Recent Advances in the Catalytic Asymmetric Nitroaldo

European Journal of Organic Chemistry 2007, 2561-2574 DOI: 10.1002/ejoc.200700021

Citation Report

#	Article	IF	CITATIONS
1	Recoverable PEG-Supported Copper Catalyst for Highly Stereocontrolled Nitroaldol Condensation. Organic Letters, 2007, 9, 2151-2153.	4.6	93
3	How to Make Five Contiguous Stereocenters in One Reaction: Asymmetric Organocatalytic Synthesis of Pentasubstituted Cyclohexanes. Angewandte Chemie - International Edition, 2007, 46, 9202-9205.	13.8	134
5	Density Functional Theory Study of the <i>Cinchona</i> Thiourea―Catalyzed Henry Reaction: Mechanism and Enantioselectivity. Advanced Synthesis and Catalysis, 2007, 349, 2537-2548.	4.3	99
6	Development of axially chiral bis(arylthiourea)-based organocatalysts and their application in the enantioselective Henry reaction. Tetrahedron: Asymmetry, 2007, 18, 2773-2781.	1.8	51
7	Enantioselective Henry reaction catalyzed by a C2-symmetric bis(oxazoline)–Cu(OAc)2·H2O complex. Organic and Biomolecular Chemistry, 2007, 5, 3932.	2.8	79
8	Practical Asymmetric Henry Reaction Catalyzed by a Chiral Diamine-Cu(OAc) ₂ Complex. Organic Letters, 2007, 9, 3595-3597.	4.6	182
9	Development of new chiral phosphine-salen type ligands and their application in the Cu(I)-catalyzed enantioselective Henry reaction. Tetrahedron: Asymmetry, 2007, 18, 1376-1382.	1.8	64
10	Asymmetric nitroaldol reaction catalyzed by a chromium(III)–salen system. Tetrahedron: Asymmetry, 2007, 18, 2581-2586.	1.8	81
11	2-Quinolinecarboxaldehyde: an unusual partner in the Henry reaction and subsequent elimination. Tetrahedron Letters, 2008, 49, 5511-5514.	1.4	12
12	Dual-reagent organocatalysis with a phosphine and electron-deficient alkene: application to the Henry reaction. Tetrahedron Letters, 2008, 49, 6442-6444.	1.4	31
13	New Highly Asymmetric Henry Reaction Catalyzed by Cu ^{II} and a <i>C</i> ₁ ‣ymmetric Aminopyridine Ligand, and Its Application to the Synthesis of Miconazole. Chemistry - A European Journal, 2008, 14, 4725-4730.	3.3	177
14	A Secondary Amine Amide Organocatalyst for the Asymmetric Nitroaldol Reaction of αâ€Ketophosphonates. Chemistry - A European Journal, 2008, 14, 10896-10899.	3.3	55
15	Oneâ€Pot Synthesis of Trisubstituted 1,2â€Amino Alcohols from Deprotonated αâ€Amino Nitriles. European Journal of Organic Chemistry, 2008, 2008, 2740-2745.	2.4	8
16	Asymmetric Henry Reactions Catalyzed by Metal Complexes of Chiral Boronâ€Bridged Bisoxazoline (borabox) Ligands. European Journal of Organic Chemistry, 2008, 2008, 4591-4597.	2.4	40
17	A Heterobimetallic Pd/La/Schiff Base Complex for <i>anti</i> â€Selective Catalytic Asymmetric Nitroaldol Reactions and Applications to Short Syntheses of βâ€Adrenoceptor Agonists. Angewandte Chemie - International Edition, 2008, 47, 3230-3233.	13.8	186
19	Chiral binuclear copper(II) catalyzed nitroaldol reaction: scope and mechanism. Tetrahedron, 2008, 64, 11724-11731.	1.9	37
20	Enantioselective nitroaldol (Henry) reaction catalyzed by chiral Schiff-base ligands. Tetrahedron: Asymmetry, 2008, 19, 635-639.	1.8	30
21	Asymmetric Henry reaction catalyzed by a copper tridentate chiral schiff-base complex. Tetrahedron: Asymmetry, 2008, 19, 1813-1819.	1.8	70

#	Article	IF	CITATIONS
22	Asymmetric Henry reaction catalyzed by chiral secondary diamine-copper(II) complexes. Tetrahedron: Asymmetry, 2008, 19, 2310-2315.	1.8	65
23	A catalytic asymmetric anti-selective nitroaldol reaction with a neodymium–sodium heterobimetallic complex. Tetrahedron Letters, 2008, 49, 272-276.	1.4	88
24	Asymmetric organocatalytic nitroaldol reaction of α-ketoesters: stereoselective construction of chiral tertiary alcohols at subzero temperature. Tetrahedron Letters, 2008, 49, 1623-1626.	1.4	70
25	Enantioselective Henry reaction catalyzed by trianglamine–Cu(OAc)2 complex under solvent-free conditions. Tetrahedron Letters, 2008, 49, 2533-2536.	1.4	45
26	Asymmetric <i>Syn</i> -Selective Henry Reaction Catalyzed by the Sulfonyldiamineâ^'CuClâ^'Pyridine System. Journal of Organic Chemistry, 2008, 73, 4903-4906.	3.2	119
27	Self-Assembled Dinuclear Cobalt(II)-Salen Catalyst Through Hydrogen-Bonding and Its Application to Enantioselective Nitro-Aldol (Henry) Reaction. Journal of the American Chemical Society, 2008, 130, 16484-16485.	13.7	175
28	Enantioselective organocatalyzed Henry reaction with fluoromethyl ketones. Chemical Communications, 2008, , 4360.	4.1	107
29	Stereodivergent Catalytic Doubly Diastereoselective Nitroaldol Reactions Using Heterobimetallic Complexes. Organic Letters, 2008, 10, 2231-2234.	4.6	71
30	A Highly Diastereo- and Enantioselective Synthesis of Multisubstituted Cyclopentanes with Four Chiral Carbons by the Organocatalytic Domino Michaelâ^'Henry Reaction. Organic Letters, 2008, 10, 3489-3492.	4.6	112
31	Enantioselective addition of nitromethane to α-keto esters catalyzed by copper(<scp>ii</scp>)–iminopyridine complexes. Organic and Biomolecular Chemistry, 2008, 6, 468-476.	2.8	48
32	A catalytic highly enantioselective direct synthesis of 2-bromo-2-nitroalkan-1-ols through a Henry reaction. Chemical Communications, 2008, , 4840.	4.1	52
33	Stereoselective NaN3-catalyzed halonitroaldol-type reaction of azetidine-2,3-diones in aqueous media. Organic and Biomolecular Chemistry, 2008, 6, 1635.	2.8	28
34	Asymmetric Nitroaldol Reaction Catalyzed by a C ₂ -Symmetric Bisoxazolidine Ligand. Organic Letters, 2008, 10, 1831-1834.	4.6	121
35	Organocatalytic Asymmetric Tandem Michaelâ	4.6	153
36	Catalytic Asymmetric Nitroaldol (Henry) Reaction with a Zinc-Fam Catalyst. Journal of Organic Chemistry, 2008, 73, 7373-7375.	3.2	114
37	Catalytic Asymmetric Synthesis of (-)-Ritodrine Hydrochloride via Silyl Enol Ether Amination Using Dirhodium(II) Tetrakis[tetrafluorophthaloyl-(S)-tert-leucinate]. Heterocycles, 2008, 76, 1633.	0.7	7
38	Versatile Supramolecular Copper(II) Complexes for Henry and Azaâ€Henry Reactions. Advanced Synthesis and Catalysis, 2009, 351, 1255-1262.	4.3	84
39	New adaptive chiral thiophene ligands for copper atalyzed asymmetric Henry reaction. Chirality, 2009, 21, 239-244.	2.6	16

	CITATION REF	PORT	
# 40	ARTICLE Asymmetric Henry reaction catalyzed by bifunctional copperâ€based catalysts. Chirality, 2009, 21, 619-627.	IF 2.6	CITATIONS 26
41	Lanthanide (III) salt complexes: Arrayed acidâ€base networks for enantioselective catalysis. The nitroaldol reaction upon aldehydes and trifluoromethylketones. Chirality, 2009, 21, 836-842.	2.6	25
42	Chiral 2â€ <i>endo</i> â€Substituted 9â€Oxabispidines: Novel Ligands for Enantioselective Copper(II) atalyzed Henry Reactions. Chemistry - A European Journal, 2009, 15, 12764-12769.	3.3	57
43	Synthesis, Structure and Catalysis of Tetranuclear Copper(II) Open Cubane for Henry Reaction on Water. European Journal of Inorganic Chemistry, 2009, 2009, 2508-2511.	2.0	32
44	DFT study of the asymmetric nitroaldol (Henry) reaction catalyzed by a dinuclear Zn complex. Journal of Computational Chemistry, 2010, 31, 1376-1384.	3.3	17
45	New chiral thiols and C2-symmetrical disulfides of Cinchona alkaloids: ligands for the asymmetric Henry reaction catalyzed by Cull complexes. Tetrahedron: Asymmetry, 2009, 20, 1992-1998.	1.8	20
46	Highly enantioselective Henry reaction catalyzed by a new chiral C2-symmetric N,N′-bis(isobornyl)ethylenediamine–copper complex. Tetrahedron: Asymmetry, 2009, 20, 1842-1847.	1.8	44
47	Asymmetric Henry reaction catalyzed by oxazolinyl Cu(II) complexes. Research on Chemical Intermediates, 2009, 35, 123-136.	2.7	5
48	Vinylogous nitroaldol (Henry) reaction using 3,5-diethyl-4-nitroisoxazole and carbonyl compounds. Tetrahedron, 2009, 65, 990-997.	1.9	16
49	Highly enantioselective Henry reaction catalyzed by chiral tridentate heteroorganic ligands. Tetrahedron: Asymmetry, 2009, 20, 1547-1549.	1.8	34
50	Asymmetric nitroaldol reaction catalyzed by copper–diamine complexes: selective construction of two contiguous stereogenic centers. Tetrahedron: Asymmetry, 2009, 20, 2467-2473.	1.8	36
51	Probing electronic and regioisomeric control in an asymmetric Henry reaction catalyzed by camphor-imidazoline ligands. Tetrahedron Letters, 2009, 50, 3042-3045.	1.4	21
52	Enantioselective Henry (nitroaldol) reaction catalyzed by axially chiral guanidines. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3895-3898.	2.2	69
53	Mixed La–Li heterobimetallic complexes for tertiary nitroaldol resolution. Tetrahedron, 2009, 65, 5030-5036.	1.9	34
54	In search of enantioselective catalysts for the Henry reaction: are two metal centres better than one?. New Journal of Chemistry, 2009, 33, 1064.	2.8	58
55	Synthesis, Structure, and Application of Selfâ€Assembled Copper(II) Aqua Complex by Hâ€Bonding for Acceleration of the Nitroaldol Reaction on Water. Chemistry - an Asian Journal, 2009, 4, 314-320. 	3.3	45
56	Chiral Guanidine Catalyzed Enantioselective Reactions. Chemistry - an Asian Journal, 2009, 4, 488-507.	3.3	268
57	Enantioselective Nitroaldol Reaction Catalyzed by Sterically Modified Salenâ^'Chromium Complexes. Journal of Organic Chemistry, 2009, 74, 753-756.	3.2	94

