CITATION REPORT List of articles citing

Luminescent Open Metal Sites within a MetalOrganic Framework for Sensing Small Molecules

DOI: 10.1002/adma.200601838 Advanced Materials, 2007, 19, 1693-1696.

Source: https://exaly.com/paper-pdf/42600490/citation-report.pdf

Version: 2024-04-19

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
875	Sensing and Discrimination of Explosives at Variable Concentrations with a Large-Pore MOF as Part of a Luminescent Array.		
874	Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. 2008 , 47, 1080-3		367
873	A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. 2008 , 47, 7741-5		276
872	Functionalized coordination space in metal-organic frameworks. 2008, 47, 8164-8		83
871	Metal®rganic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Use as Sensors. 2008 , 120, 1096-1099		69
870	A Comparison of the H2 Sorption Capacities of Isostructural Metal@rganic Frameworks With and Without Accessible Metal Sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. 2008 , 120, 7855-7859		42
869	Funktionalisierter Koordinationsraum in metall-organischen Gersten. 2008 , 120, 8285-8289		25
868	Syntheses and functions of porous metallosupramolecular networks. <i>Coordination Chemistry Reviews</i> , 2008 , 252, 1007-1026	23.2	364
867	Design, synthesis and characterization of a Pt-Gd metal-organic framework containing potentially catalytically active sites. <i>Dalton Transactions</i> , 2008 , 2054-60	4.3	74
866	Synthesis and structural characterisation of lanthanide coordination polymers featuring 4,4?,6,6?-tetra-carboxy-2,2?-bipyridine and rare network topology. <i>CrystEngComm</i> , 2008 , 10, 1018	3.3	31
865	Coordination networks from a bifunctional molecule containing carboxyl and thioether groups. <i>Inorganic Chemistry</i> , 2008 , 47, 7459-61	5.1	40
864	Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. 2008 , 130, 6119-30		319
863	New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands. 2008 , 20, 7377-7382		87
862	A luminescent microporous metal-organic framework for the recognition and sensing of anions. 2008 , 130, 6718-9		918
861	Zinc(II) coordination architectures with two bulky anthracene-based carboxylic ligands: crystal structures and luminescent properties. <i>CrystEngComm</i> , 2008 , 10, 681	3.3	96
860	Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. 2008 , 130, 6411-23		408
859	Proton and water activity-controlled structure formation in zinc carboxylate-based metal organic frameworks. 2008 , 112, 7567-76		130

(2009-2008)

858	Novel luminescent metal-organic frameworks [Eu2L3(DMSO)2(MeOH)2] x 2 DMSO x 3 H2O and [Zn2L2(DMSO)2] x 1.6 H2O (L = 4,4'-ethyne-1,2-diyldibenzoate). <i>Inorganic Chemistry</i> , 2008 , 47, 6329-35	5.1	47
857	Ionothermal synthesis of homochiral framework with acetate-pillared cobalt-camphorate architecture. <i>Inorganic Chemistry</i> , 2008 , 47, 5567-9	5.1	82
856	"Clickable" metal-organic framework. 2008 , 130, 14354-5		251
855	Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(I)/Cu(I) 3,3',5,5'-tetrametyl-4,4'-bipyrazolate. 2008 , 130, 907-17		313
854	A porous chiral lanthanide Metal-Organic Framework with high thermal stability. 2008, 451-454		6
853	New 1D and 2D metal oxygen connectivities in Cu(II) succinato and glutarato coordination polymers: [Cu3(H2O)2(OH)2(C4H4O4)2] [I4H2O, [Cu4(H2O)2(OH)4(C4H4O4)2] [I5H2O and [Cu5(OH)6(C5H6O4)2] [I4H2O. 2008 , 61, 3420-3437		12
852	CuCN Pillars Induce Face-to-Face EDverlap of Anthracene-Based Thioether Molecules within a Hybrid Coordination Network. 2008 , 8, 1468-1470		13
851	Reversible anion exchange and sensing in large porous materials built from 4,4'-bipyridine via pipi and H-bonding interactions. <i>Inorganic Chemistry</i> , 2008 , 47, 5122-8	5.1	57
850	Cooperative self-assembly of chiral L-malate and achiral succinate in the formation of a three-dimensional homochiral framework. <i>Inorganic Chemistry</i> , 2008 , 47, 8607-9	5.1	29
849	The Use of Metalloligands in Metal-Organic Frameworks. 2009 , 335-378		57
848	Crystal structure of bis(diaqua-bis(1,10-phenanthroline)zinc(II)) hexaaquazinc(II) bis(1,3,5-benzenetricarboxylate) hydrate, [Zn(H2O)2(C12H8N2)2]2[Zn(H2O)6](C9H3O6)2 [] 19.5H2O. 2009 , 224, 399-401		1
847	Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. 2009 , 19, 1537-1552		748
846	A Luminescent Microporous Metal®rganic Framework for the Fast and Reversible Detection of High Explosives. 2009 , 121, 2370-2374		154
845	A Luminescent Metal©rganic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. 2009 , 121, 508-511		155
844	Lanthanide Metal-Organic Frameworks as Ziegler Natta Catalysts for the Selective Polymerization of Isoprene. 2009 , 210, 1923-1932		63
843	A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Self-Assembled Europium(III) Metal D rganic Framework. 2009 , 121, 6598-6601		35
842	Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. 2009 , 121, 9106-9109		34
841	A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. 2009 , 48, 2334-8		1106

840	A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. 2009 , 48, 500-3		980
839	A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. 2009 , 48, 6476-9		293
838	Oxidative addition of halogens on open metal sites in a microporous spin-crossover coordination polymer. 2009 , 48, 8944-7		151
837	Determination of absolute adsorption in highly ordered porous media. 2009 , 603, 1979-1984		52
836	A rare 3D lanthanide metal b rganic framework with the rutile topology: Synthesis, structure and properties. <i>Journal of Molecular Structure</i> , 2009 , 931, 25-30	3.4	10
835	Nanoporous metal organic framework materials for hydrogen storage. 2009 , 7, 129-140		44
834	Yttrium-succinates coordination polymers: Hydrothermal synthesis, crystal structure and thermal decomposition. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 3365-3373	3.3	11
833	Molecular engineering for synthesizing novel structures of metal b rganic frameworks with multifunctional properties. <i>Coordination Chemistry Reviews</i> , 2009 , 253, 2891-2911	23.2	583
832	Two d10 coordination polymers based on 4,4?-(hexafluoroisopropylidene)diphthalic acid: Syntheses, structures and physical properties. 2009 , 12, 498-501		2
831	Room-temperature synthesis and luminescence properties of Eu3+/Tb3+-doped La(1,3,5-BTC)(H2O)6. 2009 , 12, 1246-1249		29
831			29 4177
	La(1,3,5-BTC)(H2O)6. 2009 , 12, 1246-1249	5.8	
830	La(1,3,5-BTC)(H2O)6. 2009, 12, 1246-1249 Luminescent metal-organic frameworks. 2009, 38, 1330-52 Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties.	5.8	4177
830 829	La(1,3,5-BTC)(H2O)6. 2009, 12, 1246-1249 Luminescent metal-organic frameworks. 2009, 38, 1330-52 Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. Chemical Communications, 2009, 4506-8		4177
830 829 828	Luminescent metal-organic frameworks. 2009, 38, 1330-52 Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. Chemical Communications, 2009, 4506-8 Selective gas adsorption and separation in metal-organic frameworks. 2009, 38, 1477-504		4177 125 6570
830 829 828 827	Luminescent metal-organic frameworks. 2009, 38, 1330-52 Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. Chemical Communications, 2009, 4506-8 Selective gas adsorption and separation in metal-organic frameworks. 2009, 38, 1477-504 Doping of metal-organic frameworks with functional guest molecules and nanoparticles. 2010, 293, 77-10. New heterometallic carboxylate frameworks: synthesis, structure, robustness, flexibility, and	-113	4177 125 6570 28
8 ₃ 0 8 ₂ 9 8 ₂ 8 8 ₂ 7	La(1,3,5-BTC)(H2O)6. 2009, 12, 1246-1249 Luminescent metal-organic frameworks. 2009, 38, 1330-52 Near-infrared emitting ytterbium metal-organic frameworks with tunable excitation properties. Chemical Communications, 2009, 4506-8 Selective gas adsorption and separation in metal-organic frameworks. 2009, 38, 1477-504 Doping of metal-organic frameworks with functional guest molecules and nanoparticles. 2010, 293, 77. New heterometallic carboxylate frameworks: synthesis, structure, robustness, flexibility, and porosity. Inorganic Chemistry, 2009, 48, 7970-6 Structural Diversity in Coordination Polymers Composed of Divalent Transition Metals,	-113	4177 125 6570 28 27

(2009-2009)

822	Polymorphism and inclusion properties of three-dimensional metal-organometallic frameworks derived from a terephthalate sandwich compound. <i>Inorganic Chemistry</i> , 2009 , 48, 6860-72	5.1	23
821	Lanthanide-based luminescent hybrid materials. 2009 , 109, 4283-374		2680
820	In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues. 2009 , 81, 9771-7		315
819	Absolute helicity induction in three-dimensional homochiral frameworks. <i>Chemical Communications</i> , 2009 , 206-8	5.8	94
818	Isomeric zinc(II) triazolate frameworks with 3-connected networks: syntheses, structures, and sorption properties. <i>Inorganic Chemistry</i> , 2009 , 48, 3882-9	5.1	87
817	Three-dimensional lanthanide anionic metal-organic frameworks with tunable luminescent properties induced by cation exchange. <i>Inorganic Chemistry</i> , 2009 , 48, 6997-9	5.1	251
816	Coordination-Induced Formation of One-Dimensional Nanostructures of Europium Benzene-1,3,5-tricarboxylate and Its Solid-State Thermal Transformation. 2009 , 9, 3519-3524		76
815	Shape-Selective Sorption and Fluorescence Sensing of Aromatics in a Flexible Network of Tetrakis[(4-methylthiophenyl)ethynyl]silane and AgBF4. 2009 , 21, 541-546		46
814	In situ tetrazole ligand synthesis leading to a microporous cadmium-organic framework for selective ion sensing. <i>Chemical Communications</i> , 2009 , 5415-7	5.8	136
813	Reversible uptake of HgCl2 in a porous coordination polymer based on the dual functions of carboxylate and thioether. <i>Chemical Communications</i> , 2009 , 5439-41	5.8	85
812	Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. 2009 , 38, 1400-17		1527
811	Single- and Multicomponent Vapor-Phase Adsorption of Xylene Isomers and Ethylbenzene in a Microporous Metal (Drganic Framework. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13173-13179	3.8	81
810	Five related metal-organic frameworks constructed from [Ln2(SO4)2(H2O)n]2+ units and oxalate or acetate ligands. <i>Dalton Transactions</i> , 2009 , 3447-56	4.3	18
809	A novel metal-organic coordination polymer for selective adsorption of CO2 over CH4. <i>Chemical Communications</i> , 2009 , 2493-5	5.8	143
808	Microporous Metal Organic Framework Membrane on Porous Support Using the Seeded Growth Method. 2009 , 21, 4920-4924		290
807	Porous Metal Organic Frameworks. 2009, 77-99		9
806	Modeling, structural, and spectroscopic studies of lanthanide-organic frameworks. 2009 , 113, 12181-8		56
805	Selective gas adsorption in a microporous metal-organic framework constructed of CoII4 clusters. <i>Chemical Communications</i> , 2009 , 2296-8	5.8	164

804	Lanthanide Contraction and Temperature-Dependent Structures of Lanthanide Coordination Polymers with Imidazole-4,5-Dicarboxylate and Oxalate. 2010 , 10, 4310-4318	118	
803	Metal organic frameworks assembled from Y(III), Na(I), and chiral flexible-achiral rigid dicarboxylates. <i>Inorganic Chemistry</i> , 2010 , 49, 7917-26	34	
802	Metal-organic frameworks with functional pores for recognition of small molecules. 2010 , 43, 1115-24	179	7
801	Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. 2010 , 132, 5586-7	567	
800	A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core. 2010 , 132, 4119-30	411	
799	A Series of Lanthanide Metal©rganic Frameworks Based on Biphenyl-3,4?,5-tricarboxylate: Syntheses, Structures, Luminescence and Magnetic Properties. 2010 , 2010, 3842-3849	83	
79 ⁸	Accelerated Syntheses of Porous Isostructural LanthanideBenzenetricarboxylates (LnBTC) Under Ultrasound at Room Temperature. 2010 , 2010, 4975-4981	56	
797	Flexible and Redox-Active Coordination Polymer: Control of the Network Structure by Pendant Arms of a Macrocyclic Complex. 2010 , 2010, 3795-3803	27	
796	The construction of open Gd(III) metal-organic frameworks based on methanetriacetic acid: new objects with an old ligand. <i>Chemistry - A European Journal</i> , 2010 , 16, 4037-47	36	
795	In Situ Synthesis of an Imidazolate-4-amide-5-imidate Ligand and Formation of a Microporous ZincDrganic Framework with H2-and CO2-Storage Ability. 2010 , 122, 1280-1284	30	
794	Open Metal Sites within Isostructural Metal Drganic Frameworks for Differential Recognition of Acetylene and Extraordinarily High Acetylene Storage Capacity at Room Temperature. 2010 , 122, 4719-472	22 61	
793	In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2- and CO2-storage ability. 2010 , 49, 1258-62	1 2 0	
79 ²	Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature. 2010 , 49, 4615-8	304	
791	Metal-containing polymers: building blocks for functional (nano)materials. 2010 , 31, 331-50	102	
790	Optical properties of red, green and blue emitting rare earth benzenetricarboxylate compounds. 2010 , 130, 283-291	58	
789	A novel porous coordination polymer based on rigid and flexible organic ligands. 2010 , 13, 514-517	6	
788	Doubly interpenetrated hms-type metal organic framework formed by perfect face-to-face II stacking interactions. 2010 , 13, 1429-1431	11	
787	. 2010,	128	

786 Metal-Organic Framework Materials. 2010, 1-67 A luminescent nano-scale metal-organic framework for sensing small molecules. 2010, 785 784 Luminescent Rare Earth Complexes as Chemosensors and Bioimaging Probes. 2010, 529-570 6 Tunable emission from a porous metal-organic framework by employing an excited-state 783 5.8 151 intramolecular proton transfer responsive ligand. Chemical Communications, 2010, 46, 7906-8 Two cationic metal-organic frameworks based on cadmium and Halkanedisulfonate anions and 782 4.3 15 their photoluminescent properties. Dalton Transactions, 2010, 39, 11193-200 Metal-organic frameworks as sensors: a ZIF-8 based Fabry-PEot device as a selective sensor for 781 875 chemical vapors and gases. **2010**, 132, 7832-3 A series of three-dimensional lanthanide metal Brganic frameworks with 780 biphenylethene-4,4?-dicarboxylic acid: Hydrothermal syntheses and structures. CrystEngComm, 3.3 40 2010, 12, 1526 Rational Assembly of d10 Metal Organic Frameworks with Helical Nanochannels Based on Flexible 84 V-Shaped Ligand. 2010, 10, 806-811 Hierarchically Nanostructured Coordination Polymer: Facile and Rapid Fabrication and Tunable 778 128 Morphologies. 2010, 10, 790-797 A Family of Highly Stable Lanthanide Metal Organic Frameworks: Structural Evolution and 210 777 Catalytic Activity. 2010, 22, 3316-3322 Metal Brganic frameworks as semiconductors. 2010, 20, 3141 776 401 Flexibility of Porous Coordination Polymers Strongly Linked to Selective Sorption Mechanism. 2010 36 775 , 22, 4129-4131 Molecular hydrogen "pairing" interaction in a metal organic framework system with unsaturated 774 59 metal centers (MOF-74). 2010, 132, 14834-48 A series of (6,6)-connected porous lanthanideBrganic framework enantiomers with high thermostability and exposed metal sites: scalable syntheses, structures, and sorption properties. 5.1 136 773 *Inorganic Chemistry*, **2010**, 49, 10001-6 Synthesis and Stability of Tagged UiO-66 Zr-MOFs. 2010, 22, 6632-6640 772 1210 A novel microporous MOF with the capability of selective adsorption of xylenes. Chemical 5.8 98 Communications, 2010, 46, 8612-4 Mechanochemical synthesis of homo- and hetero-rare-earth(III) metalbrganic frameworks by ball 770 3.3 74 milling. CrystEngComm, 2010, 12, 3515 A Rare Uninodal 9-Connected Metal Organic Framework with Permanent Porosity. 2010, 10, 2372-2375 769 70

2

768	Two Porous Metal@rganic Frameworks Showing Different Behaviors to Sodium Cation. 2010 , 10, 475-47	78	19
767	In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europiumBrganic framework capable of selective sensing of small molecules. <i>CrystEngComm</i> , 2010 , 12, 4372	3.3	117
766	Synthesis and characterization of three ytterbium coordination polymers featuring various cationic species and a luminescence study of a terbium analogue with open channels. <i>Inorganic Chemistry</i> , 2010 , 49, 2316-24	5.1	48
765	Two-dimensional metal-organic frameworks with blue luminescence. <i>Dalton Transactions</i> , 2010 , 39, 126	1453	63
764	Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. 2010 , 82, 8042-6		279
763	Systematic exploration of a rutile-type zinc(II)-phosphonocarboxylate open framework: the factors that influence the structure. <i>Dalton Transactions</i> , 2010 , 39, 10712-8	4.3	13
762	A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu(2+) in aqueous solution. <i>Chemical Communications</i> , 2010 , 46, 5503-5	5.8	351
761	Counterion-induced controllable assembly of 2D and 3D metalBrganic frameworks: effect of coordination modes of dinuclear Cu(II) paddle-wheel motifs. <i>CrystEngComm</i> , 2010 , 12, 3815	3.3	32
760	Reversible color changes of metal(II)-N(1),N(3)-di(pyridin-4-yl)isophthalamide complexes via desolvation and solvation. <i>Dalton Transactions</i> , 2010 , 39, 9923-8	4.3	29
759	New mimic of zeolite: heterometallic organic host framework accommodating inorganic cations. <i>Chemical Communications</i> , 2010 , 46, 3182-4	5.8	40
75 ⁸	Solvent effect on the construction of two microporous yttrium-organic frameworks with high thermostability via in situ ligand hydrolysis. <i>Dalton Transactions</i> , 2010 , 39, 5683-7	4.3	30
757	A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. <i>Chemical Communications</i> , 2011 , 47, 5551-3	5.8	321
756	A tri-layer structure consisting of novel heptacobaltate clusters and single cobalt centers bridged by 5-tert-butyl isophthalate. <i>Dalton Transactions</i> , 2011 , 40, 9731-6	4.3	20
755	Two-dimensional {Co(3+)-Zn2+} and {Co(3+)-Cd2+} networks and their applications in heterogeneous and solvent-free ring opening reactions. <i>Dalton Transactions</i> , 2011 , 40, 12454-61	4.3	42
754	Facile synthesis of metal-organic cobalt hydroxide nanorods exhibiting a reversible structural transition. <i>Chemical Communications</i> , 2011 , 47, 11002-4	5.8	13
753	Design and construction of coordination polymers based on 2,2?-dinitro-4,4?-biphenyldicarboxylate and imidazole-based ligands: The effect of ligand length and metal ions. <i>CrystEngComm</i> , 2011 , 13, 4592	3.3	40
75 ²	In situ growth of continuous thin metal B rganic framework film for capacitive humidity sensing. 2011 , 21, 3775		124
75 ¹	New zinc diphosphonates with bright tunable luminescence and 12-member ring channels. <i>CrystEngComm</i> , 2011 , 13, 6334	3.3	15

(2011-2011)

