Virtual front tracking model for the quantitative model solidification of alloys

Acta Materialia 55, 1741-1755 DOI: 10.1016/j.actamat.2006.10.037

Citation Report

#	Article	IF	CITATIONS
1	Effects of atomic processes occurring at or near solid/liquid interface on morphological evolution of solidification microstructure – Monte Carlo simulation. International Journal of Cast Metals Research, 2007, 20, 113-121.	0.5	2
2	Modelling of dendritic growth under forced convection in solidification of Al–7Si alloy. International Journal of Cast Metals Research, 2007, 20, 254-264.	0.5	5
3	A New Growth Kinetics in Simulation of Dendrite Growth by Cellular Automaton Method. Advanced Materials Research, 2007, 26-28, 957-962.	0.3	5
4	30 Years of Modeling of Microstructure Evolution during Casting Solidification. Advanced Materials Research, 0, 23, 9-16.	0.3	4
5	A cellular automaton model for dendrite growth in magnesium alloy AZ91. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 075011.	0.8	40
6	Lattice Boltzmann modeling of dendritic growth in a forced melt convection. Acta Materialia, 2009, 57, 1755-1767.	3.8	134
7	Estimation of the curvature of an interface from a digital 2D image. Computational Materials Science, 2009, 44, 867-875.	1.4	26
8	Numerical micro-modeling of solidification. , 2009, , 1-44.		0
9	Numerical Simulation of Microstructure Evolution During Alloy Solidification by Using Cellular Automaton Method. ISIJ International, 2010, 50, 1851-1858.	0.6	18
10	Methodological Progress for Computer Simulation of Solidification and Casting. ISIJ International, 2010, 50, 1724-1734.	0.6	9
11	Polydimensional modelling of dendritic growth and microsegregation in multicomponent alloys. Acta Materialia, 2010, 58, 2738-2751.	3.8	39
12	A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth. Acta Materialia, 2010, 58, 340-352.	3.8	133
13	Dendrite growth simulation during solidification in the LENS process. Acta Materialia, 2010, 58, 1455-1465.	3.8	172
14	Three-Dimensional Modeling and Simulation of Dendrite Morphology of Cast Mg Alloys. Materials Science Forum, 2010, 654-656, 1516-1519.	0.3	1
15	Modeling and Simulation of Microstructure Evolution of Cast Mg Alloy. Materials Science Forum, 2010, 638-642, 1562-1568.	0.3	8
16	Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simulation. Modelling and Simulation in Materials Science and Engineering, 2010, 18, 055008.	0.8	113
17	Modeling of the Divorced Eutectic Solidification of Spheroidal Graphite Cast Iron. Key Engineering Materials, 0, 457, 324-329.	0.4	13
19	A novel integrated model combining Cellular Automata and Phase Field methods for microstructure evolution during solidification of multi-component and multi-phase alloys. Computational Materials	1.4	63