#	Article	IF	CITATIONS
58	Asymmetric Copper(I)-Catalyzed Henry Reaction with an Aminoindanol-Derived Bisoxazolidine Ligand. Organic Letters, 2009, 11, 4724-4727.	4.6	117
59	Brucine-Derived Amino Alcohol Catalyzed Asymmetric Henry Reaction: An Orthogonal Enantioselectivity Approach. Organic Letters, 2009, 11, 5682-5685.	4.6	99
60	Asymmetric organocatalysis by chiral BrÃ,nsted bases: implications and applications. Chemical Society Reviews, 2009, 38, 632-653.	38.1	378
61	New Chiral Thiopheneâ^'Salen Chromium Complexes for the Asymmetric Henry Reaction. Journal of Organic Chemistry, 2009, 74, 2242-2245.	3.2	88
63	Highly enantioselective organocatalytic Michael addition of nitroalkanes to 4-oxo-enoates. Chemical Communications, 2009, , 4251.	4.1	64
64	<i>anti</i> -Selective Catalytic Asymmetric Nitroaldol Reaction via a Heterobimetallic Heterogeneous Catalyst. Journal of the American Chemical Society, 2009, 131, 13860-13869.	13.7	141
65	Enantioselective catalysts for the Henry reaction: fine-tuning the catalytic components. New Journal of Chemistry, 2009, 33, 2166.	2.8	40
66	α,α-Diarylprolinols: bifunctional organocatalysts for asymmetric synthesis. Chemical Communications, 2009, , 1452.	4.1	145
67	Enantioselective Aldehyde α-Nitroalkylation via Oxidative Organocatalysis. Journal of the American Chemical Society, 2009, 131, 11332-11334.	13.7	117
68	Diastereo- and Enantioselective Direct Henry Reaction of Pyruvates Mediated by Chiral P-Spiro Tetraaminophosphonium Salts. Chemistry Letters, 2009, 38, 1052-1053.	1.3	28
69	Synthesis of new planar chiral [2.2]paracyclophane Schiff base ligands and their application in the asymmetric Henry reaction. Tetrahedron: Asymmetry, 2010, 21, 333-338.	1.8	48
70	Chiral Cu(II) Complexes as Recyclable Catalysts for Asymmetric Nitroaldol (Henry) Reaction in Ionic Liquids as Greener Reaction Media. Catalysis Letters, 2010, 140, 189-196.	2.6	27
71	Enzyme-catalyzed Henry (nitroaldol) reaction. Journal of Molecular Catalysis B: Enzymatic, 2010, 63, 62-67.	1.8	62
72	A Highly Diastereoselective Tertiary Amine atalyzed Cascade Michael–Michael–Henry Reaction between Nitromethane, Activated Alkenes and α,βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis, 2010, 352, 97-102.	4.3	23
73	A Highly <i>syn</i> â€Selective Nitroaldol Reaction Catalyzed by Cu ^{II} –Bisimidazoline. Chemistry - A European Journal, 2010, 16, 6761-6765.	3.3	71
74	A Highly Effective Bis(sulfonamide)–Diamine Ligand: A Unique Chiral Skeleton for the Enantioselective Cuâ€Catalyzed Henry Reaction. Chemistry - A European Journal, 2010, 16, 8259-8261.	3.3	71
75	Organocatalytic Asymmetric Cyanosilylation of Nitroalkenes. Chemistry - A European Journal, 2010, 16, 7714-7718.	3.3	97
76	Catalytic Asymmetric Direct Henry Reaction of Ynals: Short Syntheses of (2 <i>S</i> ,3 <i>R</i>)â€(+)â€Xestoaminolâ€C and (â^')â€Codonopsinines. Angewandte Chemie, 2010, 122, 77	24-7727.	33

#	Article	IF	CITATIONS
77	Catalytic Asymmetric Direct Henry Reaction of Ynals: Short Syntheses of (2 <i>S</i> ,3 <i>R</i>)â€(+)â€Xestoaminolâ€C and (â^) odonopsinines. Angewandte Chemie - International Edition, 2010, 49, 7562-7565.	13.8	110
78	Hydrolase-catalyzed fast Henry reaction of nitroalkanes and aldehydes in organic media. Journal of Biotechnology, 2010, 145, 240-243.	3.8	55
79	Nitrolaldol reaction of (R)-2,3-cyclohexylideneglyceraldehyde: a simple and stereoselective synthesis of the cytotoxic Pachastrissamine (Jaspine B). Tetrahedron: Asymmetry, 2010, 21, 1983-1987.	1.8	22
80	Cyclen-catalyzed Henry reaction under neutral conditions. Tetrahedron Letters, 2010, 51, 4555-4557.	1.4	15
81	Enantioselective henry reactions catalyzed by chiral N-metal complexes containing R(+)/S(â^')-α-ethylphenyl amines. Tetrahedron Letters, 2010, 51, 5577-5580.	1.4	16
82	Umpolung reactivity in amide and peptide synthesis. Nature, 2010, 465, 1027-1032.	27.8	271
83	Development of P-Spiro Chiral Aminophosphonium Salts as a New Class of Versatile Organic Molecular Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1185-1194.	0.1	42
84	Organocatalytic asymmetric assembly reactions for the syntheses of carbohydrate derivatives by intermolecular Michael-Henry reactions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20672-20677.	7.1	79
85	Enantioselective Henry Reaction Catalyzed by Cu ^{II} Salt and Bipiperidine. Journal of Organic Chemistry, 2010, 75, 1313-1316.	3.2	121
86	Development of Bifunctional Aza-Bis(oxazoline) Copper Catalysts for Enantioselective Henry Reaction. Journal of Organic Chemistry, 2010, 75, 6424-6435.	3.2	77
87	Formation of multi-stereogenic centers using a catalytic diastereoselective Henry reaction. Chemical Communications, 2010, 46, 7936.	4.1	29
88	Catalytic Carbonâ~'Carbon Bond-Forming Reactions of Aminoalkane Derivatives with Imines. Journal of the American Chemical Society, 2010, 132, 3244-3245.	13.7	49
89	Chiral BINOL-derived phosphoric acids: privileged BrÃ,nsted acid organocatalysts for C–C bond formation reactions. Organic and Biomolecular Chemistry, 2010, 8, 5262-76.	2.8	322
90	Facile Domino Access to Chiral Bicyclo[3.2.1]octanes and Discovery of a New Catalytic Activation Mode. Organic Letters, 2010, 12, 2682-2685.	4.6	123
91	Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(ii) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction. Organic and Biomolecular Chemistry, 2010, 8, 2956.	2.8	45
92	Helical Chiral 2-Aminopyridinium Ions: A New Class of Hydrogen Bond Donor Catalysts. Journal of the American Chemical Society, 2010, 132, 4536-4537.	13.7	184
93	Synthesis of Amino-Functionalized Sulfonimidamides and Their Application in the Enantioselective Henry Reaction. Journal of Organic Chemistry, 2010, 75, 3301-3310.	3.2	106
94	Stereoselective synthesis of ring C-hexasubstituted trianglamines. Organic and Biomolecular Chemistry, 2010, 8, 3992.	2.8	17

#	Article	IF	CITATIONS
95	Synthesis of chiral tertiary trifluoromethyl alcohols by asymmetric nitroaldol reaction with a Cu(ii)-bisoxazolidine catalyst. Chemical Communications, 2010, 46, 8026.	4.1	48
96	Enantioselective Henry Addition of Methyl 4-Nitrobutyrate to Aldehydes. Chiral Building Blocks for 2-Pyrrolidinones and Other Derivatives. Organic Letters, 2010, 12, 3058-3061.	4.6	63
97	Asymmetric catalysis with chiral oxazolidine ligands. Chemical Communications, 2011, 47, 3339.	4.1	80
98	Enzymatic synthesis of optical pure β-nitroalcohols by combining d-aminoacylase-catalyzed nitroaldol reaction and immobilized lipase PS-catalyzed kinetic resolution. Green Chemistry, 2011, 13, 2359.	9.0	39
99	In Situ Evaluation of Kinetic Resolution Catalysts for Nitroaldol by Rationally Designed Fluorescence Probe. Journal of Organic Chemistry, 2011, 76, 3616-3625.	3.2	18
100	Highly Enantioselective and Regioselective Substitution of Morita–Baylis–Hillman Carbonates with Nitroalkanes. Organic Letters, 2011, 13, 6070-6073.	4.6	42
101	Cu(II)-Macrocylic [H ₄]Salen Catalyzed Asymmetric Nitroaldol Reaction and Its Application in the Synthesis of α1-Adrenergic Receptor Agonist (<i>R</i>)-Phenylephrine. ACS Catalysis, 2011, 1, 1529-1535.	11.2	67
102	Organocatalytic asymmetric Henry reaction of isatins: Highly enantioselective synthesis of 3-hydroxy-2-oxindoles. RSC Advances, 2011, 1, 389.	3.6	50
103	Asymmetric Synthesis of an Antagonist of Neurokinin Receptors: SSR 241586. Journal of Organic Chemistry, 2011, 76, 2594-2602.	3.2	31
104	Hydroxyl Group Rich C ₆₀ Fullerenol: An Excellent Hydrogen Bond Catalyst with Superb Activity, Selectivity, and Stability. ACS Catalysis, 2011, 1, 1158-1161.	11.2	32
105	Copper(II)-Catalyzed Asymmetric Henry Reaction of <i>o</i> -Alkynylbenzaldehydes Followed by Gold(I)-Mediated Cycloisomerization: An Enantioselective Route to Chiral 1 <i>H</i> -Isochromenes and 1,3-Dihydroisobenzofurans. Journal of Organic Chemistry, 2011, 76, 8869-8878.	3.2	41
106	Protein-Mediated Nitroaldol Addition in Aqueous Media. Catalytic Promiscuity or Unspecific Catalysis?. Organic Process Research and Development, 2011, 15, 236-240.	2.7	52
107	Organocatalytic Sequential Michael Reactions: Stereoselective Synthesis of Multifunctionalized Tetrahydroindan Derivatives. Organic Letters, 2011, 13, 936-939.	4.6	45
108	Multimetallic Multifunctional Catalysts for Asymmetric Reactions. Topics in Organometallic Chemistry, 2011, , 1-30.	0.7	40
109	Pyrrole Macrocyclic Ligands for Cu-Catalyzed Asymmetric Henry Reactions. Journal of Organic Chemistry, 2011, 76, 3399-3408.	3.2	46
110	The Literature of Heterocyclic Chemistry, Part X, 2005–2007. Advances in Heterocyclic Chemistry, 2011, , 1-137.	1.7	19
113	Development of Atom-Economical Catalytic Asymmetric Reactions under Proton Transfer Conditions: Construction of Tetrasubstituted Stereogenic Centers and Their Application to Therapeutics. Chemical and Pharmaceutical Bulletin, 2011, 59, 1-22.	1.3	24
114	Novel Schiff base ligands derived from Cinchona alkaloids for Cu(II)-catalyzed asymmetric Henry reaction. Tetrahedron, 2011, 67, 8552-8558.	1.9	45

