The influence of back pressure on ECAP processed AA 6

Acta Materialia 55, 2985-2993 DOI: 10.1016/j.actamat.2006.12.038

Citation Report

#	Article	IF	CITATIONS
1	Coupling kinetic dislocation model and Monte Carlo algorithm for recrystallized microstructure modeling of severely deformed copper. Journal of Materials Science, 2008, 43, 6081-6086.	3.7	10
2	ECAP of commercially pure titanium: A review. Transactions of the Indian Institute of Metals, 2008, 61, 51-62.	1.5	14
3	Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 2008, 53, 893-979.	32.8	2,579
4	Strain gradient plasticity modelling of high-pressure torsion. Journal of the Mechanics and Physics of Solids, 2008, 56, 1186-1202.	4.8	238
5	The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Materialia, 2008, 56, 5168-5176.	7.9	167
6	Shear deformation with imposed hydrostatic pressure for enhanced compaction of powder. Scripta Materialia, 2008, 58, 898-901.	5.2	44
7	Dislocation structure and strength evolution of heavily deformed tantalum. International Journal of Refractory Metals and Hard Materials, 2009, 27, 605-610.	3.8	43
9	Stress-based model on work hardening and softening of materials at large strains: corrugation process of sheet. Journal of Materials Science, 2009, 44, 1212-1218.	3.7	17
10	Equal channel angular pressing–forward extrusion (ECAP–FE) consolidation of Al particles. Materials & Design, 2009, 30, 429-432.	5.1	39
11	The effect of ECAP die shape on nano-structure of materials. Computational Materials Science, 2009, 44, 962-967.	3.0	45
12	A hybrid model on severe plastic deformation of copper. Computational Materials Science, 2009, 44, 1107-1115.	3.0	31
13	On the evolution of flow stress during constrained groove pressing of pure copper sheet. Computational Materials Science, 2009, 45, 855-859.	3.0	51
14	ETMB model investigation of flow softening during severe plastic deformation. Computational Materials Science, 2009, 46, 902-905.	3.0	9
15	Modeling of induced empirical constitutive relations on materials with FCC, BCC, and HCP crystalline structures: severe plastic deformation. International Journal of Advanced Manufacturing Technology, 2010, 47, 1033-1039.	3.0	11
16	Significance of strain reversals in a two-phase alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7008-7016.	5.6	74
17	Optimum groove pressing die design to achieve desirable severely plastic deformed sheets. Materials & Design, 2010, 31, 94-103.	5.1	41
18	A simple technique of nanocrystallizing metallic surfaces for enhanced resistances to mechanical and electrochemical attacks. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2875-2880.	5.6	15
19	Processing and Characterization of Pure Nickel Sheets by Constrained Groove Pressing (CGP) Technique. Materials Science Forum, 2010, 667-669, 523-528.	0.3	5

