
CITATION REPORT List of articles citing

DOI: 10.1086/519218 Astrophysical Journal, Supplement Series, 2007, 173, 267-292.

Source: https://exaly.com/paper-pdf/42530091/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1267	Extinction-corrected Star Formation Rates Empirically Derived from Ultravioletâ®ptical Colors. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 173, 256-266	8	45
1266	Ultraviolet, Optical, and Infrared Constraints on Models of Stellar Populations and Dust Attenuation. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 173, 377-391	8	46
1265	Nitrogen Production in Starburst Galaxies Detected by GALEX. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 173, 482-493	8	15
1264	Ultraviolet through Infrared Spectral Energy Distributions from 1000 SDSS Galaxies: Dust Attenuation. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 173, 392-403	8	65
1263	The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 173, 315-341	8	244
1262	The Star Formation Demographics of Galaxies in the Local Volume. <i>Astrophysical Journal</i> , 2007 , 671, L1	13 4.½ 11	673
1261	The galaxy stellar mass-star formation rate relation: evidence for an evolving stellar initial mass function?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 147-160	4.3	251
1260	The SDSS-GALEX viewpoint of the truncated red sequence in field environments at $z \sim 0$. Monthly Notices of the Royal Astronomical Society, 2008 , 385, 1201-1210	4.3	54
1259	Near ultravioletâIhfrared colours of red-sequence galaxies in local clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 385, 2097-2106	4.3	15
1258	Ultraviolet dust attenuation in star-forming galaxies â[]I. Calibrating the A(UV) versus LTIR/LUVrelation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 386, 1157-1168	4.3	111
1257	A simple model to interpret the ultraviolet, optical and infrared emission from galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 388, 1595-1617	4.3	802
1256	Star formation histories from multiband photometry: a new approach. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 389, 1293-1305	4.3	17
1255	The role of environment in the mass-metallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 390, 245-256	4.3	101
1254	A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 391, 481-506	4.3	792
1253	The ultraviolet luminosity function and star formation rate of the Coma cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 390, 1282-1296	4.3	30
1252	Star-Forming Galaxies atzâlī0.24 in the Subaru Deep Field and the Sloan Digital Sky Survey. 2008 , 60, 12	19-122	 !9 ₁₄
1251	THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY. 2008 , 136, 2782-2845		1263

(2009-2008)

1250	The Blast Wave Model for AGN Feedback: Effects on AGN Obscuration. <i>Astrophysical Journal</i> , 2008 , 686, 219-229	4.7	138	
1249	THE WYOMING SURVEY FOR H⊞. INITIAL RESULTS ATz~ 0.16 AND 0.24. 2008 , 135, 1412-1420		7	
1248	Correlations between Mid-Infrared, Far-Infrared, Hand FUV Luminosities for Spitzer SWIRE Field Galaxies. <i>Astrophysical Journal</i> , 2008 , 686, 155-171	4.7	108	
1247	Hubble Space TelescopeMorphologies of Local Lyman Break Galaxy Analogs. I. Evidence for Starbursts Triggered by Merging. <i>Astrophysical Journal</i> , 2008 , 677, 37-62	4.7	104	
1246	A New Method to Separate Star-forming from AGN Galaxies at Intermediate Redshift: The Submillijansky Radio Population in the VLA-COSMOS Survey. <i>Astrophysical Journal, Supplement Series</i> , 2008 , 177, 14-38	8	111	
1245	RADIO DETECTION OF RADIO-QUIET GALAXIES. 2008, 136, 1097-1109		26	
1244	AEGIS: New Evidence Linking Active Galactic Nuclei to the Quenching of Star Formation. <i>Astrophysical Journal</i> , 2008 , 681, 931-943	4.7	106	
1243	DO MODERATE-LUMINOSITY ACTIVE GALACTIC NUCLEI SUPPRESS STAR FORMATION?. <i>Astrophysical Journal</i> , 2009 , 692, L19-L23	4.7	132	
1242	UBIQUITOUS OUTFLOWS IN DEEP2 SPECTRA OF STAR-FORMING GALAXIES ATz= 1.4. <i>Astrophysical Journal</i> , 2009 , 692, 187-211	4.7	452	
1241	STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES. <i>Astrophysical Journal</i> , 2009 , 701, 1398-1414	4.7	27	
1240	AEGIS: THE CLUSTERING OF X-RAY ACTIVE GALACTIC NUCLEUS RELATIVE TO GALAXIES ATz~ 1. <i>Astrophysical Journal</i> , 2009 , 701, 1484-1499	4.7	120	
1239	ONGOING AND CO-EVOLVING STAR FORMATION IN ZCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI. <i>Astrophysical Journal</i> , 2009 , 696, 396-410	4.7	186	
1238	SEARCH FOR BLUE COMPACT DWARF GALAXIES DURING QUIESCENCE. II. METALLICITIES OF GAS AND STARS, AGES, AND STAR FORMATION RATES. <i>Astrophysical Journal</i> , 2009 , 698, 1497-1514	4.7	22	
1237	SPATIAL CLUSTERING FROMGALEX-SDSS SAMPLES: STAR FORMATION HISTORY AND LARGE-SCALE CLUSTERING. <i>Astrophysical Journal</i> , 2009 , 698, 1838-1851	4.7	18	
1236	MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES ATZAstrophysical Journal, 2009 , 700, 161-182	4.7	117	
1235	THE DEPENDENCE OF STAR FORMATION RATES ON STELLAR MASS AND ENVIRONMENT AT z \sim 0.8. Astrophysical Journal, 2009 , 705, L67-L70	4.7	112	
1234	LOCAL LYMAN BREAK GALAXY ANALOGS: THE IMPACT OF MASSIVE STAR-FORMING CLUMPS ON THE INTERSTELLAR MEDIUM AND THE GLOBAL STRUCTURE OF YOUNG, FORMING GALAXIES. Astrophysical Journal, 2009 , 706, 203-222	4.7	95	
1233	GALEXUV properties of the polar ring galaxy MCG-05-07-001 and the shell galaxies NGC 210 and NGC 329. <i>Astronomy and Astrophysics</i> , 2009 , 508, 1235-1252	5.1	23	

1232	HIGH-MASS STAR FORMATION IN NORMAL LATE-TYPE GALAXIES: OBSERVATIONAL CONSTRAINTS TO THE INITIAL MASS FUNCTION. <i>Astrophysical Journal</i> , 2009 , 706, 1527-1544	4.7	113
1231	GALEXMEASUREMENTS OF THE BIG BLUE BUMP IN SOFT X-RAY-SELECTED ACTIVE GALACTIC NUCLEUS. <i>Astrophysical Journal</i> , 2009 , 703, 1597-1611	4.7	9
1230	Properties of M31. Astronomy and Astrophysics, 2009, 507, 283-300	5.1	42
1229	Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample. <i>Astronomy and Astrophysics</i> , 2009 , 507, 1793-1813	5.1	459
1228	UV CONTINUUM SLOPE AND DUST OBSCURATION FROMz~ 6 TOz~ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT. <i>Astrophysical Journal</i> , 2009 , 705, 936-961	4.7	339
1227	CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME. Astrophysical Journal, 2009 , 696, 620-635	4.7	383
1226	DESTRUCTION OF MOLECULAR GAS RESERVOIRS IN EARLY-TYPE GALAXIES BY ACTIVE GALACTIC NUCLEUS FEEDBACK. <i>Astrophysical Journal</i> , 2009 , 690, 1672-1680	4.7	67
1225	POWERFUL H2EMISSION AND STAR FORMATION ON THE INTERACTING GALAXY SYSTEM Arp 143: OBSERVATIONS WITHSPITZERANDGALEX. <i>Astrophysical Journal</i> , 2009 , 693, 1650-1665	4.7	16
1224	Star formation in the intragroup medium and other diagnostics of the evolutionary stages of compact groups of galaxies. <i>Astronomy and Astrophysics</i> , 2009 , 507, 723-746	5.1	28
1223	AN ENERGETIC AGN OUTBURST POWERED BY A RAPIDLY SPINNING SUPERMASSIVE BLACK HOLE OR AN ACCRETING ULTRAMASSIVE BLACK HOLE. <i>Astrophysical Journal</i> , 2009 , 698, 594-605	4.7	74
1222	THE DEPENDENCE OF STAR FORMATION ACTIVITY ON STELLAR MASS SURFACE DENSITY AND SERSIC INDEX IN zCOSMOS GALAXIES AT 0.5 . <i>Astrophysical Journal</i> , 2009 , 694, 1099-1114	4.7	35
1221	WHAT IS DRIVING THE H I VELOCITY DISPERSION?. 2009, 137, 4424-4435		228
122 0	THE RADIO LUMINOSITY FUNCTION AND GALAXY EVOLUTION IN THE COMA CLUSTER. 2009, 137, 445	0-4467	' 19
1219	The Ultraviolet sky surveys: filling the gap in our view of the Universe. 2009 , 320, 11-19		55
1218	The star formation history of K-selected galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 394, 3-20	4.3	134
1217	The STAGES view of red spirals and dusty red galaxies: mass-dependent quenching of star formation in cluster infall. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 393, 1302-1323	4.3	160
1216	The evolution of field early-type galaxies in the FDF and WHDF. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 393, 1467-1492	4.3	24
1215	Constraints on the star formation histories of galaxies fromz~ 1 to 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 393, 406-418	4.3	43

(2010-2009)

1214	The correlation of star formation quenching with internal galaxy properties and environment. <i>Monthly Notices of the Royal Astronomical Society,</i> 2009 , 394, 1131-1147	4.3	150
1213	Diverging UV and HFfluxes of star-forming galaxies predicted by the IGIMF theory. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 394-400	4.3	82
1212	The growth and assembly of a massive galaxy at. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 114-125	4.3	38
1211	Evidence for recent star formation in BCGs: a correspondence between blue cores and UV excess. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 395, 462-471	4.3	48
1210	AGN jet-induced feedback in galaxies - II. Galaxy colours from a multicloud simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 61-77	4.3	39
1209	Galaxy Zoo: a sample of blue early-type galaxies at low redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 818-829	4.3	123
1208	The many manifestations of downsizing: hierarchical galaxy formation models confront observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 397, 1776-1790	4.3	288
1207	Accretion and star formation rates in low-redshift type II active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 399, 1907-1920	4.3	180
1206	On the interstellar medium and star formation demographics of galaxies in the local universe. <i>Monthly Notices of the Royal Astronomical Society,</i> 2009 , 400, 154-167	4.3	78
1205	Gas dynamics and star formation in the galaxy pair NGCP?1512/1510P?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 1749-1767	4.3	63
1204	Galaxies in a simulated IDM universe - II. Observable properties and constraints on feedback. <i>Monthly Notices of the Royal Astronomical Society,</i> 2009 , 396, 2332-2344	4.3	155
1203	Physical Properties and Environments of Nearby Galaxies. 2009 , 47, 159-210		319
1202	A PUBLIC CATALOG OF STELLAR MASSES, STAR FORMATION AND METALLICITY HISTORIES, AND DUST CONTENT FROM THE SLOAN DIGITAL SKY SURVEY USING VESPA. <i>Astrophysical Journal, Supplement Series</i> , 2009 , 185, 1-19	8	81
1201	COMPARISON OF HEAND UV STAR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC DISCREPANCIES FOR DWARF GALAXIES. <i>Astrophysical Journal</i> , 2009 , 706, 599-613	4.7	372
1200	GALEX Constraints on AGN Feedback in Early-Type Galaxies. 2009 , 5, 442-444		
1199	Black Hole Demographics: Statistical Characteristics of Accreting Black Holes. 2009 , 5, 213-222		
1198	Cosmological simulations of low-mass galaxies: some potential issues. 2010 , 6, 503-506		
1197	Stellar mass estimation based on IRAC photometry forSpitzerSWIRE-field galaxies. 2010 , 10, 329-347		20

1196	ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITHSWIFTANDSPITZER. <i>Astrophysical Journal</i> , 2010 , 716, 556-573	4.7	43
1195	THE METAL-ENRICHED OUTER DISK OF NGC 2915. Astrophysical Journal, 2010 , 715, 656-664	4.7	41
1194	UGC8802: A MASSIVE DISK GALAXY IN FORMATION. Astrophysical Journal, 2010, 720, 1126-1135	4.7	18
1193	Star formation and dust extinction properties of local galaxies from the AKARI-GALEX all-sky surveys. <i>Astronomy and Astrophysics</i> , 2010 , 514, A4	5.1	59
1192	PROJECTED CENTRAL DARK MATTER FRACTIONS AND DENSITIES IN MASSIVE EARLY-TYPE GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. <i>Astrophysical Journal</i> , 2010 , 722, 779-787	4.7	34
1191	THE GAS CONSUMPTION HISTORY TO REDSHIFT 4. Astrophysical Journal, 2010 , 717, 323-332	4.7	75
1190	IC 3418: STAR FORMATION IN A TURBULENT WAKE. Astrophysical Journal Letters, 2010 , 716, L14-L18	7.9	60
1189	THE CALIBRATION OF MONOCHROMATIC FAR-INFRARED STAR FORMATION RATE INDICATORS. Astrophysical Journal, 2010 , 714, 1256-1279	4.7	265
1188	THE EVOLUTION OF THE STAR FORMATION RATE OF GALAXIES AT 0.0 ?z? 1.2. Astrophysical Journal , 2010 , 718, 1171-1185	4.7	51
1187	GALAXY DOWNSIZING EVIDENCED BY HYBRID EVOLUTIONARY TRACKS. <i>Astrophysical Journal</i> , 2010 , 723, 755-766	4.7	29
1186	NGC 404: A REJUVENATED LENTICULAR GALAXY ON A MERGER-INDUCED, BLUEWARD EXCURSION INTO THE GREEN VALLEY. <i>Astrophysical Journal Letters</i> , 2010 , 714, L171-L175	7.9	84
1185	WHAT DETERMINES THE INCIDENCE AND EXTENT OF Mg II ABSORBING GAS AROUND GALAXIES?. <i>Astrophysical Journal Letters</i> , 2010 , 724, L176-L182	7.9	86
1184	GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES. <i>Astrophysical Journal</i> , 2010 , 711, 284-302	4.7	152
1183	AMUSE-VIRGO. II. DOWN-SIZING IN BLACK HOLE ACCRETION. <i>Astrophysical Journal</i> , 2010 , 714, 25-36	4.7	79
1182	MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND ZCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION. <i>Astrophysical Journal</i> , 2010 , 721, 193-221	4.7	1214
1181	DUST EMISSION AND STAR FORMATION IN STEPHAN'S QUINTET. Astrophysical Journal, 2010 , 725, 955-	-98 1	24
1180	THE DEEP SWIRE FIELD. IV. FIRST PROPERTIES OF THE SUB-mJy GALAXY POPULATION: REDSHIFT DISTRIBUTION, AGN ACTIVITY, AND STAR FORMATION. <i>Astrophysical Journal</i> , 2010 , 714, 1305-1323	4.7	36
1179	COMPARING ULTRAVIOLET- AND INFRARED-SELECTED STARBURST GALAXIES IN DUST OBSCURATION AND LUMINOSITY. <i>Astrophysical Journal</i> , 2010 , 715, 986-1005	4.7	5

(2010-2010)

1178	A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036. <i>Astrophysical Journal Letters</i> , 2010 , 723, L218-L222	7.9	20
1177	STAR FORMATION AND DUST OBSCURATION IN THE TIDALLY DISTORTED GALAXY NGC 2442. Astrophysical Journal, 2010 , 723, 530-543	4.7	10
1176	ON THE POPULATIONS OF RADIO GALAXIES WITH EXTENDED MORPHOLOGY ATZAstrophysical Journal, 2010 , 723, 1119-1138	4.7	39
1175	ANISOTROPIC LOCATIONS OF SATELLITE GALAXIES: CLUES TO THE ORIENTATIONS OF GALAXIES WITHIN THEIR DARK MATTER HALOS. <i>Astrophysical Journal</i> , 2010 , 709, 1321-1336	4.7	62
1174	A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 th SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION. <i>Astrophysical Journal</i> , 2010 , 721, 98-123	4.7	113
1173	STAR FORMATION SIGNATURES IN OPTICALLY QUIESCENT EARLY-TYPE GALAXIES. <i>Astrophysical Journal Letters</i> , 2010 , 714, L290-L294	7.9	90
1172	DUST ATTENUATION IN DISK-DOMINATED GALAXIES: EVIDENCE FOR THE 2175 DUST FEATURE. Astrophysical Journal, 2010 , 718, 184-198	4.7	66
1171	AUTOMATIC UNSUPERVISED CLASSIFICATION OF ALL SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 GALAXY SPECTRA. <i>Astrophysical Journal</i> , 2010 , 714, 487-504	4.7	52
1170	The evolution of M*/MBH between $z = 2$ and $z = 0$. 2010 , no-no		9
1169	Directly imaging damped Lyman \oplus alaxies at $z > 2$ \hat{a} . Methodology and first results. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 362-382	4.3	33
1168	Host galaxy colour gradients and accretion disc obscuration in AEGIS z ~ 1 X-ray-selected active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 139-156	4.3	28
1167	Recent star formation in local, morphologically disturbed spheroidal galaxies on the optical red sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 170-180	4.3	32
1166	The GALEX Arecibo SDSS Survey - II. The star formation efficiency of massive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 919-934	4.3	94
1165	A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 2115-2127	4.3	743
1164	Predicting dust extinction from the stellar mass of a galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 409, 421-432	4.3	200
1163	Smoothly rising star formation histories during the reionization epoch. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	65
1162	The GALEX Arecibo SDSS survey - III. Evidence for the inside-out formation of Galactic discs. Monthly Notices of the Royal Astronomical Society, 2010 , no-no	4.3	41
1161	The nature of the Sloan Digital Sky Survey galaxies in various classes based on morphology, colour and spectral features - II. Multi-wavelength properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 1804-1825	4.3	12

1160	Can galaxy outflows and re-accretion produce a downsizing in the specific star-formation rate of late-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 ,	4.3	9	
1159	The local star formation rate density: assessing calibrations using [O ii], H and UV luminosities. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	40	
1158	The degeneracy of galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	4	
1157	Central galaxy growth and feedback in the most massive nearby cool core cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 406, 354-367	4.3	24	
1156	The GALEX Arecibo SDSS Survey - I. Gas fraction scaling relations of massive galaxies and first data release. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 403, 683-708	4.3	311	
1155	On the origin of the galaxy star-formation-rate sequence: evolution and scatter. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	82	
1154	The UV-optical colour dependence of galaxy clustering in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 407, 55-70	4.3	23	
1153	THE FIRST MID-INFRARED VIEW OF THE STAR-FORMING PROPERTIES OF NEARBY GALAXY GROUPS. <i>Astrophysical Journal</i> , 2010 , 713, 637-650	4.7	23	
1152	THE MASS-DEPENDENT STAR FORMATION HISTORIES OF DISK GALAXIES: INFALL MODEL VERSUS OBSERVATIONS. <i>Astrophysical Journal</i> , 2010 , 722, 380-387	4.7	11	
1151	Internal kinematics of spiral galaxies in distant clusters. <i>Astronomy and Astrophysics</i> , 2010 , 520, A109	5.1	10	
1150	REGULATION OF STAR FORMATION RATES IN MULTIPHASE GALACTIC DISKS: A THERMAL/DYNAMICAL EQUILIBRIUM MODEL. <i>Astrophysical Journal</i> , 2010 , 721, 975-994	4.7	254	
1149	Cluster galaxies in XMMU J2235-2557: galaxy population properties in most massive environments atz \mathbb{R}^{1} 1.4. Astronomy and Astrophysics, 2010 , 524, A17	5.1	79	
1148	Multiwavelength study of the star-formation in the bar of NGC 2903. <i>Astronomy and Astrophysics</i> , 2010 , 521, A8	5.1	9	
1147	Massive star formation in Wolf-Rayet galaxies. Astronomy and Astrophysics, 2010, 521, A63	5.1	56	
1146	DEMOGRAPHY OF SLOAN DIGITAL SKY SURVEY EARLY-TYPE GALAXIES FROM THE PERSPECTIVE OF RADIAL COLOR GRADIENTS. <i>Astrophysical Journal, Supplement Series</i> , 2010 , 187, 374-387	8	51	
1145	SPIDER. IV. OPTICAL AND NEAR-INFRARED COLOR GRADIENTS IN EARLY-TYPE GALAXIES: NEW INSIGHT INTO CORRELATIONS WITH GALAXY PROPERTIES. 2010 , 140, 1528-1556		45	
1144	THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS. 2010 , 140, 2052-2069		2	
1143	GALEXULTRAVIOLET IMAGING OF DWARF GALAXIES AND STAR FORMATION RATES. 2010 , 139, 447-4	75	111	

(2011-2010)

1142	EXTREMELY INEFFICIENT STAR FORMATION IN THE OUTER DISKS OF NEARBY GALAXIES. 2010 , 140, 1194-1213		278
1141	THE WYOMING SURVEY FOR H⊞III. A MULTI-WAVELENGTH LOOK AT ATTENUATION BY DUST IN GALAXIES OUT TOz~ 0.4. 2010 , 140, 253-261		3
1140	ABSORPTION-LINE PROBES OF THE PREVALENCE AND PROPERTIES OF OUTFLOWS IN PRESENT-DAY STAR-FORMING GALAXIES. 2010 , 140, 445-461		145
1139	GENERATING ON-THE-FLY LARGE SAMPLES OF THEORETICAL SPECTRA THROUGH ANN-DIMENSIONAL GRID. 2010 , 139, 342-347		2
1138	MORE GALAXIES IN THE LOCAL VOLUME IMAGED IN H □2010 , 140, 1241-1253		33
1137	KINGFISHaRey Insights on Nearby Galaxies: A Far-Infrared Survey withHerschel: Survey Description and Image Atlas1. 2011 , 123, 1347-1369		302
1136	FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS. Astrophysical Journal, 2011 , 734, 48	4.7	121
1135	GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR-MASS PLANE FROMz~ 2.5 TOz~ 0.1. <i>Astrophysical Journal</i> , 2011 , 742, 96	4.7	508
1134	A mid-IR study of Hickson compact groups. Astronomy and Astrophysics, 2011, 533, A142	5.1	33
1133	A POWERFUL AGN OUTBURST IN RBS 797. Astrophysical Journal, 2011 , 732, 71	4.7	33
1132	TRACING REJUVENATION EVENTS IN NEARBY SO GALAXIES. Astrophysical Journal, 2011 , 736, 154	4.7	40
1131	INTRINSIC ALIGNMENT OF CLUSTER GALAXIES: THE REDSHIFT EVOLUTION. <i>Astrophysical Journal</i> , 2011 , 740, 39	4.7	41
1130	HEAND 4000 BREAK MEASUREMENTS FOR ~3500 K-SELECTED GALAXIES AT 0.5 Astrophysical Journal, 2011 , 743, 168	4.7	49
1129	Population synthesis modelling of luminous infrared galaxies at intermediate redshift. <i>Astronomy and Astrophysics</i> , 2011 , 525, A150	5.1	44
1128	NGC 3934: a shell galaxy in a compact galaxy environment. <i>Astronomy and Astrophysics</i> , 2011 , 534, A24	5.1	8
1127	STELLAR POPULATIONS OF ULTRALUMINOUS INFRARED GALAXIES. <i>Astrophysical Journal</i> , 2011 , 732, 72	4.7	10
1126	STAR FORMATION RATES AND STELLAR MASSES OF HEELECTED STAR-FORMING GALAXIES ATZ= 0.84: A QUANTIFICATION OF THE DOWNSIZING. <i>Astrophysical Journal</i> , 2011 , 740, 47	4.7	14
1125	THE IMPACT OF GAS STRIPPING AND STELLAR MASS LOSS ON SATELLITE GALAXY EVOLUTION. Astrophysical Journal, 2011 , 729, 11	4.7	26

