Effects of water and diet acidification with and without growth and microbial shedding1,2

Journal of Animal Science 85, 1799-1808 DOI: 10.2527/jas.2006-049

Citation Report

#	Article	IF	CITATIONS
1	Effects of Dietary Supplement of Enterococcus faecium or Antimicrobials on Growth, Blood Parameters and Fecal Microbiota of Growing Pigs. Nihon Yoton Gakkaishi, 2009, 46, 144-151.	0.1	1
2	Effects of In-Feed Egg Yolk Antibodies on Salmonella Shedding, Bacterial Antibiotic Resistance, and Health of Pigs. Journal of Food Protection, 2009, 72, 267-273.	0.8	7
3	Effects of phenyllactic acid on growth performance, nutrient digestibility, microbial shedding, and blood profile in pigs. Journal of Animal Science, 2009, 87, 3235-3243.	0.2	50
4	Effects of adding liquid <scp>dl</scp> â€methionine hydroxy analogueâ€free acid to drinking water on growth performance and small intestinal morphology of nursery pigs. Journal of Animal Physiology and Animal Nutrition, 2010, 94, 395-404.	1.0	21
5	The effect of the combination of acids and tannin in diet on the performance and selected biochemical, haematological and antioxidant enzyme parameters in grower pigs. Acta Veterinaria Scandinavica, 2010, 52, 19.	0.5	36
6	Chemical Treatment of Animal Feed and Water for the Control of <i>Salmonella</i> . Foodborne Pathogens and Disease, 2010, 7, 3-15.	0.8	97
7	Aditivos fitogênicos e butirato de sódio como promotores de crescimento de leitões desmamados. Archivos De Zootecnia, 2011, 60, 687-698.	0.2	20
8	Scientific Opinion on the safety and efficacy of propionic acid, sodium propionate, calcium propionate and ammonium propionate for all animal species. EFSA Journal, 2011, 9, 2446.	0.9	12
9	Effect of administration of organic acids in drinking water on faecal shedding of E. coli, performance parameters and health in nursery pigs. Veterinary Journal, 2011, 188, 184-188.	0.6	23
10	Effect of organic acids and mannanoligosaccharide on excretion of Salmonella typhimurium in experimentally infected growing pigs. Research in Veterinary Science, 2012, 93, 46-47.	0.9	13
12	Effect of Dietary Acids on Growth Performance of Nursery Pigs: A Cooperative Study1. Journal of Animal Science, 2012, 90, 4408-4413.	0.2	5
13	The Prophylactic Use of Acidifiers as Antibacterial Agents in Swine. , 2012, , .		10
14	Potential of a commercially-available water acidification product for reducingCampylobacterin broilers prior to slaughter. British Poultry Science, 2013, 54, 130320024130007.	0.8	7
15	Effects of feeding bamboo vinegar and acidifier as an antibiotic substitute on the growth performance and intestinal bacterial communities of weaned piglets. Acta Agriculturae Scandinavica - Section A: Animal Science, 2013, 63, 143-150.	0.2	2
16	Influence of protected organic acid blends and diets with different nutrient densities on growth performance, nutrient digestibility and faecal noxious gas emission in growing pigs. Veterinarni Medicina, 2014, 59, 491-497.	0.2	25
17	Comparison of Single and Blend Acidifiers as Alternative to Antibiotics on Growth Performance, Fecal Microflora, and Humoral Immunity in Weaned Piglets. Asian-Australasian Journal of Animal Sciences, 2014, 27, 93-100.	2.4	48
18	Phage Therapy in the Food Industry. Annual Review of Food Science and Technology, 2014, 5, 327-349.	5.1	253
19	Analysis of the effect of dietary protected organic acid blend on lactating sows and their piglets.	0.3	25