750	Coordination polymers of flexible tetracarboxylic acids with metal ions. I. Synthesis of CH2- and (CH2)2-spaced bis(oxy)isophthalic acid ligands, and structural characterization of their polymeric adducts with lanthanoid ions. <i>CrystEngComm</i> , 2011 , 13, 339-349	3.3	57
749	SERS-Active Metal®rganic Frameworks Embedding Gold Nanorods. 2011 , 23, 3132-3134		124
748	Metal(II) Coordination Polymers Derived from Bis-pyridyl-bis-amide Ligands and Carboxylates: Syntheses, Topological Structures, and Photoluminescence Properties. 2011 , 11, 1662-1674		154
747	A Biomimetic Nose by Microcrystals and Oriented Films of Luminescent Porous Metal©rganic Frameworks. 2011 , 11, 4146-4154		41
746	Chemical Functionalization of the TiO2(110)-(1 [1]) Surface by Deposition of Terephthalic Acid Molecules. A Density Functional Theory and Scanning Tunneling Microscopy Study. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 4134-4144	3.8	25
745	Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. 2011 , 133, 4172-4		609
744	2D flexible metal-organic frameworks with $[Cd2(\mathbb{Z}-X)2](X = Cl \text{ or Br})$ units exhibiting selective fluorescence sensing for small molecules. <i>Chemical Communications</i> , 2011 , 47, 2667-9	5.8	81
743	Zinc paddlewheel dimers containing a strong IIIIstacking supramolecular synthon: designed single-crystal to single-crystal phase changes and gas/solid guest exchange. <i>Inorganic Chemistry</i> , 2011 , 50, 11754-64	5.1	35
742	Porous Metal®rganic Frameworks. 2011 , 1-20		3
74 ¹	Facile fabrication of magnetic metalBrganic framework nanocomposites for potential targeted drug delivery. 2011 , 21, 3843		308
740	Synthesis, Magnetic Properties, and Structural Investigation of Mixed-Ligand Cu(II) Helical Coordination Polymers with an Amino Acid Backbone and N-Donor Propping: 1-D Helical, 2-D Hexagonal Net (hcb), and 3-DinsTopologies. 2011 , 11, 1631-1641		76
739	New luminescent complexes for recognition and reversible sensing small molecules. <i>CrystEngComm</i> , 2011 , 13, 6007	3.3	10
738	Crystallographic studies into the role of exposed rare earth metal ion for guest sorption. <i>CrystEngComm</i> , 2011 , 13, 5849	3.3	17
737	Syntheses, structures and luminescent properties of decorated lanthanide metal-organic frameworks of (E)-4,4?-(ethene-1,2-diyl)dibenzoic acids. <i>CrystEngComm</i> , 2011 , 13, 1821-1830	3.3	20
736	A nanoporous metal-organic framework with accessible Cu2+ sites for the catalytic Henry reaction. <i>Chemical Communications</i> , 2011 , 47, 2928-30	5.8	93
735	Facile synthesis of hierarchically superstructured praseodymium benzenetricarboxylate with controllable morphologies. <i>CrystEngComm</i> , 2011 , 13, 452-458	3.3	12
734	Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. 2011 , 21, 6649		226
733	A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. <i>Chemical Communications</i> , 2011 , 47, 3153-5	5.8	401

732	Accurate Prediction of Methane Adsorption in a Metal Drganic Framework with Unsaturated Metal Sites by Direct Implementation of an ab Initio Derived Potential Energy Surface in GCMC Simulation. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 23074-23080	3.8	82
731	Erbium-formate frameworks templated by diammonium cations: syntheses, structures, structural transition and magnetic properties. <i>Dalton Transactions</i> , 2011 , 40, 6038-46	4.3	48
730	Quantifying enhanced photoluminescence in mixed-lanthanide carboxylate polymers: sensitizationversusreduction of self-quenching. 2011 , 21, 8547		26
7 2 9	Thioether Side Chains Improve the Stability, Fluorescence, and Metal Uptake of a Metal © rganic Framework. 2011 , 23, 2940-2947		131
728	A metal Brganic framework for selectively sensing of PO43 hanion in aqueous solution. 2011 , 509, 2552-	2554	61
727	Supramolecular Assembly of Calcium Metal@rganic Frameworks with Structural Transformations. 2011 , 11, 699-708		84
726	Two novel transition metal B rganic frameworks based on 1,3,5-benzenetricarboxylate ligand: Syntheses, structures and thermal properties. <i>Journal of Molecular Structure</i> , 2011 , 1004, 252-256	3.4	15
725	The structural transformation from 2D layers to 3D nets by solvent-mediated cation-exchange reaction. 2011 , 14, 1823-1826		6
724	Synthesis, crystal structure, and luminescent property of a three-dimensional (3day) microporous Cd(II) metal-organic framework (MOF) based on mixed ligands. 2011 , 14, 1952-1956		13
723	Luminescent multifunctional lanthanides-based metal-organic frameworks. 2011 , 40, 926-40		1324
723 722	Luminescent multifunctional lanthanides-based metal-organic frameworks. 2011 , 40, 926-40 Microporous sensor: gas sorption, guest exchange and guest-dependant luminescence of metal-organic framework. <i>Dalton Transactions</i> , 2011 , 40, 2196-203	4.3	1324 57
	Microporous sensor: gas sorption, guest exchange and guest-dependant luminescence of		
722	Microporous sensor: gas sorption, guest exchange and guest-dependant luminescence of metal-organic framework. <i>Dalton Transactions</i> , 2011 , 40, 2196-203		57
722 721	Microporous sensor: gas sorption, guest exchange and guest-dependant luminescence of metal-organic framework. <i>Dalton Transactions</i> , 2011 , 40, 2196-203 Tuning the excited state of photoactive building blocks for metal-templated self-assembly. 2011 , 6, 23 Semirigid aromatic sulfone-carboxylate molecule for dynamic coordination networks: multiple	339-51	57
722 721 720	Microporous sensor: gas sorption, guest exchange and guest-dependant luminescence of metal-organic framework. <i>Dalton Transactions</i> , 2011 , 40, 2196-203 Tuning the excited state of photoactive building blocks for metal-templated self-assembly. 2011 , 6, 23 Semirigid aromatic sulfone-carboxylate molecule for dynamic coordination networks: multiple substitutions of the ancillary ligands. <i>Inorganic Chemistry</i> , 2011 , 50, 7142-9 Synthesis, Crystal Structure and Magnetic Behaviour of {[Yb(1,4-BDC)1.5(H2O)4][H2O}n (1,4-BDC) =	339-51	57 21 19
722 721 720 719	Microporous sensor: gas sorption, guest exchange and guest-dependant luminescence of metal-organic framework. <i>Dalton Transactions</i> , 2011 , 40, 2196-203 Tuning the excited state of photoactive building blocks for metal-templated self-assembly. 2011 , 6, 23 Semirigid aromatic sulfone-carboxylate molecule for dynamic coordination networks: multiple substitutions of the ancillary ligands. <i>Inorganic Chemistry</i> , 2011 , 50, 7142-9 Synthesis, Crystal Structure and Magnetic Behaviour of {[Yb(1,4-BDC)1.5(H2O)4]/[H2O]n (1,4-BDC) = 1,4-benzenedicarboxylate). 2011 , 41, 1400-1405 Synthesis, Structure, Luminescent and Thermal Properties of Ytterbium(III) and Dysprosium(III) Complexes with 5-Sulfoisophthalic Acid Sodium Salt. <i>Zeitschrift Fur Anorganische Und Allgemeine</i>	5.1	57 21 19
722 721 720 719 718	Microporous sensor: gas sorption, guest exchange and guest-dependant luminescence of metal-organic framework. <i>Dalton Transactions</i> , 2011 , 40, 2196-203 Tuning the excited state of photoactive building blocks for metal-templated self-assembly. 2011 , 6, 23 Semirigid aromatic sulfone-carboxylate molecule for dynamic coordination networks: multiple substitutions of the ancillary ligands. <i>Inorganic Chemistry</i> , 2011 , 50, 7142-9 Synthesis, Crystal Structure and Magnetic Behaviour of {[Yb(1,4-BDC)1.5(H2O)4][H2O}n (1,4-BDC) = 1,4-benzenedicarboxylate). 2011 , 41, 1400-1405 Synthesis, Structure, Luminescent and Thermal Properties of Ytterbium(III) and Dysprosium(III) Complexes with 5-Sulfoisophthalic Acid Sodium Salt. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2011 , 637, 602-607	5.1	57 21 19 1

Magnetic and Sorption Properties of Supramolecular Systems Based on Pentanuclear Copper(II) 12-Metallacrown-4 Complexes and Isomeric Phthalates: Structural Modeling of the Different Stages of Alcohol Sorption. 2011 , 2011, 4826-4836		41	
Ultrafine gold clusters incorporated into a metal-organic framework. <i>Chemistry - A European Journal</i> , 2011 , 17, 78-81	4.8	82	
Three-dimensional open-frameworks based on Ln(III) ions and open-/closed-shell PTM ligands: synthesis, structure, luminescence, and magnetic properties. <i>Chemistry - A European Journal</i> , 2011 , 17, 3644-56	4.8	43	
A chromo-fluorogenic tetrazole-based CoBr2 coordination polymer gel as a highly sensitive and selective chemosensor for volatile gases containing chloride. <i>Chemistry - A European Journal</i> , 2011 , 17, 2823-7	4.8	93	
A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. <i>Chemistry - A European Journal</i> , 2011 , 17, 11372-88	4.8	356	
Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures. <i>Chemistry - A European Journal</i> , 2011 , 17, 12076-83	4.8	50	
The roles of the allyloxy groups on terephthalate for the formation of three coordination networks. 2011 , 14, 569-572		10	
Synthesis and characterization of porous Al(III) metal-organic framework nanoparticles as a new precursor for preparation of Al2O3 Nanoparticles. 2011 , 14, 645-648		29	
Synthesis and characterization of a series of porous lanthanide tricarboxylates. <i>Microporous and Mesoporous Materials</i> , 2011 , 140, 25-33	5.3	44	
Synthesis, Crystal Structure and Luminescence Properties of a New Cd(II) Complex Based on 5-Methylisophthalic Acid and 1,3-Bis(1,2,4-triazole)propane. 2012 , 42, 1003-1008		2	
Microporous lanthanide metal-organic frameworks. 2012 , 32, 81-100		92	
A luminescent nanoscale metal-organic framework with controllable morphologies for spore detection. <i>Chemical Communications</i> , 2012 , 48, 7377-9	5.8	133	
Two dual-emissive Zn(II) coordination polymers with tunable photoluminescence properties. <i>CrystEngComm</i> , 2012 , 14, 6394	3.3	28	
A new series of chiral metal formate frameworks of [HONH3][M(II)(HCOO)3] (M = Mn, Co, Ni, Zn, and Mg): synthesis, structures, and properties. <i>Inorganic Chemistry</i> , 2012 , 51, 13363-72	5.1	70	
A novel 3D porous cadmium(II) MOF based on conjugated ligand with potential application for sensing small linear conjugated molecule. 2012 , 25, 74-78		16	
A layered zinc phosphate decorated with organic fluorophores for selective luminescent sensing of metal cations. <i>Dalton Transactions</i> , 2012 , 41, 10910-2	4.3	10	
Microwave synthesis and gas sorption of calcium and strontium metal®rganic frameworks with high thermal stability. <i>CrystEngComm</i> , 2012 , 14, 1219	3.3	59	
Microporous zinc tris[(4-carboxyl)phenylduryl]amine framework with an unusual topological net for gas storage and separation. <i>Inorganic Chemistry</i> , 2012 , 51, 1995-7	5.1	56	
	Stages of Alcohol Sorption. 2011, 2011, 4826-4836 Ultrafine gold clusters incorporated into a metal-organic framework. Chemistry - A European Journal, 2011, 17, 78-81 Three-dimensional open-frameworks based on Ln(III) ions and open-/closed-shell PTM ligands: synthesis, structure, luminescence, and magnetic properties. Chemistry - A European Journal, 2011, 17, 3644-56 A Chromo-fluorogenic tetrazole-based CoBr2 coordination polymer get as a highly sensitive and selective chemosensor for volatile gases containing chloride. Chemistry - A European Journal, 2011, 17, 2823-7 A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. Chemistry - A European Journal, 2011, 17, 11372-88 Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures. Chemistry - A European Journal, 2011, 17, 12076-83 The roles of the allyloxy groups on terephthalate for the formation of three coordination networks. 2011, 14, 569-572 Synthesis and characterization of porous Al((III) metal-organic framework nanoparticles as a new precursor for preparation of Al2O3 Nanoparticles. 2011, 14, 645-648 Synthesis and characterization of a series of porous lanthanide tricarboxylates. Microporous and Mesoporous Materials, 2011, 140, 25-33 Synthesis, Crystal Structure and Luminescence Properties of a New Cd(II) Complex Based on 5-Methylisophthalic Acid and 1,3-Bis(1,2,4-triazole)propane. 2012, 42, 1003-1008 Microporous lanthanide metal-organic frameworks with controllable morphologies for spore detection. Chemical Communications, 2012, 48, 7377-9 Two dual-emissive Zn(III) coordination polymers with tunable photoluminescence properties. CrystEngComm, 2012, 14, 6394 A new series of chiral metal formate frameworks of [HONH3][M(II)(HCOO)3] (M = Mn, Co, Ni, Zn, and Mg): synthesis, structures, and properties. Inorganic Chemistry, 2012, 51, 13363-72 A novel 3D porous cadmium(III) MOF based on conjugated ligand with potential application for sensing small linear conjug	12-Metallacrown-4 Complexes and Isomeric Phthalates: Structural Modeling of the Different Stages of Alcohol Sorption. 2011, 2011, 4826-4836 Ultrafine gold clusters incorporated into a metal-organic framework. Chemistry - A European Journal, 2011, 17, 78-81 Three-dimensional open-frameworks based on Ln(III) ions and open-/closed-shell PTM ligands: synthesis, structure, luminescence, and magnetic properties. Chemistry - A European Journal, 2011, 17, 3644-56 A chromo-fluorogenic tetrazole-based CoBr2 coordination polymer gel as a highly sensitive and selective chemosensor for volatile gases containing chloride. Chemistry - A European Journal, 2011, 17, 2823-7 A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. Chemistry - A European Journal, 2011, 17, 11372-88 Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures. Chemistry - A European Journal, 2011, 17, 12076-83 The roles of the allyloxy groups on terephthalate for the formation of three coordination networks. 2011, 14, 569-572 Synthesis and characterization of porous Al(III) metal-organic framework nanoparticles as a new precursor for preparation of Al2O3 Nanoparticles. 2011, 14, 645-648 Synthesis and characterization of a series of porous lanthanide tricarboxylates. Microporous and Mesoporous Materials, 2011, 140, 25-33 Synthesis, Crystal Structure and Luminescence Properties of a New Cd(II) Complex Based on 5-Methylisophthalic Acid and 1,3-Bis(1,2,4-triazole) propane. 2012, 42, 1003-1008 Microporous lanthanide metal-organic frameworks with controllable morphologies for spore detection. Chemical Communications, 2012, 48, 7377-9 Two dual-emissive Zn(II) coordination polymers with tunable photoluminescence properties. CrystEngComm, 2012, 14, 6394 A new series of chiral metal formate frameworks of [HONH3][M(II)(HCOO)3] (M = Mn, Co, Ni, Zn, and Mg), synthesis, structures, and properties. Inorganic Chemistry, 2012, 51, 13363-72 A layered zinc phosphate decora	12-Metallacrown-4 Complexes and Isomeric Phthalates: Structural Modeling of the Different Stages of Alcohol Sorption. 2011, 2011, 4826-4836 Ultrafine gold clusters incorporated into a metal-organic framework. Chemistry - A European Journal, 2011, 17, 78-81 Three-dimensional open-frameworks based on Ln(III) ions and open-/closed-shell PTM ligands: synthesis, Structure, luminescence, and magnetic properties. Chemistry - A European Journal, 2011, 17, 3644-56 A chromo-fluorogenic tetrazole-based CoBi? coordination polymer get as a highly sensitive and selective chemosensor for volatile gases containing chloride. Chemistry - A European Journal, 2011, 17, 2014-2011, 17, 2014-2011, 2014, 201

696	Shape Takes the Lead: Templating Organic 3D-Frameworks around Organometallic Sandwich Compounds. 2012 , 31, 1688-1695		10
695	Ultrasonic-assisted solution-phase synthesis of gadolinium benzene-1,4-dicarboxylate hierarchical architectures and their solid-state thermal transformation. <i>CrystEngComm</i> , 2012 , 14, 3515	3.3	16
694	Preparation of ferrocene immobilized metalBrganic-framework modified electrode for the determination of acetaminophen. 2012 , 4, 4037		22
693	Copper(II) carboxylate dimers prepared from ligands designed to form a robust synthon: supramolecular structures and molecular properties. <i>Inorganic Chemistry</i> , 2012 , 51, 1068-83	5.1	85
692	A luminescent mixed-lanthanide metal-organic framework thermometer. 2012, 134, 3979-82		896
691	Assembly of Two 3D Porous Metal © rganic Frameworks Based on 1,2,3-Triazole-4,5-dicarboxylate Exhibiting Novel Coordination Modes. 2012 , 12, 5456-5461		28
690	2-Propyl-4,5-dicarboxylate-imidazole (H3PIDC) Based Cadmium(II) Coordination Compounds Stabilized by Supramolecular Interactions: From Mononuclear and Tetranuclear Oligomers to One-Dimensional (1D) Chain and Two-Dimensional (2D) Layer Polymers. 2012 , 12, 4861-4869		42
689	Construction and property investigation of three metal phosphates based on N-donor ligands. 2012 , 21, 173-177		1
688	Structures and properties of lanthanide metal-organic frameworks based on a 1,2,3-triazole-containing tetracarboxylate ligand. <i>Dalton Transactions</i> , 2012 , 41, 12790-6	4.3	44
687	Methane storage in advanced porous materials. 2012 , 41, 7761-79		643
687 686	Methane storage in advanced porous materials. 2012, 41, 7761-79 A series of lanthanideBrganic polymers incorporating ethyl-4,5-imidazole-dicarboxylato and formate coligand: structures, luminescent and magnetic properties. CrystEngComm, 2012, 14, 3684	3.3	643 18
ĺ	A series of lanthanideBrganic polymers incorporating ethyl-4,5-imidazole-dicarboxylato and	3.3	
686	A series of lanthanideBrganic polymers incorporating ethyl-4,5-imidazole-dicarboxylato and formate coligand: structures, luminescent and magnetic properties. <i>CrystEngComm</i> , 2012 , 14, 3684 Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metalBrganic framework	3-3	18
686	A series of lanthanideBrganic polymers incorporating ethyl-4,5-imidazole-dicarboxylato and formate coligand: structures, luminescent and magnetic properties. <i>CrystEngComm</i> , 2012 , 14, 3684 Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metalBrganic framework materials. 2012 , 22, 3210 Ultrasensitive sorption behavior of isostructural lanthanideBrganic frameworks induced by	3-3	18
686 685 684	A series of lanthanideBrganic polymers incorporating ethyl-4,5-imidazole-dicarboxylato and formate coligand: structures, luminescent and magnetic properties. <i>CrystEngComm</i> , 2012 , 14, 3684 Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metalBrganic framework materials. 2012 , 22, 3210 Ultrasensitive sorption behavior of isostructural lanthanideBrganic frameworks induced by lanthanide contraction. 2012 , 22, 21076 A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a	3-3	18 190 40
686 685 684	A series of lanthanideBrganic polymers incorporating ethyl-4,5-imidazole-dicarboxylato and formate coligand: structures, luminescent and magnetic properties. <i>CrystEngComm</i> , 2012 , 14, 3684 Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metalBrganic framework materials. 2012 , 22, 3210 Ultrasensitive sorption behavior of isostructural lanthanideBrganic frameworks induced by lanthanide contraction. 2012 , 22, 21076 A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. 2012 , 22, 16920 Diverse lanthanide coordination polymers tuned by the flexibility of ligands and the lanthanide		18 190 40 381
686 685 684 683	A series of lanthanideBrganic polymers incorporating ethyl-4,5-imidazole-dicarboxylato and formate coligand: structures, luminescent and magnetic properties. <i>CrystEngComm</i> , 2012 , 14, 3684 Color tunable and white light emitting Tb3+ and Eu3+ doped lanthanide metalBrganic framework materials. 2012 , 22, 3210 Ultrasensitive sorption behavior of isostructural lanthanideBrganic frameworks induced by lanthanide contraction. 2012 , 22, 21076 A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. 2012 , 22, 16920 Diverse lanthanide coordination polymers tuned by the flexibility of ligands and the lanthanide contraction effect: syntheses, structures and luminescence. <i>Dalton Transactions</i> , 2012 , 41, 1765-75 Series of metal organic frameworks assembled from Ln(III), Na(I), and chiral flexible-achiral rigid	4.3	18 190 40 381 21