1124	The effect of environment on star forming galaxies at redshift. <i>Astronomy and Astrophysics</i> , 2011 , 532, A145	5.1	41
1123	DUST-CORRECTED STAR FORMATION RATES OF GALAXIES. II. COMBINATIONS OF ULTRAVIOLET AND INFRARED TRACERS. <i>Astrophysical Journal</i> , 2011 , 741, 124	4.7	372
1122	Panchromatic properties of galaxies in wide-field optical spectroscopic and photometric surveys. 2011 , 7, 268-278		
1121	PRIMUS: ENHANCED SPECIFIC STAR FORMATION RATES IN CLOSE GALAXY PAIRS. <i>Astrophysical Journal</i> , 2011 , 728, 119	4.7	36
1120	ENVIRONMENTAL DEPENDENCE OF THE KENNICUTT-SCHMIDT RELATION IN GALAXIES. Astrophysical Journal, 2011 , 728, 88	4.7	165
1119	MORPHOLOGICAL EVOLUTION OF GALAXIES FROM ULTRA-DEEP HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 IMAGING: THE HUBBLE SEQUENCE AT $z\sim2$. Astrophysical Journal Letters, 2011 , 735, L22	7.9	64
1118	THE NATURE OF STAR FORMATION AT 24 th IN THE GROUP ENVIRONMENT AT 0.3 ?z? 0.55. Astrophysical Journal, 2011 , 738, 56	4.7	6
1117	THE STAR-FORMATION-RATE-DENSITY RELATION AT 0.6 . Astrophysical Journal, 2011 , 735, 53	4.7	76
1116	STAR FORMATION FROM DLA GAS IN THE OUTSKIRTS OF LYMAN BREAK GALAXIES ATz~ 3. Astrophysical Journal, 2011 , 736, 48	4.7	48
1115	A CONSTANT MOLECULAR GAS DEPLETION TIME IN NEARBY DISK GALAXIES. <i>Astrophysical Journal Letters</i> , 2011 , 730, L13	7.9	275
1114	EARLY-TYPE HOST GALAXIES OF TYPE II AND Ib SUPERNOVAE. Astrophysical Journal, 2011, 730, 110	4.7	17
1113	THE MAJOR AND MINOR GALAXY MERGER RATES ATzAstrophysical Journal, 2011 , 742, 103	4.7	293
1112	RELATIONSHIP BETWEEN HUBBLE TYPE AND SPECTROSCOPIC CLASS IN LOCAL GALAXIES. Astrophysical Journal, 2011 , 735, 125	4.7	14
1111	THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD. <i>Astrophysical Journal</i> , 2011 , 730, 61	4.7	471
1110	DUST ATTENUATION IN UV-SELECTED STARBURSTS AT HIGH REDSHIFT AND THEIR LOCAL COUNTERPARTS: IMPLICATIONS FOR THE COSMIC STAR FORMATION RATE DENSITY. <i>Astrophysical Journal Letters</i> , 2011 , 726, L7	7.9	127
1109	A NEW DIAGNOSTIC OF ACTIVE GALACTIC NUCLEI: REVEALING HIGHLY ABSORBED SYSTEMS AT REDSHIFT >0.3. <i>Astrophysical Journal</i> , 2011 , 736, 104	4.7	143
1108	AEGIS: THE MORPHOLOGIES OF GREEN GALAXIES AT 0.4 . Astrophysical Journal, 2011 , 736, 110	4.7	81
1107	THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS FRACTION OF LOW-MASS CENTRAL GALAXIES IN COSMOLOGICAL SIMULATIONS. <i>Astrophysical Journal</i> , 2011 , 736, 134	4.7	29

1106	THE SPACE DENSITY OF EXTENDED ULTRAVIOLET (XUV) DISKS IN THE LOCAL UNIVERSE AND IMPLICATIONS FOR GAS ACCRETION ONTO GALAXIES. <i>Astrophysical Journal</i> , 2011 , 733, 74	4.7	49	
1105	INTERPRETING THE EVOLUTION OF THE SIZE-LUMINOSITY RELATION FOR DISK GALAXIES FROM REDSHIFT 1 TO THE PRESENT. <i>Astrophysical Journal</i> , 2011 , 728, 51	4.7	80	
1104	Galaxy-galaxy lensing constraints on the relation between baryons and dark matter in galaxies in the Red Sequence Cluster Survey 2. <i>Astronomy and Astrophysics</i> , 2011 , 534, A14	5.1	65	
1103	REGULATION OF STAR FORMATION RATES IN MULTIPHASE GALACTIC DISKS: NUMERICAL TESTS OF THE THERMAL/DYNAMICAL EQUILIBRIUM MODEL. <i>Astrophysical Journal</i> , 2011 , 743, 25	4.7	116	
1102	ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. I. THE FREQUENCY ON ~5-100 kpc SCALES. <i>Astrophysical Journal</i> , 2011 , 737, 101	4.7	86	
1101	AGN UNIFICATION ATz~ 1:uâ R COLORS AND GRADIENTS IN X-RAY AGN HOSTS. <i>Astrophysical Journal</i> , 2011 , 740, 3	4.7	11	
1100	THE LESSER ROLE OF STARBURSTS IN STAR FORMATION AT $z=2$. Astrophysical Journal Letters, 2011 , 739, L40	7.9	590	
1099	THE EXTREME HOSTS OF EXTREME SUPERNOVAE. Astrophysical Journal, 2011 , 727, 15	4.7	124	
1098	RE-EXAMINING HIGH ABUNDANCE SLOAN DIGITAL SKY SURVEY MASS-METALLICITY OUTLIERS: HIGH N/O, EVOLVED WOLF-RAYET GALAXIES?. <i>Astrophysical Journal</i> , 2011 , 738, 2	4.7	22	
1097	CALIBRATING EXTINCTION-FREE STAR FORMATION RATE DIAGNOSTICS WITH 33 GHz FREE-FREE EMISSION IN NGC 6946. <i>Astrophysical Journal</i> , 2011 , 737, 67	4.7	473	
1096	Galaxy and mass assembly (GAMA): dust obscuration in galaxies and their recent star formation histories. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 410, 2291-2301	4.3	31	
1095	ALFALFA H i data stacking - I. Does the bulge quench ongoing star formation in early-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 411, 993-1012	4.3	77	
1094	A coincidence of disturbed morphology and blue UV colour: minor-merger-driven star formation in early-type galaxies at $z\sim 0.6$. Monthly Notices of the Royal Astronomical Society, 2011 , 411, 2148-2160	4.3	85	
1093	Large-scale outflows from z? 0.7 starburst galaxies identified via ultrastrong Mg ii quasar absorption lines. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 1559-1572	4.3	74	
1092	ACCESS - III. The nature of star formation in the Shapley supercluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 145-160	4.3	15	
1091	ACCESS - II. A complete census of star formation in the Shapley supercluster - UV and IR luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 127-144	4.3	24	
1090	Galaxy pairs in the Sloan Digital Sky Survey - III. Evidence of induced star formation from optical colours. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 591-606	4.3	96	
1089	Which haloes host Herschel-ATLAS galaxies in the local Universe?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 2277-2285	4.3	13	

1088	Direct observational evidence for a large transient galaxy population in groups at 0.85 Monthly Notices of the Royal Astronomical Society, 2011 , 412, 2303-2317	4.3	83
1087	The Dawn of the Red: star formation histories of group galaxies over the past 5 billion years. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 996-1012	4.3	121
1086	Nearby supernova rates from the Lick Observatory Supernova Search - III. The rate-size relation, and the rates as a function of galaxy Hubble type and colour. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 1473-1507	4.3	397
1085	The GALEX-SDSS NUV and FUV flux density and local star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 2570-2582	4.3	47
1084	UGC 4599: a photometric study of the nearest Hoag-type ring galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 2621-2632	4.3	8
1083	COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - I. Relations between H2, H i, stellar content and structural properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 32-60	4.3	370
1082	Galaxy evolution in cosmological simulations with outflows - I. Stellar masses and star formation rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 11-31	4.3	267
1081	The star formation rate distribution function of the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 1815-1826	4.3	53
1080	Do galaxies form a spectroscopic sequence?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 2417-2425	4.3	15
1079	A simple model for AGN feedback in nearby early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 3798-3806	4.3	40
1078	Dwarf galaxy populations in present-day galaxy clusters - I. Abundances and red fractions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 1197-1214	4.3	63
1077	Galaxy evolution in cosmological simulations with outflows - II. Metallicities and gas fractions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 1354-1376	4.3	292
1076	The impact of gas inflows on star formation rates and metallicities in barred galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 416, 2182-2192	4.3	117
1075	Self-regulated star formation in galaxies via momentum input from massive stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 950-973	4.3	348
1074	A GALEX/Spitzer survey of the Cl 0016+16 supercluster at $z = 0.55$: acceleration of the onset of star formation in satellite groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 413, 177-182	4.3	16
1073	A spectroscopic measurement of galaxy formation time-scales with the Redshift One LDSS3 Emission line Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 414, 304-320	4.3	39
1072	COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 415, 61-76	4.3	273
1071	Star formation in a stellar mass-selected sample of galaxies to z= 3 from the GOODS-NICMOS Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 289-303	4.3	52

1070	HoagâʿʿB Object: evidence for cold accretion on to an elliptical galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 1834-1849	4.3	21
1069	Galaxy pairs in the Sloan Digital Sky Survey - IV. Interactions trigger active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 2043-2053	4.3	255
1068	An analytic model for the evolution of the stellar, gas and metal content of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , no-no	4.3	216
1067	Fitting the integrated spectral energy distributions of galaxies. 2011 , 331, 1-51		209
1066	Signatures of recent star formation in ring S0 galaxies. 2011 , 335, 243-248		11
1065	UV properties of type Ia supernova and their host galaxies. 2011 , 335, 223-230		8
1064	Infrared Spectral Energy Distribution of Galaxies in the AKARI All Sky Survey: Correlations with Galaxy Properties, and Their Physical Origin. 2011 , 63, 1181-1206		9
1063	Core-collapse astrophysics with a five-megaton neutrino detector. 2011 , 83,		45
1062	THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2011 , 193, 29	8	1063
1061	ONLY THE LONELY: H I IMAGING OF VOID GALAXIES. 2011 , 141, 4		57
1060	UV-TO-FIR ANALYSIS OF SPITZER /IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES. <i>Astrophysical Journal, Supplement Series</i> , 2011 , 193, 30	8	86
1059	A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES. 2011 , 142, 37		382
1058	UV-TO-FIR ANALYSIS OF SPITZER /IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS. <i>Astrophysical Journal, Supplement Series</i> , 2011 , 193, 13	8	86
1057	THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE. <i>Astrophysical Journal</i> , 2011 , 738, 154	4.7	166
1056	Peculiar early-type galaxies with central star formation. 2012 , 12, 485-499		2
1055	The accuracy of the UV continuum as an indicator of the star formation rate in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 1490-1496	4.3	20
1054	A DEEP, WIDE-FIELD HESURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA. <i>Astrophysical Journal, Supplement Series</i> , 2012 , 199, 36	8	7
1053	Star formation quenching in galaxies. 2012 , 56, 167-170		

1052	LOW CO LUMINOSITIES IN DWARF GALAXIES. 2012 , 143, 138		161
1051	GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES. 2012 , 143, 133		86
1050	STAR FORMATION MODELS FOR THE DWARF GALAXIES NGC 2915 AND NGC 1705. 2012 , 143, 1		22
1049	OUTSIDE-IN SHRINKING OF THE STAR-FORMING DISK OF DWARF IRREGULAR GALAXIES. 2012 , 143, 47		98
1048	STAR FORMATION IN LINER HOST GALAXIES ATz~ 0.3. Astrophysical Journal, 2012 , 753, 155	4.7	7
1047	MODELING THE EFFECTS OF STAR FORMATION HISTORIES ON HEAND ULTRAVIOLET FLUXES IN NEARBY DWARF GALAXIES. <i>Astrophysical Journal</i> , 2012 , 744, 44	4.7	117
1046	THE PROPERTIES AND PREVALENCE OF GALACTIC OUTFLOWS ATz~ 1 IN THE EXTENDED GROTH STRIP. <i>Astrophysical Journal</i> , 2012 , 758, 135	4.7	108
1045	THE SLOW DEATH (OR REBIRTH?) OF EXTENDED STAR FORMATION INz~ 0.1 GREEN VALLEY EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2012 , 761, 23	4.7	57
1044	GOODS-Herschel: ultra-deepXMM-Newtonobservations reveal AGN/star-formation connection. <i>Astronomy and Astrophysics</i> , 2012 , 546, A58	5.1	82
1043	PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR. Astrophysical Journal, 2012 , 746, 90	4.7	201
1042	THE SUPPRESSION OF STAR FORMATION AND THE EFFECT OF THE GALAXY ENVIRONMENT IN LOW-REDSHIFT GALAXY GROUPS. <i>Astrophysical Journal</i> , 2012 , 757, 122	4.7	67
1041	DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER. Astrophysical Journal, 2012 , 745, 177	4.7	6
1040	CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). II. MOLECULAR GAS STAR FORMATION LAW AND DEPLETION TIME ACROSS THE BLUE SEQUENCE. <i>Astrophysical Journal</i> , 2012 , 745, 183	4.7	70
1039	CALIBRATING THE STAR FORMATION RATE ATz~ 1 FROM OPTICAL DATA. <i>Astrophysical Journal</i> , 2012 , 746, 124	4.7	22
1038	A CENSUS OF OXYGEN IN STAR-FORMING GALAXIES: AN EMPIRICAL MODEL LINKING METALLICITIES, STAR FORMATION RATES, AND OUTFLOWS. <i>Astrophysical Journal</i> , 2012 , 757, 54	4.7	116
1037	A DIRECT MEASUREMENT OF THE BARYONIC MASS FUNCTION OF GALAXIES AND IMPLICATIONS FOR THE GALACTIC BARYON FRACTION. <i>Astrophysical Journal</i> , 2012 , 759, 138	4.7	128
1036	PHYSICS OF COEVOLUTION OF GALAXIES AND SUPERMASSIVE BLACK HOLES. <i>Astrophysical Journal</i> , 2012 , 755, 28	4.7	28
1035	REVEALING VELOCITY DISPERSION AS THE BEST INDICATOR OF A GALAXY'S COLOR, COMPARED TO STELLAR MASS, SURFACE MASS DENSITY, OR MORPHOLOGY. <i>Astrophysical Journal Letters</i> , 2012 , 751, L44	7.9	92

1034	SINGLE PARAMETER GALAXY CLASSIFICATION: THE PRINCIPAL CURVE THROUGH THE MULTI-DIMENSIONAL SPACE OF GALAXY PROPERTIES. <i>Astrophysical Journal</i> , 2012 , 755, 143	4.7	6
1033	TRACING COLD H I GAS IN NEARBY, LOW-MASS GALAXIES. Astrophysical Journal, 2012 , 757, 84	4.7	27
1032	GALAXY-SCALE STAR FORMATION ON THE RED SEQUENCE: THE CONTINUED GROWTH OF S0s AND THE QUIESCENCE OF ELLIPTICALS. <i>Astrophysical Journal</i> , 2012 , 755, 105	4.7	78
1031	SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE IC SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY. <i>Astrophysical Journal</i> , 2012 , 756, 184	4.7	41
1030	THE IMPACT OF INTERACTIONS, BARS, BULGES, AND ACTIVE GALACTIC NUCLEI ON STAR FORMATION EFFICIENCY IN LOCAL MASSIVE GALAXIES. <i>Astrophysical Journal</i> , 2012 , 758, 73	4.7	187
1029	STELLAR POPULATIONS OF ULTRAVIOLET-SELECTED ACTIVE GALACTIC NUCLEI HOST GALAXIES ATz~ 2âB. <i>Astrophysical Journal</i> , 2012 , 760, 74	4.7	30
1028	UV-CONTINUUM SLOPES ATz~ 4-7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR-MAGNITUDE RELATIONSHIP FORz? 4 STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2012 , 754, 83	4.7	343
1027	DUST ATTENUATION AND HESTAR FORMATION RATES OF $z\sim0.5$ GALAXIES. Astrophysical Journal Letters, 2012 , 747, L16	7.9	33
1026	THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ?z Astrophysical Journal, 2012 , 760, 131	4.7	167
1025	A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES. <i>Astrophysical Journal</i> , 2012 , 757, 85	4.7	259
1024	THE STAR FORMATION IN RADIO SURVEY: GBT 33 GHz OBSERVATIONS OF NEARBY GALAXY NUCLEI AND EXTRANUCLEAR STAR-FORMING REGIONS. <i>Astrophysical Journal</i> , 2012 , 761, 97	4.7	67
1023	THE CHARACTERISTIC STAR FORMATION HISTORIES OF GALAXIES AT REDSHIFTSz~ 2-7. Astrophysical Journal, 2012 , 754, 25	4.7	230
1022	DEEP NEAR-INFRARED SPECTROSCOPY OF PASSIVELY EVOLVING GALAXIES ATz? 1.4. Astrophysical Journal, 2012 , 755, 26	4.7	119
1021	WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCEz~ 2 FROM CANDELS. <i>Astrophysical Journal</i> , 2012 , 753, 167	4.7	222
1020	THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES. <i>Astrophysical Journal</i> , 2012 , 761, 126	4.7	13
1019	HEQUIVALENT WIDTHS FROM THE 3D-HST SURVEY: EVOLUTION WITH REDSHIFT AND DEPENDENCE ON STELLAR MASS. <i>Astrophysical Journal Letters</i> , 2012 , 757, L22	7.9	78
1018	Gas and star formation in the Circinus galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 1934-1950	4.3	32
1017	Moving-mesh cosmology: characteristics of galaxies and haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 2027-2048	4.3	107

1016	Infrared spectral properties of wolf-rayet galaxies. 2012 , 55, 306-316		2
1015	Using theXMM-NewtonOptical Monitor to Study Cluster Galaxy Evolution. 2012 , 124, 95-113		1
1014	The growth of red sequence galaxies in a cosmological hydrodynamic simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 1816-1829	4.3	73
1013	Observed versus modelledu-,g-,r-,i-,z-band photometry of local galaxies âlevaluation of model performance. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 2376-2391	4.3	12
1012	Scaling relations of metallicity, stellar mass and star formation rate in metal-poor starbursts âll. A Fundamental Plane. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 906-918	4.3	52
1011	The relation between nuclear activity and stellar mass in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 1893-1904	4.3	1
1010	A fundamental problem in our understanding of low-mass galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2797-2812	4.3	134
1009	Rotation rates, sizes and star formation efficiencies of a representative population of simulated disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 379-392	4.3	42
1008	Scaling relations of metallicity, stellar mass and star formation rate in metal-poor starbursts âll. Theoretical models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 1075-1088	4.3	15
1007	ALFALFA H i data stacking âllII. Comparison of environmental trends in H i gas mass fraction and specific star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 2841-2851	4.3	50
1006	ON THE LAST 10 BILLION YEARS OF STELLAR MASS GROWTH IN STAR-FORMING GALAXIES. Astrophysical Journal, 2012 , 745, 149	4.7	119
1005	Star Formation in the Milky Way and Nearby Galaxies. 2012 , 50, 531-608		1531
1004	The GALEX view of theHerschelReference Survey. Astronomy and Astrophysics, 2012, 544, A101	5.1	95
1003	Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release. 2012 , 33, 213-220		4
1002	THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES. <i>Astrophysical Journal</i> , 2012 , 745, 182	4.7	81
1001	THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM. <i>Astrophysical Journal</i> , 2012 , 749, 53	4.7	35
1000	A CONSTANT LIMITING MASS SCALE FOR FLAT EARLY-TYPE GALAXIES FROMz~ 1 TOz= 0: DENSITY EVOLVES BUT SHAPES DO NOT. <i>Astrophysical Journal</i> , 2012 , 749, 96	4.7	40
999	THE ARECIBO LEGACY FAST ALFA SURVEY: THE GALAXY POPULATION DETECTED BY ALFALFA. <i>Astrophysical Journal</i> , 2012 , 756, 113	4.7	195

	998	ORIGIN OF 12 th EMISSION ACROSS GALAXY POPULATIONS FROMWISEAND SDSS SURVEYS. Astrophysical Journal, 2012 , 748, 80	4.7	67
	997	ACTIVE GALACTIC NUCLEUS PAIRS FROM THE SLOAN DIGITAL SKY SURVEY. II. EVIDENCE FOR TIDALLY ENHANCED STAR FORMATION AND BLACK HOLE ACCRETION. <i>Astrophysical Journal</i> , 2012 , 745, 94	4.7	57
	996	STAR FORMATION RATE DISTRIBUTIONS: INADEQUACY OF THE SCHECHTER FUNCTION. Astrophysical Journal, 2012 , 758, 134	4.7	19
	995	THE STAR FORMATION HISTORY AND METAL CONTENT OF THE GREEN PEAS. NEW DETAILED GTC-OSIRIS SPECTROPHOTOMETRY OF THREE GALAXIES. <i>Astrophysical Journal</i> , 2012 , 749, 185	4.7	78
	994	ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS. <i>Astrophysical Journal</i> , 2012 , 749, 133	4.7	21
!	993	EXPLORING THE DIVERSITY OF GROUPS AT 0.1 . Astrophysical Journal, 2012, 756, 139	4.7	31
	992	DECODING SPECTRAL ENERGY DISTRIBUTIONS OF DUST-OBSCURED STARBURST-ACTIVE GALACTIC NUCLEUS. <i>Astrophysical Journal</i> , 2012 , 749, 123	4.7	23
	991	Panchromatic radiative transfer modelling of stars and dust in the Sombrero galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 895-903	4.3	44
	990	The intriguing H i gas in NGC 5253: an infall of a diffuse, low-metallicity H i cloud??. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 1051-1069	4.3	60
	989	CFHT Legacy Ultraviolet Extension (CLUE): witnessing galaxy transformations up to 7 Mpc from rich cluster cores. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 126-140	4.3	29
	988	The GALEX Arecibo SDSS Survey - IV. Baryonic mass-velocity-size relations of massive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 1959-1976	4.3	44
!	987	HBtar formation rates in massive galaxies at $z\sim 1$. Monthly Notices of the Royal Astronomical Society, 2012 , 420, 1061-1078	4.3	16
	986	GOODS-Herschel: the far-infrared view of star formation in active galactic nucleus host galaxies since z âlb. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 419, 95-115	4.3	209
	985	From star-forming spirals to passive spheroids: integral field spectroscopy of E+A galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 420, 672-683	4.3	29
	984	The NGC 7771+NGC 7770 minor merger: harassing the little one?. 2012, 425, L46-L50		14
!	983	Evolution of the most massive galaxies to $z=0.6$ âll. A new method for physical parameter estimation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , no-no	4.3	71
	982	Dust reddening in star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2012, no-no	4.3	21
	981	Relative merits of different types of rest-frame optical observations to constrain galaxy physical parameters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 2002-2024	4.3	92

980	A modified star formation law as a solution to open problems in galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 3450-3463	4.3	37
979	Substructure in the most massive GEEC groups: field-like populations in dynamically active groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 3594-3611	4.3	45
978	The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 215-231	4.3	162
977	Recovering galaxy stellar population properties from broad-band spectral energy distribution fitting. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 3285-3326	4.3	159
976	Type 1 AGN at low z- I. Emission properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 600-631	4.3	79
975	The evolution of massive black holes and their spins in their galactic hosts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 2533-2557	4.3	140
974	The dependence of galaxy group star formation rates and metallicities on large-scale environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 2690-2704	4.3	34
973	Galaxy evolution in groups and clusters: star formation rates, red sequence fractions and the persistent bimodality. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 232-243	4.3	318
972	MaGICC discs: matching observed galaxy relationships over a wide stellar mass range. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 1275-1283	4.3	140
971	The clustering of galaxies as a function of their photometrically estimated atomic gas content. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 1471-1482	4.3	36
970	The gas-phase metallicity of central and satellite galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 273-286	4.3	37
969	THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROMz= 0-8. Astrophysical Journal, 2013 , 770, 57	4.7	1365
968	Modeling the Panchromatic Spectral Energy Distributions of Galaxies. 2013 , 51, 393-455		447
967	HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013 , 770, 107	4.7	52
966	GALAXY ZOO: OBSERVING SECULAR EVOLUTION THROUGH BARS. <i>Astrophysical Journal</i> , 2013 , 779, 162	4.7	106
965	A Comparison of Star Formation Rate Indicators for Galaxies. 2013 , 37, 126-138		1
964	UPDATED NEARBY GALAXY CATALOG. 2013 , 145, 101		320
963	HERSCHELEXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). III. THE STAR FORMATION LAW IN M31. <i>Astrophysical Journal</i> , 2013 , 769, 55	4.7	58

