Effects of asymmetry, galleries, overhanging façades a in urban street canyons

Solar Energy 81, 742-754

DOI: 10.1016/j.solener.2006.10.007

Citation Report

#	Article	IF	CITATIONS
1	Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorologische Zeitschrift, 2008, 17, 241-250.	0.5	174
2	SIMULATION OF THE INFLUENCE OF VEGETATION ON MICROCLIMATE AND THERMAL COMFORT IN THE CITY OF SÃO PAULO. Revista Da Sociedade Brasileira De Arborização Urbana, 2008, 3, 1.	0.1	46
3	On the development of an urban passive thermal comfort system in Cairo, Egypt. Building and Environment, 2009, 44, 1907-1916.	3.0	116
4	The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 2009, 90, 1-10.	3.4	351
5	Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. International Journal of Biometeorology, 2010, 54, 319-334.	1.3	160
6	Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery. Building and Environment, 2010, 45, 115-134.	3.0	118
7	Shading effect on long-term outdoor thermal comfort. Building and Environment, 2010, 45, 213-221.	3.0	486
8	LAI based trees selection for mid latitude urban developments: A microclimatic study in Cairo, Egypt. Building and Environment, 2010, 45, 345-357.	3.0	115
9	Outdoor thermal comfort of two public squares in temperate and dry region of Esfahan, Iran. , 2010, ,		11
10	Urbanisation effects on summer habitat comfort: a case study of three coastal cities in southeast China. International Journal of Sustainable Development and World Ecology, 2010, 17, 317-323.	3.2	6
11	Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 2010, 97, 147-155.	3.4	1,784
12	Thermal comfort effects of urban design strategies in high-rise urban environments in a sub-tropical climate. Architectural Science Review, 2011, 54, 285-304.	1.1	79
13	Nature of vegetation and building morphology characteristics across a city: Influence on shadow patterns and mean radiant temperatures in London. Urban Ecosystems, 2011, 14, 617-634.	1.1	116
14	The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theoretical and Applied Climatology, 2011, 105, 311-323.	1.3	264
15	A street thermal environment study in summer by the mobile transect technique. Theoretical and Applied Climatology, 2011, 106, 433-442.	1.3	56
16	Climate change in urban areas. Part 2, Measures. Environmental Sciences Europe, 2011, 23, .	11.0	20
17	Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: the influence of urban geometry. International Journal of Climatology, 2011, 31, 324-335.	1.5	134
18	Seasonal effects of urban street shading on long-term outdoor thermal comfort. Building and Environment, 2011, 46, 863-870.	3.0	249

#	Article	IF	CITATIONS
19	Impacts of street design parameters on human-biometeorological variables. Meteorologische Zeitschrift, 2011, 20, 541-552.	0.5	92
20	Urban form, thermal comfort and building CO ₂ emissions - a numerical analysis in Cairo. Building Services Engineering Research and Technology, 2011, 32, 73-84.	0.9	27
21	The effects of ground cover and shading on an outdoor thermal environment in an apartment complex. International Journal of Sustainable Building Technology and Urban Development, 2012, 3, 219-228.	1.0	1
22	Human Energy Budget Modeling in Urban Parks in Toronto and Applications to Emergency Heat Stress Preparedness. Journal of Applied Meteorology and Climatology, 2012, 51, 1639-1653.	0.6	53
23	Effects of different vegetation on temperature in an urban building environment. Micro-scale numerical experiments. Meteorologische Zeitschrift, 2012, 21, 399-412.	0.5	28
24	Experimental measurement of cool facades' performance in a dense urban environment. Energy and Buildings, 2012, 55, 42-50.	3.1	73
25	Effects of urban canyons and thermal comfort in the Persian Gulf region. , 2012, , .		0
26	Voxel-based Marked Neighborhood Searching method for identifying street trees using Vehicle-borne Laser Scanning data. , 2012, , .		4
27	Research and design for thermal comfort in Dutch urban squares. Resources, Conservation and Recycling, 2012, 64, 39-48.	5.3	46
28	Quantification of the effect of thermal indices and sky view factor on park attendance. Landscape and Urban Planning, 2012, 107, 137-146.	3.4	190
29	Climate Change on the Urban Scale â \in " Effects and Counter-Measures in Central Europe. , 0, , .		8
30	A simplified method to predict the outdoor thermal environment in residential district. Building Simulation, 2012, 5, 157-167.	3.0	22
31	A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, 2012, 47, 256-271.	3.0	655
32	Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Building and Environment, 2012, 48, 7-14.	3.0	213
33	Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Building and Environment, 2012, 51, 285-295.	3.0	196
34	Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Building and Environment, 2012, 57, 110-119.	3.0	119
35	Study of thermal comfort in courtyards in a hot arid climate. Solar Energy, 2012, 86, 1173-1186.	2.9	164
36	Influence of urban planning regulations on the microclimate in a hot dry climate: The example of Damascus, Syria. Journal of Housing and the Built Environment, 2013, 28, 51-65.	0.9	58

#	Article	IF	CITATIONS
37	A new heat sensitivity index for settlement areas. Urban Climate, 2013, 6, 63-81.	2.4	19
38	Scale-integrated atmospheric simulations to assess thermal comfort in different urban tissues in the warm humid summer of São Paulo, Brazil. Urban Climate, 2013, 6, 24-43.	2.4	61
39	Relationship between land surface temperature and spatial pattern of greenspace: What are the effects of spatial resolution?. Landscape and Urban Planning, 2013, 114, 1-8.	3.4	259
40	Watering our cities. Progress in Physical Geography, 2013, 37, 2-28.	1.4	297
41	Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation. Energies, 2013, 6, 598-618.	1.6	169
42	Modification of Human-Biometeorologically Significant Radiant Flux Densities by Shading as Local Method to Mitigate Heat Stress in Summer within Urban Street Canyons. Advances in Meteorology, 2013, 2013, 1-13.	0.6	97
43	Application of Microclimate Modelling and Onsite Survey in Planning Practice Related to an Urban Micro-Environment. Advances in Meteorology, 2013, 2013, 1-10.	0.6	20
44	Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: a case study in Hong Kong. Architectural Science Review, 2013, 56, 297-305.	1.1	61
45	A Voxel-Based Method for Automated Identification and Morphological Parameters Estimation of Individual Street Trees from Mobile Laser Scanning Data. Remote Sensing, 2013, 5, 584-611.	1.8	189
46	Importance of 3-D radiant flux densities for outdoor human thermal comfort on clear-sky summer days in Freiburg, Southwest Germany. Meteorologische Zeitschrift, 2014, 23, 315-330.	0.5	71
47	Trends in the air temperature of transitional spaces of a high-rise office building: The effects of season and location. Indoor and Built Environment, 2014, 23, 1117-1128.	1.5	9
48	Environmental performance assessment for urban districts. Journal of Place Management and Development, 2014, 7, 74-89.	0.7	7
49	Three-dimensional point cloud based sky view factor analysis in complex urban settings. International Journal of Climatology, 2014, 34, 2685-2701.	1.5	26
50	The Effect of Urban Design on Outdoor Thermal Environment in a Central Business District Area in Singapore. Advanced Materials Research, 2014, 1073-1076, 1428-1432.	0.3	0
51	A Study on the Impact of Urban River Refurbishment to the Thermal Environment of Surrounding Residential Area. Journal of Environmental Protection, 2014, 05, 454-465.	0.3	3
52	Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landscape and Urban Planning, 2014, 125, 146-155.	3.4	118
53	Mean radiant temperature – A predictor of heat related mortality. Urban Climate, 2014, 10, 332-345.	2.4	119
54	Urban vegetation structure types as a methodological approach for identifying ecosystem services – Application to the analysis of micro-climatic effects. Ecological Indicators, 2014, 42, 58-72.	2.6	126