678	Ultrasensitive humidity detection using metal-organic framework-coated microsensors. 2012, 84, 7043-51	101
677	Highly selective acetone fluorescent sensors based on microporous Cd(II) metal B rganic frameworks. 2012 , 22, 23201	131
676	Triple framework interpenetration and immobilization of open metal sites within a microporous mixed metal-organic framework for highly selective gas adsorption. <i>Inorganic Chemistry</i> , 2012 , 51, 4947-53	74
675	Up-conversion properties of lanthanide-organic frameworks and how to track ammunitions using these materials. <i>RSC Advances</i> , 2012 , 2, 3083	41
674	New metalloligands suitable for the construction of polynuclear complexes and coordination polymers with exposed metal sites. <i>CrystEngComm</i> , 2012 , 14, 366-369	21
673	Synthesis, structures, and properties of alkali and alkaline earth coordination polymers based on V-shaped ligand. <i>CrystEngComm</i> , 2012 , 14, 6812	28
672	Metal organic frameworks for drug delivery and environmental remediation: A molecular docking approach. 2012 , 112, 3346-3355	38
671	Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. 2012 , 112, 675-702	1794
670	Luminescent functional metal-organic frameworks. 2012 , 112, 1126-62	4620
669	Ionothermal syntheses, crystal structures and properties of three-dimensional rare earth metal-organic frameworks with 1,4-naphthalenedicarboxylic acid. <i>Dalton Transactions</i> , 2012 , 41, 10576-847	39
668	Lanthanide Coordination Polymers Constructed from Imidazole-4,5-Dicarboxylate and Sulfate: Syntheses, Structural Diversity, and Photoluminescent Properties. 2012 , 12, 3675-3683	79
667	New Heterometallic Hybrid Polymers Constructed with Aromatic Sulfonate-Carboxylate Ligands: Synthesis, Layered Structures, and Properties. 2012 , 12, 2613-2624	38
666	Unusual High Thermal Stability within a Series of Novel Lanthanide TATB Frameworks: Synthesis, Structure, and Properties (TATB = 4,4?,4?-s-Triazine-2,4,6-triyl-tribenzoate). 2012 , 12, 670-678	72
665	Luminescent Metal-Organic Frameworks for Selectively Sensing Nitric Oxide in an Aqueous Solution and in Living Cells. 2012 , 22, 1698-1703	177
664	Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability. 2012 , 22, 3583-3590	201
663	Charge matching on designing neutral cadmium-lanthanide-organic open frameworks for luminescence sensing. 2012 , 7, 1069-73	89
662	Microwave-assisted modular fabrication of nanoscale luminescent metal-organic framework for molecular sensing. 2012 , 13, 2734-8	55
661	Sequestering aromatic molecules with a spin-crossover Fe(II) microporous coordination polymer. Chemistry - A European Journal, 2012, 18, 8013-8	66

660	Synthetic control to achieve lanthanide(III)/pyrimidine-4,6-dicarboxylate compounds by preventing oxalate formation: structural, magnetic, and luminescent properties. <i>Inorganic Chemistry</i> , 2012 , 51, 7875	5 ⁵ 8 ¹ 8	44
659	Synthesis and characterization of a zinc metalBrganic framework with chiral nano-pores. CrystEngComm, 2012 , 14, 5145	3.3	17
658	Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction. 2012 , 142, 313-318		68
657	Four novel alkaline-earth metal coordination polymers with networks controlled by the diverse coordination modes of amino-sulfonate ligand: Synthesis, crystal structures and luminescent properties. 2012 , 384, 117-124		11
656	Synthesis and structure of a Cu4O4 cubane core complex from a carboxylate ligand containing a strong T stacking supramolecular synthon. 2012 , 386, 102-108		7
655	Syntheses, structures and luminescence properties of two novel lanthanide metal B rganic frameworks based on a rigid tetracarboxylate ligand. 2012 , 16, 70-73		23
654	A new luminescent terbium 4-methylsalicylate complex as a novel sensor for detecting the purity of methanol. 2012 , 88, 860-6		23
653	Modeling adsorption equilibria of xylene isomers in a microporous metal b rganic framework. <i>Microporous and Mesoporous Materials</i> , 2012 , 155, 220-226	5.3	21
652	A metal-organic framework with highly polar pore surfaces: selective CO2 adsorption and guest-dependent on/off emission properties. <i>Chemistry - A European Journal</i> , 2012 , 18, 237-44	4.8	61
651	Discrimination and classification of ginsenosides and ginsengs using bis-boronic acid receptors in dynamic multicomponent indicator displacement sensor arrays. <i>Chemistry - A European Journal</i> , 2012 , 18, 1102-10	4.8	47
650	Homochiral, Supramolecular Frameworks Built from a Zinc(II) Tetramer or Cadmium(II) Dimer Containing Enantiopure Carboxylate Ligands Functionalized with a Strong IIIIStacking Synthon. 2012 , 2012, 712-719		17
649	Solvents influence on sizes of channels in three fry topological Mn(II)-MOFs based on metaldarboxylate chains: syntheses, structures and magnetic properties. <i>CrystEngComm</i> , 2013 , 15, 8125	3.3	63
648	A series of 3D lanthanide frameworks constructed from aromatic multi-carboxylate ligand: structural diversity, luminescence and magnetic properties. <i>Dalton Transactions</i> , 2013 , 42, 10292-303	4.3	139
647	A Cu(I) metalBrganic framework with 4-fold helical channels for sensing anions. <i>Chemical Science</i> , 2013 , 4, 3678	9.4	244
646	Reversible switching of slow magnetic relaxation in a classic lanthanide metal-organic framework system. <i>Chemical Communications</i> , 2013 , 49, 8244-6	5.8	60
645	Preparation and thiols sensing of luminescent metalorganic framework films functionalized with lanthanide ions. <i>Microporous and Mesoporous Materials</i> , 2013 , 179, 198-204	5.3	35
644	A Series of Heterometallic Three-Dimensional Frameworks Constructed from Imidazole D icarboxylate: Structures, Luminescence, and Magnetic Properties. 2013 , 13, 4469-4479		97
643	Syntheses, structures, luminescent sensor, and magnetism of a series of coordination polymers constructed by 3-carboxy-1-(4?-carboxy-benzyl)-2-oxidopyridinium. <i>CrystEngComm</i> , 2013 , 15, 7360	3.3	19

(2013-2013)

642	A luminescent 2D coordination polymer for selective sensing of nitrobenzene. <i>Dalton Transactions</i> , 2013 , 42, 12865-8	4.3	221
641	Fabrication of hierarchical architectures of Tb-MOF by a green coordination modulation method for the sensing of heavy metal ions. <i>CrystEngComm</i> , 2013 , 15, 6702	3.3	45
640	Synthesis, structures, fluorescence and magnetism of two lanthanide metal-organic frameworks with CaF2 topology based on silicon-centered tetrahedral ligand. 2013 , 29, 611-616		6
639	Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating terpyridine sites for Fe[]+. ACS Applied Materials & Interfaces, 2013, 5, 1078-83	9.5	427
638	Synthesis, characterization and sorption properties of zinc(II) metal®rganic framework containing methanetetrabenzoate ligand. 2013 , 437, 101-107		19
637	MOF-76: from a luminescent probe to highly efficient U(VI) sorption material. <i>Chemical Communications</i> , 2013 , 49, 10415-7	5.8	214
636	Structural dynamism and controlled chemical blocking/unblocking of active coordination space of a soft porous crystal. <i>Inorganic Chemistry</i> , 2013 , 52, 12784-9	5.1	15
635	A tubular europium-organic framework exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions. <i>Chemical Communications</i> , 2013 , 49, 11557-9	5.8	259
634	A mesoporous lanthanideBrganic framework constructed from a dendritic hexacarboxylate with cages of 2.4 nm. <i>CrystEngComm</i> , 2013 , 15, 9328	3.3	33
633	Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. 2013 , 4, 2719		327
632	Metal-organic frameworks of zeolitic imidazolate framework-7 and zeolitic imidazolate framework-60 for fast mercury and methylmercury speciation analysis. 2013 , 804, 240-5		57
631	One-dimensional channel-structured Eu-MOF for sensing small organic molecules and Cu2+ ion. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11043	13	304
630	Luminescent Properties and Applications of Metal-Organic Frameworks. 2013, 27-88		16
629	A 3-D lanthanide coordination polymer constructed from biphenyl-2,2?,6,6?-tetracarboxylic acid: synthesis of a trinodal (3,4,5)-connected topology and luminescence. 2013 , 66, 481-489		13
628	Control over the preparation of two pH-dependent Cu(II) supramolecular isomers based on 1,3,5-benzenetricarboxylic acid and the bis(4-pyridylthio)methane ligand. <i>CrystEngComm</i> , 2013 , 15, 156	3 ^{3.3}	19
627	Lanthanide benzoates: a versatile building block for the construction of efficient light emitting materials. <i>Dalton Transactions</i> , 2013 , 42, 2663-78	4.3	67
626	A luminescent metal-organic framework as a turn-on sensor for DMF vapor. 2013 , 52, 710-3		313
625	Metal-organic framework (MOF): a novel sensing platform for biomolecules. <i>Chemical Communications</i> , 2013 , 49, 1276-8	5.8	292

624	Structures, luminescent and magnetic properties of six lanthanide-organic frameworks: observation of slow magnetic relaxation behavior in the Dylll compound. <i>Dalton Transactions</i> , 2013 , 42, 3587-96	4.3	92
623	A Luminescent Metal©rganic Framework as a Turn-On Sensor for DMF Vapor. 2013, 125, 738-741		99
622	Topological aspects of lanthanide dipate dua compounds: Close packed and open framework structures. <i>Journal of Solid State Chemistry</i> , 2013 , 203, 128-133	3.3	5
621	Solvatochromic behavior of chiral mesoporous metal-organic frameworks and their applications for sensing small molecules and separating cationic dyes. <i>Chemistry - A European Journal</i> , 2013 , 19, 3639-4	5 ^{4.8}	189
620	Assembly of framework-isomeric 4d-4f heterometallic metal-organic frameworks with neutral/anionic micropores and guest-tuned luminescence properties. <i>Chemistry - A European Journal</i> , 2013 , 19, 3590-5	4.8	94
619	Highly selective sorption and luminescent sensing of small molecules demonstrated in a multifunctional lanthanide microporous metal-organic framework containing 1D honeycomb-type channels. <i>Chemistry - A European Journal</i> , 2013 , 19, 3358-65	4.8	151
618	A novel (3,3,6)-connected luminescent metal-organic framework for sensing of nitroaromatic explosives. <i>Dalton Transactions</i> , 2013 , 42, 5508-13	4.3	105
617	Coordination polymers of flexible polycarboxylic acids with metal ions. V. polymeric frameworks of 5-(3,5-dicarboxybenzyloxy)-3-pyridine carboxylic acid with Cd(II), Cu(II), Co(II), Mn(II) and Ni(II) ions; synthesis, structure, and magnetic properties. <i>CrystEngComm</i> , 2013 , 15, 2863	3.3	25
616	Mixed-ligand Zn-MOFs for highly luminescent sensing of nitro compounds. 2013, 8, 982-9		136
615	Cation sensing by a luminescent metal-organic framework with multiple Lewis basic sites. <i>Inorganic Chemistry</i> , 2013 , 52, 2799-801	5.1	361
614	A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour. <i>Chemical Science</i> , 2013 , 4, 1793	9.4	276
613	A mechanical actuated SnO2 nanowire for small molecules sensing. <i>Chemical Communications</i> , 2013 , 49, 1017-9	5.8	10
612	MetalBrganic coordination polymers with a new 3,5-(4-carboxybenzyloxy) benzoic acid linker. <i>New Journal of Chemistry</i> , 2013 , 37, 1494	3.6	17
611	Bimodal Magneto-Luminescent Dysprosium (Dylll)-Potassium (KI)-Oxalate Framework: Magnetic Switchability with High Anisotropic Barrier and Solvent Sensing. 2013 , 25, 1673-1679		99
610	Two novel MOF-74 analogs exhibiting unique luminescent selectivity. <i>Chemical Communications</i> , 2013 , 49, 1699-701	5.8	125
609	Convenient detection of Pd(II) by a metal-organic framework with sulfur and olefin functions. 2013 , 135, 7807-10		103
608	Metal-organic framework luminescence in the yellow gap by codoping of the homoleptic imidazolate (B) [Ba(Im)2] with divalent europium. 2013 , 135, 6896-902		66
607	Bipyridine-Based Nanosized Metal©rganic Framework with Tunable Luminescence by a Postmodification with Eu(III): An Experimental and Theoretical Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 11302-11310	3.8	79

(2013-2013)

606	Solvent-mediated crystal-to-crystal interconversion between discrete lanthanide complexes and one-dimensional coordination polymers and selective sensing for small molecules. <i>Inorganic Chemistry</i> , 2013 , 52, 6450-6	5.1	31
605	Size-controlled indium(III)Benzenedicarboxylate hexagonal rods and their transformation to In2O3 hollow structures. <i>CrystEngComm</i> , 2013 , 15, 4779	3.3	26
604	Rapid synthesis of nanoscale terbium-based metal@rganic frameworks by a combined ultrasound-vapour phase diffusion method for highly selective sensing of picric acid. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8745	13	158
603	Phosphorescence doping in a flexible ultramicroporous framework for high and tunable oxygen sensing efficiency. <i>Chemical Communications</i> , 2013 , 49, 6864-6	5.8	58
602	Heterometallic coordination polymers based on dipeptide schiff base Cu(II) metalloligand: synthesis, structures, and magnetic properties. <i>CrystEngComm</i> , 2013 , 15, 6074	3.3	12
601	Syntheses, structures, tunable emission and white light emitting Eu3+ and Tb3+ doped lanthanide metal-organic framework materials. <i>Dalton Transactions</i> , 2013 , 42, 10579-86	4.3	133
600	Construction of homo- and heterometallic-pyridine-2,3-dicarboxylate metallosupramolecular networks with structural diversity: 1D T5(2) water tape and unexpected coordination mode of pyridine-2,3-dicarboxylate. <i>CrystEngComm</i> , 2013 , 15, 1244	3.3	16
599	Highly selective luminescent sensing of fluoride and organic small-molecule pollutants based on novel lanthanide metal-organic frameworks. <i>Inorganic Chemistry</i> , 2013 , 52, 8082-90	5.1	279
598	Two novel 2D lanthanide-cadmium heterometal-organic frameworks based on nanosized heart-like Ln6Cd6O12 wheel-clusters exhibiting luminescence sensing to the polarization and concentration of cations. <i>Dalton Transactions</i> , 2013 , 42, 6314-7	4.3	25
597	The layered structure of poly[[hexaaqua(4-benzene-1,2,4,5-tetracarboxylato)dicopper(II)] tetrahydrate]. 2013 , 69, 1344-7		3
596	Terbium-based coordination polymer nanoparticles for detection of ciprofloxacin in tablets and biological fluids. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1791-6	9.5	54
595	Large-scale synthesis of porous yolk-shell structured In2O3 using indium(III) benzophenone-4,4?-dicarboxylate sub-microspheres as precursors. 2013 , 102-103, 112-115		5
594	Cooperative assembly of coexistent lanthanide arboxylate chain and layer in a (4,6)-connected network. 2013 , 35, 181-185		3
593	A Series of Exceptionally Robust Luminescent Coordination Polymers Based on a Bipyridyldicarboxylate Ligand and Rare-Earth-Metal Ions. 2013 , 2013, 6111-6118		15
592	Metal©rganic Frameworks: From Design to Materials. 2013 , 1-26		3
591	Simultaneous presence of both open metal sites and free functional organic sites in a noncentrosymmetric dynamic metal-organic framework with bimodal catalytic and sensing activities. <i>Chemistry - A European Journal</i> , 2013 , 19, 16607-14	4.8	44
590	Host©uest Metal©rganic Frameworks for Photonics. 2013, 167-186		5
589	Synthesis, Structures and Luminescent Properties of Two Coordination Polymers Based on 5-(4-Carboxyphenyl)-2, 6-Pyr[]dinedicarboxylic Acid. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2013 , 639, 430-434	1.3	5

588	Amino-functionalized Zr-MOF nanoparticles for adsorption of CO2 and CH4. 2013, 4, 72-82		74
587	Lanthanide metal-organic frameworks showing luminescence in the visible and near-infrared regions with potential for acetone sensing. <i>Chemistry - A European Journal</i> , 2013 , 19, 17172-9	4.8	122
586	Nanoporous Metal©rganic Frameworks. 2013 , 71-98		1
585	Metal-Organic Frameworks: Meso-Porous Frameworks. 2014 , 1-27		
584	One step cathodically electrodeposited [Tb2(BDC)3(H2O)4]n thin film as a luminescent probe for Cu2+ detection. <i>RSC Advances</i> , 2014 , 4, 58178-58183	3.7	23
583	Metal©rganic Frameworks: Functional Magnetic Materials with Formate. 2014 , 1-23		1
582	Highly luminescent thin films of the dense framework (B) [Eulm2] with switchable transparency formed by scanning femtosecond-pulse laser deposition. 2014 , 53, 706-10		20
581	Anion-responsive tunable bulk-phase homochirality and luminescence of a cationic framework. <i>Chemistry - A European Journal</i> , 2014 , 20, 12399-404	4.8	30
580	A Discrete Cobalt Complex Obtained from a 1 D Coordination Polymer for Highly Selective Sensing of the Mercury(II) Ion. 2014 , 79, 925-928		10
579	Metal®rganic Frameworks: Host Photoreactive Properties. 2014 , 1-9		
578	Synthesis, Characterization, Structure and Thermal Decomposition of a Ag(I) Complex Derived from 3-Pyridinesulfonate and 1,4-Bis(2-Methyl-Imidazol-1-Yl)Butane. 2014 , 934, 86-90		
577	Metal®rganic Frameworks: Frameworks Containing Open Sites. 2014 , 1-23		1
576	Prediction of two-dimensional materials with half-metallic Dirac cones: Ni2C18H12 and Co2C18H12. 2014 , 73, 382-388		37
575	Bioconjugation of MOF-5 for molecular sensing. 2014 , 21, 99-104		29
574	Design and sensing applications of metal®rganic framework composites. 2014 , 58, 71-78		225
573	Single-Crystal-to-Single-Crystal Transformation of a Europium(III) Metal©rganic Framework Producing a Multi-responsive Luminescent Sensor. 2014 , 24, 4034-4041		488
572	Metal-organic framework composites. 2014 , 43, 5468-512		1539
571	A novel nickel metal-organic framework with fluorite-like structure: gas adsorption properties and catalytic activity in Knoevenagel condensation. <i>Dalton Transactions</i> , 2014 , 43, 3730-8	4.3	66