#	Article	IF	CITATIONS
20	Numerical modeling of crystal growth of a nickel-based superalloy with applied direct current. Journal of Crystal Growth, 2011, 334, 170-176.	0.7	8
21	A fixed-grid method for transient simulations of dopant segregation in VGF-RMF growth. Journal of Crystal Growth, 2012, 339, 75-85.	0.7	4
22	A cellular automaton model for the solidification of a pure substance. Applied Physics A: Materials Science and Processing, 2011, 103, 123-133.	1.1	38
23	Lattice Boltzmann modeling of dendritic growth in forced and natural convection. Computers and Mathematics With Applications, 2011, 61, 3585-3592.	1.4	62
24	Advances in multi-scale modeling of solidification and casting processes. Jom, 2011, 63, 19-25.	0.9	17
25	Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods. Acta Materialia, 2011, 59, 3124-3136.	3.8	87
26	Modelling of dendritic growth and bubble formation. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012103.	0.3	10
27	Investigating thermal effects on morphological evolution during crystallisation of hcp metals: three-dimensional phase field study. Materials Technology, 2012, 27, 355-363.	1.5	17
28	Comparison of Cellular Automaton and Phase Field Models to Simulate Dendrite Growth in Hexagonal Crystals. Journal of Materials Science and Technology, 2012, 28, 137-146.	5.6	67
29	Three dimensional simulation of solutal dendrite growth using lattice Boltzmann and cellular automaton methods. Journal of Crystal Growth, 2012, 354, 129-134.	0.7	67
30	A cellular automaton model for a pure substance solidification with interface reconstruction method. Computational Materials Science, 2012, 54, 66-74.	1.4	17
31	Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy. Computational Materials Science, 2012, 55, 263-268.	1.4	81
32	Modeling of equiaxed and columnar dendritic growth of magnesium alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 2212-2219.	1.7	18
33	Espaçamentos dendrÃticos primários da liga Sn-5%Pb solidificada direcionalmente em um sistema horizontal. Revista Materia, 2012, 17, 1009-1023.	0.1	4
34	Orientation selection of equiaxed dendritic growth by three-dimensional cellular automaton model. Physica B: Condensed Matter, 2012, 407, 2471-2475.	1.3	32
35	An implicit parallel multigrid computing scheme to solve coupled thermal-solute phase-field equations for dendrite evolution. Journal of Computational Physics, 2012, 231, 1781-1796.	1.9	35
36	Phase Field Simulation of Binary Alloy Dendrite Growth Under Thermal- and Forced-Flow Fields: An Implementation of the Parallel–Multigrid Approach. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2013, 44, 924-937.	1.0	47
37	Modeling dendritic solidification of Al–3%Cu using cellular automaton and phase-field methods. Applied Mathematical Modelling, 2013, 37, 3495-3503.	2.2	68

#	Article	IF	Citations
38	A three-dimensional cellular automata model coupled with finite element method and thermodynamic database for alloy solidification. Journal of Crystal Growth, 2013, 377, 72-77.	0.7	23
39	Grid anisotropy reduction for simulation of growth processes with cellular automaton. Physica D: Nonlinear Phenomena, 2013, 253, 73-84.	1.3	36
40	A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method. Computational Materials Science, 2013, 71, 10-18.	1.4	39
42	Characterization of the Al-3wt.%Si alloy in unsteady-state horizontal directional solidification. Materials Research, 2013, 16, 874-883.	0.6	30
44	Three-dimensional Cellular Automaton Model for the Prediction of Microsegregation in Solidification Grain Structures. ISIJ International, 2014, 54, 415-421.	0.6	18
45	Modelling of dendritic growth during alloy solidification under natural convection. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 034006.	0.8	22
46	Virtual front tracking cellular automaton modeling of isothermal <i>β</i> to <i>α</i> phase transformation with crystallography preferred orientation of TA15 alloy. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 015006.	0.8	7
47	Perspectives for cellular automata for the simulation of dendritic solidification – A review. Computational Materials Science, 2014, 95, 213-220.	1.4	72
48	Dendritic growth of high carbon iron-based alloy under constrained melt flow. Computational Materials Science, 2014, 95, 136-148.	1.4	28
49	Large-scale parallel lattice Boltzmann–cellular automaton model of two-dimensional dendritic growth. Computer Physics Communications, 2014, 185, 939-947.	3.0	70
50	Modeling of morphological evolution of columnar dendritic grains in the molten pool of gas tungsten arc welding. Computational Materials Science, 2014, 95, 351-361.	1.4	15
51	Simulation of diffusion-limited lateral growth of dendrites during solidification via liquid metal cooling. Acta Materialia, 2014, 69, 47-59.	3.8	28
52	A Modified Cellular Automaton Model for the Quantitative Prediction of Equiaxed and Columnar Dendritic Growth. Journal of Materials Science and Technology, 2014, 30, 1311-1320.	5.6	42
53	Effect of neighbourhood configurations on grain structure in CA models. Materials Research Innovations, 2014, 18, S2-892-S2-897.	1.0	0
54	Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012050.	0.3	5
55	A Three Dimensional Cellular Automata Model for Dendrite Growth in Non-Equilibrium Solidification of Binary Alloy. Steel Research International, 2015, 86, 1490-1497.	1.0	14
56	Simulation of the Dendrite Morphology and Microsegregation in Solidification of Al–Cu–Mg Aluminum Alloys. Acta Metallurgica Sinica (English Letters), 2015, 28, 173-181.	1.5	18
57	A Sharp Computational Method for the Simulation of the Solidification of Binary Alloys. Journal of Scientific Computing, 2015, 63, 330-354.	1.1	31

