CITATION REPORT List of articles citing

Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning

DOI: 10.1016/j.ijar.2006.01.004 International Journal of Approximate Reasoning, 2007, 44, 4-31.

Source: https://exaly.com/paper-pdf/42698262/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
318	Genetic Rule Selection as a Postprocessing Procedure in Fuzzy Data Mining. 2006,		3
317	Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning. 2006 ,		2
316	Fuzzy Data Mining by Heuristic Rule Extraction and Multiobjective Genetic Rule Selection. 2006 ,		9
315	A Multi-Objective Evolutionary Algorithm for Rule Selection and Tuning on Fuzzy Rule-Based Systems. 2007 ,		8
314	Evolutionary Multiobjective Design of Fuzzy Rule-Based Systems. 2007,		12
313	Multiobjective Genetic Fuzzy Systems: Review and Future Research Directions. 2007,		31
312	Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis. 2007 , 177, 2296-2307		33
311	Developing a bioaerosol detector using hybrid genetic fuzzy systems. 2008 , 21, 1330-1346		35
310	Supervised and Reinforcement Evolutionary Learning for Wavelet-based Neuro-fuzzy Networks. 2008 , 52, 285-312		
309	Genetic-based machine learning systems are competitive for pattern recognition. 2008, 1, 209-232		32
308	Classification performance evaluation of single-layer perceptron with Choquet integral-based TOPSIS. 2008 , 29, 204-215		10
307	A novel fuzzy classifier with Choquet integral-based grey relational analysis for pattern classification problems. 2008 , 12, 523-533		6
306	Data mining with a simulated annealing based fuzzy classification system. 2008 , 41, 1824-1833		36
305	Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling. 2008 , 159, 3091-3131		185
304	Fuzzy classifier identification using decision tree and multiobjective evolutionary algorithms. <i>International Journal of Approximate Reasoning</i> , 2008 , 48, 526-543	3.6	82
303	SGERD: A Steady-State Genetic Algorithm for Extracting Fuzzy Classification Rules From Data. 2008 , 16, 1061-1071		101
302	Designing fuzzy rule-based classifiers that can visually explain their classification results to human users. 2008 ,		8

(2009-2008)

301	A Multi-Objective Genetic Approach to Concurrently Learn Partition Granularity and Rule Bases of Mamdani Fuzzy Systems. 2008 ,	1
300	Evolutionary many-objective optimization. 2008,	114
299	Evolutionary multiobjective optimization and multiobjective fuzzy system design. 2008,	1
298	A visual explanation system for explaining fuzzy reasoning results by fuzzy rule-based classifiers. 2008 ,	2
297	Efficient Self-Evolving Evolutionary Learning for Neurofuzzy Inference Systems. 2008, 16, 1476-1490	29
296	Toward evolving consistent, complete, and compact fuzzy rule sets for classification problems. 2008 ,	3
295	Detection of Safe and Harmful Bioaerosols by Means of Fuzzy Classifiers. 2008, 41, 12805-12812	2
294	eFSLab: Developing evolving fuzzy systems from data in a friendly environment. 2009,	2
293	Effects of the Use of Multiple Fuzzy Partitions on the Search Ability of Multiobjective Fuzzy Genetics-Based Machine Learning. 2009 ,	
292	A Multiobjective Genetic Fuzzy System for Obtaining Compact and Accurate Fuzzy Classifiers with Transparent Fuzzy Partitions. 2009 ,	4
291	A Novel Fuzzy Genetic Annealing Classification Approach. 2009,	1
290	Search ability of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning. 2009 ,	3
289	A Multiobjective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy-Rule-Based Systems. 2009 , 17, 1106-1122	135
288	Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. 2009 ,	1
287	Interpretability of Fuzzy Information Granules. 2009 , 95-118	1
286	Parallel multiobjective memetic RBFNNs design and feature selection for function approximation problems. 2009 , 72, 3541-3555	29
285	Mebra: multiobjective evolutionary-based risk assessment. 2009 , 4, 29-36	25
284	Intrusion detection using a linguistic hedged fuzzy-XCS classifier system. 2009 , 13, 273-290	9

