Stability and repeatability of capillary columns based or

Journal of Chromatography A 1140, 140-146 DOI: 10.1016/j.chroma.2006.11.079

Citation Report

#	Article	IF	CITATIONS
1	Ion-Exchange Chromatography (HPIC). , 0, , 25-208.		0
2	Optimization of the porous structure and polarity of polymethacrylateâ€based monolithic capillary columns for the LCâ€MS separation of enzymatic digests. Journal of Separation Science, 2007, 30, 2814-2820.	2.5	71
3	Analysis of microcystins by capillary high performance liquid chromatography using a polymethacrylateâ€based monolithic column. Journal of Separation Science, 2007, 30, 2866-2873.	2.5	13
4	Preparation of methacrylate monoliths. Journal of Separation Science, 2007, 30, 2801-2813.	2.5	139
5	Evaluation of photografted charged sites within polymer monoliths in capillary columns using contactless conductivity detection. Journal of Separation Science, 2007, 30, 3060-3068.	2.5	35
6	Novel monolithic poly(phenyl acrylate-co-1,4-phenylene diacrylate) capillary columns for biopolymer chromatography. Journal of Chromatography A, 2007, 1147, 46-52.	3.7	23
7	Effects of inner diameter of monolithic column on separation of proteins in capillary-liquid chromatography. Journal of Chromatography A, 2007, 1170, 15-22.	3.7	20
8	Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis—A review. Analytica Chimica Acta, 2007, 598, 193-204.	5.4	54
9	Development of an open-tubular trypsin reactor for on-line digestion of proteins. Analytical and Bioanalytical Chemistry, 2007, 389, 1967-1977.	3.7	38
10	Polymethacrylate monolithic columns for capillary liquid chromatography. Journal of Separation Science, 2008, 31, 2521-2540.	2.5	118
11	CEC separation of peptides using a poly(hexyl acrylate―co â€1,4â€butanediol diacrylate―co) Tj ETQqO 0 0 rgl 3875-3886.	3T /Overlo 2.4	ck 10 Tf 50 3 31
12	Lauroyl peroxide as thermal initiator of lauryl methacrylate monolithic columns for CEC. Electrophoresis, 2008, 29, 4399-4406.	2.4	14
13	Preparation and characterization of novel poly(vinyl ester resin) monoliths. Microporous and Mesoporous Materials, 2008, 112, 351-356.	4.4	20
14	Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. Journal of Chromatography A, 2008, 1184, 369-392.	3.7	251
15	Developments in the use and fabrication of organic monolithic phases for use with high-performance liquid chromatography and capillary electrochromatography. Journal of Chromatography A, 2008, 1184, 416-440.	3.7	98
16	Ring-opening metathesis polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Journal of Chromatography A, 2008, 1191, 274-281.	3.7	36
17	Methacrylate monolithic capillary columns for gradient peptide separations. Journal of Chromatography A, 2008, 1208, 109-115.	3.7	17
18	Monolithic porous polymer stationary phases in polyimide chips for the fast high-performance liquid chromatography separation of proteins and peptides. Journal of Chromatography A, 2008, 1200, 55-61.	3.7	104

TATION REDO

#	Article	IF	CITATIONS
19	Curved Microchannel Flow. , 2008, , 324-329.		1
20	Core-Shell Nanoparticles. , 2008, , 322-322.		1
21	Cell and Tissue Culture. , 2008, , 234-234.		0
22	Capillary Filling. , 2008, , 185-192.		0
23	Calcium Titanium Oxide. , 2008, , 175-175.		0
24	Development of High-Throughput Analysis System Using Highly-Functional Organic Polymer Monoliths. Bunseki Kagaku, 2008, 57, 517-529.	0.2	3
25	Fritless Column for Capillary HPLC Prepared by Immobilizing Octadecylsilane Particles in an Organic Polymer Matrix. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 1847-1861.	1.0	1
27	CEC column behaviour of butyl and lauryl methacrylate monoliths prepared in nonâ€aqueous media. Electrophoresis, 2009, 30, 607-615.	2.4	15
28	Comparison of thermal―and photoâ€polymerization of lauryl methacrylate monolithic columns for CEC. Electrophoresis, 2009, 30, 1929-1936.	2.4	17
29	Photoâ€polymerized lauryl methacrylate monolithic columns for CEC using lauroyl peroxide as initiator. Electrophoresis, 2009, 30, 3748-3756.	2.4	31
30	Effect of temperature during photopolymerization of capillary monolithic columns. Journal of Separation Science, 2009, 32, 2574-2581.	2.5	22
31	Microfluidic HPLCâ€Chip devices with integral channels containing methylstyrenicâ€based monolithic media. Journal of Separation Science, 2009, 32, 3379-3387.	2.5	19
32	Recent advances in polymer monoliths for ion-exchange chromatography. Analytical and Bioanalytical Chemistry, 2009, 394, 71-84.	3.7	97
33	Electron beam triggered, free radical polymerization-derived monolithic capillary columns for high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 2664-2670.	3.7	19
34	Applications of polymethacrylate-based monoliths in high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 2637-2650.	3.7	121
35	Ring-opening metathesis polymerization for the preparation of norbornene-based weak cation-exchange monolithic capillary columns. Journal of Chromatography A, 2009, 1216, 2651-2657.	3.7	22
36	Effect of capillary cross-section geometry and size on the separation of proteins in gradient mode using monolithic poly(butyl methacrylate-co-ethylene dimethacrylate) columns. Journal of Chromatography A, 2009, 1216, 2355-2361.	3.7	47
37	Optimizing the peak capacity per unit time in one-dimensional and off-line two-dimensional liquid chromatography for the separation of complex peptide samples. Journal of Chromatography A, 2009, 1216, 7368-7374.	3.7	44

