Propylene Carbonate as a Solvent for Asymmetric Hydr

Angewandte Chemie - International Edition 46, 5971-5974 DOI: 10.1002/anie.200700990

Citation Report

#	Article	IF	CITATIONS
1	Vapour pressure and enthalpy of vaporization of cyclic alkylene carbonates. Fluid Phase Equilibria, 2008, 268, 1-6.	2.5	38
2	Lipase-catalysed kinetic resolution of secondary alcohols with improved enantioselectivity in propylene carbonate. World Journal of Microbiology and Biotechnology, 2008, 24, 2421-2424.	3.6	18
3	Organic Carbonates as Alternative Solvents for Palladium atalyzed Substitution Reactions. ChemSusChem, 2008, 1, 249-253.	6.8	101
4	Dimethyl Carbonate: An Ecoâ€Friendly Solvent in Rutheniumâ€Catalyzed Olefin Metathesis Transformations. ChemSusChem, 2008, 1, 813-816.	6.8	91
5	Rhâ€Catalyzed Asymmetric Hydrogenation of Unsaturated Lactate Precursors in Propylene Carbonate. ChemSusChem, 2008, 1, 934-940.	6.8	26
6	Vapour pressure and enthalpy of vaporization of aliphatic dialkyl carbonates. Journal of Chemical Thermodynamics, 2008, 40, 1136-1140.	2.0	38
7	Fluoroalkyl substituted (Z)-dehydro α-amino ester as a building block for the fluorine-containing cyclopropyl α-amino esters and dihydrooxazole. Journal of Fluorine Chemistry, 2008, 129, 510-514.	1.7	20
8	Rhodium-catalyzed asymmetric hydrogenation with self-assembling catalysts in propylene carbonate. Tetrahedron Letters, 2008, 49, 768-771.	1.4	44
9	A Pâ^—-chiral bisdiamidophosphite ligand with a 1,4:3,6-dianhydro-d-mannite backbone and its application in asymmetric catalysis. Tetrahedron Letters, 2008, 49, 3120-3123.	1.4	30
10	Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts. Journal of Molecular Catalysis A, 2008, 284, 52-57.	4.8	172
11	Synthesis of Enantiomerically Pure 1,2,3,4â€Tetrahydroâ€Î²â€carbolines and <i>N</i> â€Acylâ€1â€aryl Ethylamine Rhodiumâ€Catalyzed Hydrogenation. Chemistry - an Asian Journal, 2008, 3, 1104-1110.	es by 3.3	21
12	Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of Î ² -cyclodextrin. Green Chemistry, 2008, 10, 1337.	9.0	179
13	Cobalt, rhodium and iridium. Annual Reports on the Progress of Chemistry Section A, 2008, 104, 198.	0.8	1
14	Solubility of Hydrogen in the Cyclic Alkylene Ester 1,2-Butylene Carbonate. Journal of Chemical & Engineering Data, 2008, 53, 2844-2850.	1.9	9
15	Propylene Carbonate as a Green Solvent for Kinetic Resolution of Secondary Alcohols Catalyzed by Candida antarctica Lipase. , 2009, , .		1
16	Synthesis and Structural Determination of Two Types of Novel Cyclic Carbonates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 445-448.	0.6	2
17	Organic carbonates as alternative solvents for asymmetric hydrogenation. Chirality, 2009, 21, 857-861.	2.6	17
18	Improved Palladiumâ€Catalyzed Sonogashira Coupling Reactions of Aryl Chlorides. Chemistry - A European Journal, 2009, 15, 1329-1336.	3.3	116

#	Article	IF	CITATIONS
19	Organocatalytic, Asymmetric Aldol Reactions with a Sustainable Catalyst in a Green Solvent. ChemSusChem, 2009, 2, 862-865.	6.8	62
20	Carbonates: Ecofriendly Solvents for Palladiumâ€Catalyzed Direct 2â€Arylation of Oxazole Derivatives. ChemSusChem, 2009, 2, 951-956.	6.8	42
22	Efficient Enantioselective Synthesis of Optically Active Diols by Asymmetric Hydrogenation with Modular Chiral Metal Catalysts. Angewandte Chemie - International Edition, 2009, 48, 7556-7559.	13.8	50
23	Catalytic, asymmetric cyanohydrin synthesis in propylene carbonate. Tetrahedron Letters, 2009, 50, 4452-4454.	1.4	53
24	Iridium Phosphiteâ^'Oxazoline Catalysts for the Highly Enantioselective Hydrogenation of Terminal Alkenes. Journal of the American Chemical Society, 2009, 131, 12344-12353.	13.7	134
25	Diethyl carbonate as a solvent for ruthenium catalysed C–H bond functionalisation. Green Chemistry, 2009, 11, 1871.	9.0	131
26	The synthesis of organic carbonates from carbon dioxide. Chemical Communications, 2009, , 1312.	4.1	965
27	MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chemistry, 2009, 11, 1031.	9.0	427
28	Ethylene carbonate as a unique solvent for palladium-catalyzed Wacker oxidation using oxygen as the sole oxidant. Green Chemistry, 2009, 11, 1317.	9.0	61
29	Diastereoselective Hydrogenation of Substituted Quinolines to Enantiomerically Pure Decahydroquinolines. Advanced Synthesis and Catalysis, 2010, 352, 357-362.	4.3	61
30	Polystyreneâ€Supported Amino Acids as Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Advanced Synthesis and Catalysis, 2010, 352, 1925-1933.	4.3	128
31	(<i>S</i>)â€6â€Bromoâ€BINOLâ€based phosphoramidite ligand with <i>C</i> ₁ symmetry for enantioselective hydrogenation and allylic substitution. Chirality, 2010, 22, 844-848.	2.6	17
32	Highly Modular POP Ligands for Asymmetric Hydrogenation: Synthesis, Catalytic Activity, and Mechanism. Chemistry - A European Journal, 2010, 16, 6495-6508.	3.3	67
33	Cyclic Carbonate Synthesis Catalysed by Bimetallic Aluminium–Salen Complexes. Chemistry - A European Journal, 2010, 16, 6828-6843.	3.3	352
34	Asymmetric Hydrogenation of Minimally Functionalised Terminal Olefins: An Alternative Sustainable and Direct Strategy for Preparing Enantioenriched Hydrocarbons. Chemistry - A European Journal, 2010, 16, 14232-14240.	3.3	93
35	BINAP: rhodium–diolefin complexes in asymmetric hydrogenation. Tetrahedron: Asymmetry, 2010, 21, 1226-1231.	1.8	29
36	Cyclic carbonates as sustainable solvents for proline-catalysed aldol reactions. Tetrahedron: Asymmetry, 2010, 21, 1262-1271.	1.8	61
37	Organic Carbonates as Solvents in Synthesis and Catalysis. Chemical Reviews, 2010, 110, 4554-4581.	47.7	1,041