962	EFFECTS OF STELLAR ROTATION ON STAR FORMATION RATES AND COMPARISON TO CORE-COLLAPSE SUPERNOVA RATES. <i>Astrophysical Journal</i> , 2013 , 769, 113	4.7	26
961	Estimating gas masses and dust-to-gas ratios from optical spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 2112-2140	4.3	44
960	The stellar masses of galaxies from the 3.4 h band of the WISE All-Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 2946-2957	4.3	53
959	Effects of superstructure environment on galaxy groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 1367-1374	4.3	14
958	The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 2645-2663	4.3	151
957	How well can we really estimate the stellar masses of galaxies from broad-band photometry?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 87-114	4.3	113
956	The GALEX Arecibo SDSS Survey â[VIII. Final data release. The effect of group environment on the gas content of massive galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 34-70	4.3	148
955	Galaxy pairs in the Sloan Digital Sky Survey âlVI. The orbital extent of enhanced star formation in interacting galaxies. 2013 , 433, L59-L63		135
954	Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formationâBtellar mass relation of spiral galaxies in the local universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 437, 3883-3917	4.3	8
953	Lyman break and ultraviolet-selected galaxies at $z\sim 1~{\rm â}II$. Stellar populations from the ALHAMBRA survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 2706-2726	4.3	5
952	On the mass assembly of low-mass galaxies in hydrodynamical simulations of structure formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 2736-2752	4.3	17
951	A re-examination of galactic conformity and a comparison with semi-analytic models of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 1447-1456	4.3	113
950	Why does the environmental influence on group and cluster galaxies extend beyond the virial radius?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 3017-3031	4.3	156
949	Lyman Break and ultraviolet-selected galaxies at z land 10 fm/160 lb FIR detections?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 158-186	4.3	13
948	Halo occupation distribution modelling of green valley galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 2548-2564	4.3	22
947	Shaping the galaxy stellar mass function with supernova- and AGN-driven winds. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 2966-2979	4.3	136
946	Towards a physical picture of star formation quenching: the photometric properties of recently quenched galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 2212-2227	4.3	57
945	Galaxy Zoo: quantifying morphological indicators of galaxy interaction?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 1051-1065	4.3	48

944	Galactic star formation and accretion histories from matching galaxies to dark matter haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 3121-3138	4.3	911
943	The WiggleZ Dark Energy Survey: star formation in UV-luminous galaxies from their luminosity functions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 257-281	4.3	5
942	The slow flow model of dust efflux in local star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 1852-1866	4.3	7
941	Single-colour diagnostics of the mass-to-light ratio âll. Predictions from galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 430-439	4.3	15
940	Properties and morphologies of Lyman break galaxies at $z \sim 1$ in the Chandra Deep Field South, inferred from spectral energy distributions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 2080-2105	4.3	5
939	Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 336-358	4.3	367
938	Connecting stellar mass and star-formation rate to dark matter halo mass out to $z \sim 2$. Monthly Notices of the Royal Astronomical Society, 2013 , 431, 648-661	4.3	63
937	Galaxy pairs in the Sloan Digital Sky Survey âlVII. The mergerâluminous infrared galaxy connection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 3128-3141	4.3	70
936	Galactic accretion and the outer structure of galaxies in the CDM model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 3348-3367	4.3	131
935	Evolution of oxygen and nitrogen abundances and nitrogen production mechanism in massive star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 934-942	4.3	13
934	Simulations of the galaxy population constrained by observations from z = 3 to the present day: implications for galactic winds and the fate of their ejecta. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 3373-3395	4.3	176
933	Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 1383-1397	4.3	148
932	The nature of obscuration in AGN âll. Insights from host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 3451-3463	4.3	15
931	Statistical properties of mass, star formation, chemical content and rotational patterns in early z ? 9 structures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 1621-1638	4.3	20
930	An empirical prediction for stellar metallicity distributions in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 1766-1773	4.3	17
929	VALIDATION OF THE EQUILIBRIUM MODEL FOR GALAXY EVOLUTION TOz~ 3 THROUGH MOLECULAR GAS AND DUST OBSERVATIONS OF LENSED STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2013 , 778, 2	4.7	172
928	THE IMPACT OF STARBURSTS ON THE CIRCUMGALACTIC MEDIUM. <i>Astrophysical Journal</i> , 2013 , 768, 18	4.7	63
927	HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. <i>Astrophysical Journal</i> , 2013 , 770, 108	4.7	99

(2013-2013)

926	THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES. Astrophysical Journal, 2013 , 770, 63	4.7	23
925	THE ZURICH ENVIRONMENTAL STUDY OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. III. GALAXY PHOTOMETRIC MEASUREMENTS AND THE SPATIALLY RESOLVED COLOR PROPERTIES OF EARLY- AND LATE-TYPE SATELLITES IN DIVERSE ENVIRONMENTS. <i>Astrophysical Journal</i> , 2013 , 777, 116	4.7	31
924	NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2013 , 771, 63	4.7	84
923	THE GALEX ARECIBO SDSS SURVEY. VII. THE BIVARIATE NEUTRAL HYDROGEN-STELLAR MASS FUNCTION FOR MASSIVE GALAXIES. <i>Astrophysical Journal</i> , 2013 , 776, 74	4.7	14
922	THE MID-INFRARED EMISSION OF NARROW-LINE ACTIVE GALACTIC NUCLEI: STAR FORMATION, NUCLEAR ACTIVITY, AND TWO POPULATIONS REVEALED BYWISE. <i>Astrophysical Journal</i> , 2013 , 778, 94	4.7	26
921	ON THE ASSEMBLY HISTORY OF STELLAR COMPONENTS IN MASSIVE GALAXIES. <i>Astrophysical Journal</i> , 2013 , 766, 38	4.7	53
920	A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION. <i>Astrophysical Journal</i> , 2013 , 778, 128	4.7	139
919	GRADIENTS OF STELLAR POPULATION PROPERTIES AND EVOLUTION CLUES IN A NEARBY GALAXY M101. <i>Astrophysical Journal</i> , 2013 , 769, 127	4.7	20
918	THE STRIKINGLY SIMILAR RELATION BETWEEN SATELLITE AND CENTRAL GALAXIES AND THEIR DARK MATTER HALOS SINCEz= 2. <i>Astrophysical Journal</i> , 2013 , 772, 139	4.7	39
917	A CANDELS-3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 . <i>Astrophysical Journal</i> , 2013 , 779, 135	4.7	177
916	PROBING THE INTERSTELLAR MEDIUM OFz~ 1 ULTRALUMINOUS INFRARED GALAXIES THROUGH INTERFEROMETRIC OBSERVATIONS OF CO ANDSPITZERMID-INFRARED SPECTROSCOPY. Astrophysical Journal, 2013 , 772, 92	4.7	23
915	USING COLORS TO IMPROVE PHOTOMETRIC METALLICITY ESTIMATES FOR GALAXIES. Astrophysical Journal, 2013 , 775, 125	4.7	13
914	NO EVIDENCE FOR A DEPENDENCE OF THE MASS-SIZE RELATION OF EARLY-TYPE GALAXIES ON ENVIRONMENT IN THE LOCAL UNIVERSE. <i>Astrophysical Journal</i> , 2013 , 779, 29	4.7	52
913	A HIGH-DISPERSION MOLECULAR GAS COMPONENT IN NEARBY GALAXIES. 2013 , 146, 150		78
912	CONNECTING TRANSITIONS IN GALAXY PROPERTIES TO REFUELING. <i>Astrophysical Journal</i> , 2013 , 777, 42	4.7	43
911	A CORRELATION BETWEEN STAR FORMATION RATE AND AVERAGE BLACK HOLE ACCRETION IN STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2013 , 773, 3	4.7	145
910	ON THE ROBUSTNESS OFz= 0-1 GALAXY SIZE MEASUREMENTS THROUGH MODEL AND NON-PARAMETRIC FITS. <i>Astrophysical Journal</i> , 2013 , 777, 117	4.7	51
909	THE STRUCTURAL EVOLUTION OF MILKY-WAY-LIKE STAR-FORMING GALAXIES SINCEz~ 1.3. Astrophysical Journal, 2013 , 778, 115	4.7	41

908	DISCOVERY OF LYMAN BREAK GALAXIES ATz~ 7 FROM THE zFourGE SURVEY. <i>Astrophysical Journal</i> , 2013 , 768, 56	4.7	36
907	PROBING THE LOW-REDSHIFT STAR FORMATION RATE AS A FUNCTION OF METALLICITY THROUGH THE LOCAL ENVIRONMENTS OF TYPE II SUPERNOVAE. <i>Astrophysical Journal</i> , 2013 , 773, 12	4.7	26
906	The effect of metal enrichment and galactic winds on galaxy formation in cosmological zoom simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 2929-2949	4.3	69
905	NEBULAR ATTENUATION IN H⊞ELECTED STAR-FORMING GALAXIES ATz= 0.8 FROM THE NewH⊞ SURVEY. 2013 , 145, 47		39
904	MEASURING GALAXY STAR FORMATION RATES FROM INTEGRATED PHOTOMETRY: INSIGHTS FROM COLOR-MAGNITUDE DIAGRAMS OF RESOLVED STARS. <i>Astrophysical Journal</i> , 2013 , 772, 8	4.7	38
903	GLOBAL STAR FORMATION RATES AND DUST EMISSION OVER THE GALAXY INTERACTION SEQUENCE. <i>Astrophysical Journal</i> , 2013 , 768, 90	4.7	48
902	The Herschel Virgo Cluster Survey âโXIV. Transition-type dwarf galaxies in the Virgo cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 1057-1073	4.3	14
901	Gas depletion in cluster galaxies depends strongly on their internal structure. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 2191-2198	4.3	19
900	Do group dynamics play a role in the evolution of member galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 435, 1715-1726	4.3	20
899	Efficient satellite quenching at z~1 from the GEEC2 spectroscopic survey of galaxy groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 1090-1106	4.3	47
898	Modelling the narrow-line regions of active galaxies in the Sloan Digital Sky Survey âll. Sample selection and physical conditions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 430, 2605-26	24 ³	18
897	Physical properties underlying observed kinematics of satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 2407-2417	4.3	65
896	PS1-12sk IS A PECULIAR SUPERNOVA FROM A He-RICH PROGENITOR SYSTEM IN A BRIGHTEST CLUSTER GALAXY ENVIRONMENT. <i>Astrophysical Journal</i> , 2013 , 769, 39	4.7	40
895	THE CALIBRATION OF STAR FORMATION RATE INDICATORS FORWISE22 th-SELECTED GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. <i>Astrophysical Journal</i> , 2013 , 774, 62	4.7	60
894	GREEN GALAXIES IN THE COSMOS FIELD. Astrophysical Journal, 2013, 776, 14	4.7	20
893	A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES. <i>Astrophysical Journal</i> , 2013 , 776, 63	4.7	194
892	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z \sim 1.6. I. HBASED STAR FORMATION RATES AND DUST EXTINCTION. <i>Astrophysical Journal Letters</i> , 2013 , 777, L8	7.9	158
891	Shape Index Descriptors Applied to Texture-Based Galaxy Analysis. 2013,		8

(2013-2013)

890	Nearest neignbour regression outperforms model-based prediction or specific star formation rate. 2013,		6	
889	LoCuSS: THE STEADY DECLINE AND SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES OVER THE LAST FOUR BILLION YEARS. <i>Astrophysical Journal</i> , 2013 , 775, 126	4.7	100	
888	DEMOGRAPHICS OF SLOAN DIGITAL SKY SURVEY GALAXIES ALONG THE HUBBLE SEQUENCE. 2013 , 146, 151		6	
887	PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROMz= 0-1. <i>Astrophysical Journal</i> , 2013 , 767, 50	4.7	375	
886	Dependence of galaxy quenching on halo mass and distance from its centre. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 428, 3306-3326	4.3	143	
885	Encoding of the infrared excess in the NUV rK color diagram for star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2013 , 558, A67	5.1	100	
884	A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH. <i>Astrophysical Journal</i> , 2013 , 763, 133	4.7	29	
883	TESTING 24 th AND INFRARED LUMINOSITY AS STAR FORMATION TRACERS FOR GALACTIC STAR-FORMING REGIONS. <i>Astrophysical Journal</i> , 2013 , 765, 129	4.7	18	
882	DISSECTION OF HEMITTERS: LOW-zANALOGS OFz> 4 STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2013 , 765, 26	4.7	16	
881	CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATEzâll 1 GALAXY. <i>Astrophysical Journal</i> , 2013 , 762, 32	4.7	247	
880	THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES. <i>Astrophysical Journal</i> , 2013 , 763, 92	4.7	55	
879	HB: an HEmaging survey of HI selected galaxies from ALFALFA. <i>Astronomy and Astrophysics</i> , 2013 , 553, A89	5.1	61	
878	HB: an HEmaging survey of HI selected galaxies from ALFALFA. <i>Astronomy and Astrophysics</i> , 2013 , 553, A90	5.1	40	
877	COMPARING HEAND H I SURVEYS AS MEANS TO A COMPLETE LOCAL GALAXY CATALOG IN THE ADVANCED LIGO/VIRGO ERA. <i>Astrophysical Journal</i> , 2013 , 764, 149	4.7	10	
876	THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES. Astrophysical Journal, 2013 , 764, 174	4.7	25	
875	THE MASS-METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES. <i>Astrophysical Journal</i> , 2013 , 765, 140	4.7	311	
874	ENVIRONMENTAL EFFECTS IN THE INTERACTION AND MERGING OF GALAXIES IN zCOSMOS. <i>Astrophysical Journal</i> , 2013 , 762, 43	4.7	31	
873	STELLAR KINEMATICS OFz~ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES,. Astrophysical Journal, 2013, 771, 85	4.7	158	

872	Galaxy And Mass Assembly (GAMA): linking star formation histories and stellar mass growth. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 209-221	4.3	69
871	THE FUNDAMENTAL METALLICITY RELATION REDUCES TYPE Ia SN HUBBLE RESIDUALS MORE THAN HOST MASS ALONE. <i>Astrophysical Journal</i> , 2013 , 764, 191	4.7	46
870	CONCURRENT SUPERMASSIVE BLACK HOLE AND GALAXY GROWTH: LINKING ENVIRONMENT AND NUCLEAR ACTIVITY INz= 2.23 Hæmitters. <i>Astrophysical Journal</i> , 2013 , 765, 87	4.7	32
869	Probing AGN triggering mechanisms through the starburstiness of the host galaxies. <i>Astronomy and Astrophysics</i> , 2013 , 559, A56	5.1	17
868	Integrated spectroscopy of theHerschelReference Survey. Astronomy and Astrophysics, 2013, 550, A114	5.1	40
867	Star formation rate indicators. 419-458		75
866	Aperture corrections for disk galaxy properties derived from the CALIFA survey. <i>Astronomy and Astrophysics</i> , 2013 , 553, L7	5.1	33
865	The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types. <i>Astronomy and Astrophysics</i> , 2014 , 568, A62	5.1	217
864	OFFSET ACTIVE GALACTIC NUCLEI AS TRACERS OF GALAXY MERGERS AND SUPERMASSIVE BLACK HOLE GROWTH. <i>Astrophysical Journal</i> , 2014 , 789, 112	4.7	52
863	A PILOT STUDY USING DEEP INFRARED IMAGING TO CONSTRAIN THE STAR FORMATION HISTORY OF THE XUV STELLAR POPULATIONS IN NGC 4625. <i>Astrophysical Journal</i> , 2014 , 793, 65	4.7	6
862	HIghMassâHIGH H I MASS, H I-RICH GALAXIES ATz~ 0 HIGH-RESOLUTION VLA IMAGING OF UGC 9037 AND UGC 12506. 2014 , 148, 69		15
861	BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES. <i>Astrophysical Journal, Supplement Series</i> , 2014 , 215, 2	8	36
860	A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING âMAIN SEQUENCEâlFROM z ~ 0-6. <i>Astrophysical Journal, Supplement Series</i> , 2014 , 214, 15	8	774
859	HighMass-HiGH H I MASS, H I-RICH GALAXIES ATz~ 0 SAMPLE DEFINITION, OPTICAL AND H∃ IMAGING, AND STAR FORMATION PROPERTIES. <i>Astrophysical Journal</i> , 2014 , 793, 40	4.7	27
858	DISCOVERY OF A GAS-RICH COMPANION TO THE EXTREMELY METAL-POOR GALAXY DDO 68. Astrophysical Journal Letters, 2014 , 787, L1	7.9	20
857	The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 889-907	4.3	381
856	Herschel-ATLAS/GAMA: How does the far-IR luminosity function depend on galaxy group properties?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 2253-2270	4.3	8
855	Ages of Type Ia supernovae over cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1898-1911	4.3	59

854	HerMES: dust attenuation and star formation activity in ultraviolet-selected samples from $z\sim4$ to ~1.5 . Monthly Notices of the Royal Astronomical Society, 2014 , 437, 1268-1283	4.3	80
853	Interacting galaxies: corotating and counter-rotating systems with tidal tails. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1784-1793	4.3	15
852	A multiple dry merger at $z=0.18$: witnessing the assembly of a massive elliptical galaxy. Monthly Notices of the Royal Astronomical Society, 2014 , 443, 288-298	4.3	2
851	Mining circumgalactic baryons in the low-redshift universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 2061-2081	4.3	99
850	Herschel far-IR counterparts of SDSS galaxies: analysis of commonly used star formation rate estimates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 2-23	4.3	18
849	Bulge mass is king: the dominant role of the bulge in determining the fraction of passive galaxies in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 599-629	4.3	155
848	The violent youth of bright and massive cluster galaxies and their maturation over 7 billion years. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 589-615	4.3	26
847	The evolution of the star-forming sequence in hierarchical galaxy formation models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2637-2664	4.3	46
846	What triggers black hole growth? Insights from star formation rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3373-3384	4.3	31
845	Spitzer Local Volume Legacy (LVL) SEDs and physical properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 899-912	4.3	47
844	An observational and theoretical view of the radial distribution of H I gas in galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 2159-2172	4.3	83
843	Star formation and environmental quenching of GEEC2 group galaxies at $z \sim 1$. Monthly Notices of the Royal Astronomical Society, 2014 , 438, 3070-3085	4.3	28
842	The SAMI Galaxy Survey: the discovery of a luminous, low-metallicity H ii complex in the dwarf galaxy GAMAII141103.98âI03242.3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1104-	- 113 13	21
841	The MaGICC volume: reproducing statistical properties of high-redshift galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 3529-3539	4.3	49
840	SLUG âlstochastically Lighting Up Galaxies âll. Quantifying the effects of stochasticity on star formation rate indicators. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 3275-3287	4.3	72
839	A new method for classifying galaxy SEDs from multiwavelength photometry. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 1880-1898	4.3	47
838	CFHTLenS: the relation between galaxy dark matter haloes and baryons from weak gravitational lensing. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 2111-2136	4.3	141
837	Star formation rates of star-forming galaxies from the WISE All-Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 97-115	4.3	20

836	Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 3986-4010	4.3	15
835	The stellar mass function and efficiency of galaxy formation with a varying initial mass function. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 3188-3204	4.3	7
834	The connection between galaxy structure and quenching efficiency. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 843-858	4.3	78
833	Dynamics and metallicity of far-infrared selected galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 3780-3794	4.3	11
832	STARS WERE BORN IN SIGNIFICANTLY DENSER REGIONS IN THE EARLY UNIVERSE. <i>Astrophysical Journal</i> , 2014 , 787, 120	4.7	69
831	MOLECULAR CLOUD-SCALE STAR FORMATION IN NGC 300. Astrophysical Journal, 2014 , 789, 81	4.7	26
830	TRACING RAM-PRESSURE STRIPPING WITH WARM MOLECULAR HYDROGEN EMISSION. Astrophysical Journal, 2014 , 796, 89	4.7	18
829	THE MASS-METALLICITY AND FUNDAMENTAL METALLICITY RELATIONS ATz> 2 USING VERY LARGE TELESCOPE AND SUBARU NEAR-INFRARED SPECTROSCOPY OF ZCOSMOS GALAXIES. <i>Astrophysical Journal</i> , 2014 , 792, 3	4.7	70
828	ON THE ORIGIN OF THE HUBBLE SEQUENCE: I. INSIGHTS ON GALAXY COLOR MIGRATION FROM COSMOLOGICAL SIMULATIONS. <i>Astrophysical Journal</i> , 2014 , 781, 38	4.7	55
827	A CRITICAL LOOK AT THE MASS-METALLICITY-STAR FORMATION RATE RELATION IN THE LOCAL UNIVERSE. I. AN IMPROVED ANALYSIS FRAMEWORK AND CONFOUNDING SYSTEMATICS. Astrophysical Journal, 2014 , 797, 126	4.7	84
826	REGULARITY UNDERLYING COMPLEXITY: A REDSHIFT-INDEPENDENT DESCRIPTION OF THE CONTINUOUS VARIATION OF GALAXY-SCALE MOLECULAR GAS PROPERTIES IN THE MASS-STAR FORMATION RATE PLANE. <i>Astrophysical Journal</i> , 2014 , 793, 19	4.7	210
825	ALMA OBSERVATION OF 158 th [C II] LINE AND DUST CONTINUUM OF AZ= 7 NORMALLY STAR-FORMING GALAXY IN THE EPOCH OF REIONIZATION. <i>Astrophysical Journal</i> , 2014 , 792, 34	4.7	91
824	DIRECT METHOD GAS-PHASE OXYGEN ABUNDANCES OF FOUR LYMAN BREAK ANALOGS. Astrophysical Journal, 2014 , 792, 140	4.7	6
823	Introducing the Illustris project: the evolution of galaxy populations across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 175-200	4.3	627
822	The SAMI Galaxy Survey: shocks and outflows in a normal star-forming galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 3894-3910	4.3	118
821	Higher prevalence of X-ray selected AGN in intermediate-age galaxies up to z \sim 1. Monthly Notices of the Royal Astronomical Society, 2014 , 443, 3538-3549	4.3	11
820	THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS. Astrophysical Journal Letters, 2014 , 785, L36	7.9	90
819	THE LyREFERENCE SAMPLE. I. SURVEY OUTLINE AND FIRST RESULTS FOR MARKARIAN 259. Astrophysical Journal, 2014 , 797, 11	4.7	78

818	A CATALOG OF BULGE, DISK, AND TOTAL STELLAR MASS ESTIMATES FOR THE SLOAN DIGITAL SKY SURVEY. <i>Astrophysical Journal, Supplement Series</i> , 2014 , 210, 3	8	141
817	THE STAR FORMATION HISTORIES OF LOCAL GROUP DWARF GALAXIES. I.HUBBLE SPACE TELESCOPE/WIDE FIELD PLANETARY CAMERA 2 OBSERVATIONS. <i>Astrophysical Journal</i> , 2014 , 789, 147	4.7	286
816	ACTIVE GALACTIC NUCLEI EMISSION LINE DIAGNOSTICS AND THE MASS-METALLICITY RELATION UP TO REDSHIFTz~ 2: THE IMPACT OF SELECTION EFFECTS AND EVOLUTION. <i>Astrophysical Journal</i> , 2014 , 788, 88	4.7	109
815	SEMI-ANALYTIC MODELS FOR THE CANDELS SURVEY: COMPARISON OF PREDICTIONS FOR INTRINSIC GALAXY PROPERTIES. <i>Astrophysical Journal</i> , 2014 , 795, 123	4.7	82
814	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES ATz~ 1.6. II. THE MASS-METALLICITY RELATION AND THE DEPENDENCE ON STAR FORMATION RATE AND DUST EXTINCTION. <i>Astrophysical Journal</i> , 2014 , 792, 75	4.7	120
813	AN INFRARED AND OPTICAL ANALYSIS OF A SAMPLE OF XBONGS AND OPTICALLY ELUSIVE AGNS. <i>Astrophysical Journal</i> , 2014 , 794, 112	4.7	18
812	MASSIVE STAR-FORMING HOST GALAXIES OF QUASARS ON SLOAN DIGITAL SKY SURVEY STRIPE 82. <i>Astrophysical Journal</i> , 2014 , 780, 162	4.7	33
811	COLOR-MAGNITUDE DISTRIBUTION OF FACE-ON NEARBY GALAXIES IN SLOAN DIGITAL SKY SURVEY DR7. <i>Astrophysical Journal</i> , 2014 , 787, 63	4.7	14
810	Constraints on the galaxy âthain sequenceâtat ztets: the stellar mass of HDF850.1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 3118-3126	4.3	3
809	Ionization state of inter-stellar medium in galaxies: evolution, SFRâM*âZ dependence, and ionizing photon escape. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 442, 900-916	4.3	212
808	A dichotomy in satellite quenching around L* galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 1930-1941	4.3	47
807	The ultraviolet to far-infrared spectral energy distribution of star-forming galaxies in the redshift desert. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 439, 1337-1363	4.3	15
806	The influence of the environmental history on quenching star formation in a Itold dark matter universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 2938-2959	4.3	74
805	H i in the Arp 202 system and its tidal dwarf candidate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 558-565	4.3	6
804	SIMULATIONS OF ISOLATED DWARF GALAXIES FORMED IN DARK MATTER HALOS WITH DIFFERENT MASS ASSEMBLY HISTORIES. <i>Astrophysical Journal</i> , 2014 , 785, 58	4.7	17
803	THE UNIVERSAL RELATION OF GALACTIC CHEMICAL EVOLUTION: THE ORIGIN OF THE MASS-METALLICITY RELATION. <i>Astrophysical Journal</i> , 2014 , 791, 130	4.7	192
802	A UNIFORM HISTORY FOR GALAXY EVOLUTION. Astrophysical Journal, 2014 , 796, 25	4.7	16
801	CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 . Astrophysical Journal, 2014 , 795, 104	4.7	516