283	Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems. 2009 , 13, 419-436		105
282	Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. 2009 , 13, 437-449		74
281	Learning consistent, complete and compact sets of fuzzy rules in conjunctive normal form for regression problems. 2009 , 13, 451-465		30
280	Multi-objective evolutionary learning of granularity, membership function parameters and rules of Mamdani fuzzy systems. 2009 , 2, 21-37		36
279	Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization. 2009 , 160, 857-881		15
278	Learning weighted linguistic fuzzy rules by using specifically-tailored hybrid estimation of distribution algorithms. <i>International Journal of Approximate Reasoning</i> , 2009 , 50, 541-560	3.6	9
277	Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. <i>International Journal of Approximate Reasoning</i> , 2009 , 50, 561-577	3.6	134
276	Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework. <i>International Journal of Approximate Reasoning</i> , 2009 , 50, 1066	i- 3 1680	57
275	A new probabilistic fuzzy model: FuzzificationMaximization (FM) approach. <i>International Journal of Approximate Reasoning</i> , 2009 , 50, 1129-1147	3.6	3
274	Looking for a good fuzzy system interpretability index: An experimental approach. <i>International Journal of Approximate Reasoning</i> , 2009 , 51, 115-134	3.6	107
273	A hybrid coevolutionary algorithm for designing fuzzy classifiers. 2009 , 179, 1970-1983		28
272	A new method for design and reduction of neuro-fuzzy classification systems. 2009 , 20, 701-14		53
271	Protein superfamily classification using fuzzy rule-based classifier. 2009 , 8, 92-9		32
270	A Framework for Designing a Fuzzy Rule-Based Classifier. Lecture Notes in Computer Science, 2009, 434-	44.5	
269	Multiobjective Genetic Fuzzy Systems. 2009 , 131-173		8
268	A Study on Interpretability Conditions for Fuzzy Rule-Based Classifiers. 2009,		3
267	Cooperative fuzzy rulebase construction based on a novel fuzzy decision tree. 2009,		2
266	Exploiting a New Interpretability Index in the Multi-Objective Evolutionary Learning of Mamdani Fuzzy Rule-Based Systems. 2009 ,		4

(2010-2009)

265	Interactive genetic fuzzy rule selection through evolutionary multiobjective optimization with user preference. 2009 ,	1
264	Knowledge Discovery Using a New Interpretable Simulated Annealing Based Fuzzy Classification System. 2009 ,	
263	Cross Covering Algorithm Based on Simulated Annealing. 2010 ,	
262	Building Interpretable Systems in Real Time. 2010 , 127-150	2
261	Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets. 2010 , 14, 713-728	82
260	Two cooperative ant colonies for feature selection using fuzzy models. 2010 , 37, 2714-2723	69
259	GP-COACH: Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems. 2010 , 180, 1183-1200	91
258	Towards Efficient Multi-objective Genetic Takagi-Sugeno Fuzzy Systems for High Dimensional Problems. 2010 , 397-422	4
257	Sensitivity analysis of parametric t-norm and s-norm based fuzzy classification system. 2010,	
256	An adaptive multiobjective approach to evolving ART architectures. 2010 , 21, 529-50	30
255	Appropriate granularity specification for fuzzy classifier design by data complexity measures. 2010,	2
254	A Dynamically Constrained Multiobjective Genetic Fuzzy System for Regression Problems. 2010 , 18, 161-177	99
253	Combining user preferences and quality criteria into a new index for guiding the design of fuzzy systems with a good interpretability-accuracy trade-off. 2010 ,	7
252	Combined feature selection and similarity modelling in case-based reasoning using hierarchical memetic algorithm. 2010 ,	10
251	Toward Robust Evolving Fuzzy Systems. 2010 , 87-126	4
250	Exploiting a three-objective evolutionary algorithm for generating Mamdani fuzzy rule-based systems. 2010 ,	3
249	Effects of fine fuzzy partitions on the generalization ability of evolutionary multi-objective fuzzy rule-based classifiers. 2010 ,	2
248	Ensemble classifier design by parallel distributed implementation of genetic fuzzy rule selection for large data sets. 2010 ,	1

247	Integration of an Index to Preserve the Semantic Interpretability in the Multiobjective Evolutionary Rule Selection and Tuning of Linguistic Fuzzy Systems. 2010 , 18, 515-531	120
246	Simple changes in problem formulations make a difference in multiobjective genetic fuzzy systems. 2010 ,	2
245	Multiobjective evolutionary structural optimization for system identification and controller design. 2010 ,	
244	Multiobjectivization from two objectives to four objectives in evolutionary multi-objective optimization algorithms. 2010 ,	5
243	Employing effective feature selection in Genetic Fuzzy Rule-Based Classification Systems. 2010,	2
242	Embedding HILK in a three-objective evolutionary algorithm with the aim of modeling highly interpretable fuzzy rule-based classifiers. 2010 ,	19
241	An experimental study of Multi-Objective Evolutionary Algorithms for balancing interpretability and accuracy in fuzzy rulebase classifiers for financial prediction. 2011 ,	6
240	Multi-objective design of highly interpretable fuzzy rule-based classifiers with semantic cointension. 2011 ,	12
239	Multi-objective evolutionary generation of Mamdani fuzzy rule-based systems based on rule and condition selection. 2011 ,	6
238	A discussion on the accuracy-complexity relationship in modelling fish habitat preference using genetic Takagi-Sugeno fuzzy systems. 2011 ,	1
237	Modeling and Optimal Design of Machining-Induced Residual Stresses in Aluminium Alloys Using a Fast Hierarchical Multiobjective Optimization Algorithm. 2011 , 26, 508-520	33
236	An evolutionary-based similarity reasoning scheme for monotonic multi-input fuzzy inference systems. 2011 ,	5
235	Double cross-validation for performance evaluation of multi-objective genetic fuzzy systems. 2011,	3
234	Fuzzy rule extraction using hybrid evolutionary models for data mining systems. 2011,	
233	Dealing with three uncorrelated criteria by many-objective genetic fuzzy systems. 2011,	1
232	Evolutionary-Group-Based Particle-Swarm-Optimized Fuzzy Controller With Application to Mobile-Robot Navigation in Unknown Environments. 2011 , 19, 379-392	113
231	Fuzzy rule extraction using hybrid evolutionary models for data mining systems. 2011,	0
230	Training Data Subdivision and Periodical Rotation in Hybrid Fuzzy Genetics-Based Machine Learning. 2011 ,	5