#	Article	IF	CITATIONS
115	Isoquinoline-based diimine ligands for Cu(II)-catalyzed enantioselective nitroaldol (Henry) reactions. Tetrahedron: Asymmetry, 2011, 22, 1097-1102.	1.8	13
116	Enantioselective Henry reaction catalyzed by a copper(II) glucoBOX complex. Tetrahedron: Asymmetry, 2011, 22, 1169-1175.	1.8	30
117	Asymmetric Henry reaction catalyzed by a Zn–amino alcohol system. Tetrahedron: Asymmetry, 2011, 22, 1156-1160.	1.8	29
118	Application of novel enantiopure hydroxymethyl-substituted pyridine derivatives in asymmetric catalysis. Tetrahedron: Asymmetry, 2011, 22, 1644-1652.	1.8	10
119	Catalytic anti-selective asymmetric Henry (nitroaldol) reaction catalyzed by Cu(I)–amine–imine complexes. Tetrahedron: Asymmetry, 2011, 22, 2065-2070.	1.8	18
120	Synthesis, crystal structure, and catalytic studies on dinuclear copper(II) mesocates. Inorganica Chimica Acta, 2011, 375, 106-113.	2.4	8
121	Quantification of the Electrophilic Reactivities of Aldehydes, Imines, and Enones. Journal of the American Chemical Society, 2011, 133, 8240-8251.	13.7	107
123	When is an imine not an imine? Unusual reactivity of a series of Cu(ii) imine-pyridine complexes and their exploitation for the Henry reaction. Dalton Transactions, 2011, 40, 3677.	3.3	34
124	Synthesis of <i>C</i> ₁ -Symmetric Chiral Secondary Diamines and Their Applications in the Asymmetric Copper(II)-Catalyzed Henry (Nitroaldol) Reactions. Journal of Organic Chemistry, 2011, 76, 588-600.	3.2	124
125	A Highly Diastereo- and Enantioselective Copper(I)-Catalyzed Henry Reaction Using a Bis(sulfonamide)â^'Diamine Ligand. Journal of Organic Chemistry, 2011, 76, 484-491.	3.2	124
126	Synthesis and Characterization of Silica–Polymer Nanocomposites Functionalized with Piperazine for the Synthesis of β-Nitro Alcohols. Catalysis Letters, 2011, 141, 1548-1556.	2.6	12
127	Recent applications of Cinchona alkaloids and their derivatives as catalysts inÂmetal-free asymmetric synthesis. Tetrahedron, 2011, 67, 1725-1762.	1.9	185
128	1,1′-Methylene-bis(1,1′,2,2′,3,3′,4,4′-octahydroisoquinoline): synthesis, reaction, resolution, and ap in catalytic enantioselective transformations. Tetrahedron, 2011, 67, 4086-4092.	oplication	19
129	Chiral 1,1′-binaphthylazepine derived amino alcohol catalyzed asymmetric Henry reaction. Tetrahedron: Asymmetry, 2011, 22, 238-245.	1.8	37
130	Phenalenyl-based ligand for transition metal chemistry: Application in Henry reaction. Journal of Chemical Sciences, 2011, 123, 139-144.	1.5	10
131	Chargeâ€Transfer Interactions: An Efficient Tool for Recycling Bis(oxazoline)â€Copper Complexes in Asymmetric Henry Reactions. Advanced Synthesis and Catalysis, 2011, 353, 1087-1095.	4.3	28
132	Use of Protease from <i>Bacillus licheniformis</i> as Promiscuous Catalyst for Organic Synthesis: Applications in CC and CN Bond Formation Reactions. Advanced Synthesis and Catalysis, 2011, 353, 2345-2353.	4.3	50
133	Highly Enantioselective Henry Reaction Catalyzed by <i>C</i> ₂ ‣ymmetric Modular BINOLâ€Oxazoline Schiff Base Copper(II) Complexes Generated in Situ. European Journal of Organic Chemistry, 2011, 2011, 1552-1556.	2.4	29

#	Article	IF	CITATIONS
134	Efficient Asymmetric Copper(I)-Catalyzed Henry Reaction Using Chiral N-Alkyl-C1-tetrahydro-1,1′-bisisoquinolines. European Journal of Organic Chemistry, 2011, 2011, n/a-n/a.	2.4	6
135	Heterogeneous Bisoxazoline/Copper Complex: A Green Catalyst for the Enantioselective Reaction of Nitromethane with Substituted Benzaldehydes. European Journal of Organic Chemistry, 2011, 2011, 5551-5554.	2.4	23
136	Asymmetric Nitroaldol Reactions of Nitroalkanes with Isatins Catalyzed by Bifunctional Cinchona Alkaloid Derivatives. European Journal of Organic Chemistry, 2011, 2011, 5237-5241.	2.4	21
137	Asymmetric Copper(II)â€Catalysed Nitroaldol (Henry) Reactions Utilizing a Chiral <i>C</i> ₁ â€Symmetric Dinitrogen Ligand. European Journal of Organic Chemistry, 2011, 2011, 6092-6099.	2.4	38
139	Recent Advances in Direct Catalytic Asymmetric Transformations under Protonâ€Transfer Conditions. Angewandte Chemie - International Edition, 2011, 50, 4760-4772.	13.8	165
140	Henry reaction catalyzed by copper(I) complexes of a new pyridineâ€containing macrocyclic ligand. Applied Organometallic Chemistry, 2011, 25, 824-829.	3.5	21
141	The Construction of Quaternary Stereocenters by the Henry Reaction: Circumventing the Usual Reactivity of Substituted Glyoxals. Chemistry - A European Journal, 2011, 17, 3768-3773.	3.3	30
142	Highly Enantioselective Henry Reactions in Water Catalyzed by a Copper Tertiary Amine Complex and Applied in the Synthesis of (<i>S</i>)â€ <i>N</i> â€ <i>trans</i> â€Feruloyl Octopamine. Chemistry - A European Journal, 2011, 17, 1114-1117.	3.3	89
143	Squaramides: Bridging from Molecular Recognition to Bifunctional Organocatalysis. Chemistry - A European Journal, 2011, 17, 6890-6899.	3.3	641
144	Catalytic Enantioselective Henry Reactions of Isatins: Application in the Concise Synthesis of (<i>S</i>)â€(â~))â€Spirobrassinin. Chemistry - A European Journal, 2011, 17, 7791-7795.	3.3	99
145	Synthesis of Chiral 1,3â€Diamines Derived from <i>cis</i> â€2â€Benzamidocyclohexanecarboxylic Acid and Their Application in the Cuâ€Catalyzed Enantioselective Henry Reaction. Chemistry - A European Journal, 2011, 17, 13584-13592.	3.3	54
146	Solventâ€free synthesis of chiral Schiffâ€base ligands based on ferrocene under microwave irradiation and application to enantioselective nitroaldol (Henry) reaction. Chirality, 2011, 23, 374-378.	2.6	6
147	Nanocrystalline MgO catalysts for the Henry reaction of benzaldehyde and nitromethane. Journal of Molecular Catalysis A, 2011, 341, 22-27.	4.8	9
148	Synthesis of (R)-β-nitro alcohols catalyzed by R-selective hydroxynitrile lyase from Arabidopsis thaliana in the aqueous–organic biphasic system. Journal of Biotechnology, 2011, 153, 153-159.	3.8	54
149	New 2-azanorbornyl derivatives: chiral (N,N)-donating ligands for asymmetric catalysis. Tetrahedron: Asymmetry, 2011, 22, 161-166.	1.8	7
150	Chiral enhancement in the confined space of zeolites for the asymmetric synthesis of β-hydroxy nitroalkanes. Tetrahedron: Asymmetry, 2011, 22, 117-123.	1.8	12
151	Enantioselective Henry reaction catalyzed by copper(II)—Cinchona alkaloid complexes. Tetrahedron: Asymmetry, 2011, 22, 351-355.	1.8	15
152	Asymmetric Henry reaction catalyzed by a chiral Cu(II) complex: a facile enantioselective synthesis of (S)-2-nitro-1-arylethanols. Tetrahedron: Asymmetry, 2011, 22, 530-535.	1.8	32

