CITATION REPORT List of articles citing

Use of microencapsulated PCM in concrete walls for energy savings

DOI: 10.1016/j.enbuild.2006.03.030 Energy and Buildings, 2007, 39, 113-119.

Source: https://exaly.com/paper-pdf/42703087/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
623	Literature alerts. 2007 , 24, 294-301		
622	CapricThyristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. 2008 , 33, 2599-2605		229
621	Capric acid and stearic acid mixture impregnated with gypsum wallboard for low-temperature latent heat thermal energy storage. 2008 , 32, 154-160		97
620	Applications for heating and cooling in buildings. 2008, 217-295		1
619	Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage. 2008 , 109, 459-464		187
618	Heat Storage Performance of a PCM Heat Exchanger with Calcium Chloride Hexahydrate. 2008 , 368-372, 1074-1076		1
617	Experimental Study of PCM Inclusion in Different Building Envelopes. 2009, 131,		52
616	Phase Change Material Sandwich Panels for Managing Solar Gain in Buildings. 2009, 131,		33
615	The use of smart materials in cold weather apparel. 2009 , 84-112		4
614	Dynamic characteristics and energy performance of buildings using phase change materials: A review. 2009 , 50, 3169-3181		234
613	Preparation, characterization, and thermal properties of microPCMs containing n-dodecanol by using different types of styrene-maleic anhydride as emulsifier. 2009 , 287, 549-560		69
612	Microencapsulated n-octacosane as phase change material for thermal energy storage. 2009 , 83, 1757-1	1763	268
611	Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. 2009 , 93, 1761-1767		106
610	Performance enhancement in latent heat thermal storage system: A review. 2009 , 13, 2225-2244		462
609	Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling. <i>Energy and Buildings</i> , 2009 , 41, 561-570	7	166
608	Development of a composite laminated phase change material (PCM) for energy storage in buildings. 2009 ,		
607	Novel Multipart Phase Change Energy Storage Material. 2009 ,		

(2011-2010)

606	Technology of Latent Heat Storage for High Temperature Application: A Review. 2010 , 50, 1229-1239		137
605	Effect of microencapsulated phase change material in sandwich panels. 2010 , 35, 2370-2374		82
604	Experimental study on the performance of insulation materials in Mediterranean construction. <i>Energy and Buildings</i> , 2010 , 42, 630-636	7	154
603	Heat transfer and thermal storage behaviour of gypsum boards incorporating micro-encapsulated PCM. <i>Energy and Buildings</i> , 2010 , 42, 1259-1266	7	54
602	Experimental study of using PCM in brick constructive solutions for passive cooling. <i>Energy and Buildings</i> , 2010 , 42, 534-540	7	347
601	Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings. <i>Energy and Buildings</i> , 2010 , 42, 1517-1523	7	101
600	Phase change materials for energy storage and thermal comfort in buildings. 2010 , 384-398		3
599	Experimental and numerical investigations on the effect of using phase change materials for energy conservation in residential buildings. 2011 , 17, 366-376		29
598	Microencapsulation of Fatty Acid as Phase Change Material for Latent Heat Storage. 2011 , 137, 214-21	19	20
597	Eco-efficient Construction and Building Materials. 2011,		40
596	Development of phase change materials based microencapsulated technology for buildings: A review. 2011 , 15, 1373-1391		528
595	Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. 2011 , 15, 3813-3832		334
594	Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor		
<i>JJ</i> 1	temperatures. <i>Energy and Buildings</i> , 2011 , 43, 3514-3520	7	73
593	New equipment for testing steady and transient thermal performance of multilayered building envelopes with PCM. <i>Energy and Buildings</i> , 2011 , 43, 3704-3709	7	29
	New equipment for testing steady and transient thermal performance of multilayered building	7	
593	New equipment for testing steady and transient thermal performance of multilayered building envelopes with PCM. <i>Energy and Buildings</i> , 2011 , 43, 3704-3709 Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change	7	29 48
593 592	New equipment for testing steady and transient thermal performance of multilayered building envelopes with PCM. <i>Energy and Buildings</i> , 2011 , 43, 3704-3709 Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change materials. 2011 , 67, 541-552	7	29 48

588	Thermal energy savings in buildings with PCM-enhanced envelope: Influence of occupancy pattern and ventilation. <i>Energy and Buildings</i> , 2011 , 43, 101-107	55
587	Preparation and characterization of fatty acid ester/building material composites for thermal energy storage in buildings. <i>Energy and Buildings</i> , 2011 , 43, 1952-1959	67
586	Experimental and modelling study of twin cells with latent heat storage walls. <i>Energy and Buildings</i> , 2011 , 43, 2456-2461	70
585	Enhanced laminated composite phase change material for energy storage. 2011 , 52, 810-815	35
584	Improvement of thermal inertia of styrene@thylene/butylene@tyrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). 2011 , 47, 153-161	41
583	Thermal and rheological properties of microencapsulated phase change materials. 2011 , 36, 2959-2966	85
582	A review on phase change materials integrated in building walls. 2011 , 15, 379-391	669
581	Experimental research on the use of micro-encapsulated Phase Change Materials to store solar energy in concrete floors and to save energy in Dutch houses. 2011 , 85, 1007-1020	159
580	Enhancement of Soil Thermo-Physical Properties Using Microencapsulated Phase Change Materials for Ground Source Heat Pump Applications. 2011 , 110-116, 1191-1198	11
579	Preparation and Properties of Organic/Inorganic Nano-Composite Phase Change Materials for Heat Energy Storage in Building Energy Conservation. 2011 , 374-377, 346-351	1
578	Analysis of heat transfer across phase change material filled reinforced cement concrete roof for thermal management. 2012 , 226, 2933-2940	2
577	Surface Modification of Silver Nanoparticles in Phase Change Materials for Building Energy Application. 2012 , 622-623, 889-892	2
576	Numerical Simulation of Phase Change Material Composite Wallboard in a Multi-Layered Building Envelope. 2012 ,	0
575	Trombe walls: A review of opportunities and challenges in research and development. 2012 , 16, 6340-6351	195
574	Dynamic heat storage and cooling capacity of a concrete deck with PCM and thermally activated building system. <i>Energy and Buildings</i> , 2012 , 53, 96-107	69
573	Increasing the Service Life of Bridge Decks by Incorporating Phase-Change Materials to Reduce Freeze-Thaw Cycles. 2012 , 24, 1034-1042	60
572	Thermal enhancement of plastering mortars with Phase Change Materials: Experimental and numerical approach. <i>Energy and Buildings</i> , 2012 , 49, 16-27	102
571	Preparation and thermal properties of n-octadecane/molecular sieve composites as form-stable thermal energy storage materials for buildings. <i>Energy and Buildings</i> , 2012 , 49, 423-428	38

(2012-2012)

570	Characterisation and applications of microcapsules obtained by interfacial polycondensation. 2012 , 29, 636-49	41
569	Thermal Energy Storage. 2012 , 211-253	16
568	Performance of coupled novel triple glass and phase change material wall in the heating season: An experimental study. 2012 , 86, 2432-2442	53
567	Thermal loads inside buildings with phase change materials: Experimental results. 2012 , 30, 342-349	21
566	Stabilized rammed earth incorporating PCM: Optimization and improvement of thermal properties and Life Cycle Assessment. 2012 , 30, 461-470	21
565	A review on effect of phase change material encapsulation on the thermal performance of a system. 2012 , 16, 5603-5616	361
564	Review on thermal energy storage with phase change materials (PCMs) in building applications. 2012 , 92, 593-605	1097
563	Evaluation of the environmental impact of experimental cubicles using Life Cycle Assessment: A highlight on the manufacturing phase. 2012 , 92, 534-544	54
562	State of the art of thermal storage for demand-side management. 2012 , 93, 371-389	342
561	Fatty acid esters-based composite phase change materials for thermal energy storage in buildings. 2012 , 37, 208-216	80
560	Utilization of phase change materials and rubber particles to improve thermal and mechanical properties of mortar. 2012 , 28, 713-721	67
559	Use of microencapsulated PCM in buildings and the effect of adding awnings. <i>Energy and Buildings</i> , 2012 , 44, 88-93	77
558	Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. 2012 , 55, 101-107	74
557	Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate. 2012 , 16, 3136-3145	59
556	Sustainable thermal energy storage technologies for buildings: A review. 2012 , 16, 2394-2433	212
555	Analysis of implementing phase change materials in open-air swimming pools. 2012 , 86, 567-577	18
554	Preparation and characterization of poly(methyl methacrylate-co-divinylbenzene) microcapsules containing phase change temperature adjustable binary core materials. 2012 , 86, 2056-2066	65
553	High-chain fatty acid esters of 1-hexadecanol for low temperature thermal energy storage with phase change materials. 2012 , 96, 93-100	73

