Fluorescent Carbon Nanoparticles Derived from Candle

Angewandte Chemie - International Edition 46, 6473-6475 DOI: 10.1002/anie.200701271

Citation Report

#	Article	IF	CITATIONS
1	Nanosynthesis by candlelight. Nature Nanotechnology, 2007, 2, 599-600.	15.6	36
2	Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 2008, 1, 203-212.	5.8	3,043
3	Photoluminescent Carbogenic Dots. Chemistry of Materials, 2008, 20, 4539-4541.	3.2	571
4	Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications, 2008, , 5116.	2.2	786
5	Doped Carbon Nanoparticles as a New Platform for Highly Photoluminescent Dots. Journal of Physical Chemistry C, 2008, 112, 18295-18298.	1.5	288
6	Intrinsically Fluorescent Carbon Nanospheres as a Nuclear Targeting Vector: Delivery of Membrane-Impermeable Molecule to Modulate Gene Expression In Vivo. Nano Letters, 2008, 8, 3182-3188.	4.5	196
9	An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angewandte Chemie - International Edition, 2009, 48, 4598-4601.	7.2	771
10	Synthesis and Characterization of a Photoluminescent Nanoparticle Based on Fullerene–Silica Hybridization. Angewandte Chemie - International Edition, 2009, 48, 5296-5299.	7.2	85
11	Influence of buffer composition on the capillary electrophoretic separation of carbon nanoparticles. Journal of Chromatography A, 2009, 1216, 9048-9054.	1.8	45
12	Pyrolytic formation and photoluminescence properties of a new layered carbonaceous material with graphite oxide-mimicking characteristics. Carbon, 2009, 47, 519-526.	5.4	16
13	Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. Journal of Physical Chemistry C, 2009, 113, 18546-18551.	1.5	1,036
14	Nanosized Carbon Particles From Natural Gas Soot. Chemistry of Materials, 2009, 21, 2803-2809.	3.2	643
15	One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry, 2009, 19, 484-488.	6.7	829
16	Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite. Journal of the American Chemical Society, 2009, 131, 4564-4565.	6.6	825
17	One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano, 2009, 3, 2367-2375.	7.3	1,093
18	Fluorescent–magnetic nanoparticles for imaging and cell manipulation. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2009, 223, 81-86.	0.1	2
19	Carbon Dots for Optical Imaging in Vivo. Journal of the American Chemical Society, 2009, 131, 11308-11309.	6.6	1,341
20	Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates. Chemistry of Materials, 2009, 21, 5563-5565.	3.2	770

ATION REDO

#	Article	IF	CITATIONS
21	Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications, 2009, , 5118.	2.2	1,114
22	Facile synthetic strategy for efficient and multi-color fluorescent BCNO nanocrystals. Chemical Communications, 2009, , 4073.	2.2	77
23	Wet Chemistry Route to Hydrophobic Blue Fluorescent Nanodiamond. Journal of the American Chemical Society, 2009, 131, 4594-4595.	6.6	381
24	Preparation of Carbon Nanoparticles from Candle Soot. Chemistry Letters, 2009, 38, 28-29.	0.7	8
25	Synthesis and manipulation of multifunctional, fluorescent-magnetic nanoparticles for single molecule tracking. Proceedings of SPIE, 2010, , .	0.8	2
26	Preparation and Tunable Photoluminescence of Carbogenic Nanoparticles Confined in a Microporous Magnesium-Aluminophosphate. Inorganic Chemistry, 2010, 49, 5859-5867.	1.9	45
27	Synthesis of β-cyclodextrin-modified carbon nanocrystals and their fluorescent behavior. Science Bulletin, 2010, 55, 2835-2839.	1.7	9
28	Fluorescent Carbon Dots Capped with PEG200 and Mercaptosuccinic Acid. Journal of Fluorescence, 2010, 20, 1023-1028.	1.3	76
29	Electrochemical preparation of colloidal fluorescent graphite. Russian Chemical Bulletin, 2010, 59, 463-465.	0.4	0
30	Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation. Materials Research Bulletin, 2010, 45, 826-829.	2.7	13
31	Hydrothermally enhanced photoluminescence of carbon nanoparticles. Scripta Materialia, 2010, 62, 883-886.	2.6	43
32	Oneâ€5tep Hydrothermal Synthesis of Nitrogenâ€Doped Nanocarbons: Albumine Directing the Carbonization of Glucose. ChemSusChem, 2010, 3, 246-253.	3.6	124
33	A Novel One‣tep Approach to Synthesize Fluorescent Carbon Nanoparticles. European Journal of Inorganic Chemistry, 2010, 2010, 4411-4414.	1.0	221
34	Parallel factor analysis of EEM of the fluorescence of carbon dots nanoparticles. Journal of Chemometrics, 2010, 24, 655-664.	0.7	14
37	Waterâ€6oluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie - International Edition, 2010, 49, 4430-4434.	7.2	2,258
38	Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie - International Edition, 2010, 49, 6726-6744.	7.2	4,109
39	Study on the fluorescence characteristics of carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 553-557.	2.0	143
40	Study on fluorescence properties of carbogenic nanoparticles and their application for the determination of ferrous succinate. Journal of Luminescence, 2010, 130, 1463-1469.	1.5	39

#	ARTICLE	IF	Citations
" 41	Carbon spheres. Materials Science and Engineering Reports, 2010, 70, 1-28.	14.8	301
42	Blue light emitting graphene-based materials and their use in generating white light. Solid State Communications, 2010, 150, 1774-1777.	0.9	114
43	Optical fiber sensor for Hg(II) based on carbon dots. Biosensors and Bioelectronics, 2010, 26, 1302-1306.	5.3	193
44	Group IV Nanoparticles: Synthesis, Properties, and Biological Applications. Small, 2010, 6, 2080-2098.	5.2	264
45	Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2010, 2, 1015-1024.	6.6	2,966
46	CYTOTOXICITY EVALUATIONS OF FLUORESCENT CARBON NANOPARTICLES. Nano LIFE, 2010, 01, 153-161.	0.6	35
47	Polymeric/inorganic nanocomposites: fabrication and applications in multiple bioimaging. , 2010, , 638-e697.		2
48	Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chemical Communications, 2010, 46, 3681.	2.2	566
49	Investigation on the Electronic and Optical Properties of Short Oxidized Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 11068-11073.	1.5	63
50	One-Step Synthesis of Highly Luminescent Carbon Dots in Noncoordinating Solvents. Chemistry of Materials, 2010, 22, 4528-4530.	3.2	367
51	Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chemical Communications, 2010, 46, 8812.	2.2	577
52	Highly efficient photoluminescent graphene oxide with tunable surface properties. Chemical Communications, 2010, 46, 7319.	2.2	326
53	Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose. New Journal of Chemistry, 2010, 34, 591.	1.4	175
54	Extraction of Electrochemiluminescent Oxidized Carbon Quantum Dots from Activated Carbon. Chemistry of Materials, 2010, 22, 5895-5899.	3.2	379
55	Synthesis of direct white-light emitting carbogenic quantum dots. Chemical Communications, 2010, 46, 3309.	2.2	159
56	lonic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH. Chemical Communications, 2011, 47, 3135.	2.2	121
57	Novel fluorescent matrix embedded carbon quantum dots for the production of stable gold and silver hydrosols. Journal of Materials Chemistry, 2011, 21, 17638.	6.7	46
58	Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. Chemical Communications, 2011, 47, 764-766.	2.2	273

#	Article	IF	CITATIONS
59	Nucleic acid-functionalized nanomaterials for bioimaging applications. Journal of Materials Chemistry, 2011, 21, 16323.	6.7	46
60	Fabrication and manipulation of fluorescent carbon nanoparticles for biosensing applications. , 2011, , .		3
61	Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chemical Communications, 2011, 47, 961-963.	2.2	284
62	Sensitive and Selective Detection of Silver(I) Ion in Aqueous Solution Using Carbon Nanoparticles as a Cheap, Effective Fluorescent Sensing Platform. Langmuir, 2011, 27, 4305-4308.	1.6	144
63	Self-Cleaning Flexible Infrared Nanosensor Based on Carbon Nanoparticles. ACS Nano, 2011, 5, 4007-4013.	7.3	82
64	Enhancement of Ultraweak Chemiluminescence from Reaction of Hydrogen Peroxide and Bisulfite by Water-Soluble Carbon Nanodots. Journal of Physical Chemistry C, 2011, 115, 21707-21714.	1.5	115
65	Facile preparation and upconversion luminescence of graphene quantum dots. Chemical Communications, 2011, 47, 2580-2582.	2.2	734
66	Carbon nanospheres for fluorescent biomolecular detection. Journal of Materials Chemistry, 2011, 21, 4663.	6.7	50
67	Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale, 2011, 3, 1533.	2.8	327
68	Graphene oxide as an efficient signal-to-background enhancer for DNA detection with a long range resonance energy transfer strategy. Chemical Communications, 2011, 47, 11718.	2.2	59
69	One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. Journal of Materials Chemistry, 2011, 21, 13163.	6.7	300
70	White light-emitting devices based on carbon dots' electroluminescence. Chemical Communications, 2011, 47, 3502.	2.2	450
71	Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011, 47, 6858.	2.2	1,458
72	Luminescent short thiol-functionalized multi-wall carbon nanotubes. Diamond and Related Materials, 2011, 20, 1046-1049.	1.8	18
73	Aptamer Biosensor Based on Fluorescence Resonance Energy Transfer from Upconverting Phosphors to Carbon Nanoparticles for Thrombin Detection in Human Plasma. Analytical Chemistry, 2011, 83, 8130-8137.	3.2	348
74	Blue fluorescent carbon thin films fabricated from dodecylamine-capped carbon nanoparticles. Journal of Materials Chemistry, 2011, 21, 3565.	6.7	55
75	Fabrication of multi-structure nanocarbons from carbon xerogel: a unique scaffold towards bio-imaging. Chemical Communications, 2011, 47, 8587.	2.2	24
76	Acid-driven, microwave-assisted production of photoluminescent carbon nitride dots from N,N-dimethylformamide. RSC Advances, 2011, 1, 951.	1.7	81

		CITATION RE	PORT	
#	Article		IF	CITATIONS
77	New insight into the soot nanoparticles in a candle flame. Chemical Communications, 2	011, 47, 4700.	2.2	84
78	Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamin heat-treatment-based strategy. Journal of Materials Chemistry, 2011, 21, 11726.	e: a	6.7	179
79	Spectroscopic Investigated to the Interaction of Human Serum Albumin with Fluorescer Nanoparticles. Materials Science Forum, 2011, 694, 396-398.	ice Carbon	0.3	1
80	Graphene Oxide–Polyethylenimine Nanoconstruct as a Gene Delivery Vector and Bioir Bioconjugate Chemistry, 2011, 22, 2558-2567.	naging Tool.	1.8	368
81	Reverse Stern–Volmer behavior for luminescence quenching in carbon nanoparticles. Journal of Chemistry, 2011, 89, 104-109.	Canadian	0.6	37
82	Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New Journal of Chemistry, 2011, 35, 2666.		1.4	143
83	Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal to glucose in the presence of monopotassium phosphate. Chemical Communications, 201	reatment of 1, 47, 11615.	2.2	529
84	Ferrocene-functionalized carbon nanoparticles. Nanoscale, 2011, 3, 1984.		2.8	31
85	Carbon nanodots as peroxidase mimetics and their applications to glucose detection. C Communications, 2011, 47, 6695.	hemical	2.2	833
86	Combination of π–Ĩ€ stacking and electrostatic repulsion between carboxylic carbon and fluorescent oligonucleotides for rapid and sensitive detection of thrombin. Chemica Communications, 2011, 47, 11321.	nanoparticles al	2.2	64
87	Tunable fluorescence in chromophore-functionalized nanodiamond induced by energy t Nanoscale, 2011, 3, 3192.	ransfer.	2.8	30
88	Enhancing the luminescence of carbon dots with a reduction pathway. Chemical Comm 2011, 47, 10650.	unications,	2.2	388
89	Microwave assisted one-step green synthesis of cell-permeable multicolor photolumines dots without surface passivation reagents. Journal of Materials Chemistry, 2011, 21, 24		6.7	608
90	Carbon and Silicon Fluorescent Nanomaterials. , 0, , .			0
91	A Carbon Dots-based Fluorescence Turn-on Method for DNA Determination. Analytical S 27, 243-246.	sciences, 2011,	0.8	77
92	Analytical and bioanalytical applications of carbon dots. TrAC - Trends in Analytical Cher 30, 1327-1336.	nistry, 2011,	5.8	546
93	Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step treatment. Materials Research Bulletin, 2011, 46, 147-151.	ultrasonic	2.7	154
94	Study on the fluorescence carbon nanoparticles. Materials Letters, 2011, 65, 2371-237	3.	1.3	18

#	Article	IF	CITATIONS
95	Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosensors and Bioelectronics, 2011, 26, 4656-4660.	5.3	156
96	Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process. Carbon, 2011, 49, 5207-5212.	5.4	156
97	Laser synthesis and size tailor of carbon quantum dots. Journal of Nanoparticle Research, 2011, 13, 7247-7252.	0.8	139
98	Multicolor luminescent carbon nanoparticles: Synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Research, 2011, 4, 908-920.	5.8	215
99	One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions. Science China Chemistry, 2011, 54, 1342-1347.	4.2	122
100	Highly Luminescent Organosilaneâ€Functionalized Carbon Dots. Advanced Functional Materials, 2011, 21, 1027-1031.	7.8	539
101	Electrochemical Tuning of Luminescent Carbon Nanodots: From Preparation to Luminescence Mechanism. Advanced Materials, 2011, 23, 5801-5806.	11.1	872
102	Carbogenic Nanodots: Photoluminescence and Roomâ€Temperature Ferromagnetism. ChemPhysChem, 2011, 12, 2624-2632.	1.0	50
103	Carbon Nanoparticles as Chromophores for Photon Harvesting and Photoconversion. ChemPhysChem, 2011, 12, 3604-3608.	1.0	64
104	Unmodified "GNP–Oligonucleotide―Nanobiohybrids: A Simple Route for Emission Enhancement of DNA Intercalators. Chemistry - A European Journal, 2011, 17, 7538-7548.	1.7	6
105	One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49, 605-609.	5.4	783
106	Microwave–hydrothermal synthesis of fluorescent carbon dots from graphite oxide. Carbon, 2011, 49, 3134-3140.	5.4	309
107	Water soluble carbon nanoparticles: Hydrothermal synthesis and excellent photoluminescence properties. Colloids and Surfaces B: Biointerfaces, 2011, 87, 326-332.	2.5	105
108	Controllable synthesis and Photoluminescence (PL) of amorphous and crystalline carbon nanoparticles. Journal of Physics and Chemistry of Solids, 2011, 72, 749-754.	1.9	14
109	Synthesis and surface photochemistry of graphitized carbon quantum dots. Journal of Colloid and Interface Science, 2011, 356, 416-421.	5.0	77
110	Fluorescent Carbon Dots (CDs) as a pH Sensor. Advanced Materials Research, 0, 415-417, 1319-1322.	0.3	5
111	Graphitic Carbon Nanoparticles from Asphaltenes. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	3
112	Electrochemical methods – important means for fabrication of fluorescent nanoparticles. Analyst, The, 2012, 137, 805-815.	1.7	13

#	Article	IF	CITATIONS
113	Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst, The, 2012, 137, 5392.	1.7	257
114	Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chemical Communications, 2012, 48, 3984.	2.2	468
115	Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012, 22, 7461.	6.7	667
116	One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 2012, 4, 5572.	2.8	692
117	Temperature-Dependent Fluorescence in Carbon Dots. Journal of Physical Chemistry C, 2012, 116, 25552-25557.	1.5	407
118	Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chemical Communications, 2012, 48, 2692.	2.2	463
120	A Biocompatible Fluorescent Ink Based on Waterâ€ s oluble Luminescent Carbon Nanodots. Angewandte Chemie - International Edition, 2012, 51, 12215-12218.	7.2	1,050
121	Reply to comment on "one-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black― Journal of Materials Chemistry, 2012, 22, 21777.	6.7	9
122	Comment on "one-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black― Journal of Materials Chemistry, 2012, 22, 21776.	6.7	6
123	A carbon nanoparticle-based low-background biosensing platform for sensitive and label-free fluorescent assay of DNA methylation. Chemical Communications, 2012, 48, 88-90.	2.2	84
124	Hydrothermal aggregation induced crystallization: a facial route towards polycrystalline graphite quantum dots with blue photoluminescence. CrystEngComm, 2012, 14, 7149.	1.3	14
125	Fractionation of Carbon-Based Nanomaterials by Anion-Exchange HPLC. Analytical Chemistry, 2012, 84, 1178-1183.	3.2	66
126	Fluorescence Enhancement and Radiolysis of Carbon Dots through Aqueous Î ³ Radiation Chemistry. Journal of Physical Chemistry C, 2012, 116, 15826-15832.	1.5	12
127	Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot. Talanta, 2012, 88, 445-449.	2.9	28
128	Enhanced fluorescent intensity of graphene oxide–methyl cellulose hybrid in acidic medium: Sensing of nitro-aromatics. Journal of Materials Chemistry, 2012, 22, 8139.	6.7	62
129	Photoluminescent Nanostructures from Graphite Oxidation. Journal of Physical Chemistry C, 2012, 116, 20015-20022.	1.5	39
130	Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy and Environmental Science, 2012, 5, 8869.	15.6	790
131	ZnO/Graphene Quantum Dot Solid-State Solar Cell. Journal of Physical Chemistry C, 2012, 116, 20127-20131.	1.5	199

#	Article	IF	CITATIONS
132	New Nanotech from an Ancient Material: Chemistry Demonstrations Involving Carbon-Based Soot. Journal of Chemical Education, 2012, 89, 1280-1287.	1.1	28
133	One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New Journal of Chemistry, 2012, 36, 861.	1.4	493
134	One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chemical Communications, 2012, 48, 407-409.	2.2	341
135	Emerging photoluminescence in azo-pyridine intercalated graphene oxide layers. Nanoscale, 2012, 4, 6562.	2.8	47
136	Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Advances, 2012, 2, 2717.	1.7	370
137	Carbon nanoparticles from corn stalk soot and its novel application as stationary phase of hydrophilic interaction chromatography and per aqueous liquid chromatography. Analytica Chimica Acta, 2012, 726, 102-108.	2.6	47
138	Layer-by-layer immobilization of carbon dots fluorescent nanomaterials on single optical fiber. Analytica Chimica Acta, 2012, 735, 90-95.	2.6	46
139	Facile synthesis of fluorescent carbon nanodots from starch nanoparticles. Materials Letters, 2012, 85, 50-52.	1.3	47
140	Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling. Colloids and Surfaces B: Biointerfaces, 2012, 100, 209-214.	2.5	125
141	Carbon Dotâ€Based Inorganic–Organic Nanosystem for Twoâ€Photon Imaging and Biosensing of pH Variation in Living Cells and Tissues. Advanced Materials, 2012, 24, 5844-5848.	11.1	514
143	Amphiphilic Eggâ€Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns. Angewandte Chemie - International Edition, 2012, 51, 9297-9301.	7.2	604
144	Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. Journal of Materials Chemistry, 2012, 22, 14403.	6.7	318
145	Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 2012, 48, 3686.	2.2	1,845
146	Chemical analysis of surface oxygenated moieties of fluorescent carbon nanoparticles. Nanoscale, 2012, 4, 1010.	2.8	5
147	Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.	6.7	2,339
148	Shifting and non-shifting fluorescence emitted by carbon nanodots. Journal of Materials Chemistry, 2012, 22, 5917.	6.7	177
149	One-pot synthesis of N-doped carbon dots with tunable luminescence properties. Journal of Materials Chemistry, 2012, 22, 16714.	6.7	358
150	One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chemical Communications, 2012, 48, 380-382.	2.2	862

#	Article	IF	CITATIONS
151	A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H ₂ O ₂ and glucose. RSC Advances, 2012, 2, 411-413.	1.7	201
152	Luminescent graphene quantum dots from oxidized multi-walled carbon nanotubes. Materials Chemistry and Physics, 2012, 137, 12-16.	2.0	44
153	Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Physical Chemistry Chemical Physics, 2012, 14, 7360.	1.3	161
154	Formation of highly luminescent nearly monodisperse carbon quantum dots via emulsion-templated carbonization of carbohydrates. RSC Advances, 2012, 2, 11223.	1.7	54
155	One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. Journal of Materials Chemistry, 2012, 22, 8764.	6.7	546
156	Fluorescent carbon dots obtained from chitosan gel. RSC Advances, 2012, 2, 12156.	1.7	137
157	Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. RSC Advances, 2012, 2, 8599.	1.7	178
158	Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg ²⁺ and biothiols in complex matrices. Chemical Communications, 2012, 48, 1147-1149.	2.2	675
159	Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chemical Communications, 2012, 48, 9367.	2.2	630
160	A simple infrared nanosensor array based on carbon nanoparticles. Frontiers of Optoelectronics, 2012, 5, 266-270.	1.9	3
161	Luminescent Surface Quaternized Carbon Dots. Chemistry of Materials, 2012, 24, 6-8.	3.2	176
162	Upconversion fluorescent carbon nanodots enriched with nitrogen for light harvesting. Journal of Materials Chemistry, 2012, 22, 15522.	6.7	110
163	Upconversion Fluorescence Resonance Energy Transfer Based Biosensor for Ultrasensitive Detection of Matrix Metalloproteinase-2 in Blood. Analytical Chemistry, 2012, 84, 1466-1473.	3.2	182
164	Rapid microwave synthesis of fluorescent hydrophobic carbon dots. RSC Advances, 2012, 2, 12129.	1.7	112
165	Synthesis of carbogenic nanosphere from peanut skin. Diamond and Related Materials, 2012, 24, 11-14.	1.8	42
166	Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications. Science and Technology of Advanced Materials, 2012, 13, 045008.	2.8	140
167	Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Transactions, 2012, 41, 9526.	1.6	684
168	Photothermal response of CVD synthesized carbon (nano)spheres/aqueous nanofluids for potential application in direct solar absorption collectors: a preliminary investigation. Nanotechnology, Science and Applications, 2012, 5, 49.	4.6	24

#	Article	IF	CITATIONS
169	In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small, 2012, 8, 281-290.	5.2	625
170	Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chemistry, 2012, 14, 917.	4.6	404
171	Facile synthesis of graphitic carbon quantum dots with size tunability and uniformity using reverse micelles. Chemical Communications, 2012, 48, 5256.	2.2	216
172	Control the size and surface chemistry of graphene for the rising fluorescent materials. Chemical Communications, 2012, 48, 4527.	2.2	384
173	Electron transfer quenching by nitroxide radicals of the fluorescence of carbon dots. Journal of Materials Chemistry, 2012, 22, 11801.	6.7	81
174	Nanoparticles in Measurement Science. Analytical Chemistry, 2012, 84, 541-576.	3.2	185
175	Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 2012, 48, 7955.	2.2	830
176	Significant enhancement of blue emission and electrical conductivity of N-doped graphene. Journal of Materials Chemistry, 2012, 22, 17992.	6.7	182
177	A Tunable Multicolor Photoluminescent Nanocarbon Prepared from Castor Oil Soot. Journal of the Chinese Chemical Society, 2012, 59, 802-808.	0.8	4
178	Chemical Synthesis of Carbon Materials With Intriguing Nanostructure and Morphology. Macromolecular Chemistry and Physics, 2012, 213, 1107-1131.	1.1	115
179	Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions. Analytical Chemistry, 2012, 84, 5351-5357.	3.2	986
180	Presence of Amorphous Carbon Nanoparticles in Food Caramels. Scientific Reports, 2012, 2, 383.	1.6	213
181	Easy Synthesis and Imaging Applications of Cross-Linked Green Fluorescent Hollow Carbon Nanoparticles. ACS Nano, 2012, 6, 400-409.	7.3	467
182	Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. Journal of Materials Chemistry, 2012, 22, 17470.	6.7	322
183	Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Upâ€Conversion Bioimaging Applications. Advanced Functional Materials, 2012, 22, 4732-4740.	7.8	1,019
185	A Tunable Ratiometric pH Sensor Based on Carbon Nanodots for the Quantitative Measurement of the Intracellular pH of Whole Cells. Angewandte Chemie - International Edition, 2012, 51, 6432-6435.	7.2	465
186	Dramatic Fluorescence Enhancement of Bare Carbon Dots through Facile Reduction Chemistry. ChemPhysChem, 2012, 13, 3549-3555.	1.0	73
187	Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission. Journal of the American Chemical Society, 2012, 134, 747-750.	6.6	763

#	Article	IF	CITATIONS
188	Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Advances, 2012, 2, 3602.	1.7	177
189	Physical and fluorescent characteristics of non-functionalized carbon nanoparticles from candle soot. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	20
190	Photoluminescent carbon nanoparticles produced by confined combustion of aromatic compounds. Carbon, 2012, 50, 1298-1302.	5.4	61
191	Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon, 2012, 50, 2810-2815.	5.4	542
192	Fluorescence behavior of non-functionalized carbon nanoparticles and their in vitro applications in imaging and cytotoxic analysis of cancer cells. Colloids and Surfaces B: Biointerfaces, 2012, 91, 34-40.	2.5	29
193	Adsorption behavior of ractopamine on carbon nanoparticle modified electrode and its analytical application. Electrochimica Acta, 2012, 77, 83-88.	2.6	16
194	Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 2012, 33, 3604-3613.	5.7	664
195	Unique chemical grafting of carbon nanoparticle on fabricated ZnO nanorod: Antibacterial and bioimaging property. Materials Research Bulletin, 2012, 47, 586-594.	2.7	29
196	Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Materials Letters, 2012, 66, 222-224.	1.3	471
197	Research on the spectral properties of luminescent carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 555-561.	2.0	30
198	Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application. Journal of Luminescence, 2012, 132, 1603-1607.	1.5	66
199	Luminescence induced in diamond by He+ ion implantation into SiC/C composites with an inverse opal structure. Physics of the Solid State, 2012, 54, 586-592.	0.2	3
200	Hydrothermal Treatment of Grass: A Lowâ€Cost, Green Route to Nitrogenâ€Ðoped, Carbonâ€Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Labelâ€Free Detection of Cu(II) Ions. Advanced Materials, 2012, 24, 2037-2041.	11.1	1,345
201	Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays. Analytical and Bioanalytical Chemistry, 2012, 402, 593-600.	1.9	137
202	Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	75
203	Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics, 2013, 7, 732-738.	15.6	501
204	Reduced Carbon Dots versus Oxidized Carbon Dots: Photo―and Electrochemiluminescence Investigations for Selected Applications. Chemistry - A European Journal, 2013, 19, 6282-6288.	1.7	139
205	Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots. Journal of Chromatography A, 2013, 1304, 234-240.	1.8	66

	Сітатіс	on Report	
#	Article	IF	CITATIONS
206	FRET-based characterisation of surfactant bilayer protected core–shell carbon nanoparticles: advancement toward carbon nanotechnology. Chemical Communications, 2013, 49, 7638.	2.2	14
207	Carbon Nanodots As a Matrix for the Analysis of Low-Molecular-Weight Molecules in Both Positive- and Negative-Ion Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and Quantification of Glucose and Uric Acid in Real Samples. Analytical Chemistry, 2013, 85, 6646-6652.	3.2	151
208	Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites. Chemical Communications, 2013, 49, 8078.	2.2	150
209	Graphene Oxide Protected Nucleic Acid Probes for Bioanalysis and Biomedicine. Chemistry - A European Journal, 2013, 19, 10442-10451.	1.7	39
211	Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash. RSC Advances, 2013, 3, 13119.	1.7	106
212	High performance flexible sensor based on inorganic nanomaterials. Sensors and Actuators B: Chemical, 2013, 176, 522-533.	4.0	77
213	Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk Heterojunction Solar Cells. ACS Nano, 2013, 7, 7207-7212.	7.3	171
214	Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: an experimental and theoretical investigation. RSC Advances, 2013, 3, 14571.	1.7	189
215	Detection of Sn(II) ions via quenching of the fluorescence of carbon nanodots. Mikrochimica Acta, 2013, 180, 137-143.	2.5	98
216	Carbon Quantum Dot-Functionalized Aerogels for NO ₂ Gas Sensing. Analytical Chemistry, 2013, 85, 8065-8069.	3.2	123
217	Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst, The, 2013, 138, 6551.	1.7	241
218	Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods and Applications in Fluorescence, 2013, 1, 042001.	1.1	138
219	Carbon Nanoparticle-based Fluorescent Bioimaging Probes. Scientific Reports, 2013, 3, 1473.	1.6	642
220	Facile preparation and cellular imaging of photoluminescent carbogenic nanoparticles derived from defoliations. Chemical Research in Chinese Universities, 2013, 29, 189-192.	1.3	1
221	Facile synthesis of core–shell–satellite Ag/C/Ag nanocomposites using carbon nanodots as reductant and their SERS properties. CrystEngComm, 2013, 15, 6305.	1.3	24
222	An absolutely green approach to fabricate carbon nanodots from soya bean grounds. RSC Advances, 2013, 3, 20662.	1.7	88
223	Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Research Letters, 2013, 8, 122.	3.1	167
224	Surface chemical composition of chromatographically fractionated graphite nanofiber-derived carbon dots. Microchemical Journal, 2013, 110, 660-664.	2.3	18