800	AN ALMA SURVEY OF SUB-MILLIMETER GALAXIES IN THE EXTENDEDCHANDRADEEP FIELD SOUTH: SUB-MILLIMETER PROPERTIES OF COLOR-SELECTED GALAXIES. <i>Astrophysical Journal</i> , 2014 , 780, 115	4.7	14
799	The star formation activity in cosmic voids. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 4045-4054	4.3	27
798	STAR FORMATION AT 4 Astrophysical Journal Letters, 2014 , 791, L25	7.9	131
797	Cosmic Star-Formation History. 2014 , 52, 415-486		1949
796	The Galaxy Evolution Explorer (GALEX). Its legacy of UV surveys, and science highlights. 2014 , 354, 103	-112	42
795	CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE. <i>Astrophysical Journal Letters</i> , 2014 , 789, L16	7.9	18
794	LONG GRBs ARE METALLICITY-BIASED TRACERS OF STAR FORMATION: EVIDENCE FROM HOST GALAXIES AND REDSHIFT DISTRIBUTION. <i>Astrophysical Journal, Supplement Series</i> , 2014 , 213, 15	8	22
793	Galaxy size trends as a consequence of cosmology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 1570-1583	4.3	14
792	What Regulates Galaxy Evolution? Open questions in our understanding of galaxy formation and evolution. 2014 , 62-63, 1-14		11
791	A model for cosmological simulations of galaxy formation physics: multi-epoch validation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 1985-2004	4.3	210
790	Galaxy evolution in groups. USGC U268 and USGC U376 in the Leo cloud. 2014, 53, 920-927		4
789	Ultraviolet to infrared emission ofz> 1 galaxies: Can we derive reliable star formation rates and stellar masses?. <i>Astronomy and Astrophysics</i> , 2014 , 561, A39	5.1	49
788	SDSS superclusters: morphology and galaxy content. Astronomy and Astrophysics, 2014, 562, A87	5.1	47
787	Herschel-ATLAS: the connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 3776-3794	4.3	43
786	Merging galaxies produce outliers from the fundamental metallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 4005-4017	4.3	9
785	Biases and systematics in the observational derivation of galaxy properties: comparing different techniques on synthetic observations of simulated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 2381-2400	4.3	18
7 ⁸ 4	The stellar mass function and star formation rate部tellar mass relation of galaxies at z卧储部. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 3001-3021	4.3	17
783	Star formation in semi-analytic galaxy formation models with multiphase gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 4338-4368	4.3	89

(2015-2015)

782	Low-redshift quasars in the SDSS Stripe 82. Host galaxy colours and close environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 4103-4113	4.3	8
781	Ionized gas in the XUV disc of the NGC 1512/1510 system. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 3381-3409	4.3	27
780	A unified explanation for the supernova rate-galaxy mass dependence based on supernovae detected in Sloan galaxy spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 905-925	4.3	39
779	Neutral hydrogen gas, past and future star formation in galaxies in and around the âBausageâ merging galaxy cluster. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 2731-2744	4.3	16
778	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: POST-STARBURST SIGNATURES IN QUASAR HOST GALAXIES ATZAstrophysical Journal, 2015 , 811, 91	4.7	28
777	The SAMI Galaxy Survey: unveiling the nature of kinematically offset active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2780-2792	4.3	15
776	LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS. <i>Astrophysical Journal Letters</i> , 2015 , 810, L15	7.9	58
775	UNVEILING THE MILKY WAY: A NEW TECHNIQUE FOR DETERMINING THE OPTICAL COLOR AND LUMINOSITY OF OUR GALAXY. <i>Astrophysical Journal</i> , 2015 , 809, 96	4.7	33
774	THE INFLUENCE OF GALAXY SURFACE BRIGHTNESS ON THE MASSâMETALLICITY RELATION. <i>Astrophysical Journal</i> , 2015 , 810, 151	4.7	5
773	THE BIASES OF OPTICAL LINE-RATIO SELECTION FOR ACTIVE GALACTIC NUCLEI AND THE INTRINSIC RELATIONSHIP BETWEEN BLACK HOLE ACCRETION AND GALAXY STAR FORMATION. <i>Astrophysical Journal</i> , 2015 , 811, 26	4.7	78
772	RESOLVE SURVEY PHOTOMETRY AND VOLUME-LIMITED CALIBRATION OF THE PHOTOMETRIC GAS FRACTIONS TECHNIQUE. <i>Astrophysical Journal</i> , 2015 , 810, 166	4.7	28
771	Galaxy evolution across the optical emission-line diagnostic diagrams?. <i>Astronomy and Astrophysics</i> , 2015 , 573, A93	5.1	4
770	Constraining the properties of AGN host galaxies with spectral energy distribution modelling. <i>Astronomy and Astrophysics</i> , 2015 , 576, A10	5.1	130
769	SPECTROSCOPIC STUDY OF STAR-FORMING GALAXIES IN FILAMENTS AND THE FIELD ATz~ 0.5: EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF ELECTRON DENSITY. <i>Astrophysical Journal</i> , 2015 , 814, 84	4.7	40
768	Dust attenuation up toz? 2 in the AKARI North Ecliptic Pole Deep Field. <i>Astronomy and Astrophysics</i> , 2015 , 577, A141	5.1	28
767	Cool dust heating and temperature mixing in nearby star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2015 , 576, A33	5.1	37
766	Metallicity gradients in local field star-forming galaxies: insights on inflows, outflows, and the coevolution of gas, stars and metals. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 2030	- 2 0354	132
765	Star formation properties of Hickson Compact Groups based on deep Hamaging. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2793-2813	4.3	9

764	Decreased specific star formation rates in AGN host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1841-1860	4.3	55
763	Predicting dust extinction properties of star-forming galaxies from H#UV ratio. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 879-892	4.3	28
762	NIHAO project âll. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 83-94	4.3	205
761	Physical conditions of the interstellar medium in star-forming galaxies atz ~ 1.5. 2015 , 67, 80		26
760	Taking care of business in a flash: constraining the time-scale for low-mass satellite quenching with ELVIS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 2039-2049	4.3	84
759	Galaxy Zoo: the dependence of the star formationâEtellar mass relation on spiral disc morphology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 820-827	4.3	51
758	Hilmaging of the Herschel Reference Survey. Astronomy and Astrophysics, 2015, 579, A102	5.1	61
757	Evolution of the specific star formation rate function atzAstronomy and Astrophysics, 2015 , 579, A2	5.1	105
756	GOODS-Herschel: identification of the individual galaxies responsible for the 80â�290th cosmic infrared background. <i>Astronomy and Astrophysics</i> , 2015 , 579, A93	5.1	12
755	Comparing galaxy populations in compact and loose groups of galaxies. <i>Astronomy and Astrophysics</i> , 2015 , 573, A96	5.1	9
754	Star formation in the local Universe from the CALIFA sample. <i>Astronomy and Astrophysics</i> , 2015 , 584, A87	5.1	78
753	Mass-metallicity relation of zCOSMOS galaxies atzâl D.7, its dependence on star formation rate, and the existence of massive low-metallicity galaxies. <i>Astronomy and Astrophysics</i> , 2015 , 577, A14	5.1	29
752	Molecular depletion times and the CO-to-H2conversion factor in metal-poor galaxies. <i>Astronomy and Astrophysics</i> , 2015 , 583, A114	5.1	63
751	SPECTRAL PROPERTIES OF GALAXIES IN VOID REGIONS. <i>Astrophysical Journal</i> , 2015 , 810, 165	4.7	9
75°	Predicting galaxy star formation rates via the co-evolution of galaxies and haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 651-662	4.3	40
749	The mass dependence of satellite quenching in Milky Way-like haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 698-710	4.3	21
748	The impact of environment and mergers on the H i content of galaxies in hydrodynamic simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 453, 3981-3999	4.3	27
747	Measuring galaxy environments in large-scale photometric surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 660-679	4.3	20

(2015-2015)

746	Nature or nurture? Clues from the distribution of specific star formation rates in SDSS galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 888-903	4.3	20
745	The effect of structure and star formation on the gas content of nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 2479-2489	4.3	74
744	Galaxy Zoo: evidence for diverse star formation histories through the green valley. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 435-453	4.3	91
743	Galaxy pairs in the Sloan Digital Sky Survey âlX. Does gas content alter star formation rate enhancement in galaxy interactions?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 3719-	1 3740	29
742	Star formation in the outer regions of the early-type galaxy NGC 4203. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 103-113	4.3	10
741	RECONSIDERING THE EFFECTS OF LOCAL STAR FORMATION ON TYPE Ia SUPERNOVA COSMOLOGY. <i>Astrophysical Journal</i> , 2015 , 812, 31	4.7	42
740	Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 1482-1495	4.3	10
739	[C II] 158 th EMISSION AS A STAR FORMATION TRACER. Astrophysical Journal, 2015 , 800, 1	4.7	130
738	THE ALFALFA âllmost darksâlcampaign: Pilot Vla Hi observations of five High MASS-TO-LIGHT RATIO SYSTEMS. 2015 , 149, 72		51
737	LEGACY EXTRAGALACTIC UV SURVEY (LEGUS) WITH THEHUBBLE SPACE TELESCOPE. I. SURVEY DESCRIPTION. 2015 , 149, 51		105
736	A STATISTICAL STUDY OF H i GAS IN NEARBY NARROW-LINE AGN-HOSTING GALAXIES. 2015 , 149, 10		4
735	QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY. <i>Astrophysical Journal</i> , 2015 , 800, 24	4.7	78
734	A SIMPLE TECHNIQUE FOR PREDICTING HIGH-REDSHIFT GALAXY EVOLUTION. <i>Astrophysical Journal</i> , 2015 , 799, 32	4.7	100
733	RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION. <i>Astrophysical Journal</i> , 2015 , 798, 115	4.7	52
732	A PARAMETRIC STUDY OF POSSIBLE SOLUTIONS TO THE HIGH-REDSHIFT OVERPRODUCTION OF STARS IN MODELED DWARF GALAXIES. <i>Astrophysical Journal</i> , 2015 , 799, 201	4.7	32
731	Should we believe the results of ultravioletâfhillimetre galaxy spectral energy distribution modelling?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1512-1535	4.3	75
730	Galaxy formation in the Planck cosmology âll. Matching the observed evolution of star formation rates, colours and stellar masses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2663-268	d .3	371
729	An early phase of environmental effects on galaxy properties unveiled by near-infrared spectroscopy of protocluster galaxies at z⊅⊉. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 666-680	4.3	46

728	H-ATLAS/GAMA and HeViCS âldusty early-type galaxies in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 3815-3835	4.3	13
727	Brightest group galaxies and the large-scale environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1483-1493	4.3	13
726	GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIRâ R ADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TOz? 4. <i>Astrophysical Journal</i> , 2015 , 807, 141	4.7	148
725	Using galaxy pairs to probe star formation during major halo mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 1546-1564	4.3	19
724	HIGHz: a survey of the most H i-massive galaxies at z \sim 0.2. Monthly Notices of the Royal Astronomical Society, 2015 , 446, 3526-3544	4.3	55
723	The massâthetallicity relation of Lyman-break analogues and its dependence on galaxy properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1449-1457	4.3	27
722	The initial mass function and star formation law in the outer disc of NGC 2915. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 618-635	4.3	21
721	Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 2900-2921	4.3	88
720	Equilibrium model constraints on baryon cycling across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1184-1200	4.3	54
719	The effects of AGN feedback on present-day galaxy properties in cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 1835-1846	4.3	45
718	Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1140-1162	4.3	48
717	Two conditions for galaxy quenching: compact centres and massive haloes. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 237-251	4.3	97
716	Physical Models of Galaxy Formation in a Cosmological Framework. 2015 , 53, 51-113		667
715	AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES. <i>Astrophysical Journal Letters</i> , 2015 , 801, L29	7.9	198
714	AN OPTICALLY OBSCURED AGN IN A LOW MASS, IRREGULAR DWARF GALAXY: A MULTI-WAVELENGTH ANALYSIS OF J1329+3234. <i>Astrophysical Journal</i> , 2015 , 798, 38	4.7	34
713	THE RELATIONSHIP BETWEEN STELLAR MASS, GAS METALLICITY, AND STAR FORMATION RATE FOR HESELECTED GALAXIES ATZâD.8 FROM THE NewHSURVEY. 2015 , 149, 79		36
712	The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 3548-3563	4.3	159
711	The star formation history of galaxies: the role of galaxy mass, morphology and environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 2749-2763	4.3	42

(2015-2015)

710	DISCOVERY OF LARGE MOLECULAR GAS RESERVOIRS IN POST-STARBURST GALAXIES. Astrophysical Journal, 2015 , 801, 1	4.7	74
709	(ALMOST) DARK HI SOURCES IN THE ALFALFA SURVEY: THE INTRIGUING CASE OF HI1232+20. Astrophysical Journal, 2015 , 801, 96	4.7	49
708	CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT. <i>Astrophysical Journal</i> , 2015 , 802, 20	4.7	140
707	SPECTRUM OF THE SUPERNOVA RELIC NEUTRINO BACKGROUND AND METALLICITY EVOLUTION OF GALAXIES. <i>Astrophysical Journal</i> , 2015 , 804, 75	4.7	30
706	PRIMUS: EFFECTS OF GALAXY ENVIRONMENT ON THE QUIESCENT FRACTION EVOLUTION ATZ Astrophysical Journal, 2015 , 806, 162	4.7	16
705	CALIBRATING UV STAR FORMATION RATES FOR DWARF GALAXIES FROM STARBIRDS. Astrophysical Journal, 2015 , 808, 109	4.7	26
704	MORPHOLOGIES OF ~190,000 GALAXIES AT $z=0$ â $\overline{1}$ 0 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION. <i>Astrophysical Journal, Supplement Series</i> , 2015 , 219, 15	8	214
703	A TURNOVER IN THE GALAXY MAIN SEQUENCE OF STAR FORMATION ATM*~ 1010M?FOR REDSHIFTSzAstrophysical Journal, 2015 , 801, 80	4.7	144
702	ON THE MASSâMETALLICITYâBTAR FORMATION RATE RELATION FOR GALAXIES ATz~2. Astrophysical Journal, 2015 , 808, 25	4.7	53
701	Mapping stellar content to dark matter haloes using galaxy clustering and galaxyâḡalaxy lensing in the SDSS DR7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1161-1191	4.3	117
700	METAL-POOR, STRONGLY STAR-FORMING GALAXIES IN THE DEEP2 SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS, TEMPERATURE-BASED METALLICITY, AND STAR FORMATION RATE. Astrophysical Journal, 2015 , 805, 45	4.7	28
699	STELLAR MASSES AND STAR FORMATION RATES FOR 1 M GALAXIES FROM SDSS+ WISE. Astrophysical Journal, Supplement Series, 2015 , 219, 8	8	160
698	A NEW CATALOG OF TYPE 1 AGNs AND ITS IMPLICATIONS ON THE AGN UNIFIED MODEL. Astrophysical Journal, Supplement Series, 2015 , 219, 1	8	57
697	MERGER-DRIVEN FUELING OF ACTIVE GALACTIC NUCLEI: SIX DUAL AND OF AGNS DISCOVERED WITHCHANDRAANDHUBBLE SPACE TELESCOPEOBSERVATIONS. <i>Astrophysical Journal</i> , 2015 , 806, 219	4.7	109
696	FROM H I TO STARS: H I DEPLETION IN STARBURSTS AND STAR-FORMING GALAXIES IN THE ALFALFA HBURVEY. <i>Astrophysical Journal</i> , 2015 , 808, 66	4.7	20
695	NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES. <i>Astrophysical Journal</i> , 2015 , 807, 134	4.7	22
694	THE MOSDEF SURVEY: OPTICAL ACTIVE GALACTIC NUCLEUS DIAGNOSTICS ATz~ 2.3. <i>Astrophysical Journal</i> , 2015 , 801, 35	4.7	74
693	Formation of disc galaxies in preheated media: a preventative feedback model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 1907-1923	4.3	30

692	Shapley Supercluster Survey: Galaxy evolution from filaments to cluster cores. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 803-822	4.3	18
691	The discrepancy in the mid-infrared continuum and the features of polycyclic aromatic hydrocarbons for Spitzer and Herschel SWIRE-field galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 254-263	4.3	2
690	IROCKS: SPATIALLY RESOLVED KINEMATICS OFz~ 1 STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2016 , 831, 78	4.7	21
689	THE ROLE OF MAJOR GAS-RICH MERGERS ON THE EVOLUTION OF GALAXIES FROM THE BLUE CLOUD TO THE RED SEQUENCE. <i>Astrophysical Journal</i> , 2016 , 826, 30	4.7	7
688	THE KINEMATICS OF C iv IN STAR-FORMING GALAXIES AT z ~ 1.2. Astrophysical Journal, 2016 , 829, 64	4.7	12
687	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW REDSHIFT C iv ABSORBERS. III. THE MASS- AND ENVIRONMENT-DEPENDENT CIRCUMGALACTIC MEDIUM. <i>Astrophysical Journal</i> , 2016 , 832, 124	4.7	60
686	BEING WISE II: REDUCING THE INFLUENCE OF STAR FORMATION HISTORY ON THE MASS-TO-LIGHT RATIO OF QUIESCENT GALAXIES. <i>Astrophysical Journal</i> , 2016 , 832, 198	4.7	15
685	THE METAL ABUNDANCES ACROSS COSMIC TIME (\${ mathcal M }{ mathcal A }{ mathcal C }{ mathcal T }\$) SURVEY. II. EVOLUTION OF THE MASSâMETALLICITY RELATION OVER 8 BILLION YEARS, USING [O iii] ☑363 A BASED METALLICITIES. <i>Astrophysical Journal</i> , 2016 , 828, 67	4.7	47
684	OBSCURED AGNs IN BULGELESS HOSTS DISCOVERED BYWISE: THE CASE STUDY OF SDSS J1224+5555. <i>Astrophysical Journal</i> , 2016 , 827, 58	4.7	6
683	Local starburst galaxies and their descendants. Astronomy and Astrophysics, 2016, 587, A72	5.1	25
682	THE SFRâM*RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 . <i>Astrophysical Journal</i> , 2016 , 817, 118	4.7	184
681	NIBLES âlan HI census of stellar mass selected SDSS galaxies. <i>Astronomy and Astrophysics</i> , 2016 , 596, A60	5.1	5
68o	NIBLES: an H I census of stellar mass selected SDSS galaxies. <i>Astronomy and Astrophysics</i> , 2016 , 595, A1	1 § .1	18
679	Galaxy And Mass Assembly (GAMA): Improved emission lines measurements in four representative samples at 0.07 . <i>Astronomy and Astrophysics</i> , 2016 , 590, A18	5.1	2
678	Star formation activity in Balmer break galaxies atzAstronomy and Astrophysics, 2016 , 587, A136	5.1	
677	THE METAL ABUNDANCES ACROSS COSMIC TIME (\${ mathcal M }{ mathcal A }{ mathcal C }{ mathcal T }\$) SURVEY. I. OPTICAL SPECTROSCOPY IN THE SUBARU DEEP FIELD. <i>Astrophysical Journal, Supplement Series</i> , 2016 , 226, 5	8	17
676	Ultramassive dense early-type galaxies: Velocity dispersions and number density evolution sincez= 1.6. <i>Astronomy and Astrophysics</i> , 2016 , 592, A132	5.1	16
675	The effect of local and large-scale environments on nuclear activity and star formation. <i>Astronomy and Astrophysics</i> , 2016 , 592, A30	5.1	19

674	Dust properties of Lyman-break galaxies atz~ 3. Astronomy and Astrophysics, 2016 , 587, A122	5.1	52
673	SLOW QUENCHING OF STAR FORMATION IN OMEGAWINGS CLUSTERS: GALAXIES IN TRANSITION IN THE LOCAL UNIVERSE. <i>Astrophysical Journal Letters</i> , 2016 , 816, L25	7.9	61
672	Coevolution of metallicity and star formation in galaxies toz? 3.7 â[]. A Fundamental Plane. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2002-2019	4.3	47
671	Star formation and gas accretion in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2092-2108	4.3	12
670	Coevolution of metallicity and star formation in galaxies toz? 3.7 â[II. A theoretical model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2020-2031	4.3	14
669	Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2986-2996	4.3	22
668	Dissipative dark matter and the rotation curves of dwarf galaxies. 2016 , 2016, 011-011		8
667	SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT. <i>Astrophysical Journal</i> , 2016 , 832, 182	4.7	7
666	Star formation along the Hubble sequence. Astronomy and Astrophysics, 2016, 590, A44	5.1	103
665	Molecular and atomic gas along and across the main sequence of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 462, 1749-1756	4.3	129
664	SDSS-IV Manga IFS Galaxy SurveyâBurvey design, execution, and initial data quality. 2016 , 152, 197		194
663	ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES. Astrophysical Journal, 2016, 831, 118	4.7	20
662	CLASH-VLT: Strangulation of cluster galaxies in MACS J0416.1-2403 as seen from their chemical enrichment. <i>Astronomy and Astrophysics</i> , 2016 , 590, A108	5.1	25
661	HIGHMASSâ⊞IGH H i MASS, H i-RICH GALAXIES ATZ~ 0: COMBINED H i AND H2OBSERVATIONS. 2016 , 152, 225		7
660	Outflows and complex stellar kinematics in SDSS star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2016 , 588, A41	5.1	51
659	THE INTRINSIC EDDINGTON RATIO DISTRIBUTION OF ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY. <i>Astrophysical Journal</i> , 2016 , 826, 12	4.7	43
658	SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?. Astrophysical Journal, 2016 , 833, 1	4.7	98
657	THE PROPERTIES OF THE CIRCUMGALACTIC MEDIUM IN RED AND BLUE GALAXIES: RESULTS FROM THE COS-GASS+COS-HALOS SURVEYS. <i>Astrophysical Journal</i> , 2016 , 833, 259	4.7	47

656	The ANU WiFeS SuperNovA Programme (AWSNAP). 2016 , 33,		28
655	An accurate measurement of the baryonic Tully-Fisher relation with heavily gas-dominated ALFALFA galaxies. <i>Astronomy and Astrophysics</i> , 2016 , 593, A39	5.1	24
654	DIFFERENCES IN HALO-SCALE ENVIRONMENTS BETWEEN TYPE 1 AND TYPE 2 AGNs AT LOW REDSHIFT. <i>Astrophysical Journal</i> , 2016 , 832, 111	4.7	17
653	CHARACTERIZING DUST ATTENUATION IN LOCAL STAR-FORMING GALAXIES: UV AND OPTICAL REDDENING. <i>Astrophysical Journal</i> , 2016 , 818, 13	4.7	51
652	THE MOSDEF SURVEY: THE STRONG AGREEMENT BETWEEN H PAND UV-TO-FIR STAR FORMATION RATES FOR z ~ 2 STAR-FORMING GALAXIES. <i>Astrophysical Journal Letters</i> , 2016 , 820, L23	7.9	41
651	THE KENNICUTTâBCHMIDT RELATION IN EXTREMELY METAL-POOR DWARF GALAXIES. Astrophysical Journal, 2016 , 820, 109	4.7	20
650	ON THE INCONSISTENCY BETWEEN COSMIC STELLAR MASS DENSITY AND STAR FORMATION RATE UP TOz~ 8. <i>Astrophysical Journal</i> , 2016 , 820, 114	4.7	11
649	Mapping stellar content to dark matter haloes âll. Halo mass is the main driver of galaxy quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 4360-4383	4.3	86
648	Is main-sequence galaxy star formation controlled by halo mass accretion?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2592-2606	4.3	64
647	PRIMUS + DEEP2: CLUSTERING OF X-RAY, RADIO, AND IR-AGNs ATz~ 0.7. <i>Astrophysical Journal</i> , 2016 , 821, 55	4.7	45
646	The ultraviolet and infrared star formation rates of compact group galaxies: an expanded sample. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 459, 2948-2963	4.3	6
645	Luminosity function of luminous compact star-forming galaxies. 2016 , 361, 1		1
644	Physical properties of galaxies: towards a consistent comparison between hydrodynamical simulations and SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2046-2062	4.3	12
643	mufasa: galaxy formation simulations with meshless hydrodynamics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 3265-3284	4.3	178
642	Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy. 2016 , 54, 597-665		254
641	WHERE STARS FORM: INSIDE-OUT GROWTH AND COHERENT STAR FORMATION FROMHSTHMAPS OF 3200 GALAXIES ACROSS THE MAIN SEQUENCE AT 0.7 . <i>Astrophysical Journal</i> , 2016 , 828, 27	4.7	122
640	MOLECULAR GAS VELOCITY DISPERSIONS IN THE ANDROMEDA GALAXY. 2016 , 151, 34		28
639	RETURN TO [Log-]NORMALCY: RETHINKING QUENCHING, THE STAR FORMATION MAIN SEQUENCE, AND PERHAPS MUCH MORE. <i>Astrophysical Journal</i> , 2016 , 832, 7	4.7	51