552	Characterization of rigid polyurethane foams containing microencapsulted phase change materials: Microcapsules type effect. 2013 , 128, 582-590		45
551	Development of phase change materials for building applications. <i>Energy and Buildings</i> , 2013 , 64, 403-40) 7	69
550	Thermal, mechanical and microstructural analysis of concrete containing microencapsulated phase change materials. 2013 , 14, 449-462		42
549	Modeling phase change materials embedded in building enclosure: A review. 2013 , 21, 659-673		191
548	New kinds of energy-storing building composite PCMs for thermal energy storage. 2013 , 69, 148-156		41
547	Enhance the Thermal Storage of Cement-Based Composites With Phase Change Materials and Carbon Nanotubes. 2013 , 135,		24
546	Shape-stablized EP/paraffin composite for latent heat storage. 2013 , 28, 682-687		
545	Numerical simulation of phase change material composite wallboard in a multi-layered building envelope. 2013 , 69, 27-40		97
544	Optimization of three new compositions of stabilized rammed earth incorporating PCM: Thermal properties characterization and LCA. 2013 , 47, 872-878		29
543	Review of thermal energy storage technologies based on PCM application in buildings. <i>Energy and Buildings</i> , 2013 , 67, 56-69	7	303
542	Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale. 2013 , 109, 428-432		62
541	On an experimental innovative setup for the macro scale thermal analysis of materials: Application to the Phase Change Material (PCM) wallboards. <i>Energy and Buildings</i> , 2013 , 64, 231-238	7	10
540	Latent heat storage in PCM containing mortarsBtudy of microstructural modifications. <i>Energy and Buildings</i> , 2013 , 66, 724-731	7	40
539	Use of phase change materials for thermal energy storage in concrete: An overview. 2013 , 46, 55-62		233
538	Characterization of panels containing micro-encapsulated Phase Change Materials. 2013 , 74, 261-268		31
537	Experimental and numerical study of the thermal performance of a new type of phase change material room. 2013 , 74, 386-394		52
536	Short-term storage systems of thermal energy for buildings: a review. 2013 , 7, 66-119		46
535	Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity. 2013 , 55, 956-964		62

(2014-2013)

534	Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. 2013 , 50, 670-675	204
533	Life Cycle Assessment of experimental cubicles including PCM manufactured from natural resources (esters): A theoretical study. 2013 , 51, 398-403	49
532	Heat storage properties of the cement mortar incorporated with composite phase change material. 2013 , 103, 393-399	104
531	Application of PCM thermal energy storage system to reduce building energy consumption. 2013 , 111, 279-288	117
530	Review of passive PCM latent heat thermal energy storage systems towards buildingslenergy efficiency. <i>Energy and Buildings</i> , 2013 , 59, 82-103	610
529	Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. <i>Energy and Buildings</i> , 2013 , 62, 469-474	82
528	Experimental research on the use of phase change materials in perforated brick rooms for cooling storage. <i>Energy and Buildings</i> , 2013 , 62, 597-604	67
527	A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. 2013 , 59, 517-527	158
526	The Influence of Phase Change Materials on the Properties of Self-Compacting Concrete. 2013 , 6, 3530-3546	37
525	A state of the art review of solar walls: Concepts and applications. 2013 , 37, 55-79	22
524	Analysis on Application Prospect of Shape-Stabilized Phase Change Materials in Asphalt Pavement. 2013 , 357-360, 1277-1281	10
523	Novel Concept of PCM Based Thermal Storage Integration in Active and Passive Cooling Systems for Energy Management in Buildings. 2013 , 110, 41-66	6
522	Analysis by Differential Scanning Calorimetry of concrete modified with microencapsulated phase change materials. 2013 ,	2
521	Phase-Change Materials Use in Nearly Zero Energy Building Refurbishment. 2013 , 537-553	1
520	Applications of organic phase change materials for thermal comfort in buildings. 2014, 30,	9
519	Waste Thermal Energy Harvesting (III): Storage with Phase Change Materials. 2014 , 481-592	1
518	Numerical study of thermal behaviour of building walls containing a phase change material. 2014 , 20,	O
517	Passive study of thermal inertia and thermal behavior of two locals Eest®with and without PCM located in Casablanca city. 2014 ,	2

516	Design of a Prefabricated Concrete Slab with PCM Inside the Hollows. 2014 , 57, 2324-2332		13
515	Waste Energy Harvesting. 2014 ,		35
514	Latent heat energy storage characteristics of building composites of bentonite clay and pumice sand with different organic PCMs. 2014 , 38, 1478-1491		51
513	Improving thermal and energy performance of buildings in summer with internal phase change materials. 2014 , 37, 296-324		13
512	Ideal thermal physical properties of building wall in an active room. 2014 , 23, 839-853		10
511	Numerical Analysis of the Energy Improvement of Plastering Mortars with Phase Change Materials. 2014 , 2014, 1-12		7
510	Experimental study on the thermal characteristics of a microencapsulated phase-change composite plate. 2014 , 71, 94-103		19
509	A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM. 2014 , 55, 22-34		67
508	Experimental evaluation of cement mortars with phase change material incorporated via lightweight expanded clay aggregate. 2014 , 63, 89-96		43
507	Monolithic Masonry with PCM for Thermal Management. 2014 , 48, 1355-1364		3
506	Cooling the cities IA review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. 2014 , 103, 682-703		888
505	Phase change materials for thermal energy storage. 2014 , 65, 67-123		1083
504	Phase change materials integrated in building walls: A state of the art review. 2014 , 31, 870-906		389
503	Evaluation of phase change materials for improving thermal comfort in a super-insulated residential building. <i>Energy and Buildings</i> , 2014 , 79, 32-40	7	102
502	Simulation of a ventilated cavity to enhance the effectiveness of PCM wallboards for summer thermal comfort in buildings. <i>Energy and Buildings</i> , 2014 , 70, 480-489	7	60
501	Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage. <i>Energy and Buildings</i> , 2014 , 69, 184-192	7	71
500	A review of phase change materials for vehicle component thermal buffering. 2014 , 113, 1525-1561		244
499	Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season. 2014 , 113, 990-1007		211

(2014-2014)

498	Numerical evaluation of a phase change material hutter using solar energy for winter night time indoor heating. 2014 , 37, 367-394		17
497	Experimental and multi-scale analysis of the thermal properties of Portland cement concretes embedded with microencapsulated Phase Change Materials (PCMs). 2014 , 64, 32-39		118
496	Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. <i>Energy and Buildings</i> , 2014 , 72, 31-37	7	85
495	Impact Factors Analysis of the Enthalpy Method and the Effective Heat Capacity Method on the Transient Nonlinear Heat Transfer in Phase Change Materials (PCMs). 2014 , 65, 66-83		30
494	Investigation Progress of Phase Change Building Materials. 2014 , 672-674, 1828-1832		1
493	Challenges of Self-Sensing Concrete. 2014 , 361-376		8
492	Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. 2014 , 131, 517-529		135
491	Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application. <i>Energy and Buildings</i> , 2014 , 81, 404-415	7	123
490	Low-cost phase change material as an energy storage medium in building envelopes: Experimental and numerical analyses. 2014 , 88, 1020-1031		70
489	Fire behaviour of a mortar with different mass fractions of phase change material for use in radiant floor systems. <i>Energy and Buildings</i> , 2014 , 84, 86-93	7	18
488	Experimental validation of a methodology to assess PCM effectiveness in cooling building envelopes passively. <i>Energy and Buildings</i> , 2014 , 81, 59-71	7	27
487	Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point. 2014 , 132, 496-506		22
486	Experimental and theoretical analysis of a cement mortar containing microencapsulated PCM. 2014 , 73, 32-40		48
485	Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. 2014 , 40, 237-259		88
484	Latent Thermal Energy Storage. 2014 , 83-126		1
483	Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials. <i>Energy and Buildings</i> , 2014 , 84, 526-536	7	6 ₇
482	Brick masonry walls with PCM macrocapsules: An experimental approach. 2014 , 67, 24-34		124
481	Development of thermally adaptive Engineered Cementitious Composite for passive heat storage. 2014 , 67, 366-372		24

480	Heat transfer analysis in PCM-filled RCC roof for thermal management. 2014 , 28, 1073-1078		12
479	Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material. 2014 , 66, 171-180		91
478	An experimental method for validating transient heat transfermathematical models used for phase change materials(PCMs) calculations. 2014 , 87, 541-558		16
477	A new type of passive solar energy utilization technology The wall implanted with heat pipes. <i>Energy and Buildings</i> , 2014 , 84, 111-116	7	33
476	Exploration of road temperature-adjustment material in asphalt mixture. 2014, 15, 659-673		28
475	International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013). 2014 ,		2
474	Life cycle assessment (LCA) of phase change materials (PCMs) used in buildings. 2014 , 287-310		3
473	Energy saving potential of phase change materials in major Australian cities. <i>Energy and Buildings</i> , 2014 , 78, 192-201	7	110
472	PCM in the heat rejection loops of absorption chillers. A feasibility study for the residential sector in Spain. <i>Energy and Buildings</i> , 2014 , 80, 331-351	7	15
471	Numerical study on thermal behaviors of a solar chimney incorporated with PCM. <i>Energy and Buildings</i> , 2014 , 80, 406-414	7	29
470	A multi-level modelling and evaluation of thermal performance of phase-change materials in buildings. 2014 , 7, 289-308		12
469	Dynamic Thermal-energy Performance Analysis of a Prototype Building with Integrated Phase Change Materials. 2015 , 81, 82-88		8
468	PCM Storage. 2015 , 1-23		6
467	Diatomite/Palm Wax Composite as a Phase Change Material for Latent Heat Storage. 2015 , 1126, 33-3	8	1
466	Preparation, Mechanical and Thermal Properties of Cement Board with Expanded Perlite Based Composite Phase Change Material for Improving Buildings Thermal Behavior. 2015 , 8, 7702-7713		24
465	Application of Phase Change Materials in Buildings. 2015 , 1096, 533-537		4
464	PCM-Enhanced Building Components. 2015,		34
463	Smart concretes and structures: A review. 2015 , 26, 1303-1345		138