#	Article	IF	CITATIONS
225	Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta, 2013, 115, 950-956.	2.9	110
226	A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy and Environmental Science, 2013, 6, 3665.	15.6	293
227	Carbon-Dot-Loaded Alginate Gels as Recoverable Probes: Fabrication and Mechanism of Fluorescent Detection. Langmuir, 2013, 29, 12615-12621.	1.6	39
228	Fluorescent Carbon Nanoparticles in Medicine for Cancer Therapy. ACS Medicinal Chemistry Letters, 2013, 4, 1012-1013.	1.3	65
229	Oxidative Synthesis of Highly Fluorescent Boron/Nitrogen Co-Doped Carbon Nanodots Enabling Detection of Photosensitizer and Carcinogenic Dye. Analytical Chemistry, 2013, 85, 10232-10239.	3.2	88
230	One-step synthesis of intrinsically functionalized fluorescent carbon nanoparticles by hydrothermal carbonization from different carbon sources. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	13
231	Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper(II) ions. Materials Research Bulletin, 2013, 48, 1728-1731.	2.7	68
232	Strong luminescence of Carbon Dots induced by acetone passivation: Efficient sensor for a rapid analysis of two different pollutants. Analytica Chimica Acta, 2013, 804, 246-251.	2.6	81
234	Reversible fluorescence modulation of spiropyran-functionalized carbon nanoparticles. Journal of Materials Chemistry C, 2013, 1, 3716.	2.7	86
235	Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon, 2013, 64, 424-434.	5.4	723
236	Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials, 2013, 34, 7168-7180.	5.7	151
237	Carbon Nanodots Featuring Efficient FRET for Realâ€īme Monitoring of Drug Delivery and Twoâ€Photon Imaging. Advanced Materials, 2013, 25, 6569-6574.	11.1	494
238	Preparation of highly luminescent and biocompatible carbon dots using a new extraction method. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
239	Carbon and carbon-silicon carbide nanocomposites with inverse opal structure. Russian Journal of General Chemistry, 2013, 83, 2167-2172.	0.3	0
240	In vivo imaging of tumour bearing near-infrared fluorescence-emitting carbon nanodots derived from tire soot. Chemical Communications, 2013, 49, 10290.	2.2	74
241	Preparation and optical properties of phthalocyanine–carbon dot blends. RSC Advances, 2013, 3, 21447.	1.7	10
242	A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent. Talanta, 2013, 117, 196-202.	2.9	71
243	Carbon dot reduced palladium nanoparticles as active catalysts for carbon–carbon bond formation. Dalton Transactions, 2013, 42, 13821.	1.6	108

#	Article	IF	CITATIONS
244	Luminescent carbon dots in a new magnesium aluminophosphate zeolite. Chemical Communications, 2013, 49, 9006.	2.2	93
245	Carbon nanodot-based self-delivering microRNA sensor to visualize microRNA124a expression during neurogenesis. Journal of Materials Chemistry B, 2013, 1, 4438.	2.9	42
246	Introducing novel amorphous carbon nanoparticles as energy acceptors into a chemiluminescence resonance energy transfer immunoassay system. Analyst, The, 2013, 138, 6753.	1.7	12
247	Synthesis of hydrophilic carbon black; role of hydrophilicity in maintaining the hydration level and protonic conduction. RSC Advances, 2013, 3, 3917.	1.7	42
248	Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale, 2013, 5, 1967.	2.8	260
249	Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. Journal of Materials Chemistry C, 2013, 1, 580-586.	2.7	158
250	Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013, 5, 4015.	2.8	1,295
251	Photoluminescent organosilane-functionalized carbon dots as temperature probes. Chemical Communications, 2013, 49, 1639.	2.2	146
252	A facile and novel synthetic method for the preparation of hydroxyl capped fluorescent carbon nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013, 102, 63-69.	2.5	38
253	One-step synthesis of yellow-emitting carbogenic dots toward white light-emitting diodes. Journal of Materials Science, 2013, 48, 2352-2357.	1.7	88
254	Hidden Properties of Carbon Dots Revealed After HPLC Fractionation. Journal of Physical Chemistry Letters, 2013, 4, 239-243.	2.1	108
255	Crosslinked Carbon Dots as Ultraâ€Bright Fluorescence Probes. Small, 2013, 9, 545-551.	5.2	84
256	Exploring the Interior of Hollow Fluorescent Carbon Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 4260-4267.	1.5	12
257	Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Materials Research Bulletin, 2013, 48, 2529-2534.	2.7	133
258	Carbon "quantum―dots for optical bioimaging. Journal of Materials Chemistry B, 2013, 1, 2116.	2.9	708
259	Nitrogenâ€Doped Carbon Dots: A Facile and General Preparation Method, Photoluminescence Investigation, and Imaging Applications. Chemistry - A European Journal, 2013, 19, 2276-2283.	1.7	387
260	Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions. RSC Advances, 2013, 3, 3733.	1.7	246
261	Nanomaterials from Renewable Resources. , 2013, , 335-356.		2

#	Article	IF	CITATIONS
262	Blue and green photoluminescence graphene quantum dots synthesized from carbon fibers. Materials Letters, 2013, 93, 161-164.	1.3	63
263	Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 3953-3957.	7.2	2,907
264	Sulfur-incorporated carbon quantum dots with a strong long-wavelength absorption band. Journal of Materials Chemistry C, 2013, 1, 2002.	2.7	65
265	Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. Journal of Materials Chemistry B, 2013, 1, 1774.	2.9	192
266	Excitation-dependent visible fluorescence in decameric nanoparticles with monoacylglycerol cluster chromophores. Nature Communications, 2013, 4, 1544.	5.8	70
267	Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Labelâ€Free Detection of Iron(III) Ions and Dopamine. Chemistry - A European Journal, 2013, 19, 7243-7249.	1.7	632
268	Room temperature and solvothermal green synthesis of self passivated carbon quantum dots. RSC Advances, 2013, 3, 3189.	1.7	97
269	Synthesis of photoluminescent carbon nanoparticles from graphite. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	4
270	A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 2013, 3, 8286.	1.7	705
271	Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. Journal of Materials Chemistry B, 2013, 1, 2375.	2.9	243
272	Carbon-dots derived from nanodiamond: Photoluminescence tunable nanoparticles for cell imaging. Journal of Colloid and Interface Science, 2013, 397, 39-44.	5.0	171
273	Encodable multiple-fluorescence CdTe@carbon nanoparticles from nanocrystal/colloidal crystal guest–host ensembles. Nanotechnology, 2013, 24, 135602.	1.3	9
274	ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 2013, 279, 367-373.	3.1	179
275	Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel. Materials Science and Engineering C, 2013, 33, 2914-2917.	3.8	262
276	Chemical Regulation of Carbon Quantum Dots from Synthesis to Photocatalytic Activity. Chemistry - an Asian Journal, 2013, 8, 1035-1041.	1.7	152
277	Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chemical Communications, 2013, 49, 4920.	2.2	124
278	Hollow luminescent carbon dots for drug delivery. Carbon, 2013, 59, 192-199.	5.4	426
279	Glycosylâ€Modified Diporphyrins for in Vitro and in Vivo Fluorescence Imaging. ChemBioChem, 2013, 14, 979-986.	1.3	15

#	Article	IF	CITATIONS
280	Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods and Applications in Fluorescence, 2013, 1, 022001.	1.1	73
281	Preparation of high-quality biocompatible carbon dots by extraction, with new thoughts on the luminescence mechanisms. Nanotechnology, 2013, 24, 225601.	1.3	62
282	Luminescent carbon quantum dots and their application in cell imaging. New Journal of Chemistry, 2013, 37, 2515.	1.4	149
283	A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Research, 2013, 6, 312-325.	5.8	161
284	Development of multicolor carbon nanoparticles for cell imaging. Talanta, 2013, 108, 59-65.	2.9	54
285	Luminescent Carbon Dot-Gated Nanovehicles for pH-Triggered Intracellular Controlled Release and Imaging. Langmuir, 2013, 29, 6396-6403.	1.6	153
286	Observation of fluorescence from non-functionalized carbon nanoparticles and its solvent dependent spectroscopy. Journal of Luminescence, 2013, 141, 155-161.	1.5	34
287	Freestanding Luminescent Films of Nitrogen-Rich Carbon Nanodots toward Large-Scale Phosphor-Based White-Light-Emitting Devices. Chemistry of Materials, 2013, 25, 1893-1899.	3.2	227
289	Simple and Green Synthesis of Nitrogenâ€Đoped Photoluminescent Carbonaceous Nanospheres for Bioimaging. Angewandte Chemie - International Edition, 2013, 52, 8151-8155.	7.2	430
290	Microwave assisted one-step green synthesis of fluorescent carbon nanoparticles from ionic liquids and their application as novel fluorescence probe for quercetin determination. Journal of Luminescence, 2013, 140, 120-125.	1.5	79
291	Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale, 2013, 5, 225-230.	2.8	289
292	Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 2013, 60, 421-428.	5.4	560
293	Effect of Injection Routes on the Biodistribution, Clearance, and Tumor Uptake of Carbon Dots. ACS Nano, 2013, 7, 5684-5693.	7.3	332
294	Microwaveâ€assisted oneâ€step green synthesis of aminoâ€functionalized fluorescent carbon nitride dots from chitosan. Luminescence, 2013, 28, 612-615.	1.5	71
296	Carbonâ€Based Dots Coâ€doped with Nitrogen and Sulfur for High Quantum Yield and Excitationâ€Independent Emission. Angewandte Chemie - International Edition, 2013, 52, 7800-7804.	7.2	1,872
297	pH-switched luminescence and sensing properties of a carbon dot–polyaniline composite. RSC Advances, 2013, 3, 5475.	1.7	36
298	Highly sensitive humidity sensing properties of carbon quantum dots films. Materials Research Bulletin, 2013, 48, 790-794.	2.7	71
299	Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Letters, 2013, 5, 247-259.	14.4	241

#	Article	IF	CITATIONS
300	Solution-Based Carbohydrate Synthesis of Individual Solid, Hollow, and Porous Carbon Nanospheres Using Spray Pyrolysis. ACS Nano, 2013, 7, 11156-11165.	7.3	92
301	Carbon Quantum Dot-Based Field-Effect Transistors and Their Ligand Length-Dependent Carrier Mobility. ACS Applied Materials & Interfaces, 2013, 5, 822-827.	4.0	49
302	Fabrication of Strong Photoluminescent Carbon Nanodots and its Preliminary Application in Cell Imaging. Advanced Materials Research, 0, 800, 312-316.	0.3	1
303	Hydrothermal/Solvothermal Synthesis of Graphene Quantum Dots and Their Biological Applications. Nano Biomedicine and Engineering, 2013, 5, .	0.3	39
304	Cysteamine hydrochloride protected carbon dots as a vehicle for the efficient release of the anti-schizophrenic drug haloperidol. RSC Advances, 2013, 3, 26290.	1.7	43
305	CHARACTERIZATION AND TOXICITY OF CARBON DOT-POLY(LACTIC-CO-GLYCOLIC ACID) NANOCOMPOSITES FOR BIOMEDICAL IMAGING. Nano LIFE, 2013, 03, 1340002.	0.6	16
306	Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Science and Technology of Advanced Materials, 2013, 14, 044407.	2.8	66
307	Improved Fluorescence of Carbon Dots Prepared from Bagasse under Alkaline Hydrothermal Conditions. BioResources, 2013, 8, .	0.5	14
308	Surface Passivation of Carbon Nanoparticles with Branched Macromolecules Influences Near Infrared Bioimaging. Theranostics, 2013, 3, 677-686.	4.6	83
309	Facile ionic-liquid-assisted electrochemical synthesis of size-controlled carbon quantum dots by tuning applied voltages. RSC Advances, 2014, 4, 57615-57619.	1.7	31
310	Synthesis of fluorescent carbon dots from one-step pyrolysis of frontal-polymerized poly(acrylamide-co-4-vinylpyridine). Applied Physics A: Materials Science and Processing, 2014, 117, 1583-1588.	1.1	4
311	Dual functional carbonaceous nanodots exist in a cup of tea. RSC Advances, 2014, 4, 63414-63419.	1.7	39
312	Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity. Journal of Drug Delivery, 2014, 2014, 1-9.	2.5	144
313	Preparation and Characterization of the Fluorescent Carbon Dots Derived from the Lithiumâ€Intercalated Graphite used for Cell Imaging. Particle and Particle Systems Characterization, 2014, 31, 771-777.	1.2	10
314	Sonochemical synthesis of highly photoluminescent carbon nanodots. RSC Advances, 2014, 4, 52230-52234.	1.7	26
315	Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. Journal of Materials Chemistry B, 2014, 2, 4564.	2.9	258
316	Controllable synthesis of two different morphologies of Cu2O particles with the assistance of carbon dots. RSC Advances, 2014, 4, 16524-16527.	1.7	7
317	Quantum size effect of poly(o-phenylenediamine) quantum dots: From controllable fabrication to tunable photoluminescence properties. Synthetic Metals, 2014, 198, 142-149.	2.1	42

#	Article	IF	CITATIONS
318	Photoluminescent Carbon Dots from 1,4â€Addition Polymers. Chemistry - A European Journal, 2014, 20, 10926-10931.	1.7	29
319	Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Advances, 2014, 4, 54060-54065.	1.7	161
320	Carbon Nanodots: Synthesis, Characterization, and Bioanalytical Applications. Bioanalytical Reviews, 2014, , 135-175.	0.1	4
321	Sizeâ€Controlled Softâ€Template Synthesis of Carbon Nanodots toward Versatile Photoactive Materials. Small, 2014, 10, 506-513.	5.2	246
322	Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging. Carbon, 2014, 66, 351-360.	5.4	117
323	Carbon dots with tunable emission, controllable size and their application for sensing hypochlorous acid. Journal of Luminescence, 2014, 151, 100-105.	1.5	80
324	Enhanced Fluorescence of Graphene Oxide by Well-Controlled Au@SiO2 Core-Shell Nanoparticles. Journal of Fluorescence, 2014, 24, 137-141.	1.3	14
325	Functional Surface Engineering of C-Dots for Fluorescent Biosensing and in Vivo Bioimaging. Accounts of Chemical Research, 2014, 47, 20-30.	7.6	836
326	Carbon nanoparticles-induced formation of polyaniline nanofibers and their subsequent decoration with Ag nanoparticles for nonenzymatic H2O2 detection. Russian Journal of Electrochemistry, 2014, 50, 95-99.	0.3	5
327	Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon, 2014, 67, 508-513.	5.4	217
328	Red shift in the photoluminescence of colloidal carbon quantum dots induced by photon reabsorption. Applied Physics Letters, 2014, 104, .	1.5	86
329	Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon, 2014, 71, 87-93.	5.4	218
330	A one-step sonoelectrochemical preparation method of pure blue fluorescent carbon nanoparticles under a high intensity electric field. Carbon, 2014, 66, 77-83.	5.4	57
331	Synthesis of mesoporous silica oxide/C-dot complex (meso-SiO ₂ /C-dots) using pyrolysed rice husk and its application in bioimaging. RSC Advances, 2014, 4, 1174-1179.	1.7	48
332	Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates. Journal of Colloid and Interface Science, 2014, 414, 73-81.	5.0	33
333	Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale, 2014, 6, 4676.	2.8	360
334	Candle Soot as Particular Lubricant Additives. Tribology Letters, 2014, 53, 521-531.	1.2	44
335	Oneâ€Pot Synthesis of Highly Luminescent Carbon Quantum Dots and Their Nontoxic Ingestion by Zebrafish for In Vivo Imaging. Chemistry - A European Journal, 2014, 20, 5640-5648.	1.7	74

#	Article	IF	CITATIONS
336	Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting. CrystEngComm, 2014, 16, 3059.	1.3	54
337	One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Materials Science and Engineering C, 2014, 38, 20-27.	3.8	342
338	High-performance liquid chromatographic and mass spectrometric analysis of fluorescent carbon nanodots. Talanta, 2014, 129, 529-538.	2.9	33
339	Presence of photoluminescent carbon dots in Nescafe® original instant coffee: Applications to bioimaging. Talanta, 2014, 127, 68-74.	2.9	217
340	Synthesis of Ultra‣table Fluorescent Carbon Dots from Polyvinylpyrrolidone and Their Application in the Detection of Hydroxyl Radicals. Chemistry - an Asian Journal, 2014, 9, 1054-1059.	1.7	32
341	Oxygen to carbon atoms ratio effect on the size, morphology and purity of functionalized carbon nanoshells by using alcohol mixtures as carbon source. Carbon, 2014, 76, 292-300.	5.4	9
342	Synthesis of graphitic carbon nano-onions for dye sensitized solar cells. Solar Energy, 2014, 105, 236-242.	2.9	24
343	Single-step preparation of fluorescent carbon nanoparticles, and their application as a fluorometric probe for quercetin. Mikrochimica Acta, 2014, 181, 1309-1316.	2.5	26
344	Carbon Dots with Continuously Tunable Full-Color Emission and Their Application in Ratiometric pH Sensing. Chemistry of Materials, 2014, 26, 3104-3112.	3.2	791
345	Biological applications of carbon dots. Science China Chemistry, 2014, 57, 522-539.	4.2	77
346	NIR luminescent nanomaterials for biomedical imaging. Journal of Materials Chemistry B, 2014, 2, 2422.	2.9	139
347	Nitrogen-doped carbon nanodots as a reducing agent to synthesize Ag nanoparticles for non-enzymatic hydrogen peroxide detection. RSC Advances, 2014, 4, 544-548.	1.7	19
348	High-yield and high-solubility nitrogen-doped carbon dots: formation, fluorescence mechanism and imaging application. RSC Advances, 2014, 4, 1563-1566.	1.7	90
349	Bioluminescence Resonance Energy Transfer Nanoprobes for Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 57-66.	1.9	1
350	Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst. Nanoscale, 2014, 6, 867-873.	2.8	98
351	Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off―fluorescent probe for detection of Hg2+ ions. Biosensors and Bioelectronics, 2014, 55, 83-90.	5.3	778
352	Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. Journal of Materials Chemistry B, 2014, 2, 698-705.	2.9	191
353	Candle-based process for creating a stable superhydrophobic surface. Carbon, 2014, 68, 583-596.	5.4	127

#	Article	IF	Citations
354	Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries. Langmuir, 2014, 30, 318-324.	1.6	225
355	Carbon dots in magnetic colloidal nanocrystal clusters. RSC Advances, 2014, 4, 58758-58761.	1.7	4
356	Water Electrolysis with a Conducting Carbon Cloth: Subthreshold Hydrogen Generation and Superthreshold Carbon Quantum Dot Formation. ChemSusChem, 2014, 7, 883-889.	3.6	14
357	Ultrastable core–shell structured nanoparticles directly made from zwitterionic polymers. Chemical Communications, 2014, 50, 15030-15033.	2.2	14
358	Fluorescent carbon by covalently attaching a BODIPY fluorophore. RSC Advances, 2014, 4, 62651-62653.	1.7	0
359	Synthesis of fluorescent carbon nanoparticles grafted with polystyrene and their fluorescent fibers processed by electrospinning. RSC Advances, 2014, 4, 57683-57690.	1.7	13
360	One-pot synthesis of photoluminescent carbon nanodots by carbonization of cyclodextrin and their application in Ag ⁺ detection. RSC Advances, 2014, 4, 62446-62452.	1.7	38
361	Synthesis of Carbon Dots from Kitchen Waste: Conversion of Waste to Value Added Product. Journal of Fluorescence, 2014, 24, 1767-1773.	1.3	94
362	The role of ozone in the ozonation process of graphene oxide: oxidation or decomposition?. RSC Advances, 2014, 4, 58325-58328.	1.7	37
363	Binding of hemoglobin to ultrafine carbon nanoparticles: a spectroscopic insight into a major health hazard. RSC Advances, 2014, 4, 22536-22541.	1.7	5
364	Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes. Nanoscale, 2014, 6, 15196-15202.	2.8	87
365	Highly photostable and biocompatible graphene oxides with amino acid functionalities. Journal of Materials Chemistry C, 2014, 2, 7126.	2.7	13
366	Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products. RSC Advances, 2014, 4, 4839.	1.7	46
367	Carbon nanodots prepared from o-phenylenediamine for sensing of Cu ²⁺ ions in cells. Nanoscale, 2014, 6, 13119-13125.	2.8	219
368	Throwing light on platinized carbon nanostructured composites for hydrogen generation. Energy and Environmental Science, 2014, 7, 4087-4094.	15.6	14
369	Noncovalent assembly of carbon nanoparticles and aptamer for sensitive detection of ATP. RSC Advances, 2014, 4, 38199-38205.	1.7	8
370	Fabrication, gradient extraction and surface polarity-dependent photoluminescence of cow milk-derived carbon dots. RSC Advances, 2014, 4, 58084-58089.	1.7	31
371	Ultrafast chemical aerosol flow synthesis of biocompatible fluorescent carbon dots for bioimaging. Journal of Materials Chemistry B, 2014, 2, 6978-6983.	2.9	15

# 372	ARTICLE Nitrogen-doped photoluminescent carbon nanospheres: green, simple synthesis via hair and application as a sensor for Hg ²⁺ ions. RSC Advances, 2014, 4, 37342.	IF 1.7	Citations
373	Azobenzene dendronized carbon nanoparticles: the effect of light antenna. RSC Advances, 2014, 4, 18193-18197.	1.7	6
374	Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC Advances, 2014, 4, 44504-44508.	1.7	53
375	Plant leaf-derived graphene quantum dots and applications for white LEDs. New Journal of Chemistry, 2014, 38, 4946-4951.	1.4	134
376	An experimental design for the investigation of water repellent property of candle soot particles. Materials Chemistry and Physics, 2014, 148, 134-142.	2.0	72
377	Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging. Nanoscale, 2014, 6, 8162.	2.8	89
378	Green and size-controllable synthesis of photoluminescent carbon nanoparticles from waste plastic bags. RSC Advances, 2014, 4, 47169-47176.	1.7	46
379	Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging. RSC Advances, 2014, 4, 3201-3205.	1.7	163
380	Sustainable alternative in environmental monitoring using carbon nanoparticles as optical probes. Trends in Environmental Analytical Chemistry, 2014, 3-4, 36-42.	5.3	12
381	Facile synthesis of hydrophilic multi-colour and upconversion photoluminescent mesoporous carbon nanoparticles for bioapplications. Chemical Communications, 2014, 50, 15772-15775.	2.2	24
382	Photoluminescent carbon soot particles derived from controlled combustion of camphor for superhydrophobic applications. RSC Advances, 2014, 4, 11331.	1.7	99
383	Carbon nanoparticle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification. Chemical Communications, 2014, 50, 7646-7648.	2.2	37
384	Accelerated reducing synthesis of Ag@CDs composite and simultaneous determination of glucose during the synthetic process. RSC Advances, 2014, 4, 3992-3997.	1.7	19
385	PEGylated carbon nanoparticles for efficient in vitro photothermal cancer therapy. Journal of Materials Chemistry B, 2014, 2, 2184-2192.	2.9	58
386	Fluorescent carbon nanowires made by pyrolysis of DNA nanofibers and plasmon-assisted emission enhancement of their fluorescence. Chemical Communications, 2014, 50, 11887-11890.	2.2	9
387	Sweet nanodot for biomedical imaging: carbon dot derived from xylitol. RSC Advances, 2014, 4, 23210.	1.7	35
388	Facile Access to White Fluorescent Carbon Dots toward Light-Emitting Devices. Industrial & Engineering Chemistry Research, 2014, 53, 6417-6425.	1.8	159
389	Separation of carbon quantum dots on a C18 column by binary gradient elution via HPLC. Analytical Methods, 2014, 6, 8124-8128.	1.3	28

		CITATION REPORT		
#	Article		IF	Citations
390	Bioimaging based on fluorescent carbon dots. RSC Advances, 2014, 4, 27184.		1.7	335
391	Oligonucleotides as â€`bio-solvent' for in situ extraction and functionalisation of ca nanoparticles. Journal of Materials Chemistry B, 2014, 2, 4100-4107.	arbon	2.9	4
392	Vitamin B ₁ Derived Blue and Green Fluorescent Carbon Nanoparticles for Application. ACS Applied Materials & amp; Interfaces, 2014, 6, 7672-7679.	Cell-Imaging	4.0	88
393	Hydrothermal Conversion of One-Photon-Fluorescent Poly(4-vinylpyridine) into Two-Photon-Fluorescent Carbon Nanodots. Langmuir, 2014, 30, 11746-11752.		1.6	24
394	Fluorescence from graphene oxide and the influence of ionic, π–π interactions and ŀ electron or energy transfer dynamics. Physical Chemistry Chemical Physics, 2014, 16, 2	neterointerfaces: 1183-21203.	1.3	38
395	Better understanding of carbon nanoparticles via highâ€performance liquid chromatographyâ€fluorescence detection and mass spectrometry. Electrophoresis, 20	14, 35, 2454-2462.	1.3	36
396	Facile synthesis of analogous graphene quantum dots with sp ² hybridized dominant structures and their photovoltaic application. Nanoscale, 2014, 6, 13043-130	carbon atom 052.	2.8	80
397	Eco-friendly synthesis of shrimp egg-derived carbon dots for fluorescent bioimaging. Jo Biotechnology, 2014, 189, 114-119.	urnal of	1.9	42
398	Carbon Dot Loading and TiO ₂ Nanorod Length Dependence of Photoelect Properties in Carbon Dot/TiO ₂ Nanorod Array Nanocomposites. ACS Appli & Interfaces, 2014, 6, 4883-4890.		4.0	169
399	Aqueous self-assembly and surface-functionalized nanodots for live cell imaging and lat Research, 2014, 7, 1164-1176.	peling. Nano	5.8	14
400	Surface passivated carbon nanodots prepared by microwave assisted pyrolysis: effect o group in precursors on fluorescence properties. RSC Advances, 2014, 4, 18818-18826.		1.7	36
401	Pollutant soot of diesel engine exhaust transformed to carbon dots for multicoloured in coli and sensing cholesterol. RSC Advances, 2014, 4, 30100.	maging of E.	1.7	81
402	Facile hydrothermal synthesis of carbon nanoparticles and possible application as white phosphors and catalysts for the reduction of nitrophenol. RSC Advances, 2014, 4, 1148		1.7	34
403	Revealing Carbon Nanodots As Coreactants of the Anodic Electrochemiluminescence o Ru(bpy) ₃ ²⁺ . Analytical Chemistry, 2014, 86, 7224-7228.	f	3.2	83
404	Determination of metronidazole by a flow-injection chemiluminescence method using 2 carbon quantum dots. New Carbon Materials, 2014, 29, 216-224.	InO-doped	2.9	17
405	Preparation of functionalized water-soluble photoluminescent carbon quantum dots fro petroleum coke. Carbon, 2014, 78, 480-489.	bm	5.4	210
406	Pentosan-derived water-soluble carbon nano dots with substantial fluorescence: Proper application as a photosensitizer. Applied Surface Science, 2014, 315, 66-72.	ties and	3.1	31
407	Graphene nanosheets functionalized with 4-aminothiophenol as a stable support for th formic acid based on self-supported Pd-nanoclusters via galvanic replacement from Cu2 Journal of Electroanalytical Chemistry, 2014, 731, 20-27.		1.9	13