229	Information granules and their use in schemes of knowledge management. 2011 , 18, 602-610	24
228	Design of fuzzy radial basis function-based polynomial neural networks. 2011 , 185, 15-37	30
227	Fuzzy machine learning and data mininga. 2011 , 1, 269-283	5
226	Fuzzy association rule mining framework and its application to effective fuzzy associative classification. 2011 , 1, 477-495	16
225	HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. 2011 , 15, 1959-1980	57
224	Learning concurrently data and rule bases of Mamdani fuzzy rule-based systems by exploiting a novel interpretability index. 2011 , 15, 1981-1998	19
223	Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and partition integrity. 2011 , 15, 2335-2354	40
222	A multistage genetic fuzzy classifier for land cover classification from satellite imagery. 2011 , 15, 2355-2374	12
221	Fuzzy knowledge representation study for incremental learning in data streams and classification problems. 2011 , 15, 2389-2414	14
220	Performance evaluation of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning. 2011 , 15, 2415-2434	31
219	Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules and its interaction with the lateral tuning of membership functions. 2011 , 15, 2303-2318	66
218	A general framework for designing a fuzzy rule-based classifier. 2011 , 29, 203-221	14
217	Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures. 2011 , 181, 4340-4360	311
216	Special issue on interpretable fuzzy systems. 2011 , 181, 4331-4339	53
215	A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels. 2011 , 11, 2419-2443	34
214	Learning fuzzy rules for similarity assessment in case-based reasoning. 2011 , 38, 10780-10786	42
213	Identification of transparent, compact, accurate and reliable linguistic fuzzy models. 2011 , 181, 4378-4393	19
212	Design of fuzzy rule-based classifiers with semantic cointension. 2011 , 181, 4361-4377	25

211	Interpretability assessment of fuzzy knowledge bases: A cointension based approach. <i>International Journal of Approximate Reasoning</i> , 2011 , 52, 501-518	3.6	68
210	A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy systems. <i>International Journal of Approximate Reasoning</i> , 2011 , 52, 894-913	3.6	227
209	On reducing computational overhead in multi-objective genetic TakagiBugeno fuzzy systems. 2011 , 11, 675-688		27
208	Mining fuzzy rules using an Artificial Immune System with fuzzy partition learning. 2011 , 11, 1965-1974		22
207	A Boosted Genetic Fuzzy Classifier for land cover classification of remote sensing imagery. 2011 , 66, 529-544		37
206	Considerations of the nature of the relationship between generalization and interpretability in evolutionary fuzzy systems. 2011 ,		
205	. 2011,		1
204	A Fast and Scalable Multiobjective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems. 2011 , 19, 666-681		114
203	A Survey on Interpretability-Accuracy (I-A) Trade-Off in Evolutionary Fuzzy Systems. 2011 ,		12
202	Multiple characterisation modelling of friction stir welding using a genetic multi-objective data-driven fuzzy modelling approach. 2011 ,		3
201	ON MONOTONIC SUFFICIENT CONDITIONS OF FUZZY INFERENCE SYSTEMS AND THEIR APPLICATIONS. 2011 , 19, 731-757		24
200	Automatized design application of intelligent information technologies for data mining problems. 2011 ,		1
199	Detection of hyperintense regions on MR brain images using a Mamdani type Fuzzy Rule-Based System: Application to the detection of small multiple sclerosis lesions. 2011 ,		1
198	Toward quantitative definition of explanation ability of fuzzy rule-based classifiers. 2011,		7
197	Fuzzy modelling using a new compact fuzzy system: A special application to the prediction of the mechanical properties of alloy steels. 2011 ,		2
196	TOWARD COHERENT MATCHING IN CASE-BASED CLASSIFICATION. 2011 , 42, 198-214		1
195	A Historical Review of Mamdani-Type Genetic Fuzzy Systems. 2012 , 73-90		2
194	On the Design of Interpretable Evolutionary Fuzzy Systems (I-EFS) with Improved Accuracy. 2012 ,		4

