Semiconductor Behavior of a Metal-Organic Frameworl

Chemistry - A European Journal 13, 5106-5112 DOI: 10.1002/chem.200601003

Citation Report

#	Article	IF	CITATIONS
1	Isoreticular MOFs as Efficient Photocatalysts with Tunable Band Gap: An Operando FTIR Study of the Photoinduced Oxidation of Propylene. ChemSusChem, 2008, 1, 981-983.	3.6	246
2	Functionalized Coordination Space in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2008, 47, 8164-8168.	7.2	89
4	Design, synthesis and characterization of a Pt–Gd metal–organic framework containing potentially catalytically active sites. Dalton Transactions, 2008, , 2054.	1.6	75
5	Ruthenium Nanoparticles inside Porous [Zn ₄ O(bdc) ₃] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 2008, 130, 6119-6130.	6.6	348
6	Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. Journal of Physical Chemistry C, 2008, 112, 14090-14101.	1.5	226
7	Porous Metalâ^'Organic Framework Based on μ ₄ -oxo Tetrazinc Clusters: Sorption and Guest-Dependent Luminescent Properties. Inorganic Chemistry, 2008, 47, 1346-1351.	1.9	185
8	Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 2009, 265, 155-160.	3.1	266
10	Metal–Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie - International Edition, 2009, 48, 7502-7513.	7.2	1,732
11	Gas‧orption Properties of Cobalt(II)–Carboraneâ€Based Coordination Polymers as a Function of Morphology. Small, 2009, 5, 1727-1731.	5.2	132
12	Nanoporous metal organic framework materials for hydrogen storage. Particuology, 2009, 7, 129-140.	2.0	51
13	Syntheses, structures and photoluminescent property of coordination complexes with 2-(1H-1,2,4-triazol-1-yl)acetic acid. Inorganica Chimica Acta, 2009, 362, 1399-1404.	1.2	18
14	One-dimensional Zn(II) oligo(phenyleneethynylene)dicarboxylate coordination polymers: Synthesis, crystal structures, thermal and photoluminescent properties. Inorganica Chimica Acta, 2009, 362, 3600-3606.	1.2	15
15	Synthesis, structural characterization and selectively catalytic properties of metal–organic frameworks with nano-sized channels: A modular design strategy. Journal of Solid State Chemistry, 2009, 182, 502-508.	1.4	26
16	Structures, Photoluminescence, and Photocatalytic Properties of Six New Metalâ~'Organic Frameworks Based on Aromatic Polycarboxylate Acids and Rigid Imidazole-Based Synthons. Crystal Growth and Design, 2009, 9, 3581-3589.	1.4	200
17	Tunability of electronic band gaps from semiconducting to metallic states via tailoring Zn ions in MOFs with Co ions. Physical Chemistry Chemical Physics, 2009, 11, 628-631.	1.3	80
18	Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1477.	18.7	7,603
19	Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles. Topics in Current Chemistry, 2009, 293, 77-113.	4.0	29
20	Stepwise Formation of Half-Sandwich Iridium-Based Rectangles Containing 2,5-Diarylamino-1,4-benzoquinone Derivatives Linkers. Organometallics, 2009, 28, 3459-3464.	1.1	48

#	Article	IF	CITATIONS
21	Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy and Environmental Science, 2009, 2, 1231.	15.6	1,150
22	Porous Coordination Polymers Towards Gas Technology. Structure and Bonding, 2009, , 96-106.	1.0	0
23	High Proton Conductivity of One-Dimensional Ferrous Oxalate Dihydrate. Journal of the American Chemical Society, 2009, 131, 3144-3145.	6.6	325
24	Supramolecular Heteropentamers As Building Blocks for Metal Organic Materials: Synthesis and Characterization of 1D and 2D 2-Fold Interpenetrated Frameworks. Crystal Growth and Design, 2009, 9, 1020-1027.	1.4	8
25	The effect of the conformation of flexible carboxylate ligands on the structures of metal–organic supramolecules. New Journal of Chemistry, 2010, 34, 2496.	1.4	15
26	Four Novel Coordination Polymers Based on a Flexible Zwitterionic Ligand and Their Framework Dependent Luminescent Properties. Crystal Growth and Design, 2010, 10, 4590-4595.	1.4	55
27	Water Stable Zr–Benzenedicarboxylate Metal–Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 2010, 16, 11133-11138.	1.7	718
28	Structures and H ₂ Adsorption Properties of Porous Scandium Metal–Organic Frameworks. Chemistry - A European Journal, 2010, 16, 13671-13679.	1.7	77
30	In Situ Synthesis of an Imidazolateâ€4â€amideâ€5â€imidate Ligand and Formation of a Microporous Zinc–Organic Framework with H ₂ â€and CO ₂ â€Storage Ability. Angewandte Chemie - International Edition, 2010, 49, 1258-1262.	7.2	126
31	Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 2010, 20, 3141.	6.7	441
32	Theoretical Investigations on the Chemical Bonding, Electronic Structure, And Optical Properties of the Metalâ^'Organic Framework MOF-5. Inorganic Chemistry, 2010, 49, 10283-10290.	1.9	112
33	Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 2010, 110, 4606-4655.	23.0	3,200
34	Assessing the Purity of Metalâ^'Organic Frameworks Using Photoluminescence: MOF-5, ZnO Quantum Dots, and Framework Decomposition. Journal of the American Chemical Society, 2010, 132, 15487-15489.	6.6	140
35	Interaction of the Explosive Molecules RDX and TATP with IRMOF-8. Journal of Physical Chemistry C, 2010, 114, 7535-7540.	1.5	20
36	Europium-Based Metalâ^'Organic Framework as a Photocatalyst for the One-Electron Oxidation of Organic Compounds. Langmuir, 2010, 26, 10437-10443.	1.6	97
37	Six new metal–organic frameworks with multi-carboxylic acids and imidazole-based spacers: syntheses, structures and properties. Dalton Transactions, 2011, 40, 11856.	1.6	63
38	Coordination polymers constructed from alkali metal ions and (HO)10cucurbit[5]uril. CrystEngComm, 2011, 13, 3794.	1.3	23
39	Effects of reduced dimensionality on the electronic structure and defect chemistry of semiconducting hybrid organic–inorganic PbS solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1970-1985.	1.0	23

#	Article	IF	CITATIONS
40	Photochemical Response of Commercial MOFs: Al ₂ (BDC) ₃ and Its Use As Active Material in Photovoltaic Devices. Journal of Physical Chemistry C, 2011, 115, 22200-22206.	1.5	83
41	A Zn4O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange. Chemical Communications, 2011, 47, 11715.	2.2	319
42	Reversible Single-Crystal to Single-Crystal Exchange of Guests in a Seven-Fold Interpenetrated Diamondoid Coordination Polymer. Crystal Growth and Design, 2011, 11, 1411-1416.	1.4	36
43	Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 2011, 47, 3351.	2.2	798
44	Unraveling the Optoelectronic and Photochemical Behavior of Zn ₄ O-Based Metal Organic Frameworks. Journal of Physical Chemistry C, 2011, 115, 12487-12493.	1.5	98
45	New nine-coordinate (NH4)3[YbIII(ttha)]·5H2O and eight-coordinate (NH4)[YbIII(pdta)(H2O)2]·5H2O complexes: Structural determination. Journal of Structural Chemistry, 2011, 52, 575-581.	0.3	6
46	Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy. International Journal of Hydrogen Energy, 2011, 36, 10834-10844.	3.8	124
47	Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A–IRMOF-1 (A = Be, Mg, Ca, Sr, Ba). Physical Chemistry Chemical Physics, 2011, 13, 10191.	1.3	53
48	Synthesis, Crystal Structures and Magnetic Properties of a Phenoxoâ€Bridged Dinuclear Cu ^{II} Complex and a Dicyanamide Bridged Novel Molecular Rectangle Based on It. European Journal of Inorganic Chemistry, 2011, 2011, 2405-2412.	1.0	28
49	A Roadmap to Implementing Metal–Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chemistry - A European Journal, 2011, 17, 11372-11388.	1.7	403
50	Structures and photocatalytic activities of metal-organic frameworks derived from rigid aromatic dicarboxylate acids and flexible imidazole-based linkers. Inorganic Chemistry Communication, 2011, 14, 1347-1351.	1.8	41
51	New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. Journal of Hazardous Materials, 2011, 190, 945-951.	6.5	416
52	Zeolite-Y encapsulated nanohybrid materials: synthesis, spectroscopic characterization, and catalytic significance. Journal of Coordination Chemistry, 2012, 65, 525-538.	0.8	8
53	Homoleptic Lanthanide 1,2,3-Triazolates â^ž2–3[Ln(Tz*)3] and Their Diversified Photoluminescence Properties. Inorganic Chemistry, 2012, 51, 13204-13213.	1.9	49
54	Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chemical Communications, 2012, 48, 11656.	2.2	405
55	Metal–organic frameworks based on naphthalene-1,5-diyldioxy-di-acetate: structures, topologies, photoluminescence and photocatalytic properties. CrystEngComm, 2012, 14, 3727.	1.3	89
56	Elaborate fabrication of MOF-5 thin films on a glassy carbon electrode (GCE) for photoelectrochemical sensors. RSC Advances, 2012, 2, 12696.	1.7	39
57	Ionic radius-dependent self-assembly of closed/opened molecular capsules based on pentacyclopentanocucurbit[5]uril. RSC Advances, 2012, 2, 5663.	1.7	18

#	Article	IF	CITATIONS
58	Conductive metal–organic frameworks and networks: fact or fantasy?. Physical Chemistry Chemical Physics, 2012, 14, 13120.	1.3	258
59	Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal‰Organic Framework. Journal of Physical Chemistry C, 2012, 116, 20848-20853.	1.5	551
60	Structural Diversity and Properties of Six 2D or 3D Metal–Organic Frameworks Based on Thiophene-Containing Ligand. Crystal Growth and Design, 2012, 12, 5783-5791.	1.4	23
61	Metal–Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catalysis, 2012, 2, 2630-2640.	5.5	714
62	Evidence of Photoinduced Charge Separation in the Metal–Organic Framework MILâ€125(Ti)â€NH ₂ . ChemPhysChem, 2012, 13, 3651-3654.	1.0	103
63	Methane storage in advanced porous materials. Chemical Society Reviews, 2012, 41, 7761.	18.7	716
64	Visible-Light-Driven Photocatalysts of Metal–Organic Frameworks Derived from Multi-Carboxylic Acid and Imidazole-Based Spacer. Crystal Growth and Design, 2012, 12, 1603-1612.	1.4	216
65	Metal–organic frameworks for visible light absorption via anion substitution. Journal of Materials Chemistry, 2012, 22, 10144.	6.7	22
66	A Two-Fold Interpenetrated Coordination Framework with a Rare (3,6)-Connected loh1 Topology: Magnetic Properties and Photocatalytic Behavior. Crystal Growth and Design, 2012, 12, 5426-5431.	1.4	125
67	Structure and luminescence of a 2-dimensional 2,3-pyridinedicarboxylate coordination polymer constructed from lanthanide(III) dimers. Inorganica Chimica Acta, 2012, 392, 46-51.	1.2	24
68	Formation of an intermediate band in isoreticular metal–organic framework-993 (IRMOF-993) and metal-substituted analogues M-IRMOF-993. Journal of Materials Chemistry, 2012, 22, 16324.	6.7	37
69	Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chemical Reviews, 2012, 112, 1555-1614.	23.0	2,107
70	Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 9039-9044.	1.9	148
71	Ab initio investigations on the crystal structure, formation enthalpy, electronic structure, chemical bonding, and optical properties of experimentally synthesized isoreticular metal–organic framework-10 and its analogues: M-IRMOF-10 (M = Zn, Cd, Be, Mg, Ca, Sr and Ba). RSC Advances, 2012, 2, 1618-1631.	1.7	63
72	Properties of IRMOF-14 and its analogues M-IRMOF-14 (M = Cd, alkaline earth metals): electronic structure, structural stability, chemical bonding, and optical properties. Physical Chemistry Chemical Physics, 2012, 14, 4713.	1.3	45
74	An Amineâ€Functionalized Titanium Metal–Organic Framework Photocatalyst with Visibleâ€Lightâ€Induced Activity for CO ₂ Reduction. Angewandte Chemie - International Edition, 2012, 51, 3364-3367.	7.2	1,403
75	Photoresponse Characteristics of Archetypal Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 3112-3121.	1.5	32
76	Polynuclear Complexes Containing Ditopic Bispyrazolylmethane Ligands. Influence of Metal Geometry and Supramolecular Interactions. Crystal Growth and Design, 2012, 12, 1952-1969.	1.4	33

#	ARTICLE	IF	CITATIONS
77	Synthesis, structures and optical properties of coordination compounds bearing N,N-dimethyl-4-(pyridin-4-yldiazenyl) aniline. Polyhedron, 2012, 35, 7-14.	1.0	7
78	Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale, 2013, 5, 9374.	2.8	417
79	CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. Journal of Materials Chemistry A, 2013, 1, 11473.	5.2	261
80	Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal–organic framework photocatalyst. Catalysis Science and Technology, 2013, 3, 2092.	2.1	198
81	Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 2013, 135, 10942-10945.	6.6	701
82	Self-Assembly of Silver(I) and Ditopic Heteroscorpionate Ligands. Spontaneous Chiral Resolution in Helices and Sequence Isomerism in Coordination Polymers. Crystal Growth and Design, 2013, 13, 3275-3282.	1.4	34
83	One-pot synthesis of metal–organic framework@SiO2 core–shell nanoparticles with enhanced visible-light photoactivity. Dalton Transactions, 2013, 42, 13948.	1.6	58
84	Synthesis of Pt@NH2-MIL-125(Ti) as a photocathode material for photoelectrochemical hydrogen production. RSC Advances, 2013, 3, 19820.	1.7	36
85	Iron(III)-Based Metal–Organic Frameworks As Visible Light Photocatalysts. Journal of the American Chemical Society, 2013, 135, 14488-14491.	6.6	502
86	Metal(ii) complexes based on 1,4-bis(3-pyridylaminomethyl)benzene: structures, photoluminescence and photocatalytic properties. Dalton Transactions, 2013, 42, 13241.	1.6	37
87	Two new Cu(II) complexes constructed by mixed-organic tectonics: Structures, magnetic properties and photocatalytic degradation of organic dyes. Inorganic Chemistry Communication, 2013, 36, 137-140.	1.8	24
88	Shape and Transition State Selective Hydrogenations Using Egg-Shell Pt-MIL-101(Cr) Catalyst. ACS Catalysis, 2013, 3, 2617-2626.	5.5	89
89	A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties. Microporous and Mesoporous Materials, 2013, 175, 50-58.	2.2	34
90	A Photoelectron Spectroscopy Study on the Interfacial Chemistry and Electronic Structure of Terephthalic Acid Adsorption on TiO ₂ (110)-(1×1) Surface. Journal of Physical Chemistry C, 2013, 117, 21351-21358.	1.5	15
91	Microwave-Assisted Solvothermal Synthesis and Optical Properties of Tagged MIL-140A Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 12878-12880.	1.9	72
92	A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. Journal of Materials Chemistry A, 2013, 1, 14329.	5.2	375
93	Macrocycle-based metal ion complexation: a study of the lanthanide contraction effect towards hexacyclohexanocucurbit[6]uil. CrystEngComm, 2013, 15, 738-744.	1.3	20
94	Thermodynamic and electronic properties of tunable II–VI and IV–VI semiconductor based metal–organic frameworks from computational chemistry. Journal of Materials Chemistry C, 2013, 1, 95-100.	2.7	23

