Electrical-resistance-based damage self-sensing in carb

Carbon 45, 710-716 DOI: 10.1016/j.carbon.2006.11.029

Citation Report

#	Article	IF	CITATIONS
1	Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 52-57.	2.6	134
2	Smart Materials and Structures. , 2008, , 387-426.		0
3	Preliminary Study on VGCF Reinforced Cement Composites. Advanced Materials Research, 0, 97-101, 1641-1644.	0.3	0
4	CFSC for Positive and Negative Temperature Sensing by Resistivity Measurement. Advanced Materials Research, 0, 168-170, 1153-1157.	0.3	0
5	Electrical-resistance-based Sensing of Impact Damage in Carbon Fiber Reinforced Cement-based Materials. Journal of Intelligent Material Systems and Structures, 2010, 21, 83-105.	1.4	68
8	Electrical Properties. Engineering Materials and Processes, 2010, , 203-275.	0.2	0
9	Mechanical and electrical characterization of self-sensing carbon black ECC. Proceedings of SPIE, 2011, , .	0.8	28
10	Single MWNTâ€Glass Fiber as Strain Sensor and Switch. Advanced Materials, 2011, 23, 3392-3397.	11.1	120
11	Nonlinear conduction in carbon fiber reinforced cement mortar. Cement and Concrete Composites, 2011, 33, 444-448.	4.6	39
13	Electrical resistance and microstructure of latex modified carbon fiber reinforced cement composites. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 746-749.	0.4	6
14	Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon, 2012, 50, 3342-3353.	5.4	507
15	Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam. Construction and Building Materials, 2013, 43, 233-241.	3.2	117
16	The AC electrical behavior of cement–polymer composite. Journal of Thermoplastic Composite Materials, 2013, 26, 1168-1179.	2.6	2
17	Structural health monitoring capabilities in ceramic–carbon nanocomposites. Ceramics International, 2014, 40, 3793-3798.	2.3	24
18	Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation. Composites Part B: Engineering, 2014, 67, 555-563.	5.9	189
19	Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete. Smart Materials and Structures, 2014, 23, 085001.	1.8	129
20	The performance of stress-sensing smart fiber reinforced composites in moist and sodium chloride environments. Composites Part B: Engineering, 2015, 73, 89-95.	5.9	33
21	Electrical response of mortar with different degrees of saturation and deicing salt solutions during freezing and thawing. Cement and Concrete Composites, 2015, 59, 49-59.	4.6	75

#	Article	IF	CITATIONS
22	Self Sensing Concrete using Carbon Fibre for Health Monitoring of Structures under Static loading. Indian Journal of Science and Technology, 2016, 9, .	0.5	8
23	Monitoring Damage Propagation in Glass Fiber Composites Using Carbon Nanofibers. Nanomaterials, 2016, 6, 169.	1.9	22
24	Experimental Study on Electrical Properties of Steel-fibre Reinforced Concrete. Procedia Engineering, 2016, 151, 241-248.	1.2	20
25	Modeling of heat evolution in silicate building materials with electrically conductive admixtures. AIP Conference Proceedings, 2016, , .	0.3	2
26	Seebeck effect influence on joule heat evolution in electrically conductive silicate materials. AIP Conference Proceedings, 2016, , .	0.3	3
27	The experimental study on the correlation of resistivity and damage for conductive concrete. Cement and Concrete Composites, 2016, 67, 12-19.	4.6	47
28	Integrated self-monitoring of carbon based textile reinforced concrete beams under repeated loading in the un-cracked region. Carbon, 2016, 98, 238-249.	5.4	36
29	Sensory carbon fiber based textile-reinforced concrete for smart structures. Journal of Intelligent Material Systems and Structures, 2016, 27, 469-489.	1.4	51
30	Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Construction and Building Materials, 2017, 142, 320-327.	3.2	82
31	Self-sensing piezoresistive cement composite loaded with carbon black particles. Cement and Concrete Composites, 2017, 81, 59-65.	4.6	139
32	Cements in the 21 st century: Challenges, perspectives, and opportunities. Journal of the American Ceramic Society, 2017, 100, 2746-2773.	1.9	168
33	Experiments and micromechanical modeling of electrical conductivity of carbon nanotube/cement composites with moisture. Cement and Concrete Composites, 2017, 77, 49-59.	4.6	56
34	A pressure-sensitive carbon black cement composite for traffic monitoring. Construction and Building Materials, 2017, 154, 1079-1086.	3.2	86
35	Thermal properties of alkali-activated aluminosilicates. AIP Conference Proceedings, 2017, , .	0.3	2
36	Damage detection of carbon fibers in filament winding machines using an electrical resistance method. International Journal of Advanced Manufacturing Technology, 2017, 93, 671-679.	1.5	11
37	Evaluation of carbon fiber-embedded 3D printed structures for strengthening and structural-health monitoring. Materials and Design, 2017, 114, 424-432.	3.3	139
39	Thermal properties of alkali-activated aluminosilicates with CNT admixture. AIP Conference Proceedings, 2017, , .	0.3	0
40	Micro and macro crack sensing in TRC beam under cyclic loading. Journal of Mechanics of Materials and Structures, 2017, 12, 579-601.	0.4	19