638	CONSTRAINTS ON FEEDBACK IN THE LOCAL UNIVERSE: THE RELATION BETWEEN STAR FORMATION AND AGN ACTIVITY IN EARLY-TYPE GALAXIES. <i>Astrophysical Journal</i> , 2016 , 818, 182	4.7	17
637	GALEX âBDSS âMISE LEGACY CATALOG (GSWLC): STAR FORMATION RATES, STELLAR MASSES, AND DUST ATTENUATIONS OF 700,000 LOW-REDSHIFT GALAXIES. <i>Astrophysical Journal, Supplement Series</i> , 2016 , 227, 2	8	152
636	THE CONTRIBUTION OF HOST GALAXIES TO THE INFRARED ENERGY OUTPUT OFz? 5.0 QUASARS. <i>Astrophysical Journal</i> , 2016 , 816, 85	4.7	30
635	THE ALFALFA HSURVEY. I. PROJECT DESCRIPTION AND THE LOCAL STAR FORMATION RATE DENSITY FROM THE FALL SAMPLE. <i>Astrophysical Journal</i> , 2016 , 824, 25	4.7	11
634	The effect of disc inclination on the main sequence of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 2355-2365	4.3	11
633	EVOLUTION OF INTRINSIC SCATTER IN THE SFRâßTELLAR MASS CORRELATION AT 0.5 Astrophysical Journal Letters, 2016 , 820, L1	7.9	53
632	SEARCH FOR EXTREMELY METAL-POOR GALAXIES IN THE SLOAN DIGITAL SKY SURVEY. II. HIGH ELECTRON TEMPERATURE OBJECTS. <i>Astrophysical Journal</i> , 2016 , 819, 110	4.7	42
631	Galaxy assembly, stellar feedback and metal enrichment: the view from the gaea model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1760-1785	4.3	89
630	H I maging survey of Wolfâ R ayet galaxies: morphologies and star formation rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 92-114	4.3	6
629	GAMA/H-ATLAS: a meta-analysis of SFR indicators âlcomprehensive measures of the SFRâlM*relation and cosmic star formation history atz Monthly Notices of the Royal Astronomical Society, 2016 , 461, 458-485	4.3	80
628	GAMA/H-ATLAS: common star formation rate indicators and their dependence on galaxy physical parameters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1898-1916	4.3	11
627	NoSOCS in SDSS âl. Red disc and blue bulge galaxies across different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2559-2579	4.3	10
626	The Tullyâ B isher relation of COLD GASS Galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 3494-3515	4.3	19
625	Diffuse gas in retired galaxies: nebular emission templates and constraints on the sources of ionization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 4505-4516	4.3	23
624	Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 3083-3095	4.3	66
623	SHIELD: COMPARING GAS AND STAR FORMATION IN LOW-MASS GALAXIES. <i>Astrophysical Journal</i> , 2016 , 832, 85	4.7	22
622	Radiative transfer in disc galaxies âl.V. The accuracy of the. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 2912-2921	4.3	4
621	ON THE CLASSIFICATION OF UGC 1382 AS A GIANT LOW SURFACE BRIGHTNESS GALAXY. Astrophysical Journal, 2016 , 826, 210	4.7	17

620	CAUGHT IN THE ACT: GAS AND STELLAR VELOCITY DISPERSIONS IN A FAST QUENCHING COMPACT STAR-FORMING GALAXY ATz~ 1.7. <i>Astrophysical Journal</i> , 2016 , 820, 120	4.7	32
619	On the physical origin of galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2135-2145	4.3	41
618	THE NUCLEAR ACTIVITIES OF NEARBY SO GALAXIES. Astrophysical Journal, 2016 , 831, 63	4.7	9
617	RADIO PROPERTIES OF THE BAT AGNs: THE FIRâ R ADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION. <i>Astrophysical Journal</i> , 2016 , 832, 163	4.7	19
616	The SAMI Galaxy Survey: can we trust aperture corrections to predict star formation?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2826-2838	4.3	27
615	The void galaxy survey: Star formation properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 394-409	4.3	23
614	Spatially resolved dust emission of extremely metal-poor galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 772-780	4.3	3
613	A recalibration of strong-line oxygen abundance diagnostics via the direct method and implications for the high-redshift universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 1529-1547	4.3	39
612	The diversity of growth histories of Milky Way-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 1929-1945	4.3	14
611	The KMOS Redshift One Spectroscopic Survey (KROSS): the Tullyâ E isher relation atz~ 1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 103-129	4.3	35
610	BUDHIES âll: the fate of H i and the quenching of galaxies in evolving environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 1202-1221	4.3	68
609	The New Numerical Galaxy Catalog (IGC): An updated semi-analytic model of galaxy and active galactic nucleus formation with large cosmologicalN-body simulations. 2016 , 68, 25		29
608	INFRARED SPECTRAL ENERGY DISTRIBUTION DECOMPOSITION OFWISE-SELECTED, HYPERLUMINOUS HOT DUST-OBSCURED GALAXIES. <i>Astrophysical Journal</i> , 2016 , 823, 107	4.7	37
607	Galaxies infalling into groups: filaments versus isotropic infall. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 127-135	4.3	32
606	Non-linearity and environmental dependence of the star-forming galaxies main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2839-2851	4.3	43
605	Massâthetallicity relation for local star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2929-2935	4.3	11
604	Simultaneous spectroscopic and photometric analysis of galaxies with starlight: CALIFA+GALEX. <i>Monthly Notices of the Royal Astronomical Society,</i> 2016 , 458, 184-199	4.3	27
603	Resolution-independent modelling of environmental effects in semi-analytic models of galaxy formation that include ram-pressure stripping of both hot and cold gas. <i>Monthly Notices of the Royal Astronomical Society</i> 2016 , 458, 366-378	4.3	31

(2016-2016)

602	mass, and the importance of sample selection. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 2054-2077	4.3	16	
601	Boxy Hæmission profiles in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 3861-3867	4.3	Ο	
600	An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 902-916	4.3	20	
599	Characterizing uniform star formation efficiencies with marginally stable galactic discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 1106-1118	4.3	29	
598	RESOLVE AND ECO: THE HALO MASS-DEPENDENT SHAPE OF GALAXY STELLAR AND BARYONIC MASS FUNCTIONS. <i>Astrophysical Journal</i> , 2016 , 824, 124	4.7	11	
597	The MASSIVE survey âll. Molecular gas and a broken Tullyâllisher relation in the most massive early-type galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 214-226	4.3	35	
596	Radial gas motions in The H i Nearby Galaxy Survey (THINGS). <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2642-2664	4.3	23	
595	An artificial neural network approach for ranking quenching parameters in central galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2086-2106	4.3	51	
594	Local SDSS galaxies in the Herschel Stripe 82 survey: a critical assessment of optically derived star formation rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2703-2721	4.3	22	
593	Quenching star formation: insights from the local main sequence. 2016 , 455, L82-L86		44	
592	Galaxy And Mass Assembly (GAMA): stellar mass growth of spiral galaxies in the cosmic web. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2287-2300	4.3	55	
591	The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 2790-2813	4.3	173	
590	Molecular gas as the driver of fundamental galactic relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 1156-1170	4.3	50	
589	ZFOURGE catalogue of AGN candidates: an enhancement of 160-fh-derived star formation rates in active galaxies toz ☐B.2. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 457, 629-641	4.3	41	
588	The star formation rates of active galactic nuclei host galaxies. 2016 , 458, L34-L38		46	
587	The infrared luminosities of ~3321000 SDSS galaxies predicted from artificial neural networks and theHerschelStripe182 survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 370-385	4.3	23	
586	A weak gravitational lensing recalibration of the scaling relations linking the gas properties of dark haloes to their mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 2301-2320	4.3	27	
585	A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li. 2016 , 351, 62-5		117	

584	REMOVING BIASES IN RESOLVED STELLAR MASS MAPS OF GALAXY DISKS THROUGH SUCCESSIVE BAYESIAN MARGINALIZATION. <i>Astrophysical Journal</i> , 2017 , 835, 93	4.7	10
583	LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search. <i>Astrophysical Journal</i> , 2017 , 837, 120	4.7	49
582	Connection between Stellar Mass Distributions within Galaxies and Quenching Sincez= 2. <i>Astrophysical Journal</i> , 2017 , 837, 2	4.7	39
581	Constraining the Stellar Populations and Star Formation Histories of Blue Compact Dwarf Galaxies with SED Fits. <i>Astrophysical Journal</i> , 2017 , 836, 128	4.7	8
580	Characterizing Dust Attenuation in Local Star-forming Galaxies: Near-infrared Reddening and Normalization. <i>Astrophysical Journal</i> , 2017 , 840, 109	4.7	25
579	Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe. <i>Astrophysical Journal</i> , 2017 , 841, 6	4.7	19
578	Far-infrared Properties of Infrared-bright Dust-obscured Galaxies Selected withIRASandAKARIFar-infrared All-sky Survey. <i>Astrophysical Journal</i> , 2017 , 840, 21	4.7	10
577	Structural and Star-forming Relations sincez~ 3: Connecting Compact Star-forming and Quiescent Galaxies. <i>Astrophysical Journal</i> , 2017 , 840, 47	4.7	131
576	Nebular Continuum and Line Emission in Stellar Population Synthesis Models. <i>Astrophysical Journal</i> , 2017 , 840, 44	4.7	119
575	The SAMI Galaxy Survey: asymmetry in gas kinematics and its links to stellar mass and star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 123-148	4.3	19
574	New fully empirical calibrations of strong-line metallicity indicators in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 1384-1400	4.3	115
573	The extended epoch of galaxy formation: Age dating of ~3600 galaxies with 2 Astronomy and Astrophysics, 2017 , 602, A35	5.1	21
572	Aperture-free star formation rate of SDSS star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 599, A71	5.1	28
571	C iii] Emission in Star-forming Galaxies atz~ 1. <i>Astrophysical Journal</i> , 2017 , 838, 63	4.7	18
57°	Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe. <i>Astrophysical Journal</i> , 2017 , 837, 170	4.7	176
569	The MOSDEF Survey: Metallicity Dependence of PAH Emission at High Redshift and Implications for 24th Inferred IR Luminosities and Star Formation Rates atz~ 2. <i>Astrophysical Journal</i> , 2017 , 837, 157	4.7	29
568	UVUDF: UV Luminosity Functions at the Cosmic High Noon. Astrophysical Journal, 2017, 838, 29	4.7	22
567	Sacrificing information for the greater good: how to select photometric bands for optimal accuracy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 2577-2596	4.3	12

(2017-2017)

566	Equilibrium model prediction for the scatter in the star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 2766-2776	4.3	28
565	Pattern recognition in the ALFALFA.70 and Sloan Digital Sky Surveys: a catalogue of ~500 000 H i gas fraction estimates based on artificial neural networks. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 3796-3811	4.3	14
564	Circumstellar dust, PAHs and stellar populations in early-type galaxies: insights fromGALEXandWISE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 3920-3936	4.3	9
563	Delayed triggering of radio active galactic nuclei in gas-rich minor mergers in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 4706-4720	4.3	29
562	Do the stellar populations of the brightest two group galaxies depend on the magnitude gap?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 4593-4610	4.3	17
561	Virgo Redux: The Masses and Stellar Content of Nuclei in Early-type Galaxies from Multiband Photometry and Spectroscopy. <i>Astrophysical Journal</i> , 2017 , 849, 55	4.7	32
560	Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway. <i>Astrophysical Journal</i> , 2017 , 845, 145	4.7	19
559	Galaxy Zoo and sparcfire: constraints on spiral arm formation mechanisms from spiral arm number and pitch angles. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2263-2279	4.3	29
558	Star formation of far-IR AGN and non-AGN galaxies in the green valley: possible implication of AGN positive feedback. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 3226-3233	4.3	25
557	The Grism Lens-amplified Survey from Space (Glass). IX. The Dual Origin of Low-mass Cluster Galaxies as Revealed by New Structural Analyses. <i>Astrophysical Journal</i> , 2017 , 835, 254	4.7	23
556	Interactions of the Galactic bar and spiral arm in NGC 3627. Astronomy and Astrophysics, 2017, 597, A85	5.1	25
555	Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate. <i>Astrophysical Journal</i> , 2017 , 847, 18	4.7	42
554	The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead. <i>Astrophysical Journal</i> , 2017 , 844, 45	4.7	25
553	Predicting HCN, HCO+, multi-transition CO, and dust emission of star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 602, A51	5.1	12
552	EIG âll. Intriguing characteristics of the most extremely isolated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 347-382	4.3	3
551	A galaxyâfialo model for multiple cosmological tracers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 12-27	4.3	2
550	Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies. <i>Astrophysical Journal</i> , 2017 , 844, 170	4.7	41
549	The metallicity and star formation activity of long gamma-ray burst hosts for z\(\textit{D}\) Monthly Notices of the Royal Astronomical Society, 2017 , 469, 4921-4932	4.3	9

548	The redshift-selected sample of long gamma-ray burst host galaxies: The overall metallicity distribution at $z\square$ 2017 , 69,		10
547	Constraining the galaxyâfialo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 651-68	7 ^{4·3}	120
546	Understanding the scatter in the spatially resolved star formation main sequence of local massive spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 2806-2820	4.3	32
545	COS-burst: Observations of the Impact of Starburst-driven Winds on the Properties of the Circum-galactic Medium. <i>Astrophysical Journal</i> , 2017 , 846, 151	4.7	52
544	Quenching or Bursting: Star Formation Accelerationâl New Methodology for Tracing Galaxy Evolution. <i>Astrophysical Journal</i> , 2017 , 842, 20	4.7	6
543	On the interdependence of galaxy morphology, star formation and environment in massive galaxies in the nearby Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2687-270	2 ^{4.3}	30
542	A test of SDSS aperture corrections using integral-field spectroscopy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 639-650	4.3	3
541	Galaxy And Mass Assembly (GAMA): Gas Fueling of Spiral Galaxies in the Local Universe. I. The Effect of the Group Environment on Star Formation in Spiral Galaxies. 2017 , 153, 111		24
540	The distribution of local star formation activity as a function of galaxy stellar mass, environment and morphology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 4910-4917	4.3	3
539	Environmental impacts on dust temperature of star-forming galaxies in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 2517-2528	4.3	7
538	Cold gas stripping in satellite galaxies: from pairs to clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 1275-1289	4.3	133
537	SDSS-IV MaNGA althe spatially resolved transition from star formation to quiescence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 2570-2589	4.3	65
536	Herschelfar-infrared photometry of the Swift Burst Alert Telescope active galactic nuclei sample of the local universe â[III. Global star-forming properties and the lack of a connection to nuclear activity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 3161-3183	4.3	36
535	Active galactic nuclei from He ii: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 2879-2887	4.3	9
534	The differing relationships between size, mass, metallicity and core velocity dispersion of central and satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 333-345	4.3	12
533	Formation and settling of a disc galaxy during the last 8 billion years in a cosmological simulation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 467, 2664-2672	4.3	17
532	Evolution of Galactic Outflows at \$zsim 0mbox{}2\$ Revealed with SDSS, DEEP2, and Keck Spectra. <i>Astrophysical Journal</i> , 2017 , 850, 51	4.7	24
531	The Stripe 82 Massive Galaxy Project. III. A Lack of Growth among Massive Galaxies. <i>Astrophysical Journal</i> , 2017 , 851, 34	4.7	14

(2017-2017)

530	The nature of massive transition galaxies in CANDELS, GAMA and cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2054-2084	4.3	49	
529	The unorthodox evolution of major merger remnants into star-forming spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 3946-3958	4.3	45	
528	Simulating the dust content of galaxies: successes and failures. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1505-1521	4.3	74	
527	Determining the Halo Mass Scale Where Galaxies Lose Their Gas. <i>Astrophysical Journal</i> , 2017 , 850, 181	4.7	14	
526	The Star Formation Main Sequence in theHubble Space TelescopeFrontier Fields. <i>Astrophysical Journal</i> , 2017 , 847, 76	4.7	95	
525	The frequency and stellar-mass dependence of boxy/peanut-shaped bulges in barred galaxies. <i>Monthly Notices of the Royal Astronomical Society,</i> 2017 , 468, 2058-2080	4.3	40	
524	Characterizing Dust Attenuation in Local Star-forming Galaxies: Inclination Effects and the 2175 A Feature. <i>Astrophysical Journal</i> , 2017 , 851, 90	4.7	27	
523	SDSS-IV MaNGA-resolved Star Formation and Molecular Gas Properties of Green Valley Galaxies: A First Look with ALMA and MaNGA. <i>Astrophysical Journal</i> , 2017 , 851, 18	4.7	39	
522	NoSOCS in SDSS âlVI. The environmental dependence of AGN in clusters and field in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 409-418	4.3	18	
521	The Galaxy End Sequence. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3125-3133	4.3	44	
520	Exploring the progenitors of brightest cluster galaxies atz []-12. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 1393-1414	4.3	10	
519	H i absorption towards low-luminosity radio-loud active galactic nuclei of different accretion modes andWISEcolours. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 997-1007	4.3	8	
518	The structural and size evolution of star-forming galaxies over the last 11 Gyr. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 2717-2733	4.3	24	
517	Galaxy Zoo: star formation versus spiral arm number. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1850-1863	4.3	14	
516	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2017, 605, A4	5.1	32	
515	Radial distribution of dust, stars, gas, and star-formation rate in DustPedia face-on galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 605, A18	5.1	47	
514	Near-ultraviolet signatures of environment-driven galaxy quenching in Sloan Digital Sky Survey groups. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 480-490	4.3	11	
513	The fine line between normal and starburst galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 2124-2142	4.3	14	

512	Bulges and discs in the local Universe. Linking the galaxy structure to star formation activity. <i>Astronomy and Astrophysics</i> , 2017 , 597, A97	5.1	29
511	The new semi-analytic code GaliCS 2.0 âlreproducing the galaxy stellar mass function and the Tullyâlisher relation simultaneously. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 1401	1- 1 427	31
510	X-rays across the galaxy population â[]. Tracing the main sequence of star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3390-3415	4.3	62
509	Mass content of UGCI6446 and UGCI7524 through H i rotation curves: deriving the stellar discs from stellar population synthesis models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 180-1	19 5 3	3
508	THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES ATz~ 1.6. IV. EXCITATION STATE AND CHEMICAL ENRICHMENT OF THE INTERSTELLAR MEDIUM. <i>Astrophysical Journal</i> , 2017 , 835, 88	4.7	76
507	On the evidence for large-scale galactic conformity in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 1192-1207	4.3	28
506	H2-based star formation laws in hierarchical models of galaxy formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 469, 968-993	4.3	42
505	The dependence of the massametallicity relation on large-scale environment. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 468, 1881-1892	4.3	23
504	The effect of cosmic web filaments on the properties of groups and their central galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 597, A86	5.1	35
503	Evolution of N/O abundance ratios and ionization parameters from $z\sim0$ to 2 investigated by the direct temperature method. 2017 , 69,		36
502	Dissipative dark matter halos: The steady state solution. 2018 , 97,		5
501	Evidence for a mass-dependent AGN Eddington ratio distribution via the flat relationship between SFR and AGN luminosity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 436-450	4.3	12
500	Stellar Population Synthesis of Star-forming Clumps in Galaxy Pairs and Non-interacting Spiral Galaxies. <i>Astrophysical Journal, Supplement Series</i> , 2018 , 234, 35	8	5
499	Green valley galaxies as a transition population in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 5617-5629	4.3	18
498	Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes. <i>Astrophysical Journal</i> , 2018 , 857, 17	4.7	18
			/
497	Star formation quenching in green valley galaxies at 0.5 ? z ? 1.0 and constraints with galaxy morphologies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1346-1358	4.3	17
497 496		4.3	17 43

A 16 deg2 survey of emission-line galaxies at z 2018, 70,		9	
Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties. <i>Astrophysical Journal</i> , 2018 , 854, 62	4.7	31	
Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097. 2018 , 2, 83-89		13	
Detecting Radio AGN Signatures in Red Geysers. <i>Astrophysical Journal</i> , 2018 , 869, 117	4.7	14	
ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1 Astrophysical Journal, 2018 , 863, 131	4.7	18	
Molecular Gas Filaments and Star-forming Knots Beneath an X-Ray Cavity in RXC J1504â 0 248. Astrophysical Journal, 2018 , 863, 193	4.7	18	
Stellar and Nebular Diagnostics in the Ultraviolet for Star-forming Galaxies. <i>Astrophysical Journal</i> , 2018 , 863, 14	4.7	37	
The Effect of Galaxy Interactions on Molecular Gas Properties. <i>Astrophysical Journal</i> , 2018 , 868, 132	4.7	28	
The VLA-COSMOS 3 GHz Large Project: Star formation properties and radio luminosity functions of AGN with moderate-to-high radiative luminosities out to z~ 6. <i>Astronomy and Astrophysics</i> , 2018 , 620, A192	5.1	15	
The Grism Lens-amplified Survey from Space (GLASS). XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at $z > 1$. 2018 , 156, 29		6	
The less significant role of large-scale environment than optical AGN in nearby, isolated elliptical galaxies. <i>Astronomy and Astrophysics</i> , 2018 , 620, A117	5.1	3	
Evolution of spatially resolved star formation main sequence and surface density profiles in massive disc galaxies at 0?z?1: insideâBut stellar mass buildup and quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 5083-5100	4.3	23	
Supercluster A2142 and collapse in action: infalling and merging groups and galaxy transformations. <i>Astronomy and Astrophysics</i> , 2018 , 620, A149	5.1	10	
The XXL Survey. Astronomy and Astrophysics, 2018 , 620, A7	5.1	10	
The MUSE Hubble Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 619, A27	5.1	38	
The dependence of mass and environment on the secular processes of AGNs in terms of morphology, colour, and specific star-formation rate. <i>Astronomy and Astrophysics</i> , 2018 , 620, A113	5.1	11	
Cosmic evolution of the spatially resolved star formation rate and stellar mass of the CALIFA survey. <i>Astronomy and Astrophysics</i> , 2018 , 615, A27	5.1	40	
Small- and large-scale galactic conformity in SDSS DR7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 2031-2045	4.3	15	
	Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties. <i>Astrophysical Journal</i> , 2018 , 854, 62 Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097. 2018 , 2, 83-89 Detecting Radio AGN Signatures in Red Geysers. <i>Astrophysical Journal</i> , 2018 , 869, 117 ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1 Astrophysical Journal, 2018 , 863, 131 Molecular Gas Filaments and Star-forming Knots Beneath an X-Ray Cavity in RXC J150480248. <i>Astrophysical Journal</i> , 2018 , 863, 193 Stellar and Nebular Diagnostics in the Ultraviolet for Star-forming Galaxies. <i>Astrophysical Journal</i> , 2018 , 863, 14 The Effect of Galaxy Interactions on Molecular Gas Properties. <i>Astrophysical Journal</i> , 2018 , 868, 132 The VLA-COSMOS 3 GHz Large Project: Star formation properties and radio luminosity functions of AGN with moderate-to-high radiative luminosities out to z – 6. <i>Astronomy and Astrophysics</i> , 2018 , 620, A192 The Grism Lens-amplified Survey from Space (GLASS). XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at z > 1. 2018, 156, 29 The less significant role of large-scale environment than optical AGN in nearby, isolated elliptical galaxies. <i>Astronomy and Astrophysics</i> , 2018 , 620, A117 Evolution of spatially resolved star formation main sequence and surface density profiles in massive disc galaxies at 0 7 2 7 1: inside-80ut stellar mass buildup and quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 620, A317 The MUSE Hubble Ultra Deep Field Survey. <i>Astronomy and Astrophysics</i> , 2018 , 620, A149 The XXL Survey. <i>Astronomy and Astrophysics</i> , 2018 , 620, A7 The dependence of mass and environment on the secular processes of AGNs in terms of morphology, colour, and specific star-formation rate. <i>Astronomy and Astrophysics</i> , 2018 , 620, A113 Cosmic evolution of the spatially resolved star formation rate and stellar m	Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties. Astrophysical Journal, 2018, 854, 62 Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097. 2018, 2, 83-89 Detecting Radio AGN Signatures in Red Geysers. Astrophysical Journal, 2018, 869, 117 ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1 Astrophysical Journal, 2018, 863, 131 Molecular Gas Filaments and Star-forming Knots Beneath an X-Ray Cavity in RXC J1504á0248. Astrophysical Journal, 2018, 863, 193 Stellar and Nebular Diagnostics in the Ultraviolet for Star-forming Galaxies. Astrophysical Journal, 2018, 863, 14 The Effect of Galaxy Interactions on Molecular Gas Properties. Astrophysical Journal, 2018, 868, 132 47 The VLA-COSMOS 3 GHz Large Project: Star formation properties and radio luminosity functions of AGN with moderate-to-high radiative luminosities out to z~ 6. Astronomy and Astrophysics, 2018, 620, A122 The Grism Lens-amplified Survey from Space (GLASS). XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at z > 1. 2018, 156, 29 The less significant role of large-scale environment than optical AGN in nearby, isolated elliptical galaxies. Astronomy and Astrophysics, 2018, 620, A117 Evolution of spatially resolved star formation main sequence and surface density profiles in massive disc galaxies at 0 z 2 1: inside3blu stellar mass buildup and quenching. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5033-5100 Supercluster A2142 and collapse in action: infalling and merging groups and galaxy transformations. Astronomy and Astrophysics, 2018, 620, A149 The XXL Survey. Astronomy and Astrophysics, 2018, 620, A149 The MUSE Hubble Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 620, A113 Cosmic evolution of the spatially resolved star formation rate and stellar mass of the CALIFA survey. Astronomy and Astrophysics, 2018, 615, A27 Small- an	Hot Dust in Panchromatic SED Fitting: Identification of Active Galactic Nuclei and Improved Galaxy Properties. Astrophysical Journal, 2018, 854, 62 Discovery of massive star formation quenching by non-thermal effects in the centre of NGC 1097. 2018, 2, 83-89 Detecting Radio AGN Signatures in Red Geysers. Astrophysical Journal, 2018, 869, 117 4.7 ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1 4.7 18 Astrophysical Journal, 2018, 863, 131 Molecular Gas Filaments and Star-forming Knots Beneath an X-Ray Cavity in RXC J150480248. 457 18 Astrophysical Journal, 2018, 863, 193 Stellar and Nebular Diagnostics in the Ultraviolet for Star-forming Galaxies. Astrophysical Journal, 2018, 863, 14 The Effect of Galaxy Interactions on Molecular Gas Properties. Astrophysical Journal, 2018, 868, 132 4.7 28 The VLA-COSMOS 3 GHz Large Project: Star formation properties and radio luminosity functions of AGN with moderate-to-high radiative luminosities out to 2~6. Astronomy and Astrophysics, 2018, 620, A192 The Cirism Lens-amplified Survey from Space (GLASS), XII. Spatially Resolved Galaxy Star Formation Histories and True Evolutionary Paths at z > 1. 2018, 156, 29 The Less significant role of large-scale environment than optical AGN in nearby, isolated elliptical galaxies. Astronomy and Astrophysics, 2018, 620, A117 Evolution of spatially resolved star formation main sequence and surface density profiles in massive disc galaxies at 0 7 2.7 1: insideäbut stellar mass buildup and quenching. Monthly Notices of the Royal Astronomy and Astrophysics, 2018, 620, A117 Evolution of spatially resolved star formation main sequence and surface density profiles in massive disc galaxies at 0 7.2.7 1: insideäbut stellar mass buildup and quenching. Monthly Notices of the Royal Astronomy and Astrophysics, 2018, 620, A149 The XXL Survey. Astronomy and Astrophysics, 2018, 620, A7 The dependence of mass and environment on the secular processes of AGNs in terms of morphology, colour, and spec