462	Preparation and thermal characterization of composite Paraffin/Red Bricklas a novel form-stable of phase change material for thermal energy storage. 2015 , 40, 13771-13776	20
461	Thermal Performance of a New Type of Phase Change Material Room in Summer and Winter. 2015 , 121, 2193-2200	
460	Thermal analysis by DSC of Phase Change Materials, study of the damage effect. 2015 , 1, 13-19	38
459	Synthesis and characterization of micro/nano capsules of PMMA/caprictitearic acid eutectic mixture for low temperature-thermal energy storage in buildings. <i>Energy and Buildings</i> , 2015 , 90, 106-113	85
458	Multiphysics design optimization model for structural walls incorporating phase-change materials. 2015 , 47, 308-327	
457	Diurnal thermal analysis of microencapsulated PCM-concrete composite walls. 2015 , 93, 215-227	95
456	Experimental Study on the Use of Microencapsulated Phase Change Material in Walls and Roofs for Energy Savings. 2015 , 141, 04014046	5
455	Developments in organic solid I Iquid phase change materials and their applications in thermal energy storage. 2015 , 95, 193-228	456
454	Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material. <i>Energy and Buildings</i> , 2015 , 94, 52-60	96
453	Thermal behaviour of insulation and phase change materials in buildings with internal heat loads: experimental study. 2015 , 8, 895-904	14
452	Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. <i>Energy and Buildings</i> , 2015 , 94, 150-176	316
451	The preparation of the hydrotalcite-based composite phase change material. 2015 , 156, 207-212	12
450	Development of carbon nanotube modified cement paste with microencapsulated phase-change material for structural-functional integrated application. 2015 , 16, 8027-39	40
449	Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials. Energy and Buildings, 2015, 106, 156-163	60
448	Review on using microencapsulated phase change materials (PCM) in building applications. <i>Energy and Buildings</i> , 2015 , 106, 134-155	226
447	Introduction. 2015 , 1-19	
446	Short History of PCM Applications in Building Envelopes. 2015 , 21-59	8
445	Examples of Full-Scale Field Experiments Test Huts and Whole Buildings Containing PCM-Enhanced Building Envelope Components. 2015 , 143-166	1

444	Thermal and Energy Modeling of PCM-Enhanced Building Envelopes. 2015, 167-234		2
443	The design, properties, and performance of concrete masonry blocks with phase change materials. 2015 , 231-248		1
442	PCM incorporation in a concrete core slab as a thermal storage and supply system: Proof of concept. <i>Energy and Buildings</i> , 2015 , 103, 70-82	7	58
441	Performance of a window shutter with phase change material under summer Mediterranean climate conditions. 2015 , 84, 246-256		61
440	Study on heat-storage and release characteristics of multi-cavity-structured phase-change microcapsules. 2015 , 88, 704-715		6
439	Phase-change materials for reducing building cooling needs. 2015 , 381-399		4
438	Experimental study of geopolymer mortar with incorporated PCM. 2015, 84, 95-102		90
437	Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique. 2015 , 82, 43-53		72
436	Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. 2015 , 160, 286-307		397
435	Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation. <i>Energy and Buildings</i> , 2015 , 108, 373-380	7	60
434	Lightweight dense/porous PCM-ceramic tiles for indoor temperature control. <i>Energy and Buildings</i> , 2015 , 108, 205-214	7	22
433	Review of Phase Change Materials Integrated in Building Walls for Energy Saving. 2015 , 121, 763-770		71
432	A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. 2015 , 157, 85-94		185
431	Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO. 2015 , 143, 424-429		76
430	Phase change material wall optimization for heating using metamodeling. <i>Energy and Buildings</i> , 2015 , 106, 216-224	7	27
429	Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage. 2015 , 91, 531-539		31
428	A reference device for evaluating the thermal behavior of installed multilayered wall containing a phase change material. 2015 , 106, 1409-1417		4
427	Three-dimensional simulation on the thermal performance of a novel Trombe wall with venetian blind structure. <i>Energy and Buildings</i> , 2015 , 89, 32-38	7	59

(2016-2015)

426	Thermal properties of smart microencapsulated paraffin/plaster composites for the thermal regulation of buildings. <i>Energy and Buildings</i> , 2015 , 88, 183-192	41
425	Preparation and properties of phase-change heat-storage UV curable polyurethane acrylate coating. 2015 , 132,	15
424	Rigid polyurethane foams incorporated with phase change materials: A state-of-the-art review and future research pathways. <i>Energy and Buildings</i> , 2015 , 87, 25-36	89
423	Thermal energy storage (TES) systems for cooling in residential buildings. 2015 , 549-572	5
422	Integrating phase change materials (PCMs) in thermal energy storage systems for buildings. 2015 , 325-353	8
421	On the use of plug-and-play walls (PPW) for evaluating thermal enhancement technologies for building enclosures: Evaluation of a thin phase change material (PCM) layer. <i>Energy and Buildings</i> , 7 2015 , 86, 86-92	43
42 0	Computational analysis of effective thermal conductivity of microencapsulated phase change material coated composite fabrics. 2015 , 49, 2337-2348	15
419	Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al 2 O 3. 2015 , 137, 731-737	161
418	Experimental Research on the Thermal Performance of Composite PCM Hollow Block Walls and Validation of Phase Transition Heat Transfer Models. 2016 , 2016, 1-15	1
417	A Study on a Novel Phase Change Material Panel Based on Tetradecanol/Lauric Acid/Expanded Perlite/Aluminium Powder for Building Heat Storage. 2016 , 9,	14
416	Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications. 2015 , 9,	25
415	Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study. 2016 , 9,	41
414	Effect of Phase Change Materials (PCMs) Integrated into a Concrete Block on Heat Gain Prevention in a Hot Climate. 2016 , 8, 1009	23
413	Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics. 2016 , 8, 1046	57
412	Nano-based phase change materials for building energy efficiency*. 2016 , 183-211	4
411	Facile Synthesis and Thermal Properties of Nanoencapsulated n-Dodecanol with SiO2 Shell as Shape-Formed Thermal Energy Storage Material. 2016 , 30, 6153-6160	48
410	The role of phase change materials for the sustainable energy. 2016 , 10, 00068	4
409	Underground Thermal Energy Storage. 2016 , 39-75	

408	Experimental assessment on the use of phase change materials (PCMs)-bricks in the exterior wall of a full-scale room. 2016 , 120, 81-89		72
407	The Preparation of Phase Change Energy Storage Ceramsite from Waste Autoclaved Aerated Concrete. 2016 , 31, 227-231		6
406	Evaluation of the application of Phase Change Materials (PCM) on the envelope of a typical dwelling in the Mediterranean region. 2016 , 97, 24-32		77
405	Influence of phase change material on mechanical and thermal properties of clay geopolymer mortar. 2016 , 120, 329-334		32
404	The influences of soft and stiff inclusions on the mechanical properties of cementitious composites. 2016 , 71, 153-165		25
403	Diurnal performance analysis of phase change material walls. 2016 , 102, 1-8		29
402	Phase change materials (PCM) for cooling applications in buildings: A review. <i>Energy and Buildings</i> , 2016 , 129, 396-431	7	384
401	Parametric analysis for performance enhancement of phase change materials in naturally ventilated buildings. <i>Energy and Buildings</i> , 2016 , 124, 35-45	7	39
400	Single layer mortars with microencapsulated PCM: Study of physical and thermal properties, and fire behaviour. <i>Energy and Buildings</i> , 2016 , 111, 393-400	7	35
399	Thermal and hydraulic analysis on a novel Trombe wall with venetian blind structure. <i>Energy and Buildings</i> , 2016 , 123, 50-58	7	22
398	Investigation of PCM as retrofitting option to enhance occupant thermal comfort in a modern residential building. <i>Energy and Buildings</i> , 2016 , 133, 217-229	7	77
397	Numerical investigation of transient thermal behavior of a wall incorporating a phase change material via a hybrid scheme. 2016 , 78, 200-206		7
396	Thermogravimetric study of a Phase Change Slurry: Effect of variable conditions. 2016 , 107, 329-338		2
395	Experimental assessment on a kind of composite wall incorporated with shape-stabilized phase change materials (SSPCMs). <i>Energy and Buildings</i> , 2016 , 128, 567-574	7	31
394	Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. <i>Energy and Buildings</i> , 2016 , 129, 274-283	7	115
393	Analysis of micro-dispersed PCM-composite boards behavior in a building's wall for different seasons. 2016 , 7, 361-371		24
392	Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application. <i>Energy and Buildings</i> , 2016 , 130, 113-121	7	73
391	Assessing the Implementation Potential of PCMs: The Situation for Residential Buildings in the Netherlands. 2016 , 96, 17-32		12

390	Use of phase change materials (PCMs) to mitigate early age thermal cracking in concrete: Theoretical considerations. 2016 , 126, 332-344	58
389	Thermal Storage. 2016 , 350-367	
388	Impact of the Relationship between Phase Change Temperature and Boundary Temperature on the Thermal Performance of a PCM Wall and the Presentation of PCM Thermal Performance Indexes. 2016 , 45, 379-403	6
387	Daytime space cooling with phase change material ceiling panels discharged using rooftop photovoltaic/thermal panels and night-time ventilation. 2016 , 22, 902-910	7
386	Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials. 2016 , 120, 408-417	91
385	The State of the Art for Technologies Used to Decrease Demand in Buildings: Thermal Energy Storage. 2016 , 319-348	1
384	Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore. 2016 , 162, 207-217	195
383	Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. 2016 , 53, 1059-1075	286
382	Polymers with Nano-Encapsulated Functional Polymers: Encapsulated Phase Change Materials. 2016 , 155-169	5
381	Thermal energy storage for renewable heating and cooling systems. 2016 , 139-179	6
380	Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder. 2016 , 110, 201-210	56
379	Use of phase change material to improve thermal properties of lightweight geopolymer panel. 2016 , 49, 4637-4645	21
378	Phase change material's (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate. 2016 , 99, 221-238	90
377	Heat transfer enhancement in latent heat thermal storage systems: Comparative study of different solutions and thermal contact investigation between the exchanger and the PCM. 2016 , 166, 107-116	60
376	Thermal performance assessment of encapsulated PCM based thermal management system to reduce peak energy demand in buildings. <i>Energy and Buildings</i> , 2016 , 117, 44-52	60
375	Numerical techniques to model conduction dominant phase change systems: A CFD approach and validation with DSC curve. <i>Energy and Buildings</i> , 2016 , 118, 240-248	13
375 374		13 30