570	Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. <i>Coordination Chemistry Reviews</i> , 2014 , 273-274, 76-86	23.2	800
569	Luminescent metal-organic frameworks for chemical sensing and explosive detection. 2014 , 43, 5815-4	10	3218
568	LanthanideBrganic frameworks for gas storage and as magneto-luminescent materials. <i>Coordination Chemistry Reviews</i> , 2014 , 273-274, 139-164	23.2	214
567	A 3D cadmium(II) coordination polymer constructed from new \(\text{D}\)diketone-functionalized pyridinecarboxylate and 4,4?-bipyridine ligands. 2014 , 44, 143-147		4
566	Eu@COK-16, a host sensitized, hybrid luminescent metal-organic framework. <i>Dalton Transactions</i> , 2014 , 43, 13480-4	4.3	15
565	Fast and continuous processing of a new sub-micronic lanthanide-based metal®rganic framework. New Journal of Chemistry, 2014 , 38, 1477-1483	3.6	35
564	A metal-organic framework-based material for electrochemical sensing of carbon dioxide. 2014 , 136, 8277-82		181
563	A new strategy for storage and transportation of sensitive high-energy materials: guest-dependent energy and sensitivity of 3D metal-organic-framework-based energetic compounds. <i>Chemistry - A European Journal</i> , 2014 , 20, 7906-10	4.8	62
562	Scorpionate-Type Coordination in MFU-4l Metal©rganic Frameworks: Small-Molecule Binding and Activation upon the Thermally Activated Formation of Open Metal Sites. 2014 , 126, 5942-5946		16
561	A europium(III) based metalBrganic framework: bifunctional properties related to sensing and electronic conductivity. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 237-244	13	131
560	Two luminescent metalorganic frameworks for the sensing of nitroaromatic explosives and DNA strands. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2213-2220	13	227
559	A series of homonuclear lanthanide complexes incorporating isonicotinic based carboxylate tectonic and oxalate coligand: structures, luminescent and magnetic properties. <i>CrystEngComm</i> , 2014 , 16, 1334-1343	3.3	24
558	Fabrication of ITO glass supported Tb-MOF film for sensing organic solvent. 2014 , 41, 29-32		16
557	Homo- and heterometallic luminescent 2-D stilbene metal-organic frameworks. <i>Dalton Transactions</i> , 2014 , 43, 2925-35	4.3	25
556	Rational Assembly of Co/Cd-MOFs Featuring Topological Variation. 2014 , 14, 147-156		32
555	Site characteristics in metal organic frameworks for gas adsorption. 2014 , 89, 56-79		71
554	A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. <i>Chemical Communications</i> , 2014 , 50, 719-21	5.8	173
553	Guest-responsive function of a dynamic metal-organic framework with a Lewis acidic pore surface. <i>Chemistry - A European Journal</i> , 2014 , 20, 15303-8	4.8	41

552	Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. 2014, 1-27		15
551	Effect of Polycarboxylate Coligands from Linear to V-shaped Cull Coordination Polymers Based on a Rigid Tripodal Ligand. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2014 , 640, 2247-2254	1.3	3
550	Designing Near-Infrared and Visible Light Emitters by Postsynthetic Modification of Ln+3 I RMOF-3. 2014 , 2014, 5285-5295		38
549	A highly stable multifunctional three-dimensional microporous framework: excellent selective sorption and visible photoluminescence. <i>Dalton Transactions</i> , 2014 , 43, 6811-8	4.3	13
548	A series of coordination compounds containing rigid multi-pyridine based ligands: syntheses, structures and properties. <i>CrystEngComm</i> , 2014 , 16, 2754	3.3	14
547	An amino group functionalized metalBrganic framework as a luminescent probe for highly selective sensing of Fe3+ ions. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7662	13	280
546	Three resorcin[4]arene-based complexes with Cu(II)-exchange characteristics and fluorescence sensing of polyoxometalates in aqueous solutions. <i>CrystEngComm</i> , 2014 , 16, 9638-9644	3.3	7
545	A luminescent terbium coordination polymer for sensing methanol. <i>RSC Advances</i> , 2014 , 4, 14035-1404	13.7	25
544	Tuning luminescence via transition metal-directed strategy in coordination polymers. <i>CrystEngComm</i> , 2014 , 16, 4422	3.3	10
543	A series of mononuclear lanthanide complexes featuring 3-D supramolecular networks: synthesis, characterization and luminescent properties for sensing guest molecules. 2014 , 13, 660-70		16
542	A novel porous metalörganic framework from a new bis(acylhydrazone) ligand capable of reversibly adsorbing/desorbing water and small alcohol molecules. <i>CrystEngComm</i> , 2014 , 16, 4095-4099	3.3	4
541	A luminescent mixed-lanthanide-organic framework sensor for decoding different volatile organic molecules. 2014 , 86, 6648-53		77
540	A series of metalorganic frameworks based on 5-(4-pyridyl)-isophthalic acid: selective sorption and fluorescence sensing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12413	13	77
539	Fast response and highly selective sensing of amine vapors using a luminescent coordination polymer. <i>Chemical Communications</i> , 2014 , 50, 10506-9	5.8	105
538	Four 2D LnIId heterometalBrganic coordination polymers based on tetranuclear LnIId oxo-cluster with highly selective luminescent sensing of organic molecules and metal cations. <i>RSC Advances</i> , 2014 , 4, 27013-27021	3.7	17
537	Two coordination polymers with enhanced ligand-centered luminescence and assembly imparted sensing ability for acetone. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9469	13	63
536	Controllable synthesis of isoreticular pillared-layer MOFs: gas adsorption, iodine sorption and sensing small molecules. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14827-14834	13	79
535	Transition metal complexes with oligopeptides: single crystals and crystal structures. <i>Dalton Transactions</i> , 2014 , 43, 9821-33	4.3	13

(2014-2014)

534	Experimental Studies and Mechanism Analysis of High-Sensitivity Luminescent Sensing of Pollutional Small Molecules and Ions in Ln4O4 Cluster Based Microporous Metal©rganic Frameworks. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 416-426	3.8	276	
533	Multifunctional metal-organic frameworks constructed from meta-benzenedicarboxylate units. 2014 , 43, 5618-56		431	
532	2D Cd(II)-lanthanide(III) heterometallic-organic frameworks based on metalloligands for tunable luminescence and highly selective, sensitive, and recyclable detection of nitrobenzene. <i>Inorganic Chemistry</i> , 2014 , 53, 8105-13	5.1	94	
531	Dual changes in conformation and optical properties of fluorophores within a metal-organic framework during framework construction and associated sensing event. 2014 , 136, 12201-4		122	
530	Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties. Journal of Solid State Chemistry, 2014 , 218, 202-212	3.3	26	
529	A luminescent metalorganic framework demonstrating ideal detection ability for nitroaromatic explosives. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1465-1470	13	365	
528	Four uncommon nanocage-based Ln-MOFs: highly selective luminescent sensing for Cu[+ ions and selective CO[tapture. <i>Chemical Communications</i> , 2014 , 50, 8731-4	5.8	227	
527	Effect of pH on the construction of lead coordination polymers by the diverse coordination modes of sulfonate functionalized imidazophenanthroline derivative ligand. 2014 , 81, 517-524		24	
526	Size-tunable metal B rganic coordination polymers based on dysprosium(III) and 2-amino-1,4-benzene dicarboxylic acid for fluorescent visualization of water and aldehydes. 2014 , 203, 417-423		1	
525	Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. 2014 , 86, 1223-8		252	
524	Indomethacin Embedded into MIL-101 Frameworks: A Solid-State NMR Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 6140-6150	3.8	24	
523	Alkaline cation directed structural diversity of cubic-cage-based cobalt(II) metalorganic frameworks: from pcu to bct net. <i>CrystEngComm</i> , 2014 , 16, 7133	3.3	13	
522	Amino-decorated lanthanide(III) organic extended frameworks for multi-color luminescence and fluorescence sensing. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 6758-6764	7.1	153	
521	Water oxidation electrocatalysis by a zeolitic imidazolate framework. 2014 , 6, 9930-4		128	
520	Functionalization and Assembling of Inorganic Nanocontainers for Optical and Biomedical Applications. 2014 , 281-342		1	
519	Pyrolytic cavitation, selective adsorption and molecular recognition of a porous Eu(III) MOF. <i>Dalton Transactions</i> , 2014 , 43, 15305-7	4.3	15	
518	Luminescent europium(III)-II-diketonate complexes hosted in nanozeolite L as turn-on sensors for detecting basic molecules. <i>Chemical Communications</i> , 2014 , 50, 13680-2	5.8	57	
517	Kinetic Trapping of D2 in MIL-53(Al) Observed Using Neutron Scattering. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18197-18206	3.8	15	

516	Terbium(III) based coordination polymer microparticles as a luminescent probe for ascorbic acid. 2014 , 181, 1431-1437	17
515	Structures and Luminescent Properties of Two 2D Coordination Polymers Containing Tb(III) or Dy(III) Ions. 2014 , 24, 425-9	4
514	Imidazole-based zinc(II) complexes: Highly selective fluorescent probes for acetone detection. 2014 , 416, 63-68	15
513	A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metal-organic framework. <i>Chemistry - A European Journal</i> , 2014 , 20, 3589-94	247
512	Nickel-substituted zeolitic imidazolate frameworks for time-resolved alcohol sensing and photocatalysis under visible light. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5724-5729	79
511	A Rare L1D + R1D -BD Luminescent Dense Polymer as Multifunctional Sensor to Nitro Aromatic Compounds, Cu2+, and Bases. 2014 , 14, 2954-2961	52
510	Scorpionate-type coordination in MFU-4l metal-organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sites. 2014 , 53, 5832-6	93
509	Hybrids based on lanthanide ions activated yttrium metal@rganic frameworks: functional assembly, polymer film preparation and luminescence tuning. <i>Journal of Materials Chemistry C</i> , 7.1 2014 , 2, 5098-5104	82
508	Nanoscaled lanthanide/nucleotide coordination polymer for detection of an anthrax biomarker. 2014 , 190, 621-626	72
507	Luminescent nanocrystal metal organic framework based biosensor for molecular recognition. 2014 , 43, 114-117	45
506	Efficient refinement of a metalorganic framework MIL-53(Fe) by UVIIis irradiation in aqueous hydrogen peroxide solution. 2014 , 288, 55-59	28
505	Metal-Organic Frameworks for Photonics Applications. 2014,	19
504	2-D lanthanideBrganic complexes constructed from 6,7-dihydropyrido(2,3-d)pyridazine-5,8-dione: synthesis, characterization and photoluminescence for sensing small molecules. <i>CrystEngComm</i> , 3.3 2014 , 16, 3521-3531	29
503	Coordination Networks Based on Nitrile-Functionalized Borate Anions. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2014 , 640, 1330-1341	2
502	A Y-doped metal-organic framework-based cataluminescence gas sensor for isobutanol. 2014 , 201, 413-419	9 37
501	Two kinds of 3D coordination frameworks from monometallic to 4dIf heterometallic: Synthesis, crystal structures, photoluminescence and magnetic properties. 2014 , 46, 163-171	6
500	First 3D coordination polymer built from Ho(III) and 2-aminoterephthalate ligand. 2014, 39, 39-42	7
499	Three new europium(III) methanetriacetate metal-organic frameworks: the influence of synthesis on the product topology. 2014 , 70, 19-27	5

498	Schaltbare Transparenz in hochgradig lumineszierenden dfinen Filmen der Raumnetzverbindung 3[EuIm2] abgeschieden durch Femto-Laserablation. 2014 , 126, 723-728		3
497	Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal©rganic Framework for Chemiresistive Sensing. 2015 , 127, 4423-4426		102
496	A Bimetallic Lanthanide Metal-Organic Material as a Self-Calibrating Color-Gradient Luminescent Sensor. <i>Advanced Materials</i> , 2015 , 27, 7072-7	24	246
495	Influence of the Crystal Structure on the Luminescence Properties of Mixed Eu,La(11,10-Phenanthroline) Complexes. 2015 , 2015, 4861-4868		9
494	Systematic Investigation of High-Sensitivity Luminescent Sensing for Polyoxometalates and Iron(III) by MOFs Assembled with a New Resorcin[4]arene-Functionalized Tetracarboxylate. <i>Chemistry - A European Journal</i> , 2015 , 21, 15806-19	4.8	93
493	An Ideal Detector Composed of Two-Dimensional Cd(II)-Triazole Frameworks for Nitro-Compound Explosives and Potassium Dichromate. <i>Chemistry - A European Journal</i> , 2015 , 21, 14171-8	4.8	34
492	Systematic Investigation of Reaction-Time Dependence of Three Series of Copper-Lanthanide/Lanthanide Coordination Polymers: Syntheses, Structures, Photoluminescence, and Magnetism. <i>Chemistry - A European Journal</i> , 2015 , 21, 16219-28	4.8	35
491	A Series of Multifunctional Metal-Organic Frameworks Showing Excellent Luminescent Sensing, Sensitization, and Adsorbent Abilities. <i>Chemistry - A European Journal</i> , 2015 , 21, 11475-82	4.8	210
490	Interpreted Recognition Process: A Highly Sensitive and Selective Luminescence Chemosensor. <i>Chemistry - A European Journal</i> , 2015 , 21, 11767-72	4.8	18
489	Real-Time Detection of Traces of Benzaldehyde in Benzyl Alcohol as a Solvent by a Flexible Lanthanide Microporous Metal-Organic Framework. <i>Chemistry - A European Journal</i> , 2015 , 21, 15854-9	4.8	76
488	Two Comparable Isostructural Microporous Metal Drganic Frameworks: Better Luminescent Sensor and Higher Adsorption Selectivity for the Fluorine-Decorated Framework. 2015 , 2015, 5773-578	0	15
487	An ultrastable porous metalorganic framework luminescent switch towards aromatic compounds. 2015 , 2, 245-251		87
486	Solvent-dependent zinc(II) coordination polymers with mixed ligands: selective sorption and fluorescence sensing. <i>Dalton Transactions</i> , 2015 , 44, 11524-32	4.3	81
485	A microporous lanthanum metal-organic framework as a bi-functional chemosensor for the detection of picric acid and Fe(3+) ions. <i>Dalton Transactions</i> , 2015 , 44, 13340-6	4.3	103
484	A visual and organic vapor sensitive photonic crystal sensor consisting of polymer-infiltrated SiO2 inverse opal. 2015 , 17, 9651-8		48
483	Single-crystal-to-single-crystal transformation of an anion exchangeable dynamic metalBrganic framework. <i>CrystEngComm</i> , 2015 , 17, 8796-8800	3.3	17
482	Lanthanide metal b rganic frameworks containing a novel flexible ligand for luminescence sensing of small organic molecules and selective adsorption. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12777-12	. 18 5	154
481	An unusual bifunctional Tb-MOF for highly sensitive sensing of Ba2+ ions and with remarkable selectivities for CO2N2 and CO2NH4. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13526-13532	13	80

480	Multifunctional Supramolecular Hybrid Materials Constructed from Hierarchical Self-Ordering of In Situ Generated Metal-Organic Framework (MOF) Nanoparticles. <i>Advanced Materials</i> , 2015 , 27, 4438-4446	2 4	83
479	A bimodal 2D silver coordination polymer: Turn-on sensing of Cd II and sensitization of lanthanide ions. 2015 , 60, 47-50		10
478	Layered exfoliable crystalline materials based on Sm-, Eu- and Eu/Gd-2-phenylsuccinate frameworks. Crystal structure, topology and luminescence properties. <i>Dalton Transactions</i> , 2015 , 44, 3417-29	4.3	31
477	Cu[hexaiminotriphenylene)[lan electrically conductive 2D metal-organic framework for chemiresistive sensing. 2015 , 54, 4349-52		596
476	Luminescent MOF material based on cadmium(II) and mixed ligands: application for sensing volatile organic solvent molecules. <i>RSC Advances</i> , 2015 , 5, 18087-18091	3.7	42
475	Lanthanide(III)-based coordination monomers and polymers of 3,4-pyrazoledicarboxylate: Extended synergy within the ligand, structures and magnetic properties. 2015 , 429, 22-29		11
474	Encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. <i>Chemistry - A European Journal</i> , 2015 , 21, 4931-4	4.8	13
473	Synthesis and energy applications of metal organic frameworks. 2015 , 22, 413-424		16
472	Lanthanides post-functionalized nanocrystalline metal-organic frameworks for tunable white-light emission and orthogonal multi-readout thermometry. 2015 , 7, 4063-9		110
471	A series of nano/micro-sized metalorganic frameworks with tunable photoluminescence properties. <i>CrystEngComm</i> , 2015 , 17, 2321-2326	3.3	9
470	Highly thermostable lanthanide metal®rganic frameworks exhibiting unique selectivity for nitro explosives. <i>RSC Advances</i> , 2015 , 5, 93-98	3.7	45
469	Two dimethylphenyl imidazole dicarboxylate-based lanthanide metal-organic frameworks for luminescence sensing of benzaldehyde. <i>Dalton Transactions</i> , 2015 , 44, 4362-9	4.3	86
468	One-step growth of isoreticular luminescent metal o rganic frameworks on cotton fibers. <i>RSC Advances</i> , 2015 , 5, 15198-15204	3.7	36
467	Insight into luminescence enhancement of coordinated water-containing lanthanide metal-organic frameworks by guest molecules. <i>Dalton Transactions</i> , 2015 , 44, 2217-22	4.3	14
466	Selective recognition of 6-mercaptopurine based on luminescent metal-organic frameworks Fe-MIL-88NH 2015 , 139, 296-301		22
465	Engineering lanthanide-optical centres in IRMOF-3 by post-synthetic modification. <i>New Journal of Chemistry</i> , 2015 , 39, 4249-4258	3.6	34
464	Metal-organic frameworks for luminescence thermometry. <i>Chemical Communications</i> , 2015 , 51, 7420-31	5.8	288
463	Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8490-8494	7.1	89

(2015-2015)

462	Zero-, one-, two- and three-dimensional coordination polymers based on tetracarboxylic acid: Syntheses, structures, magnetic and luminescent properties. <i>Dyes and Pigments</i> , 2015 , 122, 246-256	4.6	16
461	Porous bariumBrganic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21545-21552	13	39
460	Assembly of Zn-metal organic frameworks based on a N-rich ligand: selective sorption for CO2 and luminescence sensing of nitro explosives. <i>RSC Advances</i> , 2015 , 5, 49606-49613	3.7	28
459	Recyclable lanthanide-functionalized MOF hybrids to determine hippuric acid in urine as a biological index of toluene exposure. <i>Chemical Communications</i> , 2015 , 51, 14509-12	5.8	85
458	Luminescent zinc metal-organic framework (ZIF-90) for sensing metal ions, anions and small molecules. 2015 , 14, 1644-50		75
457	Solvent-Induced Topological Diversity of Two Zn(II) Metal@rganic Frameworks and High Sensitivity in Recyclable Detection of Nitrobenzene. 2015 , 15, 3999-4004		111
456	A polymorphic lanthanide complex as selective Co2+ sensor and luminescent timer. 2015 , 221, 127-135		58
455	Porous frameworks constructed by non-covalent linking of substitution-inert metal complexes. <i>Dalton Transactions</i> , 2015 , 44, 15334-42	4.3	12
454	Towards multifunctional lanthanide-based metal-organic frameworks. <i>Chemical Communications</i> , 2015 , 51, 13313-6	5.8	34
453	Series of Highly Stable Isoreticular Lanthanide Metal©rganic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. 2015 , 27, 5332-5339		112
452	Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. 2015 , 115, 6051-111		197
451	Highly selective CH2Cl2 fluorescent sensor based on Cd(II) metal-organic framework. 2015 , 56, 76-78		13
450	A luminescent europium metal@rganic framework with free phenanthroline sites for highly selective and sensitive sensing of Cu2+ in aqueous solution. 2015 , 56, 137-140		38
449	Multifunctional lanthanide coordination polymers. 2015 , 48, 40-84		151
448	Ammonia detection by using flexible Lewis acidic sites in luminescent porous frameworks constructed from a bipyridinium derivative. <i>Chemical Communications</i> , 2015 , 51, 8189-92	5.8	52
447	A water-stable lanthanide-functionalized MOF as a highly selective and sensitive fluorescent probe for Cd(2.). <i>Chemical Communications</i> , 2015 , 51, 7737-40	5.8	278
447		5.8	278

