Carbon Nanotubes for Electronic and Electrochemical I

Advanced Materials 19, 3214-3228 DOI: 10.1002/adma.200700665

Citation Report

#	Article	IF	CITATIONS
1	A Critical Review of the Electrocatalysis Reported at C ₆₀ Modified Electrodes. Electroanalysis, 2008, 20, 1507-1512.	1.5	41
2	Pyrenecyclodextrinâ€Decorated Singleâ€Walled Carbon Nanotube Fieldâ€Effect Transistors as Chemical Sensors. Advanced Materials, 2008, 20, 1910-1915.	11.1	98
3	The Intramolecular Junctions of Carbon Nanotubes. Advanced Materials, 2008, 20, 2815-2841.	11.1	126
4	Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAC - Trends in Analytical Chemistry, 2008, 27, 619-626.	5.8	252
5	Environmental Applications of Carbon-Based Nanomaterials. Environmental Science & Technology, 2008, 42, 5843-5859.	4.6	1,337
6	Electronically monitoring biological interactions with carbon nanotube field-effect transistors. Chemical Society Reviews, 2008, 37, 1197.	18.7	164
7	Carbon-Nanotube-Induced Acceleration of Catalytic Nanomotors. ACS Nano, 2008, 2, 1069-1075.	7.3	337
8	Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors. Sensors, 2008, 8, 8291-8320.	2.1	167
9	Nanotubes. Annual Reports on the Progress of Chemistry Section A, 2008, 104, 379.	0.8	3
10	Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs. IEEE Nanotechnology Magazine, 2008, 7, 651-667.	1.1	198
11	Detection of Trace Hg2+ via Induced Circular Dichroism of DNA Wrapped Around Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 9190-9191.	6.6	99
12	Raman spectroscopy of charge transfer interactions between single wall carbon nanotubes and [FeFe] hydrogenase. Dalton Transactions, 2008, , 5454.	1.6	13
13	Assembling of carbon nanotube structures by chemical anchoring for packaging applications. , 2008, ,		5
14	Electrophoretic silica-coating process on a nano-structured copper electrode. Chemical Communications, 2008, , 5004.	2.2	12
15	Chemical Transfer of in-situ Functionalized Aligned Carbon Nanotube Structures for Microelectronic Packaging Applications. , 2008, , .		0
16	Chiral-Angle Distribution for Separated Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 3151-3154.	4.5	69
17	Polyaniline-carbon nanotube composites. Pure and Applied Chemistry, 2008, 80, 2377-2395.	0.9	127
18	Synthesis of aligned carbon nanotubes by microwave chemical vapour deposition and investigation of their covalent bonding with antibodies for bioapplications. International Journal of Nanoparticles, 2008, 1, 119.	0.1	1

	CITATION	Report	
#	Article	IF	CITATIONS
19	Electrocatalytic Detection of Amitrole on the Multi-Walled Carbon Nanotube – Iron (II) tetra-aminophthalocyanine Platform. Sensors, 2008, 8, 5096-5105.	2.1	82
20	Characterization of Multienzyme-Antibody-Carbon Nanotube Bioconjugates for Immunosensors. Journal of Nanoscience and Nanotechnology, 2009, 9, 249-255.	0.9	33
21	Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al ₂ O ₃ for sensor applications. Nanotechnology, 2009, 20, 434010.	1.3	57
22	Conductingâ€Polymer Nanomaterials for Highâ€Performance Sensor Applications: Issues and Challenges. Advanced Functional Materials, 2009, 19, 1567-1576.	7.8	304
23	Selective Electrochemical Etching of Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2009, 19, 3618-3624.	7.8	30
24	Singleâ€Carbonâ€Atomicâ€Resolution Detection of Odorant Molecules using a Human Olfactory Receptorâ€based Bioelectronic Nose. Advanced Materials, 2009, 21, 91-94.	11.1	171
25	Advances in Bioapplications of Carbon Nanotubes. Advanced Materials, 2009, 21, 139-152.	11.1	348
26	Nanotopographic Carbon Nanotube Thinâ€Film Substrate Freezes Lateral Motion of Secretory Vesicles. Advanced Materials, 2009, 21, 790-793.	11.1	24
27	Ultrathin Films of Singleâ€Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects. Advanced Materials, 2009, 21, 29-53.	11.1	994
28	Synthesis, Characterization, Redox Properties, and Photodynamics of Donor–Acceptor Nanohybrids Composed of Sizeâ€Controlled Cupâ€Shaped Nanocarbons and Porphyrins. Chemistry - A European Journal, 2009, 15, 9160-9168.	1.7	17
29	Photoelectrochemical Studies of Gold Electrodes Chemically Modified with Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2009, 10, 1090-1096.	1.0	12
30	Adsorption of Insulin Peptide on Charged Singleâ€Walled Carbon Nanotubes: Significant Role of Ordered Water Molecules. ChemPhysChem, 2009, 10, 1260-1269.	1.0	22
31	Direct DNA Hybridization on the Singleâ€Walled Carbon Nanotubes Modified Sensors Detected by Voltammetry and Electrochemical Impedance Spectroscopy. Electroanalysis, 2009, 21, 2116-2124.	1.5	44
33	Phospholipidâ€Coated Carbon Nanotubes as Sensitive Electrochemical Labels with Controlledâ€Assemblyâ€Mediated Signal Transduction for Magnetic Separation Immunoassay. Angewandte Chemie - International Edition, 2009, 48, 9862-9866.	7.2	88
34	Designing nanomaterial-enhanced electrochemical immunosensors for cancer biomarker proteins. Bioelectrochemistry, 2009, 76, 189-194.	2.4	112
35	Fast picomolar selective detection of bisphenol A in water using a carbon nanotube field effect transistor functionalized with estrogen receptor-α. Biosensors and Bioelectronics, 2009, 24, 2842-2846.	5.3	60
36	Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Research, 2009, 2, 85-120.	5.8	1,515
37	Modulation of DNA Polymerases with Gold Nanoparticles and their Applications in Hotâ€Start PCR. Small, 2009, 5, 2597-2600.	5.2	58

_

# 38	ARTICLE Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. Journal of Exposure Science and Environmental Epidemiology, 2009, 19, 1-18.	IF 1.8	Citations
39	Covalently linked silica-multiwall carbon nanotube-polyaniline network: An electroactive matrix for ultrasensitive biosensor. Biosensors and Bioelectronics, 2009, 25, 944-947.	5.3	19
40	Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochemistry Communications, 2009, 11, 1009-1012.	2.3	106
41	Mono-distributed single-walled carbon nanotube channel in field effect transistors (FETs) using electrostatic atomization deposition. Journal of Colloid and Interface Science, 2009, 338, 266-269.	5.0	3
42	Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: Recent advances and future perspectives. Biosensors and Bioelectronics, 2009, 24, 3191-3200.	5.3	321
43	Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer. Biosensors and Bioelectronics, 2009, 25, 497-501.	5.3	92
44	Atomic oxygen functionalization of double walled C nanotubes. Carbon, 2009, 47, 2579-2589.	5.4	79
45	One-step preparation of water-soluble single-walled carbon nanotubes. Applied Surface Science, 2009, 255, 7095-7099.	3.1	50
46	Nanosized Carbon Particles From Natural Gas Soot. Chemistry of Materials, 2009, 21, 2803-2809.	3.2	643
47	Facile "Scratching―Method with Common Metal Objects To Generate Large-Scale Catalyst Patterns Used for Growth of Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2009, 1, 1873-1877.	4.0	8
48	Functional Polyacetylenes Carrying Mesogenic and Polynuclear Aromatic Pendants: Polymer Synthesis, Hybridization with Carbon Nanotubes, Liquid Crystallinity, Light Emission, and Electrical Conductivity. Macromolecules, 2009, 42, 2523-2531.	2.2	30
49	The Effect of Network Density on the DNA-Sensing Performance of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 21566-21571.	1.5	7
50	Engineering Nanomaterial Surfaces for Biomedical Applications. Experimental Biology and Medicine, 2009, 234, 1128-1139.	1.1	119
51	Single-Wall Carbon Nanotube Forest Arrays for Immunoelectrochemical Measurement of Four Protein Biomarkers for Prostate Cancer. Analytical Chemistry, 2009, 81, 9129-9134.	3.2	145
52	Gold Nanoparticles with Externally Controlled, Reversible Shifts of Local Surface Plasmon Resonance Bands. Langmuir, 2009, 25, 13120-13124.	1.6	46
53	Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors. Journal of Physical Chemistry C, 2009, 113, 14765-14770.	1.5	68
54	Fabrication of TiO ₂ and Metal Nanoparticleâ^'Microelectrode Arrays by Photolithography and Site-Selective Photocatalytic Deposition. Analytical Chemistry, 2009, 81, 8249-8255.	3.2	31
55	Electrogenerated Chemiluminescence. Annual Review of Analytical Chemistry, 2009, 2, 359-385.	2.8	416

