8	10
2005	Tailoring Structure: Current Design Strategies and Emerging Trends to Hierarchical Catalysts. Catalysts, 2022, 12, 1152.	1.6	3

#	Article	lF	CITATIONS
2006	Bending Study of Six Biological Models for Design of High Strength and Tough Structures. Biomimetics, 2022, 7, 176.	1.5	5
2007	The Mechanics of Bioinspired Stiff-to-Compliant Multi-Material 3D-Printed Interfaces. Biomimetics, 2022, 7, 170.	1.5	4
2008	Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers. ACS Applied Materials & amp; Interfaces, 2022, 14, 49389-49397.	4.0	10
2009	Emerging Magnetic Fabrication Technologies Provide Controllable Hierarchically‧tructured Biomaterials and Stimulus Response for Biomedical Applications. Advanced Science, 2022, 9, .	5.6	11
2010	Hierarchical Slice Patterns Inhibit Crack Propagation in Brittle Sheets. Physical Review Applied, 2022, 18, .	1.5	4
2011	Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment. Gels, 2022, 8, 685.	2.1	7
2012	Cationâ^'Ï€ Interactions and Their Role in Assembling Collagen Triple Helices. Biomacromolecules, 2022, 23, 4645-4654.	2.6	8
2013	One-Pot Hierarchical Structuring of Nanocellulose by Electrophoretic Deposition. ACS Nano, 2022, 16, 18390-18397.	7.3	11
2014	Characterization of a Translucent Material Produced from Paulownia tomentosa Using Peracetic Acid Delignification and Resin Infiltration. Polymers, 2022, 14, 4380.	2.0	3
2015	Kinetic model description of dissipation and recovery in collagen fibrils under cyclic loading. Physical Review E, 2022, 106, .	0.8	1
2016	Generative multiscale analysis of de novo proteome-inspired molecular structures and nanomechanical optimization using a VoxelPerceiver transformer model. Journal of the Mechanics and Physics of Solids, 2023, 170, 105098.	2.3	8
2017	Optimization design of a novel hybrid hierarchical cellular structure for crashworthiness. Composite Structures, 2023, 303, 116335.	3.1	13
2018	Seeded mineralization generates prismatic CaCO3 films with grooved structure and superwetting performance. Journal of Crystal Growth, 2023, 602, 126976.	0.7	1
2019	Bone Defect Animal Model for Hybrid Polymer Matrix Nano Composite as Bone Substitute Biomaterials. Al-Khawarizmi Engineering Journal, 2018, 14, 149-155.	0.3	1
2020	Bio-inspired 3D-printed lattice structures for energy absorption applications: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2023, 237, 503-542.	0.7	6
2021	Collagen piezoelectricity in osteogenesis imperfecta and its role in intrafibrillar mineralization. Communications Biology, 2022, 5, .	2.0	6
2022	Bioinspired and Bioderived Aqueous Electrocatalysis. Chemical Reviews, 2023, 123, 2311-2348.	23.0	22
2023	Growth of oriented orthotropic structures with reaction/diffusion. Structural and Multidisciplinary Optimization, 2022, 65, .	1.7	5