476	Tracing Outflowing Metals in Simulations of Dwarf and Spiral Galaxies. <i>Astrophysical Journal</i> , 2018 , 867, 142	4.7	31
475	Relationships between Hi Gas Mass, Stellar Mass, and the Star Formation Rate of HICAT+WISE (Hi-WISE) Galaxies. <i>Astrophysical Journal</i> , 2018 , 864, 40	4.7	26
474	DirtyGrid I: 3D Dust Radiative Transfer Modeling of Spectral Energy Distributions of Dusty Stellar Populations. <i>Astrophysical Journal, Supplement Series</i> , 2018 , 236, 32	8	6
473	The SFRâM * Correlation Extends to Low Mass at High Redshift. <i>Astrophysical Journal</i> , 2018 , 866, 120	4.7	19
472	Enhanced atomic gas fractions in recently merged galaxies: quenching is not a result of post-merger gas exhaustion. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3447-3466	4.3	46
471	Infalling groups and galaxy transformations in the cluster A2142. <i>Astronomy and Astrophysics</i> , 2018 , 610, A82	5.1	15
470	Metal-enriched galactic outflows shape the massathetallicity relationship. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 1690-1706	4.3	46
469	The fate of the Antennae galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3934-3	945.8	17
468	Why Are Some Gamma-Ray Bursts Hosted by Oxygen-rich Galaxies?. <i>Astrophysical Journal</i> , 2018 , 863, 95	4.7	6
467	A Theory for the Variation of Dust Attenuation Laws in Galaxies. <i>Astrophysical Journal</i> , 2018 , 869, 70	4.7	61
466	The MOSDEF Survey: Significant Evolution in the Rest-frame Optical Emission Line Equivalent Widths of Star-forming Galaxies at $z=1.4$ âB.8. <i>Astrophysical Journal</i> , 2018 , 869, 92	4.7	42
465	A Redshift-independent Efficiency Model: Star Formation and Stellar Masses in Dark Matter Halos at z ? 4. <i>Astrophysical Journal</i> , 2018 , 868, 92	4.7	88
464	MassâMetallicity Relation and Fundamental Metallicity Relation of Metal-poor Star-forming Galaxies at 0.6 Astrophysical Journal, 2018 , 869, 15	4.7	9
463	What Determines the Local Metallicity of Galaxies: Global Stellar Mass, Local Stellar Mass Surface Density, or Star Formation Rate?. <i>Astrophysical Journal</i> , 2018 , 868, 89	4.7	8
462	Stellar populations of HII galaxies. Astronomy and Astrophysics, 2018, 615, A55	5.1	7
461	Group quenching and galactic conformity at low redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 2684-2704	4.3	12
460	The clustering of H⊞ [O iii] and [O ii] emitters since z⊡: dependencies with line luminosity and stellar mass. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 2999-3015	4.3	11
459	Connecting Compact Star-forming and Extended Star-forming Galaxies at Low Redshift: Implications for Galaxy Compaction and Quenching. <i>Astrophysical Journal</i> , 2018 , 865, 49	4.7	19

(2018-2018)

458	The origin of the diverse morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 4133-4157	4.3	62
457	SDSS IV MaNGA âlsSFR profiles and the slow quenching of discs in green valley galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 3014-3029	4.3	72
456	Red Misfits in the Sloan Digital Sky Survey: properties of star-forming red galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 5284-5302	4.3	13
455	Field spheroid-dominated galaxies in a ECDM Universe. Astronomy and Astrophysics, 2018, 614, A85	5.1	5
454	Molecular gas masses of gamma-ray burst host galaxies. <i>Astronomy and Astrophysics</i> , 2018 , 617, A143	5.1	16
453	Similar Scaling Relations for the Gas Content of Galaxies Across Environments to $z \sim 3.5$. Astrophysical Journal, 2018 , 860, 111	4.7	21
452	Probing Star Formation in Galaxies at z âll via a Giant Metrewave Radio Telescope Stacking Analysis. <i>Astrophysical Journal</i> , 2018 , 865, 39	4.7	8
451	The MOSDEF Survey: A Stellar MassâBFRâMetallicity Relation Exists at z ~ 2.3. <i>Astrophysical Journal</i> , 2018 , 858, 99	4.7	72
450	JINGLE, a JCMT legacy survey of dust and gas for galaxy evolution studies âll. Survey overview and first results. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 3497-3519	4.3	18
449	emerge âlan empirical model for the formation of galaxies since zland 0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 1822-1852	4.3	177
448	UVIT view of ram-pressure stripping in action: star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 4126-41	3 ⁴ 5 ³	28
447	Near-identical star formation rate densities from Hand FUVat redshift zero. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 119-133	4.3	7
446	The COS-AGN survey: revealing the nature of circumgalactic gas around hosts of active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3890-3934	4.3	14
445	Cross-calibration of CO- versus dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 1442-1458	4.3	15
444	Demographics of Star-forming Galaxies since z \sim 2.5. I. The UVJ Diagram in CANDELS. <i>Astrophysical Journal</i> , 2018 , 858, 100	4.7	58
443	LLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 5658-5679	4.3	39
442	The role of atomic hydrogen in regulating the scatter of the massathetallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 473, 1868-1878	4.3	29
441	The resolved star formation history of M51a through successive Bayesian marginalization. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 1862-1872	4.3	3

440	Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 2039-2054	4.3	96
439	Constraining the CO intensity mapping power spectrum at intermediate redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 1477-1484	4.3	28
438	Dissipative dark matter halos: The steady state solution. II 2018 , 97,		3
437	Lurking systematics in predicting galaxy cold gas masses using dust luminosities and star formation rates. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 1390-1404	4.3	12
436	Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4424-4433	4.3	5
435	The natural emergence of the correlation between H2 and star formation rate surface densities in galaxy simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 2884-2903	4.3	26
434	Galaxy evolution in the cluster Abell 85: new insights from the dwarf population. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 475, 4544-4556	4.3	5
433	Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 12-26	4.3	39
432	Metal Abundances of KISS Galaxies. VI. New Metallicity Relations for the KISS Sample of Star-forming Galaxies. 2018 , 155, 82		21
431	Environmental Dependence of Type Ia Supernova Luminosities from a Sample without a Localât lobal Difference in Host Star Formation. <i>Astrophysical Journal</i> , 2018 , 854, 24	4.7	23
430	Semi-analytic galaxies âll. Synthesis of environmental and star-forming regulation mechanisms. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 2-24	4.3	62
429	Stellar Populations of over 1000z~ 0.8 Galaxies from LEGA-C: Ages and Star Formation Histories from Dn4000 and H\(\textit{\texts}\) Astrophysical Journal, 2018 , 855, 85	4.7	34
428	The gas-phase metallicities of star-forming galaxies in aperture-matched SDSS samples follow potential rather than mass or average surface density. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 1807-1821	4.3	12
427	Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs. <i>Astrophysical Journal</i> , 2018 , 859, 11	4.7	167
426	Clocking the Evolution of Post-starburst Galaxies: Methods and First Results. <i>Astrophysical Journal</i> , 2018 , 862, 2	4.7	26
425	Dust Attenuation, Bulge Formation, and Inside-out Quenching of Star Formation in Star-forming Main Sequence Galaxies atz~ 2. <i>Astrophysical Journal</i> , 2018 , 859, 56	4.7	60
424	A catalogue of faint local radio AGN and the properties of their host galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 807-816	4.3	6
423	A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies. II. The SDSS DR7 Sample. <i>Astrophysical Journal, Supplement Series</i> , 2018 , 235, 40	8	23

422	Stellar Mass Profiles of Quiescent Galaxies in Different Environments at $z \sim 0$. Astrophysical Journal, 2018 , 861, 101	4.7	7	
421	A Galaxy Redshift Survey Near HST /COS AGN Sight Lines. <i>Astrophysical Journal, Supplement Series</i> , 2018 , 237, 11	8	13	
420	A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view. 2018 , 363, 1		5	
419	Galaxies in the act of quenching star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3335-3355	4.3	3	
418	The Local Cluster Survey. I. Evidence of Outside-in Quenching in Dense Environments. <i>Astrophysical Journal</i> , 2018 , 862, 149	4.7	12	
417	Triggering active galactic nuclei in galaxy clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 3615-3628	4.3	18	
416	Starburst to Quiescent fromHST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies atz~ 4.5. <i>Astrophysical Journal</i> , 2018 , 856, 121	4.7	42	
415	The discrimination between star-forming and AGN galaxies in the absence of H⊞and [N ii]: a machine -learning approach. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 3177-3188	4.3	4	
414	Prevalence of neutral gas in centres of merging galaxiesâll: nuclear H i and multiwavelength properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 1099-1109	4.3	10	
413	Linking gas and galaxies at high redshift: MUSE surveys the environments of six damped Ly∃ systems at z âB. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 5070-5096	4.3	18	
412	A general approach to quenching and galactic conformity. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 234-252	4.3	3	
411	SDSS-IV MaNGA: effects of morphology in the global and local star formation main sequences. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 3929-3948	4.3	39	
410	Texas Spectroscopic Search for LyÆmission at the End of Reionization. II. The Deepest Near-infrared Spectroscopic Observation at z? 7. <i>Astrophysical Journal</i> , 2019 , 877, 146	4.7	10	
409	Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields. <i>Astrophysical Journal</i> , 2019 , 880, 7	4.7	25	
408	Star formation in CALIFA early-type galaxies: a matter of discs. 2019 , 488, L80-L84		18	
407	GASP âโXX. From the loose spatially resolved to the tight global SFRâthass relation in local spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 1597-1617	4.3	19	
406	The dependence of AGN activity on environment in SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 89-98	4.3	16	
405	GASP XVIII: star formation quenching due to AGN feedback in the central region of a jellyfish galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 3102-3111	4.3	19	

404	GASP âlXVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 4580-4591	4.3	31
403	The local properties of supernova explosions and their host galaxies. 2019 , 19, 121		3
402	Metallicity of stars formed throughout the cosmic history based on the observational properties of star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 5300-5326	4.3	34
401	Bivariate Luminosity Function of Galaxy Pairs. Astrophysical Journal, 2019 , 880, 114	4.7	10
400	The Mass Dependence of Structure, Star Formation Rate, and Mass Assembly Mode at 0.5 Astrophysical Journal, 2019 , 884, 172	4.7	7
399	Massive spheroids can form in single minor mergers. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 4679-4689	4.3	4
398	The main sequence of star-forming galaxies â[]I. A non-evolving slope at the high-mass end. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5285-5299	4.3	13
397	Spatially resolved signature of quenching in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 2347-2366	4.3	4
396	Resolved and Integrated Stellar Masses in the SDSS-IV/MaNGA Survey. II. Applications of PCA-based Stellar Mass Estimates. <i>Astrophysical Journal</i> , 2019 , 883, 83	4.7	9
395	Dust properties and star formation of approximately a thousand local galaxies. <i>Astronomy and Astrophysics</i> , 2019 , 631, A38	5.1	10
394	J-PLUS: Impact of bars on quenching timescales in nearby green valley disc galaxies. <i>Astronomy and Astrophysics</i> , 2019 , 630, A88	5.1	3
393	On the Elevation and Suppression of Star Formation within Galaxies. <i>Astrophysical Journal</i> , 2019 , 877, 132	4.7	25
392	The Fundamental Relation between Halo Mass and Galaxy Group Properties. <i>Astrophysical Journal</i> , 2019 , 881, 74	4.7	8
391	Nearly all Massive Quiescent Disk Galaxies Have a Surprisingly Large Atomic Gas Reservoir. <i>Astrophysical Journal Letters</i> , 2019 , 884, L52	7.9	25
390	The complete local volume groups sample âllII. Characteristics of group central radio galaxies in the Local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 2488-2504	4.3	8
389	The AGN fuelling/feedback cycle in nearby radio galaxies âll. Kinematics of the molecular gas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 3739-3757	4.3	9
388	Recalibrating the cosmic star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5359-5365	4.3	18
387	Effect of galaxy mergers on star-formation rates. <i>Astronomy and Astrophysics</i> , 2019 , 631, A51	5.1	41

386	xGASS: The impact of photometric bulges on the scatter of HI scaling relations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 4060-4079	4.3	16
385	AGN-Driven Outflows in Dwarf Galaxies. <i>Astrophysical Journal</i> , 2019 , 884, 54	4.7	31
384	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). II. Physical Properties Derived from the SED Fitting with Optical, Infrared, and Radio Data. <i>Astrophysical Journal, Supplement Series</i> , 2019 , 243, 15	8	13
383	A z = 0 Multiwavelength Galaxy Synthesis. I. A WISE and GALEX Atlas of Local Galaxies. <i>Astrophysical Journal, Supplement Series</i> , 2019 , 244, 24	8	66
382	A young galaxy cluster in the old Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 2014-2029	4.3	1
381	Searching for signs of jet-driven negative feedback in the nearby radio galaxy UGC 05771. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 489, 4944-4961	4.3	7
380	Prediction of galaxy halo masses in SDSS DR7 via a machine learning approach. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 2367-2379	4.3	15
379	Narrow-band H I maging of nearby Wolfâ R ayet galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3448-3453	4.3	1
378	Bursting and quenching in satellite galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 5375-5389	4.3	3
377	Redshift measurement through star formation. <i>Astronomy and Astrophysics</i> , 2019 , 629, A7	5.1	
(
376	Significance of bar quenching in the global quenching of star formation. <i>Astronomy and Astrophysics</i> , 2019 , 628, A24	5.1	5
376		5.1 4·3	56
	, 2019 , 628, A24 Compact Galaxies at intermediate redshifts quench faster than normal-sized Galaxies. <i>Monthly</i>		
375	Compact Galaxies at intermediate redshifts quench faster than normal-sized Galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3022-3035 H2 chemistry in galaxy simulations: an improved supernova feedback model. <i>Monthly Notices of the</i>	4.3	6
375 374	Compact Galaxies at intermediate redshifts quench faster than normal-sized Galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3022-3035 H2 chemistry in galaxy simulations: an improved supernova feedback model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 1687-1701 Crossing the Line: Active Galactic Nuclei in the Star-forming Region of the BPT Diagram.	4.3	8
375 374 373	Compact Galaxies at intermediate redshifts quench faster than normal-sized Galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3022-3035 H2 chemistry in galaxy simulations: an improved supernova feedback model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 1687-1701 Crossing the Line: Active Galactic Nuclei in the Star-forming Region of the BPT Diagram. <i>Astrophysical Journal</i> , 2019 , 876, 12 UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from zlaps.	4·3 4·3 4·7	6 8 18
375 374 373 372	Compact Galaxies at intermediate redshifts quench faster than normal-sized Galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3022-3035 H2 chemistry in galaxy simulations: an improved supernova feedback model. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 1687-1701 Crossing the Line: Active Galactic Nuclei in the Star-forming Region of the BPT Diagram. <i>Astrophysical Journal</i> , 2019 , 876, 12 UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from zlabalio. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 488, 3143-3194 Discovering AGN-driven winds through their infrared emission âlli. Mass outflow rate and	4·3 4·3 4·7	6 8 18 346

368	Kinematics of Circumgalactic Gas: Feeding Galaxies and Feedback. <i>Astrophysical Journal</i> , 2019 , 878, 84	4.7	52
367	An Older, More Quiescent Universe from Panchromatic SED Fitting of the 3D-HST Survey. <i>Astrophysical Journal</i> , 2019 , 877, 140	4.7	84
366	A Characteristic Mass Scale in the MassâMetallicity Relation of Galaxies. <i>Astrophysical Journal</i> , 2019 , 877, 6	4.7	21
365	Star formation rates for photometric samples of galaxies using machine learning methods. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1377-1391	4.3	13
364	Disentangling the physical parameters of gaseous nebulae and galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1053-1069	4.3	9
363	Two growing modes and the morphologyâquiescence relation in isolated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 1927-1945	4.3	23
362	A universal relation of dust obscuration across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 5733-5751	4.3	7
361	Feedback by supermassive black holes in galaxy evolution: impacts of accretion and outflows on the star formation rate. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 1509-1522	4.3	9
360	Correlation between SFR Surface Density and Thermal Pressure of Ionized Gas in Local Analogs of High-redshift Galaxies. <i>Astrophysical Journal</i> , 2019 , 872, 146	4.7	8
359	Discovering AGN-driven winds through their infrared emission âll. General method and wind location. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 3915-3932	4.3	19
358	What drives the evolution of gas kinematics in star-forming galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 5125-5137	4.3	24
357	Spatially resolved mass-to-light from the CALIFA survey. <i>Astronomy and Astrophysics</i> , 2019 , 621, A120	5.1	26
356	Cosmic web dependence of galaxy clustering and quenching in SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 4501-4517	4.3	23
355	The influence of the dynamic state of galaxy clusters on segregation phenomena and velocity dispersion profiles. 2019 , 483, L121-L126		6
354	On the different levels of dust attenuation to nebular and stellar light in star-forming galaxies. 2019 , 71,		15
353	A multiscale study of star formation in Messier 33. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 931-946	4.3	9
352	MusE GAs FLOw and Wind (MEGAFLOW) II. A study of gas accretion around zad star-forming galaxies with background quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 1961-1	9 8 8	54
351	How to Measure Galaxy Star Formation Histories. II. Nonparametric Models. <i>Astrophysical Journal</i> , 2019 , 876, 3	4.7	107

350	Comprehensive comparison of models for spectral energy distributions from 0.1 ht to 1 mm of nearby star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2019 , 621, A51	5.1	41	
349	Star formation in far-IR AGN and non-AGN galaxies in the green valley âll. Morphological analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 452-463	4.3	7	
348	Using convolutional neural networks to predict galaxy metallicity from three-colour images. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 4683-4694	4.3	12	
347	The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 4817-4840	4.3	93	
346	Early- and late-stage mergers among main sequence and starburst galaxies at 0.2 âlz âlz. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 5631-5651	4.3	36	
345	Two-face(s): ionized and neutral gas winds in the local Universe. <i>Astronomy and Astrophysics</i> , 2019 , 622, A188	5.1	18	
344	Dissecting the main sequence: AGN activity and bulge growth in the local Universe. 2019 , 482, L129-L1	33	12	
343	IQ-Collaboratory 1.1: The Star-forming Sequence of Simulated Central Galaxies. <i>Astrophysical Journal</i> , 2019 , 872, 160	4.7	15	
342	Quenching Low-mass Satellite Galaxies: Evidence for a Threshold ICM Density. <i>Astrophysical Journal</i> , 2019 , 873, 42	4.7	22	
341	The FMOS-COSMOS Survey of Star-forming Galaxies at $z \sim 1.6$. VI. Redshift and Emission-line Catalog and Basic Properties of Star-forming Galaxies. <i>Astrophysical Journal, Supplement Series</i> , 2019 , 241, 10	8	36	
340	Slow-then-rapid quenching as traced by tentative evidence for enhanced metallicities of cluster galaxies at $z \sim 0.2$ in the slow quenching phase. <i>Astronomy and Astrophysics</i> , 2019 , 621, A131	5.1	22	
339	Evolution of dwarf galaxies hosting GW150914-like events. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3219-3232	4.3	14	
338	Variation of physical properties across the green valley for local galaxies. 2019 , 19, 027		1	
337	KROSSåBAMI: a direct IFS comparison of the TullyåBisher relation across 8©yr sincezall. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 2166-2188	4.3	26	
336	Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 5334-5354	4.3	47	
335	The shapes of the rotation curves of star-forming galaxies over the last âllolGyr. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 934-960	4.3	26	
334	What Is Inside Matters: Simulated Green Valley Galaxies Have too Centrally Concentrated Star Formation. <i>Astrophysical Journal Letters</i> , 2019 , 874, L17	7.9	9	
333	The Star Formation Reference Survey âllII. A multiwavelength view of star formation in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 560-577	4.3	12	