193	Interpretability of fuzzy association rules as means of discovering threats to privacy. 2012 , 89, 325-333		16
192	Comparison of different fitness functions in genetic fuzzy rule selection. 2012 ,		1
191	Classification rule mining using ant programming guided by grammar with multiple Pareto fronts. 2012 , 16, 2143-2163		12
190	Interpretable and reconfigurable clustering of document datasets by deriving word-based rules. 2012 , 32, 475-503		10
189	An efficient multi-objective evolutionary adaptive conjunction for high dimensional problems in linguistic fuzzy modelling. 2012 ,		
188	Multi-objective evolutionary rule and condition selection for designing fuzzy rule-based classifiers. 2012 ,		4
187	Improving Accuracy and Interpretability of Clinical Decision Support Systems through Possibilistic Constrained Evolutionary Optimization. 2012 ,		1
186	Possibilistic constrained optimization to tune fuzzy rules formalizing medical knowledge by preserving linguistic interpretability. 2012 ,		
185	A Mechanism to Improve the Interpretability of Linguistic Fuzzy Systems with Adaptive Defuzzification based on the use of a Multi-objective Evolutionary Algorithm. 2012 , 5, 297-321		11
184	A genetic reduction of feature space in the design of fuzzy models. 2012 , 12, 2801-2816		12
183	An Integrated Mechanism for Feature Selection and Fuzzy Rule Extraction for Classification. 2012 , 20, 683-698		53
182	Granular fuzzy models: a study in knowledge management in fuzzy modeling. <i>International Journal of Approximate Reasoning</i> , 2012 , 53, 1061-1079	3.6	38
181	Knowledge extraction using a genetic fuzzy rule-based system with increased interpretability. 2012		4
180	Hybrid Artificial Intelligent Systems. Lecture Notes in Computer Science, 2012,	0.9	1
179	Multiobjective genetic generation of fuzzy classifiers using the iterative rule learning. 2012,		2
178	A Review on the Interpretability-Accuracy Trade-Off in Evolutionary Multi-Objective Fuzzy Systems (EMOFS). 2012 , 3, 256-277		19
177	A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems. 2012 , 36, 330-347		51
176	Complexity reduction and interpretability improvement for fuzzy rule systems based on simple interpretability measures and indices by bi-objective evolutionary rule selection. 2012 , 16, 451-470		14

175	FORMATION OF FUZZY IF-THEN RULES AND MEMBERSHIP FUNCTION USING ENHANCED PARTICLE SWARM OPTIMIZATION. 2013 , 21, 103-126		5
174	Multi-Objective Continuous-Ant-Colony-Optimized FC for Robot Wall-Following Control. 2013 , 8, 28-40)	38
173	An ensemble method for fuzzy rule-based classification systems. 2013 , 36, 385-410		15
172	An efficient adaptive fuzzy inference system for complex and high dimensional regression problems in linguistic fuzzy modelling. 2013 , 54, 42-52		13
171	Repeated double cross-validation for choosing a single solution in evolutionary multi-objective fuzzy classifier design. 2013 , 54, 22-31		21
170	A genetic type-2 fuzzy logic based system for the generation of summarised linguistic predictive models for financial applications. 2013 , 17, 2185-2201		30
169	GFRBS-PHM: A Genetic Fuzzy Rule-Based System for PHM with improved interpretability. 2013 ,		9
168	Data-driven interval type-2 neural fuzzy system with high learning accuracy and improved model interpretability. 2013 , 43, 1781-95		63
167	Fuzzy relational learning: A new approach to case-based reasoning. 2013,		2
166	Difficulties in choosing a single final classifier from non-dominated solutions in multiobjective fuzzy genetics-based machine learning. 2013 ,		1
165	Fuzzy pattern trees as an alternative to rule-based fuzzy systems: Knowledge-driven, data-driven and hybrid modeling of color yield in polyester dyeing. 2013 ,		2
164	A quantum-inspired evolutionary algorithm for fuzzy classification. 2013,		
163	Parallel Distributed Hybrid Fuzzy GBML Models With Rule Set Migration and Training Data Rotation. 2013 , 21, 355-368		43
162	A hybrid fuzzy rule-based multi-criteria framework for sustainable project portfolio selection. 2013 , 220, 442-462		56
161	. 2013 , 21, 45-65		233
160	Difficulty in Evolutionary Multiobjective Optimization of Discrete Objective Functions with Different Granularities. <i>Lecture Notes in Computer Science</i> , 2013 , 230-245	0.9	8
159	Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). 2013 ,		1
158	Fuzzy rule-based similarity model enables learning from small case bases. 2013 , 13, 2057-2064		16

