Parallel radial basis function methods for the global opt

European Journal of Operational Research 182, 514-535 DOI: 10.1016/j.ejor.2006.08.040

Citation Report

#	Article	IF	CITATIONS
1	Tutorial on Function Approximation Optimization for Computationally Expensive Nonlinear Models Including Applications to Uncertainty Analysis and to Groundwater Transport. , 2006, , 1.		0
2	Survey of Modeling and Optimization Strategies for High-Dimensional Design Problems. , 2008, , .		12
3	Bayesian Calibration and Uncertainty Analysis for Computationally Expensive Models Using Optimization and Radial Basis Function Approximation. Journal of Computational and Graphical Statistics, 2008, 17, 270-294.	0.9	80
4	Computationally Efficient Procedures for Uncertainty Assessment of Complex Environmental Models. , 2008, , .		0
5	Parallel Stochastic Global Optimization Using Radial Basis Functions. INFORMS Journal on Computing, 2009, 21, 411-426.	1.0	59
6	Free-vibration analysis of shells via a linearly conforming radial point interpolation method (LC-RPIM). Finite Elements in Analysis and Design, 2009, 45, 917-924.	1.7	15
7	Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization, 2010, 41, 219-241.	1.7	471
8	The Build of Digitized Design and Manufacture System for NC Machine Tool. Applied Mechanics and Materials, 2010, 37-38, 1411-1415.	0.2	0
9	Search Method for Box-Constrained Optimization. , 2011, , .		0
10	Kriging-based convex subspace single linkage method with path-based clustering technique for approximation-based global optimization. Structural and Multidisciplinary Optimization, 2011, 44, 393-408.	1.7	3
11	Box-Constrained Optimization Methodology and Its Application for a Water Supply System Model. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 651-659.	1.3	6
12	Multifidelity Approaches for Parallel Multidisciplinary Optimization. , 2012, , .		5
13	Automated Multi-Objective Optimization Process for Preliminary Engine Design. , 2012, , .		1
14	Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization. Top, 2012, 20, 190-214.	1.1	12
15	Global optimization of expensive black box problems with a known lower bound. Journal of Global Optimization, 2013, 57, 177-190.	1.1	25
16	Robust parameter design optimization using Kriging, RBF and RBFNN with gradient-based and evolutionary optimization techniques. Applied Mathematics and Computation, 2014, 236, 325-344.	1.4	40
17	Automated parameterization of intermolecular pair potentials using global optimization techniques. Computer Physics Communications, 2014, 185, 3228-3239.	3.0	15
18	Application of a surrogate modeling to the ship structural design. Ocean Engineering, 2014, 84, 259-272.	1.9	29

#	Article	IF	CITATIONS
19	Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms forÂcomputationally expensive black-box global optimization problems. Journal of Global Optimization, 2014, 60, 123-144.	1.1	127
20	Large-scale parallelization of the Borg multiobjective evolutionary algorithm to enhance the management of complex environmental systems. Environmental Modelling and Software, 2015, 69, 353-369.	1.9	62
21	Parallel surrogate-assisted global optimization with expensive functions – a survey. Structural and Multidisciplinary Optimization, 2016, 54, 3-13.	1.7	178
22	Adaptive meta-modeling-based simulation optimization in basin-scale optimum water allocation: a comparative analysis of meta-models. Journal of Hydroinformatics, 2016, 18, 446-465.	1.1	15
23	Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO. European Journal of Operational Research, 2016, 252, 701-727.	3.5	161
24	Surrogateâ€based methods for blackâ€box optimization. International Transactions in Operational Research, 2017, 24, 393-424.	1.8	94
25	Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption. Journal of Global Optimization, 2017, 67, 3-42.	1.1	82
26	Pseudo expected improvement criterion for parallel EGO algorithm. Journal of Global Optimization, 2017, 68, 641-662.	1.1	73
27	Sheet metal forming optimization by using surrogate modeling techniques. Chinese Journal of Mechanical Engineering (English Edition), 2017, 30, 22-36.	1.9	32
28	Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models. Environmental Modelling and Software, 2017, 93, 109-126.	1.9	136
29	Time-varying hyperparameter strategies for radial basis function surrogate-based global optimization algorithm. , 2017, , .		3
30	A hybrid global optimization method based on multiple metamodels. Engineering Computations, 2018, 35, 71-90.	0.7	4
31	Evaluating the effects of automated vehicle technology on the capacity of freeway weaving sections. Transportation Research Part C: Emerging Technologies, 2018, 96, 3-21.	3.9	44
32	Bayesian Optimization. , 2018, , 255-278.		290
33	Operation optimization of hydrocracking process based on Kriging surrogate model. Control Engineering Practice, 2019, 85, 34-40.	3.2	23
34	A Survey of Surrogate Approaches forÂExpensive Constrained Black-Box Optimization. Advances in Intelligent Systems and Computing, 2020, , 37-47.	0.5	8
35	A Discussion on Variational Analysis in Derivative-Free Optimization. Set-Valued and Variational Analysis, 2020, 28, 643-659.	0.5	5
36	COPS: efficient RBF surrogate global optimization algorithm with high dimensions and many parallel processors including application to multimodal water quality PDE model calibration. Optimization and Engineering, 2021, 22, 2741-2777.	1.3	12