#	Article	IF	CITATIONS
56	Electrochemical biosensors at the nanoscale. Lab on A Chip, 2009, 9, 2123.	3.1	134
57	Thermal effect on the dynamic infiltration of water into single-walled carbon nanotubes. Physical Review E, 2009, 80, 061206.	0.8	27
58	Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)3]2+-doped silica nanoparticles. Chemical Communications, 2009, , 4968.	2.2	104
59	Advances and perspectives in aptamer arrays. Integrative Biology (United Kingdom), 2009, 1, 53-58.	0.6	22
60	The electrochemical signature of functionalized single-walled carbon nanotubes bearing electroactive groups. Nanotechnology, 2009, 20, 145705.	1.3	15
61	Synthesis of Fullerene by Spark Plasma Sintering and Thermomechanical Transformation of Fullerene Into Diamond on Fe-C Composites. Materials Research Society Symposia Proceedings, 2009, 1243, 1.	0.1	3
62	Interactions of Carbon Nanotubes with Biomolecules: Advances and Challenges. , 0, , 715-742.		1
63	Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles. Journal Physics D: Applied Physics, 2009, 42, 203001.	1.3	44
64	Laminated, microfluidic-integrated carbon nanotube based biosensors. Applied Physics Letters, 2009, 94, 013107.	1.5	34
65	Electronâ€Transfer Kinetics of Microperoxidaseâ€1 1 Covalently Immobilised onto the Surface of Multiâ€Walled Carbon Nanotubes by Reactive Landing of Massâ€Selected Ions. Chemistry - A European Journal, 2009, 15, 7359-7367.	1.7	40
66	Ultrasensitive Immunosensor for Cancer Biomarker Proteins Using Gold Nanoparticle Film Electrodes and Multienzyme-Particle Amplification. ACS Nano, 2009, 3, 585-594.	7.3	490
67	Steps along the road to electrochemical devices for early cancer diagnosis. Bioanalysis, 2010, 2, 847-850.	0.6	4
69	Effects of Microwave Radiation on Proteins Coexisting with Carbon Nanotubes. Chemistry Letters, 2010, 39, 266-267.	0.7	1
70	Chitosan in Nanostructured Thin Films. Biomacromolecules, 2010, 11, 1897-1908.	2.6	185
71	Single-walled carbon nanotube as an effective quencher. Analytical and Bioanalytical Chemistry, 2010, 396, 73-83.	1.9	108
72	The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Analytical and Bioanalytical Chemistry, 2010, 398, 1575-1589.	1.9	79
73	Immobilization of biomolecules on nanostructured films for biosensing. Biosensors and Bioelectronics, 2010, 25, 1254-1263.	5.3	195
74	Highly sensitive and reusable Pt-black microfluidic electrodes for long-term electrochemical sensing. Biosensors and Bioelectronics, 2010, 26, 682-688.	5.3	36

#	Article	IF	CITATIONS
75	Carbon nanotubes-based chemiresistive immunosensor for small molecules: Detection of nitroaromatic explosives. Biosensors and Bioelectronics, 2010, 26, 1297-1301.	5.3	76
76	Nanotubes-/nanowires-based, microfluidic-integrated transistors for detecting biomolecules. Microfluidics and Nanofluidics, 2010, 9, 1185-1214.	1.0	28
77	Green and Highly Efficient Functionalization of Carbon Nanotubes by Combination of 1,3â€Dipolar Cycloaddition and Curtius Rearrangement Reactions. Chinese Journal of Chemistry, 2010, 28, 1223-1228.	2.6	2
78	Streptavidin Modified Carbon Nanotube Based Graphite Electrode for Labelâ€Free Sequence Specific DNA Detection. Electroanalysis, 2010, 22, 611-617.	1.5	38
79	Synthesis of MnO ₂ /MWNTs Nanocomposites Using a Sonochemical Method and Application for Hydrazine Detection. Electroanalysis, 2010, 22, 1123-1129.	1.5	25
80	Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2010, 22, 1027-1036.	1.5	2,779
81	Vertically Aligned Singleâ€Walled Carbon Nanotubes by Chemical Assembly – Methodology, Properties, and Applications. Advanced Materials, 2010, 22, 1430-1449.	11.1	84
82	Position-controlled synthesis of single-walled carbon nanotubes on a transparent substrate by laser-induced chemical vapor deposition. Applied Surface Science, 2010, 257, 641-649.	3.1	11
83	Emerging synergy between nanotechnology and implantable biosensors: A review. Biosensors and Bioelectronics, 2010, 25, 1553-1565.	5.3	327
84	Detection of organics in aqueous solution using gold nanoparticles modified with mixed monolayers of 1-hexanethiol and 4-mercaptophenol. Sensors and Actuators B: Chemical, 2010, 143, 704-711.	4.0	39
85	Functionalized single-walled carbon nanohorns for electrochemical biosensing. Biosensors and Bioelectronics, 2010, 25, 2194-2199.	5.3	44
86	Pt-dispersed flower-like carbon nanosheet aggregation for low-overpotential electrochemical biosensing. Biosensors and Bioelectronics, 2010, 26, 432-436.	5.3	35
87	p-Hexafluoroisopropanol phenyl covalently functionalized single-walled carbon nanotubes for detection of nerve agents. Carbon, 2010, 48, 1262-1270.	5.4	68
88	Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon, 2010, 48, 2347-2353.	5.4	172
89	An efficient strategy for the purification of cloth-like single walled carbon nanotube soot produced by arc discharge. Carbon, 2010, 48, 3769-3777.	5.4	13
90	Réseaux 2d aléatoires à nanotubes de carbone. Comptes Rendus Physique, 2010, 11, 362-374.	0.3	49
91	Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on fieldâ€effect devices. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 781-786.	0.8	24
92	Nanotubes in biosensing. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 496-509.	3.3	43

#	Article	IF	CITATIONS
93	Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises. Journal of Diabetes Science and Technology, 2010, 4, 1540-1562.	1.3	219
94	Driving Forces and Consequences of the Adsorption of Proteins to Carbon Nanotubes. Key Engineering Materials, 0, 441, 75-94.	0.4	3
95	Nanomaterials as Analytical Tools for Genosensors. Sensors, 2010, 10, 963-993.	2.1	74
96	Discrimination of dopamine and ascorbic acid using carbon nanotube fiber microelectrodes. Physical Chemistry Chemical Physics, 2010, 12, 9993.	1.3	31
98	Sensitive electrochemical immunosensor for matrix metalloproteinase-3 based on single-wall carbon nanotubes. Analyst, The, 2010, 135, 1345.	1.7	57
99	Biotin-Streptavidin Sensitive BioFETs and Their Properties. Communications in Computer and Information Science, 2010, , 85-95.	0.4	4
100	Ultrasensitive Electrochemical Immunosensor for Oral Cancer Biomarker IL-6 Using Carbon Nanotube Forest Electrodes and Multilabel Amplification. Analytical Chemistry, 2010, 82, 3118-3123.	3.2	336
101	Prospects of Nanotechnology in Clinical Immunodiagnostics. Sensors, 2010, 10, 6535-6581.	2.1	54
102	Sequential Layer Analysis of Protein Immunosensors Based on Single Wall Carbon Nanotube Forests. Langmuir, 2010, 26, 15050-15056.	1.6	41
103	Strong Micro-Dielectric Environment Effect on the Band Gaps of (<i>n</i> , <i>m</i>)Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 13072-13077.	6.6	50
104	Laccase-based biosensor for the determination of polyphenol index in wine. Talanta, 2010, 81, 235-240.	2.9	128
105	Chemistry of carbon nanotubes in biomedical applications. Journal of Materials Chemistry, 2010, 20, 1036-1052.	6.7	235
106	Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst, The, 2010, 135, 2496.	1.7	469
107	Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. Analyst, The, 2010, 135, 368-374.	1.7	98
108	Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors. Lab on A Chip, 2010, 10, 2052.	3.1	46
109	Improved Sensitivity for the Electrochemical Biosensor with an Adjunct Probe. Analytical Chemistry, 2010, 82, 9500-9505.	3.2	36
110	Efficient receptor-independent intracellular translocation of aptamers mediated by conjugation to carbon nanotubes. Chemical Communications, 2010, 46, 7379.	2.2	41
111	Use of Information Visualization Methods Eliminating Cross Talk in Multiple Sensing Units Investigated for a Light-Addressable Potentiometric Sensor. Analytical Chemistry, 2010, 82, 61-65.	3.2	40