157	A genetic design of linguistic terms for fuzzy rule based classifiers. <i>International Journal of Approximate Reasoning</i> , 2013 , 54, 1-21	3.6	40
156	Improving a fuzzy association rule-based classification model by granularity learning based on heuristic measures over multiple granularities. 2013 ,		2
155	A hybrid learning method for constructing compact rule-based fuzzy models. 2013 , 43, 1807-21		14
154	Multi-objective iterative genetic approach for learning fuzzy classification rules with semantic-based selection of the best rule. 2013 ,		
153	Revisiting evolutionary algorithms in feature selection and nonfuzzy/fuzzy rule based classification. 2013 , 3, 83-108		5
152	Learning from multiple data sets with different missing attributes and privacy policies: Parallel distributed fuzzy genetics-based machine learning approach. 2013 ,		3
151	HYEI: A New Hybrid Evolutionary Imperialist Competitive Algorithm for Fuzzy Knowledge Discovery. 2014 , 2014, 1-9		1
150	Intelligent Integration between Human Simulated Intelligence and Expert Control Technology for the Combustion Process of Gas Heating Furnace. 2014 , 2014, 1-6		1
149	A comprehensive survey of multi-objective genetic and fuzzy approaches in rule mining problem of knowledge discovery in databases. 2014 , 3, 13		
148	Iterative mixed integer programming model for fuzzy rule-based classification systems. 2014,		
147	Genetic lateral tuning of membership functions as post-processing for hybrid fuzzy genetics-based machine learning. 2014 ,		2
146	Multi-objective evolutionary algorithms for fuzzy classification in survival prediction. 2014 , 60, 197-219	Ð	37
145	. 2014 , 22, 723-735		43
144	A peek into the black box: exploring classifiers by randomization. 2014 , 28, 1503-1529		47
143	AGFS: Adaptive Genetic Fuzzy System for medical data classification. 2014 , 25, 242-252		59
142	A fast and efficient multi-objective evolutionary learning scheme for fuzzy rule-based classifiers. 2014 , 283, 36-54		41
141	Identifying the tool-tissue force in robotic laparoscopic surgery using neuro-evolutionary fuzzy systems and a synchronous self-learning hyper level supervisor. 2014 , 14, 12-30		26
140	Modeling of a semantics core of linguistic terms based on an extension of hedge algebra semantics and its application. 2014 , 67, 244-262		24

139	Adaptability, interpretability and rule weights in fuzzy rule-based systems. 2014 , 257, 301-312	18
138	Simple modifications on heuristic rule generation and rule evaluation in Michigan-style fuzzy genetics-based machine learning. 2015 ,	3
137	MGP-INTACTSKY: Multitree Genetic Programming-based learning of INTerpretable and ACcurate TSK sYstems for dynamic portfolio trading. 2015 , 34, 449-462	6
136	Multiobjective Genetic Fuzzy Systems. 2015 , 1479-1498	2
135	Rotation effects of objective functions in parallel distributed multiobjective fuzzy genetics-based machine learning. 2015 ,	O
134	Algorithmic model for risk assessment of heart failure patients. 2015,	3
133	NSGA-DO: Non-Dominated Sorting Genetic Algorithm Distance Oriented. 2015,	3
132	Application of Parallel Distributed Implementation to Multiobjective Fuzzy Genetics-Based Machine Learning. <i>Lecture Notes in Computer Science</i> , 2015 , 462-471	1
131	MoGFT-I: A Multi-objective Optimization approach for the Cart and Pole control problem. 2015,	1
130	IFC-Filter: Membership function generation for inductive fuzzy classification. 2015 , 42, 8369-8379	12
129	Variable coded hierarchical fuzzy classification model using DNA coding and evolutionary programming. 2015 , 39, 7401-7419	13
128	. 2015,	1
127	GPFIS-CLASS: A Genetic Fuzzy System based on Genetic Programming for classification problems. 2015 , 37, 561-571	18
126	A discussion on interpretability of linguistic rule based systems and its application to solve regression problems. 2015 , 88, 107-133	14
125	Effects of heuristic rule generation from multiple patterns in multiobjective fuzzy genetics-based machine learning. 2015 ,	4
124	Aggregation Trees for visualization and dimension reduction in many-objective optimization. 2015 , 298, 288-314	43
123	Performance analysis of fuzzy rule based classification system for transient identification in nuclear power plant. 2015 , 76, 63-74	8
122	Particle swarm optimization for ANFIS interpretability and accuracy. 2016 , 20, 251-262	62