		15	C
#		IF	CITATIONS
55	Cooling the cities – A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 2014, 103, 682-703.	2.9	1,172
56	Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theoretical and Applied Climatology, 2014, 115, 333-340.	1.3	57
57	Counteracting urban climate change: adaptation measures and their effect on thermal comfort. Theoretical and Applied Climatology, 2014, 115, 243-257.	1.3	184
58	Thermal bioclimate as a factor in urban and architectural planning in tropical climates—The case of Campinas, Brazil. Urban Ecosystems, 2014, 17, 489-500.	1.1	22
59	Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—The example of residential spaces with detached buildings. Landscape and Urban Planning, 2014, 125, 1-16.	3.4	87
60	Relationship between land cover patterns and surface temperature in urban areas. GIScience and Remote Sensing, 2014, 51, 521-536.	2.4	80
61	Thermal and comfort conditions in a semi-closed rear wooded garden and its adjacent semi-open spaces in a Mediterranean climate (Athens) during summer. Architectural Science Review, 2014, 57, 63-82.	1.1	21
62	How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landscape and Urban Planning, 2014, 125, 117-129.	3.4	245
63	Seasonal variability of temperatures and outdoor human comfort inÂPhoenix, Arizona, U.S.A Building and Environment, 2014, 72, 377-388.	3.0	73
64	Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry and Urban Greening, 2014, 13, 495-506.	2.3	349
65	Impact evaluation of green–grey infrastructure interaction on built-space integrity: An emerging perspective to urban ecosystem service. Science of the Total Environment, 2014, 487, 350-360.	3.9	51
66	Thermal Comfort Investigation in Three Hot-Humid Climate Theme Parks in Jakarta. American Journal of Environmental Sciences, 2015, 11, 133-144.	0.3	9
67	Investigating Thermal Comfort and User Behaviors in Outdoor Spaces: A Seasonal and Spatial Perspective. Advances in Meteorology, 2015, 2015, 1-11.	0.6	33
68	Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. International Journal of Biometeorology, 2015, 59, 657-677.	1.3	92
69	A new method to assess spatial variations of outdoor thermal comfort: Onsite monitoring results and implications for precinct planning. Building and Environment, 2015, 91, 263-270.	3.0	148
71	Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate, 2015, 14, 251-267.	2.4	131
72	Cooling performance of residential greenery in localised urban climates: a case study in Shanghai China. International Journal of Environmental Technology and Management, 2015, 18, 478.	0.1	4
73	Energy consumption based on heating/cooling degree days within the urban environment of Athens, Greece. Theoretical and Applied Climatology, 2015, 122, 517-529.	1.3	38

#	Article	IF	CITATIONS
74	An hourly simulation method for outdoor thermal environment evaluation. Building Simulation, 2015, 8, 113-122.	3.0	3
75	A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques. Building and Environment, 2015, 93, 245-257.	3.0	138
76	Street greenery and its physical and psychological impact on thermal comfort. Landscape and Urban Planning, 2015, 138, 87-98.	3.4	224
77	Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany. International Journal of Biometeorology, 2015, 59, 1299-1309.	1.3	52
79	Total assessment for various environmentally conscious techniques from three perspectives: Mitigation of global warming, mitigation of UHIs, and adaptation to urban warming. Sustainable Cities and Society, 2015, 19, 236-249.	5.1	39
80	Recent Developments in Chinese Urban Planning. Geospatial Technology and the Role of Location in Science, 2015, , .	0.2	3
81	Urban Heat: Towards Adapted German Cities?. Journal of Environmental Assessment Policy and Management, 2015, 17, 1550020.	4.3	17
82	Preferences for street configuration and street tree planting in urban Hong Kong. Urban Forestry and Urban Greening, 2015, 14, 30-38.	2.3	44
83	Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 2015, 83, 65-78.	3.0	428
84	Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature. International Journal of Biometeorology, 2015, 59, 285-297.	1.3	88
85	CFD analysis of transpirational cooling by vegetation: Case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Building and Environment, 2015, 83, 11-26.	3.0	157
86	Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 2015, 134, 127-138.	3.4	749
87	A note on the evolution of the daily pattern of thermal comfort-related micrometeorological parameters in small urban sites in Athens. International Journal of Biometeorology, 2015, 59, 1223-1236.	1.3	15
88	Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China. International Journal of Biometeorology, 2015, 59, 99-108.	1.3	72
89	Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Building and Environment, 2015, 83, 120-128.	3.0	180
90	Urban surface temperature behaviour and heat island effect in a tropical planned city. Theoretical and Applied Climatology, 2015, 119, 493-514.	1.3	38
91	Urban Form and Microclimatic Conditions in Urban Open Spaces at the Densely Built Centre of a Greek City. Journal of Sustainable Development, 2016, 9, 132.	0.1	1
92	Street Orientation and Side of the Street Greatly Influence the Microclimatic Benefits Street Trees Can Provide in Summer. Journal of Environmental Quality, 2016, 45, 167-174.	1.0	77

#	Article	IF	CITATIONS
93	Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. International Journal of Biometeorology, 2016, 60, 1849-1861.	1.3	222
94	Urban Geometry and Environmental Urban Policy Development. Procedia Engineering, 2016, 169, 308-315.	1.2	6
95	Wind tunnel simulation of pollutant dispersion inside street canyons with galleries and multi-level flat roofs. Journal of Hydrodynamics, 2016, 28, 801-810.	1.3	13
96	Scale Study of Traditional Shophouse Street in South of China Based on Outdoor Thermal Comfort. Procedia Engineering, 2016, 169, 232-239.	1.2	6
97	Modeling urban microclimate to ameliorate thermal sensation conditions in outdoor areas in Athens (Greece). Building Simulation, 2016, 9, 251-267.	3.0	28
98	Seasonal differences in the subjective assessment of outdoor thermal conditions and the impact of analysis techniques on the obtained results. International Journal of Biometeorology, 2016, 60, 1615-1635.	1.3	64
99	Urban climate modeling: Challenges in the tropics. , 2016, , 255-304.		2
100	Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: Simulations for a new district of Toulouse, France. Sustainable Cities and Society, 2016, 26, 9-26.	5.1	94
101	Spatial-temporal study on the effects of urban street configurations on human thermal comfort in the world heritage city of Camagüey-Cuba. Building and Environment, 2016, 101, 85-101.	3.0	114
102	Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Climatic Change, 2016, 135, 425-438.	1.7	83
103	Adaptation of ANFIS model to assess thermal comfort of an urban square in moderate and dry climate. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1189-1203.	1.9	13
104	Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and Environment, 2016, 103, 262-275.	3.0	182
105	The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban Forestry and Urban Greening, 2016, 20, 233-242.	2.3	65
106	Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry and Urban Greening, 2016, 20, 305-316.	2.3	241
107	Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer. Applied Energy, 2016, 183, 1428-1440.	5.1	86
108	Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy and Buildings, 2016, 130, 721-732.	3.1	87
109	Sensitivity analysis of urban morphology factors regarding solar energy potential of buildings in a Brazilian tropical context. Solar Energy, 2016, 137, 11-24.	2.9	70
110	Thermal sensation prediction by soft computing methodology. Journal of Thermal Biology, 2016, 62, 106-108.	1.1	8