#	Article	IF	Citations
" 20	Integration of physically based models into FE analysis: Homogeneity of copper sheets under large plastic deformations. Computational Materials Science, 2010, 48, 166-173.	3.0	23
21	Can severe plastic deformation alone generate a nanocrystalline structure?. Philosophical Magazine Letters, 2010, 90, 349-360.	1.2	15
22	Mechanism of Grain Refinement Induced by Severe Plastic Deformation. Materials Science Forum, 2010, 667-669, 617-622.	0.3	1
23	Significance of stacking fault energy on microstructural evolution in Cu and Cu–Al alloys processed by high-pressure torsion. Philosophical Magazine, 2011, 91, 3307-3326.	1.6	82
24	A new microstructural model based on dislocation generation and consumption mechanisms through severe plastic deformation. Computational Materials Science, 2011, 50, 1123-1135.	3.0	31
25	Effects of Impurity on Microstructure and Hardness in Pure Al Subjected to Dynamic Plastic Deformation at Cryogenic Temperature. Journal of Materials Science and Technology, 2011, 27, 628-632.	10.7	13
26	Influence of Backpressure During ECAP on the Monotonic and Cyclic Deformation Behavior of AA5754 and Cu99.5. Advanced Engineering Materials, 2011, 13, 269-274.	3.5	7
27	Implementation of a constitutive model in finite element method for intense deformation. Materials & Design, 2011, 32, 487-494.	5.1	20
28	Tensile behaviour and strain hardening characteristics of constrained groove pressed nickel sheets. Materials & Design, 2011, 32, 4650-4657.	5.1	61
29	Modeling of microstructure and mechanical behavior of ultra fine grained aluminum produced by accumulative roll-bonding. Materials & Design, 2011, 32, 4580-4585.	5.1	25
30	Computation on new deformation routes of tube channel pressing considering back pressure and friction effects. Computational Materials Science, 2012, 59, 174-181.	3.0	10
31	Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100–O alloy. Materials & Design, 2012, 42, 388-394.	5.1	46
32	Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 150-157.	5.6	31
33	Structural and Mechanical Behaviour of Severe Plastically Deformed OFE Copper Processed by Constrained Groove Pressing Technique. Materials Science Forum, 0, 710, 229-234.	0.3	3
34	Equal channel angular pressing of magnesium at room temperature: the effect of processing route on microstructure and texture. Philosophical Magazine Letters, 2012, 92, 384-390.	1.2	13
35	Modeling of mechanical behavior of ultra fine grained aluminum produced by multiple compressions in a channel die. Materials & Design, 2012, 34, 230-234.	5.1	18
36	Stress and strain gradients in high-pressure tube twisting. Scripta Materialia, 2012, 66, 773-776.	5.2	24
37	A theoretical and experimental evaluation of repetitive corrugation and straightening: Application to Al–Cu and Al–Cu–Sc alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 282-287.	5.6	32

CITATION REPORT

#	Article	IF	CITATIONS
38	Predictive modeling of grain refinement during multi-pass cold rolling. Journal of Materials Processing Technology, 2012, 212, 1003-1013.	6.3	47
39	Microstructure evolution of 6016 aluminum alloy during compression at elevated temperatures by hot rolling emulation. Transactions of Nonferrous Metals Society of China, 2013, 23, 1576-1582.	4.2	21
40	Analysis of plastic deformation behavior during back pressure equal channel angular pressing by the finite element method. Computational Materials Science, 2013, 77, 202-207.	3.0	26
41	Inhomogeneity Through Warm Equal Channel Angular Pressing. Journal of Materials Engineering and Performance, 2013, 22, 1666-1671.	2.5	10
42	Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 2013, 61, 782-817.	7.9	1,505
43	Dislocation density and flow stress modeling of nanostructured Al–SiCp composite during accumulative roll bonding. Computational Materials Science, 2013, 67, 359-363.	3.0	7
44	Mechanical behaviour and microstructural evolution of constrained groove pressed nickel sheets. Journal of Materials Processing Technology, 2013, 213, 214-220.	6.3	56
45	Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 178-192.	5.6	59
46	An insight into the deformation and orientation development of severely plastic deformed aluminum. , 2013, , .		0
50	Distribution of dislocation density and residual stresses in plastically deformed specimens: numerical studies. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 335-336.	0.2	1
51	Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	2.2	52
52	Effect of back pressure on material flow and texture in ECAP of aluminum. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012153.	0.6	10
53	Effect of back pressure on the thermal stability of severely deformed copper. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012168.	0.6	3
54	Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique. Materials & Design, 2014, 57, 114-120.	5.1	68
56	Modeling the evolution of dislocation populations under non-proportional loading. International Journal of Plasticity, 2014, 55, 58-79.	8.8	25
57	Cell Response to Nanocrystallized Metallic Substrates Obtained through Severe Plastic Deformation. ACS Applied Materials & Interfaces, 2014, 6, 7963-7985.	8.0	109
58	Modeling of dislocation density and strength on rheoforged A356 alloy during multi-directional forging. Computational Materials Science, 2014, 81, 284-289.	3.0	11
59	Optimization of Cyclic Constrained Groove Pressing Parameters for Tensile Properties of Al6061/sic Metal Matrix Composites. , 2014, 5, 1929-1936.		5