121	Robust, interpretable and high quality fuzzy rule discovery using krill herd algorithm. 2016 , 30, 1601-1612	4
120	Interpretability indexes for Fuzzy classification in cognitive systems. 2016,	4
119	FRULER: Fuzzy Rule Learning through Evolution for Regression. 2016 , 354, 1-18	29
118	New Approach for Interpretability of Neuro-Fuzzy Systems with Parametrized Triangular Norms. <i>Lecture Notes in Computer Science</i> , 2016 , 248-265	2
117	An improved multi-objective evolutionary optimization of data-mining-based fuzzy decision support systems. 2016 ,	6
116	Data-driven interpretable fuzzy controller design through mult-objective genetic algorithm. 2016,	1
115	Multiobjective fuzzy genetics-based machine learning with a reject option. 2016,	1
114	A robust time delay auto-regressive exogenous fuzzy inference system for real-time estimation of catalyst temperature over engines coldstart operation: a multiobjective implementation scenario. 2016 , 4, 134-153	2
113	Competitive interaction reasoning: A bio-inspired reasoning method for fuzzy rule based classification systems. 2016 , 352-353, 35-47	3
112	Robust medical data mining using a clustering and swarm-based framework. 2016 , 14, 22	3
111	A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers. 2016 , 38, 118-133	52
110	Sifter: an approach for robust fuzzy rule set discovery. 2016 , 20, 3303-3319	3
109	Multiobjective Evolutionary Optimization of Type-2 Fuzzy Rule-Based Systems for Financial Data Classification. 2017 , 25, 249-264	66
108	An integer programming approach for fuzzy rule-based classification systems. 2017 , 256, 924-934	5
107	An improved genetic-fuzzy system for classification and data analysis. 2017 , 83, 49-62	14
106	Multi-objective based Fuzzy Rule Based Systems (FRBSs) for trade-off improvement in accuracy and interpretability: A rule relevance point of view 2017 , 127, 67-84	25
105	Computer-aided classification of mammographic masses using visually sensitive image features. 2017 , 25, 171-186	19
104	Multicriteria Design of Cost-Conscious Fuzzy Rule-Based Classifiers. 2017 , 25, 141-159	1

103	A bibliometric approach to tracking big data research trends. 2017 , 4,	32
102	A distributed approach to multi-objective evolutionary generation of fuzzy rule-based classifiers from big data. 2017 , 415-416, 319-340	29
101	Bayesian TakagiBugenoRang Fuzzy Classifier. 2017 , 25, 1655-1671	25
100	Realizing Two-View TSK Fuzzy Classification System by Using Collaborative Learning. 2017 , 47, 145-160	33
99	Approximate Reasoning on a Basis of Z-Number-Valued IfThen Rules. 2017 , 25, 1589-1600	53
98	Interpretable and accurate medical data classification la multi-objective genetic-fuzzy optimization approach. 2017 , 71, 26-39	49
97	Unsupervised feature selection for interpretable classification in behavioral assessment of children. 2017 , 34, e12173	6
96	Learning efficient and interpretable prototypes from data for nearest neighbor classification method. 2017 ,	1
95	FERHD: A feasible approach for extracting fuzzy classification rules from high-dimensional data. 2017 , 21, 63-75	1
94	Stacked-Structure-Based Hierarchical Takagi-Sugeno-Kang Fuzzy Classification Through Feature Augmentation. 2017 , 1, 421-436	15
93	Leveraging the trade-off between accuracy and interpretability in a hybrid intelligent system. 2017,	
92	Interpretability indices for hierarchical fuzzy systems. 2017 ,	17
91	Multiobjective fuzzy genetics-based machine learning based on MOEA/D with its modifications. 2017 ,	2
90	Interpretability Constraints for Fuzzy Modeling Implemented by Constrained Particle Swarm Optimization. 2018 , 26, 2348-2361	11
89	Machine learning techniques for anti-money laundering (AML) solutions in suspicious transaction detection: a review. 2018 , 57, 245-285	36
88	Evolutionary data mining and applications: A revision on the most cited papers from the last 10 years (2007🛮 017). 2018 , 8, e1239	4
87	Multiobjective Programming for Type-2 Hierarchical Fuzzy Inference Trees. 2018 , 26, 915-936	11
86	Heterogeneous classifier ensemble with fuzzy rule-based meta learner. 2018 , 422, 144-160	26

85 A Review on Integrating Evolutionary Multiobjective Optimization in Developing Fuzzy Systems. **2018**,

84	Multi-label Classification Using Genetic-Based Machine Learning. 2018,	4
83	Attributes Regrouping in Fuzzy Rule Based Classification Systems: An Intra-Classes Approach. 2018,	1
82	Fuzzy Rule Learning with Linguistic Modifiers. 2018,	1
81	A Multi-objective Rule Optimizer with an Application to Risk Management. 2018,	1
80	Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization. 2018 ,	O
79	Interpretability and Complexity of Design in the Creation of Fuzzy Logic Systems 🖪 User Study. 2018 ,	5
78	Automatic inference model construction for computer-aided diagnosis of lung nodule: Explanation adequacy, inference accuracy, and expertsTknowledge. 2018 , 13, e0207661	6
77	An interpretable neural fuzzy inference system for predictions of underpricing in initial public offerings. 2018 , 319, 102-117	8
76	A Bibliometric Analysis of the Explainable Artificial Intelligence Research Field. <i>Communications in Computer and Information Science</i> , 2018 , 3-15	26
75	Natural Language Processing and Classification Methods for the Maintenance and Optimization of US Weapon Systems. 2019 ,	3
74	A Measure of Structural Complexity of Hierarchical Fuzzy Systems Adapted from Software Engineering. 2019 ,	2
73	Quantum-inspired evolutionary multi-objective fuzzy classifier with real and categorical representation. 2019 , 36, 5875-5887	1
72	Prediction of hourly solar radiation using fuzzy clustering and linguistic modifiers. 2019,	1
71	The exploration of fuzzy linguistic research: A scientometric review based on CiteSpace. 2019 , 37, 3655-3669	6
70	Heuristic design of fuzzy inference systems: A review of three decades of research. 2019 , 85, 845-864	33
69	Benchmarking in classification and regression. 2019 , 9, e1318	11
68	Multiobjective evolutionary feature selection and fuzzy classification of contact centre data. 2019 , 36, e12375	2