372	Mechanical and thermal characterization of concrete with incorporation of microencapsulated PCM for applications in thermally activated slabs. 2016 , 112, 639-647		46
371	Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material. <i>Energy and Buildings</i> , 2016 , 111, 242-252		46
370	Advanced energy storage materials for building applications and their thermal performance characterization: A review. 2016 , 57, 916-928		105
369	Design and Application of Concrete Tiles Enhanced with Microencapsulated Phase-Change Material. 2016 , 22, 05015003		17
368	The impacts of applying typical and aestheticallythermally optimized TiO2 pigmented coatings on cooling and heating load demands of a typical residential building in various climates of Iran. <i>Energy and Buildings</i> , 2016 , 113, 99-111		18
367	Innovative cool roofing membrane with integrated phase change materials: Experimental characterization of morphological, thermal and optic-energy behavior. <i>Energy and Buildings</i> , 2016 , 7112, 40-48		26
366	Passive thermal control in residential buildings using phase change materials. 2016 , 55, 371-398		182
365	Literature review on the use of phase change materials in glazing and shading solutions. 2016 , 53, 515-53	5	109
364	Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. 2016 , 98, 50-57		300
363	Effective elastic moduli of core-shell-matrix composites. 2016 , 92, 94-106		26
363 362	Effective elastic moduli of core-shell-matrix composites. 2016 , 92, 94-106 Laboratory-Scale Studies on Smart Gypsum Composite Boards Incorporated with Nano-Encapsulated Organic Phase Change Material for Thermal Comfort Building Application. 2016 , 28, 04015137		26
	Laboratory-Scale Studies on Smart Gypsum Composite Boards Incorporated with Nano-Encapsulated Organic Phase Change Material for Thermal Comfort Building Application. 2016		
362	Laboratory-Scale Studies on Smart Gypsum Composite Boards Incorporated with Nano-Encapsulated Organic Phase Change Material for Thermal Comfort Building Application. 2016 , 28, 04015137 Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as		8
362 361	Laboratory-Scale Studies on Smart Gypsum Composite Boards Incorporated with Nano-Encapsulated Organic Phase Change Material for Thermal Comfort Building Application. 2016 , 28, 04015137 Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. 2016, 85, 1334-1356 Use of paraffin impregnated lightweight aggregates to improve thermal properties of concrete		8
362 361 360	Laboratory-Scale Studies on Smart Gypsum Composite Boards Incorporated with Nano-Encapsulated Organic Phase Change Material for Thermal Comfort Building Application. 2016, 28, 04015137 Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. 2016, 85, 1334-1356 Use of paraffin impregnated lightweight aggregates to improve thermal properties of concrete panels. 2016, 49, 1793-1803 Smart macroencapsulated resin/wax composite for energy conservation in the built environment:		8 155 15
362 361 360 359	Laboratory-Scale Studies on Smart Gypsum Composite Boards Incorporated with Nano-Encapsulated Organic Phase Change Material for Thermal Comfort Building Application. 2016 , 28, 04015137 Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. 2016, 85, 1334-1356 Use of paraffin impregnated lightweight aggregates to improve thermal properties of concrete panels. 2016, 49, 1793-1803 Smart macroencapsulated resin/wax composite for energy conservation in the built environment: Thermophysical and numerical investigations. 2017, 30, 887-914 Thermal performance of buildings integrated with phase change materials to reduce heat stress		8 155 15 3
362 361 360 359 358	Laboratory-Scale Studies on Smart Gypsum Composite Boards Incorporated with Nano-Encapsulated Organic Phase Change Material for Thermal Comfort Building Application. 2016, 28, 04015137 Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. 2016, 85, 1334-1356 Use of paraffin impregnated lightweight aggregates to improve thermal properties of concrete panels. 2016, 49, 1793-1803 Smart macroencapsulated resin/wax composite for energy conservation in the built environment: Thermophysical and numerical investigations. 2017, 30, 887-914 Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events. 2017, 194, 410-421 Thermal Energy Storage Properties and Laboratory-Scale Thermoregulation Performance of		8 155 15 3

(2017-2017)

354	Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. 2017 , 146, 1-7	103
353	A quick-fix design of phase change material by particle blending and spherical agglomeration. 2017 , 191, 239-250	21
352	Phase Change Materials for Application in Energy-Efficient Buildings. 2017 , 57-118	21
351	Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements. 2017 , 81, 11-24	31
350	Evaluating the passive and free cooling application methods of phase change materials in residential buildings: A comparative study. <i>Energy and Buildings</i> , 2017 , 148, 238-256	28
349	Early-age temperature evolutions in concrete pavements containing microencapsulated phase change materials. 2017 , 147, 466-477	33
348	Thermal Performance of an Office Cubicle Integrated with a Bio-based PCM: Experimental Analyses. 2017 , 111, 609-618	18
347	Constant mass model for the liquid-solid phase transition on a one-dimensional Stefan problem: Transient and steady state regimes. 2017 , 118, 40-52	12
346	Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity. 2017 , 182, 012015	5
345	Solar systems integrated with absorption heat pumps and thermal energy storages: state of art. 2017 , 70, 492-505	60
344	Latent Heat Storage: Storage Materials, Heat Transfer, and Applications. 2017, 4, 215-224	3
343	New approach for delaying the internal temperature rise of fire resistant mortar made with coated aggregate. 2017 , 149, 76-90	3
342	Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. 2017 , 202, 420-434	153
341	Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review. 2017 , 80, 1239-1255	128
340	A Comparative Study on the Effectiveness of Passive and Free Cooling Application Methods of Phase Change Materials for Energy Efficient Retrofitting in Residential Buildings. 2017 , 180, 993-1002	15
339	Mechanical and thermal evaluation of different types of PCMBoncrete composite panels. 2017, 2, 100-108	6
338	Smart and Multifunctional Concrete Toward Sustainable Infrastructures. 2017,	53
337	Investigation of the corrosive properties of phase change materials in contact with metals and plastic. 2017 , 108, 555-568	37

336	Preparation and Characterization of High Content Paraffin Wax Microcapsules and Micro/Nanocapsules with Poly Methyl Methacrylate Shell by Suspension-Like Polymerization. 2017 , 35, 497-506		9
335	Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. <i>Energy and Buildings</i> , 2017 , 144, 276-294	7	160
334	Effect of PCM in Improving the Thermal Comfort in Buildings. 2017, 107, 157-161		15
333	A review on the application of Trombe wall system in buildings. 2017 , 70, 976-987		129
332	Microstructure regulation of microencapsulated bio-based n-dodecanol as phase change materials via in situ polymerization. 2017 , 41, 14696-14707		19
331	Facile preparation of porous plaster board containing phase change capsules using gel template. <i>Energy and Buildings</i> , 2017 , 156, 134-139	7	7
330	Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells. 2017 , 5, 23937-23951		55
329	Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review. <i>Energy and Buildings</i> , 2017 , 154, 96-112	7	162
328	Magnesium phosphate cements formulated with low grade magnesium oxide incorporating phase change materials for thermal energy storage. 2017 , 155, 209-216		16
327	Experimental study on effect of microencapsulated phase change coating on indoor temperature response and energy consumption. 2017 , 9, 168781401770390		6
326	Microencapsulation of 1-hexadecanol as a phase change material with reversible thermochromic properties. 2017 , 7, 42129-42137		17
325	Advancement in phase change materials for thermal energy storage applications. 2017 , 172, 82-92		79
324	Research on composite-phase change materials (PCMs)-bricks in the west wall of room-scale cubicle: Mid-season and summer day cases. 2017 , 123, 494-503		43
323	LatentwEmespeicher: Speichermaterialien, WEmeBertragung und Anwendungen. 2017 , 89, 1115-1125		3
322	Development and thermal performance of an expanded perlite-based phase change material wallboard for passive cooling in building. <i>Energy and Buildings</i> , 2017 , 152, 547-557	7	50
321	Flammability assessment of phase change material wall lining and insulation materials with different weight fractions. <i>Energy and Buildings</i> , 2017 , 153, 439-447	7	16
320	A review on phase change material application in building. 2017 , 9, 168781401770082		60
319	Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. 2017 , 203, 219-239		184

318	Improvement of shape stability and thermal properties of PCM using polyethylene glycol (PEG)/sisal fiber cellulose (SFC)/graphene oxide (GO). 2017 , 18, 1171-1179	9
317	Robust microencapsulated phase change materials in concrete mixes for sustainable buildings. 2017 , 41, 113-126	42
316	Thermal conductivity of cementitious composites containing microencapsulated phase change materials. 2017 , 104, 71-82	52
315	An overview of phase change materials for construction architecture thermal management in hot and dry climate region. 2017 , 112, 1240-1259	69
314	Thermal stability of organic binary PCMs for energy storage. 2017 , 142, 3287-3294	14
313	Characterization of Concrete Mixes Containing Phase Change Materials. 2017 , 251, 012118	5
312	Phase change materials for improving the building thermal inertia. 2017 , 139, 744-749	19
311	Numerical Study of The Thermal Performance of The PCM Wall Under Periodical Outside Temperature Waves. 2017 , 205, 3478-3484	2
310	Physical, thermal and mechanical study of MPC formulated with LG-MgO incorporating Phase Change Materials as admixture. 2017 , 251, 012024	2
309	Preparation of palygorskite-based phase change composites for thermal energy storage and their applications in Trombe walls. 2017 , 32, 1306-1317	8
308	Energy Saving Potential of PCMs in Buildings under Future Climate Conditions. 2017 , 7, 1219	20
307	Effect of Summer Ventilation on the Thermal Performance and Energy Efficiency of Buildings Utilizing Phase Change Materials. 2017 , 10, 1214	10
306	Acquisition System Verification for Energy Efficiency Analysis of Building Materials. 2017, 10, 1254	1
305	The Effect of Phase Change Material (PCM) on Thermal Behavior of a Building Located at Casablanca During Heating Period. 2017 ,	
304	CaracterBticas tEmicas de materiais de mudan de fase adequados para edificads brasileiras. 2017 , 17, 125-145	1
303	Analyses of phase change materialslefficiency in warm-summer humid continental climate conditions. 2017 , 251, 012119	O
302	High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. 2018 , 6, 5880-5886	96
301	Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate. 2018 , 222, 497-514	48