#	Article	IF	CITATIONS
60	Development a dislocation density based model considering the effect of stacking fault energy: Severe plastic deformation. Computational Materials Science, 2014, 95, 250-255.	3.0	34
61	Constitutive description of severely deformed metals based on dimensional analysis. Materials Science and Technology, 2014, 30, 719-724.	1.6	5
62	Influence of precipitates on low-cycle fatigue and crack growth behavior in an ultrafine-grained aluminum alloy. Acta Materialia, 2014, 80, 250-263.	7.9	57
63	Development of Ultrafine-Grained Metals by Equal-Channel Angular Pressing. , 2014, , 187-209.		9
65	Fabrication of ultra-fine grained aluminium tubes by RTES technique. Materials Characterization, 2015, 102, 1-8.	4.4	13
66	Microstructural evolution and wear characteristics of equal channel angular pressing processed semi-solid-cast hypoeutectic aluminum alloys. Materials & Design, 2015, 67, 448-456.	5.1	54
67	Two-internal variable thermodynamics modelling of severe plastic deformation: Dislocation and flow stress evolutions. Materials Science and Technology, 2015, 31, 1788-1793.	1.6	2
68	Thermal behavior of copper processed by ECAP with and without back pressure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 21-29.	5.6	65
69	A study of plastic deformation behaviour of Ti alloy during equal channel angular pressing with partial back pressure. Computational Materials Science, 2015, 101, 233-241.	3.0	17
70	Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 114-120.	5.6	36
71	Experimental assessment and simulation of surface nanocrystallization by severe shot peening. Acta Materialia, 2015, 97, 105-115.	7.9	149
72	Effect of equal channel angular pressing on aging treatment of Al-7075 alloy. Progress in Natural Science: Materials International, 2015, 25, 159-168.	4.4	37
73	Grain refinement in technically pure aluminium plates using incremental ECAP processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 172-180.	5.6	42
74	Strain path effects on microstructural evolution and mechanical behaviour of constrained groove pressed aluminium sheets. Materials and Design, 2015, 88, 799-809.	7.0	39
75	Influence of twist extrusion process on consolidation of pure aluminum powder in tubes by equal channel angular pressing and torsion. Transactions of Nonferrous Metals Society of China, 2015, 25, 2122-2129.	4.2	15
76	Influence of stacking fault energy and temperature on microstructures and mechanical properties of fcc pure metals processed by equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 578-587.	5.6	41
77	Ring-Constraint High-Pressure Torsion Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3473-3478.	2.2	3
78	Constrained groove pressing for sheet metal processing. Progress in Materials Science, 2016, 84, 403-462.	32.8	83

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
79	Non-equal channel angular pressing (NECAP) of AZ80 Magnesium alloy: Effects of process parameters on strain homogeneity, grain refinement and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 320-328.	5.6	20
80	Specialized mechanical properties of pure aluminum by using non-equal channel angular pressing for developing its electrical applications. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	6
81	Effect of Deformation Homogeneity on Grain Refinement of AZ31 Magnesium Alloys Based on FEA during ECAP. Materials Science Forum, 2016, 850, 281-286.	0.3	1
82	Constitutive analysis of tensile deformation behavior for AA1100 aluminum subjected to multi-axial incremental forging and shearing. Mechanics of Materials, 2016, 94, 117-131.	3.2	16
83	Aluminum Matrix Composites Reinforced with Alumina Nanoparticles. SpringerBriefs in Applied Sciences and Technology, 2016, , .	0.4	8
84	State of the Art of Metal Matrix Nanocomposites. SpringerBriefs in Applied Sciences and Technology, 2016, , 1-35.	0.4	1
85	Severe plastic deformation of four FCC metals during friction under lubricated conditions. Wear, 2017, 386-387, 49-57.	3.1	20
86	Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals. Materials Letters, 2017, 197, 12-16.	2.6	62
87	A Study of Plastic Deformation Behavior of AA1050 Aluminum Alloy during Pure Shear Extrusion with Back Pressure. Russian Journal of Non-Ferrous Metals, 2017, 58, 632-638.	0.6	3
88	A modified counterpart of cyclic extrusion-compression: Experimental study and dislocation density-based finite element modeling. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, 232, 465-480.	1.1	4
89	On a dislocation-based constitutive model and dynamic thermomechanical considerations. International Journal of Plasticity, 2018, 108, 55-69.	8.8	30
90	Effect of ECAP consolidation process on the interfacial characteristics of Al-Cu-Ti metallic glass reinforced aluminum matrix composite. Composite Interfaces, 2018, 25, 669-679.	2.3	8
91	Analytical and numerical approaches to modelling severe plastic deformation. Progress in Materials Science, 2018, 95, 172-242.	32.8	126
92	Experimental and Numerical Analysis of Microstructures and Stress States of Shot-Peened GH4169 Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1397-1409.	2.2	15
93	Influence of dynamic recrystallization and shear banding on the localized corrosion of severely deformed Al–Mg–Si alloy. Materialia, 2018, 4, 457-465.	2.7	15
94	Development of bulk ultrafine grained Al-SiC nano composite sheets by a SPD based hybrid process: Experimental and theoretical studies. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 323-334.	5.6	20
95	Enhancement of Mechanical and Electrical Properties in Al 6101 Alloy by Severe Shear Strain under Hydrostatic Pressure. Advanced Engineering Materials, 2018, 20, 1800695.	3.5	2
96	A new method for severe plastic deformation of the copper sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 236-244.	5.6	23