#	Article	IF	CITATIONS
408	Fluorescent carbon nanomaterials: "quantum dots―or nanoclusters?. Physical Chemistry Chemical Physics, 2014, 16, 16075-16084.	1.3	155
409	Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging. Nanoscale, 2014, 6, 9139-9147.	2.8	83
410	One-pot green synthesis of water-soluble carbon nanodots with multicolor photoluminescence from polyethylene glycol. Journal of Materials Chemistry B, 2014, 2, 3937-3945.	2.9	76
411	Simultaneously enhancing up-conversion fluorescence and red-shifting down-conversion luminescence of carbon dots by a simple hydrothermal process. Journal of Materials Chemistry B, 2014, 2, 6947-6952.	2.9	44
412	Luminescent carbon nanoparticles: effects of chemical functionalization, and evaluation of Ag+ sensing properties. Journal of Materials Chemistry A, 2014, 2, 8342.	5.2	92
413	A multifunctional ribonuclease A-conjugated carbon dot cluster nanosystem for synchronous cancer imaging and therapy. Nanoscale Research Letters, 2014, 9, 397.	3.1	47
414	Large-scale solvothermal synthesis of fluorescent carbon nanoparticles. Nanotechnology, 2014, 25, 395601.	1.3	8
415	Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9, 590-603.	6.2	788
416	C8-structured carbon quantum dots: Synthesis, blue and green double luminescence, and origins of surface defects. Carbon, 2014, 79, 165-173.	5.4	67
417	Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin. Nanotechnology, 2014, 25, 415501.	1.3	29
418	Luminescent properties of milk carbon dots and their sulphur and nitrogen doped analogues. RSC Advances, 2014, 4, 51658-51665.	1.7	52
419	Electrochemical Synthesis of Carbon Nanodots Directly from Alcohols. Chemistry - A European Journal, 2014, 20, 4993-4999.	1.7	290
420	Signal-amplification and real-time fluorescence anisotropy detection of apyrase by carbon nanoparticle. Materials Science and Engineering C, 2014, 38, 206-211.	3.8	14
421	Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Advances, 2014, 4, 10791.	1.7	298
422	Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale, 2014, 6, 1890-1895.	2.8	793
423	Horseradish Peroxidase Enzyme Immobilized Graphene Quantum Dots as Electrochemical Biosensors. Applied Biochemistry and Biotechnology, 2014, 174, 945-959.	1.4	68
424	Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. Journal of Materials Chemistry A, 2014, 2, 8660.	5.2	405
425	High throughput electron transfer from carbon dots to chloroplast: a rationale of enhanced photosynthesis. Nanoscale, 2014, 6, 3647-3655.	2.8	128

#	Article	IF	CITATIONS
426	On the pH sensitive optoelectronic properties of amphiphilic reduced graphene oxide via grafting of poly(dimethylaminoethyl methacrylate): a signature of p- and n-type doping. Journal of Materials Chemistry A, 2014, 2, 16039-16050.	5.2	33
427	A novel rapid and green synthesis of highly luminescent carbon dots with good biocompatibility for cell imaging. New Journal of Chemistry, 2014, 38, 1376-1379.	1.4	69
428	Fluorescent nanomaterial-derived white light-emitting diodes: what's going on. Journal of Materials Chemistry C, 2014, 2, 4358-4373.	2.7	106
429	Gram scale synthesis of green fluorescent water-soluble onion-like carbon nanoparticles from camphor and polystyrene foam. RSC Advances, 2014, 4, 5838.	1.7	63
430	Facile synthesis and optical properties of nitrogen-doped carbon dots. New Journal of Chemistry, 2014, 38, 1522.	1.4	80
431	A facile large-scale microwave synthesis of highly fluorescent carbon dots from benzenediol isomers. Journal of Materials Chemistry C, 2014, 2, 5028-5035.	2.7	80
432	Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Advances, 2014, 4, 20915-20921.	1.7	112
433	Synthesis and drug detection performance of nitrogen-doped carbon dots. Journal of Luminescence, 2014, 149, 159-162.	1.5	89
434	Synthesis of luminescent 3D microstructures formed by carbon quantum dots and their self-assembly properties. Chemical Communications, 2014, 50, 6592-6595.	2.2	46
435	Charge storage and memory effect in graphene quantum dots – PEG600 hybrid nanocomposite. Organic Electronics, 2014, 15, 216-225.	1.4	25
436	Chemiluminescence behavior of the carbon dots and the reduced state carbon dots. Journal of Luminescence, 2014, 146, 464-469.	1.5	34
437	New methods of synthesis and varied properties of carbon quantum dots with high nitrogen content. Journal of Materials Research, 2014, 29, 383-391.	1.2	42
438	Fluorescent Nanoprobes. Springer Briefs in Molecular Science, 2014, , 49-74.	0.1	0
439	Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosensors and Bioelectronics, 2014, 60, 292-298.	5.3	387
440	From Metal–Organic Framework to Intrinsically Fluorescent Carbon Nanodots. Chemistry - A European Journal, 2014, 20, 8279-8282.	1.7	68
441	Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon, 2014, 77, 775-782.	5.4	315
442	Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission. Applied Surface Science, 2014, 311, 490-497.	3.1	71
443	A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors and Actuators B: Chemical, 2014, 202, 201-208.	4.0	188

ARTICLE IF CITATIONS Synthesis-Modification Integration: One-Step Fabrication of Boronic Acid Functionalized Carbon Dots 3.2 507 444 for Fluorescent Blood Sugar Sensing. Analytical Chemistry, 2014, 86, 5323-5329. 445 The mechanism of blue photoluminescence from carbon nanodots. CrystEngComm, 2014, 16, 4981-4986. 1.3 Luminescent carbon nanoparticles as a donor for the FRET-based detection of oligonucleotide 446 1.7 3 hybridization. RSC Advances, 2014, 4, 25201-25204. Size separation of carbon nanoparticles from diesel soot for Mn(II) sensing. Journal of Luminescence, 448 2014, 146, 37-41. In-situ hydrothermal synthesis of carbon nanorice using Nafion as a template. Carbon, 2014, 77, 449 5.4 8 660-666. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein 1.5 Journal of Nanotechnology, 2014, 5, 696-710. Microwave-assisted polyol synthesis of carbon nitride dots from folic acid for cell imaging. 451 3.3 38 International Journal of Nanomedicine, 2014, 9, 5071. Spectroscopic Characteristics of Carbon Dots (C-Dots) Derived from Carbon Fibers and Conversion 1.2 24 to Sulfur-Bridged C-Dots Nanosheets. Applied Spectroscopy, 2015, 69, 1082-1090. Photoluminescent Detection of Nitrite with Carbon Nanodots Prepared by Microwave-assisted 453 0.8 6 Synthesis. Analytical Sciences, 2015, 31, 481-485. One-step Synthesis of Highly Luminescent Nitrogen-doped Carbon Dots for Selective and Sensitive 454 0.8 Detection of Mercury(II) Ions and Cellular Imaging. Analytical Sciences, 2015, 31, 971-977. Carbon Quantum Dots for Zebrafish Fluorescence Imaging. Scientific Reports, 2015, 5, 11835. 455 1.6 166 Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum 456 Albumin Proteins. Scientific Reports, 2015, 5, 17727. Control of Photoluminescence of Carbon Nanodots via Surface Functionalization using 457 1.6 146 Para-substituted Anilines. Scientific Reports, 2015, 5, 12604. Hydrothermal Synthesis of Fluorescent Carbon Dots towards Ion Response and Silk Screen Patterns. Chemistry Letters, 2015, 44, 1251-1253. Synthesis of Hydrophilic and Hydrophobic Carbon Nanoparticles from Benzene/Water Bilayer Solution with Femtosecond Laser Generated Plasma Filaments in Water. Bulletin of the Chemical 459 2.0 17 Society of Japan, 2015, 88, 251-261. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers. 98 Applied Physics Letters, 2015, 107, . Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation 462 1.2 20 for in vitro and in vivo bio-imaging. Journal of Materials Research, 2015, 30, 3386-3393. Selective Probing of Gaseous Ammonia Using Redâ€Emitting Carbon Dots Based on an Interfacial Response Mechanism. Chemistry - A European Journal, 2015, 21, 18993-18999.

#	Article	IF	CITATIONS
464	Synthesis and Confinement of Carbon Dots in Lysozyme Single Crystals Produces Ordered Hybrid Materials with Tuneable Luminescence. Chemistry - A European Journal, 2015, 21, 9008-9013.	1.7	15
466	Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces. Angewandte Chemie - International Edition, 2015, 54, 15165-15169.	7.2	45
467	Capillary electrophoretic study of green fluorescent hollow carbon nanoparticles. Electrophoresis, 2015, 36, 2110-2119.	1.3	16
468	Preparation and Application of Fluorescent Carbon Dots. Journal of Nanomaterials, 2015, 2015, 1-13.	1.5	121
469	Valine-derived carbon dots with colour-tunable fluorescence for the detection of Hg2+ with high sensitivity and selectivity. New Journal of Chemistry, 2015, 39, 6201-6206.	1.4	27
470	Ethylenediamine-assisted hydrothermal synthesis of nitrogen-doped carbon quantum dots as fluorescent probes for sensitive biosensing and bioimaging. Sensors and Actuators B: Chemical, 2015, 218, 229-236.	4.0	206
471	Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 2015, 3, 5976-5984.	2.7	599
472	One-Step Synthesis of Water-Soluble Fluorescent Carbon Dots. Materials Science Forum, 2015, 815, 434-439.	0.3	1
473	Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 2015, 115, 4744-4822.	23.0	1,519
474	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	23.0	1,151
475	Largeâ€Scale Green Synthesis of Fluorescent Carbon Nanodots and Their Use in Optics Applications. Advanced Optical Materials, 2015, 3, 103-111.	3.6	93
476	Carbon Dots: The Newest Member of the Carbon Nanomaterials Family. Chemical Record, 2015, 15, 595-615.	2.9	108
477	Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes. Journal of Materials Chemistry C, 2015, 3, 6764-6770.	2.7	51
478	Carbon dots isolated from chromatographic fractions for sensing applications. RSC Advances, 2015, 5, 106838-106847.	1.7	11
479	Highly Photoluminescent Nitrogen-Doped Carbon Nanodots and Their Protective Effects against Oxidative Stress on Cells. ACS Applied Materials & Interfaces, 2015, 7, 28346-28352.	4.0	81
480	A General Method Towards Efficient Synthesis and Fluorescence Tuning of Carbon Black-Derived Carbon Dots via Controlled Liquid Oxidization. Australian Journal of Chemistry, 2015, 68, 1446.	0.5	2
481	Facile Microwaveâ€Assisted Solidâ€Phase Synthesis of Highly Fluorescent Nitrogen–Sulfurâ€Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chemistry - A European Journal, 2015, 21, 13004-13011.	1.7	101
482	One-step hydrothermal synthesis and optical properties of PEG-passivated nitrogen-doped carbon dots. RSC Advances, 2015, 5, 7395-7400.	1.7	26

#	Article	IF	CITATIONS
483	Microwave-Assisted Synthesis of Wavelength-Tunable Photoluminescent Carbon Nanodots and Their Potential Applications. ACS Applied Materials & Interfaces, 2015, 7, 4913-4920.	4.0	149
484	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C, 2015, 3, 1922-1928.	2.7	173
485	Emission from Trions in Carbon Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 2956-2962.	1.5	53
486	Oxygen-driven, high-efficiency production of nitrogen-doped carbon dots from alkanolamines and their application for two-photon cellular imaging. RSC Advances, 2015, 5, 15366-15373.	1.7	34
487	lonic Liquid Cross-Linked Multifunctional Cationic Polymer Nanobeads via Dispersion Polymerization: Applications in Anion Exchange, Templates for Palladium, and Fluorescent Carbon Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 4324-4332.	1.5	11
488	Facile synthesis of biocompatible N, S-doped carbon dots for cell imaging and ion detecting. RSC Advances, 2015, 5, 16368-16375.	1.7	62
489	An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 2015, 44, 4743-4768.	18.7	1,316
490	Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp. Science China Chemistry, 2015, 58, 863-870.	4.2	44
491	Switch-on Fluorescence Sensing of Glutathione in Food Samples Based on a Graphitic Carbon Nitride Quantum Dot (g-CNQD)–Hg ²⁺ Chemosensor. Journal of Agricultural and Food Chemistry, 2015, 63, 1747-1755.	2.4	170
492	Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction. Nanoscale, 2015, 7, 4400-4405.	2.8	83
493	Simple and Sensitive Fluorescent and Electrochemical Trinitrotoluene Sensors Based on Aqueous Carbon Dots. Analytical Chemistry, 2015, 87, 2033-2036.	3.2	160
494	One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Analytica Chimica Acta, 2015, 866, 69-74.	2.6	244
495	Glycine-functionalized carbon quantum dots as chemiluminescence sensitization for detection of m-phenylenediamine. Analytical Methods, 2015, 7, 1133-1139.	1.3	31
496	Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Advances, 2015, 5, 9064-9068.	1.7	68
497	One pot selective synthesis of water and organic soluble carbon dots with green fluorescence emission. RSC Advances, 2015, 5, 11667-11675.	1.7	68
498	Photoluminescenceâ€Tunable Carbon Nanodots: Surfaceâ€State Energyâ€Gap Tuning. Advanced Materials, 2015, 27, 1663-1667.	11.1	658
499	Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Advances, 2015, 5, 21332-21335.	1.7	56
500	Laser-assisted synthesis of multi-colored protein dots and their biological distribution in experimental mice using a dye tracking method. RSC Advances, 2015, 5, 4051-4057.	1.7	2

ARTICLE

IF CITATIONS

501 The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and) Tj ETQq0 0 0 rg BT /Overlock 10 Tf

502	Graphene-Based Carbon Nanoparticles for Bioimaging Applications. , 2015, , 57-84.		2
503	An ionic liquid promoted microwave-hydrothermal route towards highly photoluminescent carbon dots for sensitive and selective detection of iron(<scp>iii</scp>). RSC Advances, 2015, 5, 24205-24209.	1.7	46
504	Synthesis and characterization of C@CdS dots in aqueous solution and their application in labeling human gastric carcinoma cells. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	1
505	Carbon Dots (Câ€dots) from Cow Manure with Impressive Subcellular Selectivity Tuned by Simple Chemical Modification. Chemistry - A European Journal, 2015, 21, 5055-5060.	1.7	106
506	In situ synthesis of luminescent carbon nanoparticles toward target bioimaging. Nanoscale, 2015, 7, 5468-5475.	2.8	53
507	Scaleâ€Up Synthesis of Fragrant Nitrogenâ€Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis. Advanced Science, 2015, 2, 1500002.	5.6	164
508	One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sensors and Actuators B: Chemical, 2015, 213, 434-443.	4.0	394
509	Carbon dots preparation as a fluorescent sensing platform for highly efficient detection of Fe(III) ions in biological systems. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 934-939.	2.0	36
510	Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon, 2015, 93, 999-1007.	5.4	103
511	Low-Temperature Hydrothermal Synthesis of Green Luminescent Carbon Quantum Dots (CQD), and Optical Properties of Blends of the CQD with Poly(3-hexylthiophene). Journal of Electronic Materials, 2015, 44, 3436-3443.	1.0	30
512	Imaging of Bacterial and Fungal Cells Using Fluorescent Carbon Dots Prepared from Carica papaya Juice. Journal of Fluorescence, 2015, 25, 803-810.	1.3	137
513	Exploring the blue luminescence origin of nitrogen-doped carbon dots by controlling the water amount in synthesis. RSC Advances, 2015, 5, 66528-66533.	1.7	53
514	Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. Journal of Materials Chemistry B, 2015, 3, 6783-6789.	2.9	140
515	Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. Journal of Materials Chemistry B, 2015, 3, 6813-6819.	2.9	144
516	Amine-rich carbon nanodots as a fluorescence probe for methamphetamine precursors. Analytical Methods, 2015, 7, 6869-6876.	1.3	25
517	Amino acid functionalized blue and phosphorous-doped green fluorescent carbon dots as bioimaging probe. RSC Advances, 2015, 5, 65913-65921.	1.7	66
518	One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing. Applied Surface Science, 2015, 355, 1136-1144.	3.1	127

#	Article	IF	CITATIONS
519	Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems. Scientific Reports, 2015, 5, 12420.	1.6	26
520	Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Research, 2015, 8, 2810-2821.	5.8	49
521	Sensitive determination of kaempferol using carbon dots as a fluorescence probe. Talanta, 2015, 144, 390-397.	2.9	22
522	High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios. Langmuir, 2015, 31, 8063-8073.	1.6	175
523	Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples. Journal of Agricultural and Food Chemistry, 2015, 63, 6707-6714.	2.4	375
524	Facile synthesis of fluorescent polyaniline microspheres and their use for the detection of mercury ions. New Journal of Chemistry, 2015, 39, 6261-6266.	1.4	16
525	Carbon dot reduced bimetallic nanoparticles: size and surface plasmon resonance tunability for enhanced catalytic applications. Journal of Materials Chemistry A, 2015, 3, 16354-16360.	5.2	59
526	Simple hydrothermal preparation of carbon nanodots and their application in colorimetric and fluorimetric detection of mercury ions. Analytical Methods, 2015, 7, 7540-7547.	1.3	36
527	N-Doped carbon hybrid conjugates as vectors for photocatalytic CS ₂ production. Materials Research Express, 2015, 2, 045603.	0.8	5
528	Surfactant chemistry for fluorescence imaging of latent fingerprints using conjugated polyelectrolyte nanoparticles. Chemical Communications, 2015, 51, 13634-13637.	2.2	38
529	Development of a Carbon Dot (C-Dot)-Linked Immunosorbent Assay for the Detection of Human α-Fetoprotein. Analytical Chemistry, 2015, 87, 8510-8516.	3.2	100
530	Polyhedral Oligomeric Silsesquioxane Functionalized Carbon Dots for Cell Imaging. ACS Applied Materials & Interfaces, 2015, 7, 16609-16616.	4.0	100
531	Spectroscopic Investigation of Interaction Between Carbon Quantum Dots and D-Penicillamine Capped Gold Nanoparticles. Journal of Fluorescence, 2015, 25, 1085-1093.	1.3	9
532	One-step spontaneous synthesis of fluorescent carbon nanoparticles with thermosensitivity from polyethylene glycol. New Journal of Chemistry, 2015, 39, 7033-7039.	1.4	20
533	The regulation of hydrophilicity and hydrophobicity of carbon dots via a one-pot approach. Journal of Materials Chemistry B, 2015, 3, 6013-6018.	2.9	36
534	Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells. Journal of Colloid and Interface Science, 2015, 456, 1-6.	5.0	70
535	Design of Fe ₃ O ₄ @SiO ₂ @Carbon Quantum Dot Based Nanostructure for Fluorescence Sensing, Magnetic Separation, and Live Cell Imaging of Fluoride Ion. Langmuir, 2015, 31, 8111-8120.	1.6	80
536	New Fluorescent Metal-Ion Detection Using a Paper-Based Sensor Strip Containing Tethered Rhodamine Carbon Nanodots. ACS Applied Materials & Interfaces, 2015, 7, 15649-15657.	4.0	148

#	Article	IF	CITATIONS
538	A Carbon Nanodots-Based Fluorescent Turn-On Probe for Iodide. Australian Journal of Chemistry, 2015, 68, 1479.	0.5	6
539	Synthesis of carbon quantum dots and zinc oxide nanosheets by pyrolysis of novel metal–organic framework compounds. Journal of Alloys and Compounds, 2015, 642, 148-152.	2.8	16
540	Reduced carbon dots employed for synthesizing metal nanoclusters and nanoparticles. RSC Advances, 2015, 5, 32669-32674.	1.7	34
541	N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids. Applied Surface Science, 2015, 342, 136-143.	3.1	127
542	Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. Journal of Materials Chemistry A, 2015, 3, 8552-8558.	5.2	142
543	Size-dependent penetration of carbon dots inside the ferritin nanocages: evidence for the quantum confinement effect in carbon dots. Physical Chemistry Chemical Physics, 2015, 17, 12833-12840.	1.3	61
544	Integrative Selfâ€Assembly of Graphene Quantum Dots and Biopolymers into a Versatile Biosensing Toolkit. Advanced Functional Materials, 2015, 25, 3183-3192.	7.8	62
545	Carbon dots derived from rose flowers for tetracycline sensing. Talanta, 2015, 140, 128-133.	2.9	171
546	Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. Journal of the American Chemical Society, 2015, 137, 6018-6025.	6.6	519
547	Nature of Absorption Bands in Oxygen-Functionalized Graphitic Carbon Dots. Journal of Physical Chemistry C, 2015, 119, 13369-13373.	1.5	96
548	Hydrothermal synthesis of ionic liquid-capped carbon quantum dots with high thermal stability and anion responsiveness. Journal of Materials Science, 2015, 50, 5411-5418.	1.7	64
549	Recent developments in carbon nanomaterial sensors. Chemical Society Reviews, 2015, 44, 4433-4453.	18.7	444
550	Nitrogen and sulfur co-doped carbon dots: A facile and green fluorescence probe for free chlorine. Sensors and Actuators B: Chemical, 2015, 219, 50-56.	4.0	109
551	Rapid microwave-assisted synthesis of ultra-bright fluorescent carbon dots for live cell staining, cell-specific targeting and in vivo imaging. Journal of Materials Chemistry B, 2015, 3, 4786-4789.	2.9	50
552	Cancer Nanotheranostics. SpringerBriefs in Applied Sciences and Technology, 2015, , .	0.2	6
553	Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties. Carbon, 2015, 91, 291-297.	5.4	74
554	Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Materials Today, 2015, 18, 447-458.	8.3	416
555	Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst, The, 2015, 140, 2916-2943.	1.7	34

#	Article	IF	CITATIONS
556	Polyethyleneimineâ€Functionalized Fluorescent Carbon Dots: Water Stability, pH Sensing, and Cellular Imaging. ChemNanoMat, 2015, 1, 122-127.	1.5	117
557	Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres. RSC Advances, 2015, 5, 31677-31682.	1.7	46
558	Mechanism of intracellular detection of glucose through nonenzymatic and boronic acid functionalized carbon dots. Journal of Biomedical Materials Research - Part A, 2015, 103, 2888-2897.	2.1	52
559	White-Light-Emitting Polymer Composite Film Based on Carbon Dots and Lanthanide Complexes. Journal of Physical Chemistry C, 2015, 119, 7865-7872.	1.5	94
560	Green synthesis of fluorescent carbon nanoparticles from lychee (Litchi chinensis) plant. Korean Journal of Chemical Engineering, 2015, 32, 1707-1711.	1.2	17
561	Three-dimensional ZnO porous films for self-cleaning ultraviolet photodetectors. RSC Advances, 2015, 5, 85969-85973.	1.7	11
562	Fluorescent Nanoparticles from Several Commercial Beverages: Their Properties and Potential Application for Bioimaging. Journal of Agricultural and Food Chemistry, 2015, 63, 8527-8533.	2.4	64
563	Fluorescent nanothermometers based on mixed shell carbon nanodots. RSC Advances, 2015, 5, 81713-81722.	1.7	10
564	ONE STEP GREEN SYNTHESIS OF CARBON QUANTUM DOTS AND ITS APPLICATION TOWARDS THE BIOELECTROANALYTICAL AND BIOLABELING STUDIES. Electrochimica Acta, 2015, 182, 588-595.	2.6	40
565	Natural carbon nanodots assisted development of size-tunable metal (Pd, Ag) nanoparticles grafted on bionic dendritic α-Fe ₂ O ₃ for cooperative catalytic applications. Journal of Materials Chemistry A, 2015, 3, 23607-23620.	5.2	39
566	Intramolecular Hydrogen Bonds Quench Photoluminescence and Enhance Photocatalytic Activity of Carbon Nanodots. Chemistry - A European Journal, 2015, 21, 8561-8568.	1.7	75
567	Facile synthesis of carbon dots in an immiscible system with excitation-independent emission and thermally activated delayed fluorescence. Chemical Communications, 2015, 51, 17768-17771.	2.2	50
568	A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Advances, 2015, 5, 90245-90254.	1.7	60
569	Luminescent nanocarriers for simultaneous drug or gene delivery and imaging tracking. TrAC - Trends in Analytical Chemistry, 2015, 73, 54-63.	5.8	13
570	Role of zinc oxide and carbonaceous nanomaterials in non-fullerene-based polymer bulk heterojunction solar cells for improved cost-to-performance ratio. Journal of Materials Chemistry A, 2015, 3, 22227-22238.	5.2	14
571	Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation. Nanoscale, 2015, 7, 15915-15923.	2.8	70
572	Angiogenic Profiling of Synthesized Carbon Quantum Dots. Biochemistry, 2015, 54, 6352-6356.	1.2	35
573	Differentiation of multi-metal ions based on fluorescent dual-emission carbon nanodots. RSC Advances, 2015, 5, 82570-82575.	1.7	23

#	Article	IF	CITATIONS
574	Ionic liquid as a precursor to synthesize nitrogen- and sulfur-co-doped carbon dots for detection of copper(II) ions. Chemical Research in Chinese Universities, 2015, 31, 730-735.	1.3	26
575	Time-Resolved Emission Reveals Ensemble of Emissive States as the Origin of Multicolor Fluorescence in Carbon Dots. Nano Letters, 2015, 15, 8300-8305.	4.5	255
576	Porous carbon quantum dots: one step green synthesis via <scp>l</scp> -cysteine and applications in metal ion detection. RSC Advances, 2015, 5, 2039-2046.	1.7	43
577	Recent advances in bioapplications of C-dots. Carbon, 2015, 85, 309-327.	5.4	328
578	Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine). Journal of Materials Chemistry B, 2015, 3, 700-706.	2.9	86
579	Synthesis of highly fluorescent hydrophobic carbon dots by hot injection method using Paraplast as precursor. Materials Science and Engineering C, 2015, 48, 700-703.	3.8	48
580	Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small, 2015, 11, 1620-1636.	5.2	1,770
581	Neuromodulatory properties of fluorescent carbon dots: Effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. International Journal of Biochemistry and Cell Biology, 2015, 59, 203-215.	1.2	48
582	A solvothermal method to synthesize fluorescent carbon nanoparticles and application to photocatalysis and electrocatalysis. Luminescence, 2015, 30, 740-744.	1.5	10
583	A Green Route Towards Highly Photoluminescent and Cytocompatible Carbon dot Synthesis and its Separation Using Sucrose Density Gradient Centrifugation. Journal of Fluorescence, 2015, 25, 9-14.	1.3	37
584	Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale, 2015, 7, 1586-1595.	2.8	420
585	C-dot sensitized Eu ³⁺ luminescence from Eu ³⁺ -doped LaF ₃ –C dot nanocomposites. New Journal of Chemistry, 2015, 39, 106-109.	1.4	25
586	A fluorescent sensor for the detection of multi-molecule species based on redox reaction. Sensors and Actuators B: Chemical, 2015, 208, 50-53.	4.0	6
587	Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display. Scientific Reports, 2014, 4, 3564.	1.6	201
588	Unveil the Fluorescence of Carbon Quantum Dots. Advanced Engineering Materials, 2015, 17, 138-142.	1.6	22
589	One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Materials Letters, 2015, 139, 197-200.	1.3	101
590	Targeted delivery of photoactive diazido Pt ^{IV} complexes conjugated with fluorescent carbon dots. New Journal of Chemistry, 2015, 39, 800-804.	1.4	32
591	Carbon nanodot–ORMOSIL fluorescent paint and films. Journal of Materials Chemistry C, 2015, 3, 714-719.	2.7	13