# 58	ARTICLE A quantitative phase-field model combining with front-tracking method for polycrystalline solidification of alloys. Computational Materials Science, 2015, 104, 155-161.	IF 1.4	CITATIONS
59	Cellular automaton simulation of three-dimensional dendrite growth in Al–7Si–Mg ternary aluminum alloys. Computational Materials Science, 2015, 105, 90-100.	1.4	71
60	Cellular automaton-based study of factors that affect dynamic solid phase transformation kinetics. Applied Mathematical Modelling, 2015, 39, 5058-5072.	2.2	9
61	Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing. Jom, 2015, 67, 1176-1182.	0.9	98
62	Effects of physical parameters on the cell-to-dendrite transition in directional solidification. Chinese Physics B, 2015, 24, 078108.	0.7	1
63	Simulation of Dendritic Growth with Melt Convection in Solidification of Ternary Alloys. Chinese Physics Letters, 2015, 32, 068103.	1.3	3
64	Numerical Microscale Modeling of Solidification. , 2015, , 379-434.		0
65	Science and Engineering of Casting Solidification. , 2015, , .		98
66	The morphological evolution of the axial structure and the curved columnar grain in the weld. Journal of Crystal Growth, 2015, 431, 49-59.	0.7	19
67	Numerical Simulation of Dendritic Growth of Continuously Cast High Carbon Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 396-406.	1.1	19
68	Modeling of microstructural evolution during divorced eutectic solidification of spheroidal graphite irons. Acta Materialia, 2015, 84, 413-425.	3.8	48
69	Prediction of Microsegregation in Fe–C–Cr Ternary Alloys Using a Cellular Automaton Model with a Triple-layered Multi-grid Method. ISIJ International, 2016, 56, 1378-1385.	0.6	4
70	Evaluation Based on Numerical Simulations for Influence of Local Melt Flow around Solid-liquid Interface on Dendritic Growth of Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2016, 102, 151-156.	0.1	0
71	Modeling grain orientation of DP600 steel by Nd:YAG laser. MATEC Web of Conferences, 2016, 80, 02010.	0.1	1
72	Multi-scale Simulation for the Columnar to Equiaxed Transition in the Weld Pool. ISIJ International, 2016, 56, 1003-1012.	0.6	8
73	Validation and Simulation of Cellular Automaton Model for Dendritic Growth during the Solidification of Fe–C Binary Alloy with Fluid Flow. ISIJ International, 2016, 56, 564-573.	0.6	5
74	Development of a CA-FVM Model with Weakened Mesh Anisotropy and Application to Feâ \in C Alloy. Crystals, 2016, 6, 147.	1.0	11
75	Modelling of the Dendritic Crystallization by the Cellular Automaton Method. Archives of Foundry Engineering, 2016, 16, 99-106.	0.4	2

