Sustained neocortical neurogenesis after neonatal hypo

Annals of Neurology 61, 199-208 DOI: 10.1002/ana.21068

Citation Report

#	Article	IF	CITATIONS
1	Perinatal Hypoxic/Ischemic Brain Injury Induces Persistent Production of Striatal Neurons from Subventricular Zone Progenitors. Developmental Neuroscience, 2007, 29, 331-340.	1.0	49
2	The Seek of Neuroprotection: Introducing Cannabinoids. Recent Patents on CNS Drug Discovery, 2007, 2, 131-9.	0.9	42
3	Leukemia inhibitory factor participates in the expansion of neural stem/progenitors after perinatal hypoxia/ischemia. Neuroscience, 2007, 148, 501-509.	1.1	53
4	Destruction and reconstruction: Hypoxia and the developing brain. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 163-176.	3.6	74
5	Replacing neocortical neurons after stroke. Annals of Neurology, 2007, 61, 185-186.	2.8	8
6	Death effector activation in the subventricular zone subsequent to perinatal hypoxia/ischemia. Journal of Neurochemistry, 2007, 103, 1121-1131.	2.1	23
7	Stem cells and neonatal brain injury. Cell and Tissue Research, 2008, 331, 263-269.	1.5	15
8	Inflammation: A new candidate in modulating adult neurogenesis. Journal of Neuroscience Research, 2008, 86, 1199-1208.	1.3	195
9	Postnatal subventricular zone progenitors give rise not only to granular and periglomerular interneurons but also to interneurons in the external plexiform layer of the rat olfactory bulb. Journal of Comparative Neurology, 2008, 506, 347-358.	0.9	37
10	Neonatal hypoxic/ischemic brain injury induces production of calretininâ€expressing interneurons in the striatum. Journal of Comparative Neurology, 2008, 511, 19-33.	0.9	80
11	Recruiting new neurons from the subventricular zone to the rat postnatal cortex: an organotypic slice culture model. European Journal of Neuroscience, 2008, 27, 1051-1060.	1.2	15
12	Neurogenesis and neuronal commitment following ischemia in a new mouse model for neonatal stroke. Brain Research, 2008, 1208, 35-45.	1.1	47
13	Inhibition of matrix metalloproteinase-9 attenuated neural progenitor cell migration after photothrombotic ischemia. Brain Research, 2008, 1228, 20-26.	1.1	37
14	Impact of indolent inflammation on neonatal hypoxicâ€ischemic brain injury in mice. International Journal of Developmental Neuroscience, 2008, 26, 57-65.	0.7	16
15	Substantial migration of SVZ cells to the cortex results in the generation of new neurons in the excitotoxically damaged immature rat brain. Molecular and Cellular Neurosciences, 2008, 38, 170-182.	1.0	32
16	Cellular and molecular biology of hypoxic–ischemic encephalopathy. , 0, , 38-47.		0
17	<i>Fgfr1</i> Is Required for Cortical Regeneration and Repair after Perinatal Hypoxia. Journal of Neuroscience, 2009, 29, 1202-1211.	1.7	79
18	Pediatric Constraint-Induced Movement Therapy: A Promising Intervention for Childhood Hemiparesis. Topics in Stroke Rehabilitation, 2009, 16, 339-345.	1.0	5