#	Article	IF	CITATIONS
38	Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate. Beilstein Journal of Organic Chemistry, 2010, 6, 1043-1055.	2.2	33
39	Carbonates: eco-friendly solvents for palladium-catalysed direct arylation of heteroaromatics. Green Chemistry, 2010, 12, 2053.	9.0	109
40	<i>P</i> -Heterocycles as Ligands in Homogeneous Catalytic Reactions. Chemical Reviews, 2010, 110, 4257-4302.	47.7	258
41	Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2010, 12, 1514.	9.0	1,174
42	Amidine-mediated delivery of CO ₂ from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides. Green Chemistry, 2010, 12, 42-44.	9.0	80
43	Replacing dichloroethane as a solvent for rhodium-catalysed intermolecular alkyne hydroacylation reactions: the utility of propylene carbonate. Green Chemistry, 2011, 13, 1980.	9.0	44
44	Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents. Green Chemistry, 2011, 13, 1448.	9.0	76
45	Highly efficient synthesis of cyclic carbonates from CO ₂ and epoxides over cellulose/KI. Chemical Communications, 2011, 47, 2131-2133.	4.1	264
46	Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chemistry, 2011, 13, 1023.	9.0	242
47	Phosphineâ^'Phosphinite and Phosphineâ^'Phosphite Ligands: Preparation and Applications in Asymmetric Catalysis. Chemical Reviews, 2011, 111, 2119-2176.	47.7	358
48	One-component bimetallic aluminium(salen)-based catalysts for cyclic carbonate synthesis and their immobilization. Dalton Transactions, 2011, 40, 3885-3902.	3.3	146
49	Greener solvents for ruthenium and palladium-catalysed aromatic C–H bond functionalisation. Green Chemistry, 2011, 13, 741.	9.0	167
50	Synthesis of a methacrylic monomer having pendant cyclohexene cyclic carbonate—Easy CO ₂ fixation and radical polymerization. Journal of Polymer Science Part A, 2011, 49, 545-549.	2.3	17
51	Highly efficient synthesis of cyclic carbonates from epoxides catalyzed by indium tribromide system. Tetrahedron Letters, 2011, 52, 721-723.	1.4	57
52	Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst. Catalysis Science and Technology, 2012, 2, 1051.	4.1	134
53	Asymmetric hydrogenation of $Ci \in C$ double bonds using Rh-complex under homogeneous, heterogeneous and continuous mode conditions. Green Chemistry, 2012, 14, 1146.	9.0	42
54	Carbon Dioxide Fixation by Cycloaddition with Epoxides, Catalyzed by Biomimetic Metalloporphyrins. ChemCatChem, 2012, 4, 1752-1758.	3.7	86
55	Synthesis of Cyclic Carbonate From Carbon Dioxide and Epoxide Using Amino Acid Ionic Liquid Under 1 atm Pressure. Australian Journal of Chemistry, 2012, 65, 381.	0.9	27

#	Article	IF	CITATIONS
56	Organic carbonates as stabilizing solvents for transition-metal nanoparticles. Dalton Transactions, 2012, 41, 9722.	3.3	20
58	Asymmetric Hydrogenation of Nonfunctionalized Olefins in Propylene Carbonate—Kinetic or Thermodynamic Control?. Industrial & Engineering Chemistry Research, 2012, 51, 126-132.	3.7	8
59	Mechanisms of ethylene glycol carbonylation with carbon dioxide. Computational and Theoretical Chemistry, 2012, 992, 103-109.	2.5	10
60	Highly efficient synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/lecithin. Catalysis Today, 2012, 183, 130-135.	4.4	79
61	Regioselective hydroformylation of vinyl acetate catalyzed by rhodium complex of naphthyl-based monodentate bulky phosphine and phosphite ligands. Applied Catalysis A: General, 2012, 419-420, 185-193.	4.3	19
62	lonic liquids grafted on carbon nanotubes as highly efficient heterogeneous catalysts for the synthesis of cyclic carbonates. Applied Catalysis A: General, 2012, 429-430, 67-72.	4.3	96
63	Incorporation of Metal Ions into Silica-Grafted Imidazolium-Based Ionic Liquids to Efficiently Catalyze Cycloaddition Reactions of CO2 and Epoxides. Catalysis Letters, 2012, 142, 259-266.	2.6	31
64	Mild and efficient capture and functionalisation of CO2 using silver(i) oxide and application to 13C-labelled dialkyl carbonates. RSC Advances, 2013, 3, 4613.	3.6	2
65	Triethanolamine/KI: A Multifunctional Catalyst for CO2 Activation and Conversion with Epoxides into Cyclic Carbonates. Synthetic Communications, 2013, 43, 2985-2997.	2.1	36
66	Effective synthesis of cyclic carbonates from carbon dioxide and epoxides by phosphonium iodides as catalysts in alcoholic solvents. Tetrahedron Letters, 2013, 54, 7031-7034.	1.4	73
67	Direct aerobic oxidation of 2-benzylpyridines in a gas–liquid continuous-flow regime using propylene carbonate as a solvent. Green Chemistry, 2013, 15, 320.	9.0	88
68	Fine tuning of the structure of phosphine–phosphoramidites: application for rhodium-catalyzed asymmetric hydrogenations. Tetrahedron: Asymmetry, 2013, 24, 66-74.	1.8	8
69	A Modular Furanoside Thioetherâ€Phosphite/Phosphinite/ Phosphine Ligand Library for Asymmetric Iridium atalyzed Hydrogenation of Minimally Functionalized Olefins: Scope and Limitations. Advanced Synthesis and Catalysis, 2013, 355, 143-160.	4.3	38
70	Convenient synthesis of cyclic carbonates from CO ₂ and epoxides by simple secondary and primary ammonium iodides as metalâ€free catalysts under mild conditions and its application to synthesis of polymer bearing cyclic carbonate moiety. Journal of Polymer Science Part A, 2013, 51, 1230-1242.	2.3	71
71	CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General, 2013, 453, 175-180.	4.3	359
72	Highly Enantioselective Hydrogenation of 2,4â€Diarylâ€1,5â€Benzodiazepines Catalyzed by Dendritic Phosphinooxazoline Iridium Complexes. Chemistry - an Asian Journal, 2013, 8, 1101-1104.	3.3	27
73	Effective synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/cucurbit[6]uril. Pure and Applied Chemistry, 2013, 85, 1633-1641.	1.9	28
74	A Phosphiteâ€Pyridine/Iridium Complex Library as Highly Selective Catalysts for the Hydrogenation of Minimally Functionalized Olefins. Advanced Synthesis and Catalysis, 2013, 355, 2569-2583.	4.3	34

