Double percolation in the electrical conduction in carbo materials

Carbon 45, 263-267 DOI: 10.1016/j.carbon.2006.09.031

Citation Report

#	Article	IF	CITATIONS
1	Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 487, 52-57.	2.6	134
2	Effect of temperature, carbon fibers, and silica fume on the mechanical properties of lightweight concretes. New Carbon Materials, 2008, 23, 339-344.	2.9	60
3	Preliminary Study on VGCF Reinforced Cement Composites. Advanced Materials Research, 0, 97-101, 1641-1644.	0.3	0
4	CFSC for Positive and Negative Temperature Sensing by Resistivity Measurement. Advanced Materials Research, 0, 168-170, 1153-1157.	0.3	0
5	Electrical-resistance-based Sensing of Impact Damage in Carbon Fiber Reinforced Cement-based Materials. Journal of Intelligent Material Systems and Structures, 2010, 21, 83-105.	1.4	68
7	Electrical Properties. Engineering Materials and Processes, 2010, , 203-275.	0.2	0
8	Nonlinear conduction in carbon fiber reinforced cement mortar. Cement and Concrete Composites, 2011, 33, 444-448.	4.6	39
9	Selective location and conductive network formation of multiwalled carbon nanotubes in polycarbonate/poly(vinylidene fluoride) blends. Composites Science and Technology, 2011, 71, 1016-1021.	3.8	69
10	Research on Electrical Double Percolation of Carbon Black-Filled Cement-Based Composites. Advanced Materials Research, 0, 311-313, 201-204.	0.3	0
11	Percolation backbone structure analysis in electrically conductive carbon fiber reinforced cement composites. Composites Part B: Engineering, 2012, 43, 3270-3275.	5.9	41
12	Ising Model for Conductive Percolation in Electrically Conductive Adhesives by Considering Random Arrangement of Conducting Particles. American Journal of Applied Sciences, 2012, 9, 1113-1123.	0.1	0
13	Reduction of percolation threshold through double percolation in meltâ€blended polycarbonate/acrylonitrile butadiene styrene/multiwall carbon nanotubes elastomer nanocomposites. Polymer Composites, 2013, 34, 570-579.	2.3	77
14	CNT-cement based composites: fabrication, self-sensing properties, and prospective applications to structural health monitoring. , 2013, , .		10
15	The Status of Research on Self-Sensing Properties of CNT-Cement Based Composites and Prospective Applications to SHM. Key Engineering Materials, 0, 569-570, 759-766.	0.4	7
16	Effects of carbon black on the anti aging, rheological and conductive properties of SBS/asphalt/carbon black composites. Construction and Building Materials, 2014, 52, 306-313.	3.2	115
17	Conductive aggregate prepared using graphite and clay and its use in conductive mortar. Construction and Building Materials, 2014, 53, 131-137.	3.2	42
18	Multi-walled carbon nanotube induced co-continuity of poly(ether ether ketone)/polyimide blends for high performance conductive materials. RSC Advances, 2014, 4, 42175-42182.	1.7	23
19	Light-weight cementitious conductive anode for impressed current cathodic protection of steel reinforced concrete application. Construction and Building Materials, 2014, 71, 167-180.	3.2	52

	CITATION REPORT		
#	Article	IF	CITATIONS
20	Microwave axial dielectric properties of carbon fiber. Scientific Reports, 2015, 5, 14927.	1.6	28
21	Experimental Study of Factors on the Conductive Properties of Carbon Fiber Reinforced Concrete. Advanced Materials Research, 2015, 1096, 538-542.	0.3	0
22	Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix. International Journal of Concrete Structures and Materials, 2015, 9, 427-438.	1.4	23
23	Highly Conductive Fiberboards Made with Carbon and Wood Fibers. BioResources, 2015, 10, .	0.5	2

High-performance conductive materials based on the selective location of carbon black in poly(ether) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