#	Article	IF	Citations
20	Supplementation of organic acid blends in water improves growth, meat yield, dressing parameters and bone development of broilers. Bangladesh Journal of Animal Science, 2016, 45, 7-18.	0.1	5
21	Evaluation of the effectiveness of supplementing micro-encapsulated organic acids and essential oils in diets for sows and suckling piglets. Italian Journal of Animal Science, 2016, 15, 626-633.	0.8	15
22	Effects of benzoic acid, essential oils and <i>Enterococcus faecium</i> SF68 on growth performance, nutrient digestibility, blood profiles, faecal microbiota and faecal noxious gas emission in weanling pigs. Journal of Applied Animal Research, 2016, 44, 173-179.	0.4	19
23	The effects of dietary supplementation with α-ketoglutarate on the intestinal microbiota, metabolic profiles, and ammonia levels in growing pigs. Animal Feed Science and Technology, 2017, 234, 321-328.	1.1	13
24	Mannan-oligosaccharide and organic acids for weaned piglets. Semina:Ciencias Agrarias, 2017, 38, 2789.	0.1	3
25	Calcium anacardate as growth promoter for piglets at the nursery phase. Pesquisa Agropecuaria Brasileira, 2017, 52, 1253-1260.	0.9	0
26	Effects of a matrix-coated organic acids and medium-chain fatty acids blend on performance, and in vitro fecal noxious gas emissions in growing pigs fed in-feed antibiotic-free diets. Canadian Journal of Animal Science, 2018, 98, 433-442.	0.7	8
27	Non-antibiotic feed additives in diets for pigs: A review. Animal Nutrition, 2018, 4, 113-125.	2.1	206
28	Effects of organic acid and medium chain fatty acid blends on the performance of sows and their piglets. Animal Science Journal, 2018, 89, 1673-1679.	0.6	9
29	The effects of group size and subtherapeutic antibiotic alternatives on growth performance and morbidity of nursery pigs: a model for feed additive evaluation1. Translational Animal Science, 2018, 2, 298-310.	0.4	6
30	Supplementation with organic acids showing different effects on growth performance, gut morphology and microbiota of weaned pigs fed with highly or less digestible diets. Journal of Animal Science, 2018, 96, 3302-3318.	0.2	33
31	Alpha-Ketoglutarate in Low-Protein Diets for Growing Pigs: Effects on Cecal Microbial Communities and Parameters of Microbial Metabolism. Frontiers in Microbiology, 2018, 9, 1057.	1.5	40
32	Effects of dietary Clostridium butyricum supplementation on growth performance, intestinal development, and immune response of weaned piglets challenged with lipopolysaccharide. Journal of Animal Science and Biotechnology, 2018, 9, 62.	2.1	70
33	Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, intestinal structure, and inflammation in lipopolysaccharide-challenged weaned piglets. Journal of Animal Science, 2019, 97, 4140-4151.	0.2	32
34	Effect of a protected blend of organic acids and medium-chain fatty acids on growth performance, nutrient digestibility, blood profiles, meat quality, faecal microflora, and faecal gas emission in finishing pigs. Canadian Journal of Animal Science, 2019, 99, 448-455.	0.7	9
35	Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Research International, 2020, 127, 108762.	2.9	140
36	Effect of antibiotic-free, low-protein diets with specific amino acid compositions on growth and intestinal flora in weaned pigs. Food and Function, 2020, 11, 493-507.	2.1	22
37	Dietary Supplementation of Inorganic, Organic, and Fatty Acids in Pig: A Review. Animals, 2020, 10, 1740.	1.0	30