67	Three novel fuzzy logic concepts applied to reshoring decision-making. 2019 , 126, 133-143	24
66	Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning. 2019 , 14, 31-44	28
65	Novel elegant fuzzy genetic algorithms in classification problems. 2019 , 23, 5583-5603	1
64	. 2020 , 28, 163-177	18
63	Improvement of Bagging performance for classification of imbalanced datasets using evolutionary multi-objective optimization. 2020 , 87, 103319	32
62	A bi-phased multi-objective genetic algorithm based classifier. 2020 , 146, 113163	9
61	Applying DempsterBhafer theory for developing a flexible, accurate and interpretable classifier. 2020 , 148, 113262	5
60	An Improved Complexity Measure in Hierarchical Fuzzy Systems. 2020 ,	1
59	Relevance of Using Interpretability Indexes for the Design of Schedulers in Cloud Computing Systems. 2020 ,	O
58	Multiobjective Fuzzy Genetics-Based Machine Learning for Multi-Label Classification. 2020,	3
57	Structural optimization of fuzzy rule-based models: Towards efficient complexity management. 2020 , 152, 113362	4
56	Parametric Conditions for a Monotone TSK Fuzzy Inference System to be an n-Ary Aggregation Function. 2020 , 1-1	6
55	Toward a Framework for Capturing Interpretability of Hierarchical Fuzzy Systems Participatory Design Approach. 2021 , 29, 1160-1172	6
54	A genetic-fuzzy algorithm for spatio-temporal crime prediction. 1	1
53	Revisiting Indexes for Assessing Interpretability of Fuzzy Systems. 2021 , 91-118	6
52	Multiobjective Evolutionary Interpretable Type-2 Fuzzy Systems With Structure and Parameter Learning for Hexapod Robot Control. 2021 , 1-13	1
51	Multi-criterial Optimization Problem for Fuzzy If-Then Rules. 2021, 80-88	16
50	Extension of Multi-Objective Fuzzy Genetics-Based Machine Learning for Multi-Label Classification to Many-Objective Optimization. 2021 , 33, 531-536	O

(2010-2021)

49	Predictors of Contemporary under-5 Child Mortality in Low- and Middle-Income Countries: A Machine Learning Approach. 2021 , 18,		9
48	Classification of Explainable Artificial Intelligence Methods through Their Output Formats. 2021, 3, 615-	661	11
47	Extremely simple classifier based on fuzzy logic and gene expression programming. 2021, 571, 560-579		3
46	Identification and Clinical Translation of Biomarker Signatures: Statistical Considerations. 2017 , 1546, 103-114		2
45	Interpretability of Fuzzy Temporal Models. 2019 , 223-234		1
44	Introduction to Fuzzy System Interpretability. 2017 , 27-36		1
43	New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling. 2018, 225-264		6
42	Pattern Classification with Linguistic Rules. 2008 , 377-395		4
41	Engineering Evolutionary Intelligent Systems: Methodologies, Architectures and Reviews. 2008 , 1-22		7
40	Evolutionary Multi-objective Rule Selection for Classification Rule Mining. 2008, 47-70		4
39	On the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection. 2008 , 91-107		5
38	Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers. 2008 , 641-685		4
37	Learning Classifier Systems: Looking Back and Glimpsing Ahead. <i>Lecture Notes in Computer Science</i> , 2008 , 1-21	0.9	12
36	A Three-Objective Evolutionary Approach to Generate Mamdani Fuzzy Rule-Based Systems. <i>Lecture Notes in Computer Science</i> , 2009 , 613-620	0.9	1
35	Granular Computing and Rough Sets to Generate Fuzzy Rules. <i>Lecture Notes in Computer Science</i> , 2009 , 317-326	0.9	2
34	Two Ensemble Classifiers Constructed from GEP-Induced Expression Trees. <i>Lecture Notes in Computer Science</i> , 2010 , 200-209	0.9	4
33	Cellular GEP-Induced Classifiers. Lecture Notes in Computer Science, 2010, 343-352	0.9	15
32	Parallel Distributed Implementation of Genetics-Based Machine Learning for Fuzzy Classifier Design. <i>Lecture Notes in Computer Science</i> , 2010 , 309-318	0.9	4