444	Lanthanide coordination polymer constructed from 2,2?-bipyridyl-4,4?-dicarboxylic acid: Structure, catalysis and fluorescence. 2015 , 437, 81-86		9
443	Rapid and discriminative detection of nitro aromatic compounds with high sensitivity using two zinc MOFs synthesized through a temperature-modulated method. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22369-22376	13	52
442	Luminescence and slow magnetic relaxation of isostructural 2D lanthanide metal@rganic frameworks derived from both nicotinate N-oxide and glutarate. <i>RSC Advances</i> , 2015 , 5, 92980-92987	3.7	25
441	Tuned synthesis of two coordination polymers of Cd(II) using substituted bent 3-pyridyl linker and succinate: structures and their applications in anion exchange and sorption properties. <i>Dalton Transactions</i> , 2015 , 44, 20999-1007	4.3	21
440	Syntheses, Structures, and Photoluminescent Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Aromatic Polycarboxylate Ligand. 2015 , 15, 4331-4340		53
439	Europium activated yttrium hybrid microporous system for luminescent sensing toxic anion of Cr(VI) species. <i>Microporous and Mesoporous Materials</i> , 2015 , 217, 196-202	5.3	49
438	Hybrid Materials of the f-Elements Part I: The Lanthanides. 2015 , 47, 147-208		4
437	A high-performance "sweeper" for toxic cationic herbicides: an anionic metal-organic framework with a tetrapodal cage. <i>Chemical Communications</i> , 2015 , 51, 17439-42	5.8	67
436	A new luminescent Cd(II)-MOF as a highly selective chemical probe for Fe3+ in aqueous solution with mixed metal ions. <i>RSC Advances</i> , 2015 , 5, 90772-90777	3.7	37
435	Zeolite-type metal organic frameworks immobilized Eu®+ for cation sensing in aqueous environment. <i>Journal of Colloid and Interface Science</i> , 2015 , 459, 206-211	9.3	29
434	Nanoscale luminescent lanthanide-based metal®rganic frameworks: properties, synthesis, and applications. 2015 , 17, 1		21
433	A novel dual-functional fluorescent chemosensor for the selective detection of 2,4,6-trinitrotoluene and Hg2+. <i>New Journal of Chemistry</i> , 2015 , 39, 8484-8491	3.6	21
432	A series of phenyl sulfonate metal coordination polymers as catalysts for one-pot Biginelli reactions under solvent-free conditions. <i>Dalton Transactions</i> , 2015 , 44, 17829-40	4.3	31
431	A series of homonuclear lanthanide coordination polymers based on a fluorescent conjugated ligand: syntheses, luminescence and sensor for pollutant chromate anion. <i>CrystEngComm</i> , 2015 , 17, 78	7 <i>8</i> -788	7 ¹⁵⁷
430	Bioactive MIL-88A Framework Hollow Spheres via Interfacial Reaction In-Droplet Microfluidics for Enzyme and Nanoparticle Encapsulation. 2015 , 27, 7903-7909		100
429	Synthesis, crystal structure, fluorescence and antimicrobial activity of a series of rare-earth complexes based on indolebutyric acid. <i>RSC Advances</i> , 2015 , 5, 104263-104274	3.7	8
428	A unique Zn(II)-based MOF fluorescent probe for the dual detection of nitroaromatics and ketones in water. <i>CrystEngComm</i> , 2015 , 17, 9404-9412	3.3	68
427	M(II)-coordination polymers (M=Zn and Cd) constructed from 1,2-bis[4-(pyridin-3-yl)phenoxy]ethane and 1,4-benzenedicarboxylic acid. <i>Journal of Molecular Structure</i> , 2015 , 1084, 1-8	3.4	2

(2016-2015)

426	Three new solvent-directed Cd(II)-based MOFs with unique luminescent properties and highly selective sensors for Cu(2+) cations and nitrobenzene. <i>Dalton Transactions</i> , 2015 , 44, 3271-7	4.3	184	
425	Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II). ACS Applied Materials & amp; Interfaces, 2015, 7, 721-9	9.5	339	
424	Synthesis, structures and physical properties of mixed-ligand coordination polymers based on a V-shaped dicarboxylic ligand. <i>CrystEngComm</i> , 2015 , 17, 1381-1388	3.3	28	
423	A ketone functionalized luminescent terbium metal-organic framework for sensing of small molecules. <i>Chemical Communications</i> , 2015 , 51, 376-9	5.8	90	
422	Selective anion exchange and tunable luminescent behaviors of metal-organic framework based supramolecular isomers. <i>Inorganic Chemistry</i> , 2015 , 54, 110-6	5.1	49	
421	Pillared metal organic frameworks for the luminescence sensing of small molecules and metal ions in aqueous solutions. <i>Dalton Transactions</i> , 2015 , 44, 1754-60	4.3	62	
420	Biomimicry in metalorganic materials. <i>Coordination Chemistry Reviews</i> , 2015 , 293-294, 327-356	23.2	108	
419	Highly effective heterogeneous chemosensors of luminescent silica@coordination polymer core-shell micro-structures for metal ion sensing. 2014 , 4, 6518		25	
418	Pyridine effected tunable luminescence properties of a 1D cadmium(II) polymer with tetranuclear second building units. 2015 , 27, 268-273		2	
417	Surface assembly of nano-metal organic framework on amine functionalized indium tin oxide substrate for impedimetric sensing of parathion. 2015 , 65, 226-31		76	
416	Thermodynamics of metal-organic frameworks. <i>Journal of Solid State Chemistry</i> , 2015 , 223, 53-58	3.3	38	
415	Porphyrinic MOFs for reversible fluorescent and colorimetric sensing of mercury(II) ions in aqueous phase. <i>RSC Advances</i> , 2016 , 6, 69807-69814	3.7	52	
414	Gadolinium(III)-Based Porous Luminescent Metal-Organic Frameworks for Bimodal Imaging. 2016 , 81, 728-732		27	
413	A Highly Energetic N-Rich Metal-Organic Framework as a New High-Energy-Density Material. <i>Chemistry - A European Journal</i> , 2016 , 22, 1141-5	4.8	47	
412	Zinc Coordination Polymers Containing the m-(2-thiazolyl)benzoic Acid Spacer: Synthesis, Characterization and Luminescent Properties in Aqueous Solutions. 2016 , 1, 1123-1131		6	
411	Remarkable Vapochromic Behavior of Pure Organic Octahedron Embedded in Porous Frameworks. 2016 , 12, 3302-8		14	
410	Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks. <i>Advanced Materials</i> , 2016 , 28, 7424-9	24	86	
409	Vapochromic Luminescence of a Zirconium-Based Metal © rganic Framework for Sensing Applications. 2016 , 2016, 4483-4489		37	

408	Syntheses and Structural Analyses of New 3D Isostructural Zn(II) and Cd(II) Luminescent MOFs and their Application Towards Detection of Nitroaromatics in Aqueous Media. 2016 , 1, 6308-6315		31
407	Near-infrared absorption gas sensing with metal-organic framework on optical fibers. 2016 , 232, 43-51		48
406	A new luminescent metal-organic framework for selective sensing of nitroaromatic explosives. 2016 , 59, 959-964		40
405	Synthesis, characterization and X-ray crystal structures of trinuclear zinc(II) and cadmium(II) complexes derived from an oxovanadium(IV) complex ligand. 2016 , 450, 112-117		2
404	Research trend of metal@rganic frameworks: a bibliometric analysis. 2016 , 109, 481-513		63
403	A dual-emitting 4d-4f nanocrystalline metal-organic framework as a self-calibrating luminescent sensor for indoor formaldehyde pollution. 2016 , 8, 12047-53		112
402	Luminescence tuning of the Dy\(\mathbb{Z}\)n metal\(\mathbb{D}\)rganic framework and its application in the detection of Fe(III) ions. Journal of Materials Chemistry C, 2016, 4, 4211-4217	7.1	75
401	(113)Cd Nuclear Magnetic Resonance as a Probe of Structural Dynamics in a Flexible Porous Framework Showing Selective O2/N2 and CO2/N2 Adsorption. <i>Inorganic Chemistry</i> , 2016 , 55, 4166-72	5.1	25
400	An unprecedented self-penetrating Cu(I)-MOF based on a new 1D meso-ladder + 2D meso-layer -h 3D polycatenation subnet showing luminescent sensing for nitrobenzene. 2016 , 69, 75-78		7
399	A Family of MetalDrganic Frameworks with a New Chair-Conformation Resorcin[4]arene-Based Ligand: Selective Luminescent Sensing of Amine and Aldehyde Vapors, and Solvent-Mediated Structural Transformations. 2016 , 16, 3244-3255		40
398	Highly selective luminescent sensing of xylene isomers by a water stable Zn-organic framework. 2016 , 69, 1-3		11
397	Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. <i>CrystEngComm</i> , 2016 , 18, 4445-4451	3.3	107
396	Highly selective luminescence sensing of nitrite and benzaldehyde based on 3d-4f heterometallic metal-organic frameworks. <i>Dalton Transactions</i> , 2016 , 45, 8700-4	4.3	35
395	A facile fabrication of electrodeposited luminescent MOF thin films for selective and recyclable sensing of nitroaromatic explosives. 2016 , 141, 4502-10		88
394	A multi-responsive luminescent sensor towards Fe 3+ and acetone based on a Cd-containing metalBrganic framework. 2016 , 27, 497-501		18
393	A Water-Stable Metal-Organic Framework for Highly Sensitive and Selective Sensing of Fe Ion. <i>Inorganic Chemistry</i> , 2016 , 55, 10580-10586	5.1	196
392	Solid acetone structure dependence on pressure: a new fibre textured thin film crystallographic structure studied by grazing-incidence X-ray diffraction. <i>CrystEngComm</i> , 2016 , 18, 8220-8228	3.3	1
391	Lanthanide Metal-Organic Frameworks for Luminescent Applications. 2016 , 50, 243-268		18

390	Two cadmium coordination polymers containing piperazine-1,4-diylbis(pyridine-4-ylmethanone): Highly selective luminescent recognition of Cu2+. 2016 , 453, 186-192		3
389	Tb(III) postsynthetic functional coordination polymer coatings on ZnO micronanoarrays and their application in small molecule sensing. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 8466-8472	1	24
388	A four-fold interpenetrated metal-organic framework as a fluorescent sensor for volatile organic compounds. <i>Dalton Transactions</i> , 2016 , 45, 14888-92	3	47
387	Photoluminescent Metal-Organic Frameworks for Gas Sensing. 2016 , 3, 1500434		228
386	Facile and rapid preparation of Ln3+ (Ln = Eu, Tb) doped lanthanum pyrazine-2,3,5,6-tetracarboxylate submicroparticles and their tunable luminescence properties. 2016 , 83, 302-308		6
385	Pyrolytic synthesis and luminescence of porous lanthanide Eu-MOF. 2016 , 31, 190-4		9
384	Two Unusual Nanocage-Based Ln-MOFs with Triazole Sites: Highly Fluorescent Sensing for Fe and Cr O, and Selective CO Capture. 2016 , 81, 1299-1304		106
383	3D Lanthanide Metal Organic Frameworks Based on Mono-, Tri-, and Heterometallic Tetranuclear Clusters as Highly Selective and Sensitive Luminescent Sensor for Fe3+ and Cu2+ Ions. 2016 , 16, 5429-5440	0	85
382	A europium(III)-based metal®rganic framework as a naked-eye and fast response luminescence sensor for acetone and ferric iron. <i>New Journal of Chemistry</i> , 2016 , 40, 8600-8606	6	28
381	Structures of Metal-Organic Frameworks with Rod Secondary Building Units. 2016 , 116, 12466-12535		570
380	One-pot synthesis of nanoscale carbon dots-embedded metal®rganic frameworks at room temperature for enhanced chemical sensing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15880-15887	,	87
379	A Terbium-Organic Framework Material for Highly Sensitive Sensing of Fe3+ in Aqueous and Biological Systems: Experimental Studies and Theoretical Analysis. 2016 , 1, 3555-3561		27
378	Construction of three lanthanide metal-organic frameworks: Synthesis, structure, magnetic properties and highly selective sensing of metal ions. <i>Journal of Solid State Chemistry</i> , 2016 , 244, 6-11	3	12
377	Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. 2016 , 86, 799-804		61
376	Multifunctional Three-Dimensional Europium Metal-Organic Framework for Luminescence Sensing of Benzaldehyde and Cu(2+) and Selective Capture of Dye Molecules. <i>Inorganic Chemistry</i> , 2016 , 55, 7826-5	}	69
375	A Highly Robust Terbium Coordination Polymer as a Multiresponsive Luminescent Sensor for Detecting Pollutant Anions. 2016 , 2016, 3994-3998		10
374	A novel 3D energetic MOF of high energy content: synthesis and superior explosive performance of a Pb(ii) compound with 5,5'-bistetrazole-1,1'-diolate. <i>Dalton Transactions</i> , 2016 , 45, 13881-7	3	39
373	Emerging Multifunctional Metal-Organic Framework Materials. <i>Advanced Materials</i> , 2016 , 28, 8819-8860 ₂₄	1	955

372	A Water-Stable Metal-Organic Framework with a Double-Helical Structure for Fluorescent Sensing. <i>Inorganic Chemistry</i> , 2016 , 55, 7326-8	5.1	73
371	Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors. <i>Chemical Communications</i> , 2016 , 52, 10249-52	5.8	64
370	Multifunctional Metal-Organic Frameworks with Fluorescent Sensing and Selective Adsorption Properties. <i>Inorganic Chemistry</i> , 2016 , 55, 11821-11830	5.1	90
369	Luminescence, chemical sensing and mechanical properties of crystalline materials based on lanthanideBulfonate coordination polymers. <i>RSC Advances</i> , 2016 , 6, 110171-110181	3.7	17
368	Dual functional fluorescent sensor for selectively detecting acetone and Fe3+ based on {Cu2N4} substructure bridged Cu(I) coordination polymer. <i>RSC Advances</i> , 2016 , 6, 110182-110189	3.7	12
367	Synthesis and structure of color tunable and white-light emitting lanthanide metalorganic framework materials constructed from conjugated 1,1?-butadiynebenzene-3,3?,5,5?-tetracarboxylate ligand. <i>RSC Advances</i> , 2016 , 6, 103714-103723	3.7	18
366	Pentiptycene-Based Luminescent Cu (II) MOF Exhibiting Selective Gas Adsorption and Unprecedentedly High-Sensitivity Detection of Nitroaromatic Compounds (NACs). 2016 , 6, 20672		46
365	A Multi-responsive Regenerable Europium-Organic Framework Luminescent Sensor for Fe , Cr Anions, and Picric Acid. <i>Chemistry - A European Journal</i> , 2016 , 22, 18769-18776	4.8	212
364	A Post-Synthetically Modified MOF for Selective and Sensitive Aqueous-Phase Detection of Highly Toxic Cyanide Ions. <i>Chemistry - A European Journal</i> , 2016 , 22, 864-8	4.8	75
363	Chemical Sensors Based on Metal-Organic Frameworks. 2016 , 81, 675-690		465
363 362	Chemical Sensors Based on Metal-Organic Frameworks. 2016 , 81, 675-690 Lanthanide metal®rganic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. <i>RSC Advances</i> , 2016 , 6, 57828-57	7834	465 30
	Lanthanide metal@rganic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand	7834	
362	Lanthanide metalorganic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. <i>RSC Advances</i> , 2016 , 6, 57828-57 Hydrogen storage capacity enhancement of MIL-53(Cr) by Pd loaded activated carbon doping. 2016	7834	30
362 361	Lanthanide metalorganic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. <i>RSC Advances</i> , 2016 , 6, 57828-57. Hydrogen storage capacity enhancement of MIL-53(Cr) by Pd loaded activated carbon doping. 2016 , 63, 463-472. Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. 2016 ,	783 <mark>4</mark>	30
362 361 360	Lanthanide metal@rganic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. <i>RSC Advances</i> , 2016 , 6, 57828-57 Hydrogen storage capacity enhancement of MIL-53(Cr) by Pd loaded activated carbon doping. 2016 , 63, 463-472 Metal organic frameworks mimicking natural enzymes: a structural and functional analogy. 2016 , 45, 4127-70 Multifunctional mixed ligand metal organic frameworks: X-ray structure, adsorption, luminescence		30 18 283
362 361 360 359	Lanthanide metal\(\text{B}\)rganic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. \(\text{RSC}\) Advances, \(\text{2016}\), 6, 57828-		30 18 283
362 361 360 359 358	Lanthanide metalBrganic frameworks based on a 1,2,3-triazole-containing tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. <i>RSC Advances</i> , 2016 , 6, 57828-57828		30 18 283 18

354	Porous covalent organic polymers as luminescent probes for highly selective sensing of Fe3+ and chloroform: Functional group effects. 2016 , 226, 273-278		67
353	Solvent-induced construction of two zinc metal®rganic frameworks for highly selective detection of nitroaromatic explosives. <i>CrystEngComm</i> , 2016 , 18, 4102-4108	3.3	23
352	Luminescent Metal Drganic Complexes of Pyrene or Anthracene Chromophores: Energy Transfer Assisted Amplified Exciplex Emission and Al3+ Sensing. 2016 , 16, 82-91		39
351	Ln3+ post-functionalized metalorganic frameworks for color tunable emission and highly sensitive sensing of toxic anions and small molecules. <i>New Journal of Chemistry</i> , 2016 , 40, 4654-4661	3.6	74
350	Sensing-functional luminescent metal®rganic frameworks. <i>CrystEngComm</i> , 2016 , 18, 3746-3759	3.3	143
349	Fluorescent Aromatic Tag-Functionalized MOFs for Highly Selective Sensing of Metal Ions and Small Organic Molecules. <i>Inorganic Chemistry</i> , 2016 , 55, 2261-73	5.1	157
348	Unprecedented Solvent-Dependent Sensitivities in Highly Efficient Detection of Metal Ions and Nitroaromatic Compounds by a Fluorescent Barium Metal-Organic Framework. <i>Inorganic Chemistry</i> , 2016 , 55, 1782-7	5.1	76
347	A turn on fluorescent sensor based on lanthanide coordination polymer nanoparticles for the detection of mercury(II) in biological fluids. <i>RSC Advances</i> , 2016 , 6, 17811-17817	3.7	38
346	Gas Adsorption Effects on the Electronic Properties of Two-Dimensional Nickel Bis(dithiolene) Complex. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 3846-3852	3.8	29
345	Facile fabrication of MIL-103(Eu) porous coordination polymer nanostructures and their sorption and sensing properties. <i>Dalton Transactions</i> , 2016 , 45, 5841-7	4.3	20
344	A New Luminescent Cd(II) Coordination Polymer Based on Mixed Ligands. 2016 , 46, 1065-1068		1
343	A review on contemporary Metal©rganic Framework materials. 2016 , 446, 61-74		221
342	Novel photo- and/or thermochromic MOFs derived from bipyridinium carboxylate ligands. 2016 , 3, 814	-820	48
341	A Robust Luminescent Tb(III)-MOF with Lewis Basic Pyridyl Sites for the Highly Sensitive Detection of Metal Ions and Small Molecules. <i>Inorganic Chemistry</i> , 2016 , 55, 3265-71	5.1	430
340	Luminescent Eu(III) coordination polymer cross-linked with Zn(II) complexes. 2016, 167, 183-187		16
339	CoreBhell Nanocomposites Based on Gold [email´protected]Iron-Embedded Porous Carbons Derived from MetalDrganic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. 2016 , 6, 1045-1053		138
338	I2-induced SC-SC transformation within two-dimensional Zn(ii)-triazole framework: an ideal detector of cyano-containing molecules. <i>Chemical Communications</i> , 2016 , 52, 3099-102	5.8	19
337	New members of MOF-76 family containing Ho(III) and Tm(III) ions: Characterization, stability and gas adsorption properties. 2016 , 496, 114-124		27