#	Article	IF	CITATIONS
19	Apoptotic Mechanisms in the Immature Brain: Involvement of Mitochondria. Journal of Child Neurology, 2009, 24, 1141-1146.	0.7	88
20	Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurology, The, 2009, 8, 110-124.	4.9	2,006
21	Ultrastructure of the subventricular zone in <i>Macaca fascicularis</i> and evidence of a mouseâ€like migratory stream. Journal of Comparative Neurology, 2009, 514, 533-554.	0.9	72
22	Plasticity in the developing brain: Implications for rehabilitation. Developmental Disabilities Research Reviews, 2009, 15, 94-101.	2.9	445
23	Increased serum brain-derived neurotrophic factor protein upon hypoxia in healthy young men. Journal of Neural Transmission, 2009, 116, 1221-1225.	1.4	10
24	Increased neurogenesis after hypoxic-ischemic encephalopathy in humans is age related. Acta Neuropathologica, 2009, 117, 525-534.	3.9	40
25	Age-Dependent Regenerative Responses in the Striatum and Cortex after Hypoxia-Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 342-354.	2.4	43
26	Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: A potential role for growth hormone in injury-induced neurogenesis. Growth Hormone and IGF Research, 2009, 19, 497-506.	0.5	44
27	The neurobiology of brain and cognitive reserve: Mental and physical activity as modulators of brain disorders. Progress in Neurobiology, 2009, 89, 369-382.	2.8	273
28	Modeling premature brain injury and recovery. International Journal of Developmental Neuroscience, 2009, 27, 863-871.	0.7	74
29	Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic-ischemic injury. Journal of Neuroinflammation, 2009, 6, 13.	3.1	64
30	In vivo MRI of endogenous stem/progenitor cell migration from subventricular zone in normal and injured developing brains. Neurolmage, 2009, 48, 319-328.	2.1	39
31	The Encephalopathy of Prematurity—Brain Injury and Impaired Brain Development Inextricably Intertwined. Seminars in Pediatric Neurology, 2009, 16, 167-178.	1.0	360
32	Stem Cell and Regenerative Medicine. Current Stem Cell Research and Therapy, 2009, 4, 287-297.	0.6	10
33	Brain Injury Expands the Numbers of Neural Stem Cells and Progenitors in the SVZ by Enhancing Their Responsiveness to EGF. ASN Neuro, 2009, 1, AN20090002.	1.5	54
34	Experimental treatments for hypoxic ischaemic encephalopathy. Early Human Development, 2010, 86, 369-377.	0.8	68
35	The cannabinoid receptor agonist WIN 55,212-2 reduces the initial cerebral damage after hypoxic–ischemic injury in fetal lambs. Brain Research, 2010, 1362, 150-159.	1.1	32
36	Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nature Neuroscience, 2010, 13, 173-179.	7.1	198

#	Article	IF	CITATIONS
37	TGFß1 Stimulates the Over-Production of White Matter Astrocytes from Precursors of the "Brain Marrow―in a Rodent Model of Neonatal Encephalopathy. PLoS ONE, 2010, 5, e9567.	1.1	39
38	Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology, 2010, 74, 357-365.	1.5	174
39	Insights into neurogenesis and aging: potential therapy for degenerative disease?. Future Neurology, 2010, 5, 527-541.	0.9	24
40	Altered Fate of Subventricular Zone Progenitor Cells and Reduced Neurogenesis following Neonatal Stroke. Developmental Neuroscience, 2010, 32, 101-113.	1.0	32
41	Defining the Critical Period for Neocortical Neurogenesis after Pediatric Brain Injury. Developmental Neuroscience, 2010, 32, 488-98.	1.0	33
42	The Cannabinoid <i>WIN55212-2</i> Promotes Neural Repair After Neonatal Hypoxia–Ischemia. Stroke, 2010, 41, 2956-2964.	1.0	42
43	Cell Therapy for Neonatal Hypoxic–Ischemic Encephalopathy. Stem Cells and Development, 2010, 19, 299-310.	1.1	80
44	Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain, Behavior, and Immunity, 2010, 24, 387-393.	2.0	233
45	Stem cells in the adult human brain. British Journal of Neurosurgery, 2011, 25, 28-37.	0.4	4
46	Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain, Behavior, and Immunity, 2011, 25, 1342-1348.	2.0	101
47	Methamphetamine Exerts Toxic Effects on Subventricular Zone Stem/Progenitor Cells and Inhibits Neuronal Differentiation. Rejuvenation Research, 2011, 14, 205-214.	0.9	17
48	Sustained increase in adult neurogenesis in the rat hippocampal dentate gyrus after transient brain ischemia. Neuroscience Letters, 2011, 488, 70-75.	1.0	27
49	Erythropoietin for neonatal brain injury: opportunity and challenge. International Journal of Developmental Neuroscience, 2011, 29, 583-591.	0.7	77
50	Ischemia-Induced Neural Stem/Progenitor Cells in the Pia Mater Following Cortical Infarction. Stem Cells and Development, 2011, 20, 2037-2051.	1.1	122
51	Selective depletion of Mac-1-expressing microglia in rat subventricular zone does not alter neurogenic response early after stroke. Experimental Neurology, 2011, 229, 391-398.	2.0	27
52	Developmental dysregulation of adult neurogenesis. European Journal of Neuroscience, 2011, 33, 1115-1122.	1.2	47
53	Erythropoietin in neonatal brain protection: The past, the present and the future. Brain and Development, 2011, 33, 632-643.	0.6	54
54	Opposite effect of inflammation on subventricular zone versus hippocampal precursors in brain injury. Annals of Neurology, 2011, 70, 616-626.	2.8	47