CITATION REPORT

#	Article	IF	CITATIONS
37	Simulation-Based Design of Urban Bi-modal Transport Systems. Frontiers in Future Transportation, 2020, 1, .	1.3	7
38	A surrogate-based cooperative optimization framework for computationally expensive black-box problems. Optimization and Engineering, 2020, 21, 1053-1093.	1.3	3
39	Stochastic optimization with adaptive restart: a framework for integrated local and global learning. Journal of Global Optimization, 2021, 79, 87-110.	1.1	11
40	Limiting behavior of derivative approximation techniques as the number of points tends to infinity on a fixed interval in <mml:math altimg="si2.svg" display="inline" id="d1e514" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:miml="http: 1998="" altimg="si2.svg" display="inline" id="d1e514" math="" mathml"="" www.w3.org=""><mml:miml="http: 1998="" altimg="si2.svg" display="inline" id="d1e514" math="" mathml"="" www.w3.org=""><mml:miml="http: 1998="" altimg="si2.svg" display="inline" id="d1e514" math="" mathml"="" www.w3.org=""><mml:miml="http: 1998="" altimg="si2.svg" display="inline" id="d1e514" math="" mathml"="" www.w3.org=""><mml:miml:miml="http: 1998="" altimg="si2.svg" display="inline" id="d1e514" math="" mathml"="" www.w3.org=""><mml:miml:miml="http: 1998="" altimg="si2.svg" display="inline" id="d1e514" math="" mathml"="" www.w3.org=""><mml:miml:miml:miml:miml:miml:miml:miml:< td=""><td>1.1</td><td>2</td></mml:miml:miml:miml:miml:miml:miml:miml:<></mml:miml:miml="http:></mml:miml:miml="http:></mml:miml="http:></mml:miml="http:></mml:miml="http:></mml:miml="http:></mml:math>	1.1	2
41	Input parameter tuning of 3D biodiesel engine simulation using parallel surrogate optimization algorithm. Computers and Chemical Engineering, 2021, 145, 107180.	2.0	0
42	Efficient parallel surrogate optimization algorithm and framework with application to parameter calibration of computationally expensive three-dimensional hydrodynamic lake PDE models. Environmental Modelling and Software, 2021, 135, 104910.	1.9	16
43	Learning Enabled Constrained Black-Box Optimization. Springer Optimization and Its Applications, 2021, , 1-33.	0.6	0
44	Expected Improvements for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and Challenges. Lecture Notes in Computer Science, 2012, , 413-418.	1.0	35
45	Adaptive infill sampling strategy for metamodeling: Challenge and future research directions. Bulletin of Electrical Engineering and Informatics, 2020, 9, 2020-2029.	0.6	1
46	Data-Driven Modelling of Biological Multi-Scale Processes. Journal of Coupled Systems and Multiscale Dynamics, 2015, 3, 101-121.	0.2	37
47	Multi-objective optimization algorithm assisted by metamodels with applications in aerodynamics problems. Applied Soft Computing Journal, 2022, 117, 108409.	4.1	3
49	AlgorithmÂ1025: PARyOpt: A Software for <u>P</u> arallel <u>A</u> synchronous <u>R</u> emote Ba <u>y</u> esian <u>Opt</u> imization. ACM Transactions on Mathematical Software, 2022, 48, 1-15.	1.6	1
50	Mixture of Gaussian Processes Based on Bayesian Optimization. Journal of Sensors, 2022, 2022, 1-10.	0.6	2