#	Article	IF	CITATIONS
592	Formation of fluorescent carbon nanodots from kitchen wastes and their application for detection of Fe ³⁺ . Luminescence, 2015, 30, 420-424.	1.5	57
593	Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology. Materials Science and Engineering C, 2015, 47, 325-332.	3.8	107
594	Chemiluminescence assay for the glycoprotein tenascin-C based on aptamer-modified carboxylated magnetic carbon nanoparticles. Mikrochimica Acta, 2015, 182, 227-232.	2.5	4
595	Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection. Journal of Colloid and Interface Science, 2015, 437, 28-34.	5.0	67
596	Fluorescent carbon nanodots for sensitive and selective detection of tannic acid in wines. Talanta, 2015, 132, 252-257.	2.9	86
597	One step synthesis of Al/N co-doped carbon nanoparticles with enhanced photoluminescence. Journal of Luminescence, 2015, 158, 1-5.	1.5	26
598	Carbon quantum dots and their applications. Chemical Society Reviews, 2015, 44, 362-381.	18.7	3,811
599	Highly Fluorescent, Photostable, Conjugated Polymer Dots with Amorphous, Glassyâ€ S tate, Coarsened Structure for Bioimaging. Advanced Optical Materials, 2015, 3, 78-86.	3.6	28
600	Graphene oxide functionalization with aminocoumarin nanosheet fluorescent dye: Preparation, electrochemistry, spectroscopy and imaging in the living cells. Dyes and Pigments, 2015, 113, 327-335.	2.0	10
601	Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Frontiers in Neuroscience, 2016, 10, 250.	1.4	89
602	Carbon-Based Materials for Photo-Triggered Theranostic Applications. Molecules, 2016, 21, 1585.	1.7	47
603	Carbon Nanodots as Peroxidase Nanozymes for Biosensing. Molecules, 2016, 21, 1653.	1.7	123
604	Interactions between Carbon Nanomaterials and Biomolecules. Journal of Oleo Science, 2016, 65, 1-7.	0.6	52
605	A Facile and Efficient Modification of CNTs for Improved Fischer–Tropsch Performance on Iron Catalyst: Alkali Modification. ChemCatChem, 2016, 8, 1454-1458.	1.8	15
606	Herbages-derived fluorescent carbon dots and CdTe/carbon ensembles for patterning. Journal of Materials Science, 2016, 51, 8108-8115.	1.7	11
607	Imaging Cancer Cells Expressing the Folate Receptor with Carbon Dots Produced from Folic Acid. ChemBioChem, 2016, 17, 614-619.	1.3	114
609	Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale, 2016, 8, 14374-14378.	2.8	217
610	Synthetic Developments of Nontoxic Quantum Dots. ChemPhysChem, 2016, 17, 598-617.	1.0	80

ARTICLE IF CITATIONS Fluorescent carbon nanoparticles for sensitive and selective detection of palladium 611 1 (Pd²+)., 2016, ,. Graphene quantum dots derived from carbon fibers for oxidation of dopamine. Journal Wuhan 0.4 University of Technology, Materials Science Edition, 2016, 31, 1294-1297. Hydrophobically Tailored Carbon Dots toward Modulating Microstructure of Reverse Micelle and 614 1.6 19 Amplification of Lipase Catalytic Response. Langmuir, 2016, 32, 3890-3900. Low Chemically Cross-Linked PAM/C-Dot Hydrogel with Robustness and Superstretchability in Both 2.2 As-Prepared and Swelling Equilibrium States. Macromolecules, 2016, 49, 3174-3183. Development of Candle Soot Based Carbon Nanoparticles (CNPs)/Polyaniline Electrode and Its 616 2.6 25 Comparative Study with CNPs/MnO2 in Supercapacitors. Electrochimica Acta, 2016, 210, 190-198. Green and facile synthesis of nitrogen-doped carbon nanodots for multicolor cellular imaging and 4.0 Co2+ sensing in living cells. Sensors and Actuators B: Chemical, 2016, 235, 179-187. 618 Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128. 3.2 186 Thermoresponsive, and reversibly emissive, core–shell nanogel composed of PNIPAM and carbon 619 1.7 nanodots. Polymer Bulletin, 2016, 73, 2615-2625. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient 620 2.8 380 gravity-driven oil/water separation. Nanoscale, 2016, 8, 7638-7645. Multifunctional N,S co-doped carbon guantum dots with pH- and thermo-dependent switchable 5.4 fluorescent properties and highly selective detection of glutathione. Carbon, 2016, 104, 169-178. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. 622 3.1139 Applied Surface Science, 2016, 378, 402-407. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg²⁺ in aqueous solution. Analyst, The, 2016, 141, 3313-3318. Nitrogen-Doping Enhanced Fluorescent Carbon Dots: Green Synthesis and Their Applications for Bioimaging and Label-Free Detection of Au³⁺ lons. ACS Sustainable Chemistry and 624 3.2 194 Engineering, 2016, 4, 3053-3061. Controlling carbon nanodot fluorescence for optical biosensing. Analyst, The, 2016, 141, 4170-4180. 1.7 New development in carbon quantum dots technical applications. Talanta, 2016, 156-157, 245-256. 626 2.9 81 (<i>E</i>)-<i>N</i>-(Pyridine-2-ylmethylene)arylamine as an Assembling Ligand for Zn(II)/Cd(II) Complexes: Aryl Substitution and Anion Effects on the Dimensionality and Luminescence Properties of 1.4 39 the Supramolecular Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 3366-3378. A turn-on fluorescent sensor for the detection of melamine based on the anti-quenching ability of 628 1.342 Hg²⁺ to carbon nanodots. Analytical Methods, 2016, 8, 4438-4444. Intense multi-state visible absorption and full-color luminescence of nitrogen-doped carbon quantum dots for blue-light-excitable solid-state-lighting. Journal of Materials Chemistry C, 2016, 4, 9027-9035.

#	ARTICLE A hydrothermal route for synthesizing highly luminescent sulfur- and nitrogen-co-doped carbon dots as nanosensors for Hg ²⁺ . RSC Advances, 2016, 6, 86436-86442.	IF 1.7	CITATIONS
632	Green preparation of carbon dots for intracellular pH sensing and multicolor live cell imaging. Journal of Materials Chemistry B, 2016, 4, 7130-7137.	2.9	109
633	Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B, 2016, 4, 7204-7219.	2.9	396
634	A novel fluorescent carbon dots derived from tamarind. Chemical Physics Letters, 2016, 661, 179-184.	1.2	66
635	Topological Evolution in Mercury(II) Schiff Base Complexes Tuned through Alkyl Substitution – Synthesis, Solidâ€State Structures, and Aggregationâ€Induced Emission Properties. European Journal of Inorganic Chemistry, 2016, 2016, 3598-3610.	1.0	15
636	Nanosized carbon dots from organic matter and biomass. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 823-826.	0.4	8
637	Gadolinium-doped carbon dots with high quantum yield as an effective fluorescence and magnetic resonance bimodal imaging probe. Journal of Alloys and Compounds, 2016, 688, 611-619.	2.8	92
638	Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Applied Surface Science, 2016, 390, 38-42.	3.1	233
639	Outright Green Synthesis of Fluorescent Carbon Dots from Eutrophic Algal Blooms for In Vitro Imaging. ACS Sustainable Chemistry and Engineering, 2016, 4, 4724-4731.	3.2	193
640	Tuning Optical Properties and Photocatalytic Activities of Carbon-based "Quantum Dots―Through their Surface Groups. Chemical Record, 2016, 16, 219-230.	2.9	72
641	Nitrogenâ€Doped Carbon Quantum Dot Stabilized Magnetic Iron Oxide Nanoprobe for Fluorescence, Magnetic Resonance, and Computed Tomography Tripleâ€Modal In Vivo Bioimaging. Advanced Functional Materials, 2016, 26, 8694-8706.	7.8	113
642	Chiral carbon dots derived from guanosine 5′-monophosphate form supramolecular hydrogels. Chemical Communications, 2016, 52, 11159-11162.	2.2	56
643	Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Applied Surface Science, 2016, 390, 435-443.	3.1	217
644	On the article "Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles―[J. Control. Release 224 (2016) 229–238]. Journal of Controlled Release, 2016, 243, 382-385.	4.8	10
645	Effective synthesis of highly fluorescent nitrogen doped carbon nanoparticles for selective sensing of Hg ²⁺ in food and cosmetics samples. RSC Advances, 2016, 6, 89916-89924.	1.7	21
646	Biocompatible Glutathione Capped Functionalized Carbon Dots as Nanosensors for the Detection of Silver Nanoparticles in Aqueous Solution and Human Cells as well as Bacterial Cells. ChemistrySelect, 2016, 1, 4092-4100.	0.7	5
647	Yellow emitting carbon dots with superior colloidal, thermal, and photochemical stabilities. Journal of Materials Chemistry C, 2016, 4, 9798-9803.	2.7	50
648	Optical Regulation of Carbon Nanodots by Chemical Functionalization. Chemistry Letters, 2016, 45, 854-856.	0.7	3

#	Article	IF	CITATIONS
649	Determination of trace hydrogen sulfide by using the permanganate induced chemiluminescence of carbon dots. Mikrochimica Acta, 2016, 183, 3087-3092.	2.5	22
650	Flame synthesis of nitrogen doped carbon for the oxygen reduction reaction and non-enzymatic methyl parathion sensor. RSC Advances, 2016, 6, 71507-71516.	1.7	38
651	Carbon dots: surface engineering and applications. Journal of Materials Chemistry B, 2016, 4, 5772-5788.	2.9	284
652	Candle-Soot Derived Photoactive and Superamphiphobic Fractal Titania Electrode. Chemistry of Materials, 2016, 28, 7919-7927.	3.2	36
653	Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Scientific Reports, 2016, 6, 31100.	1.6	136
654	Laser Ablated Carbon Nanodots for Light Emission. Nanoscale Research Letters, 2016, 11, 424.	3.1	103
655	Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Scientific Reports, 2016, 6, 21170.	1.6	139
656	Carbon Nanodots for Sensor Applications. , 2016, , 69-102.		0
657	Fullerene‣tructural Carbonâ€Based Dots from C ₆₀ Molecules and their Optical Properties. Particle and Particle Systems Characterization, 2016, 33, 916-923.	1.2	9
658	Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP. Luminescence, 2016, 31, 626-632.	1.5	17
659	Carbon quantum dot-based nanoprobes for metal ion detection. Journal of Materials Chemistry C, 2016, 4, 6927-6945.	2.7	408
660	Novel thermal quenching characteristics of luminescent carbon nanodots via tailoring the surface chemical groups. Carbon, 2016, 104, 226-232.	5.4	28
661	A fluorescence switch sensor used for D-Penicillamine sensing and logic gate based on the fluorescence recovery of carbon dots. Sensors and Actuators B: Chemical, 2016, 236, 565-573.	4.0	50
662	Ruthenium nitrosyl grafted carbon dots as a fluorescence-trackable nanoplatform for visible light-controlled nitric oxide release and targeted intracellular delivery. Journal of Inorganic Biochemistry, 2016, 165, 152-158.	1.5	32
663	Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Applied Materials & Interfaces, 2016, 8, 17478-17488.	4.0	223
664	Carbon Based Dots and Their Luminescent Properties and Analytical Applications. Carbon Nanostructures, 2016, , 161-238.	0.1	9
665	A novel sensitive and selective nanocomposite sensor for Doxorubicin based on Graphene Oxide and fluorescent [2]Rotaxane. Sensors and Actuators B: Chemical, 2016, 237, 380-386.	4.0	9
666	The origin of emissive states of carbon nanoparticles derived from ensemble-averaged and single-molecular studies. Nanoscale, 2016, 8, 14057-14069.	2.8	101

#	Article	IF	CITATIONS
667	Improving the functionality of carbon nanodots: doping and surface functionalization. Journal of Materials Chemistry A, 2016, 4, 11582-11603.	5.2	379
668	Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale, 2016, 8, 14297-14340.	2.8	378
669	Electrochemical exfoliation of carbon dots with the narrowest full width at half maximum in their fluorescence spectra in the ultraviolet region using only water as electrolyte. Chemical Communications, 2016, 52, 9406-9409.	2.2	42
670	Highly luminescent N-doped carbon quantum dots from lemon juice with porphyrin-like structures surrounded by graphitic network for sensing applications. RSC Advances, 2016, 6, 59927-59934.	1.7	51
671	Ammonium hydroxide modulated synthesis of high-quality fluorescent carbon dots for white LEDs with excellent color rendering properties. Nanotechnology, 2016, 27, 295202.	1.3	18
672	A unique "turn-onâ €-f luorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosensors and Bioelectronics, 2016, 85, 844-852.	5.3	110
673	Nanoprecipitation of Fluorescent Conjugated Polymer onto the Surface of Plasmonic Nanoparticle for Fluorescence/Dark-Field Dual-Modality Single Particle Imaging. Analytical Chemistry, 2016, 88, 6827-6835.	3.2	23
674	Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Acta Biomaterialia, 2016, 42, 209-219.	4.1	92
675	A biocompatible poly(N-vinylimidazole)-dot with both strong luminescence and good catalytic activity. RSC Advances, 2016, 6, 2141-2148.	1.7	19
676	Elucidating the structure of carbon nanoparticles by ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry. Analytica Chimica Acta, 2016, 911, 100-107.	2.6	14
677	Facile synthesis of tunable fluorescent carbon dots and their third-order nonlinear optical properties. Dyes and Pigments, 2016, 128, 1-7.	2.0	40
678	Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon, 2016, 100, 386-394.	5.4	76
679	Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Optics Express, 2016, 24, A312.	1.7	235
680	Electrochemical supercapacitor behaviour of functionalized candle flame carbon soot. Bulletin of Materials Science, 2016, 39, 241-248.	0.8	40
681	Facilely synthesized N-doped carbon quantum dots with high fluorescent yield for sensing Fe ³⁺ . New Journal of Chemistry, 2016, 40, 2083-2088.	1.4	134
682	Transformation of crystalline starch nanoparticles into highly luminescent carbon nanodots: Toxicity studies and their applications. Carbohydrate Polymers, 2016, 137, 488-496.	5.1	27
683	One-pot synthesis and control of aqueous soluble and organic soluble carbon dots from a designable waterborne polyurethane emulsion. Nanoscale, 2016, 8, 3973-3981.	2.8	34
684	Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Applied Catalysis B: Environmental, 2016, 185, 225-232.	10.8	331

#	Article	IF	CITATIONS
685	Toxicity of carbon dots – Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon, 2016, 99, 238-248.	5.4	255
686	A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Mikrochimica Acta, 2016, 183, 519-542.	2.5	510
687	Analytical applications of chemiluminescence systems assisted by carbon nanostructures. TrAC - Trends in Analytical Chemistry, 2016, 80, 387-415.	5.8	49
688	Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano, 2016, 10, 484-491.	7.3	1,872
689	Synthesis of yellow fluorescent carbon dots and their application to the determination of chromium(III) with selectivity improved by pH tuning. Mikrochimica Acta, 2016, 183, 1899-1907.	2.5	51
690	Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs. Nanoscale, 2016, 8, 8618-8632.	2.8	129
691	Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a "turn-on―fluorescent probe for cystein, glutathione and homocysteine. Mikrochimica Acta, 2016, 183, 1409-1416.	2.5	108
692	Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Mikrochimica Acta, 2016, 183, 1611-1618.	2.5	82
693	Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1663-1701.	1.7	238
694	Synthesis and Characterisation of Fluorescent Carbon Nanodots Produced in Ionic Liquids by Laser Ablation. Chemistry - A European Journal, 2016, 22, 138-143.	1.7	75
695	Highly photoluminescent nitrogen-rich carbon dots from melamine and citric acid for the selective detection of iron(<scp>iii</scp>) ion. RSC Advances, 2016, 6, 31884-31888.	1.7	58
696	Insecticide as a precursor to prepare highly bright carbon dots for patterns printing and bioimaging: A new pathway for making poison profitable. Chemical Engineering Journal, 2016, 294, 323-332.	6.6	44
697	Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe. ACS Applied Materials & Interfaces, 2016, 8, 9305-9313.	4.0	93
698	A review of carbon dots in biological applications. Journal of Materials Science, 2016, 51, 4728-4738.	1.7	263
699	Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Applied Catalysis B: Environmental, 2016, 189, 26-38.	10.8	210
700	Measuring Biological Impacts of Nanomaterials. Bioanalytical Reviews, 2016, , .	0.1	4
701	Economic and Ecofriendly Synthesis of Biocompatible Heteroatom Doped Carbon Nanodots for Graphene Oxide Assay and Live Cell Imaging. ACS Sustainable Chemistry and Engineering, 2016, 4, 1463-1473.	3.2	18
702	Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst, The, 2016, 141, 2657-2664.	1.7	226

#	Article	lF	CITATIONS
703	One-step facile synthesis of novel β-amino alcohol functionalized carbon dots for the fabrication of a selective copper ion sensing interface based on the biuret reaction. RSC Advances, 2016, 6, 18326-18332.	1.7	17
704	The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chemical Reviews, 2016, 116, 3436-3486.	23.0	1,895
705	Facile and green approach to prepare fluorescent carbon dots: Emergent nanomaterial for cell imaging and detection of vitamin B2. Journal of Colloid and Interface Science, 2016, 468, 276-283.	5.0	68
706	Electrochemical Methods to Study Photoluminescent Carbon Nanodots: Preparation, Photoluminescence Mechanism and Sensing. ACS Applied Materials & Interfaces, 2016, 8, 28372-28382.	4.0	44
707	A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Advances, 2016, 6, 21624-21661.	1.7	127
708	Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chemical Science, 2016, 7, 3564-3568.	3.7	99
709	N-dots as a photoluminescent probe for the rapid and selective detection of Hg ²⁺ and Ag ⁺ in aqueous solution. Journal of Materials Chemistry B, 2016, 4, 2086-2089.	2.9	53
710	A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support: Application to electroanalytical determination of H2O2 in fetal bovine serum. Biosensors and Bioelectronics, 2016, 81, 143-150.	5.3	109
711	Monodispersed carbon nanodots spontaneously separated from combustion soot with excitation-independent photoluminescence. RSC Advances, 2016, 6, 8456-8460.	1.7	8
712	Monosodium glutamate derived tricolor fluorescent carbon nanoparticles for cell-imaging application. Colloids and Surfaces B: Biointerfaces, 2016, 142, 123-129.	2.5	7
713	Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. Sensors and Actuators B: Chemical, 2016, 231, 147-153.	4.0	91
714	Photoluminescence of Carbon Dots Embedded in a SiO2 Matrix. Materials Today: Proceedings, 2016, 3, S258-S265.	0.9	12
715	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	23.0	163
716	Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New Journal of Chemistry, 2016, 40, 1698-1703.	1.4	167
717	Exciton dynamics in luminescent carbon nanodots: Electron–hole exchange interaction. Nano Research, 2016, 9, 549-559.	5.8	9
718	Hierarchical heterostructures based on prickly Ni nanowires/Cu ₂ O nanoparticles with enhanced photocatalytic activity. Dalton Transactions, 2016, 45, 7258-7266.	1.6	11
719	Fluorescent carbon dots derived from lactose for assaying folic acid. Science China Chemistry, 2016, 59, 487-492.	4.2	35
720	Two-step synthesis of highly emissive C/ZnO hybridized quantum dots with a broad visible photoluminescence. Applied Surface Science, 2016, 364, 710-717.	3.1	22

#	Article	IF	CITATIONS
721	TEMPO-mediated oxidized nanocellulose incorporating with its derivatives of carbon dots for luminescent hybrid films. RSC Advances, 2016, 6, 6504-6510.	1.7	30
722	Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale, 2016, 8, 4537-4546.	2.8	64
723	Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale, 2016, 8, 2532-2543.	2.8	443
724	A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosensors and Bioelectronics, 2016, 79, 467-475.	5.3	173
725	Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 2016, 19, 382-393.	8.3	575
726	Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale, 2016, 8, 729-734.	2.8	176
727	UHPLC combined with mass spectrometric study of as-synthesized carbon dots samples. Talanta, 2016, 146, 340-350.	2.9	18
728	Binding analysis of carbon nanoparticles to human immunoglobulin G: Elucidation of the cytotoxicity of CNPs and perturbation of immunoglobulin conformations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 154, 33-41.	2.0	8
729	A three-dimensional TiO2/graphene porous composite with nano-carbon deposition for supercapacitor. Journal of Materials Science, 2016, 51, 2008-2016.	1.7	43
730	One-step hydrothermal synthesis of photoluminescent carbon nitride dots derived from ionic liquids. New Journal of Chemistry, 2016, 40, 320-324.	1.4	30
731	Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer. Biotechnology Letters, 2016, 38, 191-201.	1.1	58
732	Oneâ€pot synthesis of carbon dots using two different acids and their respective unique photoluminescence property. Luminescence, 2017, 32, 114-118.	1.5	20
733	Pulsed laser ablation synthesis of carbon nanoparticles in vacuum. Journal of Physics and Chemistry of Solids, 2017, 104, 252-256.	1.9	26
734	One-Pot Hydrothermal Synthesis of Carbon Dots with Efficient Up- and Down-Converted Photoluminescence for the Sensitive Detection of Morin in a Dual-Readout Assay. Langmuir, 2017, 33, 1043-1050.	1.6	140
735	Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their applications for sensitive detection of Hg 2+ and biothiols and cellular imaging. Analytica Chimica Acta, 2017, 964, 150-160.	2.6	104
736	Fluorescent Carbon Dot as Nanosensor for Sensitive and Selective Detection of Cefixime Based on Inner Filter Effect. Journal of Fluorescence, 2017, 27, 921-927.	1.3	36
737	Review on Carbon Dots and Their Applications. Chinese Journal of Analytical Chemistry, 2017, 45, 139-150.	0.9	317
738	Bottom-up synthesis of carbon nanoparticles with higher doxorubicin efficacy. Journal of Controlled Release, 2017, 248, 144-152.	4.8	51

	CITATION R	EPORT	
#	Article	IF	CITATIONS
739	Fluorinated Candle Soot as the Lubricant Additive of Perfluoropolyether. Tribology Letters, 2017, 65, 1.	1.2	19
740	Cu(<scp>i</scp>)-Doped carbon quantum dots with zigzag edge structures for highly efficient catalysis of azide–alkyne cycloadditions. Green Chemistry, 2017, 19, 1494-1498.	4.6	65
741	Fluorescent spongy carbon nanoglobules derived from pineapple juice: A potential sensing probe for specific and selective detection of chromium (VI) ions. Ceramics International, 2017, 43, 7011-7019.	2.3	42
742	Production of yellow-emitting carbon quantum dots from fullerene carbon soot. Science China Materials, 2017, 60, 141-150.	3.5	53
743	Miniâ€Sized Carbon Nitride Nanosheets with Double Excitation―and pHâ€Dependent Fluorescence Behaviors for Twoâ€Photon Cell Imaging. Chemistry - an Asian Journal, 2017, 12, 835-840.	1.7	5
744	Fabrication of fluorescent carbon dots-linked isophorone diisocyanate and β-cyclodextrin for detection of chromium ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 179, 163-170.	2.0	29
745	Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2 in nanomolar level. Sensors and Actuators B: Chemical, 2017, 247, 691-696.	4.0	57
746	Temperature-sensitive carbon dots derived from poly(N-isopropylacrylamide) for fluorescence on–off properties. RSC Advances, 2017, 7, 11149-11157.	1.7	10
747	A green one-pot synthesis of nitrogen and sulfur co-doped carbon quantum dots for sensitive and selective detection of cephalexin. Canadian Journal of Chemistry, 2017, 95, 641-648.	0.6	18
748	A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor â€~turn-off' probe for selective sensing of copper ions. Materials Science and Engineering C, 2017, 75, 1456-1464.	3.8	90
749	Carbon nanodots: Mechanisms of photoluminescence and principles of application. TrAC - Trends in Analytical Chemistry, 2017, 90, 27-37.	5.8	92
750	From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots. Small, 2017, 13, 1601001.	5.2	69
751	Fluorescent carbon dots and their sensing applications. TrAC - Trends in Analytical Chemistry, 2017, 89, 163-180.	5.8	590
752	Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. Journal of Colloid and Interface Science, 2017, 497, 57-65.	5.0	166
753	Molecular Origin and Self-Assembly of Fluorescent Carbon Nanodots in Polar Solvents. Journal of Physical Chemistry Letters, 2017, 8, 1044-1052.	2.1	186
754	On the Molecular Origin of Photoluminescence of Nonblinking Carbon Dot. Journal of Physical Chemistry C, 2017, 121, 9634-9641.	1.5	72
755	Photoanodes based on TiO ₂ and α-Fe ₂ O ₃ for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46, 3716-3769.	18.7	535
756	Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria <i>Escherichia coli</i> . Nanotechnology, 2017, 28, 195501.	1.3	109

#	Article	IF	CITATIONS
757	Carbon nanodots functionalized with rhodamine and poly(ethylene glycol) for ratiometric sensing of Al ions in aqueous solution. Sensors and Actuators B: Chemical, 2017, 249, 59-65.	4.0	21
758	A simple quinolone Schiff-base containing CHEF based fluorescence â€~turn-on' chemosensor for distinguishing Zn ²⁺ and Hg ²⁺ with high sensitivity, selectivity and reversibility. Dalton Transactions, 2017, 46, 6769-6775.	1.6	85
759	Preparation of carbon dots/TiO 2 electrodes and their photoelectrochemical activities for water splitting. International Journal of Hydrogen Energy, 2017, 42, 12122-12132.	3.8	29
760	Applying Carbon Dots-Metal Ions Ensembles as a Multichannel Fluorescent Sensor Array: Detection and Discrimination of Phosphate Anions. Analytical Chemistry, 2017, 89, 5542-5548.	3.2	147
761	Illuminating the earliest stages of the soot formation by photoemission and Raman spectroscopy. Combustion and Flame, 2017, 181, 188-197.	2.8	32
762	"Click―on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging. Chemistry - A European Journal, 2017, 23, 2171-2178.	1.7	44
763	Strongly blue-luminescent N-doped carbogenic dots as a tracer metal sensing probe in aqueous medium and its potential activity towards in situ Ag-nanoparticle synthesis. Sensors and Actuators B: Chemical, 2017, 252, 735-746.	4.0	50
764	Se & N co-doped carbon dots for high-performance fluorescence imaging agent of angiography. Journal of Materials Chemistry B, 2017, 5, 4988-4992.	2.9	43
765	One-step extraction of highly fluorescent carbon quantum dots by a physical method from carbon black. New Journal of Chemistry, 2017, 41, 5267-5270.	1.4	21
766	A Photochemical Avenue to Photoluminescent N-Dots and their Upconversion Cell Imaging. Scientific Reports, 2017, 7, 1793.	1.6	9
767	Inhibition of Cancer Cell Proliferation by Carbon Dots Derived from Date Pits at Low-Dose. ChemistrySelect, 2017, 2, 4079-4083.	0.7	25
768	Photoluminescence of carbon dots and their applications in Hela cell imaging and Fe3+ ion detection. Journal of Materials Science, 2017, 52, 9979-9989.	1.7	32
769	An investigation into the role of macromolecules of different polarity as passivating agent on the physical, chemical and structural properties of fluorescent carbon nanodots. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	27
770	Synthesis of Pyridinic-Rich N, S Co-doped Carbon Quantum Dots as Effective Enzyme Mimics. Nanoscale Research Letters, 2017, 12, 375.	3.1	67
771	Electrical characterization of flame-soot nanoparticle thin films. Synthetic Metals, 2017, 229, 89-99.	2.1	13
772	Carbon nanostructures in biology and medicine. Journal of Materials Chemistry B, 2017, 5, 6437-6450.	2.9	100
773	Synthesis, characterization and cells and tissues imaging of carbon quantum dots. Optical Materials, 2017, 72, 15-19.	1.7	50
774	Effect of Conjugation Length on Photoinduced Charge Transfer in π-Conjugated Oligomer-Acceptor Dyads. Journal of Physical Chemistry A, 2017, 121, 4891-4901.	1.1	22