#	Article	IF	Citations
55	Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. Journal of Comparative Neurology, 2011, 519, 690-713.	0.9	68
56	Osteopontin Enhances Endogenous Repair After Neonatal Hypoxic–Ischemic Brain Injury. Stroke, 2011, 42, 2294-2301.	1.0	59
57	Cortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic Injury. Journal of Neuroscience, 2011, 31, 9205-9221.	1.7	50
58	White Matter Abnormalities Are Related to Microstructural Changes in Preterm Neonates at Term-Equivalent Age: A Diffusion Tensor Imaging and Probabilistic Tractography Study. American Journal of Neuroradiology, 2012, 33, 839-845.	1.2	24
59	Erythropoietin for Neuroprotection in Neonatal Encephalopathy: Safety and Pharmacokinetics. Pediatrics, 2012, 130, 683-691.	1.0	172
60	The effect of methamphetamine on subventricular zone neurogenesis: Cell death, proliferation and differentiation. , 2012, , .		0
61	Stem Cells and Cancer Stem Cells,Volume 3. , 2012, , .		2
62	The Protective Role of Erythropoietin in the Developing Brain. , 2012, , .		0
63	Future Perspectives for the Treatment of Neonatal Hypoxic-Ischemic Encephalopathy. , 0, , .		0
64	Neonatal ischemic brain injury: what every radiologist needs to know. Pediatric Radiology, 2012, 42, 606-619.	1.1	20
65	Ampakine CX546 increases proliferation and neuronal differentiation in subventricular zone stem/progenitor cell cultures. European Journal of Neuroscience, 2012, 35, 1672-1683.	1.2	15
66	The Endogenous Regenerative Capacity of the Damaged Newborn Brain: Boosting Neurogenesis with Mesenchymal Stem Cell Treatment. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 625-634.	2.4	57
67	Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke. Stroke, 2013, 44, 1426-1432.	1.0	181
68	Neuroprotective Therapies after Perinatal Hypoxic-Ischemic Brain Injury. Brain Sciences, 2013, 3, 191-214.	1.1	30
69	Cannabinoids: Well-Suited Candidates for the Treatment of Perinatal Brain Injury. Brain Sciences, 2013, 3, 1043-1059.	1.1	20
70	Vascular Niche for Astrocyte Proliferation: Limited and <i>In situ</i> . CNS Neuroscience and Therapeutics, 2013, 19, 641-642.	1.9	1
71	Egr-1 is a Critical Regulator of EGF-Receptor-Mediated Expansion of Subventricular Zone Neural Stem Cells and Progenitors During Recovery from Hypoxia–Hypoglycemia. ASN Neuro, 2013, 5, AN20120032.	1.5	19
72	Unmyelinated White Matter Loss in the Preterm Brain Is Associated with Early Increased Levels of End-Tidal Carbon Monoxide. PLoS ONE, 2014, 9, e89061.	1.1	5