#	Article	IF	CITATIONS
75	Organic carbonates as solvents in macrocyclic Mn(III) salen catalyzed asymmetric epoxidation of non-functionalized olefins. Journal of Molecular Catalysis A, 2013, 366, 380-389.	4.8	19
77	Pillared Cobalt–Amino Acid Framework Catalysis for Styrene Carbonate Synthesis from CO ₂ and Epoxide by Metal–Sulfonate–Halide Synergism. ChemCatChem, 2014, 6, 284-292.	3.7	51
78	2,2',2''-Terpyridine-Catalyzed Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide under Solvent-Free Conditions. International Journal of Molecular Sciences, 2014, 15, 9945-9951.	4.1	7
79	Phosphorusâ€based Bifunctional Organocatalysts for the Addition of Carbon Dioxide and Epoxides. ChemSusChem, 2014, 7, 3268-3271.	6.8	116
81	Synthesis and characterization of bis[2-(1H-benzimidazol-2-yl)benzoato]nickel(II), and its use for preparation of dimethyl carbonate from methanol and CO2. Research on Chemical Intermediates, 2014, 40, 1179-1186.	2.7	3
82	Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis. Nanoscale, 2014, 6, 3116.	5.6	82
84	Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates. Catalysis Science and Technology, 2014, 4, 1556.	4.1	222
85	Asymmetric Hydrogenation of Olefins Using Chiral Crabtree-type Catalysts: Scope and Limitations. Chemical Reviews, 2014, 114, 2130-2169.	47.7	413
86	Catalytic performance of zinc containing ionic liquids immobilized on silica for the synthesis of cyclic carbonates. Journal of Industrial and Engineering Chemistry, 2014, 20, 3102-3107.	5.8	42
87	Ruthenium(II)-Catalysed sp2 C–H Bond Functionalization by C–C Bond Formation. Topics in Organometallic Chemistry, 2014, , 119-193.	0.7	30
88	Zn-BTC MOFs with active metal sites synthesized via a structure-directing approach for highly efficient carbon conversion. Chemical Communications, 2014, 50, 2624-2627.	4.1	118
89	A Theoreticallyâ€Guided Optimization of a New Family of Modular P,Sâ€Ligands for Iridiumâ€Catalyzed Hydrogenation of Minimally Functionalized Olefins. Chemistry - A European Journal, 2014, 20, 12201-12214.	3.3	41
90	Carboxy-directed asymmetric hydrogenation of α-alkyl-α-aryl terminal olefins: highly enantioselective and chemoselective access to a chiral benzylmethyl center. Organic and Biomolecular Chemistry, 2014, 12, 2049.	2.8	28
91	Aqueous-microwave synthesized carboxyl functional molecular ribbon coordination framework catalyst for the synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 2014, 16, 1607.	9.0	124
92	Dinuclear Aluminum Complexes as Catalysts for Cycloaddition of CO2 to Epoxides. Organometallics, 2014, 33, 2770-2775.	2.3	48
93	Cyclic Carbonates as Green Alternative Solvents for the Heck Reaction. ACS Sustainable Chemistry and Engineering, 2014, 2, 1739-1742.	6.7	168
94	An efficient method for the synthesis of cyclic carbonates from CO2 and epoxides using an effective two-component catalyst system: Polymer-supported quaternary onium salts and aqueous solutions of metal salts. Applied Catalysis A: General, 2014, 482, 266-274.	4.3	20
95	Cycling of waste fusel alcohols from sugar cane industries using supercritical carbon dioxide. RSC Advances, 2015, 5, 81515-81522.	3.6	9