ARTICLE IF CITATIONS # Intra-urban differences of mean radiant temperature in different urban settings in Shanghai and implications for heat stress under heat waves: A GIS-based approach. Energy and Buildings, 2016, 130, 3.1 68 111 829-842. Small-scale human-biometeorological impacts of shading by a large tree. Open Geosciences, 2016, 8, . The influence of Korea's green parking project on the thermal environment of a residential street. 113 2.3 12 Habitat International, 2016, 56, 181-190. Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of 114 Barcelona, Spain. International Journal of Biometeorology, 2016, 60, 1261-1270. Developing storylines for urban climate governance by using Constellation Analysis â€" insights from a 115 2.4 12 case study in Berlin, Germany. Urban Climate, 2016, 17, 266-283. Post-positivist microclimatic urban design research: A review. Landscape and Urban Planning, 2016, 153, 111-121. 3.4 Temperature and human thermal comfort effects of street trees across three contrasting street 117 1.3218 canyon environments. Theoretical and Applied Climatology, 2016, 124, 55-68. Morphology of pedestrian roads and thermal responses during summer, in the urban area of Bucheon 118 1.3 19 city, Korea. International Journal of Biometeorology, 2016, 60, 999-1014. Human thermal comfort conditions and urban planning in hot-humid climatesâ€"The case of Cuba. 119 1.3 32 International Journal of Biometeorology, 2016, 60, 1151-1164. Environmental-conscious factors affecting street microclimate and individuals' respiratory health in 5.1 tropical coastal cities. Sustainable Cities and Society, 2016, 21, 35-50. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district 121 3.4 352 of Freiburg, Southwest Germany. Landscape and Urban Planning, 2016, 148, 37-50. A systematic extreme learning machine approach to analyze visitors×³ thermal comfort at a public urban 8.2 spáce. Renewable and Sustainable Energy Reviews, 2016, 58, 751-760. Health and climate related ecosystem services provided by street trees in the urban environment. 123 1.7 291 Environmental Health, 2016, 15, 36. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural and Forest Meteorology, 2016, 217, 22-34. 124 Effect of Street Design on Outdoor Thermal Comfort in an Urban Street in Singapore. Journal of the 125 0.8 36 Urban Planning and Development Division, ASCE, 2016, 142, . Hot playgrounds and children's health: A multiscale analysis of surface temperatures in Arizona, USA. 69 Landscape and Urban Planning, 2016, 146, 29-42. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. 127 8.2 340 Renewable and Sustainable Energy Reviews, 2016, 54, 1002-1017. Preliminary study of the impact of urban greenery types on energy consumption of building at a district scale: Academic study on a canyon street in Nantes (France) weather conditions. Energy and 3.1 34 Buildings, 2016, 114, 275-282.

ARTICLE IF CITATIONS Evaluation of thermal perception in schoolyards under Mediterranean climate conditions. 129 1.3 12 International Journal of Biometeorology, 2016, 60, 319-334. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban 3.1 314 environment. Energy and Buildings, 2016, 114, 265-274. Towards the modelling of pedestrian wind speed using high-resolution digital surface models and 131 1.3 11 statistical methods. Theoretical and Applied Climatology, 2016, 124, 189-203. Environmental Quality Assessment in Areas Used for Physical Activity and Recreation in a City Affected by Intense Urban Expansion (Fortaleza-CE, Brazil): Implications for Public Health Policy. Exposure and Health, 2017, 9, 169-182 A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal 133 3.0 270 comfort. Building and Environment, 2017, 115, 1-17. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China. 1.3 International Journal of Biometeorology, 2017, 61, 1421-1432. 135 Urban development and pedestrian thermal comfort in Melbourne. Solar Energy, 2017, 144, 681-698. 2.9 96 Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical 106 high-density urban areas. Building and Environment, 2017, 120, 93-109. A micro-climatic study on cooling effect of an urban park in a hot and humid climate. Sustainable 137 5.1 67 Cities and Society, 2017, 32, 513-522. Enhancement of city breathability with half open spaces in ideal urban street canyons. Building and Environment, 2017, 112, 322-336. Optimization procedures for enhancement of city breathability using arcade design in a realistic 139 3.054 high-rise urban area. Building and Environment, 2017, 121, 247-261. On the study of thermal comfort and perceptions of environmental features in urban parks: A 3.0 structural equation modeling approach. Building and Environment, 2017, 122, 171-183. Assessing seasonal variations in urban thermal comfort and potential health risks using 141 2.4 23 Physiologically Equivalent Temperature: A case of Ibadan, Nigeria. Urban Climate, 2017, 21, 87-105. A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 2017, 142 8.2 398 80, 1613-1640. Urban measures for hot weather conditions in a temperate climate condition: A review study. 144 8.2 36 Renewable and Sustainable Energy Reviews, 2017, 75, 515-533. Evaluation of canopy-layer air and mean radiant temperature simulations by a microclimate model 145 86 over a tropical residéntial neighbourhood. Building and Environment, 2017, 112, 177-189. Temporal and spatial variability of urban heat island by geographical location: A case study of Ulsan, 146 3.026 Korea. Building and Environment, 2017, 126, 471-482. Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate 5.1 design in a hot and dry climate. Sustainable Cities and Society, 2017, 35, 449-467.

ARTICLE IF CITATIONS Simultaneous environmental parameter monitoring and human subject survey regarding outdoor 148 3.0 105 thermal comfort and its modelling. Building and Environment, 2017, 125, 502-514. Towards an integrated method to assess effects of lift-up design on outdoor thermal comfort in 149 34 Hong Kong. Building and Environment, 2017, 125, 261-272. Design tool to improve daytime thermal comfort and nighttime cooling of urban canyons. Landscape 150 3.4 23 and Urban Planning, 2017, 167, 249-256. Modeling and simulating urban outdoor comfort: Coupling ENVI-Met and TRNSYS by grasshopper. 3.1 Energy and Buildings, 2017, 152, 373-384. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. 152 5.1 105 Sustainable Cities and Society, 2017, 34, 293-308. Present and projected future mean radiant temperature for three European cities. International Journal of Biometeorology, 2017, 61, 1531-1543. 1.3 Evaluating the impact of urban green space and landscape design parameters on thermal comfort in 154 3.0 138 hot summer by numerical simulation. Building and Environment, 2017, 123, 277-288. Correlation between the geometrical characteristics of streets and morphological features of trees for the formation of tree lines in the urban design of the city of Orestiada, Greece. Urban Ecosystems, 1.1 2017, 20, 1081-1093. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of 156 2.7 17 Erzurum city. Environmental Science and Pollution Research, 2017, 24, 1811-1820. From Planning to Implementation? The Role of Climate Change Adaptation Plans to Tackle Heat Stress: 1.5 A Case Study of Berlin, Germany. Journal of Planning Education and Research, 2017, 37, 385-396. Human-biometeorological assessment of increasing summertime extreme heat events in Shanghai, 158 1.3 6 China during 1973â€^e2015. Theoretical and Applied Climatology, 2017, 130, 1055-1064. Optimizing Street Canyon Orientation for Rajarhat Newtown, Kolkata, India. Environmental and 0.5 Climate Technologies, 2017, 21, 5-17. Analysis of Solar Radiation Shading Effects by Trees in the Open Space around Buildings. 160 1.6 14 Sustainability, 2017, 9, 1398. Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential 1.6 Areas under Different Underground Space Overburden Thicknesses. Sustainability, 2017, 9, 1656. Depletion of Urban Green Space and Its Adverse Effect: A Case of Kumasi, the Former Garden City of 162 0.2 11 West-Africa. Journal of Environment and Ecology, 2017, 8, 1. Mitigation of traffic induced carbon dioxide concentration through road-side greenery., 2017,,. Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City. Sustainability, 164 1.6 14 2017, 9, 882. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Building and Environment, 2018, 134, 155-167.