#		IE	CITATIONS
153	Asymmetric Henry reaction of aldehydes catalyzed by recyclable an MCM-41 supported copper(II) salen complex. Tetrahedron: Asymmetry, 2011, 22, 857-865.	1.8	32
154	Enantioselective nitroaldol reaction catalyzed by chiral C1-tetrahydro-1,1′-bisisoquinoline–copper(I) complexes. Tetrahedron: Asymmetry, 2011, 22, 929-935.	1.8	17
155	The first example of trimethylsilyl methylenenitronate reacting with aldehydes under an apparent Mukaiyama nitro-aldol reaction. Tetrahedron Letters, 2011, 52, 891-893.	1.4	9
156	Organocatalytic Enantioselective Henry Reactions. Symmetry, 2011, 3, 220-245.	2.2	116
157	6.6 Henry and aza-Henry Reactions. , 2012, , 157-193.		3
158	4.12 Direct C–C Bond Formation (Henry, aza-Henry). , 2012, , 214-242.		0
159	Design of chiral sulfoxide–Schiff base hybrids and their application in Cu-catalyzed asymmetric Henry reactions. Chemical Communications, 2012, 48, 5596.	4.1	47
162	Bis(oxazoline)-Based Coordination Polymers: A Recoverable System for Enantioselective Henry Reactions. Journal of Organic Chemistry, 2012, 77, 5525-5532.	3.2	33
163	Synthesis of planar chiral [2.2]paracyclophane Schiff bases for the enantioselective Henry reaction. Tetrahedron: Asymmetry, 2012, 23, 809-817.	1.8	21
164	Design of zeolite catalysts for nitroaldol reaction under mild condition. Applied Catalysis A: General, 2012, 433-434, 122-127.	4.3	15
165	Recyclable Cu(II)-macrocyclic salen complexes catalyzed nitroaldol reaction of aldehydes: A practical strategy in the preparation of (R)-phenylephrine. Applied Catalysis A: General, 2012, 439-440, 74-79.	4.3	27
166	Intermediate as Catalyst: Catalytic Asymmetric Conjugate Addition of Nitroalkanes to α,β-Unsaturated Thioamides. Organic Letters, 2012, 14, 110-113.	4.6	35
167	Copper Complex of Aminoisoborneol Schiff Base Cu 2 (SBAIBâ€d) 2 : An Efficient Catalyst for Direct Catalytic Asymmetric Nitroaldol (Henry) Reaction. Advanced Synthesis and Catalysis, 2012, 354, 2511-2520.	4.3	65
168	A Highly <i>anti</i> â€Selective Asymmetric Henry Reaction Catalyzed by a Chiral Copper Complex: Applications to the Syntheses of (+)â€Spisulosine and a Pyrroloisoquinoline Derivative. Chemistry - A European Journal, 2012, 18, 12357-12362.	3.3	94
170	Promotion of Henry reactions using Cu(OTf)2 and a sterically hindered Schiff base: access to enantioenriched Î ² -hydroxynitroalkanes. Tetrahedron, 2012, 68, 9119-9124.	1.9	45
171	Camphor-annelated imidazolines with various N1 and C2 pendants as tunable ligands for nitroaldol reactions. Tetrahedron: Asymmetry, 2012, 23, 1010-1018.	1.8	11
172	Recent Developments in Enantioselective Metal atalyzed Domino Reactions. Advanced Synthesis and Catalysis, 2012, 354, 3347-3403.	4.3	176
173	Molecular Design of Organic Superbases, Azacalix[3](2,6)pyridines: Catalysts for 1,2- and 1,4-Additions. Journal of Organic Chemistry, 2012, 77, 10631-10637.	3.2	22

#	Article	IF	CITATIONS
174	Diastereoselective Reductive Nitro-Mannich Reactions. Journal of Organic Chemistry, 2012, 77, 4711-4724.	3.2	20
175	Dynamic asymmetric organocatalysis: cooperative effects of weak interactions and conformational flexibility in asymmetric organocatalysts. Chemical Communications, 2012, 48, 7777.	4.1	79
176	Biocatalytic Approaches to the Henry (Nitroaldol) Reaction. European Journal of Organic Chemistry, 2012, 2012, 3059-3067.	2.4	100
177	Cooperative Asymmetric Catalysis Using Thioamides toward Truly Practical Organic Syntheses. Israel Journal of Chemistry, 2012, 52, 604-612.	2.3	19
181	Rationally Designed Amide Donors for Organocatalytic Asymmetric Michael Reactions. Angewandte Chemie - International Edition, 2012, 51, 5381-5385.	13.8	56
182	A Chiral Cuâ€Salan Catalyst with a Rotatable Aromatic Ï€â€Wall: Molecular Recognitionâ€Oriented Asymmetric Henry Transformation of Aromatic Aldehydes. Chemistry - an Asian Journal, 2012, 7, 2008-2013.	3.3	28
183	Highly Enantioselective Henry Reactions of Aromatic Aldehydes Catalyzed by an Amino Alcohol–Copper(II) Complex. Chemistry - A European Journal, 2012, 18, 10515-10518.	3.3	40
184	Domino reactions for the synthesis of various α-substituted nitro alkenes. Organic and Biomolecular Chemistry, 2012, 10, 524-528.	2.8	22
185	Aromatic hydroxyl group—a hydrogen bonding activator in bifunctional asymmetric organocatalysis. RSC Advances, 2012, 2, 737-758.	3.6	72
186	Recyclable copper catalysts based on ionic-tagged C2-symmetric Indabox ligands and their application in asymmetric Henry reactions. Applied Catalysis A: General, 2012, 425-426, 28-34.	4.3	15
187	Studies on the Michael addition of naphthoquinones to sugar nitro olefins: first synthesis of polyhydroxylated hexahydro-11H-benzo[a]carbazole-5,6-diones and hexahydro-11bH-benzo[b]carbazole-6,11-diones. Tetrahedron, 2012, 68, 1612-1621.	1.9	15
188	A highly chemo- and enantioselective nitroaldol reaction of haloenals: preparation of chiral functionalized allylic alcohols. Tetrahedron: Asymmetry, 2012, 23, 124-129.	1.8	17
189	Toward reactant encapsulation for substrate-selectivity. Tetrahedron Letters, 2012, 53, 462-466.	1.4	5
190	Henry reaction of fluorinated nitro compounds. Journal of Fluorine Chemistry, 2012, 133, 108-114.	1.7	16
191	Recent Developments in Asymmetric Organocatalytic Domino Reactions. Advanced Synthesis and Catalysis, 2012, 354, 237-294.	4.3	540
192	Urea/Transitionâ€Metal Cooperative Catalyst for <i>anti</i> â€5elective Asymmetric Nitroaldol Reactions. Angewandte Chemie - International Edition, 2012, 51, 1620-1624.	13.8	108
193	Catalytic Asymmetric <i>anti</i> â€Selective Nitroaldol Reaction En Route to Zanamivir. Angewandte Chemie - International Edition, 2012, 51, 1644-1647.	13.8	54
194	Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation. Biotechnology Letters, 2012, 34, 153-158.	2.2	11

ARTICLE IF CITATIONS Catalyst functional group cooperativity in the amino acid-catalysed nitroaldol condensation 195 2.7 4 reaction. Research on Chemical Intermediates, 2013, 39, 3407-3415. 2-Dihydromethylpiperazinediium-M^{II} (M^{II} = Cu^{II}, Fe^{II},) Tj ETQq1 1 0.784314 rgBT 3.3 nitroaldol (Henry) reaction. Dalton Transactions, 2013, 42, 399-406. Chiral oxazoline ligands containing a 1,2,4-triazine ring and their application in the Cu-catalyzed 197 1.9 45 asymmetric Henry reaction. Tetrahedron, 2013, 69, 7269-7278. Synthesis and application of new iminopyridine ligands to enantioselective copper(II)-catalyzed Henry 4.8 réaction. Journal of Molecular Catalysis Á, 2013, 378, 206-212. Synthesis of C 1-symmetric primary-secondary diamines and their application in the enantioselective 202 4.4 2 Henry reaction. Frontiers of Chemical Science and Engineering, 2013, 7, 408-414. <i>syn</i>―and Enantioselective Henry Reactions of Aliphatic Aldehydes and Application to the 3.3 Synthesis of Safingol. Chemistry - A European Journal, 2013, 19, 16541-16544. Polydentate chiral heteroorganic ligands/catalystsâ€"impact of particular functional groups on their 205 1.8 12 activity in selected reactions of asymmetric synthesis. Tetrahedron: Asymmetry, 2013, 24, 1417-1420. Henry reaction catalyzed by Lipase A from <i>Aspergillus niger </i>. Green Chemistry Letters and 206 Reviéws, 2013, 6, 277-281. A Modified Preparation Procedure for Carbon Nanotube-Confined Nd/Na Heterobimetallic Catalyst for 207 anti-Selective Catalytic Asymmetric Nitroaldol Reactions. Journal of Organic Chemistry, 2013, 78, 3.2 29 11494-11500. Recoverable salen-based macrocyclic chiral complexes; catalysts for enantioselective Henry 208 1.8 reactions. Tetrahedron: Asymmetry, 2013, 24, 1395-1401. Synthesis and computation of diastereomeric phenanthroline–quinine ligands and their application in 209 1.9 27 asymmetric Henry reaction. Tetrahedron, 2013, 69, 10644-10652. Squaramide-Catalyzed Enantioselective Michael Addition of Masked Acyl Cyanides to Substituted 121 Enones. Journal of the American Chemical Society, 2013, 135, 16050-16053. Copperâ€Catalyzed Enantioselective Henry Reaction of Enals and Subsequent Iodocyclization: Stereoselective Construction of Chiral Azatricyclic Frameworks. Angewandte Chemie - International 211 13.8 30 Edition, 2013, 52, 10265-10269. Selfâ€Assembling Neodymium/Sodium Heterobimetallic Asymmetric Catalyst Confined in a Carbon 13.8 59 Nanotube Network. Angewandte Chemie - International Edition, 2013, 52, 6196-6201. A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of 214 93 4.1 metal–organic framework UiO-67. Chemical Communications, 2013, 49, 10920. Highly asymmetric Henry reaction catalyzed by chiral copper(II) complexes. Tetrahedron Letters, 2013, 1.4 54, 462-465. Asymmetric Henry reactions catalyzed by metal complexes of chiral oxazoline based ligands. 216 1.8 22 Tetrahedron: Asymmetry, 2013, 24, 14-22. Asymmetric Catalysis with Bis(hydroxyphenyl)diamides/Rareâ€Earth Metal Complexes. Angewandte 13.8 Chemie - International Edition, 2013, 52, 223-234.