#	Article	IF	CITATIONS
95	Experimental and theoretical evidence of unsupported Ag–Ag interactions in complexes with triazine-based ligands. Subtle effects of the symmetry of the triazine substituents. New Journal of Chemistry, 2013, 37, 3183.	1.4	18
96	Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi). Dalton Transactions, 2013, 42, 13649.	1.6	373
97	Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy, 2013, 2, 890-896.	8.2	133
98	Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity. Journal of Alloys and Compounds, 2013, 551, 125-130.	2.8	79
99	Metal–organic frameworks based on 1,3,5-triazine-2,4,6-triyltrithio-triacetate: structures, topologies, photoluminescence and photocatalytic properties. Dalton Transactions, 2013, 42, 7196.	1.6	34
100	Solid-State Structure and Calculated Electronic Structure, Formation Energy, Chemical Bonding, and Optical Properties of Zn ₄ O(FMA) ₃ and Its Heavier Congener Cd ₄ O(FMA) ₃ . Inorganic Chemistry, 2013, 52, 4217-4228.	1.9	24
101	Metal–organic frameworks as platforms for clean energy. Energy and Environmental Science, 2013, 6, 1656.	15.6	858
102	A chiral porous metallosalan-organic framework containing titanium-oxo clusters for enantioselective catalytic sulfoxidation. Chemical Science, 2013, 4, 3154.	3.7	101
103	Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion – from semiconducting TiO2 to MOF/PCP photocatalysts. Physical Chemistry Chemical Physics, 2013, 15, 13243.	1.3	139
104	Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal–organic frameworks. Chemical Communications, 2013, 49, 6761.	2.2	253
105	CHAPTER 7. Strategies for Creating Active Sites in MOFs. RSC Catalysis Series, 0, , 237-267.	0.1	5
106	CHAPTER 12. Photocatalysis by MOFs. RSC Catalysis Series, 0, , 365-383.	0.1	6
107	Studies on Photocatalytic CO ₂ Reduction over NH ₂ â€Uioâ€66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal–Organic Frameworks. Chemistry - A European Journal, 2013, 19, 14279-14285.	1.7	553
108	Metal-Organic Frameworks for Photocatalysis. Structure and Bonding, 2013, , 89-104.	1.0	11
109	Metal(II) Complexes Based on Benzene-1,2,3-triyldioxy-triacetate: Structures and Photoluminescence Properties. Crystal Growth and Design, 2013, 13, 1059-1066.	1.4	25
111	Photophysical Evidence of Chargeâ€Transferâ€Complex Pairs in Mixedâ€Linker 5â€Amino/5â€Nitroisophthalate CAUâ€10. ChemPhysChem, 2014, 15, 924-928.	1.0	9
112	Noble Metals Can Have Different Effects on Photocatalysis Over Metal–Organic Frameworks (MOFs): A Case Study on M/NH ₂ â€MILâ€125(Ti) (M=Pt and Au). Chemistry - A European Journal, 2014, 20, 4780-4788.	1.7	247
113	Electronic Chemical Potentials of Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 2703-2706.	6.6	262

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
114	Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and its Redox Hopping Charge-Transfer Mechanism. Journal of the American Chemical Society, 2014, 136, 2464-2472.	6.6	289
115	MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 2014, 5, 2979.	3.7	298
116	Quantum chemistry investigation of rigid A-IRMOF-MO series (A=zinc, cadmium, and alkaline-earth) Tj ETQqO properties. Microporous and Mesoporous Materials, 2014, 183, 218-233.	0 0 rgBT /Ov 2.2	erlock 10 Tf 5 18
117	Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2 batteries. Electrochimica Acta, 2014, 134, 293-301.	2.6	91
118	Periodic DFT+D Molecular Modeling of the Zn-MOF-5(100)/(110)TiO2 Interface: Electronic Structure, Chemical Bonding, Adhesion, and Strain. Journal of Physical Chemistry C, 2014, 118, 8971-8981.	1.5	14
119	Iron terephthalate metal–organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Applied Catalysis B: Environmental, 2014, 148-149, 191-200.	10.8	460
120	Band Gap Engineering of Paradigm MOF-5. Crystal Growth and Design, 2014, 14, 2532-2541.	1.4	94
121	Metal Organic Framework Catalysis: <i>Quo vadis</i> ?. ACS Catalysis, 2014, 4, 361-378.	5.5	859
122	Synthesis, characterization and photocatalytic properties of MIL-53(Fe)–graphene hybrid materials. RSC Advances, 2014, 4, 7594.	1.7	124
123	Bismuth tungstate incorporated zirconium metal–organic framework composite with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4, 64977-64984.	1.7	72
124	Syntheses and structural determination of mononuclear nine-coordinate (MnH)[GdIII(EDTA)(H2O)3] · 4H2O and 2D ladder-like binuclear nine-coordinate (MnH)2[Gd 2 III (H2TTHA)2] · 4H2O. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2014, 40, 617-626.	0.3	2
125	Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal–organic framework. Catalysis Science and Technology, 2014, 4, 625.	2.1	63
126	Fabrication of an NH ₂ -MIL-88B photonic film for naked-eye sensing of organic vapors. Journal of Materials Chemistry A, 2014, 2, 14222.	5.2	59
127	Delayed electron–hole pair recombination in iron(<scp>iii</scp>)-oxo metal–organic frameworks. Physical Chemistry Chemical Physics, 2014, 16, 5044-5047.	1.3	46
128	Four new metal–organic frameworks based on a rigid linear ligand: synthesis, optical properties and structural investigation. CrystEngComm, 2014, 16, 5662-5671.	1.3	17
129	Fe-Based MOFs for Photocatalytic CO ₂ Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways. ACS Catalysis, 2014, 4, 4254-4260.	5.5	702
130	Tuning electronic and optical properties of a new class of covalent organic frameworks. Journal of Materials Chemistry C, 2014, 2, 2404.	2.7	32
131	Cooperative ion-exchange and self-redox process to load catalytic metal nanoparticles into a MOF with Johnson-type cages. Chemical Communications, 2014, 50, 6153.	2.2	32

ARTICLE IF CITATIONS A dye-sensitized Pt@UiO-66(Zr) metalâ€"organic framework for visible-light photocatalytic hydrogen 132 2.2 363 production. Chemical Communications, 2014, 50, 7063-7066. Computational screening of structural and compositional factors for electrically conductive 1.3 coordination polymers. Physical Chemistry Chemical Physics, 2014, 16, 14463-14472. A polyoxometalate-based complex with visible-light photochromism as the electrocatalyst for 134 1.6 10 generating hydrogen from water. Dalton Transactions, 2014, 43, 16928-16936. Electrostatically derived self-assembly of NH₂-mediated zirconium MOFs with graphene 119 for photocatalytic reduction of Cr(<scp>vi</scp>). RSC Advances, 2014, 4, 2546-2549. Introduction of an Ionic Liquid into the Micropores of a Metal–Organic Framework and Its 136 7.2 142 Anomalous Phase Behavior. Angewandte Chemie - International Edition, 2014, 53, 11302-11305. Synthesis, Crystal Structures, Magnetic, and Thermal Properties of Divalent Metal Formate–Formamide Layered Compounds.. Inorganic Chemistry, 2014, 53, 244-256. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy and 138 15.6 1,430 Environmental Science, 2014, 7, 2831-2867. Understanding TiO₂ Photocatalysis: Mechanisms and Materials. Chemical Reviews, 2014, 23.0 4,658 114, 9919-9986. Structures, photoluminescence and photocatalytic properties of two novel metal–organic 140 1.3 30 frameworks based on tetrazole derivatives. CrystEngComm, 2014, 16, 10485-10491. Structural variability, topological analysis and photocatalytic properties of neoteric Cd(<scp>ii</scp>) coordination polymers based on semirigid bis (thiazolylbenzimidazole) and different types of carboxylic acid linkers. Dalton Transactions, 2014, 43, 12790-12799. 141 1.6 Metal Supramolecular Frameworks with Silver and Ditopic Bis(pyrazolyl)methane Ligands: Effect of 142 1.4 26 the Anions and Ligand Substitution. Crystal Growth and Design, 2014, 14, 3510-3529. MOF-based electronic and opto-electronic devices. Chemical Society Reviews, 2014, 43, 5994-6010. 18.7 1,145 A Systematic Research on the Synthesis, Structures, and Application in Photocatalysis of 144 1.4 85 Cluster-Based Coordination Complexes. Crystal Growth and Design, 2014, 14, 730-738. Microsecond Transient Absorption Spectra of Suspended Semiconducting Metal Oxide Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 9275-9282. 145 1.5 Metalâ€"organic frameworks as heterogeneous photocatalysts: advantages and challenges. 146 413 1.3 CrystEngComm, 2014, 16, 4919-4926. Dielectric Properties of Selected Metalâ€"Organic Frameworks. Journal of Physical Chemistry C, 2014, 147 118, 11799-1'1805. Metalâ€"organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society 148 18.7 1,879 Reviews, 2014, 43, 5982-5993. Photooxidation assisted sensitive detection of trace Mn2+ in tea by NH2-MIL-125 (Ti) modified carbon 149 paste electrode. Sensors and Actuators B: Chemical, 2014, 201, 274-280.

#	Article	IF	CITATIONS
150	Efficient refinement of a metal–organic framework MIL-53(Fe) by UV–vis irradiation in aqueous hydrogen peroxide solution. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 288, 55-59.	2.0	30
151	Engineering of Band Gap in Metal–Organic Frameworks by Functionalizing Organic Linker: A Systematic Density Functional Theory Investigation. Journal of Physical Chemistry C, 2014, 118, 4567-4577.	1.5	97
152	Tailoring the Optical Absorption of Water‣table Zr ^{IV} ―and Hf ^{IV} â€Based Metal–Organic Framework Photocatalysts. Chemistry - an Asian Journal, 2015, 10, 2660-2668.	1.7	62
153	The Effects of Alkaline-Earth Counterions on the Architectures, Band-Gap Energies, and Proton Transfer of Triazole-Based Coordination Polymers. European Journal of Inorganic Chemistry, 2015, 2015, 2085-2091.	1.0	8
154	Bromate reduction in water by catalytic hydrogenation using metal–organic frameworks and sodium borohydride. RSC Advances, 2015, 5, 43885-43896.	1.7	31
155	Structural characterization, optical properties and photocatalytic activity of MOF-5 and its hydrolysis products: implications on their excitation mechanism. RSC Advances, 2015, 5, 73112-73118.	1.7	49
156	Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 2015, 36, 2071-2088.	6.9	113
157	Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. Journal of Materials Chemistry A, 2015, 3, 3074-3081.	5.2	241
158	Metal organic frameworks CAU-1 as new photocatalyst for photochemical vapour generation for analytical atomic spectrometry. Journal of Analytical Atomic Spectrometry, 2015, 30, 339-342.	1.6	36
159	Towards multicomponent MOFs via solvent-free synthesis under conventional oven and microwave assisted heating. Inorganic Chemistry Frontiers, 2015, 2, 425-433.	3.0	13
160	Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Research, 2015, 8, 1834-1846.	5.8	114
161	Reactions of Rare Earth Hydrated Nitrates and Oxides with Formamide: Relevant to Recycling Rare Earth Metals. Crystal Growth and Design, 2015, 15, 1119-1128.	1.4	11
162	MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. Journal of Hazardous Materials, 2015, 287, 364-372.	6.5	555
163	Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(VI) reduction. Journal of Hazardous Materials, 2015, 286, 187-194.	6.5	634
164	Diverse structures of metal–organic frameworks based on different metal ions: luminescence and gas adsorption properties. Dalton Transactions, 2015, 44, 4238-4245.	1.6	22
165	Structural Induction Effect of a Zwitterion Pyridiniumolate for Metal–Organic Frameworks. Inorganic Chemistry, 2015, 54, 6169-6175.	1.9	34
166	Ag2CO3/UiO-66(Zr) composite with enhanced visible-light promoted photocatalytic activity for dye degradation. Journal of Hazardous Materials, 2015, 299, 132-140.	6.5	130
167	Transient absorption spectroscopy and photochemical reactivity of CAU-8. Journal of Materials Chemistry C, 2015, 3, 3607-3613.	2.7	15

#	Article	IF	CITATIONS
168	Synthesis of Ce ions doped metal–organic framework for promoting catalytic H ₂ production from ammonia borane under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 14134-14141.	5.2	102
169	Robust 2D Coordination Networks from a Two-Step Assembly Process with Predesigned Silver Cyclic Dimers and Hexamethylenetetramine. Crystal Growth and Design, 2015, 15, 3321-3331.	1.4	20
170	Multifunctional Metal–Organic Frameworks for Photocatalysis. Small, 2015, 11, 3097-3112.	5.2	538
171	Self-template synthesis of core–shell ZnO@ZIF-8 nanospheres and the photocatalysis under UV irradiation. Materials Letters, 2015, 156, 50-53.	1.3	117
172	Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC Advances, 2015, 5, 32520-32530.	1.7	168
173	Metalâ€Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications. Advanced Functional Materials, 2015, 25, 2677-2685.	7.8	133
174	Guest-Induced Emergent Properties in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2015, 6, 1182-1195.	2.1	150
175	An Amineâ€Functionalized Iron(III) Metal–Organic Framework as Efficient Visibleâ€Light Photocatalyst for Cr(VI) Reduction. Advanced Science, 2015, 2, 1500006.	5.6	364
176	Zeolitic Imidazole Framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53, 40-45.	2.7	240
177	Low temperature ionic conductor: ionic liquid incorporated within a metal–organic framework. Chemical Science, 2015, 6, 4306-4310.	3.7	185
178	Enhancing luminescence properties of lanthanide(<scp>iii</scp>)/pyrimidine-4,6-dicarboxylato system by solvent-free approach. Dalton Transactions, 2015, 44, 6972-6986.	1.6	31
179	Narrow bandgap covalent–organic frameworks with strong optical response in the visible and infrared. Journal of Materials Chemistry C, 2015, 3, 2244-2254.	2.7	18
180	Synthesis and structural determination of mononuclear nine-coordinate (EnH2)[YbIII(Egta)(H2O)]2 · 6H2O and [YbIII(Eg3a)(H2O)2] · 6H2O. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2015, 41, 285-292.	0.3	1
181	Multifunctional polyoxometalates encapsulated in MIL-100(Fe): highly efficient photocatalysts for selective transformation under visible light. Dalton Transactions, 2015, 44, 18227-18236.	1.6	115
182	Visible-Light Photoreduction of CO ₂ in a Metal–Organic Framework: Boosting Electron–Hole Separation via Electron Trap States. Journal of the American Chemical Society, 2015, 137, 13440-13443.	6.6	927
183	Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2015, 7, 22767-22774.	4.0	71
184	Fe-Based Metal–Organic Frameworks for Highly Selective Photocatalytic Benzene Hydroxylation to Phenol. ACS Catalysis, 2015, 5, 6852-6857.	5.5	324
185	Lithium Ion Diffusion in a Metal–Organic Framework Mediated by an Ionic Liquid. Chemistry of Materials, 2015, 27, 7355-7361.	3.2	165