		ITATION REPORT	
#	Article	IF	CITATIONS
38	Novel Polymer Monolithic Column for Hydrophilic Compounds. Chromatographia, 2009, 70, 527-53	2. 1.3	2
39	Polymer Microchips Integrating Solid-Phase Extraction and High-Performance Liquid Chromatograph Using Reversed-Phase Polymethacrylate Monoliths. Analytical Chemistry, 2009, 81, 2545-2554.	iy 6.5	107
40	Downscaling Limits and Confinement Effects in the Miniaturization of Porous Polymer Monoliths in Narrow Bore Capillaries. Analytical Chemistry, 2009, 81, 7390-7396.	6.5	52
41	Using scanning contactless conductivity to optimise photografting procedures and capacity in the production of polymer ion-exchange monoliths. Analyst, The, 2009, 134, 1314.	3.5	20
42	Monolithic Stationary Phases in HPLC. Chromatographic Science, 2010, , 3-45.	0.1	1
43	Basic Chromatographic Properties of Polyethylene Glycol-type, Polymer-based Monolithic Columns. Analytical Sciences, 2010, 26, 311-316.	1.6	5
44	Bi-continuous macroporous polymer derived from oligo-ethylene oxide di-vinyl ether by a cationic polymerization. Colloid and Polymer Science, 2010, 288, 1651-1653.	2.1	0
45	Rapid Separation of Proteins by Capillary HPLC on a Short Polymethacrylateâ€based Strong Cationâ€exchange Monolithic Column. Chinese Journal of Chemistry, 2010, 28, 567-572.	4.9	6
46	Study of elution behaviour with gradient voltage in CEC using methacrylate monolithic columns. Electrophoresis, 2010, 31, 1003-1010.	2.4	1
47	Parameters governing reproducibility of flow properties of porous monoliths photopatterned within microfluidic channels. Electrophoresis, 2010, 31, 2422-2428.	2.4	13
48	Micro-bore titanium housed polymer monoliths for reversed-phase liquid chromatography of small molecules. Journal of Chromatography A, 2010, 1217, 2138-2146.	3.7	33
49	Comparison on photo-initiators for the preparation of methacrylate monolithic columns for capillary electrochromatography. Journal of Chromatography A, 2010, 1217, 3231-3237.	3.7	16
50	Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. Journal of Chromatography A, 2010, 1217, 902-924.	3.7	526
51	Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. Journal of Chromatography A, 2010, 1217 8212-8221.		150
52	Rapid Preparation and Characterization of Methacrylate-Based Monoliths for Chromatographic and Electrophoretic Separation. Journal of Chromatographic Science, 2010, 48, 399-405.	1.4	5
53	Preparation of monolithic chelating adsorbent inside a syringe filter tip for solid phase microextraction of trace elements in natural water prior to their determination by ICP-MS. Talanta, 2010, 81, 1438-1445.	5.5	51
54	A Simple Method to Prepare Methacrylateâ€Based Capillary Monolithic Column Using Microwave Irradiation. Journal of the Chinese Chemical Society, 2010, 57, 632-636.	1.4	1
55	Repeatability in column preparation of a reversed-phase C18 monolith and its application to separat of tocopherol homologues. Talanta, 2011, 84, 1374-1378.	ion 5.5	12