#	Article	IF	CITATIONS
96	Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide by Using Bifunctional Oneâ€Component Phosphorusâ€Based Organocatalysts. ChemSusChem, 2015, 8, 2655-2669.	6.8	155
97	Ecoâ€Friendly Solvents for Palladiumâ€Catalyzed Desulfitative CH Bond Arylation of Heteroarenes. ChemSusChem, 2015, 8, 1794-1804.	6.8	49
98	Highly Efficient Polymerâ€ S upported Catalytic System for the Valorization of Carbon Dioxide. ChemSusChem, 2015, 8, 3815-3822.	6.8	46
99	Facile, Efficient Diastereoselective Synthesis of Tetrahydroquinoline Scaffolds Using Propylene Carbonate as an Eco-Friendly Solvent. Current Organic Synthesis, 2015, 12, 102-107.	1.3	11
100	Synthesis of new N-substituted chiral phosphine–phosphoramidite ligands and their application in asymmetric hydrogenations and allylic alkylations. Tetrahedron: Asymmetry, 2015, 26, 666-673.	1.8	11
101	Chiral phosphoric acid catalyzed asymmetric transfer hydrogenation of quinolines in a sustainable solvent. Tetrahedron: Asymmetry, 2015, 26, 1174-1179.	1.8	26
102	Synthesis and characterization of manganese(III) and high-valent manganese-oxo complexes and their roles in conversion of alkenes to cyclic carbonates. Journal of CO2 Utilization, 2015, 9, 48-57.	6.8	38
103	Propene carbonate intensified cyclohexane oxidation over Au/SiO2 catalyst. Catalysis Communications, 2015, 64, 58-61.	3.3	10
104	Amineâ€bis(phenolato)cobalt(II) Catalysts for the Formation of Organic Carbonates from Carbon Dioxide and Epoxides. European Journal of Inorganic Chemistry, 2015, 2015, 1766-1774.	2.0	32
105	Hydroformylation of piperylene and efficient catalyst recycling in propylene carbonate. Green Chemistry, 2015, 17, 4045-4052.	9.0	29
106	Microwave assisted process intensification of lipase catalyzed transesterification of 1,2 propanediol with dimethyl carbonate for the green synthesis of propylene carbonate: Novelties of kinetics and mechanism of consecutive reactions. Chemical Engineering Journal, 2015, 281, 199-208.	12.7	26
107	Monomeric or Dimeric Aluminum Complexes as Catalysts for Cycloaddition between CO ₂ and Epoxides. European Journal of Inorganic Chemistry, 2015, 2015, 2323-2329.	2.0	20
108	Mechanism of fixation of CO2 in the presence of hydroxyl-functionalized quaternary ammonium salts. Journal of CO2 Utilization, 2015, 10, 113-119.	6.8	33
109	Metalloporphyrin-based organic polymers for carbon dioxide fixation to cyclic carbonate. Journal of Materials Chemistry A, 2015, 3, 9807-9816.	10.3	110
110	CO ₂ Chemistry in SCUT Group: New Methods for Conversion of Carbon Dioxide into Organic Compounds. ACS Symposium Series, 2015, , 71-108.	0.5	1
111	Metal–Organic Polymers Containing Discrete Single-Walled Nanotube as a Heterogeneous Catalyst for the Cycloaddition of Carbon Dioxide to Epoxides. Journal of the American Chemical Society, 2015, 137, 15066-15069.	13.7	273
112	Bifunctional Oneâ€Component Catalysts for the Addition of Carbon Dioxide to Epoxides. ChemCatChem, 2015, 7, 459-467.	3.7	105
113	Chemical Fixation of Carbon Dioxide Using a Green and Efficient Catalytic System Based on Sugarcane Bagasse—An Agricultural Waste. ACS Sustainable Chemistry and Engineering, 2015, 3, 147-152.	6.7	65

#	Article	IF	CITATIONS
114	Mono/multinuclear cobaloxime and organocobaloxime-catalyzed conversion of CO2 and epoxides to cyclic organic carbonates: Synthesis and characterization. Journal of Industrial and Engineering Chemistry, 2015, 24, 98-106.	5.8	25
115	Organocatalytic Transformation of Carbon Dioxide. , 0, , .		1
116	Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr). Dalton Transactions, 2016, 45, 9565-9573.	3.3	70
117	Facile synthesis of a dimeric titanium(iv) complex with terminal Tiî€O moieties and its application as a catalyst for the cycloaddition reaction of CO2to epoxides. RSC Advances, 2016, 6, 97800-97807.	3.6	8
118	Highly recyclable and magnetic catalyst of a metalloporphyrin-based polymeric composite for cycloaddition of CO ₂ to epoxide. RSC Advances, 2016, 6, 96455-96466.	3.6	10
119	Asymmetric Catalyzed Allylic Substitution Using a Pd/P–S Catalyst Library with Exceptional High Substrate and Nucleophile Versatility: DFT and Pd-ï€-allyl Key Intermediates Studies. Organometallics, 2016, 35, 3323-3335.	2.3	21
120	Asymmetric Hydrogenation of Nonaromatic Cyclic Substrates. Chemical Reviews, 2016, 116, 14769-14827.	47.7	284
121	Ironâ€Catalyzed Synthesis of Fiveâ€Membered Cyclic Carbonates from Vicinal Diols: Urea as Sustainable Carbonylation Agent. European Journal of Organic Chemistry, 2016, 2016, 3721-3727.	2.4	33
122	Construction of solvent-dependent self-assembled porous Ni(<scp>ii</scp>)-coordinated frameworks as effective catalysts for chemical transformation of CO ₂ . RSC Advances, 2016, 6, 108010-108016.	3.6	6
123	Iridiumâ€Catalyzed Asymmetric Hydrogenation of Unfunctionalized Exocyclic C=C Bonds. Chemistry - A European Journal, 2016, 22, 18354-18357.	3.3	31
124	Comparative Synthesis of Cu and Cu ₂ O Nanoparticles from Different Copper Precursors in an Ionic Liquid or Propylene Carbonate. European Journal of Inorganic Chemistry, 2016, 2016, 2106-2113.	2.0	17
125	Convergent Activation Concept for CO ₂ Fixation in Carbonates. Advanced Synthesis and Catalysis, 2016, 358, 622-630.	4.3	73
126	Propylene oxide as a dehydrating agent: potassium carbonate-catalyzed carboxylative cyclization of propylene glycol with CO ₂ in a polyethylene glycol/CO ₂ biphasic system. RSC Advances, 2016, 6, 32400-32404.	3.6	12
127	A novel zinc based binary catalytic system for CO ₂ utilization under mild conditions. Organic Chemistry Frontiers, 2016, 3, 156-164.	4.5	24
128	Exceptionally Robust In-Based Metal–Organic Framework for Highly Efficient Carbon Dioxide Capture and Conversion. Inorganic Chemistry, 2016, 55, 3558-3565.	4.0	199
129	Bifunctional catalyst of a metallophthalocyanine-carbon nitride hybrid for chemical fixation of CO ₂ to cyclic carbonate. RSC Advances, 2016, 6, 2810-2818.	3.6	40
130	Titanate nanotube-promoted chemical fixation of carbon dioxide to cyclic carbonate: a combined experimental and computational study. Catalysis Science and Technology, 2016, 6, 780-790.	4.1	20
131	Biomass-derived solvents as effective media for cross-coupling reactions and $C\hat{a} \in H$ functionalization processes. Green Chemistry, 2017, 19, 1601-1612.	9.0	169