#	Article	IF	CITATIONS
186	A 1D anionic coordination polymer showing superior Congo Red sorption and its dye composite exhibiting remarkably enhanced photocurrent response. Chemical Communications, 2015, 51, 14893-14896.	2.2	113
187	Heterotrimetallic Organic Framework Assembled with Fe ^{III} /Ba ^{II} /Na ^I and Schiff Base: Structure and Visible Photocatalytic Degradation of Chlorophenols. Crystal Growth and Design, 2015, 15, 4986-4992.	1.4	27
188	Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 2015, 115, 10307-10377.	23.0	1,017
189	An unprecedented anionic Ln-MOF with a cage-within-cage motif: spontaneous reduction and immobilization of ion-exchanged Pd(<scp>ii</scp>) to Pd-NPs in the framework. Journal of Materials Chemistry A, 2015, 3, 24525-24531.	5.2	27
190	Graphene Hybridized Photoactive Iron Terephthalate with Enhanced Photocatalytic Activity for the Degradation of Rhodamine B under Visible Light. Industrial & Engineering Chemistry Research, 2015, 54, 153-163.	1.8	140
191	Tuning the optical properties of the zirconium–UiO-66 metal–organic framework for photocatalytic degradation of methyl orange. Inorganic Chemistry Communication, 2015, 52, 50-52.	1.8	89
192	Construction of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) metal–organic frameworks of diimidazole and dicarboxylate mixed ligands for the catalytic photodegradation of rhodamine B in water. CrystEngComm, 2015, 17, 1935-1943.	1.3	48
193	Noble-metal-free MoS2 co-catalyst decorated UiO-66/CdS hybrids for efficient photocatalytic H2 production. Applied Catalysis B: Environmental, 2015, 166-167, 445-453.	10.8	283
194	Photocatalytic CO2 reduction in metal–organic frameworks: A mini review. Journal of Molecular Structure, 2015, 1083, 127-136.	1.8	144
195	Improved photocatalytic activity in a surfactant-assisted synthesized Ti-containing MOF photocatalyst under blue LED irradiation. New Journal of Chemistry, 2015, 39, 931-937.	1.4	23
196	Co@NH ₂ -MIL-125(Ti): cobaloxime-derived metal–organic framework-based composite for light-driven H ₂ production. Energy and Environmental Science, 2015, 8, 364-375.	15.6	362
197	Electronic effects of ligand substitution on metal–organic framework photocatalysts: the case study of UiO-66. Physical Chemistry Chemical Physics, 2015, 17, 117-121.	1.3	233
198	Pt nanoparticles loaded titanium picolinate framework for photocatalytic hydrogen generation. Catalysis Communications, 2015, 59, 55-60.	1.6	5
199	Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chemical Engineering Science, 2015, 124, 45-51.	1.9	112
200	NH 2 -mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Applied Catalysis B: Environmental, 2015, 162, 245-251.	10.8	273
201	Metal Organic Frameworks as Emerging Photocatalysts. , 0, , .		5
202	Tris(bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction. Polymers, 2016, 8, 48.	2.0	21
203	Metal-Organic Frameworks as Materials for Fuel Cell Technologies. Nanostructure Science and Technology, 2016, , 367-407.	0.1	1

#	Article	IF	CITATIONS
204	Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie - International Edition, 2016, 55, 5414-5445.	7.2	888
205	Synthesis of halide anionâ€doped bismuth terephthalate hybrids for organic pollutant removal. Applied Organometallic Chemistry, 2016, 30, 304-310.	1.7	13
206	A panchromatic modification of the light absorption spectra of metal–organic frameworks. Chemical Communications, 2016, 52, 6665-6668.	2.2	44
207	Acid-base properties and catalytic activity of metal-organic frameworks: A view from spectroscopic and semiempirical methods. Catalysis Reviews - Science and Engineering, 2016, 58, 209-307.	5.7	43
208	MIL-53(Fe)-graphene nanocomposites: Efficient visible-light photocatalysts for the selective oxidation of alcohols. Applied Catalysis B: Environmental, 2016, 198, 112-123.	10.8	210
209	Research trend of metal–organic frameworks: a bibliometric analysis. Scientometrics, 2016, 109, 481-513.	1.6	91
210	Structural, electronic and magnetic properties of metal–organic-framework perovskites [AmH][Mn(HCOO)3]: a first-principles study. RSC Advances, 2016, 6, 48779-48787.	1.7	11
211	Free Energy of Ligand Removal in the Metal–Organic Framework UiO-66. Journal of Physical Chemistry C, 2016, 120, 9276-9281.	1.5	46
212	Electroluminescence response promoted by dispersion and interaction of perylene-3,4,9,10-tetracarboxylic dianhydride inside MOF5. RSC Advances, 2016, 6, 35191-35196.	1.7	11
213	Photoinduced electron transfer in porous organic salt crystals impregnated with fullerenes. Chemical Communications, 2016, 52, 7928-7931.	2.2	5
214	Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Applied Catalysis B: Environmental, 2016, 193, 198-216.	10.8	516
215	Nanometal-Loaded Metal-Organic-Framework Photocatalysts. Nanostructure Science and Technology, 2016, , 507-522.	0.1	0
216	Metal–Organic Framework (MOF) and Porous Coordination Polymer (PCP)-Based Photocatalysts. Nanostructure Science and Technology, 2016, , 479-489.	0.1	3
217	Mononuclear, tetranuclear and polymeric cadmium(II) complexes with the 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine ligand: Synthesis, crystal structure, spectroscopic and DFT studies. Polyhedron, 2016, 119, 160-174.	1.0	17
218	New zinc(<scp>ii</scp>) dyes with enhanced two-photon absorption cross sections based on the imidazolyl ligand. RSC Advances, 2016, 6, 77849-77853.	1.7	1
219	Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catalysis, 2016, 6, 7935-7947.	5.5	445
220	High photodegradation efficiency of phenol by mixed-metal–organic frameworks. Inorganic Chemistry Frontiers, 2016, 3, 944-951.	3.0	58
221	Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C ₁₅ H ₉ O ₅) ₃ (H ₂ O) ₃ /i (Ln = Eu. Tb). Inorganic Chemistry, 2016, 55, 7920-7927.	>n <td>b>⁴³</td>	b> ⁴³

#	Article	IF	CITATIONS
222	Coupling MOF-based photocatalysis with Pd catalysis over Pd@MIL-100(Fe) for efficient N-alkylation of amines with alcohols under visible light. Journal of Catalysis, 2016, 342, 151-157.	3.1	126
223	Ferroelectricity in Metal–Organic Frameworks: Characterization and Mechanisms. European Journal of Inorganic Chemistry, 2016, 2016, 4332-4344.	1.0	82
224	Effective photo-reduction to deposit Pt nanoparticles on MIL-100(Fe) for visible-light-induced hydrogen evolution. New Journal of Chemistry, 2016, 40, 9170-9175.	1.4	65
225	A visible light-driven photocatalyst of a stable metal–organic framework based on Cu ₄ Cl clusters and TIPE spacers. Dalton Transactions, 2016, 45, 13477-13482.	1.6	28
226	Two Coordination Polymers and Their Silver(I)â€Đoped Species: Synthesis, Characterization, and High Catalytic Activity for the Photodegradation of Various Organic Pollutants in Water. European Journal of Inorganic Chemistry, 2016, 2016, 2508-2515.	1.0	20
227	Sonocrystallization of ZIF-8 on Electrostatic Spinning TiO ₂ Nanofibers Surface with Enhanced Photocatalysis Property through Synergistic Effect. ACS Applied Materials & Interfaces, 2016, 8, 20274-20282.	4.0	189
228	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227
229	A two-dimensional cobalt(<scp>ii</scp>) network with a remarkable positive axial anisotropy parameter exhibiting field-induced single-ion magnet behavior. Journal of Materials Chemistry C, 2016, 4, 7798-7808.	2.7	31
230	Electronic origins of photocatalytic activity in d0 metal organic frameworks. Scientific Reports, 2016, 6, 23676.	1.6	196
231	Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared. Physical Chemistry Chemical Physics, 2016, 18, 32319-32330.	1.3	35
232	A Postsynthetic Modified MOF Hybrid as Heterogeneous Photocatalyst for α-Phenethyl Alcohol and Reusable Fluorescence Sensor. Inorganic Chemistry, 2016, 55, 11831-11838.	1.9	70
234	Metal–Organic Framework Capillary Microreactor for Application in Click Chemistry. ChemCatChem, 2016, 8, 1692-1698.	1.8	8
235	Metallâ€organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 2016, 128, 5504-5535.	1.6	87
236	Organic Linker Defines the Excitedâ€State Decay of Photocatalytic MILâ€125(Ti)â€Type Materials. ChemSusChem, 2016, 9, 388-395.	3.6	84
237	Iron(III) Porphyrinâ€Based Porous Material as Photocatalyst for Highly Efficient and Selective Degradation of Congo Red. Macromolecular Chemistry and Physics, 2016, 217, 599-604.	1.1	53
238	Photocatalytic conversion of CO ₂ over graphene-based composites: current status and future perspective. Nanoscale Horizons, 2016, 1, 185-200.	4.1	180
239	Titanium incorporated with UiO-66(Zr)-type Metal–Organic Framework (MOF) for photocatalytic application. RSC Advances, 2016, 6, 3671-3679.	1.7	161
240	Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. Journal of Materials Chemistry A, 2016, 4, 3584-3616.	5.2	301

#	Article	IF	CITATIONS
241	Encapsulating Naphthalene in an Electron-Deficient MOF to Enhance Fluorescence for Organic Amines Sensing. Inorganic Chemistry, 2016, 55, 3680-3684.	1.9	103
242	TiO2 encapsulated in Salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB. Applied Catalysis B: Environmental, 2016, 191, 192-201.	10.8	177
243	Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22, 149-168.	8.2	223
244	Selective Formation of Conductive Network by Radical-Induced Oxidation. Journal of the American Chemical Society, 2016, 138, 1776-1779.	6.6	46
245	Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks. Journal of Materials Chemistry A, 2016, 4, 3991-4002.	5.2	121
246	Photoreactivity of Metal–Organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production. Environmental Science & Technology, 2016, 50, 3634-3640.	4.6	42
247	Small-sized Ni(1 1 1) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2016, 190, 12-25.	10.8	145
248	Alkyl group-directed assembly of coordination polymers based on bis-(4-imidazol-1-yl-phenyl)-amine and their photocatalytic properties. New Journal of Chemistry, 2016, 40, 2479-2488.	1.4	3
249	Syntheses, crystal structures and third-order nonlinear optical properties of two series of Zn(II) complexes using the thiophene-based terpyridine ligands. Dyes and Pigments, 2016, 130, 216-225.	2.0	31
250	Two-semiconductive-component hybrid coordination polymers with controllable photo-induced electron-transfer properties. Dalton Transactions, 2016, 45, 6339-6342.	1.6	47
251	Alternative Materials to TiO2. Green Chemistry and Sustainable Technology, 2016, , 109-149.	0.4	1
252	Hexagonal microspindle of NH ₂ -MIL-101(Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC Advances, 2016, 6, 4289-4295.	1.7	190
253	Two New Series of Coordination Polymers and Evaluation of Their Properties by Density Functional Theory. Crystal Growth and Design, 2016, 16, 339-346.	1.4	6
254	Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 7563-7572.	1.3	304
255	Spectral and dynamical properties of a Zr-based MOF. Physical Chemistry Chemical Physics, 2016, 18, 5112-5120.	1.3	36
256	Photoreactivity of metal-organic frameworks in the decolorization of methylene blue in aqueous solution. Catalysis Today, 2016, 266, 136-143.	2.2	36
257	Co(<scp>ii</scp>) complexes loaded into metal–organic frameworks as efficient heterogeneous catalysts for aerobic epoxidation of olefins. Catalysis Science and Technology, 2016, 6, 161-168.	2.1	66
258	Ruthenium(<scp>ii</scp>)-polypyridyl zirconium(<scp>iv</scp>) metal–organic frameworks as a new class of sensitized solar cells. Chemical Science, 2016, 7, 719-727.	3.7	129

#	Article	IF	CITATIONS
259	Synthesis and applications of metal-organic framework–quantum dot (QD@MOF) composites. Coordination Chemistry Reviews, 2016, 307, 267-291.	9.5	289
260	Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 2017, 19, 4118-4125.	1.3	78
261	Highly efficient oxidative adsorption of methanethiol from hydrocarbon gas using Cu 2+ -based porous coordination polymers. Microporous and Mesoporous Materials, 2017, 243, 351-354.	2.2	7
262	Shape Controllable Preparation of Submicronic Cadmium Tetrazoleâ€Based Metal–Organic Frameworks via Solvothermal or Microwaveâ€Assisted Methods and Their Photocatalytic Studies. Chinese Journal of Chemistry, 2017, 35, 209-216.	2.6	9
263	Highly photocatalytic activity of novel Fe-MIL-88B/GO nanocomposite in the degradation of reactive dye from aqueous solution. Materials Research Express, 2017, 4, 035038.	0.8	48
264	Rapid production of acid-functionalized infinite coordination polymer nanoparticles and their calcination to mineral metal oxide. Powder Technology, 2017, 313, 169-174.	2.1	22
265	A Multifunctional Zirconiumâ€Based Metal–Organic Framework for the Oneâ€Pot Tandem Photooxidative Passerini Three omponent Reaction of Alcohols. ChemCatChem, 2017, 9, 1992-2000.	1.8	71
266	Facile synthesis of novel zinc-based infinite coordination polymer nanoparticles. Inorganic Chemistry Communication, 2017, 78, 48-51.	1.8	19
267	Robust Ti―and Zrâ€Based Metalâ€Organic Frameworks for Photocatalysis. Chinese Journal of Chemistry, 2017, 35, 135-147.	2.6	74
268	A poly-dopamine based metal-organic framework coating of the type PDA-MIL-53(Fe) for ultrasound-assisted solid-phase microextraction of polychlorinated biphenyls prior to their determination by GC-MS. Mikrochimica Acta, 2017, 184, 2561-2568.	2.5	48
269	Visible Light Induced Organic Transformations Using Metalâ€Organicâ€Frameworks (MOFs). Chemistry - A European Journal, 2017, 23, 11189-11209.	1.7	176
270	A hexanuclear cobalt metal–organic framework for efficient CO ₂ reduction under visible light. Journal of Materials Chemistry A, 2017, 5, 12498-12505.	5.2	106
271	A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal–Organic Framework Materials. Inorganic Chemistry, 2017, 56, 5544-5552.	1.9	81
272	Porphyrin-based metal-organic frameworks for solar fuel synthesis photocatalysis: band gap tuning via iron substitutions. Journal of Materials Chemistry A, 2017, 5, 11894-11904.	5.2	84
273	Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Research, 2017, 10, 3543-3556.	5.8	65
274	Grand Challenges and Future Opportunities for Metal–Organic Frameworks. ACS Central Science, 2017, 3, 554-563.	5.3	311
275	Maximizing the Photocatalytic Activity of Metal–Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH ₂ . Journal of the American Chemical Society, 2017, 139, 8222-8228.	6.6	195
276	Solvent-dependent selective cation exchange in anionic frameworks based on cobalt(<scp>ii</scp>) and triphenylamine linkers: reactor-dependent synthesis and sorption properties. Dalton Transactions, 2017, 46, 8037-8050.	1.6	16