#	Article	IF	CITATIONS
166	Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry and Urban Greening, 2018, 29, 212-222.	2.3	105
167	Development of the VTUF-3D v1.0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Climate, 2018, 24, 1052-1076.	2.4	50
168	Effects of green roofs' variations on the regional thermal environment using measurements and simulations in Chongqing, China. Urban Forestry and Urban Greening, 2018, 29, 223-237.	2.3	48
169	The impact of increasing urban surface albedo on outdoor summer thermal comfort within a university campus. Urban Climate, 2018, 24, 175-184.	2.4	74
170	Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. International Journal of Biometeorology, 2018, 62, 1199-1209.	1.3	44
171	Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions. Theoretical and Applied Climatology, 2018, 131, 455-469.	1.3	82
172	Thermal comfort and urban canyons morphology in coastal temperate climate, Concepción, Chile. Urban Climate, 2018, 23, 159-172.	2.4	31
173	Human biometeorological analysis of the thermal conditions of the hot Turkish city of Åžanliurfa. Theoretical and Applied Climatology, 2018, 131, 611-623.	1.3	9
174	Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons. Theoretical and Applied Climatology, 2018, 131, 1083-1100.	1.3	24
175	Climate projections and downscaling techniques: a discussion for impact studies in urban systems. International Journal of Urban Sciences, 2018, 22, 277-307.	1.3	48
176	Human-biometeorological significance of shading in urban public spaces—Summertime measurements in Pécs, Hungary. Landscape and Urban Planning, 2018, 170, 241-255.	3.4	91
177	Numerical modeling validation for the microclimate thermal condition of semi-closed courtyard spaces between buildings. Sustainable Cities and Society, 2018, 36, 327-345.	5.1	102
178	O PAPEL DA VEGETAÇÃO NO CONTROLE DOS VENTOS PARA O CONFORTO TÉRMICO. Revista LABVERDE, 2018, 9, 74.	0.2	0
179	Combination of Tree Configuration with Street Configuration for Thermal Comfort Optimization under Extreme Summer Conditions in the Urban Center of Shantou City, China. Sustainability, 2018, 10, 4192.	1.6	18
180	Quantification of thermal comfort based on different street orientation in winter months of urban city DadaÅŸkent. Acta Horticulturae, 2018, , 67-72.	0.1	4
181	Study and analysis of efficient green cover types for mitigating the air temperature and urban heat island effect. International Journal of Global Warming, 2018, 14, 238.	0.2	6
182	Optimal Thermal Characteristics of the Courtyard in the Hot and Arid Climate of Isfahan. Buildings, 2018, 8, 166.	1.4	10
183	Effects of Landscape Design on Urban Microclimate and Thermal Comfort in Tropical Climate. Advances in Meteorology, 2018, 2018, 1-13.	0.6	39

#	ARTICLE Study on the Prediction and Improvement of Indoor Natural Light and Outdoor Comfort in Apartment	IF	CITATIONS
184	Complexes Using Daylight Factor and Physiologically Equivalent Temperature Indices. Energies, 2018, 11, 1872.	1.6	8
185	Evaluating the ENVI-met microscale model for suitability in analysis of targeted urban heat mitigation strategies. Urban Climate, 2018, 26, 188-197.	2.4	119
186	Assessment of outdoor thermal comfort in Hong Kong based on the individual desirability and acceptability of sun and wind conditions. Building and Environment, 2018, 145, 50-61.	3.0	51
187	"Optimisation of canyon orientation and aspect ratio in warm-humid climate: Case of Rajarhat Newtown, India― Urban Climate, 2018, 24, 887-920.	2.4	36
188	Where the people are: Current trends and future potential targeted investments in urban trees for PM10 and temperature mitigation in 27 U.S. Cities. Landscape and Urban Planning, 2018, 177, 227-240.	3.4	41
189	Green Streets for Pollutants Reduction. , 2018, , 149-156.		4
190	Sky View Factor footprints for urban climate modeling. Urban Climate, 2018, 25, 120-134.	2.4	114
191	The Impact of Façade Orientation and Woody Vegetation on Summertime Heat Stress Patterns in a Central European Square: Comparison of Radiation Measurements and Simulations. Advances in Meteorology, 2018, 2018, 1-15.	0.6	24
192	The Impact of Tipuana tipu Species on Local Human Thermal Comfort Thresholds in Different Urban Canyon Cases in Mediterranean Climates: Lisbon, Portugal. Atmosphere, 2018, 9, 12.	1.0	22
193	Approaches to Outdoor Thermal Comfort Thresholds through Public Space Design: A Review. Atmosphere, 2018, 9, 108.	1.0	68
194	Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians. International Journal of Environmental Research and Public Health, 2018, 15, 148.	1.2	18
195	Effects of Building Design Elements on Residential Thermal Environment. Sustainability, 2018, 10, 57.	1.6	22
196	Thermal Environmental Design in Outdoor Space Focusing on Radiation Environment Influenced by Ground Cover Material and Solar Shading, through the Examination on the Redevelopment Buildings in Front of Central Osaka Station. Sustainability, 2018, 10, 337.	1.6	5
197	Modeling Exposure to Heat Stress with a Simple Urban Model. Urban Science, 2018, 2, 9.	1.1	10
198	Sensing transient outdoor comfort: A georeferenced method to monitor and map microclimate. Journal of Building Engineering, 2018, 20, 94-104.	1.6	30
199	Investigation of passive design strategies in a traditional urban neighborhood: A case study. Urban Climate, 2018, 26, 31-50.	2.4	14
200	Numerical coupling model to compute the microclimate parameters inside a street canyon. Solar Energy, 2018, 170, 470-485.	2.9	19
201	A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustainable Cities and Society, 2018, 41, 647-665.	5.1	70

#	Article	IF	CITATIONS
202	Spatio-temporal planning of urban neighborhoods in the context of global climate change: Lessons for urban form design in Tehran, Iran. Sustainable Cities and Society, 2019, 51, 101554.	5.1	30
203	Exploiting selective angular properties of retro-reflective coatings to mitigate solar irradiation within the urban canyon. Solar Energy, 2019, 189, 74-85.	2.9	20
204	Diagnostic and Input Selection Tool applied on Weather Variables for Studies of Short-Term Load Forecasting. , 2019, , .		2
205	Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather and Climate Extremes, 2019, 25, 100217.	1.6	51
206	Analysis of the urban surface thermal condition based on sky-view factor and vegetation cover. Remote Sensing Applications: Society and Environment, 2019, 15, 100253.	0.8	7
207	Verification of a bioclimatic modeling system in a growing suburb in Melbourne. Science of the Total Environment, 2019, 689, 883-898.	3.9	8
208	Effects of Orientations, Aspect Ratios, Pavement Materials and Vegetation Elements on Thermal Stress inside Typical Urban Canyons. International Journal of Environmental Research and Public Health, 2019, 16, 3574.	1.2	31
209	Field Study on the Microclimate of Public Spaces in Traditional Residential Areas in a Severe Cold Region of China. International Journal of Environmental Research and Public Health, 2019, 16, 2986.	1.2	5
210	Planning the urban forest: Adding microclimate simulation to the planner's toolkit. Land Use Policy, 2019, 88, 104117.	2.5	24
211	Effects of natural and artificial shade on human thermal comfort in residential neighborhood parks of Phoenix, Arizona, USA. Urban Forestry and Urban Greening, 2019, 44, 126429.	2.3	56
212	Evaluating urban vegetation scenarios to mitigate urban heat island and reduce buildings' energy in dense built-up areas in Cairo. Building and Environment, 2019, 166, 106407.	3.0	64
213	Planning for spectator thermal comfort and health in the face of extreme heat: The Tokyo 2020 Olympic marathons. Science of the Total Environment, 2019, 657, 904-917.	3.9	50
214	Mitigating Urban Heating in Dryland Cities: A Literature Review. Journal of Planning Literature, 2019, 34, 434-446.	2.2	18
215	Outdoor thermal comfort and summer PET range: A field study in tropical city Dhaka. Energy and Buildings, 2019, 198, 149-159.	3.1	70
216	Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver's local climate zones. Building and Environment, 2019, 158, 226-236.	3.0	48
217	The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot-humid area of China. Sustainable Cities and Society, 2019, 49, 101571.	5.1	37
218	Urban Trees and Their Impact on Local Ozone Concentration—A Microclimate Modeling Study. Atmosphere, 2019, 10, 154.	1.0	23
219	Assessment of visitors' thermal comfort based on physiologically equivalent temperature in open urban areas. Urban Climate, 2019, 28, 100466.	2.4	5