#	Article	IF	CITATIONS
775	One pot synthesis of C-dots and study on its interaction with nano ZnO through fluorescence quenching. Journal of Luminescence, 2017, 190, 328-334.	1.5	19
776	Carbon quantum dots/block copolymer ensembles for metal-ion sensing and bioimaging. Journal of Materials Chemistry B, 2017, 5, 5397-5402.	2.9	10
777	Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coordination Chemistry Reviews, 2017, 343, 256-277.	9.5	312
778	High-Efficient Excitation-Independent Blue Luminescent Carbon Dots. Nanoscale Research Letters, 2017, 12, 399.	3.1	36
779	N, S co-doped carbon dots with high quantum yield: tunable fluorescence in liquid/solid and extensible applications. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	24
780	Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. Journal of Materials Chemistry B, 2017, 5, 3794-3809.	2.9	264
781	Living cell intracellular temperature imaging with biocompatible dye-conjugated carbon dots. Journal of Materials Chemistry B, 2017, 5, 3383-3390.	2.9	56
782	Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide. Applied Materials Today, 2017, 7, 179-184.	2.3	34
783	Application of Carbon-Based Nanomaterials as Bioimaging Probe. , 2017, , 129-161.		0
784	Different Synthesis Process of Carbon Nanomaterials for Biological Applications. , 2017, , 1-41.		6
784 785	Different Synthesis Process of Carbon Nanomaterials for Biological Applications. , 2017, , 1-41. Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Mikrochimica Acta, 2017, 184, 2291-2298.	2.5	6
	Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent	2.5 16.0	
785	Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Mikrochimica Acta, 2017, 184, 2291-2298.		112
785 786	Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Mikrochimica Acta, 2017, 184, 2291-2298. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Progress in Materials Science, 2017, 88, 89-135. pH-Elicited Luminescence Functionalities of Carbon Dots: Mechanistic Insights. Journal of Physical	16.0	112 84
785 786 787	Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Mikrochimica Acta, 2017, 184, 2291-2298. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Progress in Materials Science, 2017, 88, 89-135. pH-Elicited Luminescence Functionalities of Carbon Dots: Mechanistic Insights. Journal of Physical Chemistry Letters, 2017, 8, 1389-1395. The effect of oxygen on the microwave-assisted synthesis of carbon quantum dots from polyethylene	16.0 2.1	112 84 125
785 786 787 788	Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Mikrochimica Acta, 2017, 184, 2291-2298. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Progress in Materials Science, 2017, 88, 89-135. pH-Elicited Luminescence Functionalities of Carbon Dots: Mechanistic Insights. Journal of Physical Chemistry Letters, 2017, 8, 1389-1395. The effect of oxygen on the microwave-assisted synthesis of carbon quantum dots from polyethylene glycol. RSC Advances, 2017, 7, 16637-16643. Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: pinpointing the utmost quantum yield and the versatile	16.0 2.1 1.7	112 84 125 26
785 786 787 788 789	Nitrogen and sulfur co-doped carbon quantum dots for highly selective and sensitive fluorescent detection of Fe(III) ions and L-cysteine. Mikrochimica Acta, 2017, 184, 2291-2298. Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Progress in Materials Science, 2017, 88, 89-135. pH-Elicited Luminescence Functionalities of Carbon Dots: Mechanistic Insights. Journal of Physical Chemistry Letters, 2017, 8, 1389-1395. The effect of oxygen on the microwave-assisted synthesis of carbon quantum dots from polyethylene glycol. RSC Advances, 2017, 7, 16637-16643. Controllable electrochemical/electroanalytical approach to generate nitrogen-doped carbon quantum dots from varied amino acids: pinpointing the utmost quantum yield and the versatile photoluminescent and electrochemiluminescent applications. Electrochimica Acta, 2017, 236, 239-251. Preparation and Characterization of Water-soluble Carbon Quantum Dots/Mesoporous Silica with	16.0 2.1 1.7 2.6	 112 84 125 26 62

#	Article	IF	CITATIONS
793	Different conjugated system Zn(ii) Schiff base complexes: supramolecular structure, luminescent properties, and applications in the PMMA-doped hybrid materials. Dalton Transactions, 2017, 46, 1266-1276.	1.6	17
794	Boron Nitride Quantum Dots with Solventâ€Regulated Blue/Green Photoluminescence and Electrochemiluminescent Behavior for Versatile Applications. Advanced Optical Materials, 2017, 5, 1600661.	3.6	82
795	Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications. Journal of Materials Chemistry A, 2017, 5, 1826-1859.	5.2	132
796	Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 2017, 5, 3717-3734.	5.2	853
797	Preparation of fluorescent N,P-doped carbon dots derived from adenosine 5′-monophosphate for use in multicolor bioimaging of adenocarcinomic human alveolar basal epithelial cells. Mikrochimica Acta, 2017, 184, 699-706.	2.5	27
798	Simple and Cost-Effective Clucose Detection Based on Carbon Nanodots Supported on Silver Nanoparticles. Analytical Chemistry, 2017, 89, 1323-1328.	3.2	166
799	Highly luminescent S-doped carbon dots for the selective detection of ammonia. Carbon, 2017, 114, 544-556.	5.4	54
800	Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 11416-11420.	2.7	98
801	Fluorescent carbon quantum dots chemosensor for selective turn-on sensing of Zn ²⁺ and turn-off sensing of Pb ²⁺ in aqueous medium and zebrafish eggs. New Journal of Chemistry, 2017, 41, 15157-15164.	1.4	30
802	Preparation of nitrogen-doped carbon dots with high quantum yield from Bombyx mori silk for Fe(<scp>iii</scp>) ions detection. RSC Advances, 2017, 7, 50584-50590.	1.7	45
803	Spotlighting graphene quantum dots and beyond: Synthesis, properties and sensing applications. Applied Materials Today, 2017, 9, 350-371.	2.3	89
804	Self-Assembly of Monodisperse Carbon Dots into High-Brightness Nanoaggregates for Cellular Uptake Imaging and Iron(III) Sensing. Analytical Chemistry, 2017, 89, 11348-11356.	3.2	71
805	A novel carbon dots derived from reduced <scp>l</scp> -glutathione as fluorescent probe for the detection of the <scp>l</scp> -d-arginine. New Journal of Chemistry, 2017, 41, 15216-15228.	1.4	33
806	One step, high yield synthesis of amphiphilic carbon quantum dots derived from chia seeds: a solvatochromic study. New Journal of Chemistry, 2017, 41, 13130-13139.	1.4	80
807	Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 2017, 9, 17849-17858.	2.8	132
808	Purification, Selection, and Partition Coefficient of Highly Oxidized Carbon Dots in Aqueous Two-Phase Systems Based on Polymer–Salt Pairs. Langmuir, 2017, 33, 12235-12243.	1.6	10
809	White Light-Emitting Diodes Based on Individual Polymerized Carbon Nanodots. Scientific Reports, 2017, 7, 12146.	1.6	40
810	An active structure preservation method for developing functional graphitic carbon dots as an effective antibacterial agent and a sensitive pH and Al(<scp>iii</scp>) nanosensor. Nanoscale, 2017, 9, 17334-17341.	2.8	76

#	Article	IF	CITATIONS
811	High color rendering index trichromatic white and red LEDs prepared from silane-functionalized carbon dots. Journal of Materials Chemistry C, 2017, 5, 9629-9637.	2.7	62
812	Flame deposition method for carbon nanoparticles employing green precursors and its composite with Au nanoparticles for photocatalytic degradation of methylene blue. Vacuum, 2017, 146, 633-640.	1.6	6
813	Multiplex Lateral Flow Immunoassays Based on Amorphous Carbon Nanoparticles for Detecting Three <i>Fusarium</i> Mycotoxins in Maize. Journal of Agricultural and Food Chemistry, 2017, 65, 8063-8071.	2.4	114
814	Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Advances, 2017, 7, 40973-40989.	1.7	159
815	Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon, 2017, 124, 429-472.	5.4	253
816	Gram-Scale Synthesis and Kinetic Study of Bright Carbon Dots from Citric Acid and <i>Citrus japonica</i> via a Microwave-Assisted Method. ACS Omega, 2017, 2, 5196-5208.	1.6	52
817	LnIII-centered emission sensitized through fluorescent carbon dots. Journal of Luminescence, 2017, 192, 1273-1277.	1.5	13
818	High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots. Scientific Reports, 2017, 7, 11222.	1.6	224
820	One-Step Synthesis of Acidophilic Highly-Photoluminescent Carbon Dots Modified by Ionic Liquid from Polyethylene Glycol. ACS Omega, 2017, 2, 5251-5259.	1.6	24
821	Hydrothermal green synthesis and photocatalytic activity of magnetic CoFe2O4–carbon quantum dots nanocomposite by turmeric precursor. Journal of Materials Science: Materials in Electronics, 2017, 28, 16205-16214.	1.1	37
822	Analysis of penicillamine using Cu-modified graphene quantum dots synthesized from uric acid as single precursor. Journal of Pharmaceutical Analysis, 2017, 7, 324-331.	2.4	32
824	Chiral nanoprobes for targeting and long-term imaging of the Golgi apparatus. Chemical Science, 2017, 8, 6829-6835.	3.7	167
825	Estradiol Hemisuccinate-Modified Surface-Engineered Carbon Dots: Target-Specific Theranostic Agent. ACS Sustainable Chemistry and Engineering, 2017, 5, 8356-8369.	3.2	21
826	Morpholine Derivative-Functionalized Carbon Dots-Based Fluorescent Probe for Highly Selective Lysosomal Imaging in Living Cells. ACS Applied Materials & Interfaces, 2017, 9, 28222-28232.	4.0	104
827	Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. European Journal of Pharmaceutical Sciences, 2017, 109, 359-371.	1.9	79
828	Facile transformation of soot nanoparticles into nanoporous fibers via single-step electrospinning. AIP Advances, 2017, 7, .	0.6	10
829	Functionalized graphene quantum dots as a fluorescent "off–on―nanosensor for detection of mercury and ethyl xanthate. Research on Chemical Intermediates, 2017, 43, 7457-7470.	1.3	16
830	Environmentally friendly nitrogen-doped carbon quantum dots for next generation solar cells. Sustainable Energy and Fuels, 2017, 1, 1611-1619.	2.5	81

#	Article	IF	CITATIONS
831	A Simple Approach for Synthesizing of Fluorescent Carbon Quantum Dots from Tofu Wastewater. Nanoscale Research Letters, 2017, 12, 611.	3.1	40
832	Luminescent carbon nanoparticles: synthesis, methods of investigation, applications. Russian Chemical Reviews, 2017, 86, 1157-1171.	2.5	30
833	Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Scientific Reports, 2017, 7, 15858.	1.6	151
834	Excitationâ€Dependent Photoluminescence from Singleâ€Carbon Dots. Small, 2017, 13, 1702098.	5.2	102
835	Hydrothermal synthesis of N-doped carbon dots for selective fluorescent sensing and cellular imaging of cobalt(II). Mikrochimica Acta, 2017, 184, 3825-3831.	2.5	22
836	Multifunctional nitrogen-doped carbon dots from maleic anhydride and tetraethylenepentamine via pyrolysis for sensing, adsorbance, and imaging applications. Sensors and Actuators B: Chemical, 2017, 253, 1026-1033.	4.0	39
837	Ethylenediamine functionalized carbon nanoparticles: synthesis, characterization, and evaluation for cadmium removal from water. RSC Advances, 2017, 7, 34226-34235.	1.7	16
838	Algae biomass as a precursor for synthesis of nitrogen-and sulfur-co-doped carbon dots: A better probe in Arabidopsis guard cells and root tissues. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 315-322.	1.7	36
839	Preparation of Poly(styrene)- <i>b</i> -poly(acrylic acid)-Coupled Carbon Dots and Their Applications. ACS Applied Materials & Interfaces, 2017, 9, 24169-24178.	4.0	17
840	Large-scale simultaneous synthesis of highly photoluminescent green amorphous carbon nanodots and yellow crystalline graphene quantum dots at room temperature. Green Chemistry, 2017, 19, 3611-3617.	4.6	141
841	Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Scientific Reports, 2017, 7, 4452.	1.6	52
842	Nitrogenâ€Induced Transformation of Vitaminâ€C into Multifunctional Upâ€converting Carbon Nanodots in the Visible–NIR Range. Chemistry - A European Journal, 2017, 23, 3067-3073.	1.7	15
843	Functional carbon nanodots for multiscale imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1436.	3.3	48
844	Synthesis of Fluorineâ€Doped Hydrophilic Carbon Nanoparticles from Hexafluorobenzene by Femtosecond Laser Pulses. ChemPhysChem, 2017, 18, 1007-1011.	1.0	26
845	Green synthesis of highly stable carbon nanodots and their photocatalytic performance. IET Nanobiotechnology, 2017, 11, 360-364.	1.9	25
846	Synthesis of Water Dispersible Fluorescent Carbon Nanocrystals from Syzygium cumini Fruits for the Detection of Fe3+ Ion in Water and Biological Samples and Imaging of Fusarium avenaceum Cells. Journal of Fluorescence, 2017, 27, 125-134.	1.3	35
847	Detection of Reactive Oxygen Species by a Carbon-Dot–Ascorbic Acid Hydrogel. Analytical Chemistry, 2017, 89, 830-836.	3.2	60
848	One pot synthesis of highly fluorescent N doped C-dots and used as fluorescent probe detection for Hg2+ and Ag+ in aqueous solution. Sensors and Actuators B: Chemical, 2017, 243, 244-253.	4.0	97

#	Article	IF	CITATIONS
849	Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1604436.	11.1	643
850	Unprecedented Two-Step Chemiluminescence of Polyamine-Functionalized Carbon Nanodots Induced by Fenton-Like System. Journal of Analysis and Testing, 2017, 1, 315-321.	2.5	2
851	Strong UV Emission from Colloidal Eu ²⁺ â€Doped BaSO ₄ Nanoparticles: A Material for Enhancing the Photocatalytic Activity of Carbon Dots. ChemistrySelect, 2017, 2, 5970-5977.	0.7	8
852	Synthesis of hydrophilic and hydrophobic carbon quantum dots from waste of wine fermentation. Royal Society Open Science, 2017, 4, 170900.	1.1	42
853	Effect of the Elemental Composition of Precursors from Amino Acids and Their Binary Mixtures on the Photoluminescent Intensity of Carbon Nanodots. Analytical Sciences, 2017, 33, 1461-1464.	0.8	3
854	Reversible Fluorescence Probe Based on N-Doped Carbon Dots for the Determination of Mercury Ion and Glutathione in Waters and Living Cells. Analytical Sciences, 2017, 33, 761-767.	0.8	26
855	Hydrothermal Transformations of Ascorbic Acid. Russian Journal of General Chemistry, 2017, 87, 2858-2864.	0.3	8
856	Candle Soot Coating for Latent Fingermark Enhancement on Various Surfaces. Sensors, 2017, 17, 1612.	2.1	5
857	Synergetic Effects of Combined Nanomaterials for Biosensing Applications. Sensors, 2017, 17, 1010.	2.1	47
858	Characterization and Analytical Separation of Fluorescent Carbon Nanodots. Journal of Nanomaterials, 2017, 2017, 1-23.	1.5	40
858 859		1.5 1.5	40 1
	Nanomaterials, 2017, 2017, 1-23. Synthesis of Fluorescent Carbon Dots by Gastrointestinal Fluid Treatment of Mongolia Har Gabur.		
859	Nanomaterials, 2017, 2017, 1-23. Synthesis of Fluorescent Carbon Dots by Gastrointestinal Fluid Treatment of Mongolia Har Gabur. Journal of Nanomaterials, 2017, 2017, 1-7.	1.5	1
859 860	Nanomaterials, 2017, 2017, 1-23. Synthesis of Fluorescent Carbon Dots by Gastrointestinal Fluid Treatment of Mongolia Har Gabur. Journal of Nanomaterials, 2017, 2017, 1-7. Rheology of a carbon dot gel. Inorganica Chimica Acta, 2017, 468, 119-124. Electrochemical Determination of Carbendazim in Water Base on Carbon Dots Modified Glassy Carbon	1.5 1.2	1
859 860 861	 Nanomaterials, 2017, 2017, 1-23. Synthesis of Fluorescent Carbon Dots by Gastrointestinal Fluid Treatment of Mongolia Har Gabur. Journal of Nanomaterials, 2017, 2017, 1-7. Rheology of a carbon dot gel. Inorganica Chimica Acta, 2017, 468, 119-124. Electrochemical Determination of Carbendazim in Water Base on Carbon Dots Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 2017, 12, 3675-3685. Sensitive and selective detection of copper ions using low cost nitrogen doped carbon quantum dots 	1.5 1.2 0.5	1 13 11
859 860 861 862	 Nanomaterials, 2017, 2017, 1-23. Synthesis of Fluorescent Carbon Dots by Castrointestinal Fluid Treatment of Mongolia Har Gabur. Journal of Nanomaterials, 2017, 2017, 1-7. Rheology of a carbon dot gel. Inorganica Chimica Acta, 2017, 468, 119-124. Electrochemical Determination of Carbendazim in Water Base on Carbon Dots Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 2017, 12, 3675-3685. Sensitive and selective detection of copper ions using low cost nitrogen doped carbon quantum dots as a fluorescent sensing plateform. ISSS Journal of Micro and Smart Systems, 2017, 6, 109-117. Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical 	1.5 1.2 0.5 1.0	1 13 11 13
859 860 861 862 863	Nanomaterials, 2017, 2017, 1-23. Synthesis of Fluorescent Carbon Dots by Gastrointestinal Fluid Treatment of Mongolia Har Gabur. Journal of Nanomaterials, 2017, 2017, 1-7. Rheology of a carbon dot gel. Inorganica Chimica Acta, 2017, 468, 119-124. Electrochemical Determination of Carbendazim in Water Base on Carbon Dots Modified Glassy Carbon Electrode. International Journal of Electrochemical Science, 2017, 12, 3675-3685. Sensitive and selective detection of copper ions using low cost nitrogen doped carbon quantum dots as a fluorescent sensing plateform. ISSS Journal of Micro and Smart Systems, 2017, 6, 109-117. Photoluminescent C-dots: An overview on the recent development in the synthesis, physiochemical properties and potential applications. Journal of Alloys and Compounds, 2018, 748, 818-853. One-pot synthesis of N-doped carbon dots by pyrolyzing the gel composed of ethanolamine and 1-carboxyethyl-3-methylimidazolium chloride and their selective fluorescence sensing for	1.5 1.2 0.5 1.0 2.8	1 13 11 13 77

ARTICLE IF CITATIONS Green synthesis of fluorescent carbon quantum dots for the detection of mercury(<scp>ii</scp>) and 867 1.4 135 glutathione. New Journal of Chemistry, 2018, 42, 5814-5821. Table sugar derived Carbon dot $\hat{a} \in \hat{}$ a naked eye sensor for toxic Pb2+ ions. Sensors and Actuators B: 98 Chemical, 2018, 264, 67-75. Functionalized carbon dot adorned coconut shell char derived green catalysts for the rapid 869 5.0 23 synthesis of amidoalkyl naphthols. Journal of Colloid and Interface Science, 2018, 520, 70-80. Highly stable copper/carbon dot nanofluid. Journal of Thermal Analysis and Calorimetry, 2018, 133, 870 2.0 951-960. Facile synthesis of stable colloidal suspension of amorphous carbon nanoparticles in aqueous 871 1.9 5 medium and their characterization. Journal of Physics and Chemistry of Solids, 2018, 120, 96-103. Methotrexate-conjugated to polymer quantum dot for cytotoxicity effect improved against MCF-7 and Hela cells. Medicinal Chemistry Research, 2018, 27, 1578-1588. 1.1 873 Templated microwave synthesis of luminescent carbon nanofibers. RSC Advances, 2018, 8, 12907-12917. 1.7 18 Photoluminescence of carbon quantum dots: coarsely adjusted by quantum confinement effects and finely by surface trap states. Science China Chemistry, 2018, 61, 490-496. 874 4.2 C-dots/Fe3O4 magnetic nanocomposite as nanoadsorbent for removal of heavy metal cations. Journal 875 1.2 13 of the Iranian Chemical Society, 2018, 15, 1199-1205. Artifacts and Errors Associated with the Ubiquitous Presence of Fluorescent Impurities in Carbon 876 3.2 Nanodots. Chemistry of Materials, 2018, 30, 1878-1887. Thermally and Chemically Stable Candle Soot Superhydrophobic Surface with Excellent Self-Cleaning 877 2.4 85 Properties in Air and Oil. ACS Applied Nano Materials, 2018, 1, 1204-1211. High photocatalytic performance of carbon quantum dots/TNTs composites for enhanced 878 2.2 photogenerated charges separation under visible light. Catalysis Today, 2018, 315, 162-170. Waste chimney oil to nanolights: A low cost chemosensor for tracer metal detection in practical 879 field and its polymer composite for multidimensional activity. Journal of Photochemistry and 1.7 72 Photobiology B: Biology, 2018, 180, 56-67. Carbon dots derived from carboxymethylcellulose for sensing isoniazid and H₂O₂. New Journal of Chemistry, 2018, 42, 4109-4113. 880 1.4 Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. 881 1.6 52 Angewandte Chemie, 2018, 130, 2401-2406. Bluish green emitting carbon quantum dots synthesized from jackfruit (<i>Artocarpus) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 2018, 5, 024008. Highly Fluorescent Chiral Nâ€Sâ€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. 883 7.2 249 Angewandte Chemie - International Edition, 2018, 57, 2377-2382. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with 884 5.4 multicolor bandgap fluorescence. Carbon, 2018, 130, 153-163.

#	Article	IF	CITATIONS
885	Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International Journal of Biological Macromolecules, 2018, 109, 687-697.	3.6	90
886	Green Synthesized Nanoparticles as Potential Nanosensors. Energy, Environment, and Sustainability, 2018, , 137-164.	0.6	6
887	Carbon dots as temperature nanosensors in the physiological range. Journal of Luminescence, 2018, 196, 313-315.	1.5	18
888	Plasmonic Carbon-Dot-Decorated Nanostructured Semiconductors for Efficient and Tunable Random Laser Action. ACS Applied Nano Materials, 2018, 1, 152-159.	2.4	22
889	Carbon dots prepared in different solvents with controllable structures: optical properties, cellular imaging and photocatalysis. New Journal of Chemistry, 2018, 42, 1690-1697.	1.4	20
890	Synthesis and characterization of highly luminescent N-doped carbon quantum dots for metal ion sensing. Integrated Ferroelectrics, 2018, 186, 32-39.	0.3	29
891	Facile synthesis of blue-emitting carbon dots@mesoporous silica composite spheres. Solid State Sciences, 2018, 76, 100-104.	1.5	28
892	Multi-level fluorescent logic gate based on polyamine coated carbon dots capable of responding to four stimuli. Chemical Engineering Journal, 2018, 337, 471-479.	6.6	33
893	Synthesis and characterization of high efficient photoluminescent sunlight driven photocatalyst of N-Carbon Quantum Dots. Journal of Luminescence, 2018, 201, 265-274.	1.5	74
894	Dispersibility of carbon dots in aqueous and/or organic solvents. Chemical Communications, 2018, 54, 5401-5406.	2.2	92
895	Quick synthesis of 2-propanol derived fluorescent carbon dots for bioimaging applications. Optical Materials, 2018, 78, 477-483.	1.7	10
896	Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today, 2018, 19, 201-218.	6.2	536
897	Easy synthesis, characterization and cell cytotoxicity of green nano carbon dots using hydrothermal carbonization of Gum Tragacanth and chitosan bio-polymers for bioimaging. Journal of Molecular Liquids, 2018, 259, 284-290.	2.3	85
898	An efficient and self-guided chemo-photothermal drug loading system based on copolymer and transferrin decorated MoS 2 nanodots for dually controlled drug release. Chemical Engineering Journal, 2018, 342, 120-132.	6.6	53
899	Analysis of carbon fines obtained from the off-gas dust of calcium carbide furnace. Journal of Material Cycles and Waste Management, 2018, 20, 614-621.	1.6	9
900	Preparation of carbon dotâ€based ratiometric fluorescent probes for cellular imaging from <scp><i>Curcuma longa</i></scp> . Luminescence, 2018, 33, 40-46.	1.5	13
901	Carbon nanodots based biosensors for gene mutation detection. Sensors and Actuators B: Chemical, 2018, 256, 226-233.	4.0	76
902	Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON-OFF-ON-OFF fluorescence principle. Carbon, 2018, 127, 340-348.	5.4	125

#	Article	IF	CITATIONS
903	Naturalâ€Productâ€Derived Carbon Dots: From Natural Products to Functional Materials. ChemSusChem, 2018, 11, 11-24.	3.6	278
904	Synthesis, Structural, Optical and Dielectric Studies on Carbon Dot-Zinc Oxide Nanocomplexes. International Journal of Nanoscience, 2018, 17, 1750021.	0.4	1
905	Highly photoluminescent N-isopropylacrylamide (NIPAAM) passivated carbon dots for multicolor bioimaging applications. European Polymer Journal, 2018, 98, 191-198.	2.6	19
906	Artful and multifaceted applications of carbon dot in biomedicine. Journal of Controlled Release, 2018, 269, 302-321.	4.8	115
907	Functional Carbon Quantum Dots: A Versatile Platform for Chemosensing and Biosensing. Chemical Record, 2018, 18, 491-505.	2.9	119
908	Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites. Journal of Colloid and Interface Science, 2018, 513, 866-876.	5.0	178
909	Graphene quantum dots nanosensor derived from 3D nanomesh graphene frameworks and its application for fluorescent sensing of Cu2+ in rat brain. Sensors and Actuators B: Chemical, 2018, 258, 672-681.	4.0	34
910	Dispersion of optical and structural properties in gel column separated carbon nanoparticles. Carbon, 2018, 127, 541-547.	5.4	21
911	Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity. Sensors and Actuators B: Chemical, 2018, 258, 172-183.	4.0	90
912	Biocompatible Carbon Nanodots for Functional Imaging and Cancer Therapy. International Journal of Biomedical and Clinical Engineering, 2018, 7, 31-45.	0.2	1
913	S,N-Co-doped carbon nanoparticles with high quantum yield for metal ion detection, IMP logic gates and bioimaging applications. New Journal of Chemistry, 2018, 42, 20180-20189.	1.4	9
914	Ultra-highly fluorescentÂN doped carbon dots-CdTe QDs nanohybrids with excitation-independent emission in the blue-violet region. RSC Advances, 2018, 8, 35700-35705.	1.7	4
915	Selective and sensitive detection of cinnamaldehyde by nitrogen and sulphur co-doped carbon dots: a detailed systematic study. RSC Advances, 2018, 8, 42361-42373.	1.7	23
916	Facile way to fabricate high quality white LED with yellow graphene quantum dots. , 2018, , .		0
917	A visual electrochemiluminescence resonance energy transfer/surface plasmon coupled electrochemiluminescence nanosensor for Shiga toxin-producing <i>Escherichia coli</i> detection. Green Chemistry, 2018, 20, 5520-5527.	4.6	45
918	Highly hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Advances, 2018, 8, 35246-35256.	1.7	18
919	Multifunctional Polymeric Enveloped Nanocarriers: Targeting Extracellular and Intracellular Barriers. , 0, , .		0
921	Synthesis of Nitrogen-Doped Lignin/DES Carbon Quantum Dots as a Fluorescent Probe for the Detection of Fe3+ Ions. Polymers, 2018, 10, 1282.	2.0	44

#	Article	IF	CITATIONS
922	Influence of molecular fluorophores on the research field of chemically synthesized carbon dots. Nano Today, 2018, 23, 124-139.	6.2	181
924	Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. Journal of Carbon Research, 2018, 4, 67.	1.4	137
925	One‧tep Synthesis of Fluorescent Carbon Dots for Bio‣abeling Assay. Macromolecular Symposia, 2018, 382, 1800077.	0.4	19
926	Carbon nanodot aqueous binding phase-based diffusive gradients in thin films device for measurement of dissolved copper and lead species in the aquatic environment. Analyst, The, 2018, 143, 5568-5577.	1.7	11
927	Molecular imaging with nanoparticles: the dwarf actors revisited 10Âyears later. Histochemistry and Cell Biology, 2018, 150, 733-794.	0.8	13
928	Synthesis of Carbon Dots from PEG6000 and Papain for Fluorescent and Doxycycline Sensing. Nano, 2018, 13, 1850106.	0.5	5
929	Pineapple Peel-Derived Carbon Dots: Applications as Sensor, Molecular Keypad Lock, and Memory Device. ACS Omega, 2018, 3, 12584-12592.	1.6	97
930	Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS Applied Materials & Interfaces, 2018, 10, 37835-37845.	4.0	58
931	A surface transition of nanoparticle-decorated graphene films from water-adhesive to water-repellent. Nanoscale, 2018, 10, 17015-17020.	2.8	3
932	Exploration of the synthesis of three types of multicolor carbon dot originating from isomers. Chemical Communications, 2018, 54, 11312-11315.	2.2	42
933	Facile, rapid synthesis of N,P-dual-doped carbon dots as a label-free multifunctional nanosensor for Mn(VII) detection, temperature sensing and cellular imaging. Sensors and Actuators B: Chemical, 2018, 277, 492-501.	4.0	67
934	Exploring of multicolor emissive carbon dots with novel double emission mechanism. Sensors and Actuators B: Chemical, 2018, 277, 373-380.	4.0	52
935	Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging. International Journal of Nanomedicine, 2018, Volume 13, 4807-4815.	3.3	73
936	Synthesis of carbon nano-onions doped with nitrogen using spray pyrolisis. Carbon, 2018, 140, 171-181.	5.4	20
937	Waste candle soot derived nitrogen doped carbon dots based fluorescent sensor probe: An efficient and inexpensive route to determine Hg(II) and Fe(III) from water. Journal of Environmental Chemical Engineering, 2018, 6, 5561-5569.	3.3	53
938	Green synthesis of N, S co-doped carbon quantum dots from triflic acid treated palm shell waste and their application in nitrophenol sensing. Materials Research Bulletin, 2018, 108, 250-254.	2.7	53
939	Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 2018, 8, 9790-9808.	5.5	165
940	Uncovering the Design Principle of Amino Acid-Derived Photoluminescent Biodots with Tailor-Made Structure–Properties and Applications for Cellular Bioimaging. ACS Applied Materials & Interfaces, 2018, 10, 19881-19888.	4.0	27