31	Multi-objective Evolutionary Fuzzy Systems. Lecture Notes in Computer Science, 2011, 83-90	0.9	12
30	A Double Axis Classification of Interpretability Measures for Linguistic Fuzzy Rule-Based Systems. <i>Lecture Notes in Computer Science</i> , 2011 , 99-106	0.9	3
29	Ensemble Fuzzy Rule-Based Classifier Design by Parallel Distributed Fuzzy GBML Algorithms. <i>Lecture Notes in Computer Science</i> , 2012 , 93-103	0.9	1
28	Interpretability Issues in Evolutionary Multi-Objective Fuzzy Knowledge Base Systems. 2013 , 473-484		3
27	A Granular Approach to Interval Output Estimation for Rule-Based Fuzzy Models. 2020, PP,		4
26	Semantic similarity controllers: On the trade-off between accuracy and interpretability. 2021 , 234, 1076	509	1
25	Analysis of the Performance of a Semantic Interpretability-Based Tuning and Rule Selection of Fuzzy Rule-Based Systems by Means of a Multi-Objective Evolutionary Algorithm. <i>Lecture Notes in Computer Science</i> , 2010 , 228-238	0.9	
24	Design of Information Granulation-Based Fuzzy Models with the Aid of Multi-objective Optimization and Successive Tuning Method. <i>Lecture Notes in Computer Science</i> , 2011 , 256-263	0.9	
23	Interactive Technique to Build Fuzzy Rule-Based Systems for Classification. 2011 , 3-15		
22	Design of Fuzzy Radial Basis Function Neural Networks with the Aid of Multi-objective Optimization Based on Simultaneous Tuning. <i>Lecture Notes in Computer Science</i> , 2011 , 264-273	0.9	
21	Cellular Gene Expression Programming Classifier Learning. Lecture Notes in Computer Science, 2011, 66-	83 9	1
20	Integration of Intelligent Information Technologies Ensembles for Modeling and Classification. <i>Lecture Notes in Computer Science</i> , 2012 , 365-374	0.9	O
19	Granular Models. 2013 , 153-184		
18	Multi-Objective Genetic and Fuzzy Approaches in Rule Mining Problem of Knowledge Discovery in Databases. <i>Advances in Computational Intelligence and Robotics Book Series</i> , 2014 , 147-179	0.4	
17	Evolutionary Design of Fuzzy Systems Based on Multi-objective Optimization and Dempster-Shafer Schemes. <i>Communications in Computer and Information Science</i> , 2019 , 203-217	0.3	
16	Rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling. <i>International Journal of Fuzzy System Applications</i> , 2020 , 9, 31-58	0.6	О
15	Algorithms and Applications to Weighted Rank-one Binary Matrix Factorization. <i>ACM Transactions on Management Information Systems</i> , 2020 , 11,	2	2
14	Multi-Objective Genetic and Fuzzy Approaches in Rule Mining Problem of Knowledge Discovery in Databases. 1083-1114		

13	Multiobjective Classification Rule Mining. 2008 , 219-240		1
12	Knowledge Base Learning of Linguistic Fuzzy Rule-Based Systems in a Multi-objective Evolutionary Framework. <i>Lecture Notes in Computer Science</i> , 2008 , 747-754	0.9	1
11	A Novel Interpretable Model for Solar Radiation Prediction based on Adaptive Fuzzy Clustering and Linguistic Hedges. 2020 ,		1
10	A Survey on Fuzzy Systems Optimization Using Evolutionary Algorithms and Swarm Intelligence. <i>Algorithms for Intelligent Systems</i> , 2022 , 421-444	0.5	1
9	Multi-Objective Structure and Parameter Evolution of Neuro-Fuzzy Systems. 2021,		
8	Predictive Analytic Model of Ectopic Pregnancy Diagnosis: Statistics vs. Machine Learning Methods. SSRN Electronic Journal,	1	
7	The interpretability and scalability of linguistic-rule-based systems for solving regression problems. 2022 , 149, 131-160		1
6	An End-to-End Trainable Deep Convolutional Neuro-Fuzzy Classifier. 2022,		O
5	Evolutionary Multi-Objective Multi-Tasking for Fuzzy Genetics-Based Machine Learning in Multi-Label Classification. 2022 ,		О
4	Predictive analytical model for ectopic pregnancy diagnosis: Statistics vs. machine learning. 9,		Ο
3	A comprehensive review of stacking methods for semantic similarity measurement. 2022 , 10, 100423		О
2	Effects of Accuracy-based Single-Objective Optimization in Multiobjective Fuzzy Genetics-based Machine Learning. 2022 ,		O
1	Framework for Optimizing The Performance of Fuzzy Grid Partition for Rules Generation. 2022,		O