#	Article	IF	CITATIONS
220	The role of sky view factor and urban street greenery in human thermal comfort and heat stress in a desert climate. Journal of Arid Environments, 2019, 166, 68-76.	1.2	66
221	Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China. Sustainability, 2019, 11, 1355.	1.6	22
222	Outdoor thermal comfort autonomy: Performance metrics for climate-conscious urban design. Building and Environment, 2019, 155, 145-160.	3.0	52
223	Influence of context-sensitive urban and architectural design factors on the energy demand of buildings in Toulouse, France. Energy and Buildings, 2019, 190, 262-278.	3.1	31
224	Outdoor thermal comfort in urban canyon and courtyard in hot arid climate: A parametric study based on the vernacular settlement of Mardin. Sustainable Cities and Society, 2019, 48, 101398.	5.1	28
225	Integrating Satellite-Derived Data as Spatial Predictors in Multiple Regression Models to Enhance the Knowledge of Air Temperature Patterns. Urban Science, 2019, 3, 101.	1.1	12
226	Thermal Environment Design of Outdoor Spaces by Examining Redevelopment Buildings Opposite Central Osaka Station. Climate, 2019, 7, 143.	1.2	6
227	Urban Layout Optimization Based on Genetic Algorithm for Microclimate Performance in the Cold Region of China. Applied Sciences (Switzerland), 2019, 9, 4747.	1.3	15
228	A comparison of outdoor thermal comfort in historical and contemporary urban fabrics of Lar City. Urban Climate, 2019, 27, 212-226.	2.4	17
229	Promoting Citizens' Quality of Life Through Green Urban Planning. Communications in Computer and Information Science, 2019, , 153-175.	0.4	3
230	On the Development and Optimization of an Urban Design Comfort Model (UDCM) on a Passive Solar Basis at Mid-Latitude Sites. Climate, 2019, 7, 1.	1.2	44
231	Identifying urban geometric types as energy performance patterns. Energy for Sustainable Development, 2019, 48, 115-129.	2.0	30
232	Effect of street design on pedestrian thermal comfort. Architectural Science Review, 2019, 62, 92-111.	1.1	29
233	WSUD and Urban Heat Island Effect Mitigation. , 2019, , 381-407.		4
234	Investigation into the thermal comfort of university students conducting outdoor training. Building and Environment, 2019, 149, 26-38.	3.0	49
235	Decomposition of urban temperatures for targeted climate change adaptation. Environmental Modelling and Software, 2019, 113, 20-28.	1.9	12
236	Right tree, right place, right time: A visual-functional design approach to select and place trees for optimal shade benefit to commuting pedestrians. Sustainable Cities and Society, 2020, 52, 101816.	5.1	35
237	Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Building and Environment, 2020, 167, 106424.	3.0	61

#	Article	IF	CITATIONS
238	Clustering weather types for urban outdoor thermal comfort evaluation in a tropical area. Theoretical and Applied Climatology, 2020, 139, 659-675.	1.3	18
239	Sky pixel detection in outdoor imagery using an adaptive algorithm and machine learning. Urban Climate, 2020, 31, 100572.	2.4	17
240	Improving street walkability: Biometeorological assessment of artificial-partial shade structures in summer sunny conditions. International Journal of Biometeorology, 2020, 64, 547-560.	1.3	28
241	Data-driven and numerical approaches to predict thermal comfort in traditional courtyards. Sustainable Energy Technologies and Assessments, 2020, 37, 100569.	1.7	15
243	Field Assessment of Neighboring Building and Tree Shading Effects on the 3D Radiant Environment and Human Thermal Comfort in Summer within Urban Settlements in Northeast China. Advances in Meteorology, 2020, 2020, 1-19.	0.6	8
244	Improving pedestrian micro-climate in urban canyons: City Center of Alexandria, Egypt. Urban Climate, 2020, 34, 100670.	2.4	11
245	An Integrated Microclimate-Energy Demand Simulation Method for the Assessment of Urban Districts. Frontiers in Built Environment, 2020, 6, .	1.2	19
246	Summer thermal comfort in Czech cities: measured effects of blue and green features in city centres. International Journal of Biometeorology, 2021, 65, 1277-1289.	1.3	36
247	Study on the Effect of Streets' Space Forms on Campus Microclimate in the Severe Cold Region of China—Case Study of a University Campus in Daqing City. International Journal of Environmental Research and Public Health, 2020, 17, 8389.	1.2	7
248	Exploring the pattern of outdoor thermal comfort (OTC) in a tropical planning region of eastern India during summer. Urban Climate, 2020, 34, 100708.	2.4	27
249	A Catalogue of Ecosystem Services in Slovakia. , 2020, , .		3
250	An automated approach for street trees detection using mobile laser scanner data. Remote Sensing Applications: Society and Environment, 2020, 20, 100371.	0.8	5
251	A systematic approach for urban heat island mitigation strategies in critical local climate zones of an Indian city. Urban Climate, 2020, 34, 100701.	2.4	34
252	Quantitative outdoor thermal comfort assessment of street: A case in a warm and humid climate of India. Urban Climate, 2020, 34, 100718.	2.4	24
253	A New Approach for Understanding Urban Microclimate by Integrating Complementary Predictors at Different Scales in Regression and Machine Learning Models. Remote Sensing, 2020, 12, 2434.	1.8	24
254	London Plane trees (Platanus x acerifolia) before, during and after a heatwave: Losing leaves means less cooling benefit. Urban Forestry and Urban Greening, 2020, 54, 126746.	2.3	34
255	A meta-analytical review of outdoor thermal comfort research: Applications, gaps and a framework to assess low-income settlements in Indian megacities. Urban Climate, 2020, 33, 100641.	2.4	8
256	Assessment of the Outdoor Thermal Comfort in Oases Settlements. Atmosphere, 2020, 11, 185.	1.0	19