#	Article	IF	CITATIONS
941	Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion. Journal of Electronic Materials, 2018, 47, 4721-4730.	1.0	17
942	Visual detection of G-quadruplex with mushroom derived highly fluorescent carbon quantum dots. Journal of Pharmaceutical and Biomedical Analysis, 2018, 157, 137-144.	1.4	28
943	Photoluminescent Carbon Dots: A Mixture of Heterogeneous Fractions. ChemPhysChem, 2018, 19, 2589-2597.	1.0	49
944	Recent Advances in Graphene Quantum Dots: Synthesis, Properties, and Applications. Small Methods, 2018, 2, 1800050.	4.6	166
945	Carbon dots as a new class of light emitters for biomedical diagnostics and therapeutic applications. , 2018, , 227-295.		19
946	Full-color tunable photoluminescent carbon dots based on oil/water interfacial synthesis and their applications. RSC Advances, 2018, 8, 24002-24012.	1.7	12
947	Carbon nanomaterials for electroanalysis in pharmaceutical applications. , 2018, , 169-225.		11
948	Luminescence phenomena of carbon dots derived from citric acid and urea – a molecular insight. Nanoscale, 2018, 10, 13889-13894.	2.8	193
949	Facile synthesis of carbon-supported silver nanoparticles for optical limiting. Applied Surface Science, 2018, 457, 655-661.	3.1	19
950	Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Scientific Reports, 2018, 8, 9770.	1.6	158
951	Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. Journal of Materials Chemistry C, 2018, 6, 7944-7970.	2.7	274
952	Multiband Fluorescent Graphitic Carbon Nanoparticles from Queen of Oils. ACS Sustainable Chemistry and Engineering, 2018, 6, 10127-10139.	3.2	13
953	Quantum Dots. , 2018, , 621-637.		14
954	Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy. Cell Proliferation, 2018, 51, e12488.	2.4	115
955	Fungal Nanobionics: Principles and Applications. , 2018, , .		38
956	Application of Nanotechnology in Mycoremediation: Current Status and Future Prospects. , 2018, , 89-116.		5
957	Green and Facile Synthesis of Nitrogen and Phosphorus Co-Doped Carbon Quantum Dots towards Fluorescent Ink and Sensing Applications. Nanomaterials, 2018, 8, 386.	1.9	76
958	Novel properties and applications of carbon nanodots. Nanoscale Horizons, 2018, 3, 565-597.	4.1	274

#	Article	IF	CITATIONS
959	Tailoring the Emission Color of Carbon Dots through Nitrogen-Induced Changes of Their Crystalline Structure. Journal of Physical Chemistry C, 2018, 122, 19897-19903.	1.5	54
960	Surface functionalisation significantly changes the physical and electronic properties of carbon nano-dots. Nanoscale, 2018, 10, 13908-13912.	2.8	28
961	Carbon-electroluminescence: An organic approach to lighting. AIP Conference Proceedings, 2018, , .	0.3	1
962	Dual doped biocompatible multicolor luminescent carbon dots for bio labeling, UVâ€active marker and fluorescent polymer composite. Luminescence, 2018, 33, 1136-1145.	1.5	55
963	Recent advance in red-emissive carbon dots and their photoluminescent mechanisms. Materials Today Chemistry, 2018, 9, 103-113.	1.7	60
964	Graphene quantum dotâ€enhanced chemiluminescence through energy and electron transfer for the sensitive detection of tyrosine. Journal of the Chinese Chemical Society, 2018, 65, 1504-1509.	0.8	13
965	Carbon Dot with pH Independent Near-Unity Photoluminescence Quantum Yield in an Aqueous Medium: Electrostatics-Induced Förster Resonance Energy Transfer at Submicromolar Concentration. Journal of Physical Chemistry Letters, 2018, 9, 5092-5099.	2.1	30
966	Excitation-dependent carbon dots powders based on dehydration condensation by microwave–hydrothermal method. Journal of Materials Science, 2018, 53, 15907-15914.	1.7	24
967	Eco-friendly synthesis of cuprizone-functionalized luminescent carbon dots and application as a sensor for the determination of copper(<scp>ii</scp>) in wastewater. Analytical Methods, 2018, 10, 4570-4578.	1.3	11
968	An efficient strategy for sensing pyrophosphate based on nitrogen-rich quantum dots combined with graphene oxide. Microchemical Journal, 2018, 141, 466-472.	2.3	6
969	Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 203, 481-493.	2.0	217
970	Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation. ACS Nano, 2018, 12, 5741-5752.	7.3	135
971	Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr(VI) ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 206, 65-71.	2.0	77
972	How an environmental issue could turn into useful high-valued products: The olive mill wastewater case. Science of the Total Environment, 2019, 647, 1097-1105.	3.9	16
973	Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science, 2019, 98, 101149.	11.8	179
974	Carbon dots: advances in nanocarbon applications. Nanoscale, 2019, 11, 19214-19224.	2.8	267
975	Carbon dot-based fluorometric optical sensors: an overview. Reviews in Inorganic Chemistry, 2019, 39, 179-197.	1.8	11
976	Assembly of carbon nanodots in graphene-based composite for flexible electro-thermal heater with ultrahigh efficiency. Nano Research, 2019, 12, 2498-2508.	5.8	42

		CITATION REPORT		
#	Article		IF	CITATIONS
977	Intrinsic Emission from Nanographenes. Chemistry - an Asian Journal, 2019, 14, 3213-3	220.	1.7	10
978	Revealing the pHâ€Dependent Photoluminescence Mechanism of Graphitic C _{3< Quantum Dots. Advanced Theory and Simulations, 2019, 2, 1900074.}	/sub>N ₄	1.3	13
979	Solvent-controlled synthesis of multicolor photoluminescent carbon dots for bioimagir Advances, 2019, 9, 24057-24065.	ıg. RSC	1.7	24
980	Photoluminescence of carbon dots prepared by ball milling and their application in Hele Applied Physics A: Materials Science and Processing, 2019, 125, 1.	a cell imaging.	1.1	8
981	Rapid, Solvent-Free Synthesis of Amorphous, Photoluminescent, Carbon Nanodots fror Maleic Anhydride Solids. ACS Sustainable Chemistry and Engineering, 2019, 7, 13206-		3.2	15
982	Fluorescence Detection of Hydrazine Hydrate Using Carbon Nanodots Synthesized fro Rind. Applied Mechanics and Materials, 2019, 891, 71-77.	m Mandarin	0.2	1
983	Bright green fluorescence of microwave irradiation-synthesized Cdots as sensitive prob Materials Research Express, 2019, 6, 105703.	be of iron (III).	0.8	6
984	Synthesis of carbon quantum dots from lac dye for silicon dioxide imaging and highly s ethanol detecting. Dyes and Pigments, 2019, 171, 107681.	ensitive	2.0	11
985	Molybdenum Disulfide Quantum Dots Prepared by Bipolar-Electrode Electrochemical S Nanomaterials, 2019, 9, 906.	cissoring.	1.9	15
986	Candle-Soot Carbon Nanoparticles in Photoacoustics: Advantages and Challenges for L Ultrasound Transmitters. IEEE Nanotechnology Magazine, 2019, 13, 13-28.	Laser	0.9	32
987	Blue and green luminescent carbon nanodots from controllable fuel-rich flame reactors Reports, 2019, 9, 14566.	s. Scientific	1.6	33
988	Green synthesis of nitrogen and sulphur doped carbon dot composites for the sensing Materials Today: Proceedings, 2019, 9, 54-60.	of glucose.	0.9	4
989	Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Do Science, 2019, 6, 1901316.	ts. Advanced	5.6	760
990	Nitrogen-doped carbon dots as a probe for the detection of Cu ²⁺ and its Journal of Chemical Research, 2019, 43, 507-515.	cellular imaging.	0.6	5
991	Excitons in Carbonic Nanostructures. Journal of Carbon Research, 2019, 5, 71.		1.4	41
992	Synthesis of Carbon Quantum Dots with Special Reference to Biomass as a Source - A Pharmaceutical Design, 2019, 25, 1455-1476.	Review. Current	0.9	42
993	Luminescent carbon nanoparticles separation and purification. Advances in Colloid and Science, 2019, 274, 102043.	l Interface	7.0	25
994	Carbon dots-embedded fluorescent silica xerogel. Colloids and Surfaces A: Physicocher Engineering Aspects, 2019, 583, 123844.	nical and	2.3	11

#	Article	IF	CITATIONS
995	Hydrophobic Carbon Dots from Aliphatic Compounds with One Terminal Functional Group. Journal of Physical Chemistry C, 2019, 123, 22447-22456.	1.5	19
996	Ionic liquid mediated carbon dots: Preparations, properties and applications. TrAC - Trends in Analytical Chemistry, 2019, 119, 115638.	5.8	31
997	Fluorescent Nano-Biomass Dots: Ultrasonic-Assisted Extraction and Their Application as Nanoprobe for Fe3+ detection. Nanoscale Research Letters, 2019, 14, 130.	3.1	40
998	Carbon Dots as an Effective Fluorescent Sensing Platform for Metal Ion Detection. Nanoscale Research Letters, 2019, 14, 272.	3.1	165
999	Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments. Chemistry of Materials, 2019, 31, 7979-7986.	3.2	112
1000	Design and Synthesis of Core–Shell Carbon Polymer Dots with Highly Stable Fluorescence in Polymeric Materials. ACS Applied Nano Materials, 2019, 2, 6503-6512.	2.4	14
1001	Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding. Nano-Micro Letters, 2019, 11, 75.	14.4	28
1002	Fluorescence response from the surface states of nitrogen-doped carbon nanodots: evidence of a heterogeneous population of molecular-sized fluorophores. Photochemical and Photobiological Sciences, 2019, 18, 54-63.	1.6	5
1003	Nitrogen-doped carbon dots derived from electrospun carbon nanofibers for Cu(ii) ion sensing. New Journal of Chemistry, 2019, 43, 1812-1817.	1.4	26
1004	Rapid detection of tryptamine by optosensor with molecularly imprinted polymers based on carbon dots-embedded covalent-organic frameworks. Sensors and Actuators B: Chemical, 2019, 285, 546-552.	4.0	61
1005	Study of chromatographic fractions from carbon dots isolated by column chromatography and a binary gradient elution <i>via</i> RP-HPLC. Analytical Methods, 2019, 11, 760-766.	1.3	14
1006	Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 2019, 21, 449-471.	4.6	821
1007	Influence of surface chemistry on optical, chemical and electronic properties of blue luminescent carbon dots. Nanoscale, 2019, 11, 2056-2064.	2.8	94
1008	Applications of Carbon-Based Nanomaterials for Antimicrobial Photodynamic Therapy. Nanotechnology in the Life Sciences, 2019, , 237-259.	0.4	1
1009	Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chemical Society Reviews, 2019, 48, 4281-4316.	18.7	187
1010	Highly discriminant rate of Dianhong black tea grades based on fluorescent probes combined with chemometric methods. Food Chemistry, 2019, 298, 125046.	4.2	27
1011	Fluorescent carbon dots functionalization. Advances in Colloid and Interface Science, 2019, 270, 165-190.	7.0	181
1012	Carbon Dots, Unconventional Preparation Strategies, and Applications Beyond Photoluminescence. Small, 2019, 15, e1901803.	5.2	113

#	Article	IF	CITATIONS
1013	Recent Trends in the Synthesis of Carbon Nanomaterials. , 2019, , 519-555.		1
1014	Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC - Trends in Analytical Chemistry, 2019, 118, 315-337.	5.8	127
1015	Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano, 2019, 13, 6224-6255.	7.3	266
1016	Cadmium-free quantum dot-based theranostics. TrAC - Trends in Analytical Chemistry, 2019, 118, 386-400.	5.8	37
1017	Farâ€Red to Nearâ€Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small, 2019, 15, e1901507.	5.2	169
1018	Luminescence modulation of carbon dots assemblies. Journal of Materials Chemistry C, 2019, 7, 6337-6343.	2.7	8
1019	Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Research, 2019, 12, 1669-1674.	5.8	107
1020	Advancement in science and technology of carbon dot-polymer hybrid composites: a review. Functional Composites and Structures, 2019, 1, 022001.	1.6	99
1021	Optimizing the microwave-assisted hydrothermal synthesis of blue-emitting l-cysteine-derived carbon dots. Journal of Luminescence, 2019, 213, 6-14.	1.5	18
1022	Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 6820-6835.	2.7	225
1023	Recent Advancements in Doped/Co-Doped Carbon Quantum Dots for Multi-Potential Applications. Journal of Carbon Research, 2019, 5, 24.	1.4	42
1024	Synthesis of photoluminescent carbon dots and its effect on chondrocytes for knee joint therapy applications. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1321-1325.	1.9	9
1025	Sulfur Regulated Boron Nitride Quantum Dots Electrochemiluminescence with Amplified Surface Plasmon Coupling Strategy for BRAF Gene Detection. Analytical Chemistry, 2019, 91, 6250-6258.	3.2	58
1026	Carbon dots: Applications in bioimaging and theranostics. International Journal of Pharmaceutics, 2019, 564, 308-317.	2.6	199
1027	Tunable light emission using crystalline carbon dots. Journal of Optics (India), 2019, 48, 288-293.	0.8	5
1028	Green synthesis of fluorescent carbon dots for determination of glucose in biofluids using a paper platform. Talanta, 2019, 201, 503-510.	2.9	35
1029	Probe and analogue: Double roles of thionine for aloe-emodin selective and sensitive ratiometric detection. Sensors and Actuators B: Chemical, 2019, 292, 247-253.	4.0	9
1030	Facile and High-Yield Synthesis of Carbon Quantum Dots from Biomass-Derived Carbons at Mild Condition. ACS Sustainable Chemistry and Engineering, 2019, 7, 7833-7843.	3.2	149

ARTICLE IF CITATIONS Evaluation of the dialysis time required for carbon dots by HPLC and the properties of carbon dots 1031 37 1.4 after HPLC fractionation. New Journal of Chemistry, 2019, 43, 6153-6159. Fluorescent pH nanosensors: Design strategies and applications. Journal of Photochemistry and 5.6 Photobiology C: Photochemistry Reviews, 2019, 39, 76-141. Design and fabrication of carbon dots for energy conversion and storage. Chemical Society Reviews, 1033 552 18.7 2019, 48, 2315-2337. Composite multilayer films based on polyelectrolytes and in situ â€formed carbon nanostructures with enhanced photoluminescence and conductivity properties. Journal of Applied Polymer Science, 2019, 1034 1.3 136, 47718. Carbon Dots: A Small Conundrum. Trends in Chemistry, 2019, 1, 235-246. 1035 232 4.4 Self-assembled nitrogen-doped graphene quantum dots (N-GQDs) over graphene sheets for superb electro-photocatalytic activity. Applied Surface Science, 2019, 480, 1035-1046. 3.1 Polymer/carbon-based quantum dot nanocomposite: forthcoming materials for technical application. 1037 1.2 32 Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 341-356. One Pot Synthesis of Amphiphilic Carbogenic Fluorescent Nanodots for Bioimaging. ChemNanoMat, 1.5 2019, 5, 417-421. Highly photoluminescent N, P doped carbon quantum dots as a fluorescent sensor for the detection 1039 79 1.7 of dopamine and temperature. Journal of Photochemistry and Photobiology B: Biology, 2019, 194, 61-70. Synthesis of fluorescent carbon quantum dots from aqua mesophase pitch and their photocatalytic 1040 5.6 degradation activity of organic dyes. Journal of Materials Science and Technology, 2019, 35, 1515-1522. Functional nanomaterials to augment photosynthesis: evidence and considerations for their 1041 1.5 60 responsible use in agricultural applications. Interface Focus, 2019, 9, 20180048. Hydrothermal synthesis of N-doped carbon dots from an ethanolamine–ionic liquid gel to construct label-free multifunctional fluorescent probes for Hg²⁺, Cu²⁺ and 1042 S₂O₃^{2a^}. Analyst, The, 2019, 144, 3013-3022. Synthesis of N-Doped Micropore Carbon Quantum Dots with High Quantum Yield and Dual-Wavelength Photoluminescence Emission from Biomass for Cellular Imaging. Nanomaterials, 1043 1.9 65 2019, 9, 495. Carbon dots prepared for fluorescence and chemiluminescence sensing. Science China Chemistry, 1044 4.2 2019, 62, 968-981. Purification and structural elucidation of carbon dots by column chromatography. Nanoscale, 2019, 1045 2.8 85 11,8464-8474. Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. 1046 48 Journal of Materials Science, 2019, 54, 9372-9384. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for 1047 1.7 155 bioapplications: a review. Materials Today Chemistry, 2019, 12, 282-314. Aggregation-induced emission enhancement of carbon quantum dots and applications in light emitting 1048 devices. Journal of Materials Chemistry C, 2019, 7, 5148-5154.

#	Article	IF	CITATIONS
1049	Probing the impact of carbon quantum dots on partially unwound helical mode in ferroelectric liquid crystals. Journal of Applied Physics, 2019, 125, .	1.1	17
1050	Rapid preparation of homogeneous carbon dots with yellow fluorescence and formation mechanistic investigation. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	5
1051	Fluorescent carbon dots derived from urine and their application for bio-imaging. Methods, 2019, 168, 84-93.	1.9	25
1052	Nitrogen doped carbon quantum dots demonstrate no toxicity under <i>in vitro</i> conditions in a cervical cell line and <i>in vivo</i> in Swiss albino mice. Toxicology Research, 2019, 8, 395-406.	0.9	39
1053	Fluorimetric Detection of <i>Candida albicans</i> Using Cornstalk N-Carbon Quantum Dots Modified with Amphotericin B. Bioconjugate Chemistry, 2019, 30, 966-973.	1.8	21
1054	Insight into the Excitationâ€Dependent Fluorescence of Carbon Dots. ChemPhysChem, 2019, 20, 984-990.	1.0	25
1055	Yellow-emissive carbon dots as a fluorescent probe for chromium(VI). Mikrochimica Acta, 2019, 186, 163.	2.5	42
1056	Safe One-Pot Synthesis of Fluorescent Carbon Quantum Dots from Lemon Juice for a Hands-On Experience of Nanotechnology. Journal of Chemical Education, 2019, 96, 540-545.	1.1	36
1057	Carbon Dots as Optical Nanoprobes for Biosensors. , 2019, , 269-300.		10
1058	Waterâ€Dispersible Candle Soot–Derived Carbon Nanoâ€Onion Clusters for Imagingâ€Guided Photothermal Cancer Therapy. Small, 2019, 15, e1804575.	5.2	80
1059	A facile synthesis of label-free carbon dots with unique selectivity-tunable characteristics for ferric ion detection and cellular imaging applications. New Journal of Chemistry, 2019, 43, 4734-4744.	1.4	47
1060	Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 2019, 11, 4634-4652.	2.8	301
1061	Carbon Dotsâ€inâ€Matrix Boosting Intriguing Luminescence Properties and Applications. Small, 2019, 15, e1805504.	5.2	124
1062	A fluorescent nanoprobe for 4-ethylguaiacol based on the use of a molecularly imprinted polymer doped with a covalent organic framework grafted onto carbon nanodots. Mikrochimica Acta, 2019, 186, 182.	2.5	35
1063	Green Synthesis of Fluorescent Carbon Dots from Gynostemma for Bioimaging and Antioxidant in Zebrafish. ACS Applied Materials & Interfaces, 2019, 11, 9832-9840.	4.0	168
1064	The bioelectrochemical synthesis of high-quality carbon dots with strengthened electricity output and excellent catalytic performance. Nanoscale, 2019, 11, 4428-4437.	2.8	19
1065	Preparation of CQDs with hydroxyl function for Fe ³⁺ detection. Micro and Nano Letters, 2019, 14, 440-444.	0.6	10
1066	Microwave Assisted Synthesis and Optical Properties of Highly Fluorescent N-Doped Carbon Dots. Asian Journal of Chemistry, 2019, 31, 2897-2902.	0.1	0

#	Article	IF	CITATIONS
1067	Sustainable Synthesis Processes for Carbon Dots through Response Surface Methodology and Artificial Neural Network Processes, 2019, 7, 704.	1.3	20
1068	Facile Synthesis of Water-Soluble, Highly-Fluorescent Graphene Quantum Dots from Graphene Oxide Reduction for Efficient Cell Labelling. Journal of Carbon Research, 2019, 5, 77.	1.4	8
1069	A green luminescence of lemon derived carbon quantum dots and their applications for sensing of V5+ ions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 251, 114455.	1.7	36
1070	Modulation doping of absorbent cotton derived carbon dots for quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 26133-26145.	1.3	21
1071	Frontiers in carbon dots: design, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2571-2601.	3.2	118
1072	Highly Photoluminescent Carbon Dots Derived from Discarded Chewing Gum: toward Multiple Sensing of pH, Ferric Ion, and Adenosine Triphosphate. ChemistrySelect, 2019, 4, 12807-12814.	0.7	14
1073	Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste. Nanomaterials, 2019, 9, 1500.	1.9	54
1074	One-step synthesis of red-emitting carbon dots <i>via</i> a solvothermal method and its application in the detection of methylene blue. RSC Advances, 2019, 9, 29533-29540.	1.7	43
1075	Carbon Nanomaterials for Targeted Cancer Therapy Drugs: A Critical Review. Chemical Record, 2019, 19, 502-522.	2.9	63
1076	Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots. Talanta, 2019, 191, 443-448.	2.9	64
1077	Candle soot: Journey from a pollutant to a functional material. Carbon, 2019, 144, 684-712.	5.4	87
1078	Synthesis of N,S-Doped Carbon Quantum Dots for Use in Organic Solar Cells as the ZnO Modifier To Eliminate the Light-Soaking Effect. ACS Applied Materials & Interfaces, 2019, 11, 2243-2253.	4.0	94
1079	Adjusting the Structure and Electronic Properties of Carbons for Metalâ€Free Carbocatalysis of Organic Transformations. Advanced Materials, 2019, 31, e1805719.	11.1	67
1080	Time-resolved photoluminescence of pH-sensitive carbon dots. Carbon, 2019, 144, 500-508.	5.4	33
1081	A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection. Journal of Industrial and Engineering Chemistry, 2019, 72, 100-106.	2.9	59
1082	Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material. Composites Part B: Engineering, 2019, 161, 564-577.	5.9	164
1083	Biogenic nanomaterials: Synthesis, characterization, growth mechanism, and biomedical applications. Journal of Microbiological Methods, 2019, 157, 65-80.	0.7	55
1084	Carbon dots: The next generation platform for biomedical applications. Materials Science and Engineering C, 2019, 96, 887-903.	3.8	148

ARTICLE IF CITATIONS N- and O-Doped Carbon Dots for Rapid and High-Throughput Dual Detection of Trace Amounts of Iron 1085 1.3 7 in Water and Organic Phases. Journal of Fluorescence, 2019, 29, 137-144. Carbon dotsâ€involved chemiluminescence: Recent advances and developments. Luminescence, 2019, 34, 1.5 49 4-22. <i>In Vivo</i> Cell Tracking, Reactive Oxygen Species Scavenging, and Antioxidative Gene Down Regulation by Long-Term Exposure of Biomass-Derived Carbon Dots. ACS Biomaterials Science and 1087 2.6 34 Engineering, 2019, 5, 346-356. Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous 1088 nanoparticles: a review. Mikrochimica Acta, 2019, 186, 50. Lysosome mediates toxicological effects of polyethyleneimine-based cationic carbon dots. Journal of 1089 0.8 18 Nanoparticle Research, 2019, 21, 1. One-pot synthesis of aqueous carbon quantum dots using bibenzoimidazolyl derivative and their 1090 1.8 antitumor activity against breast cancer cell lines. Inorganic Chemistry Communication, 2019, 101, 11-15. Green synthesized carbon quantum dots from Prosopis juliflora leaves as a dual off-on fluorescence 1091 3.8 83 probe for sensing mercury (II) and chemet drug. Materials Science and Engineering C, 2019, 98, 887-896. A fluorescent pickering-emulsion stabilizer prepared using carbon nitride quantum dots and laponite 1092 2.319 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 310-317. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent 1093 3.8 122 and probe for sensing of an anti-cancer drug. Materials Science and Engineering C, 2019, 98, 826-833. Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons, 2019, 6, 1094 6.4 434-469. Amphiphilic carbon dots derived by cationic surfactant for selective and sensitive detection of metal 1095 3.8 32 ions. Materials Science and Engineering C, 2019, 95, 72-77. Study on the fluorescence properties of carbon dots prepared via combustion process. Journal of 1096 1.5 30 Luminescence, 2019, 206, 608-612. Applications of Nanotechnology and Carbon Nanoparticles in Agriculture., 2019,, 247-277. 1097 50 Insights into the photoluminescence properties of gel-like carbon quantum dots embedded in 1098 poly(methyl methacrylate) polymer. Materials Today Communications, 2019, 18, 32-38. Natural Biomass as Carbon Sources for the Synthesis of Photoluminescent Carbon Dots., 2019,, 1099 9 109-134. Carbon Dots and Their Polymeric Nanocomposites., 2019, , 217-260. Environmentally benign conversion of waste polyethylene terephthalate to fluorescent carbon dots 1101 for "on-off-onâ€-sensing of ferric and pyrophosphate ions. Journal of Colloid and Interface Science, 5.077 2019, 538, 481-488. Fuel waste to fluorescent carbon dots and its multifarious applications. Sensors and Actuators B: Chemical, 2019, 282, 972-983.