#	Article	IF	CITATIONS
112	Single-walled carbon nanotube chemoresistive label-free immunosensor for salivary stress biomarkers. Analyst, The, 2010, 135, 2637.	1.7	47
113	Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter, 2011, 7, 7511.	1.2	113
114	An ultrasensitive electrochemical sensor for the mercuric ion via controlled assembly of SWCNTs. Chemical Communications, 2011, 47, 10665.	2.2	34
115	Carbon nanotube network transistors prepared from agarose gel separation methods. , 2011, , .		0
116	A tunable CMOS read-out integrated circuit for carbon nanotube-based bio-sensors. , 2011, , .		4
117	Inkjet-printed gold nanoparticle electrochemical arrays on plastic. Application to immunodetection of a cancer biomarker protein. Physical Chemistry Chemical Physics, 2011, 13, 4888.	1.3	132
118	Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale, 2011, 3, 1361.	2.8	86
119	Optical Detection of Glucose Based on a Composite Consisting of Enzymatic ZnO Nanorods and InGaN/GaN Multiple Quantum Wells. Journal of Physical Chemistry C, 2011, 115, 14664-14667.	1.5	5
120	Carbon Nanotube-Based Sensors: Overview. , 2011, , 519-528.		2
121	Modifying the Heat Transfer and Capillary Pressure of Loop Heat Pipe Wicks with Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 9312-9319.	1.5	19
122	Ultrahigh Density Alignment of Carbon Nanotube Arrays by Dielectrophoresis. ACS Nano, 2011, 5, 1739-1746.	7.3	190
123	Biosensors based on one-dimensional nanostructures. Journal of Materials Chemistry, 2011, 21, 8940.	6.7	70
124	Carbon Nanotube Microwell Array for Sensitive Electrochemiluminescent Detection of Cancer Biomarker Proteins. Analytical Chemistry, 2011, 83, 6698-6703.	3.2	217
125	Microwave-Assisted Synthesis of a Core–Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid. ACS Nano, 2011, 5, 7788-7795.	7.3	303
126	Semiconducting Enriched Carbon Nanotube Aligned Arrays of Tunable Density and Their Electrical Transport Properties. ACS Nano, 2011, 5, 6297-6305.	7.3	91
128	Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: preparation, characterization and its gas sensing properties. Journal of Materials Chemistry, 2011, 21, 3779.	6.7	154
129	Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3, 362-382.	2.8	264
130	Rational design and application of molecularly imprinted sol–gel polymer for the electrochemically selective and sensitive determination of Sudan I. Talanta, 2011, 84, 451-456.	2.9	41

#	Article	IF	CITATIONS
131	Copolymer-Controlled Diameter-Selective Dispersion of Semiconducting Single-Walled Carbon Nanotubes. Chemistry of Materials, 2011, 23, 2237-2249.	3.2	62
132	Supramolecular Hybrid of Gold Nanoparticles and Semiconducting Single-Walled Carbon Nanotubes Wrapped by a Porphyrin–Fluorene Copolymer. Journal of the American Chemical Society, 2011, 133, 14771-14777.	6.6	46
133	Development of Tunable Nanocomposites Made from Carbon Nanotubes for Electrochemical Applications. , 2011, , .		2
134	Nanomaterials for biosensing with electrochemiluminescence (ECL) detection. Frontiers in Bioscience - Landmark, 2011, 16, 1084.	3.0	35
135	Carbon Nanotubes as Suitable Electrochemical Platforms for Metalloprotein Sensors and Genosensors. , 0, , .		3
136	Vertically aligned carbon nanotubes: Synthesis and atomic oxygen functionalization. Surface and Coatings Technology, 2011, 205, S592-S596.	2.2	18
137	Carbon nanotube integrated 3-dimensional carbon microelectrode array by modified SU-8 photoresist photolithography and pyrolysis. Thin Solid Films, 2011, 520, 1041-1047.	0.8	16
138	Covalent functionalization of single-walled carbon nanotubes with adenosine monophosphate: Towards the synthesis of SWCNT–Aptamer hybrids. Materials Science and Engineering C, 2011, 31, 1363-1368.	3.8	20
139	Label-free protein detection based on vertically aligned carbon nanotube gated field-effect transistors. Sensors and Actuators B: Chemical, 2011, 160, 154-160.	4.0	10
140	Supramolecular architectures in layer-by-layer films of single-walled carbon nanotubes, chitosan and cobalt (II) phthalocyanine. Materials Chemistry and Physics, 2011, 130, 1072-1077.	2.0	22
141	Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in polyethylenimine. Electrochimica Acta, 2011, 56, 9121-9126.	2.6	25
142	Recent advances in graphene-based biosensors. Biosensors and Bioelectronics, 2011, 26, 4637-4648.	5.3	1,184
143	A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. Biosensors and Bioelectronics, 2011, 28, 308-313.	5.3	95
145	Diverse Chemiresistors Based upon Covalently Modified Multiwalled Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 11181-11193.	6.6	111
146	Preferential Binding of Peptides to Graphene Edges and Planes. Journal of the American Chemical Society, 2011, 133, 14480-14483.	6.6	165
147	A new bacterial biosensor for trichloroethylene detection based on a three-dimensional carbon nanotubes bioarchitecture. Analytical and Bioanalytical Chemistry, 2011, 400, 1083-1092.	1.9	43
148	Graphene-based electrochemical biosensor for pathogenic virus detection. Biochip Journal, 2011, 5, 123-128.	2.5	97
149	Synthesis of Silver Nanoparticle–Hollow Titanium Phosphate Sphere Hybrid as a Label for Ultrasensitive Electrochemical Detection of Human Interleukinâ€6. Small, 2011, 7, 2921-2928.	5.2	77

#	Article	IF	CITATIONS
150	Chemical Sensing with Polyaniline Coated Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2011, 23, 536-540.	11.1	101
151	Bionanoelectronics. Advanced Materials, 2011, 23, 807-820.	11.1	118
153	Interaction of Mitomycin C with DNA Immobilized onto Singleâ€walled Carbon Nanotube/Polymer Modified Pencil Graphite Electrode. Electroanalysis, 2011, 23, 2343-2349.	1.5	17
154	A Thirdâ€Generation Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Immobilized in Carbon Nanotubes/ SBAâ€15 Film. Electroanalysis, 2011, 23, 2415-2420.	1.5	13
157	Highlyâ€Ordered Covalent Anchoring of Carbon Nanotubes on Electrode Surfaces by Diazonium Salt Reactions. Angewandte Chemie - International Edition, 2011, 50, 3457-3461.	7.2	35
158	Spatially Oriented and Reversible Surface Assembly of Singleâ€Walled Carbon Nanotubes: A Strategy Based on π–π Interactions. Angewandte Chemie - International Edition, 2011, 50, 7074-7078.	7.2	14
159	Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts. Biosensors and Bioelectronics, 2011, 26, 3219-3226.	5.3	107
160	Detecting metabolic activities of bacteria using a simple carbon nanotube device for high-throughput screening of anti-bacterial drugs. Biosensors and Bioelectronics, 2011, 26, 4257-4261.	5.3	23
161	Synthesis of single-walled carbon nanotubes with selective diameter distributions using DC arc discharge under CO mixed atmosphere. Applied Surface Science, 2011, 257, 3123-3127.	3.1	43
162	Electrochemical fabrication and potential-enhanced luminescence of [Ru(bpy)2tatp]2+ incorporating DNA-stabilized single-wall carbon nanotubes on an indium tin oxide electrode. Electrochimica Acta, 2011, 56, 1432-1438.	2.6	6
163	Chemo-sensitivity of latex-based films containing segregated networks of carbon nanotubes. Sensors and Actuators B: Chemical, 2011, 155, 28-36.	4.0	36
164	Optical and electrochemical DNA nanobiosensors. TrAC - Trends in Analytical Chemistry, 2011, 30, 459-472.	5.8	88
165	Manipulation of individual double-walled carbon nanotubes packed in a casing shell. Nanotechnology, 2011, 22, 285308.	1.3	1
166	Biomedical/bioengineering applications of carbon nanotube-based nanocomposites. , 2011, , 676-717.		3
167	Electrochemical Biosensing Based on Carbon Nanotubes. Biological and Medical Physics Series, 2011, , 207-239.	0.3	0
168	Nanostructured Films Based on Carbon Nanotubes and Cobalt for the Electrocatalytic Reduction of H2O2. Electrochemical and Solid-State Letters, 2011, 14, P21.	2.2	3
169	Surface modification of gold–carbon nanotube nanohybrids under the influence of near-infrared laser exposure. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 03D119.	0.6	0
170	Electrochemical biosensors for medical applications. , 2012, , 3-40.		21