#	Article	IF	CITATIONS
257	Outdoor thermal comfort in various microentrepreneurial settings in hot humid tropical Kolkata: Human biometeorological assessment of objective and subjective parameters. Science of the Total Environment, 2020, 721, 137741.	3.9	37
258	Use of outdoor microclimate simulation maps for a planting design to improve thermal comfort. Sustainable Cities and Society, 2020, 57, 102137.	5.1	40
259	A Review and Insights for Eleven Years of Urban Microclimate Research Towards a New Egyptian ERA of Low Carbon, Comfortable and Energy-Efficient Housing Typologies. Atmosphere, 2020, 11, 236.	1.0	18
260	A new approach of urban livability in Tehran: Thermal comfort as a primitive indicator. Case study, district 22. Urban Climate, 2020, 33, 100656.	2.4	15
261	A tempo-spatial modelling framework to assess outdoor thermal comfort of complex urban neighbourhoods. Urban Climate, 2020, 33, 100665.	2.4	28
262	Impacts of future weather data on the energy performance of buildings in the context of urban geometry. Cogent Engineering, 2020, 7, 1714112.	1.1	5
263	Optimisation of outdoor shading devices with thermal comfort criteria: The case of the Venetian Port of Chania. IOP Conference Series: Earth and Environmental Science, 2020, 410, 012058.	0.2	4
264	Summer thermal comfort conditions in shopping arcades and their adjoining streets in hot and dry climates. The case of the Nicosia's historic centre IOP Conference Series: Earth and Environmental Science, 2020, 410, 012093.	0.2	1
265	Modeling the influences of layouts of residential townhouses and tree-planting patterns on outdoor thermal comfort in Bangkok suburb. Journal of Building Engineering, 2020, 30, 101262.	1.6	43
266	Assessment of "lift-up―design's impact on thermal perceptions in the transition process from indoor to outdoor. Sustainable Cities and Society, 2020, 56, 102081.	5.1	17
267	Strategies for improving the microclimate and thermal comfort of a classical Chinese garden in the hot-summer and cold-winter zone. Energy and Buildings, 2020, 215, 109914.	3.1	21
268	Numerical assessment of the urban green space scenarios on urban heat island and thermal comfort level in Tehran Metropolis. Journal of Cleaner Production, 2020, 261, 121183.	4.6	69
269	An in-depth analysis of the effect of trees on human energy fluxes. Urban Forestry and Urban Greening, 2020, 50, 126646.	2.3	25
270	An analytical model proposal to design urban open spaces in balance with climate: A case study of Gaziantep. Land Use Policy, 2020, 95, 104564.	2.5	13
271	Effects of vegetation on the spatial and temporal variation of microclimate in the urbanized Salt Lake Valley. Agricultural and Forest Meteorology, 2021, 296, 108211.	1.9	27
272	On the study of the effects of microclimate and park and surrounding building configuration on thermal comfort in urban parks. Sustainable Cities and Society, 2021, 64, 102512.	5.1	40
273	Urban structure and its implication of heat stress by using remote sensing and simulation tool. Sustainable Cities and Society, 2021, 65, 102632.	5.1	12
274	The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustainable Cities and Society, 2021, 65, 102638.	5.1	60

	Сіта	CITATION REPORT		
#	ARTICLE	IF	Citations	
275	Exploration of the thermal behaviour and energy balance of urban canyons in relation to their geometrical and constructive properties. Building and Environment, 2021, 188, 107466.	3.0	13	
276	Evaluation of design schemes for urban squares in arid climate cities, Mendoza, Argentina. Building Simulation, 2021, 14, 763-777.	3.0	10	
277	Horizontal heat impacts of a bare facade on air temperature in an adjacent green plot within pedestrian heights in Beijing. Indoor and Built Environment, 2021, 30, 411-425.	1.5	4	
278	Streets are forever: thermal coefficient of street orientation as a strategy to develop cooler street networks in hot climates. Architectural Science Review, 2021, 64, 225-234.	1.1	1	
279	Remote Sensing and GIS for Modelling Green Roofs Potential at Different Urban Scales. Advances in Geospatial Technologies Book Series, 2021, , 251-293.	0.1	1	
280	Field study of pedestrians' comfort temperatures under outdoor and semi-outdoor conditions in Malaysian university campuses. International Journal of Biometeorology, 2021, 65, 453-477.	1.3	15	
281	The relationships between ecological urbanization, green areas, and air pollution in Erzurum/Turkey. Environmental and Ecological Statistics, 2021, 28, 733-759.	1.9	15	
282	The Impacts of Morphology of Traditional Alleys on Thermal comfort: A case study of Da Long Wang Xiang in Zhenjiang, China. E3S Web of Conferences, 2021, 283, 02045.	0.2	1	
283	Analysis of Height-to-Width Ratio of Commercial Streets with Arcades Based on Sunshine Hours and Street Orientation. Applied Sciences (Switzerland), 2021, 11, 1706.	1.3	5	
284	Assessing walkability in hot arid regions: the case of downtown Abu Dhabi. Urban Design International, 2022, 27, 211-231.	1.3	10	
285	Solar Climate Features Taking into Account the Morphometric Conditions of the Area and the Possibility of Using Them in Heliotherapy on the Example of the Cieplice and KoÅ,obrzeg Health Resorts (Poland). Atmosphere, 2021, 12, 383.	1.0	5	
286	Urban heat island intensity and evaluation of outdoor thermal comfort in Chennai, India. Environment, Development and Sustainability, 2021, 23, 16304-16324.	2.7	12	
287	Socio-spatial inequality and its relationship to thermal (dis)comfort in two major Local Climate Zones in a tropical coastal city. International Journal of Biometeorology, 2021, 65, 1177-1187.	1.3	7	
288	Quantification of the Outdoor Thermal Comfort within Different Oases Urban Fabrics. Sustainability, 2021, 13, 3051.	1.6	10	
289	Effects of Different Urban-Vegetation Morphology on the Canopy-level Thermal Comfort and the Cooling Benefits of Shade Trees: Case-study in Philadelphia. Sustainable Cities and Society, 2021, 66, 102684.	5.1	36	
290	The Role of Green Infrastructure in Enhancing Microclimate Conditions: A Case Study of a Low-Rise Neighborhood in Abu Dhabi. Sustainability, 2021, 13, 4260.	1.6	9	
291	Analysis of climate impact on urban landscape design adaptation (Case study: Green Lake View, Depok,)	Tj ETQq0 0.0 rgBT	/Qverlock 10	

292	A regression-based three-phase approach to assess outdoor thermal comfort in informal micro-entrepreneurial settings in tropical Mumbai. International Journal of Biometeorology, 2022, 66, 313-329.	1.3
-----	--	-----

#	Article	IF	CITATIONS
293	Geometrical Assessment of Sunlit and Shaded Area of Urban Trees Based on Aligned Orthographic Views. Atmosphere, 2021, 12, 968.	1.0	2
294	Study of the thermal environment of sidewalks within varied urban road structures. Urban Forestry and Urban Greening, 2021, 62, 127137.	2.3	9
295	Improvement of the Outdoor Thermal Comfort by Water Spraying in a High-Density Urban Environment under the Influence of a Future (2050) Climate. Sustainability, 2021, 13, 7811.	1.6	10
296	Towards an Adaptation of Efficient Passive Design for Thermal Comfort Buildings. Sustainability, 2021, 13, 9570.	1.6	14
297	Quantifying the Effect of Building Shadowing and Cloudiness on Mean Radiant Temperature in Singapore. Atmosphere, 2021, 12, 1012.	1.0	7
298	A review on the significance and perspective of the numerical simulations of outdoor thermal environment. Sustainable Cities and Society, 2021, 71, 102971.	5.1	50
299	Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Building and Environment, 2021, 201, 107988.	3.0	34
300	Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators. Energies, 2021, 14, 5044.	1.6	7
301	Empirical analysis of building energy consumption and urban form in a large city: A case of Seoul, South Korea. Energy and Buildings, 2021, 245, 111046.	3.1	23
302	Urban geometry as an adaptation strategy to improve the outdoor thermal performance in hot arid regions: Aswan University as a case study. Sustainable Cities and Society, 2021, 71, 102965.	5.1	22
303	The impact of sun sail-shading strategy on the thermal comfort in school courtyards. Building and Environment, 2021, 202, 108046.	3.0	44
304	Investigating the spatial distribution of resident's outdoor heat exposure across neighborhoods of Philadelphia, Pennsylvania using urban microclimate modeling. Sustainable Cities and Society, 2021, 72, 103066.	5.1	14
305	Urban green space and health: The role of thermal comfort on the health benefits from the urban green space; a review study. Building and Environment, 2021, 202, 108039.	3.0	24
306	Thermal-comfort evaluation of and plan for public space of Maling Village, Henan, China. PLoS ONE, 2021, 16, e0256439.	1.1	6
307	Urban Greening Strategies for Enhancing Outdoor Thermal Comfort. SpringerBriefs in Architectural Design and Technology, 2022, , 85-100.	0.3	2
308	Effect of Tree Species on Outdoor Thermal Comfort. SpringerBriefs in Architectural Design and Technology, 2022, , 101-123.	0.3	0
309	Knowledge Map of Urban Morphology and Thermal Comfort: A Bibliometric Analysis Based on CiteSpace. Buildings, 2021, 11, 427.	1.4	18
310	Examining runner's outdoor heat exposure using urban microclimate modeling and GPS trajectory mining. Computers, Environment and Urban Systems, 2021, 89, 101678.	3.3	11