ARTICLE IF CITATIONS # Preparation of poly(N-isopropylacrylamide)-grafted well-controlled 3D skeletal monolith based on 5.5 16 56 E-51 epoxy resin for protein separation. Talanta, 2011, 85, 1180-1186. Monolithic Silica for Fast HPLC: Current Success and Promising Future. Chromatographia, 2011, 74, 1.3 681-691. Self-interaction chromatography of proteins on a microfluidic monolith. Biochemical Engineering 58 3.6 14 Journal, 2011, 53, 216-222 Methacrylate monolithic stationary phases for gradient elution separations in microfluidic devices. Journal of Chromatography A, 2011, 1218, 5292-5297. 59 Improved chromatographic performances of glycidyl methacrylate anionâ€exchange monolith for fast 60 2.5 24 nanoâ€ion exchange chromatography. Journal of Separation Science, 2011, 34, 2079-2087. Preparation and evaluation of poly(4-vinylphenylboronic acid-co-pentaerythritol triacrylate) monolithic column for capillary liquid chromatography of small molecules and proteins. Journal of Chromatography A, 2012, 1251, 82-90. 3.7 Rapid Preparation of C₁₈ Monoliths for Microâ€column Separation Using Ultraviolet and 62 1.4 0 Microwave Irradiation. Journal of the Chinese Chemical Society, 2012, 59, 822-828. Capillary electrochromatography of three $\hat{l}^2 (sub) \hat{a} \in \hat{a}$ gonists in human urine using a laury 2.5 methacrylateâ€based monolithic column. Journal of Separation Science, 2012, 35, 1138-1145. Organic monoliths for highâ€performance reversedâ€phase liquid chromatography. Journal of Separation 64 2.5 56 Science, 2013, 36, 2767-2781. Highly stable surface modification of hypercrosslinked monolithic capillary columns and their application in hydrophilic interaction chromatography. Journal of Separation Science, 2013, 36, 2.5 2806-2812. Pressurized CEC with amperometric detection using mixedâ€mode monolithic column for rapid analysis 66 2.4 6 of chlorophenols and phenol. Electrophoresis, 2013, 34, 2049-2057. Separation optimization of long porousâ€layer openâ€tubular columns for nanoâ€<scp>LC</scp>â€"<scp>MS</scp> of limited proteomic samples. Journal of Separation Science, 2013, 2.5 38 36, 2838-2847 Monolithic poly(N-vinylcarbazole-co-1,4-divinylbenzene) capillary columns for the separation of 68 3.5 20 biomolecules. Analyst, The, 2013, 138, 5089. Photopolymerized organoâ€silica hybrid monolithic columns: Characterization of their performance in 2.5 capillary liquid chromatography. Journal of Separation Science, 2013, 36, 270-278. Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic 70 3.7 38 capillary columns. Journal of Chromatography A, 2013, 1317, 138-147. Preparation and evaluation of lauryl methacrylate monoliths with embedded silver nanoparticles for capillary electrochromatography. Électrophoresis, 2013, 34, 925-934. Preparation of phenylboronic acid-silica hybrid monolithic column with one-pot approach for 72 3.7 29 capillary liquid chromatography of biomolecules. Journal of Chromatography A, 2013, 1271, 115-123. Monolithic polymeric sorbents for high-performance chromatography of synthetic polymers. Polymer Science - Series B, 2013, 55, 55-62.

CITATION REPORT

#	Article	IF	CITATIONS
74	Preparation and evaluation of a novel monolithic column containing double octadecyl chains for reverse-phase micro high performance liquid chromatography. Journal of Chromatography A, 2014, 1345, 174-181.	3.7	18
75	Chiral β-cyclodextrin functionalized polymer monolith for the direct enantioselective reversed phase nano liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A, 2014, 1345, 115-127.	3.7	41
76	Doping a novel controlled/"living―radical for the polymerization of a lauryl methacrylate monolithic column for improving column efficiency. Analytical Methods, 2014, 6, 3235-3240.	2.7	2
77	Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer. Journal of Chromatography A, 2014, 1367, 131-140.	3.7	20
78	Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A, 2014, 1360, 100-109.	3.7	60
79	Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography. Journal of Chromatography A, 2014, 1359, 162-169.	3.7	25
80	UV-polymerized butyl methacrylate monoliths with embedded carboxylic single-walled carbon nanotubes for CEC applications. Analytical and Bioanalytical Chemistry, 2014, 406, 6329-6336.	3.7	19
81	Preparation and characterization of poly(triallyl isocyanurate -co- trimethylolpropane triacrylate) monolith and its applications in the separation of small molecules by liquid chromatography. Journal of Chromatography A, 2014, 1333, 79-86.	3.7	23
82	Simultaneous determination of nucleoside and purine compounds in human urine based on a hydrophobic monolithic column using capillary electrochromatography. Electrophoresis, 2015, 36, 2727-2735.	2.4	9
83	Onâ€line concentration and pressurized capillary electrochromatography analysis of five βâ€agonists in human urine using a methacrylate monolithic column. Electrophoresis, 2015, 36, 2720-2726.	2.4	11
84	Repeatability of Octadecyl Methacrylate-Based Monolithic Columns for Capillary Electrochromatography. Instrumentation Science and Technology, 2015, 43, 139-155.	1.8	1
85	Post-polymerization photografting on methacrylate-based monoliths for separation of intact proteins and protein digests with comprehensive two-dimensional liquid chromatography hyphenated with high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 3817-3829.	3.7	33
86	Chromatographic efficiency comparison of polyhedral oligomeric silsesquioxanes-containing hybrid monoliths via photo- and thermally-initiated free-radical polymerization in capillary liquid chromatography for small molecules. Journal of Chromatography A, 2015, 1410, 110-117.	3.7	13
87	One-pot preparation of a novel monolith for high performance liquid chromatography applications. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1007, 100-109.	2.3	8
88	Polymer phase transition in <i>n</i> â€lauryl methacrylate monoliths. Polymer International, 2016, 65, 706-712.	3.1	1
89	Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis, 2016, 37, 880-912.	2.4	23
91	Current trends in the development of porous polymer monoliths for the separation of small molecules. Journal of Separation Science, 2016, 39, 51-68.	2.5	57
92	Development of an online solid-phase extraction with liquid chromatography method based on polymer monoliths for the determination of dopamine. Journal of Separation Science, 2016, 39, 4107-4115	2.5	25