#	Article	IF	Citations
41	Strain sensing ability of metallic particulate reinforced cementitious composites: Experiments and microstructure-guided finite element modeling. Cement and Concrete Composites, 2018, 90, 225-234.	4.6	17
42	Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Construction and Building Materials, 2018, 167, 115-142.	3.2	183
43	Electro-mechanical self-sensing response of ultra-high-performance fiber-reinforced concrete in tension. Composites Part B: Engineering, 2018, 134, 254-264.	5.9	62
44	Capacitance-based nondestructive detection of aggregate proportion variation in a cement-based slab. Composites Part B: Engineering, 2018, 134, 18-27.	5.9	10
45	Design and characterization of self-sensing steel fiber reinforced concrete. MATEC Web of Conferences, 2018, 199, 11008.	0.1	4
46	Multifunctional components from carbon concrete composite C ³ – integrated, textile-based sensor solutions for in situ structural monitoring of adaptive building envelopes. Textile Reseach Journal, 2018, 88, 2699-2711.	1.1	1
47	Piezoelectricity-based self-sensing of compressive and flexural stress in cement-based materials without admixture requirement and without poling. Smart Materials and Structures, 2018, 27, 105011.	1.8	16
48	Capacitance-based stress self-sensing in cement paste without requiring any admixture. Cement and Concrete Composites, 2018, 94, 255-263.	4.6	22
49	Effect of Different Micro Metal Powders on the Electrical Resistivity of Cementitious Composites. IOP Conference Series: Materials Science and Engineering, 2019, 471, 032075.	0.3	4
50	A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Composites Part B: Engineering, 2019, 177, 107437.	5.9	121
51	Research on the resistivity attenuation law of cementitious conductive composites induced by stress relaxation. Construction and Building Materials, 2019, 206, 347-354.	3.2	9
52	Investigation on the poor fluidity of electrically conductive cement-graphite paste: Experiment and simulation. Materials and Design, 2019, 169, 107679.	3.3	64
53	Effect of Multiwalled Carbon Nanotubes on Sensing Crack Initiation and Ultimate Strength of Cement Nanocomposites. Arabian Journal for Science and Engineering, 2019, 44, 1403-1413.	1.7	10
54	Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement: Journal of the International Measurement Confederation, 2019, 134, 750-761.	2.5	64
55	Characterizing the electro-mechanical response of self-sensing steel-fiber-reinforced cementitious composites. Construction and Building Materials, 2020, 240, 117954.	3.2	13
56	Dynamic sensing properties of a multifunctional cement composite with carbon black for traffic monitoring. Smart Materials and Structures, 2020, 29, 025023.	1.8	26
57	A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science, 2020, 55, 15367-15396.	1.7	97
58	Piezoresistivity enhancement of functional carbon black filled cement-based sensor using polypropylene fibre. Powder Technology, 2020, 373, 184-194.	2.1	57