25	Enhanced electrical properties by tuning the phase morphology of multiwalled carbon nanotube-filled poly(ether ether ketone)/polyimide composites. Polymer International, 2015, 64, 828-832.	1.6	7
26	Effect of double percolation on the electrical properties and electromagnetic interference shielding effectiveness of carbonâ€blackâ€loaded polystyrene/ethylene vinyl acetate copolymer blends. Journal of Applied Polymer Science, 2016, 133, .	1.3	36
27	Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring. , 2016, , .		7
28	Carbon nanotubes and nanofibers as strain and damage sensors for smart cement. Materials Today Communications, 2016, 8, 196-204.	0.9	63
29	Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Composites Science and Technology, 2016, 123, 17-31.	3.8	171
30	Carbon fibre reinforced cement-based composites as smart floor heating materials. Composites Part B: Engineering, 2016, 90, 465-470.	5.9	80
31	Investigations on scalable fabrication procedures for self-sensing carbon nanotube cement-matrix composites for SHM applications. Cement and Concrete Composites, 2016, 65, 200-213.	4.6	252
32	Interfacial resistive heating and mechanical properties of graphene oxide assisted CuO nanoparticles in woven carbon fiber/polyester composite. Composites Part A: Applied Science and Manufacturing, 2016, 80, 159-170.	3.8	24
33	Electrical and mechanical properties of asphaltic composites containing carbon based fillers. Construction and Building Materials, 2017, 135, 394-404.	3.2	36
34	Corrosion behavior of a steel bar embedded in a cement-based conductive composite. Construction and Building Materials, 2017, 134, 388-396.	3.2	19
35	Electro-thermal properties and Seebeck effect of conductive mortar and its use in self-heating and self-sensing system. Ceramics International, 2017, 43, 8685-8693.	2.3	21
36	Enhanced lumped circuit model for smart nanocomposite cement-based sensors under dynamic compressive loading conditions. Sensors and Actuators A: Physical, 2017, 260, 45-57.	2.0	60
37	The Effect of the Diameter of Carbon Nanotube on the Mechanical and Electrical Properties of Cement Mortar. Key Engineering Materials, 0, 730, 479-485.	0.4	12

24

#	Article	IF	CITATIONS
38	A study of the main factors affecting the performance of self-sensing concrete. Advances in Cement Research, 2017, 29, 216-226.	0.7	15
39	Micromechanics modeling of the uniaxial strain-sensing property of carbon nanotube cement-matrix composites for SHM applications. Composite Structures, 2017, 163, 195-215.	3.1	131
40	Preparation and performance of conductive mortar based on lightweight conductive aggregates. Construction and Building Materials, 2017, 156, 340-350.	3.2	14
41	Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete. Construction and Building Materials, 2017, 152, 168-181.	3.2	94
42	Preparation and properties of electrically conductive aggregate made using magnetically separated fly ash. Construction and Building Materials, 2017, 150, 547-557.	3.2	13
43	Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites. Ceramics International, 2017, 43, 15122-15132.	2.3	117
44	The Electrical Properties of Hybrid Composites Based on Multiwall Carbon Nanotubes with Graphite Nanoplatelets. Nanoscale Research Letters, 2017, 12, 406.	3.1	40
45	Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites. Composites Part B: Engineering, 2017, 108, 451-469.	5.9	137
47	Effects of Diatomite and SBS on Freeze-Thaw Resistance of Crumb Rubber Modified Asphalt Mixture. Advances in Materials Science and Engineering, 2017, 2017, 1-14.	1.0	17
48	Development of Carbon Fiber-modified Electrically Conductive Concrete for Implementation in Des Moines International Airport. Case Studies in Construction Materials, 2018, 8, 277-291.	0.8	50
49	Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. European Polymer Journal, 2018, 100, 209-218.	2.6	42
50	Enhancement of mechanical and electrical properties of graphene/cement composite due to improved dispersion of graphene by addition of silica fume. Construction and Building Materials, 2018, 164, 433-441.	3.2	156
51	Piezoresistive behavior of CF- and CNT-based reinforced concrete beams subjected to static flexural loading: Shear failure investigation. Construction and Building Materials, 2018, 168, 266-279.	3.2	100
52	Effect of network formation on the electrical, mechanical, and processability behaviors through the preferential distribution of carbon black in the incompatible polymer blend composite. Polymer Composites, 2018, 39, 2620-2633.	2.3	8
53	Capacitance-based nondestructive detection of aggregate proportion variation in a cement-based slab. Composites Part B: Engineering, 2018, 134, 18-27.	5.9	10
54	Multifunctional electrically conductive concrete using different fillers. Journal of Building Engineering, 2018, 15, 61-69.	1.6	88
55	Piezoelectricity-based self-sensing of compressive and flexural stress in cement-based materials without admixture requirement and without poling. Smart Materials and Structures, 2018, 27, 105011.	1.8	16
56	Crack detection and localization in RC beams through smart MWCNT/epoxy strip-like strain sensors. Smart Materials and Structures, 2018, 27, 115022.	1.8	21