#	Article	IF	CITATIONS
277	Dual-emitting fluorescence of Eu/Zr-MOF for ratiometric sensing formaldehyde. Sensors and Actuators B: Chemical, 2017, 253, 275-282.	4.0	110
278	A dual-functional indium–organic framework towards organic pollutant decontamination via physically selective adsorption and chemical photodegradation. Journal of Materials Chemistry A, 2017, 5, 14182-14189.	5.2	80
279	Ti as Mediator in the Photoinduced Electron Transfer of Mixed-Metal NH ₂ –UiO-66(Zr/Ti): Transient Absorption Spectroscopy Study and Application in Photovoltaic Cell. Journal of Physical Chemistry C, 2017, 121, 7015-7024.	1.5	116
280	Hierarchical BiOI nanostructures supported on a metal organic framework as efficient photocatalysts for degradation of organic pollutants in water. Dalton Transactions, 2017, 46, 6013-6023.	1.6	95
281	Five New Transition Metal Coordination Polymers Based on V-Shaped Bis-triazole Ligand with Aromatic Dicarboxylates: Syntheses, Structures, and Properties. Crystal Growth and Design, 2017, 17, 2757-2766.	1.4	29
282	A robust anionic pillared-layer framework with triphenylamine-based linkers: ion exchange and counterion-dependent sorption properties. CrystEngComm, 2017, 19, 2723-2732.	1.3	23
283	Peculiar synergetic effect of MoS 2 quantum dots and graphene on Metal-Organic Frameworks for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 210, 45-56.	10.8	269
284	Insight into the Controllable Synthesis of Cu(I)/Cu(II) Metal–Organic Complexes: Size-Exclusive Selective Dye Adsorption and Semiconductor Properties. Crystal Growth and Design, 2017, 17, 2549-2559.	1.4	47
285	CO 2 capture and photocatalytic reduction using bifunctional TiO 2 /MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 2017, 210, 131-140.	10.8	288
286	Defective Metal–Organic Frameworks Incorporating Iridiumâ€Based Metalloligands: Sorption and Dye Degradation Properties. Chemistry - A European Journal, 2017, 23, 6615-6624.	1.7	44
287	Piezochromism and hydrochromism through electron transfer: new stories for viologen materials. Chemical Science, 2017, 8, 2758-2768.	3.7	174
288	A new heterothiometallic cluster polymer based on cubane-like [WOS3Cu3]+ for photocatalytic degradation of methylene blue. Polyhedron, 2017, 122, 131-136.	1.0	2
289	Construction and Photocatalytic Activities of a Series of Isostructural Co ²⁺ /Zn ²⁺ Metal-Doped Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 1096-1102.	1.4	41
290	Uniform di-carboxylic infinite coordination polymer nanoparticles as appropriate precursor for preparation of metal oxide nanoparticles. Materials Research Express, 2017, 4, 115005.	0.8	2
291	The chemistry of titanium-based metal–organic frameworks. New Journal of Chemistry, 2017, 41, 14030-14043.	1.4	73
292	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	1.6	85
293	Metal–organic frameworks (MOFs) for photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2017, 7, 4893-4904.	2.1	258
294	Enhanced photocatalytic activity of zeolitic imidazolate framework-8 by modification with phosphor tungstic acid. IOP Conference Series: Earth and Environmental Science, 2017, 64, 012048.	0.2	1

# 295	ARTICLE A series of novel cadmium(<scp>ii</scp>) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands. New Journal of Chemistry, 2017, 41, 9152-9158.	lF 1.4	Citations
296	Iron-based metal–organic frameworks (MOFs) for visible-light-induced photocatalysis. Research on Chemical Intermediates, 2017, 43, 5169-5186.	1.3	88
297	Metal Organic Frameworks: A New Generation Coordination Polymers for Visible Light Photocatalysis. ChemistrySelect, 2017, 2, 6163-6177.	0.7	23
298	Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis. Science Advances, 2017, 3, e1701162.	4.7	136
299	Metal organic framework g-C 3 N 4 /MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Applied Surface Science, 2017, 425, 107-116.	3.1	361
300	Fast and regenerative photocatalyst material for the disinfection of E. coli from water: Silver nano particle anchor on MOF-5. Catalysis Communications, 2017, 102, 21-25.	1.6	42
301	Coordinative integration of a metal-porphyrinic framework and TiO ₂ nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities. Journal of Materials Chemistry A, 2017, 5, 15380-15389.	5.2	91
302	Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Applied Catalysis B: Environmental, 2017, 218, 555-569.	10.8	173
303	The effect of substituted benzene dicarboxylic acid linkers on the optical band gap energy and magnetic coupling in manganese trimer metal organic frameworks. Journal of Materials Chemistry C, 2017, 5, 539-548.	2.7	10
304	Semiconductor Metal–Organic Frameworks: Future Lowâ€Bandgap Materials. Advanced Materials, 2017, 29, 1605071.	11.1	211
305	Crystalline, Highly Oriented MOF Thin Film: the Fabrication and Application. Chemical Record, 2017, 17, 518-534.	2.9	34
306	Modified Bi2WO6 with metal-organic frameworks for enhanced photocatalytic activity under visible light. Journal of Colloid and Interface Science, 2017, 488, 234-239.	5.0	57
307	A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Applied Catalysis B: Environmental, 2017, 200, 673-680.	10.8	243
308	Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation. Applied Catalysis B: Environmental, 2017, 202, 653-663.	10.8	316
309	Exploration of Zr–Metal–Organic Framework as Efficient Photocatalyst for Hydrogen Production. Nanoscale Research Letters, 2017, 12, 539.	3.1	85
310	Construction of CuO-modified zeolitic imidazolate framework-9 for photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2017, 38, 2056-2066.	6.9	34
311	Photocatalytic Cr(VI) reduction and organic-pollutant degradation in a stable 2D coordination polymer. Chinese Journal of Catalysis, 2017, 38, 2141-2149.	6.9	59
312	High pressure effects on hydrate Cu-BTC investigated by vibrational spectroscopy and synchrotron X-ray diffraction. RSC Advances, 2017, 7, 55504-55512.	1.7	30

ARTICLE IF CITATIONS Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging 313 1.7 116 Chamber. Molecules, 2017, 22, 144. Enhancement of the photocatalytic performance and thermal stability of an iron based metalâ€"organic-framework functionalised by Ag/Ag₃PO₄. Materials Chemistry 314 3.2 Frontiers, 2018, 2, 942-951. Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation over MOF 315 7.2 430 Composites. Angewandte Chemie - International Edition, 2018, 57, 5379-5383. Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB 316 dye in Fe-ZIF-8. Journal of Porous Materials, 2018, 25, 857-869. Cu-based metal-organic framework thin films: A morphological and photovoltaic study. Journal of 317 1.4 8 Solid State Chemistry, 2018, 262, 94-99. Synthesis and characterization of CdS/MIL-125 (Ti) as a photocatalyst for water splitting. Materials Science in Semiconductor Processing, 2018, 80, 44-51. The photo-, electro- and photoelectro-catalytic properties and application prospects of porous 319 5.2 66 coordinate polymers. Journal of Materials Chemistry A, 2018, 6, 6130-6154. π–Ĩ€ Interaction Between Metal–Organic Framework and Reduced Graphene Oxide for Visible-Light 320 2.5 168 Photocatalytic H₂ Production. ACS Applied Energy Materials, 2018, 1, 1913-1923. A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction. Journal of 321 3.3 58 CO2 Utilization, 2018, 24, 369-375. An unusual (4,6)-coordinated copper(II) coordination polymer: High efficient degradation of organic 1.0 dyes under visible light irradiation and electrochemical properties. Polyhedron, 2018, 148, 81-87 Expanding the dimensions of metal–organic framework research towards dielectrics. Coordination 323 9.5 48 Chemistry Reviews, 2018, 360, 77-91. Syntheses, crystal structures, and properties of four coordination polymers based on mixed multi-N 324 1.4 donor and polycarboxylate ligands. Journal of Solid State Chemistry, 2018, 258, 792-799. A Strategy to Boost H₂ Generation Ability of Metalâ€"Organic Frameworks: Insideâ€Outside 325 3.6 30 Decoration for the Separation of Electrons and Holes. ChemSusChem, 2018, 11, 666-671. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 2018, 337, 351-371. 6.6 Efficient charge separation between UiO-66 and ZnIn2S4 flowerlike 3D microspheres for 327 10.8 211 photoelectronchemical properties. Applied Catalysis B: Environmental, 2018, 226, 234-241. A multi-dye@MOF composite boosts highly efficient photodegradation of an ultra-stubborn dye reactive blue 21 under visible-light irradiation. Journal of Materials Chemistry A, 2018, 6, 2148-2156. Synthesis of MIL-100(Fe)@MIL-53(Fe) as a novel hybrid photocatalyst and evaluation photocatalytic and photoelectrochemical performance under visible light irradiation. Journal of Solid State Chemistry, 330 1.4 71 2018, 262, 172-180. Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation over MOF 1.6 Composites. Angewandte Chemie, 2018, 130, 5477-5481.

#	Article	IF	CITATIONS
332	Postmodification of MOF-5 using secondary complex formation using 8-Âhydroxyquinoline (HOQ) for the development of visible light active photocatalysts. Journal of Physics and Chemistry of Solids, 2018, 116, 264-272.	1.9	21
333	Modified metal-organic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231, 317-342.	10.8	376
334	A visible-light driven Bi ₂ S ₃ @ZIF-8 core–shell heterostructure and synergistic photocatalysis mechanism. Dalton Transactions, 2018, 47, 684-692.	1.6	83
335	Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light. Applied Catalysis B: Environmental, 2018, 224, 479-487.	10.8	126
336	Metal–organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373, 83-115.	9.5	146
337	Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018, 221, 119-128.	10.8	366
338	A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catalysis Science and Technology, 2018, 8, 679-696.	2.1	109
339	The visible light driven copper based metal-organic-framework heterojunction:HKUST-1@Ag-Ag3PO4 for plasmon enhanced visible light photocatalysis. Journal of Alloys and Compounds, 2018, 737, 798-808.	2.8	96
340	Enhanced photocatalytic activity and mechanism insight of MnOx/MIL-101. Journal of the Taiwan Institute of Chemical Engineers, 2018, 82, 226-232.	2.7	13
341	Three coordination polymers based on a star-like geometry 4, 4', 4'' -nitrilotribenzoic acid ligand and their framework dependent luminescent properties. Journal of Solid State Chemistry, 2018, 258, 328-334.	1.4	8
342	Synthesis of novel silver chromate incorporated copper-metal-organic framework composites with exceptionally high photocatalytic activity and stability. Journal of Materials Science: Materials in Electronics, 2018, 29, 3358-3369.	1.1	14
343	Hybrid materials based on transition metal–BTC–benzimidazole: solvent assisted crystallographic and structural switching. CrystEngComm, 2018, 20, 6602-6612.	1.3	11
345	Facile generation of carbon quantum dots in MIL-53(Fe) particles as localized electron acceptors for enhancing their photocatalytic Cr(<scp>vi</scp>) reduction. Inorganic Chemistry Frontiers, 2018, 5, 3170-3177.	3.0	64
346	Ruthenium(II) Tris(2,2′-bipyridyl) Complex Incorporated in UiO-67 as Photoredox Catalyst. Journal of Physical Chemistry C, 2018, 122, 29190-29199.	1.5	26
347	Metal Organic Frameworks Based Materials for Heterogeneous Photocatalysis. Molecules, 2018, 23, 2947.	1.7	69
348	MiR-6991-3p is identified as a novel suppressor in the expansion and activation of myeloid-derived suppressor cells in hepatoma-bearing mice. OncoTargets and Therapy, 2019, Volume 12, 309-317.	1.0	7
349	Metal–Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. Advanced Materials, 2018, 30, e1800702.	11.1	362
350	Titanium-Based Mesoporous Materials for Photocatalysis. Lecture Notes in Quantum Chemistry II, 2018, , 47-73.	0.3	0

#	Article	IF	CITATIONS
351	Bulk-to-Surface Proton-Coupled Electron Transfer Reactivity of the Metal–Organic Framework MIL-125. Journal of the American Chemical Society, 2018, 140, 16184-16189.	6.6	41
352	Synthesis and solar cell application of a composite of Eu-BTB MOF with functionalized graphene. Materials Research Express, 2018, 5, 125501.	0.8	3
353	Towards optical application of metal-organic frameworks: Cu-MOFs as sole heterogeneous photocatalyst for arylation of phenols at room temperature. Catalysis Communications, 2018, 117, 79-84.	1.6	12
354	Efficient heterogeneous catalysis by dual ligand Zn(<scp>ii</scp>)/Cd(<scp>ii</scp>) MOFs for the Knoevenagel condensation reaction: adaptable synthetic routes, characterization, crystal structures and luminescence studies. Inorganic Chemistry Frontiers, 2018, 5, 2630-2640.	3.0	59
355	The role of redox hopping in metal–organic framework electrocatalysis. Chemical Communications, 2018, 54, 6965-6974.	2.2	127
356	Photocatalytic water splitting on metal oxide-based semiconductor photocatalysts. , 2018, , 355-399.		12
357	Synthesis, Characterization, and Optical Properties of Organic–Inorganic Hybrid Layered Materials: A Solvent-Free Ligand-Controlled Dimensionality Approach Based on Metal Sulfates and Aromatic Diamines. Crystal Growth and Design, 2018, 18, 5029-5037.	1.4	15
358	Construction of a Stable Ru–Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2018, 57, 8276-8286.	1.9	98
359	Effect of electronic migration of MIL-53(Fe) on the activation of peroxymonosulfate under visible light. Chemical Physics Letters, 2018, 706, 694-701.	1.2	53
360	Iron(<scp>iii</scp>)-based metal–organic frameworks as oxygen-evolving photocatalysts for water oxidation. Sustainable Energy and Fuels, 2018, 2, 2109-2114.	2.5	33
361	Photonic functional metal–organic frameworks. Chemical Society Reviews, 2018, 47, 5740-5785.	18.7	528
362	Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti). Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 524-533.	2.0	67
363	Mil-100(Fe) nanoparticles supported on urchin like Bi2S3 structure for improving photocatalytic degradation of rhodamine-B dye under visible light irradiation. Journal of Solid State Chemistry, 2018, 266, 54-62.	1.4	53
364	Metal(II) Coordination Polymers Derived from Mixed 4-Imidazole Ligands and Carboxylates: Syntheses, Topological Structures, and Properties. Polymers, 2018, 10, 622.	2.0	11
365	A new 3D Gd-based metal-organic framework with paddle-wheel unit: Structure and photocatalytic property. Inorganic Chemistry Communication, 2018, 95, 104-106.	1.8	8
366	Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47, 8134-8172.	18.7	1,119
367	Design of Singleâ€ s ite Photocatalysts by Using Metal–Organic Frameworks as a Matrix. Chemistry - an Asian Journal, 2018, 13, 1767-1779.	1.7	49
368	Charge transfer behaviors over MOF-5@g-C 3 N 4 with Ni x Mo 1â^'x S 2 modification. International Journal of Hydrogen Energy, 2018, 43, 9914-9923.	3.8	41