300	Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. 2018 , 163, 113-121		94
299	Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. 2018 , 212, 1448-1461		69
298	Improving indoor thermal comfort by using phase change materials: A review. 2018 , 42, 2084-2103		53
297	Energy storage key performance indicators for building application. 2018 , 40, 54-65		30
296	Reduced-scale experiments to evaluate performance of composite building envelopes containing phase change materials. 2018 , 162, 584-595		22
295	Study on heat-transfer mechanism of wallboards containing active phase change material and parameter optimization with ventilation. 2018 , 144, 1091-1108		46
294	Concrete as a thermal mass material for building applications - A review. 2018 , 19, 14-25		56
293	Thermal Stability Experimental Study on Three Types of Organic Binary Phase Change Materials Applied in Thermal Energy Storage System. 2018 , 10,		11
292	A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. 2018 , 220, 242-273		270
291	Design and analysis of PCM based radiant heat exchanger for thermal management of buildings. <i>Energy and Buildings</i> , 2018 , 169, 84-96	7	18
290	Invigorating polyurethane foams with phase change materials supported in inorganic containers. 2018 , 39, 1420-1432		4
289	Preparation and characterization of capric-palmitic-stearic acid ternary eutectic mixture/expanded vermiculite composites as form-stabilized thermal energy storage materials. 2018 , 34, 379-386		34
288	Review on building energy performance improvement using phase change materials. <i>Energy and Buildings</i> , 2018 , 158, 776-793	7	210
287	PCM-mortar based construction materials for energy efficient buildings: A review on research trends. <i>Energy and Buildings</i> , 2018 , 158, 95-122	7	99
286	Quantitative Assessment of Phase Change Material Utilization for Building Cooling Load Abatement in Composite Climatic Condition. 2018 , 140,		19
285	Experimental set-up for testing active and passive systems for energy savings in buildings Lessons learnt. 2018 , 82, 1014-1026		36
284	Development of a detachable window aircap module for energy saving. <i>Energy and Buildings</i> , 2018 , 158, 1640-1647	7	4
283	Advanced low-carbon energy measures based on thermal energy storage in buildings: A review. 2018 , 82, 3705-3749		62

(2018-2018)

282	Heat storage wall made of concrete and encapsulated water applied to mass construction social housing in temperate climates. <i>Energy and Buildings</i> , 2018 , 159, 346-356	7	5
281	Thermal Performance Through the Use of Radiant Barrier and Phase Change Material in Concrete Flat Roofs. 2018 , 454, 012058		1
280	Preparation and hygrothermal performance of composite phase change material wallboard with humidity control based on expanded perlite/diatomite/paraffin. 2018 , 25, 2387-2398		9
279	Preparation and Thermal Performance Enhancement of Low Temperature Eutectic Composite Phase Change Materials Based on NaBOII 0HD. 2018 , 11,		13
278	Design the magnetic microencapsulated phase change materials with poly(MMA-MAA) @ n-octadecane modified by FeO. 2018 , 8, 16379		9
277	Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts. 2018 , 11, 3093		15
276	Integration of the PCM with intra-ventilation for improved thermal and inertial characteristics of the building envelope. 2018 , 84, 30901		
275	Thermal Properties of Concrete Incorporated with Shape-stable Phase Change Material. 2018 , 203, 060.	21	
274	Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings. 2018 , 10, 2657		6
273	The influence of emulsifiers on preparation and properties of microencapsules of melamine-urea-formaldehyde resins with n-dodecanol as phase-change material. 2018 , 37, 3492-3498		7
272	An experimental study on applying PCMs to disaster-relief prefabricated temporary houses for improving internal thermal environment in summer. <i>Energy and Buildings</i> , 2018 , 179, 301-310	7	16
271	Development of a wall module employing aircap layers. <i>Energy and Buildings</i> , 2018 , 177, 413-422	7	1
270	Financial viability of PCMs in countries with low energy cost: A case study of different climates in Iran. <i>Energy and Buildings</i> , 2018 , 173, 128-137	7	30
269	Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage. 2018 , 140, 112-119		50
268	n-Alkanes Phase Change Materials and Their Microencapsulation for Thermal Energy Storage: A Critical Review. 2018 , 32, 7262-7293		90
267	Encapsulation of High-Temperature Phase Change Materials. 2018, 231-274		1
266	Energy savings potential by integrating Phase Change Material into hollow bricks: The case of Moroccan buildings. 2018 , 11, 1109-1122		18
265	Nanoclay and polymer-based nanocomposites: Materials for energy efficiency. 2018 , 75-103		6

264	A translucent honeycomb solar collector and thermal storage module for building falldes. 2018 , 127, 781-795	9
263	Phase change humidity control material and its impact on building energy consumption. <i>Energy and Buildings</i> , 2018 , 174, 254-261	34
262	A practical ranking system for evaluation of industry viable phase change materials for use in concrete. 2018 , 177, 272-286	16
261	Effect of PCM on the Hydration Process of Cement-Based Mixtures: A Novel Thermo-Mechanical Investigation. 2018 , 11,	12
260	Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form. 2018 , 11,	13
259	Impact of structural configuration on the thermal performance of a PCM hollow block wall. 2018 , 24, 945-961	2
258	Lauric Acid Hybridizing Fly Ash Composite for Thermal Energy Storage. 2018 , 8, 161	8
257	Kinematic characterization of the pressure-dependent PCM impregnation process for radiata pine wood samples. 2018 , 76, 1461-1469	10
256	Thermal response of a composite building envelope under the climatic conditions of Tunisia. 2018,	
255	A literature review of night ventilation strategies in buildings. <i>Energy and Buildings</i> , 2018 , 173, 337-352 7	66
254	2.14 Latent Heat Storage Systems. 2018 , 396-434	2
252		
253	Numerical and experimental study on the use of microencapsulated phase change materials (PCMs) in textile reinforced concrete panels for energy storage. 2018 , 41, 455-468	54
252		54 7
	in textile reinforced concrete panels for energy storage. 2018 , 41, 455-468 Predicting microcapsules morphology and encapsulation efficiency by combining the spreading	
252	in textile reinforced concrete panels for energy storage. 2018, 41, 455-468 Predicting microcapsules morphology and encapsulation efficiency by combining the spreading coefficient theory and polar surface energy component. 2018, 554, 49-59 Impact of Phase Change Material's Thermal Properties on the Thermal Performance of Phase	7
252 251	In textile reinforced concrete panels for energy storage. 2018, 41, 455-468 Predicting microcapsules morphology and encapsulation efficiency by combining the spreading coefficient theory and polar surface energy component. 2018, 554, 49-59 Impact of Phase Change Material's Thermal Properties on the Thermal Performance of Phase Change Material Hollow Block Wall. 2019, 40, 1619-1632	7
252 251 250	Predicting microcapsules morphology and encapsulation efficiency by combining the spreading coefficient theory and polar surface energy component. 2018, 554, 49-59 Impact of Phase Change Material's Thermal Properties on the Thermal Performance of Phase Change Material Hollow Block Wall. 2019, 40, 1619-1632 PCM Current Applications and Thermal Performance. 2019, 35-70	7

(2019-2019)

246	Laboratory and pilot scale characterization of granular aerogel glazing systems. <i>Energy and Buildings</i> , 2019 , 202, 109349	7	16	
245	Development of thermal energy storage lightweight structural cementitious composites by means of macro-encapsulated PCM. 2019 , 225, 182-195		27	
244	Properties of concretes enhanced with phase change materials for building applications. <i>Energy and Buildings</i> , 2019 , 199, 402-414	7	67	
243	Development of core-sheath structured smart nanofibers by coaxial electrospinning for thermo-regulated textiles 2019 , 9, 21844-21851		15	
242	Porous geopolymer as a possible template for a phase change material. 2019 , 236, 121785		10	
241	Analysis of the Thermal Characteristics of a Composite Ceramic Product Filled with Phase Change Material. 2019 , 9, 217		7	
2 40	Synthesis of organic phase change materials (PCM) for energy storage applications: A review. 2019 , 20, 100399		72	
239	Use of phase change materials in concrete: current challenges. 2019 , 4, 9		16	
238	Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate. 2019 , 187, 115987		36	
237	Numerical investigations on performance of phase change material Trombe wall in building. 2019 , 187, 116057		46	
236	Effects of Pressure-Induced Density Changes in the Thermal Energy Absorbed by a Micro-Encapsulated Phase-Change Material. 2019 , 24,		5	
235	Experimental investigations for applying PESS to disaster relief PTHs. 2019 , 158, 4772-4777		O	
234	Numerical Analysis of Building Envelope with Movable Phase Change Materials for Heating Applications. 2019 , 9, 3688		O	
233	Influence of the incorporation of phase change materials on temperature development in mortar at early ages: Experiments and numerical simulation. 2019 , 225, 1036-1051		9	
232	Reviewing Theoretical and Numerical Models for PCM-embedded Cementitious Composites. 2019 , 9, 3		14	
231	Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness. 2019 , 193, 184-197		38	
230	Thermal building control using active ventilated block integrating phase change material. <i>Energy and Buildings</i> , 2019 , 187, 50-63	7	29	
229	Characterization and thermal performance of microencapsulated sodium thiosulfate pentahydrate as phase change material for thermal energy storage. 2019 , 193, 149-156		19	