#	Article	IF	CITATIONS
132	Boron-doped melamine-derived carbon nitrides tailored by ionic liquids for catalytic conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2017, 19, 2957-2965.	9.0	77
133	3d-4f Heterometal–Organic Frameworks for Efficient Capture and Conversion of CO ₂ . Crystal Growth and Design, 2017, 17, 3128-3133.	3.0	43
134	Pd/C in Propylene Carbonate: A Sustainable Catalyst–Solvent System for the Carbonylative Suzuki–Miyaura Crossâ€Coupling Using <i>N</i> â€Formylsaccharin as a CO Surrogate. European Journal of Organic Chemistry, 2017, 2017, 3431-3437.	2.4	35
135	Pd/C catalyzed phenoxycarbonylation using N-formylsaccharin as a CO surrogate in propylene carbonate, a sustainable solvent. Green Chemistry, 2017, 19, 823-830.	9.0	46
136	Synthesis of Metal Nanoparticles and Metal Fluoride Nanoparticles from Metal Amidinate Precursors in 1-Butyl-3-Methylimidazolium Ionic Liquids and Propylene Carbonate. ChemistryOpen, 2017, 6, 137-148.	1.9	28
137	g-C ₃ N ₄ and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditions. New Journal of Chemistry, 2017, 41, 14839-14842.	2.8	39
138	Development of pyridine based o-aminophenolate zinc complexes as structurally tunable catalysts for CO ₂ fixation into cyclic carbonates. New Journal of Chemistry, 2017, 41, 10121-10131.	2.8	19
139	Synthesis, characterization, and cycloaddition reaction studies of zinc(II) acetate complexes containing 2,6-bis(pyrazol-1-yl)pyridine and 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine ligands. Polyhedron, 2017, 125, 101-106.	2.2	10
140	Enantioselective Intramolecular Reductive Heck Reaction with a Palladium/Monodentate Phosphoramidite Catalyst. ChemCatChem, 2017, 9, 551-554.	3.7	54
141	Phosphiteâ€Thiother Ligands Derived from Carbohydrates allow the Enantioswitchable Hydrogenation of Cyclic βâ€Enamides by using either Rh or Ir Catalysts. Chemistry - A European Journal, 2017, 23, 813-822.	3.3	21
143	Bi-functional heterogeneous iron complexes for catalytic conversion of epoxides to cyclic carbonates and their application in the synthesis of polyurethane. Sustainable Energy and Fuels, 2018, 2, 1312-1322.	4.9	16
144	Polyvinyl alcohol-potassium iodide: An efficient binary catalyst for cycloaddition of epoxides with CO2. Molecular Catalysis, 2018, 449, 25-30.	2.0	16
145	KCCâ€l Supported Cu(II)â€Î²â€Cyclodextrin Complex as a Reusable Catalyst for the Synthesis of 3â€Arylâ€2â€oxazolidinones from Carbon Dioxide, Epoxide, Anilines. ChemistrySelect, 2018, 3, 3516-3522.	1.5	25
146	Mild incorporation of CO ₂ into epoxides: Application to nonisocyanate synthesis of poly(hydroxyurethane) containing triazole segment by polyaddition of novel bifunctional fiveâ€membered cyclic carbonate and diamines. Journal of Polymer Science Part A, 2018, 56, 986-993.	2.3	10
147	Recovery and Recycling of Chiral Iridium(N,P Ligand) Catalysts from Hydrogenation Reactions. Advanced Synthesis and Catalysis, 2018, 360, 1340-1345.	4.3	6
148	Preparation and Characterization of Novel Poly(Urethane-Imide) Nanocomposite Based on Graphene, Graphene Oxide and Reduced Graphene Oxide. Polymer-Plastics Technology and Engineering, 2018, 57, 1845-1857.	1.9	8
149	Efficient Solventâ€Free Carbon Dioxide Fixation Reactions with Epoxides Under Mild Conditions by Mixedâ€Ligand Zinc(II) Metal–Organic Frameworks. ChemCatChem, 2018, 10, 2401-2408.	3.7	60
150	A highly stable MnII phosphonate as a highly efficient catalyst for CO2 fixation under ambient conditions. Chemical Communications, 2018, 54, 1758-1761.	4.1	40