#	Article	IF	CITATIONS
172	Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures. Chemical Science, 2012, 3, 1015.	3.7	130
173	Interaction of Amino Acids and Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 1724-1731.	1.5	51
174	Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. Nano Reviews, 2012, 3, 17240.	3.7	50
175	Graphene and Its Derivative-based Biosensing Systems. Chinese Journal of Analytical Chemistry, 2012, 40, 1772-1779.	0.9	13
176	Electrochemical Immunosensors for Detection of Cancer Protein Biomarkers. ACS Nano, 2012, 6, 6546-6561.	7.3	611
178	Applications and Nanotoxicity of Carbon Nanotubes and Graphene in Biomedicine. Journal of Nanomaterials, 2012, 2012, 1-19.	1.5	125
179	Flexible, All-Organic Chemiresistor for Detecting Chemically Aggressive Vapors. Journal of the American Chemical Society, 2012, 134, 4553-4556.	6.6	158
180	A highly sensitive electrochemical assay for silver ion detection based on un-labeled C-rich ssDNA probe and controlled assembly of MWCNTs. Talanta, 2012, 94, 178-183.	2.9	56
181	Electrochemistry of Nucleic Acids. Chemical Reviews, 2012, 112, 3427-3481.	23.0	583
182	Properties and Applications of Aligned Carbon Nanotube Arrays. Nanoscience and Technology, 2012, , 183-253.	1.5	0
183	Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization. Applied Surface Science, 2012, 258, 2836-2843.	3.1	21
184	Immobilization of double functionalized carbon nanotubes on glassy carbon electrodes for the electrochemical sensing of the biotin–avidin affinity. Journal of Electroanalytical Chemistry, 2012, 665, 90-94.	1.9	10
185	Hybrids of a Genetically Engineered Antibody and a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers. ACS Nano, 2012, 6, 5143-5149.	7.3	102
186	Covalently Functionalized Single-Walled Carbon Nanotubes at Reverse Micellar Interface: A Strategy to Improve Lipase Activity. Langmuir, 2012, 28, 1715-1724.	1.6	32
187	Graphene-nanotube 3D networks: intriguing thermal and mechanical properties. Journal of Materials Chemistry, 2012, 22, 1435-1444.	6.7	118
190	Porous Graphitized Carbon Monolith as an Electrode Material for Probing Direct Bioelectrochemistry and Selective Detection of Hydrogen Peroxide. Analytical Chemistry, 2012, 84, 2351-2357.	3.2	42
192	Real time protein recognition in a liquid-gated carbon nanotube field-effect transistor modified with aptamers. Nanoscale, 2012, 4, 5917.	2.8	23
193	Enhanced Architecture of Lipid-Carbon Nanotubes as Langmuir–Blodgett Films to Investigate the Enzyme Activity of Phospholipases from Snake Venom. Journal of Physical Chemistry B, 2012, 116, 13424-13429	1.2	10

#	Article	IF	CITATIONS
194	High Enzymatic Activity Preservation with Carbon Nanotubes Incorporated in Urease–Lipid Hybrid Langmuir–Blodgett Films. Langmuir, 2012, 28, 5398-5403.	1.6	24
195	Graphene and Other Nanomaterial-Based Electrochemical Aptasensors. Biosensors, 2012, 2, 1-14.	2.3	82
196	Nafion–CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine. Analyst, The, 2012, 137, 3045.	1.7	72
197	Carbon Nanotubes $\hat{a} \in \hat{~}$ Imprinted Polymers: Hybrid Materials for Analytical Applications. , 2012, , .		2
198	Mechanical Properties of Graphene Nanobuds: A Molecular Dynamics Study. Current Nanoscience, 2012, 8, 89-96.	0.7	31
199	Nanomaterialsâ€based electrochemical immunosensors for proteins. Chemical Record, 2012, 12, 164-176.	2.9	49
200	DNAâ€Wrapped Carbon Nanotubes as Sensitive Electrochemical Labels in Controlledâ€Assemblyâ€Mediated Signal Transduction for the Detection of Sequenceâ€Specific DNA. Small, 2012, 8, 1407-1414.	5.2	30
201	Long Distance Electron Transfer Across >100â€nm Thick Au Nanoparticle/Polyion Films to a Surface Redox Protein. Electroanalysis, 2012, 24, 1129-1140.	1.5	8
202	Soft Immobilization of Proteins onto Singleâ€Walled Carbon Nanotubes through Nickel Complexed Nitrilotriacetic Acidâ€End Functionalized Polystyrenes. Israel Journal of Chemistry, 2012, 52, 359-363.	1.0	5
203	Synthesis and Optical Properties of Small Au Nanorods Using a Seedless Growth Technique. Langmuir, 2012, 28, 9807-9815.	1.6	218
204	Semimetallic TiO2 nanotubes: new interfaces for bioelectrochemical enzymatic catalysis. Journal of Materials Chemistry, 2012, 22, 4615.	6.7	28
205	Probing the Structure of Lysozyme–Carbonâ€Nanotube Hybrids with Molecular Dynamics. Chemistry - A European Journal, 2012, 18, 4308-4313.	1.7	84
206	Single-walled carbon nanotubes-polymer modified graphite electrodes for DNA hybridization. Colloids and Surfaces B: Biointerfaces, 2012, 91, 77-83.	2.5	24
207	Surface grafting of electrochemically crosslinked poly(3,4-ethylenedioxythiophene) (PEDOT) brushes via surface-initiated ring-opening metathesis polymerization. European Polymer Journal, 2012, 48, 875-880.	2.6	4
208	High sensitivity carbon nanotube based electrochemiluminescence sensor array. Biosensors and Bioelectronics, 2012, 31, 233-239.	5.3	55
209	A simple approach for DNA detection on carbon nanotube microelectrode arrays. Sensors and Actuators B: Chemical, 2012, 162, 120-127.	4.0	13
210	Differential pulse voltammetric analysis of lead in vegetables using a surface amino-functionalized exfoliated graphite nanoplatelet chemically modified electrode. Sensors and Actuators B: Chemical, 2012, 166-167, 842-847.	4.0	9
211	Carbon nanomaterials: controlled growth and field-effect transistor biosensors. Frontiers of Materials Science, 2012, 6, 26-46.	1.1	14

#	Article	IF	CITATIONS
212	Modeling the binding of peptides on carbon nanotubes and their use as protein and DNA carriers. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	15
213	Peroxidase-mediated biodegradation of carbon nanotubes in vitro and in vivo. Advanced Drug Delivery Reviews, 2013, 65, 1921-1932.	6.6	158
214	A microfluidic electrochemiluminescent device for detecting cancer biomarker proteins. Analytical and Bioanalytical Chemistry, 2013, 405, 3831-3838.	1.9	88
215	High performance flexible sensor based on inorganic nanomaterials. Sensors and Actuators B: Chemical, 2013, 176, 522-533.	4.0	77
216	Nanomaterials for bio-functionalized electrodes: recent trends. Journal of Materials Chemistry B, 2013, 1, 4878.	2.9	302
217	Quenching of the Electrochemiluminescence of Tris(2,2′-bipyridine)ruthenium(II)/Tri- <i>n</i> -propylamine by Pristine Carbon Nanotube and Its Application to Quantitative Detection of DNA. Analytical Chemistry, 2013, 85, 1711-1718.	3.2	77
218	Electrostatic Dimension of Aligned-Array Carbon Nanotube Field-Effect Transistors. ACS Nano, 2013, 7, 1299-1308.	7.3	15
219	Enhancement of heterogeneous electron transfer dynamics tuning single-walled carbon nanotube forest height and density. Electrochimica Acta, 2013, 97, 304-312.	2.6	5
220	Microelectrode arrays based on carbon nanomaterials: emerging electrochemical sensors for biological and environmental applications. RSC Advances, 2013, 3, 18698.	1.7	34
221	Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale, 2013, 5, 10702.	2.8	81
222	Electrogeneration of platinum nanoparticles in a matrix of dendrimer–carbon nanotubes. Physical Chemistry Chemical Physics, 2013, 15, 17887.	1.3	6
223	The Use of Silver Nanorod Array-Based Surface-Enhanced Raman Scattering Sensor for Food Safety Applications. ACS Symposium Series, 2013, , 85-108.	0.5	9
224	Assessing DNA damage from enzyme-oxidized single-walled carbon nanotubes. Toxicology Research, 2013, 2, 375-378.	0.9	13
225	Nanoscience-Based Electrochemical Sensors and Arrays for Detection of Cancer Biomarker Proteins. , 2013, , 1-26.		4
226	Electrochemical Analysis of Proteins. Springer Briefs in Molecular Science, 2013, , 19-42.	0.1	2
227	An enhanced impedance cytosensor based on folate conjugated-polyethylenimine-carbon nanotubes for tumor targeting. Electrochemistry Communications, 2013, 29, 4-7.	2.3	19
228	Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 2013, 49, 780-792.	2.6	1,742
229	Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013, 113, 1904-2074.	23.0	1,173