336	Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor. 2016 , 1, 243-250		274
335	Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF. 2016 , 8, 2881-6		87
334	pH-Dependent two novel heteronuclear Cu(II)/Sr(II) coordination polymers constructed from 1,3,5-benzenetricarboxylic acid: Synthesis, crystal structures and properties. <i>Journal of Molecular Structure</i> , 2016 , 1106, 64-69	3.4	7
333	A novel 2D infinite M3L2 cage-based Cd(II) microporous coordination polymer with a tripodal carboxylic acid ligand and solvent-dependent luminescence properties. <i>New Journal of Chemistry</i> , 2016 , 40, 97-100	3.6	9
332	Ionic metal-organic frameworks (iMOFs): Design principles and applications. <i>Coordination Chemistry Reviews</i> , 2016 , 307, 313-341	23.2	212
331	Spectral and dynamical properties of a Zr-based MOF. 2016 , 18, 5112-20		26
330	Neutral N-donor ligand based flexible metal-organic frameworks. <i>Dalton Transactions</i> , 2016 , 45, 4060-7	24.3	60
329	Mechanochemical and Conventional Synthesis of Zn(II)/Cd(II) Luminescent Coordination Polymers: Dual Sensing Probe for Selective Detection of Chromate Anions and TNP in Aqueous Phase. <i>Inorganic Chemistry</i> , 2017 , 56, 2627-2638	5.1	220
328	Solvothermal self-assembly of Cd coordination polymers with supramolecular networks involving N-donor ligands and aromatic dicarboxylates: synthesis, crystal structure and photoluminescence studies. <i>Dalton Transactions</i> , 2017 , 46, 3623-3630	4.3	46
327	A terbium(III)-based coordination polymer for time-resolved determination of hydrogen sulfide in human serum via displacement of copper(II). 2017 , 9, 1004-1010		13
326	Flexible Ligand-Based Lanthanide Three-Dimensional Metal Drganic Frameworks with Tunable Solid-State Photoluminescence and OH-Solvent-Sensing Properties. 2017 , 2017, 2321-2331		17
325	Epitaxial Growth of Oriented Metalloporphyrin Network Thin Film for Improved Selectivity of Volatile Organic Compounds. 2017 , 13, 1604035		29
324	Detection of polychlorinated benzenes (persistent organic pollutants) by a luminescent sensor based on a lanthanide metalorganic framework. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5541-5549	13	138
323	A Novel, Interpenetrating Metal®rganic Framework: Synthesis, Structure, and Luminescence Detection of Nitrobenzene. 2017 , 70, 792		1
322	MetalBrganic frameworks constructed from a tetrahedral silicon-based linker for selective adsorption of methylene blue. <i>CrystEngComm</i> , 2017 , 19, 1564-1570	3.3	18
321	Fabricating a super stable luminescent chemosensor with multi-stimuli-response to metal ions and small organic molecules through turn-on and turn-off effects. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4511-4519	7.1	50
320	Two luminescent d 10 metal coordination polymers assembled from a semirigid terpyridyl carboxylate ligand with high selective detecting of Cu 2+, Cr 2 O 7 2- and acetone. <i>Journal of Solid State Chemistry</i> , 2017 , 251, 79-89	3.3	24
319	Highly sensitive and selective sensing of CH3Hg+ via oscillation effect in Eu-cluster. 2017 , 248, 589-596		44

318	A novel luminescent Pb(ii) - organic framework exhibiting a rapid and selective detection of trace amounts of NACs and Fe with excellent recyclability. <i>Dalton Transactions</i> , 2017 , 46, 6303-6311	4.3	79
317	Metal-Organic Frameworks with Tb Clusters as Nodes: Luminescent Detection of Chromium(VI) and Chemical Fixation of CO. <i>Inorganic Chemistry</i> , 2017 , 56, 6244-6250	5.1	83
316	Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. 2017 , 46, 3242-3285		1829
315	Highly Selective Bifunctional Luminescent Sensor toward Nitrobenzene and Cu Ion Based on Microporous Metal-Organic Frameworks: Synthesis, Structures, and Properties. <i>ACS Applied Materials & Description (Materials & Description (Materials & Description)</i> 17208-17217	9.5	78
314	A crystalline zinc(ii) complex showing hollow hexagonal tubular morphology evolution, selective dye absorption and unique response to UV irradiation. <i>Chemical Communications</i> , 2017 , 53, 5515-5518	5.8	23
313	Enzyme-MOF (metal-organic framework) composites. 2017 , 46, 3386-3401		720
312	Anion-dependent formation of four coordination polymers based on N,N?-di(3-pyridine) oxamide (DPOM): Crystal structures and luminescence. <i>Journal of Solid State Chemistry</i> , 2017 , 253, 231-237	3.3	3
311	Lanthanide-Based Coordination Polymers for the Size-Selective Detection of Nitroaromatics. 2017 , 17, 3907-3916		38
310	Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions. 2017 , 7, 1700518		406
309	Rational composition control of mixed-lanthanide metal-organic frameworks by an interfacial reaction with metal ion-doped polymer substrates. <i>Journal of Solid State Chemistry</i> , 2017 , 253, 43-46	3.3	4
308	A NbO type Cu(ii) metal-organic framework showing efficient catalytic activity in the Friedlider and Henry reactions. <i>Dalton Transactions</i> , 2017 , 46, 7782-7790	4.3	36
307	Colorimetric sensor arrays for amines based on responsive lanthanide complex entrapment. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6805-6811	7.1	29
306	Synthesis, luminescent sensing based on a three-fold interpenetrating network with flexible carboxylates. 2017 , 43, 50-54		O
305	Phosphonate MOFs Composite as Off-On Fluorescent Sensor for Detecting Purine Metabolite Uric Acid and Diagnosing Hyperuricuria. <i>Inorganic Chemistry</i> , 2017 , 56, 6802-6808	5.1	61
304	Ultrastable 1D Europium Complex for Simultaneous and Quantitative Sensing of Cr(III) and Cr(VI) Ions in Aqueous Solution with High Selectivity and Sensitivity. <i>Inorganic Chemistry</i> , 2017 , 56, 4197-4205	5.1	143
303	Impact of Synthesis Parameters on the Formation of Defects in HKUST-1. 2017 , 2017, 925-931		27
302	Determination of Urinary 1-Hydroxypyrene for Biomonitoring of Human Exposure to Polycyclic Aromatic Hydrocarbons Carcinogens by a Lanthanide-functionalized Metal-Organic Framework Sensor. 2017 , 27, 1603856		179
301	A microporous Cd-MOF based on a hexavalent silicon-centred connector and luminescence sensing of small molecules. <i>New Journal of Chemistry</i> , 2017 , 41, 1137-1141	3.6	15

300	A Eu/Tb-mixed MOF for luminescent high-temperature sensing. <i>Journal of Solid State Chemistry</i> , 2017 , 246, 341-345	3.3	70	
299	Structural Diversity in Six Mixed Ligand Zn(II) Metal©rganic Frameworks Constructed by Rigid and Flexible Dicarboxylates and Different N,N? Donor Ligands. 2017 , 17, 6613-6624		33	
298	High-Nuclearity Lanthanide-Titanium Oxo Clusters as Luminescent Molecular Thermometers with High Quantum Yields. <i>Inorganic Chemistry</i> , 2017 , 56, 12186-12192	5.1	49	
297	Magnetic properties and luminescence sensing of five coordination polymers based on a rigid terphenyl-tetracarboxylic acid. <i>CrystEngComm</i> , 2017 , 19, 6651-6659	3.3	20	
296	Tuning the structure and Zn(II) sensing of lanthanide complexes with two phenylimidazophenanthrolines by acetonitrile hydrolysis. <i>CrystEngComm</i> , 2017 , 19, 6533-6539	3.3	11	
295	Five Co(II) coordination polymers with different counter anions based on [3,5-di(4H-1,2,4-triazol-4-yl)benzoato]ligand: directed synthesis, structures and magnetic properties. RSC Advances, 2017, 7, 45641-45651	3.7	5	
294	Sensing properties, energy transfer mechanism and tuneable particle size processing of luminescent two-dimensional rare earth coordination networks. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12409-12421	7.1	12	
293	Strain alleviation in an isomorphous series of lanthanide 2-nitroterephthalates [Ln2(TPNO2)3(H2O)2][2H2O (Ln = Pr [Lu, except Pm). 2017 , 467, 276-286		2	
292	Mixed-Ligand LMOF Fluorosensors for Detection of Cr(VI) Oxyanions and Fe/Pd Cations in Aqueous Media. <i>Inorganic Chemistry</i> , 2017 , 56, 10939-10949	5.1	113	
291	A Luminescent 3d-4f-4d MOF Nanoprobe as a Diagnosis Platform for Human Occupational Exposure to Vinyl Chloride Carcinogen. <i>Inorganic Chemistry</i> , 2017 , 56, 11176-11183	5.1	38	
290	A series of anionic host coordination polymers based on azoxybenzene carboxylate: structures, luminescence and magnetic properties. <i>Dalton Transactions</i> , 2017 , 46, 14192-14200	4.3	133	
289	Sorption and sensing properties of coordination polymers with mixed 1,3,5-tri(1-imidazolyl)benzene and 2,6-naphthalenedicarboxylate ligands. <i>RSC Advances</i> , 2017 , 7, 44639	9-44646	5 ¹²	
288	Classifying the polarity of organic solvent mixtures by using Hostalene Red adsorbed on nanosized zeolite as a fluorescent probe. 2017 , 184, 4663-4669		4	
287	Six Co(II) Coordination Polymers Based on Two Isomeric Semirigid Ether-Linked Aromatic Tetracarboxylate Acid: Syntheses, Structural Comparison, and Magnetic Properties. 2017 , 17, 5533-554	13	25	
286	Three Cadmium Coordination Polymers with Carboxylate and Pyridine Mixed Ligands: Luminescent Sensors for Fe and Cr Ions in an Aqueous Medium. <i>Inorganic Chemistry</i> , 2017 , 56, 11768-11778	5.1	143	
285	Computational Screening of Functionalized UiO-66 Materials for Selective Contaminant Removal from Air. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 20396-20406	3.8	22	
284	Explosives in the Cage: Metal-Organic Frameworks for High-Energy Materials Sensing and Desensitization. <i>Advanced Materials</i> , 2017 , 29, 1701898	24	90	
283	A series of transition metal coordination polymers with mixed ligands: Specific sensing and removal of metal ions. 2017 , 466, 470-477		3	

282	Flexible porous coordination polymer of Ni(II) for developing nanoparticles through acid formation and redox activity of the framework. <i>Journal of Solid State Chemistry</i> , 2017 , 254, 119-125	3.3	1
281	Steric paper based ratio-type electrochemical biosensor with hollow-channel for sensitive detection of Zn2+. 2017 , 62, 1114-1121		20
280	Highly sensing probe for biological metabolite of benzene series pollutants based on recyclable Eu3+ functionalized metal-organic frameworks hybrids. 2017 , 253, 852-859		30
279	A nanoscale Zr-based fluorescent metal-organic framework for selective and sensitive detection of hydrogen sulfide. <i>Journal of Solid State Chemistry</i> , 2017 , 255, 97-101	3.3	25
278	Sequence-specific fluorometric recognition of HIV-1 ds-DNA with zwitterionic zinc(II)-carboxylate polymers. 2017 , 176, 17-23		19
277	Facile and Rapid Growth of Nanostructured Ln-BTC Metal-Organic Framework Films by Electrophoretic Deposition for Explosives sensing in Gas and Cr Detection in Solution. 2017 , 33, 14238-	14243	31
276	Construction of new zinc(II) coordination polymers by 1-(triazol-1-yl)-2,4,6-benzenetricarboxylate ligand for sensitizing lanthanide(III) ions and sensing small molecules. <i>Journal of Solid State Chemistry</i> , 2017 , 253, 430-437	3.3	6
275	Luminescent lanthanide metal-organic frameworks for chemical sensing and toxic anion detection. <i>Dalton Transactions</i> , 2017 , 46, 9859-9867	4.3	44
274	Luminescent sensing and photocatalytic degradation properties of an uncommon (4,5,5)-connected 3D MOF based on 3,5-di(3?,5?-dicarboxylphenyl)benzoic acid. <i>CrystEngComm</i> , 2017 , 19, 4368-4377	3.3	59
273	An uncommon (5,5)-connected 3D metal organic material for selective and sensitive sensing of nitroaromatics and ferric ion: experimental studies and theoretical analysis. <i>CrystEngComm</i> , 2017 , 19, 3519-3525	3.3	62
272	Metal-Organic Frameworks Constructed from a New Thiophene-Functionalized Dicarboxylate: Luminescence Sensing and Pesticide Removal. <i>ACS Applied Materials & Dicarboxylate</i> , 9, 15164-15	59 7 5	118
271	A facile in situ synthesis of MIL-101-CdSe nanocomposites for ultrasensitive electrochemiluminescence detection of carcinoembryonic antigen. 2017 , 242, 1073-1078		27
270	Luminescent rare-earth-based MOFs as optical sensors. <i>Dalton Transactions</i> , 2017 , 46, 301-328	4.3	192
269	Coordination Polymers Comprised of an Exo Bifunctional Schiff Base Ligand and Succinate Dianion: Critical Analysis of Factors Affecting the Structures and Framework Dimensionality. 2017 , 2, 11677-116	85	2
268	High drug-loading nanomedicines: progress, current status, and prospects. 2017 , 12, 4085-4109		230
267	Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices. 2017 , 17,		166
266	Hydrothermal Preparation of a Series of Luminescent Cadmium(II) and Zinc(II) Coordination Complexes and Enhanced Real-time Photo-luminescent Sensing for Benzaldehyde. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2018 , 644, 357-366	1.3	3
265	Rapid Detection of the Biomarkers for Carcinoid Tumors by a Water Stable Luminescent Lanthanide Metal®rganic Framework Sensor. 2018 , 28, 1707169		235

264	Six Ln (III) Coordination Polymers with a Semirigid Tetracarboxylic Acid Ligand: Bifunctional Luminescence Sensing, NIR-Luminescent Emission, and Magnetic Properties. 2018 , 18, 2112-2120		50
263	Homo-Helical Rod Packing as a Path Toward the Highest Density of Guest-Binding Metal Sites in Metal-Organic Frameworks. 2018 , 57, 6208-6211		25
262	A turn-on fluorescence probe based on post-modified metalBrganic frameworks for highly selective and fast-response hypochlorite detection. 2018 , 148, 76-80		12
261	A Novel Zr-MOF as Fluorescence Turn-On Probe for Real-Time Detecting H S Gas and Fingerprint Identification. 2018 , 14, e1703822		61
2 60	Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14869-14876	9.5	47
259	One-Step Synthesis of Hybrid CoreBhell MetalDrganic Frameworks. 2018, 130, 3991-3996		20
258	One-Step Synthesis of Hybrid Core-Shell Metal-Organic Frameworks. 2018 , 57, 3927-3932		87
257	The point-of-care colorimetric detection of the biomarker of phenylamine in the human urine based on Tb functionalized metal-organic framework. 2018 , 1012, 82-89		36
256	Thermal Transformations of Polymeric Metal Chelates and Their Precursors in Nanocomposites Formation. 2018 , 899-1007		1
255	A Dual-Functional Luminescent MOF Sensor for Phenylmethanol Molecule and Tb Cation. <i>Inorganic Chemistry</i> , 2018 , 57, 2654-2662	5.1	44
254	Temperature-induced self-assembly of two kinds Zn(II)-based coordination polymers with luminescence properties for application in sensing and adsorption. <i>New Journal of Chemistry</i> , 2018 , 42, 3885-3891	3.6	12
253	A multifunctional MOF as a recyclable catalyst for the fixation of CO with aziridines or epoxides and as a luminescent probe of Cr(vi). <i>Dalton Transactions</i> , 2018 , 47, 4545-4553	4.3	61
252	A dual-emission nano-rod MOF equipped with carbon dots for visual detection of doxycycline and sensitive sensing of MnO <i>RSC Advances</i> , 2018 , 8, 4766-4772	3.7	43
251	Functionalization of Metal-Organic Frameworks for Photoactive Materials. <i>Advanced Materials</i> , 2018 , 30, e1705634	24	101
250	Optical isotherms as a fundamental characterization method for gas sensing with luminescent MOFs by comparison of open and dense frameworks. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2588-2	59 ⁷ 5 ¹	15
249	pH-Controlled Assembly of 3D and 2D Zinc-Based Metal-Organic Frameworks with Tetrazole Ligands. 2018 , 3, 801-807		14
248	Highly selective luminescent sensor for CCl4 vapor and pollutional anions/cations based on a multi-responsive MOF. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2010-2018	7.1	26
247	Selective fluorescent sensing and photocatalytic properties of three MOFs based on naphthalene-1,4-dicarboxylic acid and 2,4,5-tri(4-pyridyl)-imidazole. <i>New Journal of Chemistry</i> , 2018 , 42, 3551-3559	3.6	5

246	Zone-Collapse Amorphization Mimicking the Negative Compressibility of a Porous Compound. 2018 , 18, 1082-1089		10	
245	Highly fluorescent selectivity of two Cd(II) coordination networks with active sites for nitroaromatic compounds and Fe3+ and Hg2+. 2018 , 471, 746-753		5	
244	A new Zn(II) metal b rganic framework having 3D CdSO4 topology as luminescent sensor and photocatalyst for degradation of organic dyes. <i>New Journal of Chemistry</i> , 2018 , 42, 2767-2775	3.6	60	
243	Interpenetration-Dependent Luminescent Probe in Indium-Organic Frameworks for Selectively Detecting Nitrofurazone in Water. 2018 , 90, 1516-1519		95	
242	Homo-Helical Rod Packing as a Path Toward the Highest Density of Guest-Binding Metal Sites in Metal Drganic Frameworks. 2018 , 130, 6316-6319		5	
241	Microwave assisted synthesis and molecular structure visualization of ultrahigh surface area Ni-6,6?-dibromo-indigo coordinated polymeric MOFs stabilized via hydrogen bonding. 2018 , 92, 78-83		9	
240	Solvo-thermal synthesis of a unique alkaline earth-transition Ba-Cd micro-porous coordination framework as hetero-metallic luminescent sensor for Cu and real-time detection of benzaldehyde. 2018 , 199, 110-116		4	
239	Eu 3+ -functionalized metal-organic framework composite as ratiometric fluorescent sensor for highly selective detecting urinary 1-hydroxypyrene. <i>Dyes and Pigments</i> , 2018 , 151, 342-347	4.6	36	
238	Urea-containing metal-organic frameworks for carbonyl compounds sensing. 2018 , 256, 706-710		24	
237	Synthesis, structure and magnetic studies of lanthanide metallinganic frameworks (LnMOFs): Aqueous phase highly selective sensors for picric acid as well as the arsenic ion. 2018 , 139, 131-141		30	
236	Terbium (III) coordination polymer-copper (II) compound as fluorescent probe for time-resolved fluorescence 'turn-on' detection of hydrogen sulfide. 2018 , 33, 161-167		10	
235	Metal-Organic Frameworks (MOFs) as Functional Supramolecular Architectures for Anion Recognition and Sensing. 2018 , 18, 154-164		26	
234	Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. 2018 , 194, 462-469		175	
233	Novel double layer lanthanide metal-organic networks for sensing applications. <i>Dalton Transactions</i> , 2018 , 47, 465-474	4.3	12	
232	Eu(III)-coordination polymer sub-micron fibers: material for selective and sensitive detection of Cu2+ ions via competition between photoinduced electron transfer and energy transfer. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 153-161	7.1	8	
231	Three new Coordination Polymers based on a 1-(3,5-dicarboxy-benzyl)-1H-pyrazole-3,5-dicarboxylic acid ligand: Synthesis, crystal structures, magnetic properties and selectively sensing properties. 2018 , 141, 223-229		7	
230	Functionalized Eu(III)-Based Nanoscale Metal-Organic Framework To Achieve Near-IR-Triggered and -Targeted Two-Photon Absorption Photodynamic Therapy. <i>Inorganic Chemistry</i> , 2018 , 57, 300-310	5.1	45	
229	A multifunctional luminescent metal-organic framework showing sensing, sensitization, and adsorbent abilities. 2018 , 471, 336-344		5	