228	A Novel Polymeric Adsorbent Embedded with Phase Change Materials (PCMs) Microcapsules: Synthesis and Application. 2019 , 9,	4
227	Heat transfer performance of the Trombe wall implanted with heat pipes during daytime in winter. 2019 , 25, 935-944	5
226	Incorporation of bamboo charcoal for cement-based humidity adsorption material. 2019, 215, 244-251	12
225	Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM. 2019 , 195, 43-56	133
224	A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials. 2019 , 110, 467-484	79
223	Efficient Characterization of Macroscopic Composite Cement Mortars with Various Contents of Phase Change Material. 2019 , 9, 1104	9
222	Multi-functional Engineered Cementitious Composites (ECC). 2019, 371-411	
221	Use of burnt clay aggregate as phase change material carrier to improve thermal properties of concrete panel. 2019 , 11, e00242	5
220	Examining the effects of microencapsulated phase change materials on early-age temperature evolutions in realistic pavement geometries. 2019 , 103, 149-159	14
219	The Effect of Phase Change Materials on the Physical, Thermal and Mechanical Properties of Cement. 2019 , 1, 27	8
218	Influence of microencapsulated phase change materials on the flexural behavior and micromechanical impact damage of hybrid fibre reinforced engineered cementitious composites. 2019 , 166, 633-644	10
217	Heat transfer within mortar containing micro-encapsulated PCM: Numerical approach. 2019 , 210, 422-433	17
216	Fitting of heat capacity peaks of PCMs with a theoretical formula. 2019 , 138, 2597-2603	
215	Challenges in, and the development of, building energy saving techniques, illustrated with the example of an air source heat pump. 2019 , 10, 337-356	30
214	Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. 2019 , 3, 1091-1149	114
213	Evaluation of the effect of a phase-change material on the thermal response of a bizone building under the climatic conditions of Tunisia. 2019 , 20, 593-603	3
212	Energy saving performance assessment and lessons learned from the operation of an active phase change materials system in a multi-storey building in Melbourne. 2019 , 238, 1582-1595	36
211	A novel composite phase change material with paraffin wax in tailings porous ceramics. 2019 , 151, 115-123	24

(2020-2019)

210	Modification of asphalt mixtures for cold regions using microencapsulated phase change materials. 2019 , 9, 20342		15
209	Microencapsulated binary carbonate salt mixture in silica shell with enhanced effective heat capacity for high temperature latent heat storage. 2019 , 134, 1156-1162		30
208	Thermal Energy Storage with Phase Change Materials. 2019,		8
207	Building Envelope. 2019 , 295-439		3
206	Numerical and experimental studies of a Capillary-Tube embedded PCM component for improving indoor thermal environment. 2019 , 148, 466-477		19
205	Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements. 2019 , 201, 246-256		26
204	Sinusoidal response measurement procedure for the thermal performance assessment of PCM by means of dynamic heat flow meter apparatus. <i>Energy and Buildings</i> , 2019 , 183, 297-310	7	14
203	Experimental investigation of thermal performance of microencapsulated PCM-contained wallboard by two measurement modes. <i>Energy and Buildings</i> , 2019 , 184, 34-43	7	23
202	Dynamic building envelope with PCM for cooling purposes Proof of concept. 2019 , 235, 1245-1253		61
201	2 years of monitoring results from passive solar energy storage in test cabins with phase change materials. 2020 , 200, 29-36		24
200	Study of effect of Al and Cu microparticles dispersed in D-Mannitol PCM for effective solar thermal energy storage. 2020 , 139, 895-904		8
199	Cross-linked polyurethane as solid-solid phase change material for low temperature thermal energy storage. 2020 , 685, 178191		14
198	PCM integrated to external building walls: An optimization study on maximum activation of latent heat. 2020 , 165, 114560		97
197	Potential of microencapsulated PCM for energy savings in buildings: A critical review. 2020 , 53, 101884		40
196	Review on performance assessment of phase change materials in buildings for thermal management through passive approach. 2020 , 22, 419-431		10
195	Advances in Surface Engineering for Improved Energy Storage. 2020 , 245-249		
194	Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation. 2020 , 146, 1451-1464		26
193	Numerical simulation and thermal performance of hybrid brick walls embedding a phase change material for passive building applications. 2020 , 140, 965-978		15

192	Phase change materials and energy efficiency of buildings: A review of knowledge. 2020 , 27, 101083	94
191	Behaviour of a concrete wall containing micro-encapsulated PCM after a decade of its construction. 2020 , 200, 108-113	35
190	Performance of cementitious composites with nano PCMs and cellulose nano fibers. 2020 , 236, 117483	18
189	A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. 2020 , 211, 118698	124
188	Thermal storage properties of lightweight concrete incorporating phase change materials with different fusion points in hybrid form for high temperature applications. 2020 , 6, e04863	12
187	Improving the energy efficiency of passive PCM system using controlled natural ventilation. <i>Energy and Buildings</i> , 2020 , 228, 110483	20
186	Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings. 2020 , 160, 817-829	21
185	Multiscale Modelling Approach Targeting Optimisation of PCM into Constructive Solutions for Overheating Mitigation in Buildings. 2020 , 10, 8009	3
184	Measurement of PCM-concrete composites thermal properties for energy conservation in building material. 2020 ,	2
183	Preparation and characterization of isopropyl palmitate/expanded perlite and isopropyl palmitate/nanoclay composites as form-stable thermal energy storage materials for buildings. 2020 , 32, 101679	11
182	Development and thermo-mechanical analysis of high-performance hybrid fibre engineered cementitious composites with microencapsulated phase change materials. 2020 , 263, 120139	6
181	Parametric analysis and design optimisation of PCM thermal energy storage system for space cooling of buildings. <i>Energy and Buildings</i> , 2020 , 224, 110288	23
180	Form-Stable Phase Change Materials Based on SEBS and Paraffin: Influence of Molecular Parameters of Styrene-b-(EthyleneButylene)-b-Styrene on Shape Stability and Retention Behavior. 2020 , 13,	3
179	Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings. <i>Energy and Buildings</i> , 2020 , 226, 110355	41
178	A review on thermal energy storage using phase change materials in passive building applications. 2020 , 32, 101563	32
177	Experimental Analysis of the Function of a Window with a Phase Change Heat Accumulator. 2020 , 13,	4
176	Synthesis and Characterization of Fatty Acid Amides from Commercial Vegetable Oils and Primary Alkyl Amines for Phase Change Material Applications. 2020 , 8, 13683-13691	4
175	The Effect of Adding Shape Stabilized Phase Change Material on The Mechanical Properties of Mortar. 2020 , 870, 012156	

(2021-2020)

174	change materials. 2020 , 204, 115-133	17
173	Experimental and Numerical Thermal Properties Investigation of Cement-Based Materials Modified with PCM for Building Construction Use. 2020 , 26, 04020018	9
172	Heat storage in concrete deck with nano- and micro-encapsulated PCM. 2020, 313-331	
171	Post-Pyrolytic Carbon as a Phase Change Materials (PCMs) Carrier for Application in Building Materials. 2020 , 13,	11
170	Experimental and Computational Study of the Implementation of mPCM-Modified Gypsum Boards in a Test Enclosure. 2020 , 10, 15	5
169	Nanoparticle enhanced paraffin and tailing ceramic composite phase change material for thermal energy storage. 2020 , 4, 4547-4557	6
168	Effect of phase change material using in building thermal comfort applications through several climate conditions 2020 , 170, 01007	
167	Potential anti-icing applications of encapsulated phase change material mbedded coatings; a review. 2020 , 31, 101638	9
166	Phase Change Material (PCM) Microcapsules for Thermal Energy Storage. 2020 , 2020, 1-20	50
165	Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region. 2020 , 141, 613-624	37
164	Irreversibility analysis of thermally driven flow of a water-based suspension with dispersed nano-sized capsules of phase change material. 2020 , 155, 119796	7
163	Effect of temperature on geopolymer and Portland cement composites modified with Micro-encapsulated Phase Change materials. 2020 , 252, 119055	12
162	Application of phase change material for thermal energy storage: An overview of recent advances. 2021 , 44, 368-375	6
161	Validation of different numerical models with benchmark experiments for modelling microencapsulated-PCM-based applications for buildings. 2021 , 159, 106565	17
160	Biobased phase change materials for cooling in buildings. 2021 , 291-302	
159	A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. 2021 , 217, 119390	17
158	Progress and application of phase change material in solar thermal energy: An overview. 2021 , 44, 271-281	4
157	Evaluating the thermal efficiency of microencapsulated phase change materials for thermal energy storage in cementitious composites. 2021 , 116, 103891	7