#	Article	IF	CITATIONS
369	Facile synthesis of g-C3N4/amine-functionalized MIL-101(Fe) composites with efficient photocatalytic activities under visible light irradiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 17591-17601.	1.1	48
370	Sodiumâ€Doped C ₃ N ₄ /MOF Heterojunction Composites with Tunable Band Structures for Photocatalysis: Interplay between Light Harvesting and Electron Transfer. Chemistry - A European Journal, 2018, 24, 18403-18407.	1.7	85
371	Controlled construction of uniform pompon-like Pb-ICP microarchitectures as a precursor for PbO semiconductor nanoflakes. Advanced Powder Technology, 2018, 29, 2813-2821.	2.0	4
372	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
373	Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods, 2018, 2, 1800173.	4.6	288
374	Immobilization of BaWO4 nanostructures on a MOF-199-NH2: An efficient separable photocatalyst for the degradation of organic dyes. Optik, 2018, 174, 776-786.	1.4	12
375	Highly Efficient Photocatalytic Degradation of Dyes by a Copper–Triazolate Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 16804-16813.	1.7	81
376	Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework. Nature Communications, 2018, 9, 3353.	5.8	195
377	Zrâ€Metal Organic Framework and Derivatives for Adsorptive and Photocatalytic Removal of Acid Dyes. Water Environment Research, 2018, 90, 144-154.	1.3	29
378	A Methylthioâ€Functionalizedâ€MOF Photocatalyst with High Performance for Visibleâ€Lightâ€Driven H ₂ Evolution. Angewandte Chemie - International Edition, 2018, 57, 9864-9869.	7.2	188
379	A bifunctional cationic metal–organic framework based on unprecedented nonanuclear copper(<scp>ii</scp>) cluster for high dichromate and chromate trapping and highly efficient photocatalytic degradation of organic dyes under visible light irradiation. Dalton Transactions, 2018, 47, 9103-9113.	1.6	51
380	Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chemical Society Reviews, 2018, 47, 8072-8096.	18.7	176
381	Metal–Organicâ€Frameworkâ€Based Catalysts for Photoreduction of CO ₂ . Advanced Materials, 2018, 30, e1705512.	11.1	415
382	A Methylthioâ€Functionalizedâ€MOF Photocatalyst with High Performance for Visibleâ€Lightâ€Driven H ₂ Evolution. Angewandte Chemie, 2018, 130, 10012-10017.	1.6	24
383	Three bulky conjugated 4-(2,6-di(pyrazin-2-yl)pyridin-4-yl)benzoate-based chains exhibiting dual photocatalytic and electrocatalytic performances. Journal of Molecular Structure, 2019, 1176, 376-385.	1.8	8
384	Congo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks. Transition Metal Chemistry, 2019, 44, 77-87.	0.7	30
385	A noble-metal-free photocatalyst system obtained using BODIPY-based MOFs for highly efficient visible-light-driven H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 20742-20749.	5.2	34
386	Recent Advances in MOF-based Nanocatalysts for Photo-Promoted CO2 Reduction Applications. Catalysts, 2019, 9, 658.	1.6	26

#	Article	IF	CITATIONS
387	Modified UiO-66 frameworks with methylthio, thiol and sulfonic acid function groups: The structure and visible-light-driven photocatalytic property study. Applied Catalysis B: Environmental, 2019, 259, 118047.	10.8	60
388	A sulfur coordination polymer with wide bandgap semiconductivity formed from zinc(II) and 5-methylsulfanyl-1,3,4-thiadiazole-2-thione. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1243-1249.	0.2	2
389	From IR to x-rays: gaining molecular level insights on metal-organic frameworks through spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 483001.	0.7	12
390	Metal–Organic Framework-Based Composite for Photocatalytic Detection of Prevalent Pollutant. ACS Applied Materials & Interfaces, 2019, 11, 31049-31059.	4.0	12
391	Green synthesis of nanoscale cobalt(<scp>ii</scp>)-based MOFs: highly efficient photo-induced green catalysts for the degradation of industrially used dyes. Dalton Transactions, 2019, 48, 13869-13879.	1.6	33
392	Facile synthesis of rGO@In2S3@UiO-66 ternary composite with enhanced visible-light photodegradation activity for methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112025.	2.0	42
393	Construction of 2D MOFs@reduced Graphene Oxide Nanocomposites with Enhanced Visible Lightâ€induced Fentonâ€like Catalytic Performance by Seeded Growth Strategy. ChemCatChem, 2019, 11, 4411-4419.	1.8	8
394	Synthesis, structure and photocatalytic degradation of organic dyes of a copper(II) metal–organic framework (Cu–MOF) with a 4-coordinated three-dimensional CdSO ₄ topology. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1053-1059.	0.2	9
395	Accelerated Fenton-like kinetics by visible-light-driven catalysis over iron(<scp>iii</scp>) porphyrin functionalized zirconium MOF: effective promotion on the degradation of organic contaminants. Environmental Science: Nano, 2019, 6, 2652-2661.	2.2	57
396	Boosting Photocatalytic Performance in Mixed-Valence MIL-53(Fe) by Changing Fe ^{II} /Fe ^{III} Ratio. ACS Applied Materials & Interfaces, 2019, 11, 28791-28800.	4.0	121
397	Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem, 2019, 1, 100005.	10.1	289
398	Dynamics of piezoelectric micro-machined ultrasonic transducers for contact and non-contact resonant sensors. Journal of Applied Physics, 2019, 126, .	1.1	4
401	Computational Studies of Photocatalysis with Metal–Organic Frameworks. Energy and Environmental Materials, 2019, 2, 251-263.	7.3	66
402	Construction of 2D/2D Heterogeneous of ZIFâ€8/SnS ₂ Composite as a Transfer of Bandâ€Band System for Efficient Visible Photocatalytic Activity. ChemistrySelect, 2019, 4, 11227-11234.	0.7	8
403	Photocatalytic performances of two new Cd(II) and Zn(II)-based coordination polymers. Journal of Molecular Structure, 2019, 1182, 79-86.	1.8	18
404	Efficient photo-Fenton like activity in modified MIL-53(Fe) for removal of pesticides: Regulation of photogenerated electron migration. Materials Research Bulletin, 2019, 119, 110570.	2.7	39
405	Novel semiconducting iron–quinizarin metal–organic framework for application in supercapacitors. Molecular Physics, 2019, 117, 3424-3433.	0.8	4
406	Photoactive Ag(I)-Based Coordination Polymer as a Potential Semiconductor for Photocatalytic Water Splitting and Environmental Remediation: Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2019, 123, 23940-23950.	1.5	12

#	Article	IF	CITATIONS
407	Boosting photocatalytic oxidative coupling of amines by a Ru-complex-sensitized metal-organic framework. Journal of Catalysis, 2019, 378, 248-255.	3.1	44
408	Syntheses and photocatalytic properties of three new d ¹⁰ -based coordination polymers: effects of metal centres and ancillary ligands. CrystEngComm, 2019, 21, 6558-6565.	1.3	29
409	Synthesis of a Redox-active Metal–Organic Framework MIL-116(Fe) and Its Lithium Ion Battery Cathode Properties. Chemistry Letters, 2019, 48, 1379-1382.	0.7	13
410	Photocatalytic degradation of cefixime with MIL-125(Ti)-mixed linker decorated by g-C3N4 under solar driven light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123874.	2.3	34
411	Luminescent metal-organic frameworks and their composites: Potential future materials for organic light emitting displays. Coordination Chemistry Reviews, 2019, 401, 213077.	9.5	122
412	Sodium-coupled electron transfer reactivity of metal–organic frameworks containing titanium clusters: the importance of cations in redox chemistry. Chemical Science, 2019, 10, 1322-1331.	3.7	20
413	Two novel organic phosphorous-based MOFs: synthesis, characterization and photocatalytic properties. Dalton Transactions, 2019, 48, 523-534.	1.6	54
414	Improving photoelectrochemical response of ZnO nanowire arrays by coating with p-type ZnO-resembling metal–organic framework. Dalton Transactions, 2019, 48, 9310-9316.	1.6	10
415	Post modification of zinc based coordination polymer to prepare Znâ€Moâ€ICP nanoparticles as efficient selfâ€supported catalyst for olefin epoxidation. Applied Organometallic Chemistry, 2019, 33, e5052.	1.7	21
416	Highly efficient and green approach for the synthesis of spirooxindole derivatives in the presence of novel BrÄ,nsted acidic ionic liquids incorporated in UiOâ€66 nanocages. Applied Organometallic Chemistry, 2019, 33, e5027.	1.7	23
417	Facile Fabrication of Highly Efficient Photoelectrocatalysts M _x O _y @NH ₂ â€MILâ€125(Ti) for Enhanced Hydrogen Evolution Reaction. ChemistrySelect, 2019, 4, 6996-7002.	0.7	11
418	HLE17: An Efficient Way To Predict Band Gaps of Complex Materials. Journal of Physical Chemistry C, 2019, 123, 17416-17424.	1.5	26
419	Photocatalytic and Ferric Ion Sensing Properties of a New Three-Dimensional Metal–Organic Framework Based on Cuboctahedral Secondary Building Units. ACS Omega, 2019, 4, 10775-10783.	1.6	78
420	A new Zn(<scp>ii</scp>)-based 3D metal–organic framework with uncommon sev topology and its photocatalytic properties for the degradation of organic dyes. CrystEngComm, 2019, 21, 4578-4585.	1.3	119
421	Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO. Journal of Alloys and Compounds, 2019, 802, 467-476.	2.8	66
422	Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 677-684.	10.8	65
423	An Uncommon Nanocage 3D Metal–Organic Framework Built from a Tetracarboxylate Ligand: Photoluminescence and Photocatalytic Properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 74-79.	0.3	0
424	Photocatalytic degradation of organic dyes by infinite one dimensional coordination polymer based on Zn(II) in water. Bulletin of the Chemical Society of Ethiopia, 2019, 33, 51.	0.5	9

#	Article	IF	CITATIONS
425	Controllable self-assembly of CdS@NH2-MIL-125(Ti) heterostructure with enhanced photodegradation efficiency for organic pollutants through synergistic effect. Materials Science in Semiconductor Processing, 2019, 97, 91-100.	1.9	62
426	Sonochemical synthesis and characterization of four nanostructural nickel coordination polymers and photocatalytic degradation of methylene blue. Ultrasonics Sonochemistry, 2019, 56, 213-228.	3.8	36
427	A novel BODIPY-based MOF photocatalyst for efficient visible-light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 10439-10445.	5.2	58
428	Fabrication of hierarchical MIL-68(In)-NH2/MWCNT/CdS composites for constructing label-free photoelectrochemical tetracycline aptasensor platform. Biosensors and Bioelectronics, 2019, 135, 88-94.	5.3	48
429	Metalâ€Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. ChemPhysChem, 2019, 20, 1177-1215.	1.0	56
430	Synthesis, structure, spectral characteristic and photocatalytic degradation of organic dyes of a copper metal-organic framework based on tri(triazole) and pimelate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 372-377.	2.0	41
431	Plasmon induced interfacial charge transfer across Zr-based metal-organic framework coupled Ag2WO4 heterojunction functionalized by Ag NPs: Efficient visible light photocatalyst. Chemical Physics Letters, 2019, 720, 7-14.	1.2	19
432	Syntheses, structures and properties of structural diversity of 3D coordination polymers based on bis(imidazole) and dicarboxylate. Polyhedron, 2019, 162, 303-310.	1.0	14
433	Synthesis and application of novel Fe-MIL-53/GO nanocomposite for photocatalytic degradation of reactive dye from aqueous solution. Vietnam Journal of Chemistry, 2019, 57, 681-685.	0.7	7
434	Synthesis of a novel 2D zinc(<scp>ii</scp>) metal–organic framework for photocatalytic degradation of organic dyes in water. Dalton Transactions, 2019, 48, 17626-17632.	1.6	84
435	Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction. Polymers, 2019, 11, 2090.	2.0	46
436	TiO ₂ nanocrystals with the {001} and {101} facets co-exposed with MIL-100(Fe): an egg-like composite nanomaterial for efficient visible light-driven photocatalysis. RSC Advances, 2019, 9, 31728-31734.	1.7	13
437	Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Applied Catalysis B: Environmental, 2019, 241, 149-158.	10.8	216
438	Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution. Applied Surface Science, 2019, 464, 396-403.	3.1	60
439	Enhanced luminescence of NH2-UiO-66 for selectively sensing fluoride anion in water medium. Journal of Luminescence, 2019, 208, 67-74.	1.5	75
440	Enhancing Efficiency and Stability of Photovoltaic Cells by Using Perovskite/Zrâ€MOF Heterojunction Including Bilayer and Hybrid Structures. Advanced Science, 2019, 6, 1801715.	5.6	159
441	Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 2019, 52, 356-366.	7.6	880
442	Metal–Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. Journal of the American Chemical Society, 2019, 141, 870-878.	6.6	204

#	Article	IF	CITATIONS
443	Metal–Organic Frameworks in Dye-Sensitized Solar Cells. Energy, Environment, and Sustainability, 2019, , 175-219.	0.6	8
444	Recent advances in metal-organic frameworks for separation and enrichment in proteomics analysis. TrAC - Trends in Analytical Chemistry, 2019, 110, 66-80.	5.8	53
445	Semiconductor Photocatalysis for Water Purification. , 2019, , 581-651.		68
446	Cellulose meets reticular chemistry: interactions between cellulosic substrates and metal–organic frameworks. Cellulose, 2019, 26, 123-137.	2.4	54
447	A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts, 2019, 9, 52.	1.6	215
448	Modulating photoelectronic performance of metal–organic frameworks for premium photocatalysis. Coordination Chemistry Reviews, 2019, 380, 201-229.	9.5	112
449	Nanohybrid Photocatalysts for Heavy Metal Pollutant Control. , 2019, , 125-153.		12
450	Synthesis of In2S3/UiO-66 hybrid with enhanced photocatalytic activity towards methyl orange and tetracycline hydrochloride degradation under visible-light irradiation. Materials Science in Semiconductor Processing, 2019, 91, 212-221.	1.9	62
451	A new magnetic hybrid based on a unique sulfur rich cadmium coordination polymer used for high selective photocatalytic degradation of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 504-514.	2.7	5
452	Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catalysis Today, 2020, 340, 209-224.	2.2	201
453	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
454	Recent progress on metal-organic frameworks based- and derived-photocatalysts for water splitting. Chemical Engineering Journal, 2020, 383, 123196.	6.6	148
455	Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere, 2020, 242, 125144.	4.2	186
456	Functionalized g-C3N4 sheets assisted synthesis of growth-oriented MIL-88B-Fe with rod-like structure: Upgrading framework photo-catalytic performance and stability. Applied Surface Science, 2020, 503, 144089.	3.1	57
457	Construction of MIL-125(Ti)/ZnIn2S4 composites with accelerated interfacial charge transfer for boosting visible light photoreactivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124078.	2.3	34
458	Nanohybrid photocatalysts with ZnIn2S4 nanosheets encapsulated UiO-66 octahedral nanoparticles for visible-light-driven hydrogen generation. Applied Catalysis B: Environmental, 2020, 260, 118152.	10.8	154
459	Amine Functionalized Metal–Organic Framework Coordinated with Transition Metal Ions: d–d Transition Enhanced Optical Absorption and Role of Transition Metal Sites on Solar Light Driven H ₂ Production. Small, 2020, 16, e1902990.	5.2	54
460	Rapid adsorption of cationic and anionic dyes from aqueous solution via metal-based coordination polymers nanoparticles. Solid State Sciences, 2020, 99, 106063.	1.5	19