CITATION REPORT

#	ARTICLE	IF	CITATIONS
93	Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents. Analytica Chimica Acta, 2016, 927, 55-63.	5.4	44
94	3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography. Analytica Chimica Acta, 2016, 910, 84-94.	5.4	64
95	Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. Journal of Chromatography A, 2017, 1498, 8-21.	3.7	71
96	Microscope-assisted UV-initiated preparation of well-defined porous polymer monolithic plugs in glass microchips for peptide preconcentration. Analytical and Bioanalytical Chemistry, 2017, 409, 2155-2162.	3.7	8
97	Parametric investigation of polymethacrylate monolith synthesis and stability via thermogravimetric characterisation. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 352-364.	1.5	5
99	Trimethyl- Î ² -cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application. Talanta, 2017, 169, 239-248.	5.5	29
100	Microfluidic Approaches for the Characterization of Therapeutic Proteins. Journal of Pharmaceutical Sciences, 2018, 107, 1228-1236.	3.3	36
101	Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques. Analytica Chimica Acta, 2018, 1031, 15-27.	5.4	43
102	Effect of shearing stress on the radial heterogeneity and chromatographic performance of styrene-based polymerised high internal phase emulsions prepared in capillary format. RSC Advances, 2019, 9, 7301-7313.	3.6	4
103	Ternary thiol-ene photopolymerization for facile preparation of ionic liquid-functionalized hybrid monolithic columns based on polyhedral oligomeric silsesquioxanes. Journal of Chromatography A, 2019, 1597, 167-178.	3.7	19
104	Synthesis of a poly(sulfobetaine-co-polyhedral oligomeric silsesquioxane) hybrid monolith via an in-situ ring opening quaternization for use in hydrophilic interaction capillary liquid chromatography. Mikrochimica Acta, 2020, 187, 109.	5.0	8
105	Are we approaching a postâ€monolithic era?. Journal of Separation Science, 2020, 43, 1628-1633.	2.5	12
106	Preparation of monolithic polymer-magnetite nanoparticle composites into poly(ethylene-co-tetrafluoroethylene) tubes for uses in micro-bore HPLC separation and extraction of phosphorylated compounds. Talanta, 2021, 224, 121806.	5.5	7
107	Non-ionic Surface Active Agents as Additives toward a Universal Porogen System for Porous Polymer Monoliths. Analytical Chemistry, 2021, 93, 2802-2810.	6.5	12
108	Macroporous Polymer Monoliths in Thin Layer Format. Polymers, 2021, 13, 1059.	4.5	5
109	A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Analytica Chimica Acta, 2022, 1199, 338857.	5.4	31
110	Organic Monolith Column Technology for Capillary Liquid Chromatography. Advances in Chromatography, 2012, 50, 237-280.	1.0	3
111	Chromatographic Chip Devices. , 2014, , 1-6.		0

CITATION REPORT

#	Article	IF	CITATIONS
112	Styrene-based polymerised high internal phase emulsions using monomers in the internal phase as co-surfactants for improved liquid chromatography. RSC Advances, 2022, 12, 9773-9785.	3.6	0
113	Separation of ions by ion chromatography. , 2024, , 315-332.		0

CITATION REPORT