#	Article	IF	CITATIONS
57	Carbon fiber-based electrically conductive concrete for salt-free deicing of pavements. Journal of Cleaner Production, 2018, 203, 799-809.	4.6	121
58	Concrete with self-sensing properties. , 2018, , 501-530.		8
59	An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures. Sensors, 2018, 18, 831.	2.1	71
60	Effects of salt freeze-thaw cycles and cyclic loading on the piezoresistive properties of carbon nanofibers mortar. Construction and Building Materials, 2018, 177, 192-201.	3.2	53
61	3D mixed micromechanics-FEM modeling of piezoresistive carbon nanotube smart concrete. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 396-423.	3.4	52
62	Development of conductive cementitious materials using recycled carbon fibres. Cement and Concrete Composites, 2018, 92, 135-144.	4.6	57
63	A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Composites Part B: Engineering, 2019, 177, 107437.	5.9	121
64	Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Construction and Building Materials, 2019, 221, 109-121.	3.2	57
65	Comparison between cement paste and asphalt mastic modified by carbonaceous materials: Electrical and thermal properties. Construction and Building Materials, 2019, 213, 121-130.	3.2	17
66	Development of sensing concrete: Principles, properties and its applications. Journal of Applied Physics, 2019, 126, .	1.1	58
67	Developments and Modeling of Electrical Conductivity in Composites. , 2019, , 297-363.		1
68	Research on electrical conductivity of graphene/cement composites. Advances in Cement Research, 2020, 32, 45-52.	0.7	41
69	The application of novel lightweight functional aggregates on the mitigation of acidification damage in the external anode mortar during cathodic protection for reinforced concrete. Corrosion Science, 2020, 165, 108366.	3.0	19
70	Electrical percolation and fluidity of conductive recycled mortar cement: graphite powder: recycled sand with addition of industrial waste carbon fiber. Carbon Letters, 2021, 31, 707-720.	3.3	11
71	A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science, 2020, 55, 15367-15396.	1.7	97
72	About electrical resistivity variation during drying and improvement of the sensing behavior of carbon fiber-reinforced smart concrete. Construction and Building Materials, 2020, 264, 120699.	3.2	21
73	Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments. Corrosion Science, 2020, 174, 108818.	3.0	17
74	Insights into excluded volume and percolation of soft interphase and conductivity of carbon fibrous composites with core-shell networks. Carbon, 2020, 161, 392-402.	5.4	38

#	Article	IF	Citations
75	Characterization of the strain-sensing behavior of smart bricks: A new theoretical model and its application for monitoring of masonry structural elements. Construction and Building Materials, 2020, 250, 118907.	3.2	17
76	The synergistic effects of shape memory alloy, steel, and carbon fibres with polyvinyl alcohol fibres in hybrid strain-hardening cementitious composites. Construction and Building Materials, 2020, 252, 119061.	3.2	41
77	Self-sensing concrete: from resistance-based sensing to capacitance-based sensing. International Journal of Smart and Nano Materials, 2021, 12, 1-19.	2.0	51
78	Properties and road engineering application of carbon fiber modifiedâ€electrically conductive concrete. Structural Concrete, 2021, 22, 410-421.	1.5	8
79	Novel conductive wearing course using a graphite, carbon fiber, and epoxy resin mixture for active de-icing of asphalt concrete pavement. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	20
80	Conductivity assessment of multifunctional cement pastes by impedance spectroscopy. Corrosion Science, 2021, 185, 109441.	3.0	10
81	Effect of pore structure properties on strength properties of hybrid silica fume mortars containing randomly distributed carbon fibers. Asian Journal of Civil Engineering, 2021, 22, 1377-1399.	0.8	1
82	Multifunctional Cement Mortars Enhanced with Graphene Nanoplatelets and Carbon Nanotubes. Sensors, 2021, 21, 933.	2.1	23
83	The effect of shape memory alloy, steel, and carbon fibres on fresh, mechanical, and electrical properties of self-compacting cementitious composites. Cement and Concrete Composites, 2020, 112, 103659.	4.6	49
84	Structural health and condition monitoring via electrical impedance tomography in self-sensing materials: a review. Smart Materials and Structures, 2020, 29, 123001.	1.8	52
85	Effect of Moisture on Piezoresistivity of Carbon Fiber-Reinforced Cement Paste. ACI Materials Journal, 2008, 105, .	0.3	4
86	Self-Sensing of Flexural Damage in Large-Scale Steel-Reinforced Mortar Beams. ACI Materials Journal, 2019, 116, .	0.3	15
87	Elucidation of Conduction Mechanism in Graphene Nanoplatelets (GNPs)/Cement Composite Using Dielectric Spectroscopy. Materials, 2020, 13, 275.	1.3	15
88	Conductive concrete made from recycled carbon fibres for self-heating and de-icing applications in urban furniture. Materiales De Construccion, 2020, 70, 223.	0.2	11
90	Effect of Adding Crosslinked Particles on Rheological and Electrical Properties of Polystyrene/Carbon Nanotube Nanocomposites. Porrime, 2014, 38, 767-773.	0.0	0
91	Development of Cement-Coir Carbon Fiber Composites with Damage Self Detection Capability. Wood Research Journal, 2017, 4, 74-80.	0.2	0
92	The effect of graphene on the conductivity of magnesium sulfate cement. Construction and Building Materials, 2021, 312, 125342.	3.2	6
93	Non-destructive test approach for assessing the amount of fibre in polymeric fibre reinforced concrete. Construction and Building Materials, 2022, 317, 125964.	3.2	4