#	Article	IF	CITATIONS
461	A Co-MOF with a (4,4)-connected binodal two-dimensional topology: synthesis, structure and photocatalytic properties. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 23-29.	0.2	8
462	Nature-mimic fabricated polydopamine/MIL-53(Fe): efficient visible-light responsive photocatalysts for the selective oxidation of alcohols. New Journal of Chemistry, 2020, 44, 2102-2110.	1.4	6
463	A new water-insoluble coordination polymer as efficient dye adsorbent and olefin epoxidation catalyst. Journal of Environmental Management, 2020, 254, 109784.	3.8	28
464	Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorganic Chemistry Frontiers, 2020, 7, 300-339.	3.0	429
465	Metal–organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis. Sustainable Energy and Fuels, 2020, 4, 504-521.	2.5	71
466	Insight into Design of MILâ€125(Ti)â€Based Composite with Boosting Photocatalytic Activity: The Embedded Multiple Fe Oxide Count. Advanced Materials Interfaces, 2020, 7, 1901449.	1.9	14
467	Stable zinc metal-organic framework materials constructed by fluorenone carboxylate ligand: Multifunction detection and photocatalysis property. Journal of Solid State Chemistry, 2020, 282, 121125.	1.4	19
468	Formation of Supraparticles and Their Application in Catalysis. , 2020, 2, 95-106.		42
469	Combining Ionic Liquids and Sodium Salts into Metalâ€Organic Framework for Highâ€Performance Ionic Conduction. ChemElectroChem, 2020, 7, 183-190.	1.7	19
470	Recent Advances in Photocatalysis over Metal–Organic Frameworksâ€Based Materials. Solar Rrl, 2020, 4, 1900438.	3.1	22
471	In-situ fabrication of g-C3N4/MIL-68(In)-NH2 heterojunction composites with enhanced visible-light photocatalytic activity for degradation of ibuprofen. Chemical Engineering Journal, 2020, 391, 123608.	6.6	79
472	The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: A state-of-the-art review. Chemical Engineering Journal, 2020, 391, 123601.	6.6	155
473	Linker defect engineering for effective reactive site formation in metal–organic framework photocatalysts with a MIL-125(Ti) architecture. Journal of Catalysis, 2020, 392, 119-125.	3.1	27
474	Amino-functionalized MIL-101(Cr) photodegradation enhancement by sulfur-enriched copper sulfide nanoparticles: An experimental and DFT study. Journal of Molecular Liquids, 2020, 319, 114341.	2.3	22
475	Metal–organic frameworks for chemical conversion of carbon dioxide. MRS Energy & Sustainability, 2020, 7, 1.	1.3	13
476	Two transition metal coordination polymers: Photocatalytic properties and treatment effect on lipopolysaccharide (LPS) induced kidney injury by regulating pink 1 gene expression and reducing inflammatory response. Journal of Molecular Structure, 2020, 1220, 128708.	1.8	2
477	Applications of Metal Organic Frameworks in Wastewater Treatment: A Review on Adsorption and Photodegradation. Frontiers in Chemical Engineering, 2020, 2, .	1.3	83
478	Long-Range Exciton Transport in Perovskite–Metal Organic Framework Solid Composites. Journal of Physical Chemistry Letters, 2020, 11, 9045-9050.	2.1	13

#	Article	IF	CITATIONS
479	Unravelling a long-lived ligand-to-metal cluster charge transfer state in Ce–TCPP metal organic frameworks. Chemical Communications, 2020, 56, 13971-13974.	2.2	20
480	Recent Advances in Photocatalytic CO2 Utilisation Over Multifunctional Metal–Organic Frameworks. Catalysts, 2020, 10, 1176.	1.6	20
481	Fabrication of heterostructured UIO-66-NH2 /CNTs with enhanced activity and selectivity over photocatalytic CO2 reduction. International Journal of Hydrogen Energy, 2020, 45, 30634-30646.	3.8	30
482	Two new Zn-based coordination polymers constructed from a light responsive organic ligand: Efficient clean-up of Cr(VI) and organic pollutants. Polyhedron, 2020, 188, 114701.	1.0	8
483	Current status and future prospects of metal–organic frameworks at the interface of dye-sensitized solar cells. Dalton Transactions, 2020, 49, 13936-13947.	1.6	41
484	Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Applied Catalysis B: Environmental, 2020, 278, 119345.	10.8	104
485	Metal–organic frameworks for water purification. , 2020, , 241-283.		5
486	Selective anionic dye adsorption by a new water-tolerant nickel-based coordination polymer. Journal of Materials Science, 2020, 55, 14656-14663.	1.7	14
487	A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. CheM, 2020, 6, 3409-3427.	5.8	41
488	Sonochemical synthesis of Zr-fumaric based metal-organic framework (MOF) and its performance evaluation in methyl violet 2B decolorization by photocatalysis. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 1009-1021.	0.8	23
489	Designing a New Efficient Photocatalyst Based on Functionalization of Zn-Infinite Coordination Polymer with Ru(acac) ₃ Complex for Dye Degradation in Aqueous Solutions: Charge Separation Effect. Langmuir, 2020, 36, 14224-14233.	1.6	16
490	Efficient Photocatalytic CO2 Reduction with MIL-100(Fe)-CsPbBr3 Composites. Catalysts, 2020, 10, 1352.	1.6	23
491	From 1D to 2D Cd(II) and Zn(II) Coordination Networks by Replacing Monocarboxylate with Dicarboxylates in Partnership with Azine Ligands: Synthesis, Crystal Structures, Inclusion, and Emission Properties. Molecules, 2020, 25, 5616.	1.7	8
492	A Critical Review on Metal-Organic Frameworks and Their Composites as Advanced Materials for Adsorption and Photocatalytic Degradation of Emerging Organic Pollutants from Wastewater. Polymers, 2020, 12, 2648.	2.0	92
493	Synthesis of Double-Shell Hollow TiO2@ZIF-8 Nanoparticles With Enhanced Photocatalytic Activities. Frontiers in Chemistry, 2020, 8, 578847.	1.8	21
494	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	1.6	19
495	Enhanced Photocatalytic Degradation of MB Under Visible Light Using the Modified MIL-53(Fe). Topics in Catalysis, 2020, 63, 1227-1239.	1.3	12
496	Visible-Light-Driven Photocatalytic Coupling of Benzylamine over Titanium-Based MIL-125-NH2 Metal–Organic Framework: A Mechanistic Study. Journal of Physical Chemistry C, 2020, 124, 23707-23715.	1.5	16

ARTICLE IF CITATIONS # Synthesis, structure and properties of a 3D coordination polymer based on tetranuclear copper(I) and 497 0.8 2 a tetra(triazole) ligand. Journal of Coordination Chemistry, 2020, 73, 2042-2054. Highly stable and efficient visible-light-driven carbon dioxide reduction by zirconium–metalloporphyrin PCN-222 via dual catalytic routes. Reaction Kinetics, Mechanisms and 0.8 Catalysis, 2020, 131, 397-408. Incorporation of CuO/TiO2 Nanocomposite into MOF-5 for Enhanced Oxygen Evolution Reaction (OER) and Photodegradation of Organic Dyes. Journal of Inorganic and Organometallic Polymers and 499 1.9 13 Materials, 2020, 30, 4043-4052. Structures and photocatalytic properties of two new Zn(<scp>ii</scp>) coordination polymers based on semi-rigid V-shaped multicarboxylate ligands. RSC Advances, 2020, 10, 18721-18727. Zn based 3D-Coordination polymer as the photoanode material in dye-sensitized solar cells. Materials 501 2.0 6 Chemistry and Physics, 2020, 251, 123109. Nanoscale coordination polymers: Preparation, function and application. Advances in Inorganic 0.4 Chemistry, 2020, 33-72 Modeling hydrogen adsorption in the metal organic framework (MOF-5, connector): <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mi mathvariant="bold">Z</mml:mi><mml:msub><mml:mi mathvariant="bold">n</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mi 504 mathvariant="bold">O</mml:mi><mml:msub><mml:mrow><mml:mo

# 516	ARTICLE Fe-based MOFs for photocatalytic N2 reduction: Key role of transition metal iron in nitrogen activation. Journal of Solid State Chemistry, 2020, 285, 121245.	IF 1.4	Citations 63
517	Mono―and pentaâ€nuclear selfâ€assembled silver(I) complexes of pyrazolyl <i>s</i> â€triazine ligand; synthesis, structure and antimicrobial studies. Applied Organometallic Chemistry, 2020, 34, e5603.	1.7	8
518	A Semiconducting Bi ₂ 0 ₂ (C ₄ 0 ₄) Coordination Polymer Showing a Photoelectric Response. Inorganic Chemistry, 2020, 59, 3406-3416.	1.9	12
519	A simple computational model for MOF-5W absorption and photoluminescence to distinguish MOF-5 from its hydrolysis products. Journal of Materials Science, 2020, 55, 6588-6597.	1.7	3
520	Light-induced organic transformations over some MOF materials. , 2020, , 339-352.		0
521	New self-supporting heterogeneous catalyst based on infinite coordination polymer nanoparticles. Journal of Physics and Chemistry of Solids, 2020, 141, 109434.	1.9	10
522	On the Electronic and Optical Properties of Metal–Organic Frameworks: Case Study of MIL-125 and MIL-125-NH ₂ . Journal of Physical Chemistry C, 2020, 124, 4065-4072.	1.5	50
523	Titanium dioxide/magnetic metal-organic framework preparation for organic pollutants removal from water under visible light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124484.	2.3	30
524	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 1900547.	3.1	47
525	Construction of visibleâ€lightâ€responsive metal–organic framework with pillared structure for dye degradation and Cr(VI) reduction. Applied Organometallic Chemistry, 2020, 34, e5487.	1.7	11
526	A Novel of PTA/ZIFâ€8@Cellulose Aerogel Composite Materials for Efficient Photocatalytic Degradation of Organic Dyes in Water. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 444-450.	0.6	18
527	Metal–organic frameworks for photocatalysis. Interface Science and Technology, 2020, 31, 541-579.	1.6	13
528	Highly hydrophobic metal–organic framework for self-protecting gate dielectrics. Journal of Materials Chemistry A, 2020, 8, 11958-11965.	5.2	16
529	Metal-organic frameworks for photocatalytic degradation of pollutants. , 2020, , 91-126.		7
530	Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society, 2020, 24, 461-473.	2.4	75
531	Synergistic Effect of CdS and NH ₂ â€UiOâ€66 on Photocatalytic Reduction of CO ₂ under Visible Light Irradiation. ChemistrySelect, 2020, 5, 4001-4007.	0.7	21
532	Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials, 2021, 401, 123401.	6.5	259
533	Assembly of co coordination polymers tuned by the N-donor ligands with different spacer: Syntheses, structures and photocatalytic properties. Inorganica Chimica Acta, 2021, 514, 119995.	1.2	9

	Сітаті	CITATION REPORT		
#	Article	IF	CITATIONS	
534	Porous Metal-Organic Frameworks for Advanced Applications. , 2021, , 590-616.		5	
535	Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. Advanced Materials, 2021, 33, e2001731.	11.1	108	
536	CoS2–MnS@Carbon nanoparticles derived from metal–organic framework as a promising anode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 854, 157315.	2.8	36	
537	Design and application of metal-organic frameworks and derivatives as heterogeneous Fenton-like catalysts for organic wastewater treatment: A review. Environment International, 2021, 146, 106273.	4.8	117	
538	Critical Aspects of Metal–Organic Frameworkâ€Based Materials for Solarâ€Driven CO 2 Reduction into Valuable Fuels. Global Challenges, 2021, 5, 2000082.	1.8	9	
539	1Â+Â1Â>Â2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chemical Engineering Journal, 2021, 417, 128022.	6.6	73	
540	Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles. Chemical Engineering Journal, 2021, 417, 128112	. 6.6	38	
541	Enhanced photocatalytic and photothermal properties of ecofriendly metal-organic framework heterojunction for rapid sterilization. Chemical Engineering Journal, 2021, 405, 126730.	6.6	104	
542	A comprehensive methodology to screen metal-organic frameworks towards sustainable photofixation of nitrogen. Computers and Chemical Engineering, 2021, 144, 107130.	2.0	9	
543	Photocatalytic Degradation of Dyes in Wastewater Using Metal Organic Frameworks. Environmental Chemistry for A Sustainable World, 2021, , 261-285.	0.3	1	
544	Post-synthetic modifications (PSM) on metal–organic frameworks (MOFs) for visible-light-initiated photocatalysis. Dalton Transactions, 2021, 50, 13201-13215.	1.6	32	
545	Metal-organic framework photocatalysts for carbon dioxide reduction. , 2021, , 389-420.		Ο	
546	Engineering entangled photon pairs with metal–organic frameworks. Chemical Science, 2021, 12, 3475-3482.	3.7	9	
547	Photocatalysis by metal-organic frameworks. , 2021, , 543-559.		1	
548	Transition metal-based metal–organic frameworks for environmental applications: a review. Environmental Chemistry Letters, 2021, 19, 1295-1334.	8.3	63	
549	Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes. Catalysis Science and Technology, 2021, 11, 3946-3989.	2.1	134	
550	Four structural diversity MOF-photocatalysts readily prepared for the degradation of the methyl violet dye under UV-visible light. New Journal of Chemistry, 2021, 45, 551-560.	1.4	26	
551	New Cd(<scp>ii</scp>) coordination polymers bearing Y-shaped tricarboxylate ligands as photocatalysts for dye degradation. CrystEngComm, 2021, 23, 6400-6408.	1.3	4	

#	Article	IF	CITATIONS
552	Remediation of Emerging Contaminants. Environmental Chemistry for A Sustainable World, 2021, , 1-106.	0.3	5
553	Co(II) metal–organic framework for photocatalytic degradation of organic dyes and application values on neonatal gastrointestinal malformations by blocking cholinergic receptor combined with dexmedetomidine. Chemical Papers, 2021, 75, 2173-2179.	1.0	1
554	Photocatalytic degradation of organic pollutants by MOFs based materials: A review. Chinese Chemical Letters, 2021, 32, 2975-2984.	4.8	133
555	Metal-organic frameworks for environmental applications. Cell Reports Physical Science, 2021, 2, 100348.	2.8	44
556	Metal-organic frameworks based on tetra(imidazole) and multicarboxylate: Syntheses, structures, luminescence, photocatalytic and sonocatalytic degradation of methylene blue. Polyhedron, 2021, 197, 115052.	1.0	10
557	Green and Eco-Friendly Synthesis of Nanophotocatalysts: An Overview. Comments on Inorganic Chemistry, 2021, 41, 133-187.	3.0	32
558	MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants. Journal of Cleaner Production, 2021, 290, 125782.	4.6	52
559	Efficient CO2 to X Transformation with Metal Organic Framework Catalysts. Ceramist, 2021, 24, 67-95.	0.0	0
560	Photoactive Zr and Ti Metalâ€Organicâ€Frameworks for Solidâ€State Solar Cells. ChemPhysChem, 2021, 22, 842-848.	1.0	2
561	Metal–Organic Framework MIL-101(Fe) Nanoparticles Decorated with Ag Nanoparticles for Regulating the Photocatalytic Phenol Oxidation Pathway for Cr(VI) Reduction. ACS Applied Nano Materials, 2021, 4, 4513-4521.	2.4	29
562	Strongly Bound Excitons in Metal–Organic Framework MOF-5: A Many-Body Perturbation Theory Study. Journal of Physical Chemistry Letters, 2021, 12, 4045-4051.	2.1	15
563	A silver trimesate organic framework as an ultrasensitive surface-enhanced Raman scattering substrate for detection of various organic pollutants. Microchemical Journal, 2021, 163, 105896.	2.3	9
564	Facile Strategy for Efficient Charge Separation and High Photoactivity of Mixed-Linker MOFs. ACS Applied Materials & Interfaces, 2021, 13, 20897-20905.	4.0	19
565	Current trends in structural development and modification strategies for metal-organic frameworks (MOFs) towards photocatalytic H2 production: A review. International Journal of Hydrogen Energy, 2021, 46, 14148-14189.	3.8	85
566	Unique MIL-53(Fe)/PDI Supermolecule Composites: Z-Scheme Heterojunction and Covalent Bonds for Uprating Photocatalytic Performance. ACS Applied Materials & Interfaces, 2021, 13, 16364-16373.	4.0	37
567	A (4,12)-connected coordination polymer: photocatalytic degradation of dyes and effects on cerebral edema care by regulating superoxide dismutase activity. Journal of Polymer Research, 2021, 28, 1.	1.2	0
568	Dual-quenching electrochemiluminescence system based on novel acceptor CoOOH@Au NPs for early detection of procalcitonin. Sensors and Actuators B: Chemical, 2021, 332, 129544.	4.0	27
569	Efficient Schottky Junction Construction in Metalâ€Organic Frameworks for Boosting H ₂ Production Activity. Advanced Science, 2021, 8, 2004456.	5.6	11