#	Article	IF	CITATIONS
76	Modeling of aluminum-silicon irregular eutectic growth by cellular automaton model. China Foundry, 2016, 13, 114-122.	0.5	9
77	Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification. Materials Discovery, 2016, 3, 17-28.	3.3	7
78	Numerical simulation of dendritic growth in directional solidification of binary alloys using a lattice Boltzmann scheme. International Journal of Heat and Mass Transfer, 2016, 103, 821-831.	2.5	29
80	On the Origin of Grid Anisotropy in the Simulation of Dendrite Growth by a VFT Model. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5181-5194.	1.1	1
81	A three-dimensional cellular automaton model of dendrite growth with stochastic orientation during the solidification in the molten pool of binary alloy. Science and Technology of Welding and Joining, 2017, 22, 47-58.	1.5	28
82	A phase-field study on the peritectic phase transition in Fe-C alloys. Acta Materialia, 2017, 132, 565-575.	3.8	31
83	Numerical simulation of the macrostructure evolution of a heavy steel ingot. Materials Science and Technology, 2017, 33, 574-582.	0.8	1
84	Influence of Forced Flow on the Dendritic Growth of Fe-C Alloy: 3D vs 2D Simulation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3109-3119.	1.0	7
85	Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3388-3400.	1.0	1
86	Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3606-3622.	1.1	32
87	Macro-micro modeling and simulation for the morphological evolution of the solidification structures in the entire weld. International Journal of Heat and Mass Transfer, 2017, 106, 1345-1355.	2.5	26
88	Multi-scale coupling simulation in directional solidification of superalloy based on cellular automaton-finite difference method. China Foundry, 2017, 14, 398-404.	0.5	1
89	Interaction of local solidification and remelting during dendrite coarsening - modeling and comparison with experiments. Scientific Reports, 2017, 7, 17809.	1.6	17
90	A cellular automaton simulation of W–Ni alloy solidification in laser solid forming process. Journal of Micromechanics and Molecular Physics, 2017, 02, 1750016.	0.7	4
91	Three-Dimensional Lattice Boltzmann Modeling of Dendritic Solidification under Forced and Natural Convection. Metals, 2017, 7, 474.	1.0	20
92	Numerical Modelling to Predict Macrosegregation Coupled with Model for Formation of Solidification Microstructures. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2017, 103, 730-737.	0.1	2
93	Microstructural evolution during temperature gradient zone melting: Cellular automaton simulation and experiment. Computational Materials Science, 2018, 146, 204-212.	1.4	31
94	Phase filed simulation of dendritic growth of copper films irradiated by ultrashort laser pulses. Computational Materials Science, 2018, 148, 60-68.	1.4	10

#	Article	IF	CITATIONS
95	Modeling of melting and resolidification of equiaxed microstructures in a temperature gradient. Scripta Materialia, 2018, 151, 28-32.	2.6	11
96	A cellular automaton-lattice Boltzmann method for modeling growth and settlement of the dendrites for Al-4.7%Cu solidification. Computational Materials Science, 2018, 146, 9-17.	1.4	24
97	Experimental Study and Numerical Simulation of Microstructure Evolution in Al-Si Eutectic Solidification Process. Materials Science Forum, 2018, 913, 212-219.	0.3	2
98	A lattice Boltzmann study on dendritic growth of a binary alloy in the presence of melt convection. International Journal of Heat and Mass Transfer, 2018, 123, 213-226.	2.5	11
99	Cellular automaton modeling of dendritic growth of Fe-C binary alloy with thermosolutal convection. International Journal of Heat and Mass Transfer, 2018, 116, 940-950.	2.5	21
100	A fixed-grid model to track the interface and porosity of a chemically reacting moving char particle. Chemical Engineering Science, 2018, 175, 296-305.	1.9	24
101	Simulation of Temperature Distribution and Microstructure Evolution in the Molten Pool of GTAW Ti-6Al-4V Alloy. Materials, 2018, 11, 2288.	1.3	13
102	Modeling of hydrogen porosity formation during solidification of dendrites and irregular eutectics in Al–Si alloys. Materialia, 2018, 4, 211-220.	1.3	23
103	Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding: A phase-field study. Acta Materialia, 2018, 160, 85-96.	3.8	52
104	Simulation and experimental studies on microstructure evolution of resolidified dendritic TiC in laser direct deposited Ti-TiC composite. Materials and Design, 2018, 159, 212-223.	3.3	40
105	Cellular automaton modeling for dendritic growth during laser beam welding solidification process. Journal of Laser Applications, 2018, 30, .	0.8	14
106	Phase Field Simulation of Dendritic Solidification of Ti-6Al-4V During Additive Manufacturing Process. Jom, 2018, 70, 2392-2399.	0.9	42
107	A review on the modeling and simulations of solid-state diffusional phase transformations in metals and alloys. Manufacturing Review, 2018, 5, 10.	0.9	14
108	Development of Bulk Metallic Glass Matrix Composites (BMGMC) by Additive Manufacturing: Modelling and Simulation – A Review: Part B. Advanced Materials Research, 2019, 1154, 40-79.	0.3	1
109	Numerical simulation of dendritic evolution based on an improved cellular automaton model involving solute field. IOP Conference Series: Materials Science and Engineering, 2019, 657, 012071.	0.3	0
110	Three-dimensional cellular automaton simulation of coupled hydrogen porosity and microstructure during solidification of ternary aluminum alloys. Scientific Reports, 2019, 9, 13099.	1.6	13
111	Examination of Dendritic Growth During Solidification of Ternary Alloys via a Novel Quantitative 3D Cellular Automaton Model. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 123-135.	1.0	19
112	Recalescence and Segregation Phenomena During Equiaxed Dendritic Solidification of Fe-C Alloy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1531-1541.	1.0	6