#	Article	IF	CITATIONS
97	Fatigue behavior of AA7075 aluminium alloy severely deformed by equal channel angular pressing. Journal of Alloys and Compounds, 2018, 757, 324-332.	5.5	38
98	Non-equilibrium approach to prediction of microstructure evolution for metals undergoing severe plastic deformation. Materials Characterization, 2018, 141, 267-278.	4.4	13
99	Equal channel angular extrusion for tube configuration of Al-Zn-Mg-Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 569-576.	5.6	28
100	Fully Coupled Two-Phase Composite Model for Microstructure Evolution during Non-Proportional Severe Plastic Deformation. Defect and Diffusion Forum, 0, 385, 234-240.	0.4	1
101	Microstructure and mechanical properties of ultrafine-grained titanium processed by multi-pass ECAP at room temperature using core–sheath method. Journal of Materials Research, 2018, 33, 3809-3817.	2.6	5
102	Numerical study of grain refinement induced by severe shot peening. International Journal of Mechanical Sciences, 2018, 146-147, 280-294.	6.7	39
103	Deformation Heterogeneities in Equal Channel Angular Pressing. Materials Transactions, 2019, 60, 1331-1343.	1.2	21
104	High Pressure Tube Twisting for Producing Ultra Fine Grained Materials: A Review. Materials Transactions, 2019, 60, 1177-1191.	1.2	23
105	Effects of non-isothermal annealing on microstructure and mechanical properties of severely deformed aluminum samples: Modeling and experiment. Transactions of Nonferrous Metals Society of China, 2019, 29, 1127-1137.	4.2	6
106	Corrosion Behavior of Severely Deformed Pure and Single-Phase Materials. Materials Transactions, 2019, 60, 1243-1255.	1.2	31
107	Microstructural Evaluation and Corrosion Resistance of Semisolid Cast A356 Alloy Processed by Equal Channel Angular Pressing. Metals, 2019, 9, 303.	2.3	12
108	Effect of preâ€processing annealing and ram speed on mechanical properties for low carbon steel processed by constrained groove pressing. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 1560-1572.	0.9	1
109	Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems. Progress in Materials Science, 2019, 101, 1-45.	32.8	208
110	Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al-Cu-Li alloy AA2195. Journal of Alloys and Compounds, 2019, 785, 972-983.	5.5	58
111	An investigation of geometrically necessary dislocations and back stress in large grained tantalum via EBSD and CPFEM. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138704.	5.6	30
112	On the grain size dependent working hardening behaviors of severe plastic deformation processed metals. Scripta Materialia, 2020, 178, 171-175.	5.2	30
113	Microstructural changes in machining. , 2020, , 269-296.		0
114	Cold drawing and recovery for improved microstructural and mechanical properties of non-quenched and tempered steel fasteners. Philosophical Magazine Letters, 2020, 100, 468-475.	1.2	1

