On utility-fair bandwidth adaptation for multi-class tra networks

Computer Networks 51, 2554-2564 DOI: 10.1016/j.comnet.2006.11.012

Citation Report

#	Article	IF	CITATIONS
1	An adaptive CAC algorithm based on fair utility for low earth orbit satellite networks. , 2008, , .		0
2	Utility Based Backoff (UBB) Algorithm for Initial Ranging Procedure in WiBro. , 2009, , .		3
3	Fairness and QoS Guarantees of WiMAX OFDMA Scheduling with Fuzzy Controls. Eurasip Journal on Wireless Communications and Networking, 2009, 2009, .	2.4	31
4	Resource allocation in OFDMA networks based on interior point methods. Wireless Communications and Mobile Computing, 2010, 10, 1493-1508.	1.2	19
5	A multi-objective utility-based approach for service-oriented network construction. , 2010, , .		0
6	Adaptive QoS scheduling in wireless cellular networks. Wireless Networks, 2011, 17, 701-716.	3.0	7
7	Media Independent Handover-based Competitive On-Line CAC for Seamless Mobile Wireless Networks. Wireless Personal Communications, 2012, 67, 199-225.	2.7	3
8	Dynamic-cost-reward connection admission control for maximizing system reward in 4G wireless multihop relaying networks. Computer Networks, 2013, 57, 2643-2655.	5.1	1
9	An Analysis of Scheduling Scheme for QoS Guaranteed Interactive Multimedia over High Speed Wireless Campus Networks. , 2013, , .		6
10	Admission control for WiMAX networks. Wireless Communications and Mobile Computing, 2014, 14, 1409-1419.	1.2	3
11	On the economic sustainability of supplying bandwidth policies in multi-layer wireless cognitive networks. Applied Mathematical Modelling, 2016, 40, 5123-5138.	4.2	1
12	Resource Management of Next Generation Networks Using Cognitive Radio Networks. , 0, , .		0
14	Enhancing Service Provisioning within Heterogeneous Wireless Networks for Emergency Situations. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 14-23.	0.3	0
15	QoS based Adaptive Admission Control Algorithm for Wireless Multimedia Networks. International Journal of Computer Applications, 2013, 72, 1-9.	0.2	0

ATION REDO