#	Article	IF	CITATIONS
113	Effect of bubble-induced Marangoni convection on dendritic solidification. International Journal of Multiphase Flow, 2019, 116, 137-152.	1.6	19
114	Predicting primary dendrite arm spacing in Al–Si–Mg alloys: effect of Mg alloying. Journal of Materials Science, 2019, 54, 9907-9920.	1.7	17
115	Numerical Simulation of Three-Dimensional Mesoscopic Grain Evolution: Model Development, Validation, and Application to Nickel-Based Superalloys. Metals, 2019, 9, 57.	1.0	2
116	Quantitative comparison of dendritic growth under forced flow between 2D and 3D phase-field simulation. International Journal of Heat and Mass Transfer, 2019, 135, 262-273.	2.5	16
117	Numerical simulations of solidification structures and macrosegregation by a cellular automaton model coupled with flow calculations. IOP Conference Series: Materials Science and Engineering, 2019, 529, 012038.	0.3	1
118	A Comparative Study of Multiphase Lattice Boltzmann Methods for Bubble-Dendrite Interaction during Solidification of Alloys. Applied Sciences (Switzerland), 2019, 9, 57.	1.3	12
119	Quantitative cellular automaton model and simulations of dendritic and anomalous eutectic growth. Computational Materials Science, 2019, 156, 157-166.	1.4	21
120	Simulations of microstructure coupling with moving molten pool by selective laser melting using a cellular automaton. Materials and Design, 2020, 185, 108230.	3.3	41
121	Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment. International Journal of Heat and Mass Transfer, 2020, 146, 118838.	2.5	43
122	Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys. International Journal of Heat and Mass Transfer, 2020, 149, 119252.	2.5	32
123	Numerical simulation of equiaxed growth of Ni-based alloy in multi-directional flowing melt. Computational Materials Science, 2020, 173, 109408.	1.4	3
124	Phase field modeling of microstructure evolution in selective laser melting-manufactured titanium alloy. , 2020, , 141-154.		1
125	Fluid flow behavior and solidification process of welding pool under rapid cooling condition based on cellular automataâ€lattice Boltzmann method (CAâ€LBM) couple model. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 862-877.	0.5	1
126	Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals: A Critical Review. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4970-4983.	1.1	79
127	Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al–Si alloy*. Chinese Physics B, 2020, 29, 078104.	0.7	8
128	Cellular automaton modeling of peritectic transformation⋆. European Physical Journal E, 2020, 43, 17.	0.7	4
129	Multi-component numerical simulation and experimental study of dendritic growth during solidification processing. Journal of Materials Processing Technology, 2020, 286, 116829.	3.1	10
130	Modeling of dendrite arm fragmentation and dendrite arm coarseningâ(†. European Physical Journal E, 2020, 43, 44.	0.7	2