#	Article	IF	CITATIONS
570	Modeling Adsorption and Optical Properties for the Design of CO2 Photocatalytic Metal-Organic Frameworks. Molecules, 2021, 26, 3060.	1.7	4
571	Recent progress on water vapor adsorption equilibrium by metal-organic frameworks for heat transformation applications. International Communications in Heat and Mass Transfer, 2021, 124, 105242.	2.9	33
572	Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coordination Chemistry Reviews, 2021, 435, 213781.	9.5	88
573	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	9.5	57
574	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	2.8	123
575	Perylene diimides coated Fe-MOFs as acid-tolerant photo-Fenton catalyst for phenol removal. Applied Surface Science, 2021, 547, 149222.	3.1	36
576	Two 3D supramolecular isomeric Zn(II)-MOFs as photocatalysts for photodegradation of methyl violet dye. Dyes and Pigments, 2021, 190, 109285.	2.0	63
577	Coordination Polymer Frameworks for Next Generation Optoelectronic Devices. , 0, , .		0
578	Photoactive Metal–Organic Frameworks for the Selective Synthesis of Thioethers: Coupled with Phosphine to Modulate Thiyl Radical Generation. Inorganic Chemistry, 2021, 60, 8672-8681.	1.9	15
579	Electrochemical performance of spindle-like Fe2Co-MOF and derived magnetic yolk-shell CoFe2O4 microspheres for supercapacitor applications. Journal of Solid State Electrochemistry, 2021, 25, 2189-2200.	1.2	19
580	First-principles-assisted band gap predictions of methylammonium metal formates. Materials Research Bulletin, 2021, 138, 111239.	2.7	1
581	New hybrid MOF/polymer composites for the photodegradation of organic dyes. European Polymer Journal, 2021, 154, 110560.	2.6	43
582	An Overview of Metal–Organic Frameworks for Green Chemical Engineering. Engineering, 2021, 7, 1115-1139.	3.2	94
583	Enhancement of hydrogen storage properties of metal-organic framework-5 by substitution (Zn, Cd) Tj ETQq1 1 C 26426-26436.).784314 ı 3.8	gBT /Overlo 17
584	A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air. Journal of Industrial and Engineering Chemistry, 2021, 100, 19-39.	2.9	15
585	Recent Improvement Strategies on Metal-Organic Frameworks as Adsorbent, Catalyst, and Membrane for Wastewater Treatment. Molecules, 2021, 26, 5261.	1.7	18
586	Series of new coordination polymers based flexible tricarboxylate as photocatalysts for Rh B dye degradation. Journal of Solid State Chemistry, 2021, 300, 122233.	1.4	5
587	New Hybrid Feâ€based MOFs/Polymer Composites for the Photodegradation of Organic Dyes. ChemistrySelect, 2021, 6, 8120-8132.	0.7	23

#	Article	IF	CITATIONS
588	Zn(II)-MOF with flexible dicarboxylate ligand with different N-donor linkage as photocatalyst for aromatic dye degradation. Inorganic Chemistry Communication, 2021, 130, 108685.	1.8	8
589	Adsorptive removal and visible-light photocatalytic degradation of large cationic and anionic dyes induced by air-bubbles in the presence of a magnetic porphyrinic metal-organic framework (Fe3O4@SiO2@PCN-222(Fe)). Journal of Physics and Chemistry of Solids, 2021, 155, 110126.	1.9	26
590	Metal-organic frameworks based photocatalysts: Architecture strategies for efficient solar energy conversion. Chemical Engineering Journal, 2021, 419, 129459.	6.6	78
591	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	3.3	47
592	Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction. Journal of Environmental Chemical Engineering, 2021, 9, 105961.	3.3	15
593	Mechanism study on NO removal over the CQDs@MIL-100 (Fe) composite photocatalyst. Environmental Technology and Innovation, 2021, 24, 101809.	3.0	9
594	Structural diversity in four Zn(II)/Cd(II) coordination polymers tuned by flexible pentacarboxylate and N-donor coligands: Photocatalysts for enhanced degradation of dyes. Dyes and Pigments, 2021, 195, 109695.	2.0	12
595	Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coordination Chemistry Reviews, 2021, 446, 214115.	9.5	123
596	Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. Chemosphere, 2021, 284, 131171.	4.2	83
597	Two novel Co (II) bifunctional MOFs: Syntheses and applications in photocatalytic degradation of dyes and electrocatalytic water oxidation. Journal of Solid State Chemistry, 2021, 304, 122562.	1.4	13
598	Fabrication of zirconium-based metal-organic frameworks@tungsten trioxide (UiO-66-NH2@WO3) heterostructure on carbon cloth for efficient photocatalytic removal of tetracycline antibiotic under visible light. Journal of Colloid and Interface Science, 2022, 606, 1509-1523.	5.0	27
599	A new 3D supramolecular 2-fold interpenetrating Ag(I)-based coordination polymer as photocatalyst for aromatic dye degradation. Journal of Molecular Structure, 2022, 1248, 131510.	1.8	2
600	Single- and mixed-metal–organic framework photocatalysts for carbon dioxide reduction. Inorganic Chemistry Frontiers, 2021, 8, 3178-3204.	3.0	41
601	Construction of a mixed ligand MOF as "green catalyst―for the photocatalytic degradation of organic dye in aqueous media. RSC Advances, 2021, 11, 23838-23845.	1.7	28
602	Syntheses of a series of lanthanide metal–organic frameworks for efficient UV-light-driven dye degradation: experiment and simulation. CrystEngComm, 2021, 23, 2404-2413.	1.3	11
603	Metal organic framework-based photocatalysts for hydrogen production. , 2021, , 275-295.		1
604	Metal–organic frameworks forÂheterogeneous photocatalysisÂof organicÂdyes. , 2021, , 489-508.		2
605	Designing Metal-Organic Frameworks Based Photocatalyst for Specific Photocatalytic Reactions: A Crystal Engineering Approach. Environmental Chemistry for A Sustainable World, 2020, , 141-186.	0.3	6

#	Article	IF	CITATIONS
606	Porous Coordination Polymers Towards Gas Technology. Structure and Bonding, 2009, , 51-86.	1.0	15
607	MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem, 2020, 2, 100033.	10.1	177
608	Fabrication of novel type visible-light-driven TiO2@MIL-100 (Fe) microspheres with high photocatalytic performance for removal of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112644.	2.0	30
609	Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 2020, 80, 100849.	15.8	235
610	The prominent photocatalytic activity with the charge transfer in the organic ligand for [Zn4O(BDC)3] MOF-5 decorated Ag3PO4 hybrids. Separation and Purification Technology, 2020, 250, 117142.	3.9	29
611	Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chemical Reviews, 2020, 120, 8378-8415.	23.0	660
612	Trace of molecular doping in metal–organic frameworks: drastic change in the electronic band structure with a preserved topology and porosity. Journal of Materials Chemistry A, 2020, 8, 12370-12377.	5.2	9
613	Immobilization of molecular catalysts for artificial photosynthesis. Nano Convergence, 2020, 7, 37.	6.3	16
614	METAL ORGANIC FRAMEWORKS–SYNTHESIS AND APPLICATIONS. , 2014, , 61-103.		6
616	Chapter 14. The Potential Applications of MOF-based Materials in Wastewater Treatment. Chemistry in the Environment, 2021, , 405-425.	0.2	0
617	Thiol decorated defective metal–organic frameworks embedded with palladium nanoparticles for efficient Cr(<scp>vi</scp>) reduction. Inorganic Chemistry Frontiers, 2021, 8, 5093-5099.	3.0	8
618	Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews, 2021, 2, .	2.6	7
619	New Catalyst Design Concepts Utilizing Porous Coordination Polymers. Journal of Smart Processing, 2013, 2, 287-292.	0.0	0
620	First-principle studies of mechanical, electronic properties and strain engineering of metal-organic framework. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 178105.	0.2	1
621	Insights into the Application of Metal-Organic Frameworks for Molecular Photovoltaics. , 2019, , 383-407.		0
622	Tổng hợp và nghiên cứu hoạt tÃnh xúc tác phân há»§y rhodamine B cá»§a váºt liệu ZIF-67 dƺớ peroxymonosulfate. Tap Chi Khoa Hoc = Journal of Science, 2019, Tập 55, SÃÌ•3, 1.	i sá»± hiá× 0.1	→‡n diện ca
623	Topology of two copper(II) coordination polymers with tetra(triazole) and dicarboxylate, photocatalytic and sonocatalytic decomposition of MB. Journal of Coordination Chemistry, 0, , 1-14.	0.8	1
624	MIL-88A anchoring on different morphological g-C3N4 for enhanced Fenton performance. Microporous and Mesoporous Materials, 2022, 329, 111531.	2.2	10

#	Article	IF	CITATIONS
625	Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coordination Chemistry Reviews, 2022, 450, 214245.	9.5	64
626	Photocatalytic performance and mechanism of Rhodamine B with two new Zn(II)-based coordination polymers under UV-light. Journal of Molecular Structure, 2022, 1249, 131681.	1.8	7
627	Degradation of Dye Wastewater over NH ₂ -UiO-66: Piezoelectrically Induced Mechano-Catalytic Effect. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, 35, 1023.	0.6	3
628	Twoâ€dimensional composite (BiOCl/GO/MOFâ€5) by ultrasonicâ€assisted solvothermal synthesis with enhanced photocatalytic activity. Micro and Nano Letters, 2020, 15, 149-154.	0.6	6
629	Trypanocidal Effect of Nano MOFs-EP on Circulating Forms of Trypanosoma cruzi. Iranian Journal of Parasitology, 0, , .	0.6	0
630	Trypanocidal Effect of Nano MOFs-EP on Circulating Forms of. Iranian Journal of Parasitology, 2020, 15, 115-123.	0.6	0
631	Sustainable synthesis of a new semiamorphous Ti-BDC MOF material and the photocatalytic performance of its ternary composites with Ag3PO4 and g-C3N4. Applied Surface Science, 2022, 578, 151996.	3.1	20
632	Construction of a 2D Polymer by Rigid Dicarboxylate and Methylimidazol Derivatives: Structure and Photocatalytic Feature. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 875-882.	1.9	7
633	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	16.0	161
634	The chemistry of MIL-125 based materials: Structure, synthesis, modification strategies and photocatalytic applications. Journal of Environmental Chemical Engineering, 2022, 10, 106883.	3.3	21
635	Two-Dimensional Silver Cyanamide Nanocrystals toward CO ₂ Reduction. ACS Applied Nano Materials, 2021, 4, 12506-12513.	2.4	1
636	Developing fine-tuned metal–organic frameworks for photocatalytic treatment of wastewater: A review. Chemical Engineering Journal, 2022, 433, 133605.	6.6	39
637	Metal-Organic Frameworks With Variable Valence Metal-Photoactive Components: Emerging Platform for Volatile Organic Compounds Photocatalytic Degradation. Frontiers in Chemistry, 2021, 9, 749839.	1.8	10
638	Sustainable synthesis of semicrystalline Zr-BDC MOF and heterostructural Ag3PO4/Zr-BDC/g-C3N4 composite for photocatalytic dye degradation. Catalysis Today, 2022, 390-391, 162-175.	2.2	21
639	AIE-MOF materials for biological applications. Progress in Molecular Biology and Translational Science, 2021, 185, 179-198.	0.9	4
640	Redox-active metal-organic frameworks for the removal of contaminants of emerging concern. Separation and Purification Technology, 2022, 284, 120246.	3.9	15
641	Recent advances in adsorptive removal and catalytic reduction of hexavalent chromium by metal–organic frameworks composites. Journal of Molecular Liquids, 2022, 347, 118274.	2.3	36
	Syntheses of two copper metal-organic frameworks with tri(1,2,4-triazole) and biscarboxylate and		

#	Article	IF	CITATIONS
643	Facile fabrication of flower-like NH2-UIO-66/BiOCl Z-scheme heterojunctions with largely improved photocatalytic performance for removal of tetracycline under solar irradiation. Journal of Alloys and Compounds, 2022, 899, 163324.	2.8	21
644	Application of a new UIO-66/Bi2S3 photoanode in photoelectrochemical cathodic protection for 304 stainless steel. Journal of Alloys and Compounds, 2022, 900, 163389.	2.8	4
645	Simplified creation of polyester fabric supported Fe-based MOFs by an industrialized dyeing process: Conditions optimization, photocatalytics activity and polyvinyl alcohol removal. Journal of Environmental Sciences, 2022, 116, 52-67.	3.2	9
646	Assembling Ag/UiO-66-NH2 Composites for Photocatalytic Dye Degradation. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1896-1901.	1.9	6
647	Coating metal–organic frameworks on plasmonic Ag/AgCl nanowire for boosting visible light photodegradation of organic pollutants. RSC Advances, 2022, 12, 3119-3127.	1.7	7
648	Hybrid Organic–Inorganic Membranes for Photocatalytic Water Remediation. Catalysts, 2022, 12, 180.	1.6	15
649	Dehydrated UiOâ€66(SH) ₂ : The Zrâ^'O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angewandte Chemie, 2022, 134, e202117244.	1.6	6
650	Adsorption and photocatalytic properties of porphyrin loaded MIL-101 (Cr) in methylene blue degradation. Environmental Science and Pollution Research, 2022, 29, 34406-34418.	2.7	6
651	Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 2022, 20, 1333-1375.	8.3	124
652	Insight into the Photocatalytic Activity of Cobalt-Based Metal–Organic Frameworks and Their Composites. Catalysts, 2022, 12, 110.	1.6	14
653	Dehydrated UiOâ€66(SH) ₂ : The Zrâ^'O Cluster and Its Photocatalytic Role Mimicking the Biological Nitrogen Fixation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
654	One-Pot Dual Catalysis of a Photoactive Coordination Polymer and Palladium Acetate for the Highly Efficient Cross-Coupling Reaction via Interfacial Electron Transfer. Inorganic Chemistry, 2022, 61, 2695-2705.	1.9	8
655	A critical review on the development of metal-organic frameworks for boosting photocatalysis in the fields of energy and environment. Journal of Cleaner Production, 2022, 333, 130164.	4.6	42
656	Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review. Chemosphere, 2022, 295, 133835.	4.2	47
657	In-situ construction of bifunctional MIL-125(Ti)/BiOI reactive adsorbent/photocatalyst with enhanced removal efficiency of organic contaminants. Applied Surface Science, 2022, 583, 152423.	3.1	21
658	Syntheses and Photocatalytical Mechanism of Fourth Period Post Transition Metal Diphenylphosphinate. Polyhedron, 2022, 216, 115697.	1.0	0
659	Mechanochemical homodisperse of Bi2MoO6 on Zn-Al LDH matrix to form Z-scheme heterojunction with promoted visible-light photocatalytic performance. Advanced Powder Technology, 2022, 33, 103468.	2.0	6
660	Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coordination Chemistry Reviews, 2022, 458, 214428.	9.5	107