#	Article	IF	CITATIONS
220	Fluorous chiral bis(oxazolines): Synthesis and application in asymmetric Henry reaction. Journal of Fluorine Chemistry, 2013, 156, 183-186.	1.7	23
221	Nitro-Mannich Reaction. Chemical Reviews, 2013, 113, 2887-2939.	47.7	305
222	Organocatalytic asymmetric domino Michael–Henry reaction for the synthesis of substituted bicyclo[3.2.1]octan-2-ones. Chemical Communications, 2013, 49, 2219.	4.1	54
223	Henry Reaction in Aqueous Media at Neutral pH. European Journal of Organic Chemistry, 2013, 2013, 2922-2929.	2.4	34
224	Planar chiral [2.2]paracyclophane-based bis(thiourea) catalyst: application to asymmetric Henry reaction. Chemical Communications, 2013, 49, 4030.	4.1	62
225	Synthesis of novel thiopheneâ€based chiral ligands and their application in asymmetric Henry reaction. Applied Organometallic Chemistry, 2013, 27, 283-289.	3.5	14
226	Isatin as a Strategic Motif for Asymmetric Catalysis. ChemCatChem, 2013, 5, 2131-2148.	3.7	92
227	A New Henry/Michael/Retroâ€Henry/Henry Domino Sequence Promoted by Bifunctional Organocatalysts. Advanced Synthesis and Catalysis, 2013, 355, 938-946.	4.3	31
228	C–C Bond formation catalyzed by natural gelatin and collagen proteins. Beilstein Journal of Organic Chemistry, 2013, 9, 1111-1118.	2.2	23
229	Metal-complexes of optically active amino- and imino-based pyridine ligands in asymmetric catalysis. Coordination Chemistry Reviews, 2013, 257, 1887-1932.	18.8	97
230	Asymmetric synthesis of 1,2,3-trisubstituted indanes via an enantioselective copper(II)-catalyzed asymmetric nitroaldol reaction followed by an intramolecular Michael cyclization. Tetrahedron: Asymmetry, 2013, 24, 699-705.	1.8	12
231	Modular bipyridine ligands coupled with Cinchona alkaloids for Cu(II)-catalyzed asymmetric Henry reactions. Tetrahedron: Asymmetry, 2013, 24, 736-743.	1.8	10
232	Simplified synthesis of individual stereoisomers of the 4-hydroxynonenal adducts of deoxyguanosine. Tetrahedron Letters, 2013, 54, 4289-4291.	1.4	6
233	Applications of Helicalâ€Chiral Pyridines as Organocatalysts in Asymmetric Synthesis. Chemical Record, 2013, 13, 28-42.	5.8	70
234	Asymmetric Transfer Hydrogenation of 3â€Nitroquinolines: Facile Access to Cyclic Nitro Compounds with Two Contiguous Stereocenters. Chemistry - an Asian Journal, 2013, 8, 1381-1385.	3.3	45
235	Metal-free carbonitration of alkenes using K2S2O8. Chemical Communications, 2013, 49, 11701.	4.1	105
236	Concise asymmetric synthesis of Linezolid through catalyzed Henry reaction. RSC Advances, 2013, 3, 24946.	3.6	10
237	Ethyl acrylate conjugated polystyryl-diphenylphosphine — An extremely efficient catalyst for Henry reaction under solvent-free conditions (SoIFC). Canadian Journal of Chemistry, 2013, 91, 300-306.	1.1	17

#	Article	IF	CITATIONS
238	Copperâ€Catalyzed Enantioselective Henry Reaction of Enals and Subsequent Iodocyclization: Stereoselective Construction of Chiral Azatricyclic Frameworks. Angewandte Chemie, 2013, 125, 10455-10459.	2.0	4
239	Highly regioselective synthesis of chiral diamines via a Buchwald–Hartwig amination from camphoric acid and their application in the Henry reaction. Applied Organometallic Chemistry, 2014, 28, 552-558.	3.5	6
240	Podandâ€Based Dimeric Chromium(III)–Salen Complex for Asymmetric Henry Reaction: Cooperative Catalysis Promoted by Complexation of Alkali Metal Ions. Chemistry - A European Journal, 2014, 20, 16454-16457.	3.3	28
241	Synthesis of Novel Chiral Tridentate Schiffâ€Base Ligands and Their Applications in Catalytic Asymmetric Henry Reaction. Chirality, 2014, 26, 780-783.	2.6	6
242	Henry reaction catalyzed by recoverable enantioselective catalysts based on copper(II) complexes of α-methoxypoly(ethylene glycol)-b-poly(l-glutamic acid) and imidazolidine-4-one ligands. Tetrahedron: Asymmetry, 2014, 25, 334-339.	1.8	13
243	Polystyrene copolymer supported by substituted (1R,2R)-1,2-diphenylethane-1,2-diamine-copper(II) complexes: a recyclable catalyst for asymmetric Henry reactions. Tetrahedron: Asymmetry, 2014, 25, 775-780.	1.8	12
244	Enantioselective Henry and Azaâ€Henry Reaction in the Synthesis of (<i>R</i>)â€Tembamide Using Efficient, Recyclable Polymeric Cu ^{II} Complexes as Catalyst. ChemPlusChem, 2014, 79, 1138-1146.	2.8	14
245	Synthesis of Tunable Diamine Ligands with Spiro Indane-2,2′-pyrrolidine Backbone and Their Applications in Enantioselective Henry Reaction. Journal of Organic Chemistry, 2014, 79, 1222-1234.	3.2	33
246	Recent advances in cooperative bimetallic asymmetric catalysis: dinuclear Schiff base complexes. Chemical Communications, 2014, 50, 1044-1057.	4.1	229
247	Copper(II)-containing C2-symmetric bistetracarboline amides in enantioselective Henry reactions. Tetrahedron, 2014, 70, 9077-9083.	1.9	26
248	Unusual Reactivity of Nitronates with an Aryl Alkyl Carbonate: Synthesis of α-Amino Esters. Organic Letters, 2014, 16, 5874-5877.	4.6	5
249	Highly regio- and stereoselective nitro-oxoamination of mono-substituted allenes. Chemical Communications, 2014, 50, 15333-15336.	4.1	25
250	Highly efficient modular metal-free synthesis of 3-substituted 2-quinolones. Organic and Biomolecular Chemistry, 2014, 12, 9786-9788.	2.8	24
251	Probing the evolution of an Ar-BINMOL-derived salen–Co(<scp>iii</scp>) complex for asymmetric Henry reactions of aromatic aldehydes: salan–Cu(<scp>ii</scp>) versus salen–Co(<scp>iii</scp>) catalysis. RSC Advances, 2014, 4, 37859.	3.6	34
252	Synthesis, structure and catalytic applications of amidoterephthalate copper complexes in the diastereoselective Henry reaction in aqueous medium. New Journal of Chemistry, 2014, 38, 4837-4846.	2.8	46
253	(2 <i>S</i> ,5 <i>R</i>)-2-Methylaminomethyl-1-methyl-5-phenylpyrrolidine, a chiral diamine ligand for copper(<scp>ii</scp>)-catalysed Henry reactions with superb enantiocontrol. Chemical Communications, 2014, 50, 6623-6625.	4.1	32
254	Enantioselective formal α-allylation of nitroalkanes through a chiral iminophosphorane-catalyzed Michael reaction–Julia–Kocienski olefination sequence. Chemical Communications, 2014, 50, 3491-3493.	4.1	33
255	Preparation of indium nitronates and their Henry reactions. Organic and Biomolecular Chemistry, 2014, 12, 8593-8597.	2.8	6

#	Article	IF	CITATIONS
256	Synthesis and characterization of chiral recyclable dimeric copper(<scp>ii</scp>)–salen complexes and their catalytic application in asymmetric nitroaldol (Henry) reaction. Catalysis Science and Technology, 2014, 4, 411-418.	4.1	31
257	Part I: Nitroalkenes in the synthesis of heterocyclic compounds. RSC Advances, 2014, 4, 48022-48084.	3.6	106
258	Organocatalytic enantioselective aza-Henry reaction of ketimines derived from isatins: access to optically active 3-amino-2-oxindoles. RSC Advances, 2014, 4, 24816-24819.	3.6	41
259	Correlating the Effects of the N-Substituent Sizes of Chiral 1,2-Amino Phosphinamide Ligands on Enantioselectivities in Catalytic Asymmetric Henry Reaction Using Physical Steric Parameters. Journal of Organic Chemistry, 2014, 79, 9455-9464.	3.2	33
260	A new cyclic binuclear Ni(II) complex as a catalyst towards nitroaldol (Henry) reaction. Catalysis Communications, 2014, 57, 103-106.	3.3	27
261	2.07 The Aldol Reaction: Organocatalysis Approach. , 2014, , 273-339.		9
262	Recent Developments in the Chemistry of <i>gem</i> â€Halonitro Compounds. European Journal of Organic Chemistry, 2014, 2014, 6339-6359.	2.4	16
263	Enantioselective Addition of Nitromethane to 2-Acylpyridine N-Oxides. Expanding the Generation of Quaternary Stereocenters with the Henry Reaction. Organic Letters, 2014, 16, 1204-1207.	4.6	35
264	Dual stereocontrol over the Henry reaction using a light- and heat-triggered organocatalyst. Chemical Communications, 2014, 50, 7773.	4.1	90
265	Self-Assembled Asymmetric Catalyst Engaged in a Continuous-Flow Platform: An <i>Anti</i> -Selective Catalytic Asymmetric Nitroaldol Reaction. Organic Letters, 2014, 16, 3496-3499.	4.6	52
266	Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related Bioactive Compounds. Chemical Reviews, 2014, 114, 7108-7149.	47.7	284
267	Enantioselective copper(II)â€catalyzed Henry reaction utilizing chiral aziridinyl alcohols. Applied Organometallic Chemistry, 2014, 28, 892-899.	3.5	12
268	Recent Developments in Enantioselective Nickel(II) atalyzed Conjugate Additions. Advanced Synthesis and Catalysis, 2015, 357, 2745-2780.	4.3	59
269	The First Modular Route to Coreâ€Chiral Bispidine Ligands and Their Application in Enantioselective Copper(II)â€Catalyzed Henry Reactions. Chemistry - A European Journal, 2015, 21, 12488-12500.	3.3	38
270	Synthesis and applications in Henry reactions of novel chiral thiazoline tridentate ligands. Applied Organometallic Chemistry, 2015, 29, 661-667.	3.5	6
271	Cu (II)-Catalyzed Asymmetric Henry Reaction with a Novel C1-Symmetric Aminopinane-Derived Ligand. Molecules, 2015, 20, 6224-6236.	3.8	16
272	Co–salen complexes as catalysts for the asymmetric Henry reaction – reversed enantioselectivity through simple ligand modification. RSC Advances, 2015, 5, 29108-29113.	3.6	17
273	Stereoselective synthesis of 3-amino-2-oxindoles from isatin imines: new scaffolds for bioactivity evaluation. RSC Advances, 2015, 5, 52481-52496.	3.6	92