#	Article	IF	CITATIONS
73	Application of Umbilical Cord Blood Derived Stem Cells in Diseases of the Nervous System. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	16
74	Prospects for engineering neurons from local neocortical cell populations as cellâ€mediated therapy for neurological disorders. Journal of Comparative Neurology, 2014, 522, 2857-2876.	0.9	4
75	Immunological Mechanisms and Therapies in Brain Injuries and Stroke. , 2014, , .		4
76	Hydrogen sulfide promotes proliferation and neuronal differentiation of neural stem cells and protects hypoxia-induced decrease in hippocampal neurogenesis. Pharmacology Biochemistry and Behavior, 2014, 116, 55-63.	1.3	40
77	Stem Cells and Cancer Stem Cells, Volume 11. Stem Cells and Cancer Stem Cells, 2014, , .	0.1	0
78	Mechanisms of Perinatal Arterial Ischemic Stroke. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 921-932.	2.4	105
79	Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat. Neuropeptides, 2014, 48, 281-286.	0.9	21
80	Sexual dimorphism in BDNF signaling after neonatal hypoxia–ischemia and treatment with necrostatin-1. Neuroscience, 2014, 260, 106-119.	1.1	44
81	Barrier mechanisms in neonatal stroke. Frontiers in Neuroscience, 2014, 8, 359.	1.4	37
82	Redox-based regulation of neural stem cell function and Nrf2. Biochemical Society Transactions, 2015, 43, 627-631.	1.6	10
83	Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Frontiers in Neuroscience, 2015, 9, 458.	1.4	59
84	A Neuron-Specific Deletion of the MicroRNA-Processing Enzyme DICER Induces Severe but Transient Obesity in Mice. PLoS ONE, 2015, 10, e0116760.	1.1	20
85	Cerebral Palsy: A Lifelong Challenge Asks for Early Intervention. The Open Neurology Journal, 2015, 9, 45-52.	0.4	30
86	Mechanisms of Mouse Neural Precursor Expansion after Neonatal Hypoxia-Ischemia. Journal of Neuroscience, 2015, 35, 8855-8865.	1.7	37
87	Activating Endogenous Neural Precursor Cells Using Metformin Leads to Neural Repair and Functional Recovery in a Model of Childhood Brain Injury. Stem Cell Reports, 2015, 5, 166-173.	2.3	91
88	The role of inflammation in perinatal brain injury. Nature Reviews Neurology, 2015, 11, 192-208.	4.9	669
89	Effects of Neonatal Hypoxic-Ischemic Injury and Hypothermic Neuroprotection on Neural Progenitor Cells in the Mouse Hippocampus. Developmental Neuroscience, 2015, 37, 428-439.	1.0	27
90	Intrauterine Growth Restriction: Effects on Neural Precursor Cell Proliferation and Angiogenesis in the Foetal Subventricular Zone. Developmental Neuroscience, 2015, 37, 453-463.	1.0	19

#	Article	IF	CITATIONS
91	Erythropoietin: a novel therapy for hypoxic–ischaemic encephalopathy?. Developmental Medicine and Child Neurology, 2015, 57, 34-39.	1.1	55
92	High-Dose Erythropoietin and Hypothermia for Hypoxic-Ischemic Encephalopathy: A Phase II Trial. Pediatrics, 2016, 137, .	1.0	173
93	Neonatal Encephalopathy. Clinics in Perinatology, 2016, 43, 485-500.	0.8	59
94	Clinical Trial of Erythropoietin in Young Children With Cerebral Palsy. Journal of Child Neurology, 2016, 31, 1227-1234.	0.7	5
95	Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI. Experimental Neurology, 2016, 275, 285-295.	2.0	46
96	Neurological Regeneration. Stem Cells in Clinical Applications, 2017, , .	0.4	1
97	Mesenchymal Stromal Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy. Stem Cells in Clinical Applications, 2017, , 105-120.	0.4	2
98	<i>Olig1</i> is required for nogginâ€induced neonatal myelin repair. Annals of Neurology, 2017, 81, 560-571.	2.8	13
99	Neonatal hypoxiaâ€ischemia in rat increases doublecortin concentration in the cerebrospinal fluid. European Journal of Neuroscience, 2017, 46, 1758-1767.	1.2	10
100	Postnatal Neural Stem Cells: Probing Their Competence for Cortical Repair. Neuroscientist, 2017, 23, 605-615.	2.6	6
101	Cellular and Molecular Biology of Hypoxic-Ischemic Encephalopathy. , 0, , 36-49.		0
102	Radial Glial Fibers Promote Neuronal Migration and Functional Recovery after Neonatal Brain Injury. Cell Stem Cell, 2018, 22, 128-137.e9.	5.2	63
103	Pediatric brain repair from endogenous neural stem cells of the subventricular zone. Pediatric Research, 2018, 83, 385-396.	1.1	30
104	Neuronal and glial regeneration after focal cerebral ischemia in rat, an immunohistochemical and electron microscopical study. Alexandria Journal of Medicine, 2018, 54, 699-704.	0.4	4
105	Development of the cerebral cortex and the effect of the intrauterine environment. Journal of Physiology, 2018, 596, 5665-5674.	1.3	21
106	Gender-dependent changes in physical development, BDNF content and GSH redox system in a model of acute neonatal hypoxia in rats. Behavioural Brain Research, 2018, 350, 87-98.	1.2	17
107	Adult neurogenesis and its role in brain injury and psychiatric diseases. Journal of Neurochemistry, 2018, 147, 584-594.	2.1	42
108	Heterogeneous distribution of doublecortinâ€expressing cells surrounding the rostral migratory stream in the juvenile mouse. Journal of Comparative Neurology, 2018, 526, 2631-2646.	0.9	4