#	Article	IF	CITATIONS
2024	Bio-inspired non self-similar hierarchical elastic metamaterials. International Journal of Mechanical Sciences, 2023, 241, 107915.	3.6	15
2025	Self-assembly meets additive manufacturing: Bridging the gap between nanoscale arrangement of matter and macroscale fabrication. , 2023, 1, 100013.		5
2026	Hierarchical Structures Computational Design and Digital 3d Printing. Journal of the International Association for Shell and Spatial Structures, 2022, , .	0.3	0
2027	Nanoscale characterization of collagen structural responses to in situ loading in rat Achilles tendons. Matrix Biology, 2023, 115, 32-47.	1.5	5
2028	An impact resistant hydrogel enabled by bicontinuous phase structure and hierarchical energy dissipation. Journal of Materials Chemistry B, 2023, 11, 905-913.	2.9	1
2029	Effects of different woods in barbecuing: Consumers' sensory perception and liking of grilled chicken meat. Food Research International, 2023, 163, 112295.	2.9	2
2030	Ultra-lightweight living structural material for enhanced stiffness and environmental sensing. Materials Today Bio, 2023, 18, 100504.	2.6	2
2031	Experimental, numerical and analytical study to develop a design method for bending and shear resistances of 3D printed beetle elytron inspired sandwich plate (beetle elytron plate). Thin-Walled Structures, 2023, 183, 110371.	2.7	2
2032	The mechanical behavior of silk-fibroin reinforced alginate hydrogel biocomposites - Toward functional tissue biomimetics. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105598.	1.5	5
2033	Nature-Inspired Biomimetic Polymeric Materials and Their Applications. , 2022, , 1-31.		2
2034	In Situ Identification of Secondary Structures in Unpurified <i>Bombyx mori</i> Silk Fibrils Using Polarized Two-Dimensional Infrared Spectroscopy. Biomacromolecules, 2022, 23, 5340-5349.	2.6	8
2035	Microscale 3D Printing and Tuning of Cellulose Nanocrystals Reinforced Polymer Nanocomposites. Small, 2023, 19, .	5.2	11
2036	Inverse design of truss lattice materials with superior buckling resistance. Npj Computational Materials, 2022, 8, .	3.5	23
2037	End-to-End Protein Normal Mode Frequency Predictions Using Language and Graph Models and Application to Sonification. ACS Nano, 2022, 16, 20656-20670.	7.3	10
2038	Fabrication of ionic wood crosslinked by Ca2+ with high strength, toughness, and weather resistance. Journal of Materials Research and Technology, 2022, 21, 5045-5055.	2.6	6
2039	Nature-inspired architected materials using unsupervised deep learning. , 2022, 1, .		24
2040	Peculiar Tensile and Fracture Behaviors of Natural Silk Fiber in the Presence of an Artificial Notch. Macromolecules, 2022, 55, 11059-11067.	2.2	1
2041	Complex Living Materials Made by Lightâ€Based Printing of Genetically Programmed Bacteria. Advanced Materials, 2023, 35, .	11.1	9

#	Article	IF	CITATIONS
2042	Three-level hierarchical micro/nanostructures on biopolymers by injection moulding using low-cost polymeric inlays. International Journal of Advanced Manufacturing Technology, 2023, 124, 1527-1535.	1.5	3
2043	The load-bearing mechanism of plant wings: A multiscale structural and mechanical analysis of the T. tipu samara. Acta Biomaterialia, 2022, , .	4.1	0
2044	Combining Cryogel Architecture and Macromolecular Crowdingâ€Enhanced Extracellular Matrix Cues to Mimic the Bone Marrow Niche. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	1
2045	Development of the third generation of bioceramics: Doping hydroxyapatite with s-, p-, d-, and f-blocks cations and their potential applications in bone regeneration and void filling. Ceramics International, 2023, 49, 7142-7179.	2.3	3
2047	Selective hinge removal strategy for architecting hierarchical auxetic metamaterials. Communications Materials, 2022, 3, .	2.9	27
2048	Hierarchical Macro-Mesoporous Silica Monolithic Tablets as a Novel Dose–Structure-Dependent Delivery System for the Release of Confined Dexketoprofen. Molecular Pharmaceutics, 0, , .	2.3	1
2049	Subcanalicular Nanochannel Volume Is Inversely Correlated With Calcium Content in Human Cortical Bone. Journal of Bone and Mineral Research, 2020, 38, 313-325.	3.1	11
2050	Macroscale Fabrication of Lightweight and Strong Porous Carbon Foams through Templateâ€Coating Pair Design. Advanced Materials, 2023, 35, .	11.1	3
2051	Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chemical Reviews, 2023, 123, 2155-2199.	23.0	11
2052	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.	16.0	32
2053	3D Printed Silicones with Shape Morphing and Low-Temperature Ultraelasticity. ACS Applied Materials & Interfaces, 2023, 15, 4549-4558.	4.0	1
2054	Designing Bioinspired Composite Structures via Genetic Algorithm and Conditional Variational Autoencoder. Polymers, 2023, 15, 281.	2.0	3
2055	Multi-scale modelling predicts plant stem bending behaviour in response to wind to inform lodging resistance. Royal Society Open Science, 2023, 10, .	1.1	4
2056	Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear ï¬nite element unit-cell model. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 139, 105660.	1.5	4
2057	Lamellar thickness measurements in control and osteogenesis imperfecta human bone, with development of a method of automated thickness averaging to simplify quantitation. Matrix Biology, 2023, 116, 85-101.	1.5	0
2058	Mechanical Properties of Hierarchical Beams for Large-Scale Space Structures. , 2023, , .		0
2059	Environmentally Responsive Materials for Building Envelopes: A Review on Manufacturing and Biomimicry-Based Approaches. Biomimetics, 2023, 8, 52.	1.5	6
2060	Bio-inspired advancements in additive manufacturing. , 2023, , 313-324.		Ο