156	A Study for the Influence of the Location of PCMs Assembly System on Improving Thermal Environment inside Disaster-Relief Temporary Houses. 2021 , 9, 1239-1252	0
155	Application of Phase Change Materials in Construction Materials for Thermal Energy Storage Systems in Buildings. 2021 , 1-20	
154	Components. Thermal Energy Storage. 2021 ,	
153	Review on phase change materials and application in building energy saving. 2021 , 236, 05006	Ο
152	Thermal energy storage systems for cooling in residential buildings. 2021 , 595-623	
151	Nanostructures encapsulated phase change materials for sustained thermal energy storage in concrete: An overall assessment. 2021 , 42, 2457-2463	1
150	Energy Storage Materials in Thermal Storage Applications. 2021 , 79-117	О
149	Experimental investigation for the development of superior structural integrated thermocrete via incorporation of novel non-encapsulated paraffin aggregate. 2021 , 271, 121883	5
148	Thermal Energy Storage by the Encapsulation of Phase Change Materials in Building Elements-A Review. 2021 , 14,	6
147	Effect of phase change composites on hydration characteristics of steam-cured cement paste. 2021 , 274, 122030	4
146	PEG-filled kapok fiber/sodium alginate aerogel loaded phase change composite material with high thermal conductivity and excellent shape stability. 2021 , 143, 106279	12
145	Scientometric review of international research trends on thermal energy storage cement based composites via integration of phase change materials from 1993 to 2020. 2021 , 278, 122344	9
144	Effect of melting point on thermodynamics of thin PCM reinforced residential frame walls in different climate zones. 2021 , 188, 116615	14
143	Improvement of thermal performance of mortars by using heat storage aggregate made with industrial by-product to reduce cooling load.	
142	Seasonal thermal energy storage: A techno-economic literature review. 2021 , 139, 110732	27
141	Phase Change Materials Technologies Review and Future Application in Lebanon: Part 1. 886, 228-240	
140	Phase Change Material Integration in Building Envelopes in Different Building Types and Climates: Modeling the Benefits of Active and Passive Strategies. 2021 , 11, 4680	3
139	Recent developments of thermal energy storage applications in the built environment: A bibliometric analysis and systematic review. 2021 , 189, 116666	28

138 Phase Change Materials Technologies Review and Future Application in Lebanon: Part II. 886, 256-270

137	Experimental evaluation of fire resistance performance of cement mortar with PCM/Mg(OH)2-based composite fine aggregate. 2021 , 287, 123018	О
136	Mechanical and thermal characterizations of various thermal energy storage concretes including low-cost bio-sourced PCM. <i>Energy and Buildings</i> , 2021 , 241, 110878	13
135	Thermal energy regulation with 3D printed polymer-phase change material composites. 2021 , 4, 1975-1989	13
134	Research progress and trends on the use of concrete as thermal energy storage material through bibliometric analysis. 2021 , 38, 102562	4
133	Preparation and Analysis of External Walls with the Phase Change Facing Tile for Energy Savings. 1036, 445-458	Ο
132	A Study of Hot Climate Low-Cost Low-Energy Eco-Friendly Building Envelope with Embedded Phase Change Material. 2021 , 14, 3544	4
131	High-energy and light-actuated phase change composite for solar energy storage and heat release. 2021 , 24, 101071	5
130	Energy-harvesting concrete for smart and sustainable infrastructures. 2021 , 56, 16243-16277	1
129	Smart Materials: Cementitious Mortars and PCM Mechanical and Thermal Characterization. 2021 , 14,	
128	Numerical Simulation of a Novel Dual Layered Phase Change Material Brick Wall for Human Comfort in Hot and Cold Climatic Conditions. 2021 , 14, 4032	2
127	Study on the Frost Resistance of Concrete Modified with Steel Balls Containing Phase Change Material (PCM). 2021 , 14,	1
126	Experimental and Numerical Analyses of Thermal Storage Tile-Bricks for Efficient Thermal Management of Buildings. 2021 , 11, 357	О
125	Preparation and characterizations of hydroxyapatite microcapsule phase change materials for potential building materials. 2021 , 297, 123576	3
124	Influence of drying applications on wood, brick and concrete used as building materials: a review. 2021 , 6, 1	2
123	Potential Phase Change Materials in Building Wall Construction-A Review. 2021 , 14,	1
122	Assessment of impregnating phase change materials into lightweight aggregates for development of thermal energy storage aggregate composites. 2021 , 305, 124683	О
121	Integrating PCM into hollow brick walls: Toward energy conservation in Mediterranean regions. Energy and Buildings, 2021 , 248, 111214 7	11

120	Effect of core-shell ratio on the thermal energy storage capacity of SiO2 encapsulated lauric acid. 2021 , 42, 103029		2
119	Testing of microencapsulated phase-change heat storage in experimental model houses under winter weather conditions. 2021 , 204, 108119		4
118	PCM-containing bi-layered alkali-activated materials: A novel and sustainable route to regulate the temperature and humidity fluctuations inside buildings. 2021 , 205, 108281		O
117	Numerical study of the feasibility of coupling vacuum isolation panels with phase change material for enhanced energy-efficient buildings. <i>Energy and Buildings</i> , 2021 , 251, 111369	7	O
116	Inorganic phase change materials in thermal energy storage: A review on perspectives and technological advances in building applications. <i>Energy and Buildings</i> , 2021 , 252, 111443	7	21
115	Prediction of melting characteristics of encapsulated phase change material energy storage systems. 2021 , 181, 121872		3
114	Thermal properties of a cement composite containing phase change materials (PCMs) with post-pyrolytic char obtained from spent tyres as a carrier. 2022 , 239, 121936		4
113	Integrating phase change materials in thermal energy storage systems for buildings. 2021 , 381-422		O
112	Performance Requirements, Challenges and Existing Solutions of PCM in Massive Concrete for Temperature Control. 2021 , 93-103		
111	Study of Corrosion Effect of Micronal Phase Change Materials (PCM) with Different Metal Samples. 2020 , 709-717		1
110	Research on the climate response of variable thermo-physical property building envelopes: A literature review. <i>Energy and Buildings</i> , 2020 , 226, 110398	7	12
109	How to enhance thermal energy storage effect of PCM in roofs with varying solar reflectance: Experimental and numerical assessment of a new roof system for passive cooling in different climate conditions. 2019 , 192, 106-119		19
108	Preparation and characterization of acrylic resin encapsulated n-dodecanol microcapsule phase change material. 2020 , 7, 095501		1
107	Experimental Investigation and Numerical Modeling of Room Temperature Control in Buildings by the Implementation of Phase Change Material in the Roof. 2020 , 142,		6
106	PREPARATION OF PUZZOLANA ACTIVE TWO COMPONENT COMPOSITE FOR LATENT HEAT STORAGE. 2016 , 291-298		4
105	Thermal Performance of Resource-Efficient Geopolymeric Mortars Containing Phase Change Materials. 2018 , 12, 217-233		1
104	Mechanical properties of concrete containing beeswax/dammar gum as phase change material for thermal energy storage. 2018 , 6, 521-529		9
103	OPTIMAL PERFORMANCE CHARACTERISTICS OF MORTAR INCORPORATING PHASE CHANGE MATERIALS AND SILICA FUME. 2017 , 12, 59-78		11

102	THE EFFECT OF MICROENCAPSULATED PHASE-CHANGE MATERIAL ON THE COMPRESSIVE STRENGTH OF STRUCTURAL CONCRETE. 2013 , 8, 116-124	26
101	Experimental Study of Heat Transfer in a Real Scale Building Incorporating PCM in the Air Layer of the Vertical Walls. 2019 , 07, 14-25	1
100	Designing an Automatic Control System for the Improved Functioning of a Solar Wall with Phase Change Material (PCM). 2016 , 05, 19-29	9
99	Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage. 2021 , 11, 9305	5
98	Improving latent heat storage capacity of polyethylene glycol/cement composite prepared via solution blending method. 2021 , 230, 355-364	0
97	Energy. 2011 , 35-50	
96	Behaviour of Thermodynamic Models with Phase Change Materials under Periodic Conditions. 2011 , 03, 150-157	1
95	Optimized Analysis of Lightweight Wall Outfitted with PCM in Hot Summer Zone. 2014 , 233-240	
94	Evaluation of New Thermally Conductive Geopolymer in Thermal Energy Storage. 2014, 243-251	
93	Self-Adjusting Concrete. 2017 , 157-176	1
93	Self-Adjusting Concrete. 2017 , 157-176 Advanced Composites for Civil Engineering Infrastructures. 2018 , 212-248	1
92	Advanced Composites for Civil Engineering Infrastructures. 2018 , 212-248	
92 91	Advanced Composites for Civil Engineering Infrastructures. 2018, 212-248 Energetic Forms of Matter. 2019, 137-165 Experimental Study on PCM (Phase Change Material) Cool Roof System for Reducing Building	1
92 91 90	Advanced Composites for Civil Engineering Infrastructures. 2018, 212-248 Energetic Forms of Matter. 2019, 137-165 Experimental Study on PCM (Phase Change Material) Cool Roof System for Reducing Building Energy Demand and Urban Heat Island. 2019, 19, 45-52 Impregnation of Lightweight Aggregate Particles with Phase Change Material for Its Use in Asphalt	1
92 91 90 89	Advanced Composites for Civil Engineering Infrastructures. 2018, 212-248 Energetic Forms of Matter. 2019, 137-165 Experimental Study on PCM (Phase Change Material) Cool Roof System for Reducing Building Energy Demand and Urban Heat Island. 2019, 19, 45-52 Impregnation of Lightweight Aggregate Particles with Phase Change Material for Its Use in Asphalt Mixtures. 2020, 337-345	1
92 91 90 89 88	Advanced Composites for Civil Engineering Infrastructures. 2018, 212-248 Energetic Forms of Matter. 2019, 137-165 Experimental Study on PCM (Phase Change Material) Cool Roof System for Reducing Building Energy Demand and Urban Heat Island. 2019, 19, 45-52 Impregnation of Lightweight Aggregate Particles with Phase Change Material for Its Use in Asphalt Mixtures. 2020, 337-345 Introduction. 2020, 1-15 The Role of Thermal Storage in Distributed Air-Conditioning Plants: Energy and Environmental	1