#	Article	IF	CITATIONS
94	Electrical, Piezoresistive and Electromagnetic Properties of Graphene Reinforced Cement Composites: A Review. Nanomaterials, 2021, 11, 3220.	1.9	16
95	Towards new generation of electrode-free conductive cement composites utilizing nano carbon black. Construction and Building Materials, 2022, 323, 126576.	3.2	16
96	Industrial concrete floors: Evaluation of electrostatic dissipative properties according to IEC 61340-4-1. Construction and Building Materials, 2022, 329, 127162.	3.2	1
97	Experimental study of the electrical resistance of graphene oxide-reinforced cement-based composites with notch or rebar. Journal of Building Engineering, 2022, 51, 104331.	1.6	2
98	Effects of Electrodes Layout and Filler Scale on Percolation Threshold and Piezoresistivity Performances of a Cementitious-Based Geocomposite. Nanomaterials, 2022, 12, 1734.	1.9	10
99	A study on copper slag as fine aggregate in improving the electrical conductivity of cement mortar. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, .	0.8	1
100	An artificial intelligence-based conductivity prediction and feature analysis of carbon fiber reinforced cementitious composite for non-destructive structural health monitoring. Engineering Structures, 2022, 266, 114578.	2.6	8
101	Electrical impedance behaviour of carbon fibre reinforced cement-based sensors at different moisture contents. Construction and Building Materials, 2022, 353, 129049.	3.2	15
102	Evaluation of conductive concrete made with steel slag aggregates. Construction and Building Materials, 2022, 360, 129515.	3.2	7
103	A critical review of electrical-resistance-based self-sensing in conductive cement-based materials. Carbon, 2023, 203, 311-325.	5.4	33
104	Development of conductive graphite concrete. AIP Conference Proceedings, 2022, , .	0.3	0
105	Effect of fibre loading on the microstructural, electrical, and mechanical properties of carbon fibre incorporated smart cement-based composites. Frontiers in Materials, 0, 9, .	1.2	1
106	Piezoresistivity and AC Impedance Spectroscopy of Cement-Based Sensors: Basic Concepts, Interpretation, and Perspective. Materials, 2023, 16, 768.	1.3	3
107	Electromechanical phase-field fracture modelling of piezoresistive CNT-based composites. Computer Methods in Applied Mechanics and Engineering, 2023, 407, 115941.	3.4	2
108	Effect of Carbon and Steel Fibers on the Strength Properties and Electrical Conductivity of Fiber-Reinforced Cement Mortar. Applied Sciences (Switzerland), 2023, 13, 3522.	1.3	2
109	Self-sensing GFRP-reinforced concrete beams containing carbon nanotube-nano carbon black composite fillers. Measurement Science and Technology, 2023, 34, 084003.	1.4	4
113	Novel Smart-Earth Composites forÂSustainable Self-sensing Structures: Characterization ofÂtheÂMaterial andÂApplications onÂaÂReal-Scale Vault. Springer Tracts in Civil Engineering, 2023, , 67-83.	0.3	0
116	Effect of Magnetite Powder Implementation on Electromagnetic Shielding Characteristics of Electromagnetic Shelters. , 2023, , .		0

#	Article	IF	CITATIONS
	Self-Sensing Performance of Cementitious Composites with Carbon and Recycled Carbon Fibres. RILEM Bookseries, 2024, , 203-214.	0.2	0