#	Article	IF	CITATIONS
2061	Bioprinting of bone. , 2023, , 95-118.		0
2063	Mechanical properties of 3D-printed hierarchical structures based on Sierpinski triangles. International Journal of Mechanical Sciences, 2023, 247, 108172.	3.6	3
2064	Aspects of Wood Utilization and Material Selection. Springer Handbooks, 2023, , 1787-1833.	0.3	1
2065	Induced Mineralization of Hydroxyapatite in <i>Escherichia coli</i> Biofilms and the Potential Role of Bacterial Alkaline Phosphatase. Chemistry of Materials, 2023, 35, 2762-2772.	3.2	7
2066	Hydrophilic Modification Strategies to Enhance the Surface Biocompatibility of Poly(dimethylsiloxane)â€Based Biomaterials for Medical Applications. Advanced Materials Interfaces, 2023, 10, .	1.9	10
2067	Controlling the Selfâ€Assembly of Hierarchical PS― <i>b</i> â€P4VP Structures Prepared by Dipâ€Coating and Emulsion Breath Figure Techniques. ChemistrySelect, 2023, 8, .	0.7	0
2068	Effect of Hierarchical Geometries Matching on the Crashworthiness of Honeycomb. Advanced Engineering Materials, 2023, 25, .	1.6	1
2069	The elasto-plastic nano- and microscale compressive behaviour of rehydrated mineralised collagen fibres. Acta Biomaterialia, 2023, 164, 332-345.	4.1	1
2070	Ultrasonic bandgaps in viscoelastic 1D-periodic media: Mechanical modeling and experimental validation. Ultrasonics, 2023, 131, 106951.	2.1	2
2071	Measurements and DEM modelling of soybean seed expansion. Computers and Electronics in Agriculture, 2023, 208, 107786.	3.7	0
2072	Lignum vitae wood-derived composites for high lubricating performance. Journal of Cleaner Production, 2023, 406, 137086.	4.6	4
2073	Highly robust separation for aqueous oils enabled by balsa wood-based cellulose aerogel with intrinsic superior hydrophilicity. Separation and Purification Technology, 2023, 315, 123688.	3.9	9
2074	Microstructural and damage parameter effect analysis on the failure mechanism of fibrous soft tissues with a structure-based unit cell model. Composite Structures, 2023, 313, 116933.	3.1	0
2075	From micro- to nano- and time-resolved x-ray computed tomography: Bio-based applications, synchrotron capabilities, and data-driven processing. Applied Physics Reviews, 2023, 10, .	5.5	3
2076	Construction relationship between a functionally graded structure of bamboo and its strength and toughness: Underlying mechanisms. Construction and Building Materials, 2023, 379, 131241.	3.2	3
2077	Binary solvent-exchange-induced self-assembly of silk fibroin birefringent fibers for optical applications. International Journal of Biological Macromolecules, 2023, 236, 123627.	3.6	0
2078	In-Silico Modelling of Blast-Induced Heterotopic Ossification. , 2022, , 285-294.		0
2079	Humidityâ€Driven Highâ€Performance Electrothermal Actuation of Vertically Stacked 2D PtTe ₂ Layers/Cellulose Nanofibers. Advanced Intelligent Systems, 2023, 5, .	3.3	1