332	Star formation rates and stellar masses from machine learning. <i>Astronomy and Astrophysics</i> , 2019 , 622, A137	5.1	17
331	Photometric redshifts for galaxies in the Spitzer Extragalactic Representative Volume Survey (SERVS). <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3168-3195	4.3	8
330	The AGN-galaxy connection: Low-redshift benchmark & mp; lessons learnt. 2019, 15, 144-156		
329	Radio continuum size evolution of star-forming galaxies over 0.35 Astronomy and Astrophysics, 2019 , 625, A114	5.1	19
328	Active Galactic Nucleus Pairs from the Sloan Digital Sky Survey. III. Chandra X-Ray Observations Unveil Obscured Double Nuclei. <i>Astrophysical Journal</i> , 2019 , 882, 41	4.7	11
327	An Evolving and Mass-dependent BSFRâM ? Relation for Galaxies. <i>Astrophysical Journal</i> , 2019 , 879, 11	4.7	13
326	Star-forming galaxies at low-redshift in the SHARDS survey. Astronomy and Astrophysics, 2019, 621, A52	5.1	5
325	A Dissection of Spatially Resolved AGN Feedback across the Electromagnetic Spectrum. <i>Astrophysical Journal</i> , 2019 , 887, 200	4.7	8
324	The XXL Survey. Astronomy and Astrophysics, 2019, 625, A112	5.1	12
323	G.A.S Astronomy and Astrophysics, 2019 , 627, A132	5.1	7
323	G.A.S <i>Astronomy and Astrophysics</i> , 2019 , 627, A132 Properties of LBGs with [OIII] detection at z ~ 3.5. <i>Astronomy and Astrophysics</i> , 2019 , 631, A123	5.1 5.1	7
322	Properties of LBGs with [OIII] detection at $z \sim 3.5$. Astronomy and Astrophysics, 2019 , 631, A123 Investigating Early-type Galaxy Evolution with a Multiwavelength Approach. III. Insights from SPH	5.1	7
322	Properties of LBGs with [OIII] detection at z ~ 3.5. <i>Astronomy and Astrophysics</i> , 2019 , 631, A123 Investigating Early-type Galaxy Evolution with a Multiwavelength Approach. III. Insights from SPH Simulations with Chemophotometric Implementation. <i>Astrophysical Journal</i> , 2019 , 885, 165 M 31 circum-nuclear region: A molecular survey with the IRAM interferometer. <i>Astronomy and</i>	5.1	7
322 321 320	Properties of LBGs with [OIII] detection at z ~ 3.5. Astronomy and Astrophysics, 2019, 631, A123 Investigating Early-type Galaxy Evolution with a Multiwavelength Approach. III. Insights from SPH Simulations with Chemophotometric Implementation. Astrophysical Journal, 2019, 885, 165 M 31 circum-nuclear region: A molecular survey with the IRAM interferometer. Astronomy and Astrophysics, 2019, 625, A148	5.1 4.7 5.1	7 5 1
322 321 320 319	Properties of LBGs with [OIII] detection at z ~ 3.5. Astronomy and Astrophysics, 2019, 631, A123 Investigating Early-type Galaxy Evolution with a Multiwavelength Approach. III. Insights from SPH Simulations with Chemophotometric Implementation. Astrophysical Journal, 2019, 885, 165 M 31 circum-nuclear region: A molecular survey with the IRAM interferometer. Astronomy and Astrophysics, 2019, 625, A148 An Hikinematic survey of the Herschel Reference Survey. Astronomy and Astrophysics, 2019, 631, A71 Identifying galaxy mergers in observations and simulations with deep learning. Astronomy and	5.1 4.7 5.1	7 5 1 6
322 321 320 319 318	Properties of LBGs with [OIII] detection at z ~ 3.5. <i>Astronomy and Astrophysics</i> , 2019 , 631, A123 Investigating Early-type Galaxy Evolution with a Multiwavelength Approach. III. Insights from SPH Simulations with Chemophotometric Implementation. <i>Astrophysical Journal</i> , 2019 , 885, 165 M 31 circum-nuclear region: A molecular survey with the IRAM interferometer. <i>Astronomy and Astrophysics</i> , 2019 , 625, A148 An Hikinematic survey of the Herschel Reference Survey. <i>Astronomy and Astrophysics</i> , 2019 , 631, A71 Identifying galaxy mergers in observations and simulations with deep learning. <i>Astronomy and Astrophysics</i> , 2019 , 626, A49 The Impact of the Dynamical State of Galaxy Groups on the Stellar Populations of Central Galaxies.	5.1 4.7 5.1 5.1	7 5 1 6

(2020-2019)

314	The main sequence of star-forming galaxies â[]. The local relation and its bending. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 3213-3226	4.3	43	
313	Starburst galaxies in semi-analytic models of galaxy formation and evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 4454-4465	4.3	6	
312	Reproducible k-means clustering in galaxy feature data from the GAMA survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 126-150	4.3	8	
311	A Comprehensive Bayesian Discrimination of the Simple Stellar Population Model, Star Formation History, and Dust Attenuation Law in the Spectral Energy Distribution Modeling of Galaxies. <i>Astrophysical Journal, Supplement Series</i> , 2019 , 240, 3	8	15	
310	A new class of flares from accreting supermassive black holes. 2019 , 3, 242-250		35	
309	SDSS-IV MaNGA âlan archaeological view of the cosmic star formation history. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 1557-1586	4.3	40	
308	Systematic study of outflows in the Local Universe using CALIFA: I. Sample selection and main properties. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 4032-4056	4.3	30	
307	Nature versus nurture: what regulates star formation in satellite galaxies?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 5041-5051	4.3	22	
306	L-GALAXIES 2020: Spatially resolved cold gas phases, star formation, and chemical enrichment in galactic discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5795-5814	4.3	28	
305	The massathetallicity and the fundamental metallicity relation revisited on a fully Te-based abundance scale for galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 944-964	4.3	73	
304	High molecular gas content and star formation rates in local galaxies that host quasars, outflows, and jets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 1560-1575	4.3	20	
303	Gas accretion regulates the scatter of the massâthetallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 3215-3227	4.3	10	
302	Simulating kilonovae in the IDM universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 926-939	4.3	1	
301	The Dust Attenuation Law in Galaxies. 2020 , 58, 529-575		47	
300	Effect of bars on evolution of SDSS spiral galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 5839-5850	4.3	3	
299	SDSS-IV MaNGA: The kinematic-morphology of galaxies on the mass versus star-formation relation in different environments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1958-1977	4.3	18	
298	SHDE: survey description and massâllinematics scaling relations for dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 5885-5903	4.3	6	
297	Predicting FIR lines from simulated galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 5160-5175	4.3	16	

296	A panchromatic spatially resolved analysis of nearby galaxies âll. The main sequence âlgas relation at sub-kpc scale in grand-design spirals. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 4606-4623	4.3	17
295	Star formation in CALIFA survey perturbed galaxies âll. Effects of tidal interactions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 4370-4393	4.3	2
294	Effect of the environment on star formation activity and stellar mass for star-forming galaxies in the COSMOS field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 948-956	4.3	2
293	Subaru Hyper Suprime-Cam view of quasar host galaxies at z < 1. 2020 , 72,		7
292	xGASS: the role of bulges along and across the local star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5596-5605	4.3	9
291	AGN and star formation properties of insideâBut assembled galaxy candidates at z . <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4345-4355	4.3	4
290	The specific star formation rate function at different mass scales and quenching: a comparison between cosmological models and SDSS. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 2036-2048	4.3	7
289	A fast radio burst associated with a Galactic magnetar. 2020 , 587, 59-62		187
288	The X-ray view of merger-induced active galactic nuclei activity at low redshift. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2380-2389	4.3	6
287	Stochastic modelling of star-formation histories II: star-formation variability from molecular clouds and gas inflow. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 698-725	4.3	26
286	The host galaxies of 106 rapidly evolving transients discovered by the Dark Energy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 2575-2593	4.3	7
285	Are the Milky Way and Andromeda unusual? A comparison with Milky Way and Andromeda analogues. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 4943-4954	4.3	8
284	A single galaxy population? Statistical evidence that the star-forming main sequence might be the tip of the iceberg. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 573-586	4.3	4
283	The anatomy of a star-forming galaxy II: FUV heating via dust. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 2028-2041	4.3	1
282	A phylogenetic analysis of galaxies in the Coma Cluster and the field: a new approach to galaxy evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 5607-5622	4.3	0
281	Host Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production. <i>Astrophysical Journal</i> , 2020 , 892, 153	4.7	25
280	VIS3COS. Astronomy and Astrophysics, 2020 , 633, A70	5.1	7
279	H i gas content of SDSS galaxies revealed by ALFALFA: implications for the massaffinetallicity relation and the environmental dependence of H i in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 111-124	4.3	4

(2020-2020)

278	The high-redshift SFRâM* relation is sensitive to the employed star formation rate and stellar mass indicators: towards addressing the tension between observations and simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 5592-5606	4.3	13
277	A3COSMOS: the dust attenuation of star-forming galaxies at z ≥ 2.5â 2.0 from the COSMOS-ALMA archive. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 4724-4734	4.3	16
276	Both starvation and outflows drive galaxy quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 5406-5434	4.3	37
275	The MOSDEF survey: direct-method metallicities and ISM conditions at $z \sim 1.5 a$. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 1427-1455	4.3	52
274	X-ray detected AGN in SDSS dwarf galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2268-2284	4.3	27
273	On the (Lack of) Evolution of the Stellar Mass Function of Massive Galaxies from $z=1.5$ to 0.4. Astrophysical Journal, 2020 , 892, 7	4.7	20
272	The AMUSING++ Nearby Galaxy Compilation. I. Full Sample Characterization and Galactic-scale Outflow Selection. 2020 , 159, 167		33
271	The ALMaQUEST Survey â[]I. What drives central starbursts at z ~ 0?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 6027-6041	4.3	18
270	The dust and cold gas content of local star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 2531-2541	4.3	2
269	Galaxy pairs in the Sloan Digital Sky Survey âlXIV. Galaxy mergers do not lie on the fundamental metallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 3469-3480	4.3	8
268	Mass and star formation rate of the host galaxies of compact binary mergers across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 3419-3434	4.3	18
267	The H i morphology and stellar properties of strongly barred galaxies: support for bar quenching in massive spirals. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 4697-4715	4.3	16
266	Variations in the slope of the resolved star-forming main sequence: a tool for constraining the mass of star-forming regions. 2020 , 493, L87-L91		8
265	STARE2: Detecting Fast Radio Bursts in the Milky Way. 2020 , 132, 034202		20
264	Galaxy interactions in IllustrisTNG-100, I: The power and limitations of visual identification. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2075-2094	4.3	12
263	The intergalactic medium transmission towards z ? 4 galaxies with VANDELS and the impact of dust attenuation. <i>Astronomy and Astrophysics</i> , 2020 , 634, A110	5.1	4
262	The H IX galaxy survey. Astronomy and Astrophysics, 2020, 635, A69	5.1	О
261	xGASS: cold gas content and quenching in galaxies below the star-forming main sequence. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 1982-1995	4.3	21

260	The stellar population of metal-poor galaxies at zala 0.8 and the evolution of the massathetallicity relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 2254-2267	4.3	2
259	The ALMaQUEST survey âllII. Scatter in the resolved star-forming main sequence is primarily due to variations in star formation efficiency. 2020 , 493, L39-L43		31
258	The [Clii]âBFR correlation in dwarf galaxies across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2818-2827	4.3	16
257	UV bright red-sequence galaxies: how do UV upturn systems evolve in redshift and stellar mass?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2996-3011	4.3	5
256	Galaxies hosting an active galactic nucleus: a view from the CALIFA survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 3073-3090	4.3	27
255	Into the Ly Hungle: exploring the circumgalactic medium of galaxies at z ~ 4âB with MUSE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 493, 5336-5356	4.3	12
254	Reproducing the Universe: a comparison between the EAGLE simulations and the nearby DustPedia galaxy sample. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 2823-2838	4.3	16
253	Galaxy And Mass Assembly (GAMA): Defining passive galaxy samples and searching for the UV upturn. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2128-2139	4.3	3
252	Measuring the Metallicity of Early-type Galaxies. I. Composite Region. <i>Astrophysical Journal, Supplement Series</i> , 2021 , 252, 8	8	2
251	Runaway stars masquerading as star formation in galactic outskirts. 2021 , 502, L29-L34		3
250	An Ultradeep Multiband VLA Survey of the Faint Radio Sky (COSMOS-XS): Source Catalog and Number Counts. <i>Astrophysical Journal</i> , 2021 , 907, 5	4.7	8
250249	· · · · · · · · · · · · · · · · · · ·	4·7 4·7	8 o
	Number Counts. <i>Astrophysical Journal</i> , 2021 , 907, 5 Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine		
249	Number Counts. Astrophysical Journal, 2021, 907, 5 Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine Learning. Astrophysical Journal, 2021, 908, 47 L-GALAXIES 2020: The evolution of radial metallicity profiles and global metallicities in disc	4.7	0
249 248	Number Counts. Astrophysical Journal, 2021, 907, 5 Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine Learning. Astrophysical Journal, 2021, 908, 47 L-GALAXIES 2020: The evolution of radial metallicity profiles and global metallicities in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4474-4495 The OTELO survey as a morphological probe. Last ten Gyr of galaxy evolution. Astronomy and	4.7	0
249248247	Number Counts. <i>Astrophysical Journal</i> , 2021 , 907, 5 Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine Learning. <i>Astrophysical Journal</i> , 2021 , 908, 47 L-GALAXIES 2020: The evolution of radial metallicity profiles and global metallicities in disc galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 4474-4495 The OTELO survey as a morphological probe. Last ten Gyr of galaxy evolution. <i>Astronomy and Astrophysics</i> , 2021 , 647, A89 Incidence, scaling relations and physical conditions of ionized gas outflows in MaNGA. <i>Monthly</i>	4·7 4·3 5·1	0 11 3
249248247246	Number Counts. Astrophysical Journal, 2021, 907, 5 Comparison of Observed Galaxy Properties with Semianalytic Model Predictions Using Machine Learning. Astrophysical Journal, 2021, 908, 47 L-GALAXIES 2020: The evolution of radial metallicity profiles and global metallicities in disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4474-4495 The OTELO survey as a morphological probe. Last ten Gyr of galaxy evolution. Astronomy and Astrophysics, 2021, 647, A89 Incidence, scaling relations and physical conditions of ionized gas outflows in MaNGA. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5134-5160 Correlations between H Equivalent width and galaxy properties at z = 0.47: Physical or	4·7 4·3 5·1 4·3	o 11 3

(2021-2021)

242	Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3931-3952	4.3	10	
241	SDSS-IV MaNGA: enhanced star formation in galactic-scale outflows. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 191-199	4.3	0	
240	The VLA Frontier Field Survey: A Comparison of the Radio and UV/Optical Size of 0.3 ? z ? 3 Star-forming Galaxies. <i>Astrophysical Journal</i> , 2021 , 910, 106	4.7	5	
239	Introducing piXedfit: A Spectral Energy Distribution Fitting Code Designed for Resolved Sources. <i>Astrophysical Journal, Supplement Series</i> , 2021 , 254, 15	8	3	
238	Recovering the origins of the lenticular galaxy NGC 3115 using multiband imaging. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 2146-2167	4.3	0	
237	Gas-phase Metallicity as a Diagnostic of the Drivers of Star Formation on Different Spatial Scales. <i>Astrophysical Journal</i> , 2021 , 910, 137	4.7	8	
236	Asymmetry Revisited: The Effect of Dust Attenuation and Galaxy Inclination. <i>Astrophysical Journal</i> , 2021 , 911, 145	4.7	1	
235	Mass and Environment as Drivers of Galaxy Evolution. IV. On the Quenching of Massive Central Disk Galaxies in the Local Universe. <i>Astrophysical Journal</i> , 2021 , 911, 57	4.7	7	
234	Probing possible effects of circumgalactic media on the metal content of galaxies through the massathetallicity relationship. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 504, 1959-1968	4.3		
233	Star formation quenching stages of active and non-active galaxies. <i>Astronomy and Astrophysics</i> , 2021 , 648, A64	5.1	5	
232	The HST See Change Program. I. Survey Design, Pipeline, and Supernova Discoveries*. <i>Astrophysical Journal</i> , 2021 , 912, 87	4.7	3	
231	The luminous and rapidly evolving SN 2018bcc. Astronomy and Astrophysics, 2021, 649, A163	5.1	7	
230	Luminous Type II Short-Plateau Supernovae 2006Y, 2006ai, and 2016egz: A Transitional Class from Stripped Massive Red Supergiants. <i>Astrophysical Journal</i> , 2021 , 913, 55	4.7	5	
229	The Effect of the Morphological Quenching Mechanism on Star Formation Activity at 0.5 Astrophysical Journal, 2021 , 913, 81	4.7	1	
228	Stellar Population Inference with Prospector. Astrophysical Journal, Supplement Series, 2021, 254, 22	8	40	
227	Deep Extragalactic Visible Legacy Survey (DEVILS): SED fitting in the D10-COSMOS field and the evolution of the stellar mass function and SFRâM? relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 540-567	4.3	11	
226	The shape and scatter of the galaxy main sequence for massive galaxies at cosmic noon. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 947-962	4.3	1	
225	Galaxy formation with L-GALAXIES: modelling the environmental dependency of galaxy evolution and comparing with observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 492-514	1 ^{4.3}	8	

224	Host galaxy and orientation differences between different AGN types. <i>Astronomy and Astrophysics</i> , 2021 , 650, A75	5.1	4
223	Comparing the Inner and Outer Star-forming Complexes in the Nearby Spiral Galaxies NGC 628, NGC 5457, and NGC 6946 Using UVIT Observations. <i>Astrophysical Journal</i> , 2021 , 914, 54	4.7	4
222	Star formation scaling relations at ~100 pc from PHANGS: Impact of completeness and spatial scale. <i>Astronomy and Astrophysics</i> , 2021 , 650, A134	5.1	14
221	Imaging and photometric studies of NGC 1316 (Fornax A) using Astrosat/UVIT. 2021, 42, 1		O
220	The major mechanism to drive turbulence in star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 5075-5083	4.3	3
219	Dorado and its member galaxies II: A UVIT picture of the NGC 1533 substructure. 2021 , 42, 1		
218	The connection between star formation and supermassive black hole activity in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 2619-2637	4.3	О
217	The HI gas and star formation in star-forming galaxies selected from ALFALFA. 2021 , 21, 123		
216	Quenched fractions in the IllustrisTNG simulations: comparison with observations and other theoretical models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 4760-4780	4.3	11
215	Bar quenching: Evidence from star-formation-rate indicators. <i>Astronomy and Astrophysics</i> , 2021 , 651, A107	5.1	О
214	A comparison of the UV and HI properties of the extended UV (XUV) disk galaxies NGC 2541, NGC 5832 and ESO406-042. 2021 , 42, 1		О
213	Gaseous nebulae and massive stars in the giant H I ring in Leo. <i>Astronomy and Astrophysics</i> , 2021 , 651, A77	5.1	O
212	From Haloes to Galaxies. III. The Gas Cycle of Local Galaxy Populations. <i>Astrophysical Journal</i> , 2021 , 915, 94	4.7	3
211	IQ Collaboratory. II. The Quiescent Fraction of Isolated, Low-mass Galaxies across Simulations and Observations. <i>Astrophysical Journal</i> , 2021 , 915, 53	4.7	4
210	Spiral Structure Boosts Star Formation in Disk Galaxies. <i>Astrophysical Journal</i> , 2021 , 917, 88	4.7	3
209	Spatially resolved star formation and inside-out quenching in the TNG50 simulation and 3D-HST observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 219-235	4.3	16
208	Do galaxies die? Different views from simulations and observations in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 506, 5108-5116	4.3	2
207	A fundamental plane in X-ray binary activity of external galaxies.		O

(2012-2021)

206	ALMA Observations of Ly⊞lob 1: Multiple Major Mergers and Widely Distributed Interstellar Media. <i>Astrophysical Journal</i> , 2021 , 918, 69	4.7	О
205	The MOSDEF survey: The dependence of H \oplus o-UV SFR ratios on SFR and size at z ~ 2. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	2
204	KMTNet Nearby Galaxy Survey. III. Deficient HFlux in the Extended Disks of Spiral Galaxies. <i>Astrophysical Journal</i> , 2021 , 918, 82	4.7	1
203	The importance of mock observations in validating galaxy properties for cosmological simulations. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
202	Star Formation and Quenching of Central Galaxies from Stacked Hi Measurements. <i>Astrophysical Journal</i> , 2021 , 918, 53	4.7	4
201	Observations of cold gas and star formation in dwarf S0 galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 507, 4262-4273	4.3	
200	AGN and star formation at cosmic noon: comparison of data to theoretical models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 762-780	4.3	1
199	Constraining the Milky Wayâʿʿʿ ultraviolet-to-infrared SED with Gaussian process regression. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
198	The GOGREEN survey: transition galaxies and the evolution of environmental quenching. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 508, 157-174	4.3	4
197	What Determines the H i Gas Content in Galaxies? Morphological Dependence of the H i Gas Fraction across the M *âBFR Plane. <i>Astrophysical Journal</i> , 2021 , 918, 68	4.7	2
196	Comparing galaxy formation in the L-GALAXIES semi-analytical model and the IllustrisTNG simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 1051-1069	4.3	7
195	Localized Fast Radio Bursts Are Consistent with Magnetar Progenitors Formed in Core-collapse Supernovae. <i>Astrophysical Journal Letters</i> , 2021 , 907, L31	7.9	19
194	An Observational Guide to Identifying Pseudobulges and Classical Bulges in Disc Galaxies. 2016 , 41-75		29
193	The Impact of Surveys. 2016 , 381-477		2
192	Calibration of star formation rate tracers for short- and long-lived star formation episodes. <i>Astronomy and Astrophysics</i> , 2010 , 511, A61	5.1	18
191	Spectral energy distributions of an AKARI-SDSS-GALEX sample of galaxies. <i>Astronomy and Astrophysics</i> , 2011 , 529, A22	5.1	53
190	The GALEX Arecibo SDSS Survey. Astronomy and Astrophysics, 2012, 544, A65	5.1	73
189	Are passive red spirals truly passive?. Astronomy and Astrophysics, 2012, 543, A132	5.1	49

188	The interaction-driven starburst contribution to the cosmic star formation rate density. <i>Astronomy and Astrophysics</i> , 2013 , 552, A44	5.1	25
187	Towards understanding the relation between the gas and the attenuation in galaxies at kpc scales. <i>Astronomy and Astrophysics</i> , 2013 , 554, A14	5.1	28
186	New light on gamma-ray burst host galaxies withHerschel. Astronomy and Astrophysics, 2014, 565, A112	5.1	60
185	From star-forming galaxies to AGN: the global HI content from a stacking experiment. <i>Astronomy and Astrophysics</i> , 2015 , 580, A43	5.1	17
184	Physical properties of AGN host galaxies as a probe of supermassive black hole feeding mechanisms. <i>Astronomy and Astrophysics</i> , 2015 , 576, A32	5.1	12
183	Dozens of compact and high velocity-dispersion, early-type galaxies in Sloan Digital Sky Survey. <i>Astronomy and Astrophysics</i> , 2015 , 578, A134	5.1	25
182	Can galaxy growth be sustained through HI-rich minor mergers?. <i>Astronomy and Astrophysics</i> , 2016 , 590, A51	5.1	2
181	Massive stars formed in atomic hydrogen reservoirs: H I observations of gamma-ray burst host galaxies. <i>Astronomy and Astrophysics</i> , 2015 , 582, A78	5.1	51
180	Metal enrichment in a semi-analytical model, fundamental scaling relations, and the case of Milky Way galaxies. <i>Astronomy and Astrophysics</i> , 2016 , 589, A109	5.1	12
179	Light breeze in the local Universe. Astronomy and Astrophysics, 2017, 606, A36	5.1	30
178	Strong dependence of Type Ia supernova standardization on the local specific star formation rate. <i>Astronomy and Astrophysics</i> , 2020 , 644, A176	5.1	40
177	The final data release of ALLSMOG: a survey of CO in typical local low-M*star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 604, A53	5.1	31
176	Spatially-resolved star formation histories of CALIFA galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 607, A128	5.1	40
175	Neutral carbon and highly excited CO in a massive star-forming main sequence galaxy at $z = 2.2$. Astronomy and Astrophysics, 2019 , 628, A104	5.1	6
174	Scaling relations and baryonic cycling in local star-forming galaxies. <i>Astronomy and Astrophysics</i> , 2020 , 638, A4	5.1	6
173	Mergers trigger active galactic nuclei out to $z \sim 0.6$. Astronomy and Astrophysics, 2020 , 637, A94	5.1	15
172	SDSS-IV MaNGA: Global and local stellar population properties of elliptical galaxies. <i>Astronomy and Astrophysics</i> , 2020 , 644, A117	5.1	12
171	Double-peak emission line galaxies in the SDSS catalogue. <i>Astronomy and Astrophysics</i> , 2020 , 641, A171	5.1	5

(2020-2020)