#	Article	IF	CITATIONS
1103	A new approach in functionalization of carbon nanoparticles for optoelectronically relevant carbon dots and beyond. Carbon, 2019, 141, 553-560.	5.4	36
1104	Candle soot derived carbon nanoparticles: Assessment of physico-chemical properties, cytotoxicity and genotoxicity. Chemosphere, 2019, 214, 130-135.	4.2	23
1105	Novel donut-like carbon composites for the selective detection of Fe3+. Journal of Alloys and Compounds, 2019, 773, 555-563.	2.8	10
1106	Carbon quantum dots functionalized agarose gel matrix for in solution detection of nonylphenol. Environmental Technology (United Kingdom), 2020, 41, 322-328.	1.2	15
1107	Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon, 2020, 156, 453-462.	5.4	25
1108	Emissive carbon dots derived from natural liquid fuels and its biological sensing for copper ions. Talanta, 2020, 208, 120375.	2.9	21
1109	C-dots/Mn3O4 nanocomposite as an oxidase nanozyme for colorimetric determination of ferrous ion. Journal of the Iranian Chemical Society, 2020, 17, 507-512.	1.2	14
1110	Recent Advances and Sensing Applications of Carbon Dots. Small Methods, 2020, 4, 1900387.	4.6	145
1111	Sewage sludge in microwave oven: A sustainable synthetic approach toward carbon dots for fluorescent sensing of para-Nitrophenol. Journal of Hazardous Materials, 2020, 382, 121048.	6.5	98
1112	Carbon nanodots from natural (re)sources: a new perspective on analytical chemistry. , 2020, , 3-28.		3
1113	Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications. Luminescence, 2020, 35, 196-202.	1.5	56
1114	Low-temperature rapid synthesis of high-stable carbon dots and its application in biochemical sensing. Dyes and Pigments, 2020, 175, 108184.	2.0	29
1115	Protein–Carbon Dot Nanohybrid-Based Early Blood–Brain Barrier Damage Theranostics. ACS Applied Materials & Interfaces, 2020, 12, 3445-3452.	4.0	21
1116	Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+. Ecotoxicology and Environmental Safety, 2020, 190, 110141.	2.9	46
1117	Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale, 2020, 12, 1589-1601.	2.8	89
1118	Deciphering the interaction of solvents with dual emissive carbon dots: A photoluminescence study and its response for different metal ions. Materials Science and Engineering C, 2020, 108, 110443.	3.8	17
1120	Ionic-liquid-stabilized fluorescent probe based on S-doped carbon dot-embedded covalent-organic frameworks for determination of histamine. Mikrochimica Acta, 2020, 187, 28.	2.5	26
1121	Biocompatible liquid-type carbon nanodots (C-paints) as light delivery materials for cell growth and astaxanthin induction of Haematococcus pluvialis. Materials Science and Engineering C, 2020, 109, 110500.	3.8	19

#	Article	IF	CITATIONS
1122	A universal strategy to separate hydrophilic hybrid-light carbon quantum dots using pure water as eluent. Applied Materials Today, 2020, 18, 100528.	2.3	10
1123	Cellulose hydrogel is a novel carbon-source and doping-material-carrier to prepare fluorescent carbon dots for intracellular bioimaging. SN Applied Sciences, 2020, 2, 1.	1.5	1
1124	Fabrication of dual emission carbon dots and its use in highly sensitive thioamide detection. Dyes and Pigments, 2020, 175, 108126.	2.0	10
1125	Ultra-radiant photoluminescence of glutathione rigidified reduced carbon quantum dots (r-CQDs) derived from ice-biryani for in vitro and in vivo bioimaging applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124266.	2.3	22
1126	Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment: A review. Trends in Food Science and Technology, 2020, 95, 149-161.	7.8	141
1127	Polarity-Sensitive Polymer Carbon Dots Prepared at Room-Temperature for Monitoring the Cell Polarity Dynamics during Autophagy. ACS Applied Materials & Interfaces, 2020, 12, 4815-4820.	4.0	50
1128	Hydrothermal synthesis of gelatin quantum dots for high-performance biological imaging applications. Journal of Photochemistry and Photobiology B: Biology, 2020, 212, 112014.	1.7	9
1129	Sulfur doped molybdenum oxide quantum dots as efficient fluorescent labels and bacteriostatic. Inorganic Chemistry Communication, 2020, 122, 108275.	1.8	9
1130	A carbon nanoparticle-peptide fluorescent sensor custom-made for simple and sensitive detection of trypsin. Journal of Pharmaceutical Analysis, 2020, 10, 482-489.	2.4	23
1131	An ultra-sensitive analytical platform based on bluish green emitting carbon quantum dots for the detection of curcumin in dietary foods. Journal of Food Composition and Analysis, 2020, 94, 103639.	1.9	15
1132	Coal-Based Fluorescent Zero-Dimensional Carbon Nanomaterials: A Short Review. Energy & Fuels, 2020, 34, 13291-13306.	2.5	12
1133	A Review of Terminology Used to Describe Soot Formation and Evolution under Combustion and Pyrolytic Conditions. ACS Nano, 2020, 14, 12470-12490.	7.3	122
1134	Fluorescent Carbon Dots Functionalized with Self-Assembled Glycan Monolayers for Probing Interactions across the Glyco-Interactome. ACS Applied Nano Materials, 2020, 3, 7804-7817.	2.4	4
1135	Optimization of fluorescence and surface adsorption of citric acid/ethanolamine carbon nanoparticles for subsurface tracers. Carbon, 2020, 169, 395-402.	5.4	7
1136	Green synthesis of carbon quantum dots from food waste. Materials Today: Proceedings, 2022, 51, 1696-1700.	0.9	9
1137	State-of-the-Art on the Preparation, Modification, and Application of Biomass-Derived Carbon Quantum Dots. Industrial & Engineering Chemistry Research, 2020, 59, 22017-22039.	1.8	67
1138	Size and flux of carbon nanoparticles synthesized by Ar+CH4 multi-hollow plasma chemical vapor deposition. Diamond and Related Materials, 2020, 109, 108050.	1.8	14
1139	Exploring Solvent-Related Reactions and Corresponding Band Gap Tuning Strategies for Carbon Nanodots Based on Solvothermal Synthesis. Journal of Physical Chemistry Letters, 2020, 11, 10439-10445.	2.1	9

#	Article	IF	CITATIONS
1140	Acid-Free Hydrothermal-Extraction and Molecular Structure of Carbon Quantum Dots Derived from Empty Fruit Bunch Biochar. Materials, 2020, 13, 3356.	1.3	24
1141	Fluorescent carbon dots are the new quantum dots: an overview of their potential in emerging technologies and nanosafety. Journal of Materials Science, 2020, 55, 15074-15105.	1.7	36
1142	Fluorescent patterning of paper through laser engraving. Soft Matter, 2020, 16, 7659-7666.	1.2	9
1143	Starch fermentation wastewater as a precursor to prepare S,N-doped carbon dots for selective Fe(III) detection and carbon microspheres for solution decolorization. Microchemical Journal, 2020, 159, 105338.	2.3	18
1144	Biomacromolecular fluorescent nanoparticles co-assembled by bovine serum albumin and DNA segments for living cell imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125255.	2.3	1
1145	A carbon dots-based coating for the determination of phthalate esters by solid-phase microextraction coupled gas chromatography in water samples. Microchemical Journal, 2020, 159, 105563.	2.3	14
1146	Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy, 2020, 78, 105313.	8.2	100
1147	Combating Antibioticâ€Resistant Gramâ€Negative Bacteria Strains with Tetracycline onjugated Carbon Nanoparticles. Advanced Biology, 2020, 4, 2000074.	3.0	7
1148	Eco-Friendly Fluorescent Carbon Nanodots: Characteristics and Potential Applications. , 0, , .		4
1149	High Contrast Surface Enhanced Fluorescence of Carbon Dot Labeled Bacteria Cells on Aluminum Foil. Journal of Fluorescence, 2020, 30, 1477-1482.	1.3	7
1150	DNA-damage and cell cycle arrest initiated anti-cancer potency of super tiny carbon dots on MCF7 cell line. Scientific Reports, 2020, 10, 13880.	1.6	33
1151	PVDF/SiO ₂ -g-CDs blended membrane for fluorescence detection and adsorption of metal ions. Environmental Technology (United Kingdom), 2022, 43, 1648-1661.	1.2	2
1152	Solvothermal Synthesis and Inkjet Printing of Carbon Quantum Dots. ChemistrySelect, 2020, 5, 14930-14934.	0.7	6
1153	A zeolite-based ship-in-a-bottle route to ultrasmall carbon dots for live cell labeling and bioimaging. Nanoscale Advances, 2020, 2, 5803-5809.	2.2	7
1154	Nanoparticles as suitable messengers for molecular communication. Nanoscale, 2020, 12, 22386-22397.	2.8	8
1155	Carbonâ€Based Quantum Dots with Solidâ€State Photoluminescent: Mechanism, Implementation, and Application. Small, 2020, 16, e2004621.	5.2	141
1156	Ratiometric assay of mercury ion based on nitrogen-doped carbon dots with two different optical signals: second-order scattering and fluorescence. Analytical and Bioanalytical Chemistry, 2020, 412, 4375-4382.	1.9	11
1157	Green Synthesis of Carbon Dots and Evaluation of Its Pharmacological Activities. BioNanoScience, 2020, 10, 731-744.	1.5	40

#	Article	IF	CITATIONS
1158	MnO ₂ -Based nanosystems for cancer therapy. Chemical Communications, 2020, 56, 7065-7079.	2.2	57
1159	Preparation of shape-specific (trilateral and quadrilateral) carbon quantum dots towards multiple color emission. Nanoscale, 2020, 12, 11947-11959.	2.8	33
1160	Benefit of porous silica nanoreactor in preparation of fluorescence carbon dots from citric acid. Nano Express, 2020, 1, 010011.	1.2	8
1161	Carbon-based dots for the electrochemical production of hydrogen peroxide. Chemical Communications, 2020, 56, 7609-7612.	2.2	14
1162	Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis. Nanomaterials, 2020, 10, 930.	1.9	87
1163	Nanobiosensing with graphene and carbon quantum dots: Recent advances. Materials Today, 2020, 39, 23-46.	8.3	66
1164	A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors' performance: Synthesis and application. FlatChem, 2020, 22, 100171.	2.8	44
1165	Metal ions sensing using carbon nanodots from various sources. Functional Materials Letters, 2020, 13, 2040005.	0.7	4
1166	Amphiphilic Carbon Dots with Excitationâ€Independent Doubleâ€Emissions. Particle and Particle Systems Characterization, 2020, 37, 2000146.	1.2	13
1167	Tailoring the sensing abilities of carbon nanodots obtained from olive solid wastes. Carbon, 2020, 167, 696-708.	5.4	46
1168	Pollutant Diesel Soot Derived Onion-like Nanocarbons for the Adsorption of Organic Dyes and Environmental Assessment of Treated Wastewater. Industrial & Engineering Chemistry Research, 2020, 59, 12065-12074.	1.8	47
1169	Hybrid nanomaterials as chemical sensors. , 2020, , 213-239.		6
1170	Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 2020, 4, 1586-1613.	3.2	208
1171	Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environmental Chemistry Letters, 2020, 18, 703-727.	8.3	311
1172	Highly fluorescent carbon dots from wheat bran as a novel drug delivery system for bacterial inhibition. Luminescence, 2020, 35, 913-923.	1.5	33
1173	Fluorescent Carbon Dots Derived from Vehicle Exhaust Soot and Sensing of Tartrazine in Soft Drinks. ACS Omega, 2020, 5, 7025-7031.	1.6	52
1174	Multiâ€Color Fluorescent Carbon Dots: Graphitized sp ² Conjugated Domains and Surface State Energy Level Coâ€Modulate Band Gap Rather Than Size Effects. Chemistry - A European Journal, 2020, 26, 8129-8136.	1.7	68
1175	Magnetically Actuated Carbon Soot Nanoparticle-Based Catalytic CARBOts Coated with Ni/Pt Nanofilms for Water Detoxification and Oil-Spill Recovery. ACS Applied Nano Materials, 2020, 3, 3459-3470.	2.4	19

#	Article	IF	CITATIONS
1176	Chemically Functionalized Twoâ€Dimensional Carbon Materials. Chemistry - an Asian Journal, 2020, 15, 2316-2328.	1.7	15
1177	Fluorescent carbonaceous materials isolated from cigarette ashes for the determination of iron(<scp>iii</scp>) in water samples. Analytical Methods, 2020, 12, 3523-3529.	1.3	4
1178	Central nervous system responses to biomaterials. , 2020, , 507-554.		2
1179	One-step hydrothermal preparation of highly stable N doped oxidized carbon dots for toxic organic pollutants sensing and bioimaging. Chemical Engineering Journal, 2020, 401, 126097.	6.6	50
1180	Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrasonics Sonochemistry, 2020, 64, 105009.	3.8	132
1181	Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. Journal of the Electrochemical Society, 2020, 167, 037555.	1.3	272
1182	Toxic effects of engineered carbon nanoparticles on environment. , 2020, , 237-260.		8
1183	One-Step Facile Synthesis of Fluorescent Carbon Dots via Magnetic Hyperthermia Method. Industrial & Engineering Chemistry Research, 2020, 59, 4968-4976.	1.8	15
1184	A study on human serum albumin corona formed on photoluminescent carbon dots. Journal of Chemical Research, 2020, 44, 447-452.	0.6	0
1185	Visibleâ€Lightâ€Excited Ultralongâ€Lifetime Room Temperature Phosphorescence Based on Nitrogenâ€Doped Carbon Dots for Double Anticounterfeiting. Advanced Optical Materials, 2020, 8, 1901557.	3.6	71
1186	Detection of Silver Nanoparticles Using Green Synthesis of Fluorescent Nitrogen-Doped Carbon Dots. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 379-387.	0.7	6
1187	Bone Tissue Engineering via Carbonâ€Based Nanomaterials. Advanced Healthcare Materials, 2020, 9, e1901495.	3.9	111
1188	Introduction: carbon and carbon nanomaterials. , 2020, , 23-45.		2
1189	Effects of endogenous molasses carbon dots on macrophages and their potential utilization as anti-inflammatory agents. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	9
1190	Highly Efficient Electron Transfer in a Carbon Dot–Polyoxometalate Nanohybrid. Journal of Physical Chemistry Letters, 2020, 11, 4379-4384.	2.1	16
1191	Facile one-pot synthesis of self-assembled nitrogen-doped carbon dots/cellulose nanofibril hydrogel with enhanced fluorescence and mechanical properties. Green Chemistry, 2020, 22, 3296-3308.	4.6	53
1192	Recent advances in crystalline carbon dots for superior application potential. Materials Advances, 2020, 1, 525-553.	2.6	92
1193	Photoluminescence properties of l-cysteine-derived carbon dots prepared in non-aqueous and aqueous solvents. Journal of Luminescence, 2020, 224, 117260.	1.5	8

ARTICLE

Candle soot carbon nanoparticles as high-performance universal anode for M-ion (M = Li+, Na+ and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{26}{26}$

1195	Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics. Journal of Physical Chemistry C, 2020, 124, 8894-8904.	1.5	63
1196	Unraveling the Fluorescence Mechanism of Carbon Dots with <i>Sub</i> -Single-Particle Resolution. ACS Nano, 2020, 14, 6127-6137.	7.3	152
1197	Nitrogen-Doped Carbon Dots Induced Enhancement in CO2 Sensing Response From ZnO–Porous Silicon Hybrid Structure. Frontiers in Chemistry, 2020, 8, 291.	1.8	18
1198	Modulating charge separation and transfer kinetics in carbon nanodots for photoredox catalysis. Journal of Energy Chemistry, 2020, 50, 365-377.	7.1	15
1199	The room temperature afterglow mechanism in carbon dots: Current state and further guidance perspective. Carbon, 2020, 165, 306-316.	5.4	89
1200	Liquid marbles from soot films. Soft Matter, 2020, 16, 4512-4519.	1.2	15
1201	Glowing photoluminescene in carbon-based nanodots: current state and future perspectives. Journal of Materials Science, 2020, 55, 8769-8792.	1.7	22
1202	The Rapid and Largeâ€Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie - International Edition, 2021, 60, 8585-8595.	7.2	88
1203	The Rapid and Largeâ€Scale Production of Carbon Quantum Dots and their Integration with Polymers. Angewandte Chemie, 2021, 133, 8668-8678.	1.6	9
1204	Fabrication of polyacrylonitrile hybrid nanofiber scaffold containing activated carbon by electrospinning process as nanofilter media for <scp>SO₂</scp> , <scp>CO₂</scp> , and <scp>CH₄</scp> adsorption. Environmental Progress and Sustainable Energy, 2021, 40, .	1.3	8
1205	Recent advances and future trends on molecularly imprinted polymer-based fluorescence sensors with luminescent carbon dots. Talanta, 2021, 223, 121411.	2.9	85
1206	Current and future perspectives of carbon and graphene quantum dots: From synthesis to strategy for building optoelectronic and energy devices. Renewable and Sustainable Energy Reviews, 2021, 135, 110391.	8.2	144
1207	Rashba effect on the electronic transport through a quantum dot in the atomic limit. Solid State Communications, 2021, 323, 114116.	0.9	1
1208	Electronic band gap of flame-formed carbon nanoparticles by scanning tunneling spectroscopy. Proceedings of the Combustion Institute, 2021, 38, 1805-1812.	2.4	18
1209	Structural design of carbon dots/porous materials composites and their applications. Chemical Engineering Journal, 2021, 421, 127743.	6.6	55
1210	Carbon dots – Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchemical Journal, 2021, 161, 105773.	2.3	10
1211	Synthesis of water-soluble fluorescent carbon nanoparticles (CNPs) from nanosecond pulsed laser ablation in ethanol. Optics and Laser Technology, 2021, 135, 106717.	2.2	27

#	Article	IF	Citations
1212	A universal sugar-blowing approach to synthesize fluorescent nitrogen-doped carbon nanodots for detection of Hg(II). Applied Surface Science, 2021, 544, 148725.	3.1	16
1213	Surface modifications of carbon nanodots reveal the chemical source of their bright fluorescence. Nanoscale Advances, 2021, 3, 716-724.	2.2	15
1214	Novel fluorescent nitrogen-doped carbon dots derived from <i>Panax notoginseng</i> for bioimaging and high selectivity detection of Cr ⁶⁺ . Analyst, The, 2021, 146, 911-919.	1.7	23
1215	Normal breast epithelial MCF-10A cells to evaluate the safety of carbon dots. RSC Medicinal Chemistry, 2021, 12, 245-253.	1.7	21
1216	Carbon Dotsâ€Decorated Carbonâ€Based Metalâ€Free Catalysts for Electrochemical Energy Storage. Small, 2021, 17, e2002998.	5.2	27
1217	Tunable fluorescent carbon dots: synthesis progress, fluorescence origin, selective and sensitive volatile organic compounds detection. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 349-370.	6.8	23
1218	Viscosity, thermal conductivity and density of carbon quantum dots nanofluids: an experimental investigation and development of new correlation function and ANN modeling. Journal of Thermal Analysis and Calorimetry, 2021, 143, 351-361.	2.0	28
1219	Quantum Dots Coated with Molecularly Imprinted Polymer as Probes for Environmentally and Medicinally Important Analytes. , 2021, , 223-253.		0
1220	Selective Determination of Dopamine in Pharmaceuticals and Human Urine Using Carbon Quantum Dots as a Fluorescent Probe. Processes, 2021, 9, 170.	1.3	10
1221	Carbon dots <i>versus</i> nano-carbon/organic hybrids – dramatically different behaviors in fluorescence sensing of metal cations with structural and mechanistic implications. Nanoscale Advances, 2021, 3, 2316-2324.	2.2	16
1222	Green synthesis of carbon dot silver nanohybrids from fruits and vegetable's peel waste: Applications as potent mosquito larvicide. Current Research in Green and Sustainable Chemistry, 2021, 4, 100158.	2.9	11
1223	Carbon dots: Discovery, structure, fluorescent properties, and applications. Green Processing and Synthesis, 2021, 10, 134-156.	1.3	35
1224	Highly fluorescent carbon dots as novel theranostic agents for biomedical applications. Nanoscale, 2021, 13, 17236-17253.	2.8	38
1225	Molecular mechanism of nano-fertilizer in plant growth and development: A recent account. , 2021, , 535-560.		7
1226	Organic dots (O-dots) for theranostic applications: preparation and surface engineering. RSC Advances, 2021, 11, 2253-2291.	1.7	10
1227	Synthesis of carbon dot-ZnO-based nanomaterials for antibacterial application. New Journal of Chemistry, 2021, 45, 4496-4505.	1.4	11
1228	Fluorescent Carbon Dots Prepared from Hazelnut Kohl as an Affordable Probe for Determination of Dopamine. Journal of Fluorescence, 2021, 31, 455-463.	1.3	6
1229	Iron and nitrogen-co-doped carbon quantum dots for the sensitive and selective detection of hematin and ferric ions and cell imaging. Analyst, The, 2021, 146, 4954-4963.	1.7	23

#	Article	IF	CITATIONS
1230	Carbon dots: synthesis, properties and biomedical applications. Journal of Materials Chemistry B, 2021, 9, 6553-6575.	2.9	106
1231	Study of carbon quantum dots as smart materials for environmental applications. , 2021, , 223-239.		1
1232	Graphene-Based Nanomaterials: Introduction, Structure, Synthesis, Characterization, and Properties. , 2021, , 23-48.		0
1233	Fundamental photophysical properties of fluorescent carbon dots and their applications in metal ion sensing and bioimaging. , 2021, , 159-209.		0
1234	Supra-Carbon Dots Formed by Fe ³⁺ -Driven Assembly for Enhanced Tumor-Specific Photo-Mediated and Chemodynamic Synergistic Therapy. ACS Applied Bio Materials, 2021, 4, 2759-2768.	2.3	19
1235	Interfacing Carbon Dots for Chargeâ€Transfer Processes. Small, 2021, 17, e2006005.	5.2	22
1236	Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS Applied Nano Materials, 2021, 4, 911-948.	2.4	29
1237	Seaweedâ€derived polymerâ€based blueâ€emitting Câ€dots: synthesis, characterization and evaluation for iron sensing. Polymer International, 2021, 70, 1309-1315.	1.6	4
1238	Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Lightâ€Emitting Diodes. Advanced Science, 2021, 8, 2001977.	5.6	141
1239	The Role of Carbon Quantum Dots in Organic Photovoltaics: A Short Overview. Coatings, 2021, 11, 232.	1.2	23
1240	Oxygen-less Carbon Nanodots with an Absolute Quantum Yield of 80% for Display Applications. ACS Applied Nano Materials, 2021, 4, 2462-2469.	2.4	9
1241	Enhanced photoluminescence of boron nitride quantum dots by encapsulation within polymeric nanoparticles. Nanotechnology, 2021, 32, 195104.	1.3	2
1242	Structural engineering design of carbon dots for lubrication. Chinese Chemical Letters, 2021, 32, 2693-2714.	4.8	30
1243	Carbon Dotâ€Based Biosensors. Advanced NanoBiomed Research, 2021, 1, 2000042.	1.7	12
1244	Continuous Roll-to-Roll Production of Carbon Nanoparticles from Candle Soot. Nano Letters, 2021, 21, 3198-3204.	4.5	46
1246	Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multiâ€Sensing Platform. ChemistrySelect, 2021, 6, 2774-2789.	0.7	26
1247	Room temperature driven highly crystalline fluorine-doped carbon quantum dots for sensitive tetracycline sensing. Optical Materials, 2021, 114, 110967.	1.7	10
1248	Dual-color graphene quantum dots and carbon nanoparticles biosensing platform combined with Exonuclease III-assisted signal amplification for simultaneous detection of multiple DNA targets. Analytica Chimica Acta, 2021, 1154, 338346.	2.6	15

~			_	
C1		ON	REPC	DT
	IAL		NEPU	ואו

#	Article	IF	CITATIONS
1249	Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials, 2021, 11, 967.	1.9	132
1250	Detachment of Submicron Particles from Substrates Using the Suspension-Assisted Ultrasonic Method. Journal of Chemical Engineering of Japan, 2021, 54, 135-143.	0.3	2
1251	Dual emissive carbon dots with one-pot synthesized and their tunable luminescence. Optik, 2021, 231, 166394.	1.4	5
1252	Functionalized carbon dots for advanced batteries. Energy Storage Materials, 2021, 37, 8-39.	9.5	116
1253	Nitrogen-doped Carbon Dots from Hutai-8 Grape Skin and their Application in Hg2+ Detection. Current Nanoscience, 2021, 17, 338-347.	0.7	4
1254	Emerging theranostic applications of carbon dots and its variants. View, 2022, 3, 20200089.	2.7	17
1255	Highly green fluorescent carbon quantum dots synthesis via hydrothermal method from fish scale. Materials Today: Proceedings, 2020, 26, A1-A5.	0.9	6
1256	Characteristics and carbon dioxide adsorption performance of candle soot-activated by potassium hydroxide. IOP Conference Series: Earth and Environmental Science, 2021, 765, 012087.	0.2	1
1257	Enhanced reduction of p-nitrophenol by zerovalent iron modified with carbon quantum dots. Applied Catalysis B: Environmental, 2021, 285, 119829.	10.8	46
1258	Trigonal Nitrogen Activates High-Brightness Chemiluminescent Carbon Nanodots. , 2021, 3, 826-837.		17
1259	Visual pH Sensors: From a Chemical Perspective to New Bioengineered Materials. Molecules, 2021, 26,		
	2952.	1.7	34
1260		1.7 1.4	34 2
1260 1261	2952. Variable Temperature Synthesis of Tunable Flame-Generated Carbon Nanoparticles. Journal of Carbon		
	 2952. Variable Temperature Synthesis of Tunable Flame-Generated Carbon Nanoparticles. Journal of Carbon Research, 2021, 7, 44. Directed Assembly of Cellulose Nanocrystals in Their Native Solid tate Template of a Processed Fiber 	1.4	2
1261	2952. Variable Temperature Synthesis of Tunable Flame-Generated Carbon Nanoparticles. Journal of Carbon Research, 2021, 7, 44. Directed Assembly of Cellulose Nanocrystals in Their Native Solidâ€State Template of a Processed Fiber Cell Wall. Macromolecular Rapid Communications, 2021, 42, e2100092. Carbon Nanoparticles on Magnetite: A New Heterogeneous Catalyst for the Oxidation of 5-Hydroxymethylfurfural (5-HMF) to 2,5-Diformoylfuran (DFF). Journal of Inorganic and	1.4 2.0	2 8
1261 1262	 2952. Variable Temperature Synthesis of Tunable Flame-Generated Carbon Nanoparticles. Journal of Carbon Research, 2021, 7, 44. Directed Assembly of Cellulose Nanocrystals in Their Native Solidâ€State Template of a Processed Fiber Cell Wall. Macromolecular Rapid Communications, 2021, 42, e2100092. Carbon Nanoparticles on Magnetite: A New Heterogeneous Catalyst for the Oxidation of 5-Hydroxymethylfurfural (5-HMF) to 2,5-Diformoylfuran (DFF). Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4504-4511. Potential substitutes for critical materials in white LEDs: Technological challenges and market 	1.4 2.0 1.9	2 8 11
1261 1262 1263	 2952. Variable Temperature Synthesis of Tunable Flame-Generated Carbon Nanoparticles. Journal of Carbon Research, 2021, 7, 44. Directed Assembly of Cellulose Nanocrystals in Their Native Solidâ€State Template of a Processed Fiber Cell Wall. Macromolecular Rapid Communications, 2021, 42, e2100092. Carbon Nanoparticles on Magnetite: A New Heterogeneous Catalyst for the Oxidation of 5-Hydroxymethylfurfural (5-HMF) to 2,5-Diformoylfuran (DFF). Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4504-4511. Potential substitutes for critical materials in white LEDs: Technological challenges and market opportunities. Renewable and Sustainable Energy Reviews, 2021, 143, 110869. Long-wavelength (red to near-infrared) emissive carbon dots: Key factors for synthesis, fluorescence mechanism, and applications in biosensing and cancer theranostics. Chinese Chemical Letters, 2021, 32, 	1.4 2.0 1.9 8.2	2 8 11 38

# 1267	ARTICLE Naked eye colorimetric detection of fluoride through TiO2 NPs/CQDs based detector. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119637.	IF 2.0	CITATIONS
1268	Synthesis and Applications of Organic-Based Fluorescent Carbon Dots: Technical Review. , 0, , .		0
1269	Controlled synthesis of fluorescent carbon materials with the assistance of capillary electrophoresis. Talanta, 2021, 228, 122224.	2.9	8
1271	Green carbon dots based ultraviolet photovoltaic window with high transparence to visible light. International Journal of Energy Research, 2021, 45, 17709-17720.	2.2	6
1272	Ultrafast Dynamics in Carbon Dots as Photosensitizers: A Review. ACS Applied Nano Materials, 2021, 4, 7587-7606.	2.4	17
1273	Molecularly Imprinted Polymer—Carbon Dot Composites for Biomedical Application. Advances in Material Research and Technology, 2022, , 151-186.	0.3	0
1274	Generalized synthesis of biomolecule-derived and functionalized fluorescent carbon nanoparticle. Bulletin of Materials Science, 2021, 44, 1.	0.8	2
1275	Carbon Quantum Dots for Energy Applications: A Review. ACS Applied Nano Materials, 2021, 4, 6515-6541.	2.4	145
1276	pH-Dependent surface properties of N–Cdots obtained by the hydrothermal method with multicolored emissions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126578.	2.3	8
1277	Tuneable properties of carbon quantum dots by different synthetic methods. Journal of Nanostructure in Chemistry, 2022, 12, 565-580.	5.3	27
1278	A review of carbon dots and their composite materials for electrochemical energy technologies. , 2021, 3, 795-826.		77
1279	One-pot microwave-assisted synthesis of blue emissive multifunctional N-S-P co-doped carbon dots as a nanoprobe for sequential detection of Cr(VI) and ascorbic acid in real samples, fluorescent ink and logic gate operation. Journal of Molecular Liquids, 2022, 346, 117088.	2.3	34
1280	Highly sensitive Ni ²⁺ sensors based on polyurethaneâ€derived, labelâ€free carbon dots with high adsorption capacity. ChemistrySelect, 2021, 6, 7964-7971.	0.7	5
1281	The effect of electrode shape on Schottky barrier and electric field distribution of flexible ZnO photodiode. Scientific Reports, 2021, 11, 15604.	1.6	12
1282	One-pot sonochemical preparation of carbon dots, influence of process parameters and potential applications: a review. Carbon Letters, 2022, 32, 39-55.	3.3	12
1283	Sustainable synthesis of multifunctional carbon dots using biomass and their applications: A mini-review. Journal of Environmental Chemical Engineering, 2021, 9, 105802.	3.3	61
1284	Polychromatic Carbon Dots Prepared from <i>m</i> -Phenylenediamine and Urea as Multifunctional Fluorescent Probes. ACS Applied Nano Materials, 2021, 4, 8500-8510.	2.4	15
1285	Blue-emitting carbon quantum dots: Ultrafast microwave synthesis, purification and strong fluorescence in organic solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126673.	2.3	22