#	Article	IF	CITATIONS
109	Neuroprotection Strategies for the Newborn. , 2018, , 910-921.e6.		2
110	Neural stem cell therapies and hypoxic-ischemic brain injury. Progress in Neurobiology, 2019, 173, 1-17.	2.8	129
111	Perinatal arterial ischemic stroke. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 162, 239-266.	1.0	22
112	New Neurons in the Post-ischemic and Injured Brain: Migrating or Resident?. Frontiers in Neuroscience, 2019, 13, 588.	1.4	28
113	Inflammation and neural repair after ischemic brain injury. Neurochemistry International, 2019, 130, 104316.	1.9	40
114	Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Frontiers in Cellular Neuroscience, 2020, 14, 576444.	1.8	114
115	Neuronal migration in the postnatal brain. , 2020, , 465-478.		1
116	Neurogenesis in the damaged mammalian brain. , 2020, , 523-597.		1
117	Regeneration using endogenous neural stem cells following neonatal brain injury. Pediatrics International, 2021, 63, 13-21.	0.2	14
118	Constraintâ€induced movement therapy promotes motor recovery after neonatal stroke in the absence of neural precursor activation. European Journal of Neuroscience, 2021, 53, 1334-1349.	1.2	2
119	Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics?. Biochemical Pharmacology, 2021, 186, 114461.	2.0	11
120	A systematic review of neurogenesis in animal models of early brain damage: Implications for cerebral palsy. Experimental Neurology, 2021, 340, 113643.	2.0	14
121	Delayed Double Treatment with Adult-Sourced Adipose-Derived Mesenchymal Stem Cells Increases Striatal Medium-Spiny Neuronal Number, Decreases Striatal Microglial Number, and Has No Subventricular Proliferative Effect, after Acute Neonatal Hypoxia-Ischemia in Male Rats. International Journal of Molecular Sciences, 2021, 22, 7862.	1.8	5
122	Endogenous Regenerative Potential of Neural Stem/Progenitor Cells of the Newborn Brain (An) Tj ETQq1 1 0.784	314 rgBT / 0.1	Oyerlock 10
123	Neurogenesis in the Damaged Mammalian Brain. , 2013, , 551-608.		5
124	The paracrine effect of cobalt chloride on BMSCs during cognitive function rescue in the HIBD rat. Behavioural Brain Research, 2017, 332, 99-109.	1.2	12
125	Microglia enhances proliferation of neural progenitor cells in an model of hypoxic-ischemic injury. EXCLI Journal, 2020, 19, 950-961.	0.5	8
126	Adult neurogenesis from reprogrammed astrocytes. Neural Regeneration Research, 2020, 15, 973.	1.6	19

#	ARTICLE	IF	CITATIONS
128	Neonatal Hypoxic-Ischemic Encephalopathy: Neural Stem/Progenitor Cell Transplantation. , 2012, , 305-314.		0
129	Ischemia-Induced Neural Stem/Progenitor Cells Within the Post-Stroke Cortex in Adult Brains. , 0, , .		0
130	Inflammation After Acute Brain Injuries Affects the Developing Brain Differently than the Adult Brain. , 2014, , 135-152.		0
131	Impact of Injured Tissue on Stem Cell Fate. Pancreatic Islet Biology, 2014, , 43-56.	0.1	0
133	In vitro Time-lapse Imaging of Primary Cilium in Migrating Neuroblasts. Bio-protocol, 2020, 10, e3823.	0.2	2
134	Cellular Response of Ventricular-Subventricular Neural Progenitor/Stem Cells to Neonatal Hypoxic-Ischemic Brain Injury and Their Enhanced Neurogenesis. Yonsei Medical Journal, 2020, 61, 492.	0.9	4
135	Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury. Neural Regeneration Research, 2013, 8, 731-44.	1.6	1
136	Structural alignment guides oriented migration and differentiation of endogenous neural stem cells for neurogenesis in brain injury treatment. Biomaterials, 2022, 280, 121310.	5.7	20
137	Severe hypoxia exposure inhibits larval brain development but does not affect the capacity to mount a cortisol stress response in zebrafish. Journal of Experimental Biology, 2022, 225, .	0.8	5
139	Perinatal stroke: modelling and the potential of neurovisualization. Russian Pediatric Journal, 2022, 25, 128-138.	0.0	0
140	Brain Maturation as a Fundamental Factor in Immune-Neurovascular Interactions in Stroke. Translational Stroke Research, 2024, 15, 69-86.	2.3	1
141	Neonatal Encephalopathy. , 2024, , 827-842.e7.		0