#	Article	IF	CITATIONS
230	Types of Nanomaterials and Corresponding Methods of Synthesis. , 2013, , 33-82.		20
231	Nanotechnology in glucose monitoring: Advances and challenges in the last 10 years. Biosensors and Bioelectronics, 2013, 47, 12-25.	5.3	235
232	Using Supramolecular Chemistry Strategy for Mapping Electrochemical Phenomena on the Nanoscale. , 2013, , 87-104.		0
233	Biosensors Based on Field-Effect Devices. , 2013, , 67-86.		2
234	Graphene-Based Chemical and Biosensors. Springer Series on Chemical Sensors and Biosensors, 2013, , 103-141.	0.5	9
235	Actuators based on liquid crystalline elastomer materials. Nanoscale, 2013, 5, 5225.	2.8	159
236	Effective Solubilization of Single-Walled Carbon Nanotubes in THF Using PEGylated Corannulene Dispersant. ACS Applied Materials & Interfaces, 2013, 5, 3500-3503.	4.0	12
237	A new hybrid signal amplification strategy for ultrasensitive electrochemical detection of DNA based on enzyme-assisted target recycling and DNA supersandwich assemblies. Chemical Communications, 2013, 49, 2052.	2.2	43
238	Detection of Subnanomolar Melamine Based on Electrochemical Accumulation Coupled with Enzyme Colorimetric Assay. Journal of Agricultural and Food Chemistry, 2013, 61, 1810-1817.	2.4	22
239	Multiplexed Electrochemical Protein Detection and Translation to Personalized Cancer Diagnostics. Analytical Chemistry, 2013, 85, 5304-5310.	3.2	113
240	The effect of single wall carbon nanotube metallicity on genomic DNA-mediated chirality enrichment. Nanoscale, 2013, 5, 4931.	2.8	5
241	Advances in point-of-care technologies with biosensors based on carbon nanotubes. TrAC - Trends in Analytical Chemistry, 2013, 45, 24-36.	5.8	105
242	Carbon Nanotubes-Based Label-Free Affinity Sensors for Environmental Monitoring. Applied Biochemistry and Biotechnology, 2013, 170, 1011-1025.	1.4	21
243	The Devil and Holy Water: Protein and Carbon Nanotube Hybrids. Accounts of Chemical Research, 2013, 46, 2454-2463.	7.6	136
244	Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 2013, 5, 7098.	2.8	610
245	Metallic Single-walled Carbon Nanotubes for Electrically Conductive Materials and Devices. RSC Nanoscience and Nanotechnology, 2013, , 182-211.	0.2	1
246	Signal Amplification Using Nanomaterials for Biosensing. Springer Series on Chemical Sensors and Biosensors, 2013, , 17-41.	0.5	2
248	Tunable Schottky barrier height and surface potential by using hydrogen ions. Applied Physics Letters, 2013, 103, .	1.5	5

#	Article	IF	CITATIONS
249	Progress in Imidazolium Ionic Liquids Assisted Fabrication of Carbon Nanotube and Graphene Polymer Composites. Polymers, 2013, 5, 847-872.	2.0	78
250	Accelerated colorimetric immunosensing using surface-modified porous monoliths and gold nanoparticles. Science and Technology of Advanced Materials, 2013, 14, 044403.	2.8	6
251	Ferroferric Oxide Magnetic Nanoparticles Carbon Nanotubes Nanocomposite-Based Electrochemical Sensor Applied for Detection of Bisphenol A. Advanced Materials Research, 0, 663, 297-302.	0.3	4
252	Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors. Nanomedicine, 2013, 8, 1839-1851.	1.7	16
253	SIMULTANEOUS CONCENTRATION AND DETECTION OF ESCHERICHIA COLI USING CARBON NANOTUBE DEVICES. Nano, 2013, 08, 1350056.	0.5	1
254	Empirical Prediction of Electronic Potentials of Single-Walled Carbon Nanotubes With a Specific Chirality (n,m). Scientific Reports, 2013, 3, 2959.	1.6	51
255	Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 629-643.	1.2	90
256	Implications of Electrical Crosstalk for High Density Aligned Array of Single-Wall Carbon Nanotubes. IEEE Transactions on Electron Devices, 2014, 61, 4273-4281.	1.6	7
257	A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors. Nanotechnology, 2014, 25, 045705.	1.3	0
259	Nanobiosensors: Role in Cancer Detection and Diagnosis. Advances in Experimental Medicine and Biology, 2014, 807, 33-58.	0.8	19
260	Biofunctionalized carbon nanotubes platform for biomedical applications. Materials Letters, 2014, 126, 126-130.	1.3	18
261	Water-in-oil microemulsion doped with gold nanoparticle decorated single walled carbon nanotube: Scaffold for enhancing lipase activity. Colloids and Surfaces B: Biointerfaces, 2014, 113, 442-449.	2.5	26
262	Functionalization Of Carbon Nanotubes With Metal Phthalocyanine For SELECTIVE Gas Sensing Application. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1551-1557.	0.6	23
263	25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices. Advanced Materials, 2014, 26, 40-67.	11.1	479
264	Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer. Chemical Science, 2014, 5, 416-426.	3.7	73
265	Electronic Detection of Bacteria Using Holey Reduced Graphene Oxide. ACS Applied Materials & Interfaces, 2014, 6, 3805-3810.	4.0	53
266	Nanomaterials and biomaterials in electrochemical arrays for protein detection. Journal of Materials Chemistry B, 2014, 2, 12-30.	2.9	53
267	Electron Transfer in a Supramolecular Associate of a Fullerene Fragment. Angewandte Chemie - International Edition, 2014, 53, 2170-2175.	7.2	52

	СПАНО		
#	Article	IF	Citations
268	Effects of ferrite catalyst concentration and water vapor on growth of vertically aligned carbon nanotube. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 045009.	0.7	7
270	Tuning the Electrocatalytic Efficiency of Heme-Protein Films by Controlled Immobilization on Pyrene-Functionalized Nanostructure Electrodes. Journal of the Electrochemical Society, 2014, 161, H47-H52.	1.3	12
271	Biological Application of Carbon Nanotubes and Graphene. , 2014, , 279-312.		10
272	Design of Surfactant–Substrate Interactions for Roll-to-Roll Assembly of Carbon Nanotubes for Thin-Film Transistors. Journal of the American Chemical Society, 2014, 136, 11188-11194.	6.6	60
273	Sequence Specific Detection of Restriction Enzymes at DNA-Modified Carbon Nanotube Field Effect Transistors. Analytical Chemistry, 2014, 86, 8628-8633.	3.2	14
274	Metal-free B-doped graphene with efficient electrocatalytic activity for hydrogen evolution reaction. Catalysis Science and Technology, 2014, 4, 2023-2030.	2.1	268
275	Carbon and fullerene nanomaterials in plant system. Journal of Nanobiotechnology, 2014, 12, 16.	4.2	210
276	Nanomaterials for Diagnosis: Challenges and Applications in Smart Devices Based on Molecular Recognition. ACS Applied Materials & Interfaces, 2014, 6, 14745-14766.	4.0	146
277	Incorporating a Hybrid Urease-Carbon Nanotubes Sensitive Nanofilm on Capacitive Field-Effect Sensors for Urea Detection. Analytical Chemistry, 2014, 86, 5370-5375.	3.2	40
278	Recent Investigations of Single Living Cells with Ultramicroelectrodes. , 2015, , 454-483.		2
279	Polymerâ€Decorated Carbon Nanotubes as Transducers for Labelâ€Free Photonic Biosensors. Chemistry - A European Journal, 2015, 21, 18649-18653.	1.7	5
280	Highly Sensitive Electrochemical Sensor for the Determination of 8-Hydroxy-2′-deoxyguanosine Incorporating SWCNTs-Nafion Composite Film. Journal of Sensors, 2015, 2015, 1-11.	0.6	14
281	Simultaneous detection of dopamine and ascorbic acid using silicate network interlinked gold nanoparticles and multi-walled carbon nanotubes. Sensors and Actuators B: Chemical, 2015, 210, 731-741.	4.0	49
282	Diazonium salt click chemistry based multiwall carbon nanotube electrocatalytic platforms. Sensors and Actuators B: Chemical, 2015, 211, 559-568.	4.0	12
283	Progress of new label-free techniques for biosensors: a review. Critical Reviews in Biotechnology, 2016, 36, 1-17.	5.1	159
284	Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosensors and Bioelectronics, 2015, 68, 288-294.	5.3	129
285	A nanopoint Schottky-gate array device: surface defect application and molecular detection. RSC Advances, 2015, 5, 16769-16773.	1.7	2
286	Covalent Attachment of Andersonâ€Type Polyoxometalates to Singleâ€Walled Carbon Nanotubes Gives Enhanced Performance Electrodes for Lithium Ion Batteries. Chemistry - A European Journal, 2015, 21, 6469-6474.	1.7	75