#	Article	IF	CITATIONS
151	Conversion of carbon dioxide into cyclic carbonates using wool powder-KI as catalyst. Journal of CO2 Utilization, 2018, 24, 174-179.	6.8	50
152	Palladium(II)- N -heterocyclic carbene-catalyzed direct C2- or C5-arylation of thiazoles with aryl bromides. Tetrahedron, 2018, 74, 2837-2845.	1.9	22
153	Computationally Guided Design of a Readily Assembled Phosphite–Thioether Ligand for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. ACS Catalysis, 2018, 8, 3587-3601.	11.2	27
154	Organocatalyst system for disubstituted carbonates from cycloaddition between CO2 and internal epoxides. Journal of CO2 Utilization, 2018, 24, 261-265.	6.8	14
155	An Uncommon Carboxylâ€Đecorated Metal–Organic Framework with Selective Gas Adsorption and Catalytic Conversion of CO ₂ . Chemistry - A European Journal, 2018, 24, 865-871.	3.3	112
156	Spirulina (Arthrospira) platensis Supported Ionic Liquid as a Catalyst for the Synthesis of 3-Aryl-2-oxazolidinones from Carbon Dioxide, Epoxide, Anilines. Catalysis Letters, 2018, 148, 119-124.	2.6	29
157	Key Green Chemistry research areas from a pharmaceutical manufacturers' perspective revisited. Green Chemistry, 2018, 20, 5082-5103.	9.0	384
158	Efficient chemical fixation of CO ₂ into cyclic carbonates using poly(4â€vinylpyridine) supported iodine as an ecoâ€friendly and reusable heterogeneous catalyst. Heteroatom Chemistry, 2018, 29, .	0.7	7
159	Amine-functionalized Zn(<scp>ii</scp>) MOF as an efficient multifunctional catalyst for CO ₂ utilization and sulfoxidation reaction. Dalton Transactions, 2018, 47, 8041-8051.	3.3	64
160	Synthesis of <i>N</i> -[(2-hydroxyethoxy)carbonyl]glycine from carbon dioxide, ethylene oxide, and α-amino acid by ionic gelation of sodium tripolyphosphate (TPP) and spirulina supported on magnetic KCC-1 in aqueous solution. New Journal of Chemistry, 2018, 42, 10153-10160.	2.8	4
161	Synthesis and Characterization of Novel Magnetic Poly(urethane-imide)/Fe3O4@SiO2–NH2 Nanocomposites. Russian Journal of Applied Chemistry, 2018, 91, 671-679.	0.5	3
162	Sustainable Heterogeneous Catalysts for CO ₂ Utilization by Using Dual Ligand Zn ^{II} /Cd ^{II} Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 15831-15839.	3.3	36
163	Catalytic Annulation of Epoxides with Heterocumulenes by the Indium-Tin System. Molecules, 2018, 23, 782.	3.8	5
164	Synthesis of Cyclic Organic Carbonates Using Atmospheric Pressure CO ₂ and Charge-Containing Thiourea Catalysts. Journal of Organic Chemistry, 2018, 83, 9991-10000.	3.2	36
165	A Cationic Zinc–Organic Framework with Lewis Acidic and Basic Bifunctional Sites as an Efficient Solvent-Free Catalyst: CO ₂ Fixation and Knoevenagel Condensation Reaction. Inorganic Chemistry, 2018, 57, 11157-11164.	4.0	106
166	Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate. Beilstein Journal of Nanotechnology, 2018, 9, 1881-1894.	2.8	18
167	Adenine-Based Zn(II)/Cd(II) Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Facile CO ₂ Fixation into Cyclic Carbonates: A DFT-Supported Study of the Reaction Mechanism. Inorganic Chemistry, 2019, 58, 11389-11403.	4.0	92
168	Catalytic CO ₂ Fixation over a Robust Lactam-Functionalized Cu(II) Metal Organic Framework. Inorganic Chemistry, 2019, 58, 9723-9732.	4.0	39

#	Article	IF	CITATIONS
169	Sustainable fixation of CO ₂ into epoxides to form cyclic carbonates using hollow marigold CuCo ₂ O ₄ spinel microspheres as a robust catalyst. Catalysis Science and Technology, 2019, 9, 4393-4412.	4.1	57
170	Progress on Catalyst Development for Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol. Chemistry Africa, 2019, 2, 533-549.	2.4	11
171	Degradation mechanism of propylene carbonate initiated by hydroxyl radical and fate of its product radicals: A hybrid density functional study. Atmospheric Environment, 2019, 216, 116952.	4.1	3
172	Continuous-flow catalytic deuterodehalogenation carried out in propylene carbonate. Green Chemistry, 2019, 21, 956-961.	9.0	14
173	A Ni ^{II} -cluster-based MOF as an efficient heterogeneous catalyst for the chemical transformation of CO ₂ . Dalton Transactions, 2019, 48, 1246-1250.	3.3	17
174	Efficient catalytic conversion of terminal/internal epoxides to cyclic carbonates by porous Co(<scp>ii</scp>) MOF under ambient conditions: structure–property correlation and computational studies. Journal of Materials Chemistry A, 2019, 7, 2884-2894.	10.3	96
175	Synthetic, spectral, structural and catalytic activity of infinite 3-D and 2-D copper(<scp>ii</scp>) coordination polymers for substrate size-dependent catalysis for CO ₂ conversion. Dalton Transactions, 2019, 48, 10078-10088.	3.3	16
176	Metal-free and benign approach for the synthesis of dihydro-5′ <i>H</i> -spiro[benzo[<i>c</i>]chromene-8,4′-oxazole]-5′,6(7 <i>H</i>)-dione scaffolds as mas amino acids. Green Chemistry, 2019, 21, 2656-2661.	ked0	6
177	Phosphiteâ€ŧhioether/selenoether Ligands from Carbohydrates: An Easily Accessible Ligand Library for the Asymmetric Hydrogenation of Functionalized and Unfunctionalized Olefins. ChemCatChem, 2019, 11, 2142-2168.	3.7	26
178	Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4. Coordination Chemistry Reviews, 2019, 387, 79-120.	18.8	298
179	Cyclic amidine hydroiodide for the synthesis of cyclic carbonates and cyclic dithiocarbonates from carbon disulfide under mild conditions. Tetrahedron, 2019, 75, 130781.	1.9	14
180	Thiamine hydrochloride as a recyclable organocatalyst for the synthesis of bis(indolyl)methanes, tris(indolyl)methanes, 3,3-di(indol-3-yl)indolin-2-ones and biscoumarins. Organic and Biomolecular Chemistry, 2019, 17, 9620-9626.	2.8	46
181	Efficient CO ₂ fixation under ambient pressure using poly(ionic liquid)-based heterogeneous catalysts. Sustainable Energy and Fuels, 2019, 3, 935-941.	4.9	43
182	Aminophosphine Palladium Pincer-Catalyzed Carbonylative Sonogashira and Suzuki–Miyaura Cross-Coupling with High Catalytic Turnovers. ACS Omega, 2019, 4, 1560-1574.	3.5	24
183	Task-Specific Ionic Liquid Functionalized–MIL–101(Cr) as a Heterogeneous and Efficient Catalyst for the Cycloaddition of CO ₂ with Epoxides Under Solvent Free Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 3962-3973.	6.7	66
184	Environmentally Benign Arylations of 5â€Membered Ring Heteroarenes by Pdâ€Catalyzed Câ~'H Bonds Activations. ChemCatChem, 2019, 11, 269-286.	3.7	52
185	Efficient Catalysts of Acyclic Guanidinium Iodide for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides under Mild Conditions. Synthesis, 2020, 52, 150-158.	2.3	12
186	Wellâ€defined PEPPSIâ€ŧhemed palladium–NHC complexes: synthesis, and catalytic application in the direct arylation of heteroarenes. Applied Organometallic Chemistry, 2020, 34, e5387.	3.5	19