#	Article	IF	Citations
274	Catalytic Asymmetric Henry Reaction of Nitroalkanes and Aldehydes Catalyzed by a Chiral N,N′-Dioxide/Cu(I) Complex. Journal of Organic Chemistry, 2015, 80, 2272-2280.	3.2	35
275	Synthesis of novel Schiff base ligands from gluco- and galactochloraloses for the Cu(II) catalyzed asymmetric Henry reaction. Carbohydrate Research, 2015, 407, 97-103.	2.3	11
276	Lanthanide derivatives comprising arylhydrazones of \hat{I}^2 -diketones: cooperative E/Z isomerization and catalytic activity in nitroaldol reaction. Dalton Transactions, 2015, 44, 5602-5610.	3.3	47
277	Henry reaction catalyzed by new series of imidazolidine-4-one Cu-complexes. Tetrahedron: Asymmetry, 2015, 26, 141-147.	1.8	19
278	The synthesis, structure, topology and catalytic application of a novel cubane-based copper(<scp>ii</scp>) metal–organic framework derived from a flexible amido tripodal acid. Dalton Transactions, 2015, 44, 10156-10165.	3.3	56
279	Selective synthesis of nitroalcohols in the presence of Ambersep 900 OH as heterogeneous catalyst. Monatshefte Für Chemie, 2015, 146, 969-972.	1.8	4
280	Zinc amidoisophthalate complexes and their catalytic application in the diastereoselective Henry reaction. New Journal of Chemistry, 2015, 39, 3004-3014.	2.8	26
281	In-depth structure–selectivity investigations on asymmetric, copper-catalyzed oxidative biaryl coupling in the presence of 5-cis-substituted prolinamines. Catalysis Science and Technology, 2015, 5, 2215-2226.	4.1	22
282	Coll, Nill and UO2II complexes with β-diketones and their arylhydrazone derivatives: Synthesis, structure and catalytic activity in Henry reaction. Polyhedron, 2015, 101, 14-22.	2.2	11
283	Asymmetric Henry reaction of trifluoromethyl ketone and aldehyde using Cu(II)-complex: computational study offers the origin of enantioselectivity with varied size of catalysts. Tetrahedron, 2015, 71, 5229-5237.	1.9	28
284	One-pot protocol to synthesize N-(β-nitro)amides by tandem Henry/Ritter reaction. RSC Advances, 2015, 5, 24044-24048.	3.6	8
285	Dinuclear versus mononuclear pathways in zinc mediated nucleophilic addition: a combined experimental and DFT study. Dalton Transactions, 2015, 44, 11165-11171.	3.3	26
287	Asymmetric Cu-catalyzed Henry reaction promoted by chiral camphor-derived β-amino alcohols with a thiophene moiety. Tetrahedron: Asymmetry, 2015, 26, 338-343.	1.8	19
288	A Stereoselective Catalytic Nitroaldol Reaction as the Key Step in a Strategy for the Synthesis of the Renin Inhibitor Aliskiren. European Journal of Organic Chemistry, 2015, 2015, 2531-2537.	2.4	15
289	Solvent-dependent strong asymmetric amplification in the catalytic enantioselective Henry reaction using the trans-N,N′-bis-biphenyl-4-ylmethyl-cyclohexane-1,2-diamine-CuCl2 complex. Chemical Communications, 2015, 51, 7907-7910.	4.1	26
290	Amide functionalized metal–organic frameworks for diastereoselective nitroaldol (Henry) reaction in aqueous medium. RSC Advances, 2015, 5, 87400-87410.	3.6	43
291	Recyclable catalyst for the asymmetric Henry reaction based on functionalized imidazolidine-4-one-copper(II) complexes supported by a polystyrene copolymer. Tetrahedron Letters, 2015, 56, 6240-6243.	1.4	16
292	Conformationally Flexible Guanidine–(Thio)Urea Bifunctional Organocatalysts. Topics in Heterocyclic Chemistry, 2015, , 157-178.	0.2	1

ARTICLE IF CITATIONS # The first 4,4â€²-imidazolium-tagged C2-symmetric bis(oxazolines): application in the asymmetric Henry 293 3.6 11 reaction. RSC Advances, 2015, 5, 4758-4765. Metal-free ring expansion of indoles with nitroalkenes: a simple, modular approach to 3-substituted 294 3.6 2-quinolones. RSC Advances, 2015, 5, 8647-8656. 295 Chiral zinc catalysts for asymmetric synthesis. Tetrahedron, 2015, 71, 1339-1394. 1.9 56 Catalytic asymmetric Henry reaction using copper(II) chiral tridentate Schiff-base complexes and their 0.5 polymer-supported complexes. Comptes Rendus Chimie, 2015, 18, 215-222. Organocatalytic asymmetric Henry reaction of 1<i>H</i>-pyrrole-2,3-diones with bifunctional amine-thiourea catalysts bearing multiple hydrogen-bond donors. Beilstein Journal of Organic 297 2.2 17 Chemistry, 2016, 12, 295-300. Keratin Protein-Catalyzed Nitroaldol (Henry) Reaction and Comparison with Other Biopolymers. 298 3.8 Molecules, 2016, 21, 1122. Synthesis of novel chiral bisoxazoline ligands with a norbornadiene backbone: use in the 299 1.2 1 copper-catalyzed enantioselective Henry reaction. Turkish Journal of Chemistry, 2016, 40, 248-261. Trifunctional Squaramide Catalyst for Efficient Enantioselective Henry Reaction Activation. Advanced 300 4.3 Synthesis and Catalysis, 2016, 358, 1801-1809. Copper Complex of Pinene based Schiff base [CuSBADBH]₂: Synthesis and its Application in 301 5 1.5 Catalytic Asymmetric Nitroaldol (Henry) Reaction. ChemistrySelect, 2016, 1, 2028-2034. Vasicine from Adhatoda vasica as an organocatalyst for metal-free Henry reaction and reductive 1.4 heterocyclization of o-nitroacylbenzenes. Tetrahedron Letters, 2016, 57, 5003-5008. Highly enantioselective asymmetric Henry reaction catalyzed by novel chiral phase transfer catalysts 303 12 2.8 derivéd from cinchona alkáloids. Organic and Biomolecular Chémistry, 2016, 14, 10101-10109. 1D Zn(II) coordination polymer of arylhydrazone of 5,5-dimethylcyclohexane-1,3-dione as a pre-catalyst 3.3 for the Henry reaction. Catalysis Communications, 2016, 87, 49-52. Silver comes into play: Henry reaction and domino cycloisomerisation sequence catalysed by 305 3.6 18 [Ag(i)(Pc-L)] complexes. RSĆ Advances, 2016, 6, 97404-97419. Enantioselective Cu(II)-catalyzed Henry reactions with chiral cyclohexane-based amidophosphine 306 1.8 ligands. Tetrahedron: Asymmetry, 2016, 27, 923-929. Synthesis of obscuraminol A using an organocatalyzed enantioselective Henry reaction. Tetrahedron, 307 1.9 4 2016, 72, 6572-6577. Nickel atalyzed Denitrated Coupling Reaction of Nitroalkenes with Aliphatic and Aromatic Alkenes. 308 Advanced Synthesis and Catalysis, 2016, 358, 3179-3183. Recent Developments in Enantioselective Metalâ€Catalyzed Domino Reactions. Advanced Synthesis and 309 4.3 101 Catalysis, 2016, 358, 2194-2259. Ctr-1 Mets7 motif inspiring new peptide ligands for Cu(<scp>i</scp>)-catalyzed asymmetric Henry reactions under green conditions. RSC Advances, 2016, 6, 71529-71533.

	CITATION	Report	
#	Article	IF	Citations
311	Asymmetric Henry reaction catalyzed by Cu(II)-based chiral amino alcohol complexes with C2-symmetry. Tetrahedron: Asymmetry, 2016, 27, 732-739.	1.8	18
312	Enantio- and Diastereoselective Synthesis of β-Nitroalcohol via Henry Reaction Catalyzed by Cu(II), Ni(II), Zn(II) Complexes of Chiral BINIM Ligands. ChemistrySelect, 2016, 1, 5331-5338.	1.5	12
313	Enantioselective nitromethane addition to brominated and fluorinated benzaldehydes (Henry) Tj ETQq0 0 0 r	gBT /Overlock 1.8	10 Tf 50 66 12
314	Polymer supported DMAP: an easily recyclable organocatalyst for highly atom-economical Henry reaction under solvent-free conditions. RSC Advances, 2016, 6, 104154-104163.	3.6	27
315	Evaluation of 5â€ <i>cis</i> â€Substituted Prolinamines as Ligands in Enantioselective, Copperâ€Catalyzed Henry Reactions. ChemCatChem, 2016, 8, 1846-1856.	3.7	15
316	A new series of bipyridine based chiral organocatalysts for enantioselective Henry reaction. New Journal of Chemistry, 2016, 40, 7148-7156.	2.8	4
317	Switchableâ€Hydrophilicity Solvents for Product Isolation and Catalyst Recycling in Organocatalysis. ChemSusChem, 2016, 9, 696-702.	6.8	26
318	Design for carbon–carbon bond forming reactions under ambient conditions. RSC Advances, 2016, 6, 64676-64725.	3.6	82
319	Nanoporous lanthanide metal–organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm, 2016, 18, 1337-1349.	2.6	43
320	Metal–organic frameworks (MOFs) bring new life to hydrogen-bonding organocatalysts in confined spaces. CrystEngComm, 2016, 18, 3985-3995.	2.6	54
321	Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-Diamino Esters. Journal of Organic Chemistry, 2016, 81, 2864-2874.	3.2	16
322	<i>anti</i> -Selective Asymmetric Henry Reaction Catalyzed by a Heterobimetallic Cu–Sm–Aminophenol Sulfonamide Complex. Organic Letters, 2016, 18, 1578-1581.	4.6	31
323	Preparation of Nd/Na heterogeneous catalyst from bench-stable and inexpensive Nd salt for an anti-selective catalytic asymmetric nitroaldol reaction. Tetrahedron Letters, 2016, 57, 1815-1819.	1.4	19
324	Mining catalytic promiscuity from Thermophilic archaea: an acyl-peptide releasing enzyme from Sulfolobus tokodaii (ST0779) for nitroaldol reactions. Green Chemistry, 2016, 18, 2753-2761.	9.0	22
325	Asymmetric flow catalysis: Mix-and-go solid-phase Nd/Na catalyst for expeditious enantioselective access to a key intermediate of AZD7594. Tetrahedron, 2017, 73, 1517-1521.	1.9	21
326	Hybridâ€Type Squaramideâ€Fused Amino Alcohol Organocatalysts for Enantioselective Nitroâ€Aldol Reaction of Nitromethane with Isatins. European Journal of Organic Chemistry, 2017, 2017, 1638-1646.	2.4	16
327	The new chemical insight for understanding the mechanism of Henry reaction over Cu(II) catalyst. Chemical Physics Letters, 2017, 673, 7-10.	2.6	6
328	Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3Dâ€Printed Mesoreactors. Angewandte Chemie, 2017, 129, 4354-4358.	2.0	27