#	Article	IF	CITATIONS
661	A Quasi-Metal–Organic Framework Based on Cobalt for Improved Catalytic Conversion of Aquatic Pollutant 4-Nitrophenol. Journal of Physical Chemistry C, 2022, 126, 683-692.	1.5	18
662	Metal–Organic Frameworks (Mofs) for the Efficient Removal of Contaminants from Water: Underlying Mechanisms, Recent Advances, Challenges, and Future Prospects. SSRN Electronic Journal, 0, , .	0.4	0
663	Metal Sulfide Nanocomposites for Energy Harvesting Applications. Engineering Materials, 2022, , 567-612.	0.3	1
664	Metal Organic Frameworks as Photocatalyst for Water Purification. , 2022, , 561-593.		5
665	Interfacial band bending induced charge-transfer regulation over Ag@ZIF-8@g-C ₃ N ₄ to boost photocatalytic CO ₂ reduction into syngas. Catalysis Science and Technology, 2022, 12, 3343-3355.	2.1	7
666	Two-dimensional coordination polymers with high proton conductivity and ultrafast highly efficient molecular sieving constructed by the structural inductive effect. Dalton Transactions, 2022, 51, 5796-5800.	1.6	4
668	Zinc-metal–organic frameworks with tunable UV diffuse-reflectance as sunscreens. Journal of Nanobiotechnology, 2022, 20, 87.	4.2	7
669	Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2. Catalysts, 2022, 12, 372.	1.6	13
670	Automated Virtual Design of Organic Semiconductors Based on Metal-Organic Frameworks. Frontiers in Materials, 2022, 9, .	1.2	8
671	Regimented Charge Transport Phenomena in Semiconductive Self-Assembled Rhenium Nanotubes. ACS Applied Materials & Interfaces, 2022, 14, 12423-12433.	4.0	1
672	Semiconducting Paddle-Wheel Metal–Organic Complex with a Compact Cu–S Cage. Journal of Physical Chemistry C, 2022, 126, 6300-6307.	1.5	0
673	Ternary Ni(OH)2/Co(OH)2/Mg(OH)2 derived from MOF-74 as a positive material for the determination of high performance supercapacitor. Electrochimica Acta, 2022, 412, 140135.	2.6	20
674	Photocatalytic degradation of Acid Red 88 dye using Pd@TMU-16 metal organic framework. International Journal of Environmental Analytical Chemistry, 0, , 1-17.	1.8	8
675	Self-enhancement photoelectrochemical strategy for kanamycin determination with amino functionalized MOFs. Mikrochimica Acta, 2022, 189, 193.	2.5	7
676	Activation of Cadmium–Imidazole Buffering Coordination Polymer by Sulfur-Doping for the Enhancement of Photocatalytic Degradation of Cationic and Anionic Dyes Under Visible Light. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1.	1.9	6
677	CHAPTER 8. Photocatalysis: Past Achievements and Future Trends. RSC Green Chemistry, 0, , 227-269.	0.0	0
682	Ultra-stable two-dimensional metal–organic frameworks for photocatalytic H ₂ production. Nanoscale, 2022, 14, 7146-7150.	2.8	11
683	MOF-based photocatalysts for hydrogen generation by water splitting. , 2022, , 709-726.		1

#	Article	IF	CITATIONS
684	Visible Light Photoanode Material for Photoelectrochemical Water Splitting: A Review of Bismuth Vanadate. Energy & Fuels, 2022, 36, 11404-11427.	2.5	28
685	Solvothermal synthesis of TiO2@MIL-101(Cr) for efficient photocatalytic fuel denitrification. Journal of Fuel Chemistry and Technology, 2022, 50, 456-463.	0.9	2
686	Engineering of catalytically active sites in photoactive metal–organic frameworks. Coordination Chemistry Reviews, 2022, 465, 214561.	9.5	22
687	Construction of CuCd-BMOF/GO composites based on phosphonate and their boosted visible-light photocatalytic degradation. Applied Surface Science, 2022, 594, 153493.	3.1	14
688	New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small, 2022, 18, e2107182.	5.2	71
689	Development of Efficient Photocatalyst MIL-68(Ga)_NH2 Metal-Organic Framework for the Removal of Cr(VI) and Cr(VI)/RhB from Wastewater under Visible Light. Materials, 2022, 15, 3761.	1.3	3
690	Synthesis, characterization and catalytic studies of bimetallic heteronuclear complexes for the reduction of nitroaromatic compounds. Inorganic and Nano-Metal Chemistry, 2023, 53, 501-512.	0.9	0
691	Photocatalytic nanohybrid membranes for highly efficient wastewater treatment: A comprehensive review. Journal of Environmental Management, 2022, 317, 115357.	3.8	17
692	In situ Growth of UiO-66 with Its Particle Size Reduced by 90% into Porous Polyacrylate: Experiments and Applications. Industrial & Engineering Chemistry Research, 0, , .	1.8	3
693	Persulfate-based visible photocatalysis with a novel stability enhanced Fe-based metal-organic framework. Journal of Solid State Chemistry, 2022, 313, 123297.	1.4	7
694	Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coordination Chemistry Reviews, 2022, 468, 214595.	9.5	64
695	Improving Water Quality Using Metalâ^'Organic Frameworks. ACS Symposium Series, 0, , 171-191.	0.5	8
696	Metalâ^'Organic Frameworks for Light-Driven Photocatalysis of Synthetic Dyes. ACS Symposium Series, 0, , 217-247.	0.5	2
697	MOF-Based Catalysts for the Production of Value-Added Fine Chemicals. ACS Symposium Series, 0, , 133-151.	0.5	0
698	Metalâ^'Organic Frameworks for Water Treatment. ACS Symposium Series, 0, , 125-154.	0.5	1
699	Multi-functional metal–organic frameworks for detection and removal of water pollutions. Chemical Communications, 2022, 58, 7890-7908.	2.2	25
700	Photochemistry of Metal-Organic Frameworks. Springer Handbooks, 2022, , 691-732.	0.3	2
701	Solar photocatalytic degradation of emerging contaminants using NH2-MIL-125 grafted by heterocycles. Separation and Purification Technology, 2022, 297, 121442.	3.9	15

#	Article	IF	CITATIONS
702	Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coordination Chemistry Reviews, 2022, 468, 214639.	9.5	45
703	Facile Synthesis of Fe-Based Metal-Organic-Framework Mil88-A (Fe) Impregnated with Hybrid Ag3po4-Gcn Composite for the Effective Degradation of Diclofenac. SSRN Electronic Journal, 0, , .	0.4	0
704	Selective and Multicyclic CO ₂ Adsorption with Visible Light-Driven Photodegradation of Organic Dyes in a Robust Metal–Organic Framework Embracing Heteroatom-Affixed Pores. Inorganic Chemistry, 2022, 61, 10731-10742.	1.9	11
705	Experimental and DFT Study of Transition Metal Doping in a Zn-BDC MOF to Improve Electrical and Visible Light Absorption Properties. Journal of Physical Chemistry C, 2022, 126, 12348-12360.	1.5	10
706	Metal-Organic Frameworks for Photocatalytic Degradation of Organic Wastewater. , 0, 6, 1-8.		0
707	A 3D porphyrinic metal-organic framework with fsc topology for efficient visible-light-driven photocatalytic degradation. Polyhedron, 2022, 226, 116091.	1.0	11
708	Ti-based robust MOFs in the combined photocatalytic degradation of emerging organic contaminants. Scientific Reports, 2022, 12, .	1.6	10
709	Modulation of Optical Band Gap of 2-Amino Terephthalic Acid Cu-MOFs Doped with Ag ₂ O and rGO. Advanced Materials Research, 0, 1173, 35-45.	0.3	3
710	Enhancement of Band Gap Energy and Crystallinity of Cu-MOFs due to Doping of Nano Metal Oxide. Advanced Materials Research, 0, 1173, 13-22.	0.3	6
711	Formaldehyde-modified NH2-UiO-66 for specific sensing and simultaneous removal of mercury ions. Sensors and Actuators Reports, 2022, 4, 100120.	2.3	3
712	ZIF-8 metal organic framework composites as hydrogen evolution reaction photocatalyst: A review of the current state. Chemosphere, 2022, 308, 136483.	4.2	32
713	Photocatalytic degradation of diclofenac using hybrid <scp>MIL</scp> â€53(Al)@ <scp>TiO₂</scp> and <scp>MIL</scp> â€53(Al)@ <scp>ZnO</scp> catalysts. Canadian Journal of Chemical Engineering, 2023, 101, 2660-2676.	0.9	2
714	Transient absorption spectroscopic studies of linear polymeric photocatalysts for solar fuel generation. Chemical Physics Reviews, 2022, 3, .	2.6	4
715	Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). Journal of Hazardous Materials, 2023, 442, 130127.	6.5	63
716	Construction strategies to modulate the photocatalytic efficiency of Cd(<scp>ii</scp>) MOFs to photodegrade organic dyes. CrystEngComm, 2022, 24, 7986-7995.	1.3	6
717	Simultaneous Determination of Dopamine and Uric Acid in Real Samples Using a Voltammetric Nanosensor Based on Co-MOF, Graphene Oxide, and 1-Methyl-3-butylimidazolium Bromide. Micromachines, 2022, 13, 1834.	1.4	20
718	Chelated calcium 1D coordination polymer: Crystal growth, characterization and Z scan studies. Journal of Molecular Structure, 2023, 1274, 134474.	1.8	3
719	Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production. CheM, 2022, 8, 2924-2938.	5.8	49

#	Article	IF	CITATIONS
720	Construction of naphthalenediimide-based cadmium complexes and application in iodine adsorption, photochromism and photocatalysis. CrystEngComm, 0, , .	1.3	0
721	Au nanoparticles-anchored defective metal–organic frameworks for photocatalytic transformation of amines to imines under visible light. Journal of Colloid and Interface Science, 2023, 631, 154-163.	5.0	15
722	Use of the Advantages of Titanium in the Metal: Organic Framework. , 0, , .		0
723	Syntheses, structures and photocatalytic properties of three Cd(II) coordination polymers induced by the dicarboxylate regulator. Polyhedron, 2023, 229, 116192.	1.0	2
724	A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. Nanomaterials, 2022, 12, 4263.	1.9	4
725	Adsorption of different anionic and cationic dyes by hybrid nanocomposites of carbon nanotube and graphene materials over UiO-66. Scientific Reports, 2022, 12, .	1.6	28
726	Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chemical Reviews, 2023, 123, 445-490.	23.0	84
727	Porous Materials for Water Purification. Angewandte Chemie - International Edition, 2023, 62, .	7.2	38
728	Photoactive Hexaazaphenaleneâ€based Coordination Network as a Twoâ€Pathway Photosensitizer for Oxidation of Alkanes. ChemCatChem, 0, , .	1.8	0
729	Porous Materials for Water Purification. Angewandte Chemie, 2023, 135, .	1.6	0
730	Development of MOF Based Recyclable Photocatalyst for the Removal of Different Organic Dye Pollutants. Nanomaterials, 2023, 13, 336.	1.9	13
731	Recent advances in the photocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Biomass Conversion and Biorefinery, 0, , .	2.9	2
732	Photocatalytic reduction of CO2 by two-dimensional Zn-MOF-NH2/Cu heterojunctions. Catalysis Communications, 2023, 175, 106613.	1.6	14
733	The game between molecular photoredox catalysis and hydrogen: The golden age of hydrogen budge. Molecular Catalysis, 2023, 537, 112921.	1.0	0
734	Metal–organic frameworks in photocatalytic Z-scheme heterojunctions: an emerging technology. Chemical Communications, 2023, 59, 3627-3654.	2.2	19
735	Photo-responsive metal–organic frameworks – design strategies and emerging applications in photocatalysis and adsorption. Materials Advances, 2023, 4, 1258-1285.	2.6	4
736	Novel isoreticular UiO-66-NH2 frameworks by N-cycloalkyl functionalization of the 2-aminoterephtalate linker with enhanced solar photocatalytic degradation of acetaminophen. Chemical Engineering Journal, 2023, 461, 141889.	6.6	8
737	A 8-fold interpenetrated metal-organic framework: Luminescent property and photocatalytic dye degradation performance. Journal of Solid State Chemistry, 2023, 321, 123919.	1.4	3

#	Article	IF	CITATIONS
738	Bi2Sn2O7/UiO-66-NH2 heterojunction photocatalyst simultaneously adsorbed and photodegraded tetracycline. Journal of Environmental Chemical Engineering, 2023, 11, 109664.	3.3	4
739	Enhanced photocatalytic activity of MIL-88 a impregnated with Ag3PO4/GCN for the degradation of diclofenac sodium. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 292, 116453.	1.7	5
740	Facile synthesis of Fe-doped Zn-based coordination polymer composite with enhanced visible-light-driven activity for degradation of multiple antibiotics. Separation and Purification Technology, 2023, 311, 123337.	3.9	4
741	Self-assembly of nanoflower-like MIL-125(Ti)/Bi2O2CO3 hierarchical tandem heterojunctions for enhanced visible-light degradation of antibiotic contamination. Inorganic Chemistry Communication, 2023, 150, 110504.	1.8	1
742	MOFs Bandstructure. Engineering Materials, 2023, , 79-90.	0.3	2
743	Recent Advances in the Development of Metal–Organic Frameworks-based Photocatalysts for Water Splitting and CO2 Reduction. , 2023, , 157-192.		2
744	Photocatalysts for CO2 reduction and computational insights. Fuel, 2023, 344, 128101.	3.4	11
745	Two novel metal-organic frameworks constructed by pyridinyl-derived and carboxylate mixed ligands for photocatalytic dye degradation. New Journal of Chemistry, 0, , .	1.4	0
746	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
747	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie, 0, , .	1.6	0
748	Metal-organic frameworks as photocatalysts for aerobic oxidation reactions. Science China Chemistry, 2023, 66, 1634-1653.	4.2	12
749	Raman spectroscopy, an ideal tool for studying the physical properties and applications of metal–organic frameworks (MOFs). Chemical Society Reviews, 2023, 52, 3397-3437.	18.7	13
756	State of the art and prospectives of heterogeneous photocatalysts based on metal–organic frameworks (MOFs): design, modification strategies, and their applications and mechanisms in photodegradation, water splitting, and CO ₂ reduction. Catalysis Science and Technology, 2023, 13, 4285-4347.	2.1	5
773	Reticular materials for wastewater treatment. Journal of Materials Chemistry A, O, , .	5.2	0
774	Application of Metal–Organic Framework Nanocomposites. , 2023, , 415-453.		0
780	A review of metal–organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Nanoscale Advances, 2023, 5, 6318-6348.	2.2	12
787	Removal of pesticide pollutants from aqueous waste utilizing nanomaterials via photocatalytic process: a review. International Journal of Environmental Science and Technology, 0, , .	1.8	0