228	Defect engineering of highly stable lanthanide metalorganic frameworks by particle modulation for coating catalysis. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 342-348	13	32
227	Photoactive metal-organic framework as a bifunctional material for 4-hydroxy-4'-nitrobiphenyl detection and photodegradation of methylene blue. <i>Dalton Transactions</i> , 2018 , 47, 16551-16557	4.3	23
226	An anionic layered europium(iii) coordination polymer for solvent-dependent selective luminescence sensing of Fe and Cu ions and latent fingerprint detection. <i>Dalton Transactions</i> , 2018 , 47, 17479-17485	4.3	18
225	Rapid naked-eye luminescence detection of carbonate ion through acetonitrile hydrolysis induced europium complexes. <i>CrystEngComm</i> , 2018 , 20, 7574-7581	3.3	13
224	A highly sensitive flexible metal®rganic framework sets a new benchmark for separating propyne from propylene. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24452-24458	13	46
223	Porous organic polymers based on melamine and 5,5?-bis(bromomethyl)-2,2?-bipyridine: functionalization with lanthanide ions for chemical sensing and highly efficient adsorption of methyl orange. <i>New Journal of Chemistry</i> , 2018 , 42, 19734-19739	3.6	4
222	A new fluorescent macrocyclic nano-chemosensor for Fe3+ and Illin aqueous solution. <i>New Journal of Chemistry</i> , 2018 , 42, 17690-17699	3.6	8
221	3D water-stable europium metal organic frameworks as a multi-responsive luminescent sensor for high-efficiency detection of Cr2O72 IMnO4 ICr3+ ions and SDBS in aqueous solution. <i>New Journal of Chemistry</i> , 2018 , 42, 20137-20143	3.6	31
220	A new Cd based metal B rganic framework for quick and convenient detection of trace water in isopropanol and 1,4-dioxane. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12341-12346	7.1	19
219	Ratiometric fluorescence detection of Cu based on carbon dots/bovine serum albumin-Au nanoclusters. 2018 , 33, 1268-1274		13
218	Reviewing Rare Earth Succinate Frameworks from the Reticular Chemistry Point of View: Structures, Nets, Catalytic and Photoluminescence Applications. 2018 , 58, 1044-1061		14
217	Layer-structured lanthanide coordination polymers constructed from 3,5-bis(3,5-dicarboxylphenyl)-pyridine ligand as fluorescent probe for nitroaromatics and metal ions. 2018 , 483, 473-479		14
216	Synthesis, structural and optical study of Ni-doped Metal-organic framework for adsorption based chemical sensor application. 2018 , 158, 249-256		20
215	Synthesis and solar cell application of a composite of Eu-BTB MOF with functionalized graphene. 2018 , 5, 125501		2
214	Dye Adsorption and Fluorescence Sensing Behaviour About Rare Earth-Indole Carboxylic Acid Complexes. 2018 , 28, 1839-1849		4
213	Highly sensitive bifunctional sensor of a dinuclear terbium complex. 2018 , 270, 452-458		19
212	Stabilizing volatile azido in a 3D nitrogen-rich energetic metalBrganic framework with excellent energetic performance. <i>Journal of Solid State Chemistry</i> , 2018 , 265, 42-49	3.3	9
211	Two luminescent lanthanideBrganic frameworks containing bithiophene groups for the selective detection of nitrobenzene and Fe3+. <i>CrystEngComm</i> , 2018 , 20, 3609-3619	3.3	19

210	Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal-organic frameworks. <i>Chemical Communications</i> , 2018 , 54, 6999-7002	5.8	39
209	A facile means for the improvement of sensing properties of metal-organic frameworks through control on the key synthesis variables. 2018 , 271, 157-163		13
208	Synergistic weak/strong coupling luminescence in Eu-metal-organic framework/Zn2GeO4:Mn2+ nanocomposites for ratiometric luminescence thermometer. <i>Dyes and Pigments</i> , 2018 , 157, 321-327	4.6	26
207	Towards Versatile Continuous-Flow Chemistry and Process Technology Via New Conceptual Microreactor Systems. <i>Bulletin of the Korean Chemical Society</i> , 2018 , 39, 757-772	1.2	20
206	A heterobimetallic metal-organic framework as a "turn-on" sensor toward DMF. <i>Chemical Communications</i> , 2018 , 54, 8233-8236	5.8	23
205	Sensitive luminescent probes of aniline, benzaldehyde and Cr(VI) based on a zinc(II) metal-organic framework and its lanthanide(III) post-functionalizations. <i>Dyes and Pigments</i> , 2018 , 159, 429-438	4.6	50
204	Thermolysis of Low Molecular Weight Metal Chelates. 2018 , 71-245		1
203	A new stable luminescent Cd(ii) metal-organic framework with fluorescent sensing and selective dye adsorption properties. <i>Dalton Transactions</i> , 2018 , 47, 9466-9473	4.3	54
202	A Polyhedron-based Metal-Organic Framework showing high CO2 Adsorption Capacity. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2018 , 644, 883-887	1.3	2
201	Structural diversities and gas adsorption properties of a family of rod-packing lanthanideBrganic frameworks based on cyclotriphosphazene-functionalized hexacarboxylate derivatives. 2018 , 5, 2227-	2237	31
200	Trace-level and selective detection of uric acid by a luminescent Zn (II) based 1D coordination polymer in aqueous medium. 2018 , 365, 125-132		5
199	Photonic functional metal-organic frameworks. 2018 , 47, 5740-5785		373
198	Two Chemically Stable Cd(II) Polymers as Fluorescent Sensor and Photocatalyst for Aromatic Dyes. 2018 , 10,		5
197	Solvent-Modulated Emission Properties in a Superhydrophobic Oligo(p-phenyleneethynylene)-Based 3D Porous Supramolecular Framework. <i>Inorganic Chemistry</i> , 2018 , 57, 8693-8696	5.1	8
196	A bi-metallic MOF catalyst via sensitive detection & adsorption of Fe ions for size-selective reaction prompting. <i>Dalton Transactions</i> , 2018 , 47, 9267-9273	4.3	12
195	First-principles prediction of two-dimensional metal bis(dithiolene) complexes as promising gas sensors. 2018 , 20, 16939-16948		11
194	Multi-responsive luminescent sensor based on Zn (II) metal-organic framework for selective sensing of Cr(III), Cr(VI) ions and p-nitrotolune. <i>Journal of Solid State Chemistry</i> , 2018 , 268, 168-174	3.3	26
193	2D europium coordination polymer as a regenerable fluorescence probe for efficiently detecting fipronil. 2018 , 143, 4901-4906		13

192	A new 2D -lbD polycatenated Cd(II) coordination polymer: Syntheses, structure and luminescent sensing. 2018 , 155, 268-274		5
191	Lanthanide Functionalized Metal-Organic Coordination Polymer: Toward Novel Turn-On Fluorescent Sensing of Amyloid & Peptide. 2018 , 90, 12449-12455		44
190	Postsynthetic Metalation Metal-Organic Framework as a Fluorescent Probe for the Ultrasensitive and Reversible Detection of PO Ions. <i>Inorganic Chemistry</i> , 2018 , 57, 10525-10532	5.1	71
189	Dual-emissive ratiometric fluorescent probe based on Eu3+/C-dots@MOF hybrids for the biomarker diaminotoluene sensing. 2018 , 272, 510-517		59
188	Ln(III)-Functionalized Metal-Organic Frameworks Hybrid System: Luminescence Properties and Sensor for trans, trans-Muconic Acid as a Biomarker of Benzene. <i>Inorganic Chemistry</i> , 2018 , 57, 7815-782	ā .1	62
187	Highly selective and sensitive detection of Pb2+ and UO22+ ions based on a carboxyl-functionalized Zn(II)-MOF platform. <i>Dyes and Pigments</i> , 2019 , 160, 159-164	4.6	36
186	Luminescent metal organic frameworks for sensing and gas adsorption studies. <i>CrystEngComm</i> , 2019 , 21, 5470-5481	3.3	15
185	Theoretical prediction of thermal and electronic properties of metal-organic frameworks. 2019 , 80, 136-	-151	8
184	Designing Open Metal Sites in Metal-Organic Frameworks for Paraffin/Olefin Separations. 2019 , 141, 13003-13007		47
183	Four novel Co(II) metal-organic frameworks based on semi-rigid ligand and their secondary building units transformation. <i>Journal of Molecular Structure</i> , 2019 , 1197, 87-95	3.4	5
182	Two alkaline earth metal coordination polymers based on a new oxamate-dicarboxylate ligand: Selective fluorescence sensing of Fe3+ in aqueous solution. 2019 , 107, 107490		6
181	Antibiotic-triggered reversible luminescence switching in amine-grafted mixed-linker MOF: exceptional turn-on and ultrafast nanomolar detection of sulfadiazine and adenosine monophosphate with molecular keypad lock functionality. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 194	13 71-1 9	56 9484
180	Three-in-one is really better: exploring the sensing and adsorption properties in a newly designed metal-organic system incorporating a copper(ii) ion. <i>Dalton Transactions</i> , 2019 , 48, 12918-12932	4.3	47
179	A Water-Stable Terbium(III)-Organic Framework as a Chemosensor for Inorganic Ions, Nitro-Containing Compounds and Antibiotics in Aqueous Solutions. 2019 , 14, 3694-3701		129
178	Framework-Interpenetrated Nitrogen-Rich Zn(II) Metal©rganic Frameworks for Energetic Materials. 2019 , 2, 5116-5124		15
177	Two-Dimensional Metal-Organic Framework Nanosheets as a Dual Ratiometric and Turn-off Luminescent Probe. <i>Inorganic Chemistry</i> , 2019 , 58, 10912-10919	5.1	19
176	Aqueous-Phase Differentiation and Speciation of Fe3+ and Fe2+ Using Water-Stable Photoluminescent Lanthanide-Based Metal@rganic Framework. 2019 , 2, 5169-5178		19
175	Biomimetic mineralization of nanoscale lanthanide metal-organic frameworks with thermo-sensitive polymer as organic ligands for solvent recognition and water detection. <i>Journal of Solid State Chemistry</i> , 2019 , 277, 594-601	3.3	10

174	Large and tunable magnetocaloric effect in gadolinium-organic framework: tuning by solvent exchange. 2019 , 9, 15572		17
173	Tuning the net topology of a ternary Ag(I)-1,2,4,5-tetra(4-pyridyl)benzene-carboxylate framework: structures and photoluminescence. <i>CrystEngComm</i> , 2019 , 21, 6446-6451	3.3	5
172	Recent advances in luminescent metal-organic frameworks for chemical sensors. 2019 , 62, 1655-1678		99
171	Devising Chemically Robust and Cationic Ni(II)-MOF with Nitrogen-Rich Micropores for Moisture-Tolerant CO Capture: Highly Regenerative and Ultrafast Colorimetric Sensor for TNP and Multiple Oxo-Anions in Water with Theoretical Revelation. ACS Applied Materials & Camp; Interfaces,	9.5	52
170	Europium Ionic Liquid Grafted Covalent Organic Framework with Dual Luminescence Emissions as Sensitive and Selective Acetone Sensor. <i>ACS Applied Materials & District Acetone Sensor</i> , 11, 39201-39208	9.5	57
169	Effect of charge transfer and structural rigidity on divergent luminescence response of a metal organic framework towards different metal ions: luminescence lifetime decay experiments and DFT calculations. 2019 , 18, 1110-1121		17
168	Space-confined indicator displacement assay inside a metal-organic framework for fluorescence turn-on sensing. <i>Chemical Science</i> , 2019 , 10, 3307-3314	9.4	45
167	Highly selective and sensitive detection of Fe3+, Al3+ and picric acid by a water-stable luminescent MOF. <i>Journal of Solid State Chemistry</i> , 2019 , 272, 1-8	3.3	31
166	Four three-dimensional metal®rganic frameworks assembled from 1H-tetrazole: Synthesis, crystal structures and thermal properties. 2019 , 160, 198-206		4
165	Our journey of developing multifunctional metal-organic frameworks. <i>Coordination Chemistry Reviews</i> , 2019 , 384, 21-36	23.2	86
164	Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material. 2019 , 297, 1-7		18
163	Guest-Induced Ultrasensitive Detection of Multiple Toxic Organics and Fe Ions in a Strategically Designed and Regenerative Smart Fluorescent Metal-Organic Framework. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 9042-9053	9.5	117
162	A water-stable 3D Eu-MOF based on a metallacyclodimeric secondary building unit for sensitive fluorescent detection of acetone molecules. <i>CrystEngComm</i> , 2019 , 21, 321-328	3.3	23
161	Stable coordination polymers with linear dependence color tuning and luminescent properties for detection of metal ions and explosives. <i>Dyes and Pigments</i> , 2019 , 170, 107583	4.6	13
160	One-Step Synthesis of Mixed Lanthanide Metal®rganic Framework Films for Sensitive Temperature Mapping. <i>Advanced Optical Materials</i> , 2019 , 7, 1900336	8.1	40
159	High-sensitive and stable photonic crystal sensors for visual detection and discrimination of volatile aromatic hydrocarbon vapors. 2019 , 375, 121987		27
158	A series of resorcin[4]arene-based lanthanide-metal organic frameworks for barcode and luminescent multicolor tuning property. <i>Dyes and Pigments</i> , 2019 , 171, 107665	4.6	11
157	A Robust Tb-MOF for Ultrasensitive Detection of Trinitrophenol: Matched Channel Dimensions and Strong Host-Guest Interactions. <i>Inorganic Chemistry</i> , 2019 , 58, 8198-8207	5.1	34

156	Post-synthetic modification of a Tb-based metalorganic framework for highly selective and sensitive detection of metal ions in aqueous solution. <i>New Journal of Chemistry</i> , 2019 , 43, 10232-10236	3.6	10
155	Exclusive Recognition of Acetone in a Luminescent BioMOF through Multiple Hydrogen-Bonding Interactions. <i>Inorganic Chemistry</i> , 2019 , 58, 7667-7671	5.1	22
154	Hierarchical Structure with Highly Ordered Macroporous-Mesoporous Metal-Organic Frameworks as Dual Function for CO Fixation. 2019 , 15, 514-523		29
153	MOF-SMO hybrids as a H2S sensor with superior sensitivity and selectivity. 2019 , 292, 32-39		32
152	Introduction to Metal-Organic Frameworks. 2019 , 1-44		
151	Modulation of Whispering Gallery Modes from Fluorescent Copolymer Microsphere Resonators by Protonation/Deprotonation. 2019 , 48, 607-610		2
150	Sensing and Discrimination of Explosives at Variable Concentrations with a Large-Pore MOF as Part of a Luminescent Array. <i>ACS Applied Materials & Discrete Array</i> , 11, 11618-11626	9.5	35
149	One-Pot Trapping Luminescent Rhodamine 110 into the Cage of MOF-801 for Nitrite Detection in Aqueous Solution. 2019 , 29, 1476-1484		11
148	Luminescent Lanthanide-Based Probes for the Detection of Nitroaromatic Compounds in Water. 2019 , 4, 5283-5292		24
147	Luminescent Lanthanide Metal Organic Frameworks as Chemosensing Platforms towards Agrochemicals and Cations. 2019 , 19,		12
146	Applications and advances in coordination cages: Metal-Organic Frameworks. 2019, 167, 287-300		11
145	Application of an enzyme encapsulated metal-organic framework composite for convenient sensing and degradation of methyl parathion. 2019 , 290, 267-274		33
144	A New 3D 10-Connected Cd(II) Based MOF With Mixed Ligands: A Dual Photoluminescent Sensor for Nitroaroamatics and Ferric Ion. <i>Frontiers in Chemistry</i> , 2019 , 7, 244	5	29
143	A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection. <i>Journal of Solid State Chemistry</i> , 2019 , 275, 38-42	3.3	26
142	Functional microscale single-phase white emission lanthanide MOF for tunable fluorescent sensing and water quality monitoring. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3598-3606	7.1	34
141	Dye-Modified Metal-Organic Framework as a Recyclable Luminescent Sensor for Nicotine Determination in Urine Solution and Living Cell. <i>ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Living Cell. ACS Applied Materials & Determination in Urine Solution and Determination in Urine Solution and Determination in Urine Solution in Uri</i>	3-4 7 25	18 ²⁴
140	. 2019,		2
139	A non-luminescent Eu-MOF-based "turn-on" sensor towards an anthrax biomarker through		

(2020-2019)

138	Enhanced luminescence for detection of small molecules based on doped lanthanide compounds with a dinuclear double-stranded helicate structure. <i>New Journal of Chemistry</i> , 2019 , 43, 16706-16713	3.6	15
137	Catalytic applications of enzymes encapsulated in metalorganic frameworks. <i>Coordination Chemistry Reviews</i> , 2019 , 381, 151-160	23.2	146
136	A Zinc MOF with Carboxylate Oxygen-Functionalized Pore Channels for Uranium(VI) Sorption. 2019 , 2019, 735-739		18
135	Synthesis and characterization of luminescent metalBrganic frameworks for the selective recognition of Cu2+ cation and Tryptophan. 2019 , 781, 904-912		17
134	Lanthanide-2,3,5,6-Tetrabromoterephthalic Acid Metal © rganic Frameworks: Evolution of Halogen IIIHalogen Interactions across the Lanthanide Series and Their Potential as Selective Bifunctional Sensors for the Detection of Fe3+, Cu2+, and Nitroaromatics. 2019 , 19, 305-319		64
133	Tandem Fister Resonance Energy Transfer Induced Luminescent Ratiometric Thermometry in Dye-Encapsulated Biological Metal Drganic Frameworks. <i>Advanced Optical Materials</i> , 2019 , 7, 1801149	8.1	45
132	Photoluminescent Tb3+-based metal-organic framework as a sensor for detection of methanol in ethanol fuel. 2019 , 37, 225-231		18
131	Water-stable Ln-exclusive metal-organic framework for highly selective sensing of Fe3+ ions. <i>Dyes and Pigments</i> , 2020 , 174, 108035	4.6	20
130	Cobalt(II) and silver(I) coordination polymers containing flexible bis (benzimidazol-1-yl)hexane ligands: synthesis, crystal structures, sensing and photocatalytic properties. <i>Applied Organometallic Chemistry</i> , 2020 , 34, e5313	3.1	3
129	A lanthanideBrganic crystalline framework material encapsulating 1,3,6,8-tetrakis(p-benzoic acid)pyrene: selective sensing of Fe3+, Cr2O72land colchicine and white-light emission. <i>New Journal of Chemistry</i> , 2020 , 44, 1446-1454	3.6	11
128	Construction of luminescent coordination polymers based on 5-(1-(carboxymethyl)-pyrazol-3-yl)isophthalic ligand for sensing Cu2+ and acetone. 2020 , 177, 114314		5
127	Zn(II)/Cd(II) based mixed ligand coordination polymers as fluorosensors for aqueous phase detection of hazardous pollutants. 2020 , 7, 1082-1107		78
126	Lanthanide-Based Metal-Organic Frameworks Containing "V-Shaped" Tetracarboxylate Ligands: Synthesis, Crystal Structures, "Naked-Eye" Luminescent Detection, and Catalytic Properties. <i>Inorganic Chemistry</i> , 2020 , 59, 264-273	5.1	26
125	Functionalized Dynamic Metal-Organic Frameworks as Smart Switches for Sensing and Adsorption Applications. 2019 , 378, 5		10
124	Highly Ordered Hierarchically Macroporous MIL-125 with High Specific Surface Area for Photocatalytic CO2 Fixation. 2020 , 8, 148-153		21
123	Advanced Photoresponsive Materials Using the Metal-Organic Framework Approach. <i>Advanced Materials</i> , 2020 , 32, e1905227	24	95
122	Fluorometric determination of Fe3+ and polychlorinated benzenes based on Tb3+-pyromellitic acid coordination polymer. 2020 , 90, 145-151		3
121	"Orthogonal-Twisted-Arm" Ligands for The Construction of Metal-Organic Frameworks (MOFs): New Topology and Catalytic Reactivity. <i>Chemistry - A European Journal</i> , 2020 , 26, 16272-16276	4.8	4

2D Near-Infrared Luminescence Lntoordination-Polymers as an Assistor for Biomedicine. 2020, 5, 10771-107742