#	Article	IF	CITATIONS
1286	The development of carbon dots: From the perspective of materials chemistry. Materials Today, 2021, 51, 188-207.	8.3	213
1287	Advances in Integrating Carbon Dots With Membranes and Their Applications. ChemistrySelect, 2021, 6, 7443-7462.	0.7	4
1288	One-step Hydrothermal Synthesis of N-doped Fluorescent Carbon Dots from Fermented Rice with Highly Selective Characteristics for Label-free Detection of Fe ³⁺ lons and as Fluorescent Ink. Analytical Sciences, 2021, 37, 1227-1234.	0.8	2
1289	One-pot synthesis of metal-free, yellow-emitting phosphor with organic single crystal as a matrix. Dyes and Pigments, 2021, 193, 109518.	2.0	6
1290	Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications. Particle and Particle Systems Characterization, 2021, 38, 2100170.	1.2	48
1291	Sustainable Hydrothermal and Solvothermal Synthesis of Advanced Carbon Materials in Multidimensional Applications: A Review. Materials, 2021, 14, 5094.	1.3	31
1292	Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: A review. FlatChem, 2021, 29, 100271.	2.8	24
1293	P-Doped Carbon Quantum Dots with Antibacterial Activity. Micromachines, 2021, 12, 1116.	1.4	28
1294	Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. Chinese Chemical Letters, 2022, 33, 1659-1672.	4.8	22
1295	Facile synthesis of bright yellow fluorescent nitrogen-doped carbon quantum dots and their applications to an off–on probe for highly sensitive detection of methimazole. Microchemical Journal, 2021, 168, 106480.	2.3	19
1296	A feasible and universal one-step method for functionalizing carbon dots efficiently via in-situ free radical polymerization. Journal of Luminescence, 2021, 238, 118246.	1.5	4
1297	The importance of surface states in N-doped carbon quantum dots. Carbon, 2021, 183, 1-11.	5.4	71
1298	Patterning candle soot for light-driven actuator via Marangoni effect. Sensors and Actuators B: Chemical, 2021, 347, 130613.	4.0	13
1299	Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. TrAC - Trends in Analytical Chemistry, 2021, 144, 116430.	5.8	33
1300	Soot inception: Carbonaceous nanoparticle formation in flames. Progress in Energy and Combustion Science, 2022, 88, 100956.	15.8	117
1301	Nitrogenâ€doped carbon dots from Kraft lignin waste with inorganic acid catalyst and their brain cell imaging applications. AICHE Journal, 2021, 67, e17132.	1.8	21
1302	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	2.2	37
1303	Environmentally benign synthesis of fluorescent carbon nanodots using waste PET bottles: highly selective and sensitive detection of Pb2+ ions in aqueous medium. New Journal of Chemistry, 2021, 45, 8747-8754	1.4	12

#	Article	IF	CITATIONS
1304	A Mini Review on pH-Sensitive Photoluminescence in Carbon Nanodots. Frontiers in Chemistry, 2020, 8, 605028.	1.8	53
1305	Catalytic and electrocatalytic activities of Fe3O4/CeO2/C-dot nanocomposite. Chemical Papers, 2021, 75, 2371-2378.	1.0	9
1306	Carbon-based heterogeneous photocatalysts for water cleaning technologies: a review. Environmental Chemistry Letters, 2021, 19, 643-668.	8.3	32
1307	Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2021, 2, 1821-1871.	2.6	1,049
1308	Superior reducing carbon dots from proanthocyanidin for free-radical scavenging and for cell imaging. Analyst, The, 2021, 146, 2330-2338.	1.7	6
1309	Combustion in the future: The importance of chemistry. Proceedings of the Combustion Institute, 2021, 38, 1-56.	2.4	66
1310	Glycothermally Synthesized Carbon Dots with Narrow-Bandwidth and Color-Tunable Solvatochromic Fluorescence for Wide-Color-Gamut Displays. ACS Omega, 2021, 6, 1741-1750.	1.6	23
1311	Production of Bionanomaterials from Agricultural Wastes. , 2017, , 33-58.		31
1312	Synthesis of Quantum Dots. , 2020, , 13-29.		1
1313	Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Applied Materials Today, 2020, 20, 100677.	2.3	69
1314	Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging. Journal of Colloid and Interface Science, 2018, 513, 505-514.	5.0	62
1315	Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. Journal of Photochemistry and Photobiology B: Biology, 2017, 175, 219-225.	1.7	102
1316	Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today, 2020, 35, 100954.	6.2	138
1317	Sensitive detection of Sudan dyes using tire-derived carbon dots as a fluorescent sensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118514.	2.0	27
1318	Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging. Talanta, 2018, 179, 554-562.	2.9	40
1319	Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Advances, 2020, 10, 42916-42929.	1.7	38
1320	Boron-doped carbon quantum dots: a â€~turn-off' fluorescent probe for dopamine detection. Nanotechnology, 2020, 32, 025501.	1.3	10
1321	Tunable adsorption activity of candle soot nanoparticles depending on the flame height. Engineering Research Express, 2020, 2, 035018.	0.8	2

#	Article	IF	CITATIONS
1322	Biocompatibility of Carbon Nanoparticles in HeLa Cells is Dictated by Synthesis and Sterilization Procedures. Nanoscience and Nanometrology, 2016, 2, 1.	0.5	3
1323	Opportunities and Challenges of Fluorescent Carbon Dots in Translational Optical Imaging. Current Pharmaceutical Design, 2015, 21, 5401-5416.	0.9	61
1324	Carbon Quantum Dots: Surface Passivation and Functionalization. Current Organic Chemistry, 2016, 20, 682-695.	0.9	135
1325	Exploring the Potential of Carbon Dots to Combat COVID-19. Frontiers in Molecular Biosciences, 2020, 7, 616575.	1.6	39
1326	Biomass-Derived Nitrogen Functionalized Carbon Nanodots and Their Anti-Biofouling Properties. Processes, 2021, 9, 61.	1.3	10
1327	The analytical and biomedical applications of carbon dots and their future theranostic potential: A review. Journal of Food and Drug Analysis, 2020, 28, 678-696.	0.9	25
1328	Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Letters, 2013, 5, 247.	14.4	9
1329	Carbon-allotropes: synthesis methods, applications and future perspectives. Carbon Letters, 2014, 15, 219-237.	3.3	66
1330	Production of nitrogen-doped carbon quantum dots with controllable emission wavelength, excellent sensing of Fe ³⁺ in aqueous solution, and potential application for stealth quick response coding in the visible regime. RSC Advances, 2021, 11, 34117-34124.	1.7	2
1331	Surface Charge Alteration in Carbon Dots Governs the Interfacial Electron Transfer and Transport. Journal of Physical Chemistry C, 2021, 125, 23398-23408.	1.5	16
1332	Fluorescent carbon dots for sensing metal ions and small molecules. Chinese Journal of Analytical Chemistry, 2022, 50, 103-111.	0.9	9
1333	Betel leaf derived multicolor emitting carbon dots as a fluorescent probe for imaging mouse normal fibroblast and human thyroid cancer cells. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 136, 115010.	1.3	10
1334	Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids. ACS Applied Materials & Interfaces, 2021, 13, 49232-49241.	4.0	5
1335	Simulation and modeling of light scattering in paper and print applications. , 2010, , 451-475.		1
1338	Carbon Quantum Dots as Potential Drug Carriers. Engineering and Protection of Environment, 2016, 19, 277-288.	0.3	0
1339	Carbon quantum dots: nanolights. International Journal of Petrochemical Science & Engineering, 2017, 2, .	0.2	3
1340	Study on the Purification and Fluorescence Properties of Carbon Quantum Dots by Gel Penetrate Chromatography. Advances in Analytical Chemistry, 2018, 08, 103-111.	0.1	0
1341	Carbon Nanomaterials in Analytical Separations. RSC Detection Science, 2018, , 69-104.	0.0	0

#	Article	IF	CITATIONS
1342	Role of Carbon Dots in Polymer Based Bulk Heterojunction Solar Cells to Achieve High Open Circuit Voltage. Springer Proceedings in Physics, 2019, , 367-374.	0.1	0
1343	Studies on new material: carbon dot-graphene oxide-zinc oxide nanocomplex. Materials Science-Poland, 2019, .	0.4	1
1344	Kırmızı Soğandan Karbon Kuantum Noktaların Sentezi ve Fotolüminesans Özelliklerinin İncelenmes Journal of Natural and Applied Sciences, 0, , 48-56.	i. 0.1	1
1345	Microwave-assisted synthesis of photoluminescent carbon dots from palm fronds biomass wastes. IOP Conference Series: Materials Science and Engineering, 2021, 1195, 012008.	0.3	3
1346	Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. International Journal of Molecular Sciences, 2021, 22, 11783.	1.8	54
1347	Carbon dot with aggregation induced emission and pH triggered disintegration. Colloids and Interface Science Communications, 2021, 45, 100537.	2.0	14
1348	Effect of pH on Optical Properties of Graphene Oxide Quantum Dots. International Journal of Optics and Photonics, 2020, 14, 135-142.	0.2	2
1349	The synthetic strategies, photoluminescence mechanisms and promising applications of carbon dots: Current state and future perspective. Carbon, 2022, 186, 91-127.	5.4	163
1350	Research Progress on Purification Methods of Carbon Dots. Advances in Analytical Chemistry, 2020, 10, 36-42.	0.1	0
1351	Fluorescent Carbon Nanostructures. , 2020, , 357-399.		Ο
1352	Green preparation of carbon dots for Hg2+ detection and cell imaging. Materials Express, 2020, 10, 1777-1787.	0.2	4
1353	Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. Nanoscale Research Letters, 2021, 16, 167.	3.1	36
1354	Bright red-emitting P, Br co-doped carbon dots as "OFF-ON―fluorescent probe for Cu2+ and L-cysteine detection. Journal of Alloys and Compounds, 2022, 897, 162731.	2.8	17
1355	Tertiary Amine-Terminated Carbon Dots with Reversible CO ₂ Switchable Amphiphilicity as the Versatile Lubricant Additives. ACS Sustainable Chemistry and Engineering, 2021, 9, 16829-16839.	3.2	19
1356	Tunable Upconversion Emission from Oil-based Carbon Nanodots. Materials Letters, 2022, , 131640.	1.3	2
1357	A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chemistry, 2022, 24, 675-700.	4.6	26
1358	Carbon dots: a novel platform for biomedical applications. Nanoscale Advances, 2022, 4, 353-376.	2.2	46
1359	Harnessing versatile dynamic carbon precursors for multi-color emissive carbon dots. Journal of Materials Chemistry C, 2022, 10, 1932-1967.	2.7	21

#	Article	IF	CITATIONS
1360	Carbon Dots: Synthesis, Properties and Applications. Nanomaterials, 2021, 11, 3419.	1.9	115
1361	A pyridine based Schiff base as a selective and sensitive fluorescent probe for cadmium ions with "turn-on―fluorescence responses. New Journal of Chemistry, 2022, 46, 3348-3357.	1.4	8
1362	Phoenix dactylifera leaf-derived biocompatible carbon quantum dots: application in cell imaging. Biomass Conversion and Biorefinery, 2023, 13, 12989-12998.	2.9	6
1363	Ultrasmall fluorescent nanomaterials for sensing and bioimaging applications. , 2022, , 531-570.		0
1364	Recycling Synthetic Route to Full-Color Fluorescent Carbon Nanodots. ACS Sustainable Chemistry and Engineering, 2022, 10, 1624-1632.	3.2	13
1365	The local electric field effect of onion-like carbon nanoparticles for improved laser desorption/ionization efficiency of saccharides. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112321.	2.5	3
1366	A review on graphene quantum dots, an emerging luminescent carbon nanolights: Healthcare and Environmental applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115633.	1.7	14
1368	Carbon and carbon paste electrodes. , 2022, , 79-114.		7
1369	A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Advances, 2022, 12, 4714-4759.	1.7	62
1370	Synthesis and Photoluminescence properties oforange-red carbon dots from the paper tissuesas the precursor. Applied Optics, 2022, 61, 2118-2124.	0.9	1
1371	Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO2. Molecules, 2022, 27, 1081.	1.7	23
1372	Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics, 2022, 12, 2860-2893.	4.6	44
1374	Detection of Fe3+ and Hg2+ Ions by Using High Fluorescent Carbon Dots Doped With S And N as Fluorescence Probes. Journal of Fluorescence, 2022, 32, 1089-1098.	1.3	13
1375	A facile fluorescence turnâ€on biosensor customized for monitoring of protein kinase activity based on carboxylic carbon nanoparticle–peptide complexes. Luminescence, 2022, 37, 922-929.	1.5	3
1376	Monodispersed Co@C nanoparticles anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 124, 182-192.	5.6	63
1377	Quantum materials made in microfluidics - critical review and perspective. Chemical Engineering Journal, 2022, 438, 135616.	6.6	13
1378	Highly selective and sensitive fluorometric probe for Cd2+ ions based on 4-(quinolin-2-ylmethylene)aminoanisole Schiff base. Inorganica Chimica Acta, 2022, 536, 120884.	1.2	11
1379	Magnetic carbon nanoparticles derived from candle soot for SALDI MS analyses of drugs and heavy metals in latent fingermarks. Microchemical Journal, 2022, 178, 107381.	2.3	11

#	Article	IF	CITATIONS
1380	Molecular Insights of Carbon Nanodots Formation and Their Twoâ€₱hoton Emission Properties. Advanced Photonics Research, 2022, 3, 2100092.	1.7	2
1381	Functional carbon dots from a mild oxidation of coal liquefaction residue. Fuel, 2022, 322, 124216.	3.4	16
1383	Spontaneously sp ² -Carbonized Fluorescent Polyamides as a Probe Material for Bioimaging. ACS Applied Bio Materials, 2022, 5, 3057-3066.	2.3	0
1384	Comprehensive step-by-step procedure to setup a molecular communication through liquid experiment. MethodsX, 2022, 9, 101736.	0.7	3
1385	Synthesis, Characterization and Antimicrobial Property in Vitro of Supramolecular Coordination Polymers Bearing Brominated Schiff Base Ligand. SSRN Electronic Journal, 0, , .	0.4	0
1386	ä,å›½å¢¨æ¥æ°çš"å'å‰ç¢³çº³ç±³ç²'忀§èˆç"ç©¶. Scientia Sinica Chimica, 2022, , .	0.2	0
1387	A Size-Controlled Graphene Oxide Materials Obtained by One-Step Electrochemical Exfoliation of Carbon Fiber Cloth for Applications to In Situ Gold Nanoparticle Formation and Electrochemical Sensors—A Preliminary Study. Biosensors, 2022, 12, 360.	2.3	4
1388	Facile Synthesis of Catalyst Free Carbon Nanoparticles From the Soot of Natural Oils. Frontiers in Materials, 2022, 9, .	1.2	0
1389	Pyrolysis of single carbon sources in SBA-15: A recyclable solid phase synthesis to obtain uniform carbon dots with tunable luminescence. Chinese Chemical Letters, 2023, 34, 107560.	4.8	12
1390	Highâ€performance Mg ²⁺ Sensors Based on Natural Rubberâ€derived, Labelâ€free Carbon Dots. ChemistrySelect, 2022, 7, .	0.7	2
1391	The synthesis of carbon-based quantum dots: A supercritical fluid approach and perspective. Materials Today Physics, 2022, 27, 100752.	2.9	4
1392	C-scheme electron transfer mechanism: An efficient ternary heterojunction photocatalyst carbon quantum dots/Bi/BiOBr with full ohmic contact. Journal of Colloid and Interface Science, 2022, 624, 168-180.	5.0	26
1393	Nanocomposites of Epoxy and Carbon Dots. ACS Symposium Series, 0, , 201-233.	0.5	0
1394	Synthesis and Photoluminescence Mechanism of Multicolored Nitrogen-Doped Carbon Nanodots and Their Application in Polymer Self-Assemblies. ACS Applied Polymer Materials, 2022, 4, 4784-4795.	2.0	5
1395	Study on optical properties of carbon nanodots by annealing of rice powder as a carbon source. Journal of Physics: Conference Series, 2022, 2243, 012103.	0.3	1
1396	Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging. New Carbon Materials, 2022, 37, 595-602.	2.9	9
1397	Is precarbonization necessary for effective laser graphitization?. Carbon, 2022, 199, 208-214.	5.4	7
1398	Versatile Azido-Functionalized Carbon Dots for Cancer Cell Imaging. ACS Applied Nano Materials, 2022, 5, 12374-12379.	2.4	0

#	Article	IF	CITATIONS
1399	Photocatalytic upcycling of poly(ethylene terephthalate) plastic to high-value chemicals. Applied Catalysis B: Environmental, 2022, 316, 121662.	10.8	40
1400	Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared fluorescent carbon dots. Coordination Chemistry Reviews, 2022, 470, 214703.	9.5	64
1401	The "ON-OFFâ€Âmicrowave reaction time technique: A novel strategy to impact the fluorescence of multi-color emissive carbon dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129735.	2.3	4
1402	Candle Soot-Based Electrosprayed Superhydrophobic Coatings for Self-Cleaning, Anti-Corrosion and Oil/Water Separation. Materials, 2022, 15, 5300.	1.3	3
1403	A review on carbon quantum dots: Synthesis, photoluminescence mechanisms and applications. Luminescence, 2022, 37, 1612-1638.	1.5	22
1404	Fluorescent carbon dot embedded polystyrene particle: an alternative to fluorescently tagged polystyrene for fate of microplastic studies: a preliminary investigation. Applied Nanoscience (Switzerland), 2022, 12, 2725-2731.	1.6	6
1405	Carbon dot-based therapeutics for combating drug-resistant bacteria and biofilm infections in food preservation. Critical Reviews in Food Science and Nutrition, 2024, 64, 203-219.	5.4	6
1406	Synthesis, characterization and antimicrobial property in vitro of supramolecular coordination polymers bearing brominated Schiff base ligand. Journal of Inorganic Biochemistry, 2022, 236, 111939.	1.5	2
1407	A carbon dots-enhanced laccase-based electrochemical sensor for highly sensitive detection of dopamine in human serum. Analytica Chimica Acta, 2022, 1229, 340365.	2.6	21
1408	Solvent-dependent carbon dots for multifunctional sensing of temperature, pH, and proton pump inhibitors. Analytica Chimica Acta, 2022, 1228, 340341.	2.6	9
1409	Carbon dots-based electrochemical sensors. , 2023, , 109-136.		3
1410	Synthetic strategies toward developing carbon dots via top-down approach. , 2023, , 1-13.		2
1411	Unconventional conjugation in macromonomers and polymers. Chemical Communications, 2022, 58, 10596-10618.	2.2	3
1412	D0 carbon nanoparticles: Carbon nanodots and graphene oxide quantum dots. , 2022, , 505-527.		0
1413	Ultrafast insights into full-colour light-emitting C-Dots. Nanoscale, 2022, 14, 15812-15820.	2.8	5
1414	Fluorescent carbon dots synthesis in premixed flames: Influence of the equivalence ratio. Carbon, 2023, 201, 659-666.	5.4	7
1415	Nickel-doped carbon dots with enhanced and tunable multicolor fluorescence emission for multicolor light-emitting diodes. Carbon, 2023, 201, 796-804.	5.4	24
1416	Synthesis of Nitrogen-Doped Graphene Quantum Dots from Sucrose Carbonization. Applied Sciences (Switzerland), 2022, 12, 8686.	1.3	7

		_
CITATI	ON	Report
CHAI		REPORT

#	Article	IF	CITATIONS
1417	ZnO/CQDs Nanocomposites for Visible Light Photodegradation of Organic Pollutants. Catalysts, 2022, 12, 952.	1.6	8
1418	An overview of paclitaxel and molecular imprinted polymers capped with Quantum Dots as an alternative approach for paclitaxel extraction and detection. Current Materials Science, 2022, 15, .	0.2	1
1419	Hydrothermal Synthesis of Nitrogen-Doped and Excitation-Dependent Carbon Quantum Dots for Selective Detection of Fe3+ in Blood Plasma. Coatings, 2022, 12, 1311.	1.2	3
1420	Blue, green and yellow carbon dots derived from pyrogenic carbon: Structure and fluorescence behaviour. Carbon, 2023, 201, 900-909.	5.4	14
1421	Nanocomposites of Carbon Quantum Dots and Graphene Quantum Dots: Environmental Applications as Sensors. Chemosensors, 2022, 10, 367.	1.8	33
1422	Carbon quantum dots as ROS-generator and -scavenger: A comprehensive review. Dyes and Pigments, 2023, 208, 110784.	2.0	15
1423	Tunable carbon quantum dots from starch via microwave assisted carbonization. , 0, , 13-21.		6
1424	Gadolinium-doped fluorescent carbon quantum dots as MRI contrast agents and fluorescent probes. Scientific Reports, 2022, 12, .	1.6	14
1425	Metal–Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS Applied Materials & Interfaces, 2022, 14, 49399-49424.	4.0	38
1426	A comprehensive review of the importance of thermal activation in the production of carbon dots and the potential for their use in the bioenergy industry. Journal of Thermal Analysis and Calorimetry, 2023, 148, 505-516.	2.0	1
1427	High-performance dual carbon Li-ion hybrid capacitor constructed from N, S - co-doped candle soot derived carbon nanoparticles anode and porous carbon cathode. Journal of Energy Storage, 2022, 55, 105788.	3.9	9
1428	Hydrothermal synthesis of N,S-doped carbon quantum dots as a dual mode sensor for azo dye tartrazine and fluorescent ink applications. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114386.	2.0	15
1429	Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. Materials, 2022, 15, 7888.	1.3	9
1431	Exploring the non-traditional fluorescence emission of non-conjugated polymers dots for sensing pesticides. Reactive and Functional Polymers, 2023, 182, 105483.	2.0	2
1432	Application of green-synthesized carbon dots for imaging of cancerous cell lines and detection of anthraquinone drugs using silica-coated CdTe quantum dots-based ratiometric fluorescence sensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 288, 122200.	2.0	8
1433	Applications of Carbon Dots for the Treatment of Alzheimer's Disease. International Journal of Nanomedicine, 0, Volume 17, 6621-6638.	3.3	4
1434	Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. Nanomaterials, 2023, 13, 316.	1.9	7
1435	Earth-abundant photoelectrodes for water splitting and alternate oxidation reactions: Recent advances and future perspectives. Progress in Materials Science, 2023, 134, 101073.	16.0	15

#	Article	IF	CITATIONS
1436	Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. International Journal of Molecular Sciences, 2023, 24, 1023.	1.8	9
1437	Fabrication of Carbonâ€Based Quantum Dots via a "Bottomâ€Up―Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks― Small, 2023, 19, .	5.2	13
1438	Detoxification of Toxic Organic Dye by Heteroatom-Doped Fluorescent Carbon Dots Prepared by Green Hydrothermal Method Using Garcinia mangostana Extract. Agronomy, 2023, 13, 205.	1.3	5
1439	Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & Fuels, 2023, 37, 876-901.	2.5	7
1440	Efficient bottom-up synthesis of graphene quantum dots at an atomically precise level. Matter, 2023, 6, 728-760.	5.0	24
1441	Emerging Trends of Carbonâ€Based Quantum Dots: Nanoarchitectonics and Applications. Small, 2023, 19,	5.2	33
1442	Carbon quantum dots as corrosion inhibitors. , 2023, , 187-209.		0
1443	A review of enhanced electrocatalytic composites hydrogen/oxygen evolution based on quantum dot. Journal of Industrial and Engineering Chemistry, 2023, 121, 27-39.	2.9	10
1444	Poly(tannic acid)-functionalized onion-like carbon nanoparticles derived from candle soot serving as potent lubricant additives. Journal of Molecular Liquids, 2023, 379, 121697.	2.3	11
1445	Separation and online optical characterization of fluorescent components of pyrogenic carbons for carbon dots identification. Carbon, 2023, 209, 118009.	5.4	4
1446	Ionic liquid-enhanced lemon biomass carbon dots with sustainable use in bionic antibody microspheres for urea capture and ethyl carbamate inhibition. Food Chemistry, 2023, 415, 135715.	4.2	4
1447	Spirulina carbon dots: a promising biomaterial for photocatalytic textile industry Reactive Red M8B dye degradation. Environmental Science and Pollution Research, 2023, 30, 52073-52086.	2.7	3
1448	Electrical and magnetic performances of semiconductor based carbon nanoparticles. AIP Advances, 2023, 13, 035028.	0.6	0
1449	Preparation of nitrogen-doped carbon dots and their enhancement on lettuce yield and quality. Journal of Materials Chemistry B, 2023, 11, 3113-3123.	2.9	3
1450	Photocatalytic treatment of textile effluents by biosynthesized photo-smart catalyst: an eco-friendly and cost-effective approach. Environment, Development and Sustainability, 0, , .	2.7	1
1451	Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. Journal of Nanoparticle Research, 2023, 25, .	0.8	10
1452	Dual-Emissive Carbon Dots: Exploring Their Fluorescence Properties for Sensitive Turn-Off–On Recognition of Ferric and Pyrophosphate lons and Its Application in Fluorometric Detection of the Loop-Mediated Isothermal Amplification Reaction. Langmuir, 2023, 39, 5779-5792.	1.6	5
1453	Highly stable N-doped carbon dots as the sensitive probe for the detection of Fe3+. Current Applied Physics, 2023, 50, 168-175.	1.1	3

#	Article	IF	CITATIONS
1454	Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. Science of the Total Environment, 2023, 882, 163565.	3.9	8
1455	The effect of carbon nanodots and graphene quantum dots on the green microalga Scenedesmus quadricauda. Journal of Applied Phycology, 2023, 35, 1091-1102.	1.5	3
1456	Easy-to-perform organic-solvent-free synthesis of carbon dots with strong green photoluminescence. Chinese Chemical Letters, 2024, 35, 108481.	4.8	2
1459	Natural Polymer-Carbon Dot Nanocomposites for Biomedical Use. Advances in Material Research and Technology, 2023, , 297-341.	0.3	0
1460	Carbon quantum dots: A fluorescent nanomaterial with huge impact on environmental remediation. , 2023, , 275-304.		0
1464	Resourceful Quantum Dots for Pulmonary Drug Delivery: Facts, Frontiers, and Future. , 2023, , 345-368.		0
1467	Fluorescent Nanomaterials and Its Application in Biomedical Engineering. Advances in Digital Crime, Forensics, and Cyber Terrorism, 2023, , 164-186.	0.4	6
1471	Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. Journal of Materials Chemistry B, 2023, 11, 8117-8135.	2.9	3
1476	Application of Quantum Dots to <i>in Vitro</i> and <i>in Vivo</i> pH Detection. , 2023, , 175-196.		0
1483	Synthesis and applications of carbon quantum dots derived from biomass waste: a review. Environmental Chemistry Letters, 2023, 21, 3393-3424.	8.3	8
1488	Introduction to Photoluminescent Carbon Dots. , 2023, , 1-26.		0
1489	Functionalization of Carbon Dots and Their Catalytic Applications. , 2023, , 107-149.		0
1490	Fungal Nanobionics: Principles and Applications in Environment. , 2023, , 777-797.		0
1496	Recent advances in red-emissive carbon dots and their biomedical applications. Materials Chemistry Frontiers, 2024, 8, 930-955.	3.2	0