#	Article	IF	CITATIONS
187	Microwave-assisted nucleophilic degradation of organophosphorus pesticides in propylene carbonate. Organic and Biomolecular Chemistry, 2020, 18, 7868-7875.	2.8	5
189	Efficient Visible-Light Photocatalytic Cycloaddition of CO ₂ and Propylene Oxide Using Reduced Graphene Oxide Supported BiNbO ₄ . ACS Sustainable Chemistry and Engineering, 2020, 8, 12072-12079.	6.7	32
190	Iridium-Catalyzed Asymmetric Hydrogenation. Topics in Organometallic Chemistry, 2020, , 153-205.	0.7	1
191	(L)-phenylalanine derived Schiff base ligated vanadium(IV) complex as an efficient catalyst for a CO2 fixation reaction. Polyhedron, 2020, 192, 114848.	2.2	6
192	Gold incorporated hematite nanocatalyst for solvent-free CO ₂ fixation under atmospheric pressure. New Journal of Chemistry, 2020, 44, 11887-11894.	2.8	7
193	A Microporous Metal–Organic Framework Catalyst for Solvent-free Strecker Reaction and CO ₂ Fixation at Ambient Conditions. Inorganic Chemistry, 2020, 59, 4273-4281.	4.0	47
194	Highly efficient CO ₂ capture and conversion of a microporous acylamide functionalized <i>rht</i> -type metal–organic framework. Inorganic Chemistry Frontiers, 2020, 7, 1939-1948.	6.0	24
195	Deposition of Palladium Nanoparticles by the Coating of the Carbonaceous Layer from Wastepaper-Derived Bio-Oil. ACS Omega, 2020, 5, 16021-16029.	3.5	8
196	Cobalt (II) complex catalyzed polymerization of lactide and coupling of CO2 and styrene oxide into cyclic styrene carbonate. Journal of Chemical Sciences, 2020, 132, 1.	1.5	6
197	Triazineâ€based Organic Polymerâ€catalysed Conversion of Epoxide to Cyclic Carbonate under Ambient CO ₂ Pressure. Chemistry - an Asian Journal, 2020, 15, 1683-1687.	3.3	19
198	The Synthesis of 3-Aryl-2-oxazolidinones from CO2, Ethylene Oxide, and Anilines Under Mild Conditions Using PVA-DFNT/Ni. Catalysis Letters, 2021, 151, 281-292.	2.6	2
199	Organic carbonate as a green solvent for biocatalysis. , 2021, , 253-275.		6
200	A new Co-based metal-organic coordination polymer as a catalyst in chemical fixation of CO2. Polyhedron, 2021, 195, 114982.	2.2	3
201	Efficient and Highly Selective CO ₂ Capture, Separation, and Chemical Conversion under Ambient Conditions by a Polar-Group-Appended Copper(II) Metal–Organic Framework. Inorganic Chemistry, 2021, 60, 5071-5080.	4.0	23
202	Indene Derived Phosphorusâ€Thioether Ligands for the Irâ€Catalyzed Asymmetric Hydrogenation of Olefins with Diverse Substitution Patterns and Different Functional Groups. Advanced Synthesis and Catalysis, 2021, 363, 4561-4574.	4.3	12
203	A holistic review on application of green solvents and replacement study for conventional solvents. Biomass Conversion and Biorefinery, 2022, 12, 1985-1999.	4.6	8
204	A novel and efficient catalyst system composed of detonation nanodiamond and potassium iodide for chemical fixation of carbon dioxide. Diamond and Related Materials, 2021, 116, 108430.	3.9	0
205	Solventâ€Free CO ₂ Fixation Reaction Catalyzed by MOFs Composites Containing Polycarboxylic Acid Ligands. ChemistrySelect, 2021, 6, 5350-5355.	1.5	4

#	Article	IF	CITATIONS
206	lonic Liquids with Multiâ€Active Sites Synergistically Catalyzed Metalâ€Free Transformation of Alcohols Using Dimethyl Carbonate as an Environmental Solvent. European Journal of Organic Chemistry, 2021, 2021, 3819-3826.	2.4	7
207	Atmospheric pressure conversion of carbon dioxide to cyclic carbonates using a metal-free Lewis acid-base bifunctional heterogeneous catalyst. Journal of CO2 Utilization, 2021, 51, 101646.	6.8	52
208	Selective Formation of Dinuclear and Heptanuclear Zn(II), Ni(II), and Co(II) Metal Clusters from a Simple Dialdehyde. Polyhedron, 2021, 210, 115491.	2.2	1
209	Ultrasound-Promoted Pyruvic Acid Catalyzed Green Synthesis of Biologically Relevant Bis(Indolyl)Methanes Scaffold under Aqueous Condition. Polycyclic Aromatic Compounds, 2022, 42, 6501-6509.	2.6	9
210	Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coordination Chemistry Reviews, 2021, 446, 214120.	18.8	45
211	Synthesis and characterization of poly(urethane-imide) nanocomposite films filled with iron oxide–silica and clay–silane–iron oxide nanoparticles. Journal of Plastic Film and Sheeting, 2018, 34, 196-218.	2.2	8
212	Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure. Bulletin of the Korean Chemical Society, 2012, 33, 1945-1948.	1.9	11
213	Catalytic Transformation of Carbon Dioxide to Organic Carbonates. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 921-933.	0.1	4
214	Direct synthesis of cyclic carbonates from olefins and CO2: Single- or multi-component catalytic systems via epoxide or halohydrin intermediate. Journal of CO2 Utilization, 2021, 53, 101742.	6.8	11
218	CO2-Abtrennung und -Nutzung. , 2015, , 511-567.		0
221	lodine-Initiated Dioxygenation of Aryl Alkenes Using <i>tert</i> Butylhydroperoxides and Water: A Route to Vicinal Diols and Bisperoxides. Journal of Organic Chemistry, 2021, 86, 15469-15480.	3.2	9
223	Water-Mediated Green Synthesis of Benzimidazoles Using Pyruvic Acid: A Comparable Study of Ultra-sonication versus Conventional Heating. Letters in Organic Chemistry, 2022, 19, 511-519.	0.5	0
224	A novel Zn-based-MOF for efficient CO2 adsorption and conversion under mild conditions. Catalysis Today, 2022, 390-391, 230-236.	4.4	10
225	Oxygen vacancies generated by Sn-doped ZrO ₂ promoting the synthesis of dimethyl carbonate from methanol and CO ₂ . RSC Advances, 2021, 11, 35361-35374.	3.6	19
226	Asymmetric hydrogenation of unfunctionalized olefins or with poorly coordinative groups. Advances in Catalysis, 2021, 68, 135-203.	0.2	3
227	Creating chemisorption sites for enhanced CO2 chemical conversion activity through amine modification of metalloporphyrin-based hypercrosslinked polymers. Chemical Engineering Journal, 2022, 431, 134326.	12.7	25
228	<i>para</i> -Aminobenzoic acid-capped hematite as an efficient nanocatalyst for solvent-free CO ₂ fixation under atmospheric pressure. Dalton Transactions, 2022, 51, 1918-1926.	3.3	13
229	Zn and N co-doped porous carbon nanosheets for photothermally-driven CO2 cycloaddition. Journal of Catalysis, 2022, 407, 65-76.	6.2	22