ARTICLE IF CITATIONS Electrooxidation and determination of perphenazine on a graphene oxide nanosheet-modified 287 1.7 16 electrode. RSC Advances, 2015, 5, 21005-21011. Gold Nanoparticles for In Vitro Diagnostics. Chemical Reviews, 2015, 115, 10575-10636. 23.0 Development of a novel nitrite electrochemical sensor by stepwise in situ formation of palladium and 289 1.7 114 reduced graphene oxide nanocomposites. RSC Advances, 2015, 5, 40111-40116. An ultrasensitive electrochemical immunosensor for CEA using MWCNT-NH₂ supported PdPt nanocages as labels for signal amplification. Journal of Materials Chemistry B, 2015, 3, 2006-2011. Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. Journal 291 2.7 79 of Materials Chemistry C, 2015, 3, 6445-6470. Fabrication of High-Performance Ultrathin In₂O₃ Film Field-Effect Transistors and Biosensors Using Chemical Lift-Off Lithography. ACS Nano, 2015, 9, 4572-4582. 7.3 Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During 293 3.1 10 Detection of DNA Hybridization. Nanoscale Research Letters, 2015, 10, 978. Nanomaterial-based approaches for the detection and speciation of mercury. Analyst, The, 2015, 140, 204 1.7 7841-7853. Creation of carbon nanotube based bioSensors through dielectrophoretic assembly. Proceedings of 295 0.8 1 SPIE, 2015, , . Ultrasensitive electrochemical assay of hydrogen peroxide and glucose based on PtNi alloy decorated 1.7 MWCNTs. RSC Advances, 2015, 5, 102877-102884. Electrochemical bisphenol A sensor based on coreâ€"shell multiwalled carbon nanotubes/graphene 297 4.057 oxide nanoribbons. Sensors and Actuators B: Chemical, 2015, 209, 275-280. Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta, 2015, 131, 424-443. Ultrasensitive electrochemical detection of DNA based on Zn 2+ assistant DNA recycling followed 299 5.3 78 with hybridization chain reaction dual amplification. Biosensors and Bioelectronics, 2015, 63, 425-431. Study on the Properties of Carbon Reinforced Unsaturated Thermoset Polyester Resin 0.4 Nanocomposites. SSRN Electronic Journal, 2016, , . Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically 301 1.0 0 Reduced Graphene Óxide. Bulletin of the Korean Chemical Society, 2016, 37, 276-281. Novel Electrochemical DNA Biosensors as Tools for Investigation and Detection of DNA Damage. Bioanalytical Reviews, 2016, , 203-221. 303 Synthesis and characterization of ultra-long straight carbon wires. Materials Letters, 2016, 175, 40-43. 1.30 304 Field-Effect Transistors for Detection of Biomolecular Recognition., 2016, , 13-25.

#	Article	IF	CITATIONS
305	Review of Recent Advances in Carbon Nanotube Biosensors Based on Field-Effect Transistors. Nano LIFE, 2016, 06, 1642006.	0.6	14
306	An efficient electrochemical sensor based on three-dimensionally interconnected mesoporous graphene framework for simultaneous determination of Cd(II) and Pb(II). Electrochimica Acta, 2016, 222, 1371-1377.	2.6	60
307	Preparation of a Corannulene-functionalized Hexahelicene by Copper(I)-catalyzed Alkyne-azide Cycloaddition of Nonplanar Polyaromatic Units. Journal of Visualized Experiments, 2016, , .	0.2	1
308	Printed Carbon Nanotube Electronics and Sensor Systems. Advanced Materials, 2016, 28, 4397-4414.	11.1	369
309	An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin. Biosensors and Bioelectronics, 2016, 85, 828-836.	5.3	76
310	Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors. Analytical Chemistry, 2016, 88, 1892-1899.	3.2	41
311	Overview of nano-enabled screening of drug-facilitated crime: A promising tool in forensic investigation. TrAC - Trends in Analytical Chemistry, 2016, 80, 458-470.	5.8	28
312	The Synthesis, Properties, and Applications of Heteroatom-Doped Graphenes. Advanced Structured Materials, 2016, , 103-133.	0.3	3
313	Materiomics for Oral Disease Diagnostics and Personal Health Monitoring: Designer Biomaterials for the Next Generation Biomarkers. OMICS A Journal of Integrative Biology, 2016, 20, 12-29.	1.0	4
314	Multifunctional Reduced Graphene Oxide (RGO)/Fe3O4/CdSe Nanocomposite for Electrochemiluminescence Immunosensor. Electrochimica Acta, 2016, 190, 948-955.	2.6	20
315	Biosensor-based detection of tuberculosis. RSC Advances, 2016, 6, 17759-17771.	1.7	56
316	Room temperature gas sensing properties of ultrathin carbon nanotube films by surfactant-free dip coating. Sensors and Actuators B: Chemical, 2016, 227, 128-134.	4.0	59
317	Nanomaterials-Embedded Liquid Crystal Elastomers in Electronics Devices Application. Springer Series on Polymer and Composite Materials, 2016, , 365-390.	0.5	1
318	Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Materials Research Bulletin, 2016, 73, 308-350.	2.7	148
319	Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere, 2016, 143, 85-98.	4.2	170
320	Highly sensitive amperometric sensing of nitrite utilizing bulk-modified MnO 2 decorated Graphene oxide nanocomposite screen-printed electrodes. Electrochimica Acta, 2017, 227, 255-266.	2.6	91
321	DNA-wrapped multi-walled carbon nanotube modified electrochemical biosensor for the detection of Escherichia coli from real samples. Talanta, 2017, 166, 27-35.	2.9	51
322	Determining the Optimized Layer-by-Layer Film Architecture With Dendrimer/Carbon Nanotubes for Field-Effect Sensors. IEEE Sensors Journal, 2017, 17, 1735-1740.	2.4	9

	CITATION	Report	
#	Article	IF	CITATIONS
324	Dependence of carbon nanotubes dispersion kinetics on surfactants. Nanotechnology, 2017, 28, 135702.	1.3	14
325	3.31 Carbon Nanotube-Based Sensors: Overview â~ț. , 2017, , 690-702.		1
326	Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA. Biosensors and Bioelectronics, 2017, 96, 99-105.	5.3	41
327	A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine. Materials Science and Engineering C, 2017, 80, 180-186.	3.8	28
328	Adsorptive anodic stripping differential pulse voltammetric determination of CellCept at Fe3O4 nanoparticles decorated multi-walled carbon nanotubes modified glassy carbon electrode. Analytical Biochemistry, 2017, 520, 1-8.	1.1	12
329	Amperometric Sensors Based on Carbon Nanotubes in Layer-by-Layer Films. Springer Series on Chemical Sensors and Biosensors, 2017, , 239-259.	0.5	1
330	Designing of a new label-free electrochemical impedimetric nanosensor based on selective interaction sequence of I-lysine with activase kringle domains for sensitive detection of activase protein. Journal of Molecular Liquids, 2017, 248, 60-65.	2.3	3
331	Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. Journal of Materials Science, 2017, 52, 12314-12325.	1.7	29
332	Amphiphile-Mediated Ultrasmall Aggregation Induced Emission Dots for Ultrasensitive Fluorescence Biosensing. Analytical Chemistry, 2017, 89, 9100-9107.	3.2	90
333	Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition. Topics in Current Chemistry, 2017, 375, 90.	3.0	40
334	Single-Walled Carbon Nanotube Sensor Concepts. Springer Handbooks, 2017, , 431-456.	0.3	1
335	Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bulletin, 2017, 42, 825-833.	1.7	14
336	Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosensors and Bioelectronics, 2017, 98, 267-284.	5.3	42
337	Enhanced in-plane mechanical properties of nanoporous graphene-carbon nanotube network. Journal of Applied Physics, 2017, 121, .	1.1	6
338	The Impact of Nanomedicine on Rotator Cuff Lesions: A Future Outlook. , 2017, , 361-367.		0
339	Carbon-Based Nanomaterials. , 2017, , 233-249.		34
340	Disease-Related Detection with Electrochemical Biosensors: A Review. Sensors, 2017, 17, 2375.	2.1	112
341	Modeling the Sensing Activity of Carbon Nanotubes Functionalized with the Carboxyl, Amino, or Nitro Group Toward Alkali Metals. Russian Microelectronics, 2017, 46, 580-584.	0.1	3