#	Article	IF	CITATIONS
131	Competitive dendrite growth during directional solidification of a transparent alloy: Modeling and experiment. European Physical Journal E, 2020, 43, 16.	0.7	12
132	Predicting gas and shrinkage porosity in solidification microstructure: A coupled three-dimensional cellular automaton model. Journal of Materials Science and Technology, 2020, 49, 91-105.	5.6	27
133	Simulation of dendritic remelting and fragmentation using coupled cellular automaton and Eulerian multiphase model. Computational Materials Science, 2020, 180, 109714.	1.4	14
134	Progress in modelling solidification microstructures in metals and alloys. Part II: dendrites from 2001 to 2018. International Materials Reviews, 2021, 66, 30-76.	9.4	99
135	Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting. Journal of Materials Science and Technology, 2021, 67, 36-49.	5.6	13
136	A Model Describing Solidification Microstructure Evolution in an Inoculated Aluminum Alloys. Acta Metallurgica Sinica (English Letters), 2021, 34, 861-871.	1.5	4
137	CA single track microstructure simulation of nickel base alloy CM247LC and stainless steel S316L, including experimental validation of S316L. Materials and Design, 2021, 199, 109395.	3.3	6
138	Numerical Simulation of Microstructure Evolution in Solidification Process of Ferritic Stainless Steel with Cellular Automaton. Crystals, 2021, 11, 309.	1.0	3
139	Microstructure evolution during dendrite coarsening in an isothermal environment: 3-D cellular automaton modeling and experiments. Journal of Materials Science, 2021, 56, 10393-10405.	1.7	4
140	A new analytical model for the growth rate of dendrite tips. IOP Conference Series: Earth and Environmental Science, 2021, 772, 012067.	0.2	0
141	A novel 3D cellular automata-phase field model for computationally efficient dendrite evolution during bulk solidification. Computational Materials Science, 2021, 192, 110405.	1.4	9
142	Cellular automaton model for predicting the three-dimensional eutectic structure of binary alloys. Computational Materials Science, 2021, 195, 110497.	1.4	2
143	Solute enrichment induced dendritic fragmentation in directional solidification of nickel-based superalloys. Acta Materialia, 2021, 215, 117043.	3.8	38
144	Field variable diffusion cellular automaton model for dendritic growth with multifold symmetry for the solidification of alloys. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 075005.	0.8	2
145	Modeling of crystal growth with density change induced flows by the anisotropic lattice Boltzmann scheme. Applied Mathematics Letters, 2021, 120, 107318.	1.5	6
146	Constitutive behavior predictions of mushy zone during solidification by phase field model and coupled Eulerian–Lagrangian method. Computational Materials Science, 2022, 201, 110901.	1.4	2
147	Simulation of dendrite collision behavior based on cellular automata-lattice Boltzmann model. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 238101.	0.2	0
148	Modeling of Microstructure Evolution During Alloy Solidification. , 2015, , 183-190.		1

#	Article	IF	CITATIONS
149	Globular to lamellar transition during anomalous eutectic growth. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 065014.	0.8	3
150	Numerical Model Study of Multiple Dendrite Motion Behavior in Melt Based on LBM-CA Method. Crystals, 2020, 10, 70.	1.0	5
151	Modelling and Simulation of Solidification Phenomena during Additive Manufacturing of Bulk Metallic Glass Matrix Composites (BMGMC)—A Brief Review and Introduction of Technique. Journal of Encapsulation and Adsorption Sciences, 2018, 08, 67-116.	0.3	6
152	Effect of interface energy anisotropy on the dendritic growth in directional solidification. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 178105.	0.2	5
154	Cellular automaton model with MeshTV interface reconstruction technique for alloy dendrite growth. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 098104.	0.2	2
155	Modeling of dendritic growth and bubble formation. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 150501.	0.2	8
156	Effect of surface tension anisotropy on the growth patterns of cellulars in directional solidification. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 228106.	0.2	4
158	Large-Scale Simulation of Dendritic Solidification. , 2013, , 2931-2939.		Ο
161	Simulation of dendritic competitive growth during directional solidification using modified cellular automaton method. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 188102.	0.2	5
162	Macro-micro coupled simulation of competitive dendrite growth in different areas of the welding pool. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 228103.	0.2	2
163	Cellular automaton simulation of the molten pool of laser solid forming process. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 018103.	0.2	7
166	Cellular automaton simulation of molten pool migration due to temperature gradient zone melting. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 048102.	0.2	3
167	Microstructure Simulation of the Nonuniform Shell for the Round Billet Continuous Casting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 273-283.	1.0	1
168	Prediction of grain-size transition during solidification of hypoeutectic Al-Si alloys by an improved three-dimensional sharp-interface model. Computational Materials Science, 2022, 203, 111131.	1.4	7
169	Modeling of microstructure formation with gas porosity growth during columnar dendritic solidification of aluminum alloys. Journal of Materials Research and Technology, 2022, 16, 1413-1421.	2.6	10
170	Modelling of liquid film migration in Al-Cu alloys. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20200328.	1.6	1
171	Simulation of the Peritectic Phase Transition in Fe-C Alloys. Materials, 2022, 15, 537.	1.3	1
172	Closed-form solution for the inward unsteady-state solidification of cylinders and spheres: pure metals and eutectics. Journal of Thermal Analysis and Calorimetry, 0, , 1.	2.0	1