ARTICLE IF CITATIONS # Review on the cooling potential of green roofs in different climates. Science of the Total Environment, 2021, 791, 148407. 311 3.9 57 A quantitative assessment of the dependence of outdoor thermal-stresses on tree-building morphology and wind: A case-study in sub-tropical Patna, India. Sustainable Cities and Society, 2021, 73, 5.1 103085. A multilevel approach for assessing the effects of microclimatic urban design on pedestrian thermal 313 3.0 20 comfort: The High Line in New York. Building and Environment, 2021, 205, 108244. Evaluating the impact of shading from surrounding buildings on heating/ cooling energy demands of 314 3.0 different community forms. Building and Environment, 2021, 206, 108322. A parametric optimisation study of urban geometry design to assess outdoor thermal comfort. 315 5.124 Sustainable Cities and Society, 2021, 75, 103352. Urban Morphology as a Mitigation Strategy of Urban Warming in $\hat{a} \in \hat{a}$ Oasis Cities $\hat{a} \in \hat{a}$ Arid Regions. , 2021, , 419-441. Mediterranean Morphologies in Hot Summer Conditions: Learning from France's "Glorious Thirty― 317 0.5 2 Holiday Housing. Journal of Contemporary Urban Affairs, 2021, 5, 19-34. Relationship between Mean Radiant Temperature and Building Type for Pedestrians in Rotterdam. Communications in Computer and Information Science, 2013, , 306-314. 318 0.4 How long is the sun duration in a street canyon? $\hat{a} \in \hat{a} \in \hat{a}$ Analysis of the view factors of street canyons. 319 3.0 24 Building and Environment, 2020, 172, 106680. Simulating micro-scale thermal interactions in different building environments for mitigating urban 84 heat islands. Science of the Total Environment, 2019, 663, 610-631. Compatibility of local climate zone parameters for climate sensitive street design: Influence of 321 19 2.4 openness and surface properties on local climate. Urban Climate, 2020, 33, 100642. Potential of Individual and Cluster Tree Cooling Effect Performances Through Tree Canopy Density Model Evaluation in Improving Urban Microclimate. Current World Environment Journal, 2015, 10, 398-413. URBAN GEOMETRY MITIGATION GUIDELINES TO IMPROVE OUTDOOR THERMAL PERFORMANCE IN EGYPTIAN 323 0.0 4 HOT ARID NEW CITIES. JES Journal of Engineering Sciences, 2019, 47, 172-193. High-resolution air temperature mapping in urban areas: A review on different modelling techniques. Thermal Science, 2017, 21, 2267-2286. 326 Heat mitigation by greening the cities, a review study. Environment Earth and Ecology, 2017, 1, 5-32. 19 0.8 Thermal Comfort Characteristic of 5 Patterns of a Persian Garden in a Hot-Arid Climate of Shiraz, 327 Iran. Journal of Landscape Ecology(Czech Republic), 2019, 12, 1-33. Evaluation of different thermal conditions based on THI under different kind of tree types – as a 328 0.3 17 specific case in a Ata Botanic Garden in eastern Turkey. Global Nest Journal, 2013, 15, 131-139. The importance of thermal comfort in different elevation for city planning. Global Nest Journal, 2013, 329 15, 408-420.

			2
#	ARTICLE	IF	CITATIONS
330	Modelling Urban Thermal Comfort: Evaluating the Impact of the Urban Requalification Project of Praça Duque De Saldanha and Avenida Da República in Lisbon. , 2017, , .		3
331	Urban Sustainability and Climate Issues: The Effect of Physical Parameters of Streetscape on the Thermal Comfort in Urban Public Spaces; Case Study: Karimkhan-e-Zand Street, Shiraz, Iran. Sustainability, 2021, 13, 10886.	1.6	5
332	Thermal environment analysis of landscape parameters of an urban park in summer - A case study in Suwon, Republic of Korea. Urban Forestry and Urban Greening, 2021, 65, 127377.	2.3	13
333	Assessing the influence of street configurations on human thermal conditions in open balconies in the Mediterranean climate. Urban Climate, 2021, 40, 100975.	2.4	12
334	Towards a Unifying Visualization Modelling Platform for Supporting Climate Change Conscious Urban Neighbourhood Design. , 2011, , .		0
335	Effect of Galleries on Thermal Conditions of Urban Open Areas. Environment-Behaviour Proceedings Journal, 2016, 1, 215.	0.1	0
336	Prediction of visitors' thermal comfort in open urban areas. Materials Protection, 2018, 59, 495-500.	0.1	0
337	Urban Quality Assessment at the Neighborhood Scale. Advances in Civil and Industrial Engineering Book Series, 2019, , 188-220.	0.2	0
338	The Correlation Between Urban Morphology Parameters and Incident Solar Radiation Performance to Enhance Pedestrian Comfort, Case Study Jeddah, Saudi Arabia. Smart Innovation, Systems and Technologies, 2020, , 543-554.	0.5	0
339	Urban Thermal Radiant Environment and Heat Stress. Urban Book Series, 2020, , 139-161.	0.3	0
340	Urban Climates: Theories, Approaches, and Design Implications. Urban Book Series, 2020, , 25-46.	0.3	0
341	Design optimization of urban typologies: A framework for evaluating building energy performance and outdoor thermal comfort. Sustainable Cities and Society, 2022, 76, 103515.	5.1	22
342	Regulatory Ecosystem Services and Supporting Ecosystem Functions. , 2020, , 91-184.		0
343	Revisiting Urban Heat Island Effects in Coastal Regions: Mitigation Strategies for the Megacity of Istanbul. Advances in 21st Century Human Settlements, 2021, , 277-307.	0.3	2
344	Assessing the outdoor thermal comfort conditions of exercising people in the semi-arid region of India. Sustainable Cities and Society, 2022, 76, 103366.	5.1	22
345	Re-naturing Cities: Impact of Microclimate, Human Thermal Comfort and Recreational Participation. Climate Change Management, 2020, , 545-562.	0.6	6
348	Eddy3D: A toolkit for decoupled outdoor thermal comfort simulations in urban areas. Building and Environment, 2022, 212, 108639.	3.0	20
349	Effects of air temperature, humidity, and wind velocity distribution on indoor cooling load and outdoor human thermal environment at urban scale. Energy and Buildings, 2022, 257, 111792.	3.1	6