#	Article	IF	CITATIONS
59	Cement composites with expanded graphite as resistance heating elements. Journal of Composite Materials, 2020, 54, 3821-3831.	1.2	21
60	Smart composite materials for civil engineering applications. , 2020, , 197-210.		8
61	Statistical methods for determining rheological parameters of mortars modified with multi-walled carbon nanotubes. Construction and Building Materials, 2020, 253, 119213.	3.2	6
62	Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. International Journal of Smart and Nano Materials, 2021, 12, 1-19.	2.0	51
63	Identification and Assessment of Zones with Interfacial Partially Healed Cracks Using Lamb Waves Dispersion. IOP Conference Series: Materials Science and Engineering, 2021, 1079, 042059.	0.3	1
64	Application of smart materials in civil engineering: A review. Materials Today: Proceedings, 2023, 81, 350-359.	0.9	9
65	An Experimental Approach for Characterisation of Concrete Damage Using the Wheatstone Bridge Circuit. International Journal of Civil Engineering, 2022, 20, 75-89.	0.9	2
66	Residual piezoresistive properties of mortars containing carbon nanomaterials exposed to high temperatures. Cement and Concrete Composites, 2021, 121, 104104.	4.6	23
67	Self-Sensing Cementitious Composites: Review and Perspective. Nanomaterials, 2021, 11, 2355.	1.9	31
68	Piezoresistivity of Carbon Black/Cement-Based Sensor Enhanced with Polypropylene Fibre. RILEM Bookseries, 2022, , 889-899.	0.2	1
69	DC electric polarization of cured cement paste being unexpectedly hindered by free water. Journal of the American Ceramic Society, 2022, 105, 1074-1082.	1.9	8
70	Cement-based materials for self-sensing and structural damage advance warning alert by electrical resistivity. Materials Today: Proceedings, 2021, 46, 615-620.	0.9	5
71	Effect of Moisture on Piezoresistivity of Carbon Fiber-Reinforced Cement Paste. ACI Materials Journal, 2008, 105, .	0.3	4
72	Gasification Char and Used Foundry Sand as Alternative Fillers to Graphene Nanoplatelets for Electrically Conductive Mortars with and without Virgin/Recycled Carbon Fibres. Applied Sciences (Switzerland), 2021, 11, 50.	1.3	17
73	A review on smart self-sensing composite materials for civil engineering applications. AIMS Materials Science, 2016, 3, 357-379.	0.7	80
74	Introduction to Functional Materials and their Applications. , 2010, , 1-40.		Ο
75	Sensing properties of slag-based geopolymer composite with carbon fibers under compressive loading. , 0, , .		0
76	Experimental and theoretical approach to determination of heat evolution in electrically conductive aluminosilicates. Thermal Science, 2020, 24, 787-794.	0.5	0

#	Article	IF	CITATIONS
77	INVESTIGATION OF ELECTRIC AND THERMAL PROPERTIES OF ALKALI-ACTIVATED ALUMINOSILICATES WITH A CNT ADMIXTURE. Ceramics - Silikaty, 2020, , 180-189.	0.2	4
78	Damage location sensing in carbon fiber composites using extrusion printed electronics. Functional Composites and Structures, 2021, 3, 045001.	1.6	4
79	Determination of percolation threshold in cement composites with expanded graphite by impedance spectroscopy. Cement and Concrete Composites, 2022, 125, 104328.	4.6	19
80	Cross tension and compression loading and large-scale testing of strain and damage sensing smart concrete. Construction and Building Materials, 2022, 316, 125784.	3.2	9
81	Efficiency improvement of radial basis function meshless method in conjunction with bayesian theorem for electrical tomography of heterogeneous concrete. Engineering Analysis With Boundary Elements, 2022, 135, 382-393.	2.0	3
82	Resistivity Signature of Graphene-Based Fiber-Reinforced Composite Subjected to Mechanical Loading. Frontiers in Materials, 2022, 9, .	1.2	4
83	Experimental Investigation on Piezoresistive Properties and Acoustic Emission Characteristics of Carbon Fiber–Based Gangue Concrete. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	2
84	Self-monitoring of stresses in grouted sleeves using smart grout. Structural Health Monitoring, 2022, 21, 2922-2932.	4.3	1
85	Recycling waste materials to produce self-sensing concretes for smart and sustainable structures: A review. Construction and Building Materials, 2022, 325, 126658.	3.2	30
86	Use of gasification char and recycled carbon fibres for sustainable and durable low-resistivity cement-based composites. Journal of Building Engineering, 2022, 50, 104237.	1.6	4
87	Advanced multifunctional structures for future smart cities. , 2022, , 29-52.		2
88	Development of 3D printable self-sensing cementitious composites. Construction and Building Materials, 2022, 337, 127601.	3.2	11
89	Investigation on Self-Sensing Capability of Different Grades of Carbon Black in Cementitious Composites. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2023, 47, 761-774.	1.0	2
90	A Review on Principles, Theories and Materials for Self Sensing Concrete for Structural Applications. Materials, 2022, 15, 3831.	1.3	12
91	Experimental Investigation of Electrical Resistance Properties of High Performance Concretes Produced With Different Types of Additives. Uluslararası Muhendislik Arastirma Ve Gelistirme Dergisi, 2022, 14, 958-966.	0.1	0
92	A Review of Self-Sensing in Carbon Fiber Structural Composite Materials. , 2023, 01, .		1
93	A critical review of electrical-resistance-based self-sensing in conductive cement-based materials. Carbon, 2023, 203, 311-325.	5.4	33
94	Piezoresistivity and AC Impedance Spectroscopy of Cement-Based Sensors: Basic Concepts, Interpretation, and Perspective. Materials, 2023, 16, 768.	1.3	3

#	Article	IF	CITATIONS
95	Development and Investigation of Repair Self-Sensing Composites Using S-CNT. Buildings, 2023, 13, 1015.	1.4	1