#	Article	IF	CITATIONS
173	Multi-track, multi-layer dendrite growth and solid phase transformation analysis during additive manufacturing of H13 tool steel using a combined hybrid cellular automata/phase field, solid-state phase prediction models. International Journal of Advanced Manufacturing Technology, 2022, 120, 2089-2108.	1.5	6
174	Modeling of the Nonuniform Microstructure and Microsegregation Formation of the Shell in Round Billet Continuous Casting. Steel Research International, 0, , 2100793.	1.0	0
175	Cellular Automaton Simulation of Dendrite Growth in Solidification Process of Cr17 Stainless Steel under Mechanical Vibration. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100620.	0.8	2
176	A review on the application of lattice Boltzmann method for melting and solidification problems. Computational Materials Science, 2022, 206, 111288.	1.4	29
177	Effects of shear flows on columnar dendritic microstructure during rapid solidification of IN718 alloy: A cellular automaton-lattice Boltzmann modeling study. Journal of Crystal Growth, 2022, 585, 126583.	0.7	5
178	Cellular automata-lattice Boltzmann simulation of multi-dendrite motion under convection based on dynamic grid technology. Materials Today Communications, 2022, 31, 103342.	0.9	2
179	Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy. Journal of Materials Science and Technology, 2022, 119, 11-24.	5.6	16
180	Efficient grain refinement of Al alloys induced by in-situ nanoparticles. Journal of Materials Science and Technology, 2022, 124, 14-25.	5.6	22
181	Phase-field modeling of dendritic growth of magnesium alloys with a parallel-adaptive mesh refinement algorithm. China Foundry, 2021, 18, 541-549.	0.5	4
182	Multi-scale simulation of the dendrite growth during selective laser melting of rare earth magnesium alloy. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 015005.	0.8	0
183	Dynamic solidification process during laser cladding of IN718: Multi-physics model, solute suppressed nucleation and microstructure evolution. International Journal of Heat and Mass Transfer, 2022, 192, 122907.	2.5	20
185	Cellular automaton simulation and experimental validation of eutectic transformation during solidification of Al-Si alloys. Npj Computational Materials, 2022, 8, .	3.5	8
186	Numerical simulation of dendritic growth during solidification process using multiphase-field model aided with machine learning method. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 78, 102450.	0.7	1
187	Explicit temperature coupling in phase-field crystal models of solidification. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 074004.	0.8	6
188	A High-efficiency Virtual Submesh Cellular Automata Method for Solidification Simulation with Low Mesh Anisotropy. ISIJ International, 2022, 62, 1674-1683.	0.6	1
189	Mesoscopic-scale study of convection-induced morphological evolution of solid-air dendrites in liquid hydrogen. International Communications in Heat and Mass Transfer, 2022, 139, 106426.	2.9	3
190	Prediction of permeability in mushy zone of Al-4.5Â%Mg alloy based on CA-LBM model. Computational Materials Science, 2023, 217, 111890.	1.4	0
191	Gas-kinetic scheme based phase-field method for numerical simulations of dendrite growth. Computers and Fluids, 2023, 251, 105737.	1.3	1

#	Article	IF	CITATIONS
192	The effect of wettability on gas porosity formation during directional solidification of alloys: Insights from lattice Boltzmann-cellular automata simulations. Journal of Materials Research and Technology, 2023, 22, 424-431.	2.6	2
193	Modeling of epitaxial growth of single crystal superalloys fabricated by directed energy deposition. Materials Today Communications, 2023, 35, 105899.	0.9	Ο
194	Development of 3D Macrosegregation Analysis Technique for a 19-Ton Steel Ingot with Complex Shape. International Journal of Metalcasting, 0, , .	1.5	0