#	Article	IF	CITATIONS
329	Copper(II) complexes of 2-(pyridine-2-yl)imidazolidine-4-thione derivatives for asymmetric Henry reactions. Tetrahedron: Asymmetry, 2017, 28, 791-796.	1.8	13
330	Recent Advances and Perspectives on the Zincâ€Catalyzed Nitroaldol (Henry) Reaction. Asian Journal of Organic Chemistry, 2017, 6, 1349-1360.	2.7	27
331	Stereodivergent synthesis of all the four stereoisomers of antidepressant reboxetine. Organic and Biomolecular Chemistry, 2017, 15, 5395-5401.	2.8	9
332	Amido-pincer complexes of Cu(II): Synthesis, coordination chemistry and applications in catalysis. Journal of Organometallic Chemistry, 2017, 845, 107-114.	1.8	13
333	Stereoselective Catalytic Synthesis of Active Pharmaceutical Ingredients in Homemade 3Dâ€Printed Mesoreactors. Angewandte Chemie - International Edition, 2017, 56, 4290-4294.	13.8	72
334	Simple and Effective Catalyst Separation by New CO ₂ â€Induced Switchable Organocatalysts. ChemSusChem, 2017, 10, 2685-2691.	6.8	7
335	Nitrosocarbonyl–Henry and Denitration Cascade: Synthesis of α-Ketoamides and α-Keto Oximes. Organic Letters, 2017, 19, 1694-1697.	4.6	24
336	Strategic Immobilization of Molecular Catalysts onto Carbon Nanotubes via Noncovalent Interaction for Catalytic Organic Transformations. Israel Journal of Chemistry, 2017, 57, 270-278.	2.3	11
338	Dual Stereocontrol in Enantioselective Aldol Reactions. Organic Preparations and Procedures International, 2017, 49, 415-433.	1.3	1
339	Organocatalytic Asymmetric Tandem αâ€Aminooxylation–Henry Reactions for the Synthesis of 1,2â€Diols: Total Synthesis of (–)â€ <scp>l</scp> â€ <i>threo</i> â€Sphinganine. European Journal of Organic Chemistry, 2017, 2017, 6700-6707.	2.4	12
340	Dynamic control over catalytic function using responsive bisthiourea catalysts. Organic and Biomolecular Chemistry, 2017, 15, 8285-8294.	2.8	21
341	Modular Construction of Protected 1,2/1,3-Diols, -Amino Alcohols, and -Diamines via Catalytic Asymmetric Dehydrative Allylation: An Application to Synthesis of Sphingosine. Journal of Organic Chemistry, 2017, 82, 9160-9170.	3.2	15
342	Diamine-Tethered Bis(thiourea) Organocatalyst for Asymmetric Henry Reaction. Journal of Organic Chemistry, 2017, 82, 8342-8358.	3.2	33
343	Optimizing the Accuracy and Computational Cost in Theoretical Squaramide Catalysis: The Henry Reaction. Chemistry - A European Journal, 2017, 23, 15336-15347.	3.3	18
344	"Push–Pull π+/π–―(PPππ) Systems in Catalysis. ACS Catalysis, 2017, 7, 6430-6439.	11.2	24
345	Catalytic Macroporous Biohydrogels Made of Ferritinâ€Encapsulated Gold Nanoparticles. ChemPlusChem, 2017, 82, 225-232.	2.8	5
346	Synthesis and application of dynamic self-supported enantioselective catalysts. Coordination Chemistry Reviews, 2017, 332, 38-47.	18.8	28
347	Synthesis of Solid Catalysts with Spatially Resolved Acidic and Basic Molecular Functionalities. ACS Catalysis, 2018, 8, 2870-2879.	11.2	37

#	Article	IF	CITATIONS
348	Catalytic enantioselective Henry reaction of α-keto esters, 2-acylpyridines and 2-acylpyridine <i>N</i> -oxides. RSC Advances, 2018, 8, 9414-9422.	3.6	8
349	Stereodivergent Catalysis. Chemical Reviews, 2018, 118, 5080-5200.	47.7	350
350	Rigid and concave, 2,4-cis-substituted azetidine derivatives: A platform for asymmetric catalysis. Scientific Reports, 2018, 8, 6541.	3.3	15
351	Synthesis and structural characterization of a novel dinuclear Cu(<scp>ii</scp>) complex: an efficient and recyclable bifunctional heterogeneous catalyst for the diastereoselective Henry reaction. Dalton Transactions, 2018, 47, 5928-5932.	3.3	18
352	Dynamic kinetic resolution of 2-methyl-2-nitrocyclohexanol: Combining the intramolecular nitroaldol (Henry) reaction & lipase-catalysed resolution. Tetrahedron, 2018, 74, 1435-1443.	1.9	9
353	Spectroscopic Study of a <i>Cinchona</i> Alkaloid-Catalyzed Henry Reaction. ACS Omega, 2018, 3, 1871-1880.	3.5	9
354	In situ polymerization of poly(vinylimidazole) into the pores of ‎hierarchical MFI zeolite as an acid–base bifunctional catalyst for one-pot ‎C–C bond cascade reactions. Research on Chemical Intermediates, 2018, 44, 3279-3291.	2.7	10
355	Pd-Catalyzed Three-Component Reaction of Anilines, Ethyl Vinyl Ether, and Nitro-Paraffin: Assembly of β-Nitroamines. Organic Letters, 2018, 20, 550-553.	4.6	8
356	Heterogeneous Heterobimetallic Catalysis Enabling Expeditious Access to CF ₃ -Containing <i>vic</i> -Amino Alcohols. Organic Letters, 2018, 20, 308-311.	4.6	22
357	Mechanistic Studies on the Michael Addition of Amines and Hydrazines To Nitrostyrenes: Nitroalkane Elimination via a Retro-aza-Henry-Type Process. Journal of Organic Chemistry, 2018, 83, 1176-1184.	3.2	28
358	2-Azadienes as Reagents for Preparing Chiral Amines: Synthesis of 1,2-Amino Tertiary Alcohols by Cu-Catalyzed Enantioselective Reductive Couplings with Ketones. Journal of the American Chemical Society, 2018, 140, 598-601.	13.7	81
359	Daucus carota root enzyme catalyzed Henry reaction: A green approach. Tetrahedron Letters, 2018, 59, 663-666.	1.4	6
360	Asymmetric Henry reaction catalyzed by chiral Cu(II) salalen and salan complexes derived from (S) Tj ETQq0 0 0	gBT /Over 2.4	lock 10 Tf 50
361	Catalytic synthesis of 3-aminooxindoles <i>via</i> addition to isatin imine: an update. Organic and Biomolecular Chemistry, 2018, 16, 3328-3347.	2.8	51
362	Nitrohydroxylation of Olefins with Nitric Acid Using Tridentate NHC–Amidate–Alkoxide Containing Palladium Catalysts. Topics in Catalysis, 2018, 61, 630-635.	2.8	2
363	Recent progress in copper catalyzed asymmetric Henry reaction. Chinese Chemical Letters, 2018, 29, 873-883.	9.0	40
364	Organocatalyzed Enantioselective Aldol and Henry Reactions Starting from Benzylic Alcohols. Advanced Synthesis and Catalysis, 2018, 360, 124-129.	4.3	9
365	Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis. Coordination Chemistry Reviews, 2018, 357, 144-172.	18.8	277

#	Article	IF	CITATIONS
366	<i>C</i> ₁ â€Symmetric 1,2â€Diaminobicyclo[2.2.2]octane Ligands in Copperâ€Catalyzed Asymmetr Henry Reaction: Catalyst Development and DFT Studies. European Journal of Organic Chemistry, 2018, 2018, 178-187.	ic 2.4	9
367	Hydrogenâ€Bondingâ€Assisted Supramolecular Metal Catalysis. Chemistry - an Asian Journal, 2018, 13, 3623-3646.	3.3	42
368	Synthesis of chiral salalen ligands and their inâ€situ generated Cuâ€complexes for asymmetric Henry reaction. Chirality, 2018, 30, 1257-1268.	2.6	3
369	Biocatalytic Approach to Chiral β-Nitroalcohols by Enantioselective Alcohol Dehydrogenase-Mediated Reduction of α-Nitroketones. Catalysts, 2018, 8, 308.	3.5	14
370	Base-Catalyzed 1,6-Conjugate Addition of Nitroalkanes to <i>p</i> -Quinone Methides under Continuous Flow. ACS Omega, 2018, 3, 13967-13976.	3.5	7
371	Bimetallic Oriented (Au/Cu ₂ O) vs. Monometallic 1.1.1 Au (0) or 2.0.0 Cu ₂ O Graphene‣upported Nanoplatelets as Very Efficient Catalysts for Michael and Henry Additions. European Journal of Organic Chemistry, 2018, 2018, 6185-6190.	2.4	3
372	Palladium triggered diene formation from nitro allylic compounds: a versatile entry into naphthalene derivatives. Chemical Communications, 2018, 54, 10917-10920.	4.1	3
373	<i>anti</i> -Selective Catalytic Asymmetric Nitroaldol Reaction of α-Keto Esters: Intriguing Solvent Effect, Flow Reaction, and Synthesis of Active Pharmaceutical Ingredients. Journal of the American Chemical Society, 2018, 140, 12290-12295.	13.7	52
374	Biocatalytic approaches towards the stereoselective synthesis of vicinal amino alcohols. New Journal of Chemistry, 2018, 42, 12296-12327.	2.8	63
375	An ionic liquid gel: a heterogeneous catalyst for Erlenmeyer–Plochl and Henry reactions. New Journal of Chemistry, 2018, 42, 10993-11005.	2.8	12
376	Synthesis of chiral 3-substituted 3-amino-2-oxindoles through enantioselective catalytic nucleophilic additions to isatin imines. Beilstein Journal of Organic Chemistry, 2018, 14, 1349-1369.	2.2	23
377	Chiral copper-salen complex grafted over functionalized mesoporous silica as an efficient catalyst for asymmetric Henry reactions and synthesis of the potent drug (<i>R</i>)-isoproterenol. New Journal of Chemistry, 2018, 42, 11896-11904.	2.8	19
378	Transitionâ€Metalâ€Free Multicomponent Approach to Stereoenriched Cyclopentylâ€isoxazoles through Câ^'C Bond Cleavage. Chemistry - an Asian Journal, 2018, 13, 2031-2039.	3.3	9
380	A new type of L-Tertiary leucine-derived ligand: Synthesis and application in Cu(II)-catalyzed asymmetric Henry reactions. Tetrahedron, 2019, 75, 130469.	1.9	2
381	Hydrosoluble Complexes Bearing Tris(pyrazolyl)methane Sulfonate Ligand: Synthesis, Characterization and Catalytic Activity for Henry Reaction. Catalysts, 2019, 9, 611.	3.5	8
382	Chiral Cr(III)-salen complex embedded over sulfonic acid functionalized mesoporous SBA-15 material as an efficient catalyst for the asymmetric Henry reaction. Molecular Catalysis, 2019, 475, 110489.	2.0	8
383	Acylative Kinetic Resolution of Racemic 2,2â€Dimethylâ€Substituted Nitroaldol (Henry) Adducts Using a Chiral Guanidine Catalyst: (R)â€(+)―N â€Methylbenzoguanidine ((R)â€NMBG). ChemistrySelect, 2019, 4, 9440-9443.	1.5	3
385	Ðihiral and Racemic Fields Concept for Understanding of the Homochirality Origin, Asymmetric Catalysis, Chiral Superstructure Formation from Achiral Molecules, and B-Z DNA Conformational Transition. Symmetry, 2019, 11, 649.	2.2	9