#	Article	IF	CITATIONS
2080	Bamboo-inspired strong, tough and stable composites derived from renewable bamboo. Industrial Crops and Products, 2023, 194, 116292.	2.5	9
2081	From Bioinspiration to Biomimicry in Architecture: Opportunities and Challenges. Encyclopedia, 2023, 3, 202-223.	2.4	4
2083	Bioinspired composites: nature's guidance for advanced materials future. Functional Composites and Structures, 2023, 5, 012004.	1.6	1
2084	Bioinspired Cellular Single-Walled Carbon Nanotube Aerogels with Temperature-Invariant Elasticity and Fatigue Resistance for Potential Energy Dissipation. ACS Applied Nano Materials, 2023, 6, 3012-3019.	2.4	2
2085	3D printing of living structural biocomposites. Materials Today, 2023, 62, 21-32.	8.3	14
2086	Toward a mechanically biocompatible intervertebral disc: Engineering of combined biomimetic annulus fibrosus and nucleus pulposus analogs. Journal of Biomedical Materials Research - Part A, 2023, 111, 618-633.	2.1	2
2087	Spatiotemporal Changes in Atomic and Molecular Architecture of Mineralized Bone under Pathogenic Conditions. Crystals, 2023, 13, 381.	1.0	0
2088	Materials, design, and technology of body armor. , 2023, , 259-301.		0
2089	Biomimetic Nanotechnology Vol. 3. Biomimetics, 2023, 8, 102.	1.5	1
2090	Free vibration analysis of bio-inspired helicoid laminated composite plates. Journal of Strain Analysis for Engineering Design, 2023, 58, 538-548.	1.0	8
2091	Modular Synthesis and Patterning of High-Stiffness Networks by Postpolymerization Functionalization with Iron–Catechol Complexes. Macromolecules, 2023, 56, 2268-2276.	2.2	4
2092	Zero-Poisson's-Ratio Honeycomb-Filled Braided Textile Reinforced Conical Tubes: Designing, Manufacturing and Testing. Applied Composite Materials, 2023, 30, 773-789.	1.3	1
2093	Biocrystal assembly patterns, biopolymer distribution and material property relationships in mytilus galloprovincialis, Bivalvia, and haliotis glabra, Gastropoda, shells. Materialia, 2023, 28, 101749.	1.3	2
2094	Principles of tissue stress. , 2023, , 175-313.		0
2095	The Fracture Mechanics ofÂBiological Materials. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2023, , 255-282.	0.3	0
2096	Physical Properties of Wood and Wood-Based Materials. Springer Handbooks, 2023, , 281-353.	0.3	2
2097	Plant-Fiber and Wood-Based Functional Materials. Springer Handbooks, 2023, , 1645-1693.	0.3	2
2098	Advanced Engineered Wood-Material Concepts. Springer Handbooks, 2023, , 1835-1888.	0.3	2

#	Article	IF	CITATIONS
2099	Structural engineering of electrodes for flexible energy storage devices. Materials Horizons, 2023, 10, 2373-2397.	6.4	6
2100	Controlled Hierarchical Self-Assembly of Nanoparticles and Chiral Molecules into Tubular Nanocomposites. Journal of the American Chemical Society, 0, , .	6.6	2
2101	New Developments in Smart Materials (WCS and CNTs) for Precision Engineering Metrology. , 0, , .		0
2102	Synergistic effects of heating and traction during fibrous tissue elongation. Journal of Biomechanical Science and Engineering, 2023, , .	0.1	1
2103	Materials Informatics Tools in the Context of Bio-Inspired Material Mechanics. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	1.1	7
2104	Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review. Biomimetics, 2023, 8, 153.	1.5	2
2105	Bionanofiber-reinforced transparent nanocomposites for future applications. , 2023, , 297-325.		1
2113	Nature-Inspired Biomimetic Polymeric Materials and Their Applications. , 2023, , 1349-1378.		0
2115	Nature-Inspired Optimization of Transport in Porous Media. , 2023, , 215-245.		0
2120	Challenges in nano-structured fluid flows for assembly into hierarchical biomaterials. AIP Conference Proceedings, 2023, , .	0.3	0
2121	Recent advancements in polymer composites for damage repair applications. , 2023, , 1-26.		0
2124	3D printing with biopolymers. , 2023, , 371-399.		0
2130	Overview of Green Tribology in Recent World: Fundamentals and Future Development. , 2023, , .		0
2149	Environmental impact, health implications, and life cycle assessment of bionanocomposites. , 2024, , 387-406.		1
2150	Polypeptide-Based Multicomponent Materials: From Design to Applications. , 2023, , 195-227.		0
2158	Mechanical Behavior of Bamboo, and Its Biomimetic Composites and Structural Members: A Systematic Review. Journal of Bionic Engineering, 2024, 21, 56-73.	2.7	0
2199	Structural engineered living materials. Nano Research, 2024, 17, 715-733.	5.8	1
2207	Thermoelectric nanowires for dense 3D printed architectures. Materials Horizons, 2024, 11, 847-854.	6.4	0

#	Article	IF	CITATIONS
2211	Effects of Loading Direction and Strain Rate on Mechanical Properties and Failure Modes of Teak. Mechanisms and Machine Science, 2024, , 241-250.	0.3	0
2227	New Methodologies to Improve the Interfacial Interaction in Natural Fibre Polymer Composites. Composites Science and Technology, 2024, , 23-45.	0.4	0
2229	Physical Software Design: An Innovative Instructional-Based Method Using Project-Based Learning. , 2023, , .		0
2233	Robust myco-composites: a biocomposite platform for versatile hybrid-living materials. Materials Horizons, 2024, 11, 1689-1703.	6.4	2
2234	Microstructural and dynamic mechanical behavior of the cortical bone. , 2024, , 351-380.		1
2249	Atomistic Simulations for Mechanical Behaviour of Natural Biopolymers for Material Design. , 2024, , 467-476.		0