170	High-resolution, 3D radiative transfer modelling. Astronomy and Astrophysics, 2020, 643, A90	5.1	6
169	The volumetric star formation law for nearby galaxies. Astronomy and Astrophysics, 2020, 644, A125	5.1	8
168	The EDGE-CALIFA survey: exploring the role of molecular gas on galaxy star formation quenching. <i>Astronomy and Astrophysics</i> , 2020 , 644, A97	5.1	9
167	The galaxy populations from the centers to the infall regions inz âl D.25 clusters. <i>Astronomy and Astrophysics</i> , 2008 , 486, 9-24	5.1	48
166	The VVDS-SWIRE-GALEX-CFHTLS surveys: physical properties of galaxies at z below 1.2 from photometric data. <i>Astronomy and Astrophysics</i> , 2008 , 491, 713-730	5.1	53
165	Keck DEIMOS Spectroscopy of a GALEX UV-Selected Sample from the Medium Imaging Survey. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 173, 471-481	8	1
164	The Host Galaxies and Black Holes of Typicalz~0.5âd.4 AGNs. <i>Astrophysical Journal</i> , 2008 , 677, 127-136	4.7	49
163	THE METALLICITIES OF LOW STELLAR MASS GALAXIES AND THE SCATTER IN THE MASS-METALLICITY RELATION. <i>Astrophysical Journal</i> , 2012 , 750, 120	4.7	71
162	THEXMMCLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES. <i>Astrophysical Journal</i> , 2012 , 752, 12	4.7	42
161	The physical properties of galaxies with unusually high gas-phase metallicity. 2020 , 20, 020		1
			1
160	Conditions for galaxy quenching at 0.5 2020, 20, 116		1
160		4.3	
	Conditions for galaxy quenching at 0.5 2020, 20, 116 The Universe at z > 10: predictions for JWST from the universemachine DR1. <i>Monthly Notices of</i>	4.3	1
159	Conditions for galaxy quenching at 0.5 2020, 20, 116 The Universe at z > 10: predictions for JWST from the universemachine DR1. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 5702-5718 Constraining delay time distribution of binary neutron star mergers from host galaxy properties.		1 21
159 158	Conditions for galaxy quenching at 0.5 2020, 20, 116 The Universe at z > 10: predictions for JWST from the universemachine DR1. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5702-5718 Constraining delay time distribution of binary neutron star mergers from host galaxy properties. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5220-5229 The Metal Abundances across Cosmic Time (MACT) Survey. III âlThe relationship between stellar mass and star formation rate in extremely low-mass galaxies. Monthly Notices of the Royal	4.3	1 21 3
159 158 157	Conditions for galaxy quenching at 0.5 2020, 20, 116 The Universe at z > 10: predictions for JWST from the universemachine DR1. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5702-5718 Constraining delay time distribution of binary neutron star mergers from host galaxy properties. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5220-5229 The Metal Abundances across Cosmic Time (MACT) Survey. III âlThe relationship between stellar mass and star formation rate in extremely low-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2231-2249 Compact galaxies and the sizeâfhass galaxy distribution from a colour-selected sample at 0.04 < z < 0.15 supplemented by ugrizYJHK photometric redshifts. Monthly Notices of the Royal	4.3	1 21 3 2
159 158 157	Conditions for galaxy quenching at 0.5 2020, 20, 116 The Universe at z > 10: predictions for JWST from the universemachine DR1. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5702-5718 Constraining delay time distribution of binary neutron star mergers from host galaxy properties. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5220-5229 The Metal Abundances across Cosmic Time (MACT) Survey. III âlThe relationship between stellar mass and star formation rate in extremely low-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2231-2249 Compact galaxies and the sizeâfhass galaxy distribution from a colour-selected sample at 0.04 < z < 0.15 supplemented by ugrizYJHK photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1557-1574 The effects of star formation history in the SFRâM* relation of H ii galaxies. Monthly Notices of the	4·3 4·3 4·3	1 21 3 2

152	Observing correlations between dark matter accretion and galaxy growth âII. Recent star formation activity in isolated Milky Way-mass galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 501, 1253-1272	4.3	3
151	Molecular hydrogen in IllustrisTNG galaxies: carefully comparing signatures of environment with local CO and SFR data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 3158-3178	4.3	12
150	The ALMaQUEST Survey âlly. The non-universality of kpc-scale star formation relations and the factors that drive them. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 4777-4797	4.3	15
149	A homogeneous measurement of the delay between the onsets of gas stripping and star formation quenching in satellite galaxies of groups and clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 5073-5095	4.3	13
148	A deep learning approach to test the small-scale galaxy morphology and its relationship with star formation activity in hydrodynamical simulations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 501, 4359-4382	4.3	12
147	SDSS-IV MaNGA: when is morphology imprinted on galaxies?. 2020 , 500, L42-L46		4
146	STAR FORMATION RATE IN LATE-TYPE GALAXIES: I- THE HEAND FUV INTEGRATED VALUES. 2020 , 56, 39-53		2
145	SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES. Astrophysical Journal, 2016 , 818, 65	4.7	3
144	APERTURE EFFECTS ON THE OXYGEN ABUNDANCE DETERMINATIONS FROM CALIFA DATA. Astrophysical Journal, 2016 , 826, 71	4.7	17
143	EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE. <i>Astrophysical Journal</i> , 2016 , 827, 35	4.7	33
142	The Hot Gas Exhaust of Starburst Engines in Mergers: Testing Models of Stellar Feedback and Star Formation Regulation. 2019 , 158, 169		4
141	Recalibration of [O ii]B727 as a Star Formation Rate Estimator for Active and Inactive Galaxies. <i>Astrophysical Journal</i> , 2019 , 882, 89	4.7	8
140	The Physical Properties of S0 Galaxy PGC 26218: The Origin of Starburst and Star Formation. <i>Astrophysical Journal</i> , 2020 , 889, 132	4.7	4
139	Mass-to-light Ratios of Spatially Resolved Stellar Populations in M31. <i>Astrophysical Journal</i> , 2020 , 891, 32	4.7	6
138	The GRIFFIN Projectâ l ormation of Star Clusters with Individual Massive Stars in a Simulated Dwarf Galaxy Starburst. <i>Astrophysical Journal</i> , 2020 , 891, 2	4.7	26
137	Gravitational Potential and Surface Density Drive Stellar Populations. II. Star-forming Galaxies. <i>Astrophysical Journal</i> , 2020 , 898, 62	4.7	5
136	Galaxy and Mass Assembly (GAMA): Demonstrating the Power of WISE in the Study of Galaxy Groups to z Astrophysical Journal, 2020 , 898, 20	4.7	11
135	Extremely Metal-poor Representatives Explored by the Subaru Survey (EMPRESS). I. A Successful Machine-learning Selection of Metal-poor Galaxies and the Discovery of a Galaxy with M* Astrophysical Journal, 2020 , 898, 142	4.7	16

(2013-2020)

134	Cosmic Reionization On Computers: The GalaxyâHalo Connection between 5 âlz âll 0. <i>Astrophysical Journal</i> , 2020 , 899, 137	4.7	4
133	A Chandra X-Ray Survey of Optically Selected AGN Pairs. <i>Astrophysical Journal</i> , 2020 , 900, 79	4.7	8
132	GASP XXX. The Spatially Resolved SFRâMass Relation in Stripping Galaxies in the Local Universe. Astrophysical Journal, 2020 , 899, 98	4.7	13
131	Tracing the Coevolution Path of Supermassive Black Holes and Spheroids with AKARI-selected Ultraluminous IR Galaxies at Intermediate Redshifts. <i>Astrophysical Journal</i> , 2020 , 900, 51	4.7	5
130	Correlation of Structure and Stellar Properties of Galaxies in Stripe 82. <i>Astrophysical Journal</i> , 2020 , 899, 89	4.7	2
129	Connecting Optical Morphology, Environment, and H i Mass Fraction for Low-redshift Galaxies Using Deep Learning. <i>Astrophysical Journal</i> , 2020 , 900, 142	4.7	3
128	Tracing Dark Matter Halos with Satellite Kinematics and the Central Stellar Velocity Dispersion of Galaxies. <i>Astrophysical Journal</i> , 2020 , 903, 130	4.7	3
127	Significant Suppression of Star Formation in Radio-quiet AGN Host Galaxies with Kiloparsec-scale Radio Structures. <i>Astrophysical Journal</i> , 2020 , 904, 83	4.7	7
126	Quantifying the Effect of Black Hole Feedback from the Central Galaxy on the Satellite Populations of Groups and Clusters. <i>Astrophysical Journal Letters</i> , 2019 , 884, L45	7.9	2
125	OUP accepted manuscript.		2
124	The extension of the fundamental metallicity relation beyond BPT star-forming sequence: evidence for both gas accretion and starvation. <i>Astronomy and Astrophysics</i> ,	5.1	1
123	From blue cloud to red sequence: evidence of morphological transition prior to star formation quenching. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
122	Predicting far-infrared maps of galaxies via machine learning techniques. <i>Astronomy and Astrophysics</i> ,	5.1	
121	The Ultraviolet sky surveys: filling the gap in our view of the Universe. 2008, 11-19		
120	Signatures of recent star formation in ring S0 galaxies. 2011 , 243-248		
119	UV properties of type Ia supernova and their host galaxies. 2011 , 223-230		
118	AKARI-SDSS-GALEX SURVEYS: SPECTRAL ENERGY DISTRIBUTIONS OF NEARBY GALAXIES. 2012 , 27, 317-	320	
117	Global Star Formation Efficiency of Local Galaxies. 2013 , 34, 407-414		1

116 Introduction. **2016**, 1-21

115	Assembly Conformity of Structure Growth: Fossil versus Normal Groups of Galaxies. <i>Astrophysical Journal</i> , 2020 , 898, 39	4.7	2
114	Brackett-🗈s a Gold-standard Test of Star Formation Rates Derived from SED Fitting. <i>Astrophysical Journal</i> , 2020 , 898, 165	4.7	0
113	The Star-forming Main Sequence and the Contribution of Dust-obscured Star Formation since zlar from the Far-UV+IR Luminosity Functions. <i>Astrophysical Journal</i> , 2020 , 905, 171	4.7	O
112	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	1
111	Properties of X-ray detected far-IR AGN in the green valley. 2019 , 15, 147-151		
110	Deep Extragalactic VIsible Legacy Survey (DEVILS): evolution of the BFRâM? relation and implications for self-regulated star formation. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О
109	The Evolving Interstellar Medium of Star-forming Galaxies, as Traced by Stardust*. <i>Astrophysical Journal</i> , 2021 , 921, 40	4.7	3
108	GALEX Studies of Early-type Galaxies: the UV Rising Flux and Residual Star Formation. 2009, 1-16		
107	The impact of disturbed galaxy clusters on the kinematics of active galactic nuclei. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 499, 3792-3805	4.3	
106	VERTICO: The Virgo Environment Traced in CO Survey. <i>Astrophysical Journal, Supplement Series</i> , 2021 , 257, 21	8	2
105	SDSS J1059+4251, a Highly Magnified z ~ 2.8 Star-forming Galaxy: ESI Observations of the Rest-frame UV Spectrum. <i>Astrophysical Journal</i> , 2021 , 922, 187	4.7	O
104	PHANGSâALMA: Arcsecond CO(2â1) Imaging of Nearby Star-forming Galaxies. <i>Astrophysical Journal, Supplement Series</i> , 2021 , 257, 43	8	31
103	Past, Present, and Future of the Scaling Relations of Galaxies and Active Galactic Nuclei. 2021 , 8,		2
102	CO-CAVITY pilot survey: Molecular gas and star formation in void galaxies. <i>Astronomy and Astrophysics</i> ,	5.1	О
101	Physical Drivers of Emission-line Diversity of SDSS Seyfert 2s and LINERs after Removal of Contributions from Star Formation. <i>Astrophysical Journal</i> , 2021 , 922, 156	4.7	3
100	Stellar populations in local AGNs: evidence for enhanced star formation in the inner 100 pc. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
99	The ALFALFA Almost Dark Galaxy AGC 229101: A 2 Billion Solar Mass H i Cloud with a Very Low Surface Brightness Optical Counterpart. 2021 , 162, 274		1

98	Hidden in plain sight: UVIT and MUSE discovery of a large, diffuse star-forming galaxy. <i>Astronomy and Astrophysics</i> , 2022 , 657, L10	5.1	О
97	AGN Selection Methods Have Profound Impacts on the Distributions of Host-galaxy Properties. <i>Astrophysical Journal</i> , 2022 , 925, 74	4.7	1
96	Cool outflows in MaNGA: a systematic study and comparison to the warm phase. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
95	The PHANGS-MUSE survey. Probing the chemo-dynamical evolution of disc galaxies. <i>Astronomy and Astrophysics</i> ,	5.1	10
94	The Preprocessing of Galaxies in the Early Stages of Cluster Formation in Abell 1882 at $z=0.139$. Astrophysical Journal, Supplement Series, 2022 , 258, 32	8	1
93	The PHANGS-HST Survey: Physics at High Angular Resolution in Nearby Galaxies with the Hubble Space Telescope. <i>Astrophysical Journal, Supplement Series</i> , 2022 , 258, 10	8	7
92	Very Large Array Radio Study of a Sample of Nearby X-Ray and Optically Bright Early-type Galaxies. <i>Astrophysical Journal, Supplement Series</i> , 2022 , 258, 30	8	0
91	The High Fraction of Thin Disk Galaxies Continues to Challenge IDM Cosmology. <i>Astrophysical Journal</i> , 2022 , 925, 183	4.7	1
90	Galaxy luminosity function pipeline for cosmology and astrophysics. 2022, 105,		1
89	Subgalactic Scaling Relations with T e-based Metallicities of Low-metallicity Regions in Galaxies: Metal-poor Gas Inflow May Have Important Effects?. <i>Astrophysical Journal</i> , 2022 , 926, 57	4.7	O
88	An IFU View of the Active Galactic Nuclei in MaNGA Galaxy Pairs. Astrophysical Journal, 2021, 923, 6	4.7	О
87	The Close AGN Reference Survey (CARS). No obvious signature of AGN feedback on star formation, but subtle trends. <i>Astronomy and Astrophysics</i> ,	5.1	1
86	On the quenching of star formation in observed and simulated central galaxies: Evidence for the role of integrated AGN feedback. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	5
85	Strong spiral arms drive secular growth of pseudo bulges in disk galaxies. <i>Astronomy and Astrophysics</i> ,	5.1	1
84	Dissecting Nearby Galaxies with piXedfit. I. Spatially Resolved Properties of Stars, Dust, and Gas as Revealed by Panchromatic SED Fitting. <i>Astrophysical Journal</i> , 2022 , 926, 81	4.7	1
83	The GasâBtar Formation Cycle in Nearby Star-forming Galaxies. II. Resolved Distributions of CO and HEmission for 49 PHANGS Galaxies. <i>Astrophysical Journal</i> , 2022 , 927, 9	4.7	O
82	Star-forming S0 Galaxies in SDSS-MaNGA: fading spirals or rejuvenated S0s?. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	1
81	The role of the cosmic web in the scatter of the galaxy stellar massagas metallicity relation.		1

80	Low-J CO Line Ratios from Single-dish CO Mapping Surveys and PHANGS-ALMA. <i>Astrophysical Journal</i> , 2022 , 927, 149	4.7	3
79	The multifarious ionization sources and disturbed kinematics of extraplanar gas in five low-mass galaxies. <i>Astronomy and Astrophysics</i> , 2022 , 659, A153	5.1	1
78	Variations in the Sigma_SFR - Sigma_mol - Sigma_* plane across galactic environments in PHANGS galaxies. <i>Astronomy and Astrophysics</i> ,	5.1	1
77	What drives the scatter of local star-forming galaxies in the BPT diagrams? A Machine Learning based analysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 4136-4163	4.3	1
76	Infrared Spectral Energy Distributions and Dust Masses of Sub-solar Metallicity Galaxies at $z \sim 2.3$. Astrophysical Journal, 2022 , 928, 68	4.7	0
75	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. <i>Astrophysical Journal</i> , 2022 , 927, 10	4.7	1
74	Ultraviolet-to-far-infra-red self-consistent analysis of the stellar populations of massive starburst galaxies at intermediate redshifts. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	0
73	The KLEVER survey: nitrogen abundances at $z\sim 2$ and probing the existence of a fundamental nitrogen relation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 512, 2867-2889	4.3	4
72	Effect of AGN on the morphological properties of their host galaxies in the local Universe. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
71	The miniJPAS survey: Identification and characterization of the emission line galaxies down to z < 0.35 in the AEGIS field. <i>Astronomy and Astrophysics</i> ,	5.1	О
70	Morphological Transformation and Star Formation Quenching of Massive Galaxies at 0.5 âlz âlz.5 in 3D-HST/CANDELS. <i>Astrophysical Journal</i> , 2021 , 923, 46	4.7	0
69	DIISC-II: Unveiling the Connections between Star Formation and Interstellar Medium in the Extended Ultraviolet Disk of NGC 3344. <i>Astrophysical Journal</i> , 2021 , 923, 199	4.7	О
68	The incidence of X-ray selected AGN in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 4556-4572	4.3	1
67	Critical Stellar Central Densities Drive Galaxy Quenching in the Nearby Universe. <i>Astrophysical Journal Letters</i> , 2021 , 923, L29	7.9	O
66	The Complete Local-Volume Groups Sample âllV. Star formation and gas content in group-dominant galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2022 , 510, 4191-4207	4.3	2
65	Local Environments of Low-redshift Supernovae. Astrophysical Journal, 2021, 923, 86	4.7	1
64	Outcome of Repair of Anterior Penile Hypospadias by Snodgrass Technique- A Study of 50 Cases. <i>Integrative Journal of Medical Sciences</i> , 9,	Ο	
63	The average dust attenuation curve at $z\sim 1.3$ based on HST grism surveys. Monthly Notices of the Royal Astronomical Society,	4.3	O

62	OUP accepted manuscript. Monthly Notices of the Royal Astronomical Society,	4.3	
61	On the relation of host properties and environment of AGN galaxies across the standard optical diagnostic diagram. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	
60	Properties of IR-selected active galactic nuclei. Astronomy and Astrophysics,	5.1	O
59	The Impact of Inclination-dependent Attenuation on Ultraviolet Star Formation Rate Tracers. <i>Astrophysical Journal</i> , 2022 , 931, 53	4.7	O
58	How well do local relations predict gas-phase metallicity gradients? Results from SDSS-IV MaNGA. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3
57	Massive central galaxies of galaxy groups in the Romulus simulations: an overview of galaxy properties at $z = 0$. Monthly Notices of the Royal Astronomical Society,	4.3	2
56	Mass-metallicity and star formation rate in galaxies: A complex relation tuned to stellar age. <i>Astronomy and Astrophysics</i> ,	5.1	2
55	The SizeâMass Relation of Post-starburst Galaxies in the Local Universe. <i>Astrophysical Journal</i> , 2022 , 933, 228	4.7	Ο
54	A multi-wavelength study of Star Formation in nearby galaxies: Evidence for inside-out growth of the stellar disc. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	О
53	The COS Legacy Archive Spectroscopy Survey (CLASSY) Treasury Atlas*. 2022, 261, 31		1
52	Close Major-merger Pairs at $z = 0$: Bulge-to-total Ratio and Star Formation Enhancement. 2022 , 261, 34	ļ	
51	The impact of cosmic rays on dynamical balance and disk-halo interaction in L? disk galaxies.		4
50	Active Galactic Nuclei signatures in Red Geyser galaxies from Gemini GMOS-IFU observations.		1
49	Spin-driven jet feedback in idealised simulations of galaxy groups and clusters.		3
48	The Velocity Map Asymmetry of Ionized Gas in MaNGA. I. The Catalog and General Properties. 2022 , 262, 6		
47	Dissecting Nearby Galaxies with piXedfit. II. Spatially Resolved Scaling Relations among Stars, Dust, and Gas. 2022 , 935, 98		O
46	The Star-forming Main Sequence of the Host Galaxies of Low-redshift Quasars. 2022, 934, 130		О
45	The miniJPAS survey: The role of group environment in quenching the star formation.		O

44	The Physical Properties of Massive Green Valley Galaxies as a Function of Environments at 0.5 < z < 2.5 in 3D-HST/Candels Fields. 2022 , 936, 47	О
43	Aging of galaxies along the morphological sequence, marked by bulge growth and disk quenching.	O
42	ALMA/ACA CO Survey of the IC 1459 and NGC 4636 Groups: Environmental Effects on the Molecular Gas of Group Galaxies. 2022 , 262, 31	1
41	Elucidating galaxy assembly bias in SDSS. 2022 , 65,	O
40	The merger fraction of post-starburst galaxies in UNIONS. 2022, 516, 4354-4372	1
39	Cluster environment quenches the star formation of low-mass satellite galaxies from the inside-out. 2022 , 516, 4293-4306	O
38	SFR estimations from $z = 0$ to $z = 0.9$. A comparison of SFR calibrators for star-forming galaxies.	0
37	J-PLUS: Uncovering a large population of extreme [OIII] emitters in the local Universe.	O
36	Trinity I: Self-consistently modeling the dark matter haloagalaxyagupermassive black hole connection from $z=0$ and 0.	1
35	SIT 45: An interacting, compact, and star-forming isolated galaxy triplet.	O
34	Unveiling the main sequence of galaxies at z \hat{a} \hat{b} with the James Webb Space Telescope: predictions from simulations.	О
33	Cool Interstellar Medium as an Evolutionary Tracer in ALMA-Observed Local Dusty Early-Type Galaxies.	O
32	Death at watersheds: Galaxy quenching in low-density environments.	O
31	Galaxy And Mass Assembly: galaxy morphology in the green valley, prominent rings, and looser spiral arms. 2022 , 517, 4575-4589	O
30	Improved Measurements of Galaxy Star Formation Stochasticity from the Intrinsic Scatter of Burst Indicators. 2022 , 939, 35	O
29	Anomalies in physical cosmology. 2022 , 447, 169159	O
28	Ultra-diffuse Galaxies as Extreme Star-forming Environments. II. Star Formation and Pressure Balance in H i-rich UDGs. 2022 , 939, 101	О
27	The Main Sequence of star forming galaxies across cosmic times.	O

26	An investigation of the star-forming main sequence considering the nebular continuum emission at low-z.	O
25	The dark side of galaxy stellar populations âll. The dependence of star-formation histories on halo mass and on the scatter of the main sequence. 2022 , 518, 6325-6339	Ο
24	Does the Lockstep Growth between Black Holes and Bulges Create Their Mass Relation?. 2022 , 940, 146	O
23	The Physical Origin of Galactic Conformity: From Theory to Observation.	O
22	Fraction of stars in clusters for the LEGUS dwarf galaxies.	O
21	Ultra-diffuse Galaxies as Extreme Star-forming Environments. I. Mapping Star Formation in H i-rich UDGs. 2022 , 941, 11	O
20	Reconstructing Orbits of Galaxies in Extreme Regions (ROGER) III: galaxy evolution patterns in projected phase space around massive X-ray clusters.	O
19	The Roles of Morphology and Environment on the Star Formation RateâBtellar Mass Relation in COSMOS from 0 < z < 3.5. 2023 , 942, 49	O
18	The State of the Molecular Gas in Post-starburst Galaxies. 2023 , 942, 25	O
17	The Contribution of Evolved Stars to Polycyclic Aromatic Hydrocarbon Heating and Implications for Estimating Star Formation Rates. 2023 , 943, 60	O
16	Reconstructing the Assembly of Massive Galaxies. II. Galaxies Develop Massive and Dense Stellar Cores as They Evolve and Head toward Quiescence at Cosmic Noon. 2023 , 943, 54	O
15	Core-collapse supernovae in the Dark Energy Survey: luminosity functions and host galaxy demographics. 2023 , 520, 684-701	O
14	Multiwavelength Analysis of a Nearby Heavily Obscured AGN in NGC 449. 2023 , 135, 014102	O
13	DSPS: Differentiable stellar population synthesis. 2023 , 521, 1741-1756	O
12	Decoding NGC 7252 as a blue elliptical galaxy. 2023 , 671, A166	O
11	The PHANGSâŪWST Treasury Survey: Star Formation, Feedback, and Dust Physics at High Angular Resolution in Nearby GalaxieS. 2023 , 944, L17	O
10	The Bimodal Absorption System Imaging Campaign (BASIC). I. A Dual Population of Low-metallicity Absorbers at z < 1. 2023 , 944, 101	1
9	Exploring supermassive black hole physics and galaxy quenching across halo mass in FIRE cosmological zoom simulations. 2023 , 520, 5394-5412	O

8	The DESI PRObabilistic Value-added Bright Galaxy Survey (PROVABGS) Mock Challenge. 2023, 945, 16	1
7	The Local Cluster Survey II: disc-dominated cluster galaxies with suppressed star formation. 2023 , 521, 4614-4629	O
6	Study of Central Intensity Ratio of Seyfert Galaxies in Nearby Universe. 2023, 23, 045008	O
5	Constraints on Fluctuating Star Formation Rates for Intermediate-mass Galaxies with H⊞and UV Luminosities. 2023 , 945, 93	O
4	Star formation rate and stellar mass calibrations based on infrared photometry and their dependence on stellar population age and extinction.	O
3	The complex interplay of AGN jet-inflated bubbles and the intracluster medium. 2023 , 521, 4375-4394	O
2	The most luminous, merger-free AGNs show only marginal correlation with bar presence. 2023 , 522, 211-225	0
1	The LyReference Sample. XIV. LyImaging of 45 Low-redshift Star-forming Galaxies and Inferences on Global Emission. 2023 , 266, 15	O