#	Article	IF	CITATIONS
386	Asymmetric Cu-catalyzed Henry reaction using chiral camphor Schiff bases immobilized on a macromolecular chain. Tetrahedron Letters, 2019, 60, 1819-1824.	1.4	3
387	Asymmetric Catalysis Using Chiral Salen–Metal Complexes: Recent Advances. Chemical Reviews, 2019, 119, 9381-9426.	47.7	174
388	Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coordination Chemistry Reviews, 2019, 394, 104-134.	18.8	74
389	Synthesis and structures of copper complexes bearing unsymmetric derivatives of (R,R) Tj ETQq1 1 0.784314 rgB Chemistry, 2019, 33, e4955.	T /Overloc 3.5	k 10 Tf 50 6
390	Highly stereoselective synthesis of 2,3-dihydrofurans <i>via</i> a cascade Michael addition-alkylation process: a nitro group as the leaving group. Chemical Communications, 2019, 55, 6285-6288.	4.1	22
391	Bianthryl-based organocatalysts for the asymmetric Henry reaction of fluoroketones. Organic and Biomolecular Chemistry, 2019, 17, 5244-5248.	2.8	21
392	Nickel-Catalyzed Asymmetric <i>C</i> -Alkylation of Nitroalkanes: Synthesis of Enantioenriched β-Nitroamides. Journal of the American Chemical Society, 2019, 141, 8436-8440.	13.7	27
393	Design and Synthesis of Bridging Chiral <i>p–t</i> â€Butylcalix[4]arene Tetrahydroisoquinolines and Their Application in Henry Reaction as Chiral Organocatalysts. ChemistrySelect, 2019, 4, 4642-4646.	1.5	6
394	Recent Advances in Solventâ€Free Asymmetric Catalysis. ChemCatChem, 2019, 11, 2943-2977.	3.7	31
395	Chiral iminophosphorane catalyzed asymmetric Henry reaction of α,β-alkynyl ketoesters. Chinese Chemical Letters, 2019, 30, 1519-1522.	9.0	8
396	Solvent-Dependent Enantiodivergence in anti-Selective Catalytic Asymmetric Nitroaldol Reactions. Organic Letters, 2019, 21, 3581-3583.	4.6	2
397	Asymmetric Henry Reaction of 2-Acylpyridine N-Oxides Catalyzed by a Ni-Aminophenol Sulfonamide Complex: An Unexpected Mononuclear Catalyst. Molecules, 2019, 24, 1471.	3.8	1
398	Imine-bridged periodic mesoporous organosilica as stable high-activity catalytic for Knoevenagel reaction in aqueous medium. Research on Chemical Intermediates, 2019, 45, 3107-3121.	2.7	7
399	Terpene ligands in the coordination chemistry: synthesis of metal complexes, stereochemistry, catalytic properties and biological activity. Russian Chemical Reviews, 2019, 88, 979-1012.	6.5	27
400	Access to a Catalytically Generated Umpolung Reagent through the Use of Cu-Catalyzed Reductive Coupling of Ketones and Allenes for the Synthesis of Chiral Vicinal Aminoalcohol Synthons. Organic Letters, 2019, 21, 9753-9758.	4.6	21
401	Ultrasound-assisted synthesis of two new fluorinated metal-organic frameworks (F-MOFs) with the high surface area to improve the catalytic activity. Journal of Solid State Chemistry, 2019, 270, 135-146.	2.9	31
402	Synthesis, crystal structure and catalytic properties in the diastereoselective nitroaldol (Henry) reaction of new zinc(II) and cadmium(II) compounds. Polyhedron, 2019, 158, 71-75.	2.2	4
403	Copper complexes of 1,4-diazabutadiene ligands: Tuning of metal oxidation state and, application in catalytic C-C and C-N bond formation. Inorganica Chimica Acta, 2020, 500, 119228.	2.4	3

#	Article	IF	CITATIONS
404	Copper-Catalyzed Enantioselective Reductive Cross-Coupling of Aldehydes and Imines. Organic Letters, 2020, 22, 800-803.	4.6	17
405	Self-Assembly of Lanthanide-Covalent Organic Polyhedra: Chameleonic Luminescence and Efficient Catalysis. Inorganic Chemistry, 2020, 59, 14023-14030.	4.0	11
406	Deep eutectic solvent as solvent and catalyst: one-pot synthesis of 1,3-dinitropropanes <i>via</i> tandem Henry reaction/Michael addition. Organic and Biomolecular Chemistry, 2020, 18, 8395-8401.	2.8	8
407	Divergent and Diastereoselective Synthesis of α-Monosubstituted and trans-α,β-Disubstituted γ-Lactams from (S)-N,N-Dibenzyl-α-amino Aldehydes via Henry and Michael Reactions. Synthesis, 2020, 52, 3650-3656.	2.3	2
408	Asymmetric catalysis in direct nitromethane-free Henry reactions. RSC Advances, 2020, 10, 2313-2326.	3.6	28
409	Enantioselective Michael Addition Reaction Catalysed by Enantiopure Binuclear Nickel(II) Closeâ€Ended Helicates. Advanced Synthesis and Catalysis, 2020, 362, 1144-1155.	4.3	8
410	Asymmetric Organocatalyzed Azaâ€Henry Reaction of Hydrazones: Experimental and Computational Studies. Chemistry - A European Journal, 2020, 26, 5469-5478.	3.3	7
411	Kinetic resolution of <i>N</i> -aryl β-amino alcohols <i>via</i> asymmetric aminations of anilines. Chemical Communications, 2021, 57, 9394-9397.	4.1	13
412	Mononitration of a Calix[4]arene Methylene Bridge: Synthesis and Preliminary Catalysis Performances of Bridging Chiral <i>p</i> - <i>tert</i> Butylcalix[4]arenes with a Monoamino Bridge Substituent in a 1,3-Alternate Conformation. Journal of Organic Chemistry, 2021, 86, 3952-3959.	3.2	3
414	Controllable Preparation of Chiral Oxazoline-Cu(II) Catalyst as Nanoreactor for Highly Asymmetric Henry Reaction in Water. Catalysis Letters, 2022, 152, 106-115.	2.6	3
415	Synthesis, characterization and biological evaluation of N-Mannich base derivatives of 2-phenyl-2-imidazoline as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents. Arabian Journal of Chemistry, 2021, 14, 103050.	4.9	8
416	C2 symmetric copper (II) complexes of l-valine and l-phenyl alanine based chiral diimines for catalytic asymmetric Henry reaction. Tetrahedron Letters, 2021, 72, 153090.	1.4	3
417	Catalytic <i>Syn</i> -Selective Nitroaldol Approach to Amphenicol Antibiotics: Evolution of a Unified Asymmetric Synthesis of (â°')-Chloramphenicol, (â°')-Azidamphenicol, (+)-Thiamphenicol, and (+)-Florfenicol. Journal of Organic Chemistry, 2021, 86, 11557-11570.	3.2	17
418	Synthesis of 1,2-Aminoalcohols through Enantioselective Aminoallylation of Ketones by Cu-Catalyzed Reductive Coupling. Organic Letters, 2021, 23, 6444-6449.	4.6	19
419	Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic Culâ€DMAP System. Asian Journal of Organic Chemistry, 2021, 10, 2625.	2.7	7
420	Synthesis of "Click BOX―ligands and preliminary results on their application in the asymmetric copper catalysed Henry reaction of o-methoxybenzaldehyde. Results in Chemistry, 2021, 3, 100122.	2.0	0
421	Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. Green Chemistry, 2021, 23, 6117-6138.	9.0	62
422	Bifunctional Acid-Base Catalysis. , 2011, , 185-207.		5

		CITATION REPORT		
#	Article		IF	CITATIONS
423	Noncovalent Interactions in the Nitroaldol (Henry) Reaction. RSC Catalysis Series, 201	9, , 232-252.	0.1	2
424	CHAPTER 2. Asymmetric Domino Reactions Based on the Use of Chiral Metal Catalysts Series, 0, , 150-150.	. RSC Catalysis	0.1	2
425	Enantioselective Organocatalytic Reactions with Isatin. Current Organic Chemistry, 20	13, 17, 1957-1985.	1.6	23
426	Asymmetric Henry Reaction of Nitromethane with Substituted Aldehydes Catalyzed by	Novel In Situ		

	CITATION R	CITATION REPORT		
#	Article	IF	CITATIONS	
448	Enantioselective Henry reaction catalysed by Chiral-copper(II) Complexes: Chirality effect derived from ligand backbone and Side-chain. Inorganic Chemistry Communication, 2022, 144, 109880.	3.9	0	
449	Efficient Catalyst-Free Henry Reaction between Nitroalkanes and Aldehydes or Trifluoromethyl Ketones Promoted by Tap Water. Synthesis, 0, , .	2.3	2	
450	Electroreductive cross-coupling between aldehydes and ketones or imines <i>via</i> cathodically generated dianions. Green Chemistry, 2022, 24, 8386-8392.	9.0	7	
451	Recent advances in catalysts for the Henry reaction. Australian Journal of Chemistry, 2022, 75, 806-819.	0.9	2	
452	Recoverable PEG-supported amino alcohol ligand for copper-catalyzed Enantio- and syn-selective henry reaction with nitroethanol: Sustainable and straightforward access to chiral syn-2-nitro-1,3-Diols. Journal of Catalysis, 2023, 417, 35-40.	6.2	1	
453	Kukhtin–Ramirez-Reaction-Inspired Deprotection of Sulfamidates for the Synthesis of Amino Sugars. Molecules, 2023, 28, 182.	3.8	Ο	
454	Synthesis of 11C-Radiolabeled Eribulin as a Companion Diagnostics PET Tracer for Brain Glioblastoma. Bulletin of the Chemical Society of Japan, 2023, 96, 283-290.	3.2	3	
455	Carbonylchemie. , 2023, , 39-186.		0	
456	Asymmetric Access to Boryl-Substituted Vicinal Aminoalcohols through Cu-Catalyzed Reductive Coupling. Organic Letters, 2023, 25, 4644-4649.	4.6	1	
457	Diboron-promoted iron-catalyzed denitrative vinylation of \hat{l}^2 -nitrostyrenes with cycloketoximes. Organic and Biomolecular Chemistry, 0, , .	2.8	0	
458	Synthesis of Nitroso, Nitro, and Related Compounds. , 2023, , .		0	
459	Asymmetric Henry Reaction Using Cobalt Complexes with Bisoxazoline Ligands Bearing Two Fluorous Tags. Molecules, 2023, 28, 7632.	3.8	0	
460	Click nanosponge – A novel amine-rich β-cyclodextrin-based crosslinked polymer for heterogeneous catalysis. Carbohydrate Polymers, 2024, 326, 121612.	10.2	0	