119	Cd-Based Metal-Organic Framework Containing Uncoordinated Carbonyl Groups as Lanthanide Postsynthetic Modification Sites and Chemical Sensing of Diphenyl Phosphate as a Flame-Retardant Biomarker. <i>Inorganic Chemistry</i> , 2020 , 59, 15088-15100	5.1	21
118	Rare-earth metal-organic frameworks: from structure to applications. 2020 , 49, 7949-7977		107
117	A fluorescent Cu(ii) complex as a dual functional sensor for selective and sensitive detection of acetone and Cd(ii) pollutants <i>RSC Advances</i> , 2020 , 10, 42137-42146	3.7	3
116	Preparation of Ionic Liquids-modified Metal Organic Frameworks Composite Materials and Their Application in Separation Analysis. 2020 , 48, 1607-1615		4
115	A copper-based metal-organic framework for ratiometric detection of hydrogen sulfide with high sensitivity and fast response. 2020 , 243, 118794		3
114	A novel cucurbit[7]uril anchored bis-functionalized metal-organic framework hybrid and its potential use in fluorescent analysis of illegal stimulants in saliva. 2020 , 324, 128656		5
113	Tunable Energy-Transfer Process in Heterometallic MOF Materials Based on 2,6-Naphthalenedicarboxylate: Solid-State Lighting and Near-Infrared Luminescence Thermometry. 2020 , 32, 7458-7468		29
112	Multifaceted functionalities constructed from pyrazine-based AIEgen system. <i>Coordination Chemistry Reviews</i> , 2020 , 422, 213472	23.2	19
111	Fluorescent sensing response of metal-organic frameworks for the highly sensitive detection of Hg2+ and nitrobenzene in aqueous media. <i>Journal of Solid State Chemistry</i> , 2020 , 290, 121610	3.3	5
110	Functional metal-organic frameworks as effective sensors of gases and volatile compounds. 2020 , 49, 6364-6401		336
109	Catalytic Degradation of Nerve Agents. 2020 , 10, 881		12
108	Controllable Production of Micro-nanoscale Metal-Organic Frameworks Coatings on Cotton Fabric for Sensing Cu2+. 2020 , 21, 2003-2009		2
107	A historical overview of the activation and porosity of metal-organic frameworks. 2020 , 49, 7406-7427		158
106	Coumarin 7 functionalized europium-based metal®rganic-framework luminescent composites for dual-mode optical thermometry. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13328-13335	7.1	21
105	Size-controlled synthesis of metal-organic frameworks and their performance as fluorescence sensors. 2020 , 145, 7349-7356		6
104	A robust and multifunctional calcium coordination polymer as a selective fluorescent sensor for acetone and iron (+3) and as a tunable proton conductor. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 1679	84:167	'8 ¹
103	Zn(II)/Cd(II)-based metalBrganic frameworks: crystal structures, Ln(III)-functionalized luminescence and chemical sensing of dichloroaniline as a pesticide biomarker. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9427-9439	7.1	26

102	Fabricating Bioactive 3D Metal Drganic Framework Devices. 2020 , 4, 2000059		4
101	Metal dithiolene complexes in olefin addition and purification, small molecule adsorption, H2 evolution and CO2 reduction. <i>Coordination Chemistry Reviews</i> , 2020 , 420, 213398	23.2	9
100	Three coordination polymers with regulated coordination interactions as fluorescent sensors for monitoring purine metabolite uric acid. <i>Dalton Transactions</i> , 2020 , 49, 4343-4351	4.3	4
99	Synthesis and Crystal Structures of Alkali and Alkaline Earth Metal Complexes of 3,5-Dinitropyrazolyl-4-carboxylate. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2020 , 646, 368-3	1 7 3	O
98	Recent Progress on Luminescent Metal-Organic Framework-Involved Hybrid Materials for Rapid Determination of Contaminants in Environment and Food. 2020 , 12,		24
97	Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: design and applications. 2020 , 49, 2751-2798		204
96	Syntheses and luminescent properties of a series of new lanthanide azelates. <i>Dyes and Pigments</i> , 2020 , 182, 108638	4.6	6
95	Stimuli-responsive structural changes in metal-organic frameworks. <i>Chemical Communications</i> , 2020 , 56, 9416-9432	5.8	17
94	Synthesis of two new Cd(II)-MOFs based on different secondary building units with highly selective gas sorption for CO2/CH4 and luminescent sensor for Fe3+ and Cr2O72Dons. <i>Journal of Solid State Chemistry</i> , 2020 , 285, 121258	3.3	3
93	Pore-Functionalized and Hydrolytically Robust Cd(II)-Metal-Organic Framework for Highly Selective, Multicyclic CO Adsorption and Fast-Responsive Luminescent Monitoring of Fe(III) and Cr(VI) Ions with Notable Sensitivity and Reusability. <i>Inorganic Chemistry</i> , 2020 , 59, 3012-3025	5.1	43
92	A responsive supramolecular-organic framework: Functionalization with organic laser dye and lanthanide ions for sensing of nitrobenzene. <i>Journal of Solid State Chemistry</i> , 2020 , 284, 121171	3.3	3
91	Sensing organic analytes by metalBrganic frameworks: a new way of considering the topic. 2020 , 7, 1598-1632		173
90	A series of luminescent Lnlll-based coordination polymers: Syntheses, structures and luminescent properties. 2020 , 504, 119459		1
89	A color-tunable fluorescent pillararene coordination polymer for efficient pollutant detection. Journal of Materials Chemistry A, 2020 , 8, 3651-3657	13	22
88	State-of-the-art and future perspectives of MOFs in medicine. 2020 , 525-551		
87	Facile synthesis of a Cu-based metal-organic framework from plastic waste and its application as a sensor for acetone. 2020 , 263, 121492		15
86	A water-stable eu(iii)-mof for phosphorescent detection of acetone and treatment effect on catheter-associated infections by inhibiting gram positive and negative bacteria survival. 2020 , 73, 877-	886	1
85	Luminescent Properties of DOBDC Containing MOFs: The Role of Free Hydroxyls. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 22845-22852	9.5	19

84	Metal organic frameworks composite Eu2O3@[Zn2(1,4-ndc)2dabco] synthesized by pulsed laser ablation in flowing liquid and its fluorescent sensing of fatty alcohol with different branch chains. 2020 , 105, 109886		2
83	Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and Selective Detection of Acetone. 2020 , 10, 324		1
82	New 2D Lanthanide MOFs Constructed from Bis(imide) Pyromellitic Alanine Ligands with Enhanced Fluorescence toward Activation and Modulation of Microstructure. 2020 , 20, 4273-4292		2
81	Rare earth metalBrganic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. <i>Coordination Chemistry Reviews</i> , 2021 , 429, 213620	23.2	30
80	MetalBrganic framework-derived MoSx composites as efficient electrocatalysts for hydrogen evolution reaction. 2021 , 852, 156952		21
79	Confinement and antenna effect for ultrasmall Y2O3:Eu3+ nanocrystals supported by MOF with enhanced near-UV light absorption thereby enhanced luminescence and excellently multifunctional applications. <i>Nano Research</i> , 2021 , 14, 720-729	10	11
78	Luminescent sensors based on coordination polymers with adjustable emissions for detecting biomarker of pollutant ethylbenzene and styrene. <i>Applied Organometallic Chemistry</i> , 2021 , 35,	3.1	4
77	Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects. 2020 , 13, 15		7
76	Low-cost inkjet printing of metal b rganic frameworks patterns on different substrates and their applications in ammonia sensing. 2021 , 329, 129157		9
75	Synthesis of MoSx/Ni-metal-organic framework-74 composites as efficient electrocatalysts for hydrogen evolution reactions. <i>International Journal of Energy Research</i> , 2021 , 45, 9638-9647	4.5	10
74	Amino and triazole-containing metal-organic frameworks for highly efficient CO fixation. <i>Chemical Communications</i> , 2021 , 57, 10803-10806	5.8	1
73	General Introduction. Springer Theses, 2021 , 1-19	0.1	
72	Synthesis of a metal-organic framework by plasma in liquid to increase reduced metal ions and enhance water stability <i>RSC Advances</i> , 2021 , 11, 22756-22760	3.7	1
71	Backbonding contributions to small molecule chemisorption in a metal-organic framework with open copper(i) centers. <i>Chemical Science</i> , 2020 , 12, 2156-2164	9.4	9
70	Distinct solvent-dependent luminescence sensing property of a newly constructed Cu(II)Brganic framework. <i>CrystEngComm</i> , 2021 , 23, 1929-1941	3.3	3
69	Metalörganic framework. <i>Interface Science and Technology</i> , 2021 , 279-387	2.3	2
68	Photoresponse within dye-incorporated metal-organic architectures. <i>Coordination Chemistry Reviews</i> , 2021 , 430, 213648	23.2	3
67	Multilevel screening of computation-ready, experimental metal-organic frameworks for natural gas purification. <i>AICHE Journal</i> , 2021 , 67, e17279	3.6	2

(2015-2021)

66	Devising Mixed-Ligand Based Robust Cd(II)-Framework From Bi-Functional Ligand for Fast Responsive Luminescent Detection of Fe and Cr(VI) Oxo-Anions in Water With High Selectivity and Recyclability. <i>Frontiers in Chemistry</i> , 2021 , 9, 651866	5	3
65	Intrinsic Molybdenum-Based POMOFs with Impressive Gas Adsorptions and Photochromism. <i>Chemistry - A European Journal</i> , 2021 , 27, 9643-9653	4.8	2
64	Uncoordinated-substituents-induced zinc(II) coordination polymers exhibiting multifunctional fluorescent sensing activity for cations, anions and organochlorine pesticides. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2021 , 647, 1284-1293	1.3	6
63	Thermodynamic, Thermal, and Structural Stability of Bimetallic MIL-53 (Al1\(\mathbb{U}\)Crx). <i>Journal of Physical Chemistry C</i> , 2021 , 125, 14039-14047	3.8	3
62	Metal organic frameworks as emergent oxygen-reducing cathode catalysts for microbial fuel cells: a review. <i>International Journal of Environmental Science and Technology</i> , 1	3.3	7
61	Cadmium(II) and cobalt(II) coordination compounds based on a benzenesulfonic terpyridine ligand: Syntheses, structures, luminescent sensing and magnetic properties. <i>Journal of Solid State Chemistry</i> , 2021 , 298, 122148	3.3	O
60	Porous Anionic Co(II) Metal-Organic Framework, with a High Density of Amino Groups, as a Superior Luminescent Sensor for Turn-on Al(III) Detection. <i>Chemistry - A European Journal</i> , 2021 , 27, 11804-11810) ^{4.8}	13
59	High-Performance Water Harvester Framework for Triphasic and Synchronous Detection of Assorted Organotoxins with Site-Memory-Reliant Security Encryption via pH-Triggered Fluoroswitching. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34012-34026	9.5	13
58	Ultrasensitive electrochemical molecularly imprinted sensor based on AuE/Ag-MOF@MC for determination of hemoglobin using response surface methodology. <i>Analytical and Bioanalytical Chemistry</i> , 2021 , 413, 4895-4906	4.4	5
57	Chiral Fluorescent Metal-Organic Framework with a Pentanuclear Copper Cluster as an Efficient Luminescent Probe for Dy Ion and Cyano Compounds. <i>Inorganic Chemistry</i> , 2021 , 60, 15085-15090	5.1	2
56	A multifunctional cadmium-based metal-organic framework from a tricarboxylate ligand showing sensing and sensitization. <i>Journal of Solid State Chemistry</i> , 2021 , 302, 122407	3.3	1
55	Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. <i>Coordination Chemistry Reviews</i> , 2021 , 445, 214050	23.2	14
54	Conformational isomerism involving the carboxylate groups of a linker in metal organic frameworks and its distinctive influence on the detection of ketones. <i>New Journal of Chemistry</i> ,	3.6	0
53	Research Progress on the Water Stability of a Metal-Organic Framework in Advanced Oxidation Processes. <i>Water, Air, and Soil Pollution</i> , 2021 , 232, 1	2.6	1
52	Synthesis of tricarboxylic acid based metal organic frameworks: Structural and gas adsorption studies. <i>Journal of Molecular Structure</i> , 2021 , 1224, 129161	3.4	
51	A red luminescent Eu3+ doped conjugated microporous polymer for highly sensitive and selective detection of aluminum ions. <i>Polymer Chemistry</i> , 2021 , 12, 356-360	4.9	O
50	Development of Au-Pd@UiO-66-on-ZIF-L/CC as a self-supported electrochemical sensor for monitoring of cellular hydrogen peroxide. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 9031-9040	7.3	2
49	CHAPTER 7:Metal-Organic Frameworks as Chemical Sensors. <i>RSC Smart Materials</i> , 2015 , 192-245	0.6	2

48	Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties. <i>Bulletin of the Korean Chemical Society</i> , 2013 , 34, 1625-1631	1.2	15
47	Indoor Air Pollution, Sorbent Selection, and Analytical Techniques for Volatile Organic Compounds. <i>Asian Journal of Atmospheric Environment</i> , 2018 , 12, 289-310	1.3	5
46	Fluorescence and electrochemical detection of iodine vapor in the presence of high humidity using Ln-based MOFs. <i>Dalton Transactions</i> , 2021 , 50, 15567-15575	4.3	1
45	Tb-Doped Ag-MOFs for fluorescent detection of formaldehyde in a novel smartphone platform and its removal applications in milk products and wastewater <i>RSC Advances</i> , 2021 , 11, 34291-34299	3.7	O
44	Fabrication of Robust and Porous Lead Chloride-Based Metal-Organic Frameworks toward a Selective and Sensitive Smart NH Sensor. <i>ACS Applied Materials & District Action Sensor</i> , 100 (2014).	9.5	1
43	Fast Detection of Entacapone by a Lanthanide-Organic Framework with Rhombic Channels. <i>Chemistry - A European Journal</i> , 2021 , 27, 17459-17464	4.8	1
42	Review: Structures, Synthesis and Applications of MOF. <i>Journal of the Korea Institute of Military Science and Technology</i> , 2014 , 17, 510-520	0.2	
41	Synthesis, Structure and Fluorescence Properties of Transition Metal Coordination Polymers Constructed by 3,5-bis(3時間icarboxylphenyl)-1H-1,2,4-triazole. <i>Journal of Advances in Physical Chemistry</i> , 2018 , 07, 163-173	O	
40	CHAPTER 22. Hybrids of Metal Organic Frameworks as Organized Supramolecular Nano-reactors. <i>RSC Catalysis Series</i> , 2019 , 479-502	0.3	
39	Detection of Sub-Terahertz Raman Response and Nonlinear Optical Effects for Luminescent Yb(III) Complexes. <i>Advanced Optical Materials</i> , 2101721	8.1	4
38	Metal-Organic Frameworks (MOFs). Engineering Materials, 2021, 105-146	0.4	
37	Logic operation for differentiation and speciation of Fe 3+ and Fe 2+ based on two-dimensional metalBrganic frameworks with tunable emissions. <i>Applied Organometallic Chemistry</i> , 2021 , 35,	3.1	1
36	Energetic metalBrganic frameworks achieved from furazan and triazole ligands: synthesis, crystal structure, thermal stability and energetic performance. <i>New Journal of Chemistry</i> ,	3.6	2
35	A series of lanthanide-quinoxaline-2,3(1,4)-dione complexes containing 1D chiral LnO (Ln = Eu, Tb, Sm, Dy) chains: luminescent properties and response to small molecules <i>RSC Advances</i> , 2021 , 11, 3330	09 ³ 3 ⁷ 33	18 ¹
34	Recent progress on the metal-organic frameworks decorated graphene oxide (MOFs-GO) nano-building application for epoxy coating mechanical-thermal/flame-retardant and anti-corrosion features improvement. <i>Progress in Organic Coatings</i> , 2022 , 163, 106645	4.8	2
33	A Highly Efficient Luminescent Metal © rganic Framework with Strong Conjugate Unit for Sensing Small Molecules. <i>Chinese Journal of Chemistry</i> ,	4.9	2
32	Electrostatic Force-Driven Lattice Water Bridging to Stabilize a Partially Charged Indium MOF for Efficient Separation of C2H2/CO2 Mixtures. <i>Journal of Materials Chemistry A</i> ,	13	2
31	Two luminescent cuprous iodides with hitherto-unknown free imidazolate sites for efficiently sensing Fe3+ and Cr2O72\(\textit{IJournal of Materials Chemistry C}\),	7.1	O

30	A series of new lanthanide benzoates: Syntheses, crystal structures, and luminescent properties. <i>Dyes and Pigments</i> , 2022 , 201, 110182	4.6	1
29	Influence of metal-organic framework MOF-76(Gd) activation/carbonization on the cycle performance stability in Li-S battery. <i>Journal of Energy Storage</i> , 2022 , 51, 104419	7.8	3
28	Specific sensing of antibiotics with metal-organic frameworks based dual sensor system. <i>Nano Research</i> , 1	10	4
27	Data_Sheet_1.docx. 2019,		
26	The pioneering role of metalBrganic framework-5 in ever-growing contemporary applications a review. <i>RSC Advances</i> , 2022 , 12, 14282-14298	3.7	O
25	Recent advances in the tuning of the organic framework materials - the selections of ligands, reaction conditions, and post-synthesis approaches. <i>Journal of Colloid and Interface Science</i> , 2022 ,	9.3	1
24	Color tunable of Ln-MOFs (Ln=Tb, Eu) and excellent stability for white light emitting diode. <i>Dalton Transactions</i> ,	4.3	0
23	Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells. <i>Microporous and Mesoporous Materials</i> , 2022 , 340, 112008	5.3	O
22	Construction of two novel non-penetrating Co-MOFs derived from designed 2,4,6-tri(2,4-dicarboxyphenyl) pyridine: synthesis, structure and gas adsorption properties. CrystEngComm,	3.3	О
21	A highly stable terbium(III) metal-organic framework MOF-76(Tb) for hydrogen storage and humidity sensing. <i>Environmental Science and Pollution Research</i> ,	5.1	O
20	Highlighting Recent Crystalline Engineering Aspects of Luminescent Coordination Polymers Based on F-Elements and Ditopic Aliphatic Ligands. <i>Molecules</i> , 2022 , 27, 3830	4.8	O
19	Synthesis and characterization of thermally stable energetic complexes with 3,5-diaminopyrazolone-4-oxime as a nitrogen-rich ligand. <i>CrystEngComm</i> ,	3.3	O
18	Investigation of Intermetallic Energy Transfers in Lanthanide Coordination Polymers Molecular Alloys: Case Study of Trimesate-Based Compounds. <i>Inorganic Chemistry</i> ,	5.1	1
17	Luminescent Lanthanide Metal Organic Frameworks (LnMOFs): A Versatile Platform towards Organomolecule Sensing. <i>Coordination Chemistry Reviews</i> , 2022 , 470, 214707	23.2	2
16	Dual-Ligand Near-Infrared Luminescent Lanthanide-Based MetalDrganic Framework Coupled with In Vivo Microdialysis for Highly Sensitive Ratiometric Detection of Zn2+ in a Mouse Model of Alzheimer Disease.		0
15	One Luminescent Cadmium Iodide with Free Bifunctional Azole Sites as a Triple Sensor for Cu2+, Fe3+, and Cr2O72[lons.		O
14	A series of new luminescent lanthanide naphthalates: The discovery of rare multiflesponsive sensor for acetone, Fe3+, CrO42land Cr2O72la022, 206, 110587		О
13	Synthesis, Crystal Structure, and Luminescent Property of a Three-Dimensional Coordination Polymer from Europium(III) Carbonate Hemioxalate Hydrate.		О

12	Robust Carbazole-Based Rare-Earth MOFs: Tunable White-Light Emission for Temperature and DMF Sensing. 2022 , 14, 41178-41185	0
11	Real-Time In Situ Volatile Organic Compound Sensing by a Dual-Emissive Polynuclear Ln-MOF with the Pronounced LnIII Luminescence Response.	O
10	Real-Time In Situ Volatile Organic Compound Sensing by a Dual-Emissive Polynuclear Ln-MOF with the Pronounced LnIII Luminescence Response.	O
9	Facile synthesis of hyperbranched Eu-MOF structures for the construction of a CsPbBr3/Eu-MOF composite and its application as a ratiometric fluorescent probe.	O
8	Construction of a nano-micro nacre-inspired 2D-MoS2-MOF-glutamate carrier toward designing a high-performance smart epoxy composite. 2023 , 121, 358-377	0
7	Tailoring Transition Metals and Biuret into Laser-Ignitable Energetic Coordination Polymers with Improved Oxygen Balance and Multidentate Coordination Structures. 2023 , 23, 1959-1971	O
6	Research on Improved MOF Materials Modified by Functional Groups for Purification of Water. 2023 , 28, 2141	О
5	Boosting the optical properties of polylactic acid/lanthanide-based metal-organic framework composites. 2023 , 29, 101436	O
4	Impact of Ligands on the Properties of Lanthanide Metal-Organic Frameworks. 2023, 649,	О
3	Role of molecular modelling in the development of metal-organic framework for gas adsorption applications. 2023 , 135,	О
2	Fe-based metal-organic framework as a chemiresistive sensor for low-temperature monitoring of acetone gas. 2023 , 388, 133799	О
1	Fluorescent metal-organic frameworks for analytical applications. 2023 , 339-374	O