#	Article	IF	CITATIONS
342	Chemiresistive Sensors for Thrombin Assay Based on Nanosize Carbon Nanotube Films on Flexible Supports. Bio-Medical Engineering, 2018, 51, 377-380.	0.3	1
344	Preparation of single walled carbon nanotube-pyrene 3D hybrid nanomaterial and its sensor response to ammonia. Sensors and Actuators B: Chemical, 2018, 256, 853-860.	4.0	32
345	Metal-organic framework as luminescence turn-on sensor for selective detection of metal ions: Absorbance caused enhancement mechanism. Sensors and Actuators B: Chemical, 2018, 256, 839-845.	4.0	116
346	Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon, 2018, 129, 380-395.	5.4	135
347	Large tunability in the mechanical and thermal properties of carbon nanotube-fullerene hierarchical monoliths. Nanoscale, 2018, 10, 22166-22172.	2.8	7
348	Laser-Cut Polymer Tape Templates for Scalable Filtration Fabrication of User-Designed and Carbon-Nanomaterial-Based Electrochemical Sensors. ACS Sensors, 2018, 3, 2518-2525.	4.0	16
349	New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes. Applied Sciences (Switzerland), 2018, 8, 1925.	1.3	86
350	Chirality-sorted carbon nanotube films as high capacity electrode materials. RSC Advances, 2018, 8, 30600-30609.	1.7	9
351	An electroanalytical method for the determination of phentolamine mesilate at a PSS-MWCNT modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 2018, 822, 89-94.	1.9	3
352	Scanning Techniques for Nanobioconjugates of Carbon Nanotubes. Scanning, 2018, 2018, 1-19.	0.7	7
353	Necklace-like Molecularly Imprinted Nanohybrids Based on Polymeric Nanoparticles Decorated Multiwalled Carbon Nanotubes for Highly Sensitive and Selective Melamine Detection. ACS Applied Materials & Interfaces, 2018, 10, 24850-24859.	4.0	44
354	Electroanalytical Bioplatforms Based on Carbon Nanostructures as New Tools for Diagnosis. , 2018, , 269-306.		1
355	Reconfigurable Carbon Nanotube Multiplexed Sensing Devices. Nano Letters, 2018, 18, 4130-4135.	4.5	52
356	Voltammetric measurements of neurotransmitter-acetylcholine through metallic nanoparticles embedded 2-D material. International Journal of Biological Macromolecules, 2019, 140, 415-422.	3.6	15
357	Detection of bovine serum albumin using hybrid TiO2 + graphene oxide based Bio – resistive random access memory device. Scientific Reports, 2019, 9, 16141.	1.6	29
358	Vertically aligned multi-walled carbon nanotubes based flexible immunosensor for extreme low level detection of multidrug resistant leukemia cells. Sensors and Actuators B: Chemical, 2019, 301, 127047.	4.0	15
359	Growth of ZIF-8 on molecularly ordered 2-methylimidazole/single-walled carbon nanotubes to form highly porous, electrically conductive composites. Chemical Science, 2019, 10, 737-742.	3.7	34
360	Self-Assembled Supramolecular Ribbon-Like Structures Complexed to Single Walled Carbon Nanotubes as Possible Anticancer Drug Delivery Systems. International Journal of Molecular Sciences, 2019, 20, 2064.	1.8	13

	Сітатіо	CITATION REPORT	
#	ARTICLE Templating effect of carbon nanoforms on highly crossâ€ i inked imidazolium network: Catalytic activity	IF	CITATIONS
361	of the resulting hybrids with Pd nanoparticles. Applied Organometallic Chemistry, 2019, 33, e4848.	1.7	16
362	Nanomaterials-Based Colorimetric Immunoassays. Nanomaterials, 2019, 9, 316.	1.9	64
363	Permselective glucose sensing with GLUT1-rich cancer cell membranes. Biosensors and Bioelectronics, 2019, 135, 82-87.	5.3	22
364	Quantum conductance investigation on carbon nanotube–based antibiotic sensor. Journal of Solid State Electrochemistry, 2019, 23, 1641-1650.	1.2	13
365	Polymeric Nanobiosensors. , 2019, , 151-181.		1
366	Vertically aligned laser sliced MWCNTs. Nanoscale, 2019, 11, 21394-21403.	2.8	11
367	Electrochemical detection of different p53 conformations by using nanostructured surfaces. Scientific Reports, 2019, 9, 17347.	1.6	17
368	Nanoâ€sensor Based on MoS ₂ Nanosheet mixed with Au quantum dot: Role of Layer Number and Temperature. Electroanalysis, 2019, 31, 422-427.	1.5	5
369	Dopamine sensing by boron and nitrogen co-doped single-walled carbon nanotubes: A first-principles study. Applied Surface Science, 2019, 473, 59-64.	3.1	28
370	Carbon Nanotubes as Biological Transporters and Tissue-Engineering Scaffolds. , 2019, , 135-156.		4
371	Carbon nanotube-based sensors and their application. , 2020, , 265-291.		5
372	Fabrication of an Impedimetric Immunosensor for Screening and Determination of Vincristine in Biological Samples. Journal of Analytical Chemistry, 2020, 75, 1094-1101.	0.4	3
373	Bacteria mediated Fenton-like reaction drives the biotransformation of carbon nanomaterials. Science of the Total Environment, 2020, 746, 141020.	3.9	17
374	Advances in Electrochemical Aptasensors Based on Carbon Nanomaterials. Chemosensors, 2020, 8, 96.	1.8	33
375	Printed Electrodes in Microfluidic Arrays for Cancer Biomarker Protein Detection. Biosensors, 2020, 10, 115.	2.3	19
376	Methane decomposition to pure hydrogen and carbon nano materials: State-of-the-art and future perspectives. International Journal of Hydrogen Energy, 2020, 45, 15721-15743.	3.8	75
377	Investigation on visible light assisted gas sensing ability of multi-walled carbon nanotubes coated with pyrene based organic molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114232.	1.3	17
378	Fabrication and Operating Mechanism of Deepâ€UV Transparent Semiconducting SrSnO ₃ â€Based Thin Film Transistor. Advanced Electronic Materials, 2020, 6, 2000100.	2.6	8

#	Article	IF	CITATIONS
379	A label-free electrochemical DNA biosensor for kanamycin detection based on diblock DNA with poly-cytosine as a high affinity anchor on graphene oxide. Analytical Methods, 2020, 12, 3462-3469.	1.3	13
380	Lanthanide-doped orthometallate phosphors. , 2020, , 113-234.		1
381	Nanocomposite materials for nano-electronic-based Internet of things sensors and energy device signaling. , 2020, , 243-290.		2
382	The role of nanomaterials on the cancer cells sensing based on folate receptor: Analytical approach. TrAC - Trends in Analytical Chemistry, 2020, 125, 115834.	5.8	33
383	A Review of Carbon Nanotubes Field Effect-Based Biosensors. IEEE Access, 2020, 8, 69509-69521.	2.6	45
384	Applications of advanced materials in bio-sensing in live cells: Methods and applications. Materials Science and Engineering C, 2021, 121, 111691.	3.8	6
385	Resonance structures and aromaticity in capped carbon nanotubes. Carbon, 2021, 173, 1082-1092.	5.4	3
386	Surface functionalization of CNTs by a nitro group as a sensor device element: theoretical research. Journal of Advanced Materials and Technologies, 2021, 6, 113-121.	0.2	0
387	Monitoring and sampling of functionalized nanomaterials (FNMs). , 2021, , 267-278.		0
388	Classification and application of nanomaterials for foodborne pathogens analysis. , 2021, , 79-99.		0
389	Nanostructure-Based Electrochemical Immunosensors as Diagnostic Tools. Electrochem, 2021, 2, 10-28.	1.7	21
390	Heterogeneous Growth of UiO-66-NH ₂ on Oxidized Single-Walled Carbon Nanotubes to Form "Beads-on-a-String―Composites. ACS Applied Materials & Interfaces, 2021, 13, 15482-15489.	4.0	7
391	Porous biomass carbon and gold nanoparticles modified electrode for myoglobin direct electrochemistry and electrocatalysis. Journal of the Chinese Chemical Society, 2021, 68, 2006-2012.	0.8	8
392	Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices. Angewandte Chemie - International Edition, 2021, 60, 20184-20189.	7.2	15
393	Tuning Electrostatic Gating of Semiconducting Carbon Nanotubes by Controlling Protein Orientation in Biosensing Devices. Angewandte Chemie, 2021, 133, 20346-20351.	1.6	3
394	Detailed electrochemical behavior and thermodynamic parameters of anticancer drug regorafenib and its sensitive electroanalytical assay in biological and pharmaceutical samples. Microchemical Journal, 2021, 170, 106717.	2.3	5
395	Directed assembly of multiplexed single chirality carbon nanotube devices. Journal of Applied Physics, 2021, 129, .	1.1	7
396	Polymers Based on Carbon Nanotubes. , 0, , 271-303.		1