#	Article	IF	CITATIONS
115	A dislocation density–based comparative study of grain refinement, residual stresses, and surface roughness induced by shot peening and surface mechanical attrition treatment. International Journal of Advanced Manufacturing Technology, 2020, 108, 505-525.	3.0	19
116	Acute angle ECAP die with modification for punchless back pressure provider. Materials Today: Proceedings, 2020, 22, 1228-1232.	1.8	6
117	Optimization of Equal Channel Angular Pressing Parameters for Improving the Hardness and Microstructure Properties of Al–Zn–Mg Alloy by Using Taguchi Method. Metals and Materials International, 2021, 27, 436-448.	3.4	10
118	Nanostructuring of Metals, Alloys, and Composites. , 2021, , 1-58.		0
119	Microstructure and Mechanical Properties of AM60 Magnesium Alloy Processed by a New Severe Plastic Deformation Technique. Metals and Materials International, 2021, 27, 2957-2967.	3.4	6
120	Research progress of ultrafine grained magnesium alloy prepared by equal channel angular pressing. Materials Research Express, 2021, 8, 022001.	1.6	8
121	Properties inhomogeneity of AM60 magnesium alloy processed by cyclic extrusion compression angular pressing followed by extrusion. Transactions of Nonferrous Metals Society of China, 2021, 31, 655-665.	4.2	16
122	Optimization of processing temperature and back pressure of equal channel angular pressing for achieving crack-free fine grained magnesium. Materials Today: Proceedings, 2021, 47, 4611-4616.	1.8	5
123	Influence of a prior pressurization treatment on creep behaviour of an ultrafine-grained Zr-2.5%Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141570.	5.6	5
124	Effect of processing route on microstructure, mechanical and dry sliding wear behavior of commercially pure magnesium processed by ECAP with back pressure. Transactions of the Indian Institute of Metals, 2021, 74, 2659-2669.	1.5	14
125	Optical microscopic analysis of constrained groove pressed followed by cold rolled ARMCO iron sheet material. Advances in Materials and Processing Technologies, 0, , 1-6.	1.4	0
127	Plastic flow during equal-channel angular pressing with arbitrary tool angles. International Journal of Plasticity, 2020, 134, 102755.	8.8	13
128	FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Physica Polonica A, 2012, 122, 581-587.	0.5	28
129	Recrystallization mechanisms, grain refinement, and texture evolution during ECAE processing of Mg and its alloys. Mechanics of Materials, 2021, 162, 104067.	3.2	10
130	Microstructure, mechanical properties and deformation mechanisms of an Al-Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 108-118.	4.9	8
131	INVESTIGATION OF MICROSTRUCTURAL AND HARDNESS CHANGES OF AA7075 ALLOY PROCESSED BY ECAP. Mühendislik Bilimleri Ve Tasarım Dergisi, 2021, 9, 1326-1338.	0.3	1
132	Severe Plastic Deformation of Al–Mg–Si Alloys Processed Through Rolling Techniques: A Review. Metallography, Microstructure, and Analysis, 2022, 11, 353-404.	1.0	4
133	Correlation between microstructure and mechanical properties of AlMg6/CNT-Al composite produced by accumulative roll bonding process: Experimental and modelling analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143559.	5.6	8

\sim			_		
	TAT	ION	- R I	FPO	RT

#	Article	IF	CITATIONS
134	Theoretical and Experimental Studies on ECAE of Aluminum–Copper–Aluminum Composite Strips. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 0, , .	1.3	0
135	Mechanistic modelling of cryo-deformation and post-annealing of aluminium. Materials Science and Technology, 2023, 39, 485-495.	1.6	2
136	Microstructure evolution and wear properties of ECAP-treated Al-Zn-Mg alloy: Effect of route, temperature and number of passes. Materials Today Communications, 2022, 33, 104628.	1.9	8
137	Recent Advances in the Equal Channel Angular Pressing of Metallic Materials. Processes, 2022, 10, 2181.	2.8	5
138	Revealing What Enhance the Corrosion Resistance beside Grain Size in Ultrafine Grained Materials by Severe Plastic Deformation: Stainless Steels Case. Materials Transactions, 2023, 64, 1419-1428.	1.2	1
139	A review on impact route process on AA5083 of back pressure through equal channel angular pressing. Materials Today: Proceedings, 2023, , .	1.8	1
141	An Interchangeable Exit Channel Attachment of Severe Plastic Deformation for Automotive Applications. , 0, , .		0

Applications., 0, , .