CITATION REPORT

_

#	Article	IF	CITATIONS
38	Eucommia ulmoides Flavones as Potential Alternatives to Antibiotic Growth Promoters in a Low-Protein Diet Improve Growth Performance and Intestinal Health in Weaning Piglets. Animals, 2020, 10, 1998.	1.0	11
39	Organic Acids Mixture as a Dietary Additive for Pigs—A Review. Animals, 2020, 10, 952.	1.0	39
41	Time for a Paradigm Shift in Animal Nutrition Metabolic Pathway: Dietary Inclusion of Organic Acids on the Production Parameters, Nutrient Digestibility, and Meat Quality Traits of Swine and Broilers. Life, 2021, 11, 476.	1.1	9
42	Effects of Organic acid Blend on Growth Performance, Nutrient Digestibility and Concentration of Volatile Fatty Acids in the Faeces of Young Pigs. Folia Veterinaria, 2021, 65, 42-47.	0.2	0
43	Overall assessment of antibiotic substitutes for pigs: a set of meta-analyses. Journal of Animal Science and Biotechnology, 2021, 12, 3.	2.1	21
44	A Review of the Effect of Formic Acid and Its Salts on the Gastrointestinal Microbiota and Performance of Pigs. Animals, 2020, 10, 887.	1.0	41
45	Effect of Supplementing Acidifiers and Organic Zinc in Diet on Growth Performances and Gut Conditions of Pigs. Journal of Applied Sciences, 2012, 12, 553-560.	0.1	10
46	Feed additives for swine: Fact sheets – acidifiers and antibiotics. Kansas Agricultural Experiment Station Research Reports, 2009, , 270-275.	0.0	11
47	Protected Organic Acid Blends as an Alternative to Antibiotics in Finishing Pigs. Asian-Australasian Journal of Animal Sciences, 2014, 27, 1600-1607.	2.4	50
48	Bacteriophage therapy revisited. African Journal of Microbiology Research, 2012, 6, .	0.4	2
49	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€ŧarget feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA Journal, 2021, 19, e06860.	0.9	8
50	Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. Journal of Animal Science and Technology, 2021, 63, 1314-1327.	0.8	22
51	Maximum levels of crossâ€contamination for 24 antimicrobial active substances in nonâ€ŧarget feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA Journal, 2021, 19, e06864.	0.9	5
52	Effects of Adding Vitamins and Organic Acids into the Drinking Water on Growth Performance, Carcass Yield and Meat Quality of Broilers Raised Under Tropical Condition. Journal of Applied Sciences, 2014, 14, 3493-3499.	0.1	1
53	Short Chain Fatty Acid Administration via Water Acidifier improves Feed Efficiency and modulates Faecal Microbiota in Weaned Piglets. Journal of Animal Science, 2021, 99, .	0.2	6
54	Sows fed with synergistic blend of short- and medium chain organic acid has a carryover effect on post-weaning growth rate. Journal of Animal Science and Technology, 2022, 64, 302-311.	0.8	2
57	Dietary acidifiers as an alternative to antibiotics for promoting pig growth performance: A systematic review and meta-analysis. Animal Feed Science and Technology, 2022, 289, 115320.	1.1	9
58	Noninvasive fecal metabolic profiling for the evaluation of characteristics of thermostable lactic acid bacteria, Weizmannia coagulans SANK70258, forÂbroilerÂchickens. Journal of Bioscience and	1.1	6

C	- A I		- D		0.07	-
Ч. П	ΓΑΤΙ	ON		ΕР	OR	

#	Article	IF	CITATIONS
59	Multiple generations of antibiotic exposure and isolation influence host fitness and the microbiome in a model zooplankton species. FEMS Microbiology Ecology, 2022, 98, .	1.3	0
60	Influence of protected organic acids on growth performance, fecal microbial composition, gas emission, and apparent total tract digestibility in growing pigs Canadian Journal of Animal Science, 0, , .	0.7	Ο
61	Impact of synergistic blend of organic acids on the performance of late gestating sows and their offspring. Italian Journal of Animal Science, 2022, 21, 1334-1342.	0.8	1
62	Effects of formic acid and glycerol monolaurate on weanling pig growth performance, fecal consistency, fecal microbiota, and serum immunity. Translational Animal Science, 2022, 6, .	0.4	1
64	Acidifiers as Alternatives for Antibiotics Reduction and Gut Health Improvement for Poultry and Swine. Veterinary Medicine and Science, 0, , .	0.0	0