84	Estimating thermal properties of phase change material from heat flux measurements. 2022 , 172, 107307	5
83	PCMs in Building Structure. 2020 , 63-87	1
82	ENERGY AND FEASIBILITY ANALYSIS OF APPLYING BIO-BASED PHASE CHANGE MATERIALS TO BUILDINGS IN EAST ASIA. 2020 , 15, 157-181	1
81	Preparation and mechanical properties of phase change energy storage concrete. 2020 , 27,	
80	TERMAL ENERJIDEPOLAMA SISTEMLERIN FAZ DEITREN MALZEMELERIN TROMBE DUVARLARDA KULLANIMI ZERINE BRINCELEME. 2020 , 8, 529-551	
79	Analysis of the thermal behavior of hollow bricks walls filled with PCM: Effect of PCM location. 2021 , 7, 105-115	1
78	Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete. 2021 , 14,	2
77	Thermal behavior of light earth used for building insulation: Insight on PCM introduction impact. 2021 , 2069, 012120	
76	Fungal colonization and biomineralization for bioprotection of concrete. 2021 , 129793	1
75	A Rapid Method for Low Temperature Microencapsulation of Phase Change Materials (PCMs) Using a Coiled Tube Ultraviolet Reactor. 2021 , 14, 7867	1
74	Investigation of phase change materials (PCMs) on the heat transfer performance of building systems. 2021 , 2069, 012020	
73	Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates [A review. <i>Energy and Buildings</i> , 2022 , 258, 111840 ⁷	9
72	Study of a thermally enhanced mortar incorporating phase change materials for overheating reduction in buildings. 2022 , 46, 103876	4
71	Preparation and Mechanism Research of Hydration-heat-inhibiting Materials with Microcapsule Sustained-releasing Technology. 2021 , 36, 697-705	Ο
70	Nanostructures encapsulated phase-change materials for sustained thermal energy storage in concrete. 2022 , 477-507	
69	Phase Change Materials in Metal Casting Processes: A Critical Review and Future Possibilities. 2022 , 2022, 1-14	1
68	A systematic study on the reaction mechanisms for the microencapsulation of a volatile phase change material (PCM) via one-step in situ polymerisation. 2022 , 252, 117497	0
67	Real-Scale Experimental Evaluation of Energy and Thermal Regulation Effects of PCM-Based Mortars in Lightweight Constructions. 2022 , 12, 2091	O

66	Climate-Adaptive Falldes with an Air Chamber. 2022 , 12, 366	2
65	Effects of Volume Changes on the Thermal Performance of PCM Layers Subjected to Oscillations of the Ambient Temperature: Transient and Steady Periodic Regimes 2022 , 27,	O
64	Improvement of cob thermal inertia by latent heat storage and its implication on energy consumption. 2022 , 329, 127163	2
63	A composite of cross-linked polyurethane as solidBolid phase change material and plaster for building application. <i>Energy and Buildings</i> , 2022 , 262, 111945	2
62	A highly flexible form-stable silicone-octadecane PCM composite for heat harvesting. 2022, 14, 100227	3
61	Investigation into the effect of changing the size of the air quality and stream to the trombe wall for two different arrangements of rectangular blocks of phase change material in this wall. 2022 , 52, 104328	5
60	Energy saving simulation of phase change materials in the enclosure structure of archives warehouse in Lhasa. 2022 , 8, 532-538	1
59	Radiation energy conversion and cooling of concrete box beam based on liquid-gas phase change material. 2021 ,	
58	Mechanical Properties of Lightweight Cementitious Cellular Composites Incorporating Micro-Encapsulated Phase Change Material 2021 , 14,	О
57	Preparation and investigation of microencapsulated thermal control material used for the cementing of gas hydrate formations. 2022 , 129182	1
56	Comprehensive investigations on printability and thermal performance of cementitious material incorporated with PCM under various conditions. 2022 , 261, 115667	0
55	Proposed specific heat capacity model for a concrete wall containing phase change material (PCM) under field experiment conditions. 2022 , 336, 127381	O
54	Production and characterization of novel EPDM/NBR panels with paraffin for potential thermal energy storage applications. 2022 , 32, 101309	0
53	Alternative experimental characterization of phase change material plasterboard using two-step temperature ramping technique. <i>Energy and Buildings</i> , 2022 , 267, 112153	
52	Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: A review. 2022 , e01162	1
51	Thermal and Mechanical Properties of Mortar Incorporated with Phase Change Materials (PCMs). 921, 259-269	
50	Design and Fabrication of Microencapsulated Phase Change Materials for Energy/Thermal Energy Storage and Other Versatile Applications.	
49	Phase Change Material Incorporation Techniques in Building Envelopes for Enhancing the Building Thermal Comfort-A Review. <i>Energy and Buildings</i> , 2022 , 112225	2

48	Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. 2022 , 165, 112560	O
47	Optimal predictive control of phase change material-based energy storage in buildings via mixed-integer convex programming. 2022 , 118821	O
46	Combining artificial intelligence and building engineering technologies towards energy efficiency: the case of ventilated falldes.	
45	Conjugated polymer and phase-change materials for energy storage and green buildings. 2022 , 313-334	
44	The thermal performances of cement-based materials with different types of microencapsulated phase change materials. 2022 , 345, 128388	О
43	Thermal comfort in a building with Trombe wall integrated with phase change materials in hot summer and cold winter region without air conditioning. 2022 ,	2
42	Preparation and Characterization of Microencapsulated Phase Change Materials for Solar Heat Collection. 2022 , 15, 5354	0
41	Review on applications of microencapsulated phase change material in buildings for thermal storage system. 2022 , 29,	1
40	Simulation of solar thermal panel systems with nanofluid flow and PCM for energy consumption management of buildings. 2022 , 58, 104981	1
39	Effect of variable capsule size distribution for unstructured packed bed encapsulated phase change material system. 2022 , 197, 123354	O
38	Multi-scale simulation study on the heat transfer characteristics of phase-change walls. 2022 , 259, 124896	
37	Mechanical and thermophysical properties of cement mortars including bio-based microencapsulated phase change materials. 2022 , 352, 129056	O
36	Micro/nano-encapsulated phase-change materials (ePCMs) for solar photothermal absorption and storage: Fundamentals, recent advances, and future directions. 2022 , 93, 101037	1
35	Using solar energy and phase change materials to supply energy to a building to reduce environmental pollution. 2022 , 61, 105180	O
34	PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings. 2022 , 26, 524-534	3
33	Thermal performance and economy of PCM foamed cement walls for buildings in different climate zones. 2022 , 112470	O
32	Development, characterization, and performance analysis of shape-stabilized phase change material included-geopolymer for passive thermal management of buildings.	1
31	Thermal, mechanical and microstructural properties of sustainable concrete incorporating Phase change materials. 2022 , 356, 129300	O

30	Experimental Analysis of PCM Based Helical Heat-Exchanger for Thermal Management of Buildings.	O
29	Description of phase change materials (PCMs) used in buildings under various climates: A review. 2022 , 56, 105760	2
28	Investigation of a vertical closed-loop geothermal system for heating an educational building.	O
27	Phase change material infused recycled brick aggregate in 3D printed concrete. 2022 , 8, e11598	O
26	Life cycle assessment of the inclusion of phase change materials in lightweight buildings. 2022 , 56, 105903	O
25	Numerical and environmental analysis of post constructive application of PCM coatings for the improvement of the energy performance of building structures. 2023 , 364, 129984	O
24	Wall adaptability of the phase-change material layer by numerical simulation. 2023, 41, 102622	O
23	Fire behaviour of EPDM/NBR panels with paraffin for thermal energy storage applications. Part 1: Fire behaviour. 2023 , 207, 110240	O
22	Effective estimation of the state-of-charge of latent heat thermal energy storage for heating and cooling systems using non-linear state observers. 2023 , 331, 120448	O
21	Effect of latent heat storage on thermal comfort and energy consumption in lightweight earth-based housings. 2023 , 229, 109915	O
20	Thermal analysis of micro-encapsulated phase change material (MEPCM)-based units integrated into a commercial water tank for cold thermal energy storage. 2023 , 266, 126479	О
19	From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments. 2022 , 15, 8956	2
18	A review on the micro-encapsulation of phase change materials: classification, study of synthesis technique and their applications. 2023 , 30,	O
17	The Composite of MPCM and Building Materials and Its Application in Building Walls: A Review. 2023 , 235-253	Ο
16	Adaptive dynamic building envelope integrated with phase change material to enhance the heat storage and release efficiency: A state-of-the-art review. 2023 , 286, 112928	O
15	The arrangement of phase change materials inside a building wall and its energy performance. 2023 , 57, 103158	O
14	The energy savings achieved by various Trombe solar wall enhancement techniques for heating and cooling applications: A detailed review. 2023 , 254, 112228	O
13	Thermal analysis of the hybrid HVAC unit using interpolant function. 2023 , 9, 3943-3955	0

12	A 3D pore-scale model for macro-encapsulated phase change material-metal foam hybrid energy storage system. 2023 , 63, 106995	O
11	Improving building thermal comfort through passive design [An experimental analysis of phase change material 3D printed concrete. 2023 , 392, 136247	O
10	Recent development in nano-phase change materials and their applications in enhancing thermal capacity of intelligent buildings: A state-of-the art review. 2023 , 38, 1463-1487	O
9	Preparation of Phase Change Concrete Using Environmentally Friendly Materials and Its Performance Study. 2023 , 11, 2417-2431	O
8	Thermal energy storage using phase change materials in building applications: A review of the recent development. 2023 , 285, 112908	O
7	A Review on Trombe Wall Technology Feasibility and Applications. 2023 , 15, 3914	O
6	Building energy demand management strategies and methods. 2023, 63-85	O
5	Enhanced thermal performance of the solidification process of nanopowder-phase change material-based latent thermal unit: Heat management. 1-16	O
4	Thermal energy storage methods. 2023 , 1-93	O
3	Phase Change Composite Microcapsules with Low-Dimensional Thermally Conductive Nanofillers: Preparation, Performance, and Applications. 2023 , 15, 1562	O
2	Phase change materials applications in buildings. 2023 , 225-248	О
1	Machine learning guided design of microencapsulated phase change materials incorporated concretes for enhanced freeze-thaw durability. 2023 , 105090	O