#	Article	IF	CITATIONS
230	Prudent Choice of Ironâ€Based Metalâ€Organic Networks for Solventâ€Free CO ₂ Fixation at Ambient Pressure. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	4
231	Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Industrial & Engineering Chemistry Research, 2022, 61, 175-186.	3.7	18
232	A novel 2D zinc(II)-organic framework for efficient catalytic cycloaddition of CO2 with epoxides. Polyhedron, 2022, 220, 115850.	2.2	6
233	Ring Opening of 2-Pyrrolidinebenzaldehyde and Subsequent Cyclization with Î ^t -Bromoacetophenone for the Synthesis of 1-(4-Hydroxybutyl)-2-Benzoyl Indoles in a Deep Eutectic Solvent. SSRN Electronic Journal, 0, , .	0.4	0
234	Metal–Organic Framework-Based Selective Molecular Recognition of Organic Amines and Fixation of CO ₂ into Cyclic Carbonates. Inorganic Chemistry, 2022, 61, 6977-6994.	4.0	22
235	Surface-modified carbonaceous nanomaterials for CO2 hydrogenation and fixation. , 2022, , 223-249.		1
236	Kinetic study of CO2 fixation into propylene carbonate with water as efficient medium using microreaction system. Chinese Journal of Chemical Engineering, 2022, 50, 247-253.	3.5	5
237	Catalytic aerobic epoxidation of bio-renewable alkenes using organic carbonates as green solvents. Molecular Catalysis, 2022, 527, 112400.	2.0	3
238	Urea and Thiourea-Functionalized, Pyridinium-Based Ionic Polymers Convert CO ₂ to Cyclic Carbonate under Mild Conditions. ACS Applied Polymer Materials, 2022, 4, 5851-5860.	4.4	9
239	Nicotinamide onium halide bidentate hybrid H–bond donor organocatalyst for CO2 fixation. Journal of CO2 Utilization, 2022, 65, 102196.	6.8	13
240	Construction of Acylamide-Functionalized Mofs for Efficient Catalysis on the Conversion of Co2. SSRN Electronic Journal, 0, , .	0.4	0
241	Construction of Acylamide-functionalized MOFs for efficient catalysis on the conversion of CO2. Molecular Catalysis, 2022, 533, 112786.	2.0	2
242	Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Materials, 2023, 56, 121-131.	18.0	30
243	Synthesis and characterization of original fluorinated bis-cyclic carbonates and xanthates from a fluorinated epoxide. Comptes Rendus Chimie, 2023, 26, 19-28.	0.5	0
244	P-Stereogenic Ir-MaxPHOX: A Step toward Privileged Catalysts for Asymmetric Hydrogenation of Nonchelating Olefins. ACS Catalysis, 2023, 13, 3020-3035.	11.2	11
245	Synthetic, spectral, structural and catalytic activities of 3-D metal format/acetate framework materials for CO ₂ conversion. New Journal of Chemistry, 0, , .	2.8	0
246	Isobaric (Vapor + Liquid) Equilibria for Propylene Carbonate with <i>para</i> -Xylene, <i>ortho</i> -Xylene, <i>meta</i> -Xylene, and Ethylbenzene at 101.33 kPa. Journal of Chemical & Engineering Data, 0, , .	1.9	0
247	Cellulose nanofibers (CNF) supported (Salen)Cr(III) composite as an efficient heterogeneous catalyst for CO2 cycloaddition. Molecular Catalysis, 2023, 547, 113344.	2.0	4

#	Article	IF	CITATIONS
248	Diaspore as an efficient halide-free catalyst for the conversion of CO ₂ into cyclic carbonates. Inorganic Chemistry Frontiers, 2023, 10, 6329-6338.	6.0	2
249	Modified melamine-based porous organic polymers with imidazolium ionic liquids as efficient heterogeneous catalysts for CO2 cycloaddition. Journal of Colloid and Interface Science, 2023, 652, 737-748.	9.4	6
250	Urea/amide-functionalized melamine-based organic polymers as efficient heterogeneous catalysts for CO2 cycloaddition. Chemical Engineering Journal, 2023, 474, 145918.	12.7	3
251	Cationic Rhodium Diphosphane Complexes as Efficient Catalysts for the Semiâ€Hydrogenation of Dehydroisophytol. ChemCatChem, 2023, 15, .	3.7	0
252	Highly selective solvent free catalysis of CO ₂ and CS ₂ fixation under mild conditions using electronically varied zinc complexes. New Journal of Chemistry, 2023, 47, 20952-20965.	2.8	0
253	Melamine-based nitrogen-heterocyclic polymer networks as efficient platforms for CO2 adsorption and Purification Technology, 2024, 331, 125645.	7.9	0
254	PIL@NENPs composite as a synergetic heterogeneous catalyst to enhance the efficiency of CO2 cycloaddition with epoxides. Molecular Catalysis, 2024, 554, 113821.	2.0	0
255	Synthesis of 1â€(4â€hydroxybutyl)â€2â€benzoyl indoles from 2â€pyrrolidine benzaldehydes and <i>î±</i> â€bromoacetophenones in deep eutectic solvent. Journal of Heterocyclic Chemistry, 2024, 61, 685-692.	2.6	0