#	Article	IF	CITATIONS
350	URBAN FACADE GEOMETRY ON OUTDOOR COMFORT CONDITIONS: A REVIEW. Indonesian Journal of Urban and Environmental Technology, 0, , 45-59.	0.3	1
351	Thermal comfort improvement by applying parametric design panel as a second skin on the facade in building refurbishment in moderate climate. , 2021, , .		5
352	Exploring the Effects of Roadside Vegetation on the Urban Thermal Environment Using Street View Images. International Journal of Environmental Research and Public Health, 2022, 19, 1272.	1.2	4
353	A microscale three-dimensional model of urban outdoor thermal exposure (TUF-Pedestrian). International Journal of Biometeorology, 2022, 66, 833-848.	1.3	15
355	The potential impact of increased urbanization on land surface temperature over South-West Nigeria. Current Research in Environmental Sustainability, 2022, 4, 100142.	1.7	4
356	The Influence of Greenery and Landscape Design on Solar Radiation and UHI Mitigation: A Case Study of a Boulevard in a Hot Climate. World, 2022, 3, 175-205.	1.0	5
357	Comparison of Different Blue–Green Infrastructure Strategies in Mitigating Urban Heat Island Effects and Improving Thermal Comfort. , 2022, , .		0
358	Quantification of Outdoor Thermal Comfort Levels under Sea Breeze in the Historical City Fabric: The Case of Algiers Casbah. Atmosphere, 2022, 13, 575.	1.0	5
359	A risk index for assessing heat stress mitigation strategies. An application in the Mediterranean context. Journal of Cleaner Production, 2022, 346, 131210.	4.6	7
360	Comparing cooling efficiency of shading strategies for pedestrian thermal comfort in street canyons of traditional shophouse neighbourhoods in Guangzhou, China. Urban Climate, 2022, 43, 101165.	2.4	18
361	A Comparative Study of Cooling Performance and Thermal Comfort under Street Market Shades and Tree Canopies in Tropical Savanna Climate. Sustainability, 2022, 14, 4653.	1.6	1
362	Quantifying Interactive Cooling Effects of Morphological Parameters and Vegetation-Related Landscape Features during an Extreme Heat Event. Climate, 2022, 10, 60.	1.2	7
363	The Synergistic Effect of Urban Canyon Geometries and Greenery on Outdoor Thermal Comfort in Humid Subtropical Climates. Frontiers in Environmental Science, 2022, 10, .	1.5	11
364	Findings from a field study of urban microclimate in Korea using mobile meteorological measurements. Open House International, 2022, 47, 473-493.	0.6	4
365	Identification of Urban Respiratory Health Risk Distribution Patterns and Spatial Environmental Impact Factors. SSRN Electronic Journal, 0, , .	0.4	0
366	Effects of street orientation and tree species thermal comfort within urban canyons in a hot, dry climate. Ecological Informatics, 2022, 69, 101671.	2.3	27
367	Assessing the thermal environments of parking lots in relation to their shade design characteristics. Sustainable Cities and Society, 2022, 83, 103931.	5.1	2
368	Analysis of Thermal Environment Modification Effects of Street Trees Depending on Planting Types and Street Directions in Summertime Using ENVI-Met Simulation. Journal of the Korean Institute of Landscape Architecture, 2022, 50, 1-22.	0.1	3

#	Article	IF	CITATIONS
369	Analyzing the influence of urban morphological features on pedestrian thermal comfort. Urban Climate, 2022, 44, 101192.	2.4	14
370	The Use of Envi-Met for the Assessment of Nature-Based Solutions' Potential Benefits in Industrial Parks—A Case Study of Argales Industrial Park (Valladolid, Spain). Infrastructures, 2022, 7, 85.	1.4	12
371	Outdoor thermal comfort research in transient conditions: A narrative literature review. Landscape and Urban Planning, 2022, 226, 104496.	3.4	10
372	Effects of microclimatic factors on stomatal conductance of plants in vertical greenery systems in humid subtropical areas. Sustainable Cities and Society, 2022, 85, 104056.	5.1	7
373	Green Infrastructure and Urban-Renewal Simulation for Street Tree Design Decision-Making: Moderating Demands of Stormwater Management, Sunlight and Visual Aesthetics. International Journal of Environmental Research and Public Health, 2022, 19, 8220.	1.2	12
374	Correlation between cooling effect of green space and surrounding urban spatial form: Evidence from 36 urban green spaces. Building and Environment, 2022, 222, 109375.	3.0	28
375	The impact of street geometry on outdoor thermal comfort within three different urban forms in severe cold region of China. Building and Environment, 2022, 222, 109342.	3.0	18
376	A comparative review on the mitigation strategies of urban heat island (UHI): a pathway for sustainable urban development. Climate and Development, 2023, 15, 379-403.	2.2	8
377	The role of neighborhood morphology in enhancing thermal comfort and resident's satisfaction. Energy Reports, 2022, 8, 9046-9056.	2.5	12
378	Measuring Green Exposure Levels in Communities of Different Economic Levels at Different Completion Periods: Through the Lens of Social Equity. International Journal of Environmental Research and Public Health, 2022, 19, 9611.	1.2	8
379	The Influence of Plant Community Characteristics in Urban Parks on the Microclimate. Forests, 2022, 13, 1342.	0.9	13
380	Sustainable Urban Development for Heat Adaptation of Small and Medium Sized Communities. Land, 2022, 11, 1385.	1.2	1
381	Wind tunnel study on convective heat transfer performance of vegetation canopies with different structures. Building and Environment, 2022, 223, 109470.	3.0	3
382	Optimization of tree positioning to maximize walking in urban outdoor spaces: A modeling and simulation framework. Sustainable Cities and Society, 2022, 86, 104105.	5.1	6
383	The Influence of Urban Canyon Geometry on Land Surface Temperature: KurtuluÅŸ Neighborhood. Turkish Journal of Remote Sensing and GIS, 0, , .	0.0	0
384	Achieving Effective Thermal Performance of Street Canyons in Various Climatic Zones. Sustainability, 2022, 14, 10780.	1.6	6
385	Experimental study of urban microclimate on scaled street canyons with various aspect ratios. Urban Climate, 2022, 46, 101299.	2.4	31
386	Enhancing the Microclimate Toward Outdoor Thermal Comfort in Urban Isles of the Mediterranean Region. Innovative Renewable Energy, 2022, , 99-111.	0.2	0

#	Article	IF	CITATIONS
387	The effects of shading devices on outdoor thermal and visual comfort in Southern China during summer. Building and Environment, 2023, 228, 109743.	3.0	17
388	Model of Spectral and Directional Radiative Transfer in Complex Urban Canopies with Participating Atmospheres. Boundary-Layer Meteorology, 0, , .	1.2	2
389	Maximizing the pedestrian radiative cooling benefit per street tree. Landscape and Urban Planning, 2023, 230, 104608.	3.4	25
390	Summer Outdoor Thermal Perception for the Elderly in a Comprehensive Park of Changsha, China. Atmosphere, 2022, 13, 1853.	1.0	4
391	A review of the influence of courtyard geometry and orientation on microclimate. Building and Environment, 2023, 236, 110269.	3.0	5
392	Quantification of the Cooling Effect and Cooling Distance of Urban Green Spaces Based on Their Vegetation Structure and Size as a Basis for Management Tools for Mitigating Urban Climate. Sustainability, 2023, 15, 3705.	1.6	3
400	Overview on Urban Climate and Microclimate Modeling Tools and Their Role to Achieve the Sustainable Development Goals. Lecture Notes in Mechanical Engineering, 2024, , 247-267.	0.3	0
405	Quantitative Relations between the Physical Characteristics of Street Trees and Their Cooling Potential A Case Study of Kharagpur, West Bengal, India. , 2023, , .		0