#	Article	IF	CITATIONS
397	Temperature and pH-Responsive "Smart―Carbon Nanotube Dispersions. Methods in Molecular Biology, 2010, 625, 27-38.	0.4	6
398	Applications of Carbon Nanotubes in Biomedical Studies. Methods in Molecular Biology, 2011, 726, 223-241.	0.4	16
399	Comparative Analysis of the Effectiveness of the Sensory Properties of Carbon Nanotubes When Modifying Their Surface with Boron Atoms. Lecture Notes in Networks and Systems, 2021, , 288-296.	0.5	4
400	Fullerenes and Carbon Nano-onions for Environmental Application. Lecture Notes in Nanoscale Science and Technology, 2014, , 145-158.	0.4	2
401	Single-Walled Carbon Nanotube Sensor Concepts. , 2010, , 403-425.		9
403	Ultrathin films of functionalised single-walled carbon nanotubes: a potential bio-sensing platform. Liquid Crystals, 2020, 47, 1204-1213.	0.9	13
404	Effect of precursor pH on AuNP/MWCNT nanocomposites synthesized by plasma-induced non-equilibrium electrochemistry. Journal Physics D: Applied Physics, 2020, 53, 425207.	1.3	4
405	DNA-functionalized single-walled carbon nanotube-based sensor array for gas monitoring. Smart Structures and Systems, 2013, 12, 73-95.	1.9	6
406	DNA-Functionalized Single-Walled Carbon Nanotube-Based Sensor Array for Breath Analysis. International Journal of Electronics and Electrical Engineering, 2016, , 177-180.	0.2	5
407	Electrochemical Detection of ct-dsDNA on Nanomaterial-modified Carbon Based Electrodes. Current Analytical Chemistry, 2019, 15, 305-312.	0.6	5
408	DNA Biosensing Using Field Effect Transistors. Current Physical Chemistry, 2011, 1, 276-291.	0.1	8
409	New trends in NanoBio-Sensing. Drug Delivery System, 2011, 26, 15-19.	0.0	1
410	Covalent Functionalization for Multi-walled Carbon Nanotube (f-MWCNT)-Folic Acid Bound Bioconjugate. Journal of Applied Sciences, 2011, 11, 2700-2711.	0.1	26
411	Nanomaterials: Applications in the diagnosis and treatment of pancreatic cancer. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2020, 11, 1-7.	0.6	8
412	Quercetin Delivery into Cancer Cells with Single Walled Carbon Nanotubes. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2011, , 21-25.	0.2	3
413	Coumarin-embedded MOF UiO-66 as a selective and sensitive fluorescent sensor for the recognition and detection of Fe ³⁺ ions. Journal of Materials Chemistry C, 2021, 9, 16978-16984.	2.7	32
414	Hybrid Film Biosensor for Phenolic Compounds Detection. , 0, , .		0
415	Aptamer–Nanomaterial Conjugates for Medical Applications. , 2013, , 29-60.		0

#	Article	IF	CITATIONS
416	Synthesis, Modification and Characterization of Nanocarbon Electrodes for Determination of Nucleic Acids. , 2015, , 1-35.		0
417	Synthesis, Modification, and Characterization of Nanocarbon Electrodes for Determination of Nucleic Acids. , 2016, , 241-281.		0
418	Continuous glucose monitoring technologies: state of the art and future perspectives in view of artificial pancreas. Problemy Endokrinologii, 2015, 61, 54-72.	0.2	3
420	Carbon Nanomaterials in Electrochemical Detection. RSC Detection Science, 2018, , 150-199.	0.0	1
421	COMPARISON OF SENSOR ACTIVITY IN CARBON NANOTUBES MODIFIED WITH FUNCTIONAL GROUPS. Izvestiya Vysshikh Uchebnykh Zavedenii Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering, 2018, 19, 204-209.	0.1	1
422	CHAPTER 3. Properties and Applications of Carbon Nanotubes. RSC Nanoscience and Nanotechnology, 2021, , 164-239.	0.2	0
423	Electrochemical nitrite sensing employing palladium oxide–reduced graphene oxide (PdO-RGO) nanocomposites: application to food and environmental samples. Ionics, 2022, 28, 927-938.	1.2	9
424	Fabrication and Operating Mechanism of Deep-UV Transparent Semiconducting SrSnO ₃ -based Thin Film Transistor. , 2020, , .		Ο
425	Effect of benzophenone on the physicochemical properties of N-CNTs synthesized from 1-ferrocenylmethyl (2-methylimidazole) catalyst. Journal of the Nigerian Society of Physical Sciences, 0, , 205-217.	0.0	0
427	A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BioMed Research International, 2022, 2022, 1-20.	0.9	18
428	Liquid crystal polymer nanocomposites: Challenges and opportunities. , 2022, , 1-22.		1
429	Liquid crystalline elastomer based nanocomposites. , 2022, , 23-67.		0
430	Multi-walled carbon nanotubes improve nitrogen use efficiency and nutritional quality in <i>Brassica campestris</i> . Environmental Science: Nano, 2022, 9, 1315-1329.	2.2	4
431	Bacterial Vaginosis Monitoring with Carbon Nanotube Field-Effect Transistors. Analytical Chemistry, 2022, 94, 3849-3857.	3.2	5
432	Production of hydrogen and value-added carbon materials by catalytic methane decomposition: a review. Environmental Chemistry Letters, 2022, 20, 2339-2359.	8.3	23
434	Platinum-Based Nanocomposite Pt@BSA as an Efficient Electrochemical Biosensing Interface for Rapid and Ultrasensitive Determination of Folate Receptor-Positive Tumor Cells. ACS Applied Bio Materials, 2022, 5, 3038-3048.	2.3	4
435	Electrochemiluminescence Sensors in Bioanalysis. , 2023, , 317-340.		5
436	Applications of Miniaturized Electrochemical Biosensors. , 2022, , .		0

#	Article	IF	CITATIONS
437	Electrochemical determination of paracetamol by SWCNT-modified carbon paste electrode: a cyclic voltammetric study. Carbon Letters, 2022, 32, 1287-1295.	3.3	4
438	Depolymerizable Polyimines Triggered by Heat or Acid as Binders for Conductive Inks. ACS Applied Polymer Materials, 2022, 4, 4912-4918.	2.0	3
439	Cellular Biological and Molecular Genetic Effects of Carbon Nanomaterials in Plants. Cytology and Genetics, 2022, 56, 351-360.	0.2	0
440	A nanosecond pulsed laser-ablated MWCNT-Au heterostructure: an innovative ultra-sensitive electrochemical sensing prototype for the identification of glutathione. Analyst, The, 2022, 147, 3894-3907.	1.7	4
441	Innovations in the synthesis of graphene nanostructures for bio and gas sensors. , 2023, 145, 213234.		9
442	An advanced 3D gel cathode with continuous ion and electron transport pathway for solid-state lithium batteries. Electrochimica Acta, 2023, 441, 141811.	2.6	1
443	Development of Nafion/single-walled carbon nanotube integrated arrays for the rapid detection of salbutamol doping. Analytica Chimica Acta, 2023, 1249, 340907.	2.6	4
444	Fabrication of Vinyl Functionalised Multiwalled Carbon Nanotubes for the Removal of Organic Pollutant. Advanced Materials Research, 0, 1175, 63-72.	0.3	0
445	Luminescent Guests Encapsulated in Metal–Organic Frameworks for Portable Fluorescence Sensor and Visual Detection Applications: A Review. Biosensors, 2023, 13, 435.	2.3	7
446	Functionalized nanofiber-based drug delivery systems and biosensing devices. , 2023, , 211-251.		2
454	Carbon-based coatings: Synthesis and applications. , 2023, , .		0
458	Methane conversion for hydrogen production: technologies for a sustainable future. Sustainable Energy and Fuels, 2024, 8, 670-683.	2.5	0
459	Nanobiosensing disease diagnostics for in vivo applications. , 2024, , 179-206.		0

Nanobiosensing disease diagnostics for in vivo applications. , 2024, , 179-206. 459